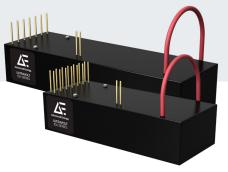


ULTRAVOLT 10A AND 15A SERIES

PRECISION DC TO HIGH VOLTAGE DC CONVERTERS


The UltraVolt[®] 10A and 15A series of regulated DC-to-DC converters provide general purpose high voltage power for a wide range of applications.

PRODUCT HIGHLIGHTS

- Regulated 0 to 10 kV or 0 to 15 kV DC high voltage output
- Single output: positive and negative polarity models
- Choice of 4, 15, or 30 W maximum output power
- 12 or 24 VDC input
- Maximum lout capability down to 0 VDC
- Output ripple performance as low as 80 ppm (0.8 Vpp)
- Available temperature coefficients to 25 ppm/°C
- Ease of installation with PCB or chassis-mount options
- Simplified integration with available 0 to 5 VDC or 0 to 10 VDC interface
- Reliable modular design
- Factory-configured performance, control, and integration options
- UL/cUL recognized, CE mark (LVD and RoHS), IEC-60950-1

TYPICAL APPLICATIONS

- DC to high voltage DC bias supplies for general purpose uses
- High-potential testing
- PMT/APD detectors and optical spectrometers
- Electrostatics, electrophoresis, and electrospray
- Mass spectrometers

AT A GLANCE

Maximum Output Voltage

10 or 15 kV DC

Maximum Output Power

30 W

Туре

Single Output

Ripple

To 80 ppm (0.8 Vpp)

Control Interface

Analog

Temperature Coefficient

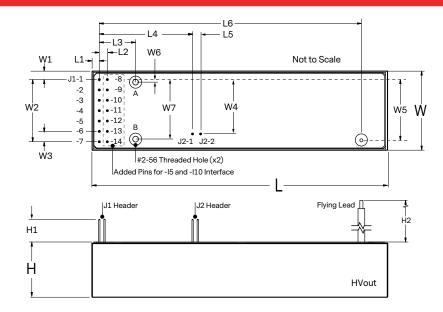
To 25 ppm/°C

ELECTRICAL SPECIFICATIONS

Model		10A Seri	es		15A Series				
High Voltage Output Range	e (Adjustable Regulated, Positive or Negative)1	0 to 10,00	DO VDC		0 to 15,000 VDC				
High Voltage Outputs		Single			Single				
Input Voltage (VDC, Nomin	al)	12 VDC	24 VDC		12 VDC	24 VDC			
Power Output (Watts, Nom	inal)	4 W	15 W	30 W	4 W	15 W	30 W		
DC Input					1				
Vin (Input Voltage) Range	VDC (positive polarity only)	11 to 16	23 to 30		11 to 16	23 to 30			
Vin (Nominal)	VDC	12	24		12	24			
lin (Input Current, Nominal)	A @ 100% HVout, 100% LOAD	< 0.5	< 1.5	< 1.6	< 0.5	< 1.5	< 1.6		
	A @ 100% HVout, 0% LOAD	< 0.2	< 0.25	< 0.25	< 0.2	< 0.25	< 0.25		
	A @ disable/standby state	< 0.03			< 0.03				
DC Output									
HVout (Output Voltage)	VDC (positive polarity models = +HVout)	0 to +10,0	000		0 to +15,000				
	VDC (negative polarity models = -HVout)	0 to -10,0	000		0 to -15,000				
lout (Output Current)	mA (max) @ 0 to 100% HVout, Vin (nominal)	0.40	1.5	3.0	0.26	1.0	2.0		
Pout (Output Power)	Watts (max)	4	15	30	4	15	30		
Ripple ^{2,3}	ppm (standard configuration)	< 120	< 400	< 760	< 240	< 430	< 800		
	ppm (with -F-M option)	< 80	< 340	< 720	< 210	< 280	< 730		
	ppm (with -F-M-C option)	< 200	< 300	< 500	< 200	< 300	< 500		
	Vpp (standard configuration)	< 1.2	< 4	< 7.6	< 3.6	< 6.5	< 12		
	Vpp (with -F-M option)	< 0.8	< 3.4	< 7.2	< 3.2	< 4.2	< 11		
	Vpp (with -F-M-C option)	< 2	< 3	< 5	< 3	< 4.5	< 7.5		

1 Standard product specifications shown unless noted. Custom configurations are available.

2 Nominal ripple measured @ 100% HVout, 100% LOAD into 300 pf bypass capacitor. Valid for 10 to 100% HVout range.


3 ppm = parts per million @ 100% HVout. Vpp = VDC peak to peak @ 100% HVout.

Stability and Regulation							
Stability	0.01% (100 ppm) @ 100% HVout (after 30 min warmup interval)						
	0.02% (200 ppm) @ 100% HVout (per 8 h interval)						
Line Regulation	0.01% (100 ppm) @ 100% HVout, 100% Pout, Vin (nominal)						
Static Load Regulation	0.01% (100 ppm) @ 100% HVout, 0 to 100% LOAD						
Temperature Coefficient	50 ppm/°C (standard configuration over operating temperature range)						
	25 ppm/°C (with -25PPM option over operating temperature range)						
Power-On Rise Time	< 150 msec @ 100% LOAD, < 50 msec @ 0% LOAD						
Contact factory for other options.							

Environmental								
Operating Temperature Range	-40 to 65°C (-40 to 149°F) case temperature							
Storage	-55 to 105°C (-67 to 222°F) case temperature							
Humidity	0 to 95% RH, non-condensing							
Altitude	Sea level to 3000 m (10,000 ft)							
	Sea level to high vacuum (with -P3 option)							
Regulatory								
Certifications	UL/cUL recognized, IEC-60950-1, CE mark (LVD and RoHS)							

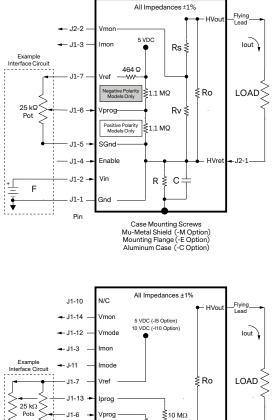
MECHANICAL SPECIFICATIONS

Dimensions		10A Ser	ies	15A Series			
Key	Description ^{1, 2, 3}	mm	in	mm	in		
L	Overall Length	94.6	3.73	119.4	4.70		
L1	Case Exterior to J1-1	3.2	0.13	3.2	0.13		
L2	Centerline, J1-1 to J1-8	2.5	0.10	2.5	0.10		
L3	Centerline, J1-1 to Hole A (Hole B)	17.8	0.70	17.8	0.70		
L4	Centerline, J1-1 to J2-1	45.7	1.80	45.7	1.80		
L5	Centerline, J2-1 to J2-2	2.5	0.10	2.5	0.10		
L6	Centerline, J1-1 to Flying Lead	77.5	3.05	102.5	4.04		
w	Overall Width	38.7	1.53	38.7	1.53		
W1	Case Exterior to J1-1	3.8	0.15	3.8	0.15		
W2	Centerline, J1-1 to J1-7	30.5	1.20	30.5	1.20		
W3	Centerline, J1-6 to J1-7	5.1	0.20	5.1	0.20		
W4	Centerline, J1-1 to J2-1	26.7	1.05	26.7	1.05		
W5	Centerline, J1-1 to Flying Lead	29.7	1.17	29.7	1.17		
W6	Centerline, J1-1 to Hole A	1.3	0.05	1.3	0.05		
W7	Centerline, Hole A to Hole B	27.9	1.10	27.9	1.10		
н	Case Height (Case Exterior to PCB , max)	25.4	1.00	25.4	1.00		
H1	Base of PCB to J1/J2 Header Tip	11.2	0.44	11.2	0.44		
H2	Length of Standard Flying Lead	470	18.5	470	18.5		

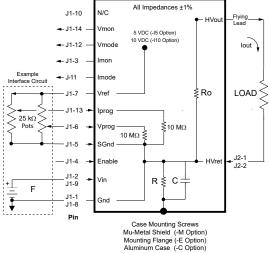
Volumes and Weights	10A Ser	ies	15A Series			
	cm³	in³	cm³	in ³		
Volume (Module Body Only)	93.1	5.7	117.5	7.2		
	g	oz	g	oz		
Weight (Standard Configuration)	183	6.5	209	7.4		

Construction	
Standard Case	Injection-molded plastic (Diallyl Phthalate, DAP, per ASTM-D-5948)
Optional Case	RF-tight aluminum (-C option) (Anodized per MIL-A-8625 Type II)
Optional Shield	Six-sided Mu-Metal (-M option)
Labels	Static-dissipative polyester
Cooling	Natural convection and conduction
Encapsulation	Silicone-based RTV (contact factory for other options)
Pins	Gold-plated bronze

1 Approximate nominal dimensions and weights for standard configuration shown. Contact factory for -M, -C or -E case options.


 $\label{eq:2.1} \begin{array}{l} \mbox{Standard case} (DAP \mbox{plastic}) \mbox{tolerances} \\ \mbox{are \pm1.27 mm} (\pm0.050 in). Pin-to-pin tolerances \\ \mbox{are \pm0.76 mm} (\pm0.015 in). \end{array}$

3 Refer to outline drawings and 3D models for detailed information.


ULTRAVOLT 10A AND 15A SERIES

INTERFACE

The 10A and 15A series' standard interface permits voltage control and monitoring of both voltage and current output using analog DC signals whose range and polarity vary by model. The 10A model also offers UltraVolt's optional -I5 or -I10 interface which provides simplified control and monitoring of both voltage and current using 0 to 5 VDC or 0 to 10 VDC full-scale analog signals.

Standard Interface												
Pin	Label	Туре	Description									
J1-1	Gnd	Ground	DC Input Power Ground									
J1-2	Vin	Input	DC Input Power									
J1-3	Imon	Output	Monitor HVout Current Level									
J1-4	Enable	Input	Enable HVout ¹									
J1-5	SGnd	Ground	Signal Ground									
J1-6	Vprog	Input	Set HVout Voltage Level									
J1-7	Vref	Output	Control Signal Reference ²									
J2-1	HVret	Ground	High Voltage Return ⁹									
J2-2	Vmon	Output	Monitor HVout Voltage Level									
Flying Lead	HVout	Output	High Voltage Output									

-15 and -110 I	nterface (Optional)	
Pin	Label	Туре	Description
J1-1	Gnd	Ground	DC Input Power Ground
J1-2	Vin	Input	DC Input Power
J1-3	Imon	Output	Monitor HVout Current Level ^{3, 8}
J1-4	Enable	Input	Enable HVout ⁴
J1-5	SGnd	Ground	Signal Ground
J1-6	Vprog	Input	Set HVout Voltage Level
J1-7	Vref	Output	Control Reference Signal 5, 6
J1-8	Gnd	Ground	DC Input Power Ground
J1-9	Vin	Input	DC Input Power
J1-10	N/C		No Connection
J1-11	Imode	Output	Current Mode Indicator 7
J1-12	Vmode	Output	Voltage Mode Indicator ⁷
J1-13	Iprog	Input	Set HVout Current Level
J1-14	Vmon	Output	Monitor HVout Voltage Level ^{3,8}
J2-1	HVret	Ground	High Voltage Return ⁹
J2-2	HVret	Ground	High Voltage Return ⁹
Flying Lead	HVout	Output	High Voltage Output

- 1 Signal inputs: LOW < 0.5 VDC, HIGH > 2.4 VDC (Default or N/C = ENABLED = HIGH)
- ${\bf 2}~5\,\text{VDC}\,\pm2\%$ through 464 Ω impedance load
- 3 Can source an output impedance load > 10 k Ω
- 4 Signal input: LOW < 0.5 VDC, HIGH > 2.4 VDC (Default or N/C = DISABLED = LOW)
- 5 -I5 interface: 5 VDC ±0.1% @ 5 mA (nominal at case temperature = 25°C, 77°F)
- 6 -I10 interface: 10 VDC ±0.1% @ 5 mA (nominal at case temperature = 25°C, 77°F)
- 7 LOW = Mode ENABLED (open drain) will sink up to 30 mA.
- 8 Voltage/current monitors will source/sink to 2 mA.
- 9 For proper operation and safety, always route HVret signal through HVret connection.

INTERFACE CONTROL PARAMETERS

MODEL		10A Seri	es		15A Series					
High Voltage Output Rang	e	0 to 10,0	00 VDC		0 to 15,00	DO VDC				
Input Voltage (VDC, Nomir	nal)	12 VDC 24 VDC			12 VDC	24 VDC				
Power Output (Watts, Non	ninal)	4 W	15 W	30 W	4 W	15 W	30 W			
Standard Interface (Moni	tor/Control Voltage, Monitor Current)									
Scale Factors ^{1, 2, 3}	SVm (V/V) where HVout Monitor = SVm x Vmon	1000			1000					
Positive Polarity Models	SVp (V/V) where HVout Control = SVp x Vprog	2155			3233					
Negative Polarity Models	SVp (V/V) where HVout Control = SVp x (5 - Vprog)	-2155			-3233					
	SIm (mA/V) where lout Monitor = SIm x Imon	0.167	0.184	0.381	0.158	0.181	0.378			
	Slp(mA/V) where lout Control = $Slp x lprog$	N/A			N/A					
Impedances ⁴	Ro (HVout impedance, ±1%)	500 MΩ			750 MΩ					
	Rs (Vmon upper tap impedance, ±1%)	500 MΩ			750 MΩ					
	Rv (Vmon lower tap impedance, ±1%)	523 kΩ			806 kΩ					
-15 Interface (0 to 5 VDC, I	Monitor/Control Both Voltage and Current)									
Scale Factors ^{5, 6, 8, 9}	SVm (V/V) where HVout Monitor = SVm x Vmon	2000			N/A					
	SVp (V/V) where HVout Control = SVp x Vprog	2000			N/A					
mpedances ⁴	SIm (mA/V) where lout Monitor = SIm x Imon	0.08	0.30	0.60	N/A					
	Slp(mA/V) where lout Control = $Slp x lprog$	0.08	0.30	0.60	N/A					
Impedances ⁴	Ro (HVout impedance, ±1%)	375 MΩ			N/A					
-I10 Interface (0 to 10 VD	C, Monitor/Control Both Voltage and Current)									
Scale Factors ^{5, 7, 8,9}	SVm (V/V) where HVout Monitor = SVm x Vmon	2000			N/A					
	SVp (V/V) where HVout Control = SVp x Vprog	2000	2000			N/A				
Scale Factors ^{1, 2, 3} Positive Polarity Models Negative Polarity Models Impedances ⁴ IS Interface (0 to 5 VDC, N Scale Factors ^{5, 6, 8, 9} Interface (0 to 10 VDC Scale Factors ^{5, 7, 8, 9} Interface Values Impedances ⁴ Ither Interface Values Impedances ⁴ Imped	SIm (mA/V) where lout Monitor = SIm x Imon	0.04	0.04 0.15 0.3		N/A					
	Slp(mA/V) where lout Control = $Slp x lprog$	0.04	0.15	0.3	N/A					
Impedances ⁴	Ro (HVout impedance, ±1%)	375 MΩ			N/A					
Other Interface Values										
Impedances ⁴	R (standard case via mounting screws, ±1%)	232 kΩ			232 kΩ					
	R (standard case with -I5 /-I10 option, ±1%)	100 kΩ			N/A					
	R (with -M option, ±1%)	232 kΩ	0Ω		232 kΩ 0 Ω					
	R (with -E option, ±1%)	232 kΩ			232 kΩ					
	R (with -C option, ±1%)	232 kΩ			232 kΩ					
	R (with -M-E option, ±1%)	0Ω	0 Ω			0 Ω				
	R (with -M-C option, ±1%)	0Ω			0 Ω					
Capacitance ⁴	C (@ 50 VDC ±10%, 1/8 W, max)	0.01 µF	0 μF		0.01 μF 0 μF					
Input Voltage Protection	F (fuse or other protection recommended)	See note	10		See note 10					

1 For positive polarity models, Vprog varies from 0 to 4.64 VDC. For negative polarity models, Vprog varies inversely from 5 to 0.36 VDC.

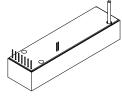
 ${\bf 2}~$ SIm factor is $\pm 2\%$ @ 100% LOAD, 100% HVout. Valid for 10 to 100% lout range.

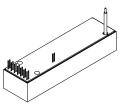
- 3~ SVm factor is ±2% assuming a 10 MQ measurement impedance. Valid from 10 to 100% HVout.
- 4 See interface schematics for definition.
- 5 For details on -I5/-I10 interfacing, see technical note TN-I5-I10-1.
- 6 For the -I5 interface, Imon, Iprog, Vmon, and Vprog input/output signals vary from 0 to 5 VDC (full-scale).

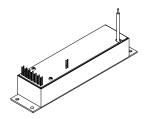
7 For the -I10 interface, Imon, Iprog, Vmon, and Vprog input/output signals vary from 0 to 10 VDC (full-scale).

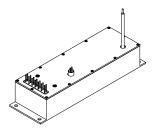
8~ SVm factor is ±1% for both -I5 and -I10 Interfaces. SVp factor is also ±1% and is valid from 10 to 100% HVout.

 $9\,$ SIm factor is ±1% for both -I5 and -I10 Interfaces. SIp factor is also ±1% and is valid from 10 to 100% lout.

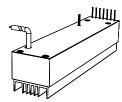

10 For details on fuse selection, see technical note TN-23.




STANDARD OPTIONS


Both the 10A and 15A series can be configured with standard options that can adapt its performance and packaging for many application requirements. Customized models to meet specialized performance, packaging, or environmental needs are also available.

Featured	Options
-15	Upgrades interface to provide more precise control and monitoring of both HVout and lout using 0 to 5 VDC (full-scale) analog signals. Also adds lout control and voltage/current mode indication capability not available on the standard interface. Cannot be ordered with the -I10 option. Available only on 10A series models.
-110	Upgrades interface to provide more precise control and monitoring of both HVout and lout using 0 to 10 VDC (full-scale) analog signals. Also adds lout control and voltage/current mode indication capability not available on the standard interface. Cannot be ordered with the -I5 option. Available only on 10A series models with 24 VDC input.
-F	Reduces high voltage ripple when used together with the Mu-Metal shield and a user-supplied external capacitive load. Available only with the the Mu-Metal shield (-M option).
-M	Adds a Mu-Metal shield to reduce the effects of external RF noise sources. Installed on six sides, this shield option is available on both standard plastic (DAP) and optional aluminum (-C option) cases.
-E	Eared mounting flange that permits the standard plastic (DAP) case to be chassis-mounted.
-C	Aluminum alloy case with integrated mounting flange that provides both added RF and environmental protection.
-AP	Adds non-conductive braiding to the standard HVout flying lead for increased durability. Terminating connector is user-supplied. Not available with the -WS option.
-WS	Replaces the standard HVout flying lead with a 470 mm long shielded coaxial cable for added RF protection. Terminating connector is user-supplied. Not available with the -AP option.
-25PPM	Upgrades module temperature coefficient rating from 50 ppm/°C to 25 ppm/°C for enhanced high voltage output stability over standard operating temperature ranges.
-H	Heatsink option

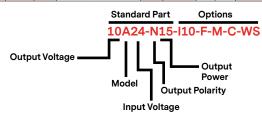


Standard Interface

-I5 and -I10 Interface

-E Option (Eared Mounting Plate)

-C Option (Aluminum Case)


-H Heatsink

ORDERING INFORMATION

		STANDARD CONFIGURATION								OPTIONS											
										Inte	rfaces				Μ	lechar	nical				
			Electrical Performance		Standard Electrical Performance Features						Select One Ripple			Se	lect O	ne	Selec	t One	Temp		
S	Standard Part		High Voltage Output Range (HVout VDC, Adjustable)	Input Voltage (Vin, VDC)	High Voltage Output Polarity	High Voltage Output Power (Pout, Watts)	Standard Interface	Plastic Case (DAP)	Standard HVout Lead (No Connector, 470 mm)	50 ppm/°C Temperature Coefficient	-15 Interface (0 to 5 VDC Monitors/Controls)	-110 Interface (0 to 10 VDC Monitors/Controls)	Reduced Ripple Capability	Mu-Metal Shield (6 Sides)	Eared Mounting Flange (Standard Case Only)	Aluminum Case (RF Tight)	Heatsink	Non-Conductive Braid for HVout Lead (No Connector, 470 mm)	Shielded Coaxial HVout Lead (No Connector, 470 mm)	25 ppm/°C Temperature Coefficient	Other Options
	10A12-P4	1	0 to +10,000	12	Pos	4		Incl	udec	k	-15		-F	-M	-E	-C	-H	-AP	-WS	-25PPM	
	10A12-N4	1	0 to -10,000	12	Neg	4		Incl	udec	ł	-15		-F	-M	-E	-C	-H	-AP	-WS	-25PPM	s
10A	10A24-J15	1	0 to +10,000	24	Pos	15		Incl	udec	ł	-15	-l10	-F	-M	-E	-C	-H	-AP	-WS	-25PPM	available options
-	10A24-N15	1	0 to -10,000	24	Neg	15		Incl	udeo	ł	-15	-I10	-F	-M	-E	-C	-H	-AP	-WS	-25PPM	le op
	10A24-P30	1	0 to +10,000	24	Pos	30		Incl	udec	ł	-15	-I10	-F	-M	-E	-C	-H	-AP	-WS	-25PPM	ailab
	10A24-N30	1	0 to -10,000	24	Neg	30		Incl	udec	ł	-15	-l10	-F	-M	-E	-C	-H	-AP	-WS	-25PPM	r ava
	15A12-P4	1	0 to +15,000	12	Pos	4		Incl	udec	ł			-F	-M	-E	-C	-H	-AP	-WS	-25PPM	othe
	15A12-N4	1	0 to -15,000	12	Neg	4		Incl	udec	k			-F	-M	-E	-C	-H	-AP	-WS	-25PPM	for
15A	15A24-J15	1	0 to +15,000	24	Pos	15		Incl	udeo	ł			-F	-M	-E	-C	-H	-AP	-WS	-25PPM	story
Ť	15A24-N15	1	0 to -15,000	24	Neg	15		Incl	udeo	ł			-F	-M	-E	-C	-н	-AP	-WS	-25PPM	Contact factory for other
	15A24-P30	1	0 to +15,000	24	Pos	30		Incl	udec	k			-F	-M	-E	-C	-H	-AP	-WS	-25PPM	ntac
	15A24-N30	1	0 to -15,000	24	Neg	30		Incl	udec	k			-F	-M	-E	-C	-H	-AP	-WS	-25PPM	ŭ

Since 1981, UltraVolt[®] — now part of the Advanced Energy (AE) family — has perfected how power performs for its customers. For both end users and OEMs, AE's comprehensive portfolio of standard and custom high voltage components precisely match system specifications to deliver unparalleled energy, quality, and performance. Through close customer collaboration, design expertise, application insight, and world-class support, AE creates successful partnerships and enables customers to push the boundaries of innovation and stay ahead of evolving market needs.

PRECISION | POWER | PERFORMANCE

Read and understand all documentation before you install, operate, or maintain Advanced Energy high voltage power supplies. Follow all safety instructions and precautions to protect against property damage and serious or possibly fatal bodily injury. Never defeat safety interlocks or grounds.

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2019 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, AE®, and UltraVolt® are U.S. trademarks of Advanced Energy Industries, Inc.

For international contact information, visit advanced-energy.com.

uv-ca@aei.com +1.970.221.0108

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Advanced Energy:

10A24-P15-25PPM 10A24-P15-25PPM-E 10A24-P15-25PPM-F-M 10A24-P15-25PPM-F-M-H 10A24-P15-25PPM-F-M-HLP 10A24-P15-25PPM-H 10A24-P15-I5-M-HLP 10A24-P15-M-E 10A24-P15-M-H 10A24-P15-M-HLP 10A24-P15-I5-F-M-H 10A24-P15-I5-F-M-HLP 10A24-P15-I5-H 10A24-P15-I5-M 10A24-P15-I5-M-H 10A24-P15-I5-25PPM-HLP 10A24-P15-I5-25PPM-M 10A24-P15-I5-25PPM-M-H 10A24-P15-I5-25PPM-M-HLP 10A24-P15-I5-F-M 10A24-P15-I5-F-M-E 10A24-P15-I10-M-H 10A24-P15-I10-M-HLP 10A24-P15-I5-25PPM 10A24-P15-I5-25PPM-F-M 10A24-P15-I5-25PPM-F-M-H 10A24-P15-I5-25PPM-H 10A24-P15-I10-F-M 10A24-P15-I10-F-M-H 10A24-P15-I10-F-M-HLP 10A24-P15-I10-H 10A24-P15-I10-M 10A24-P15-I10-25PPM-F-M-H 10A24-P15-I10-25PPM-H 10A24-P15-I10-25PPM-HLP 10A24-P15-I10-25PPM-M 10A24-P15-I10-25PPM-M-H 10A24-P15-I10-C 10A24-P15-F-M-H 10A24-P15-F-M-HLP 10A24-P15-I10-25PPM 10A24-P15-I10-25PPM-F-M 10A24-P15-25PPM-HLP 10A24-P15-25PPM-M 10A24-P15-25PPM-M-E 10A24-P15-25PPM-M-H 10A24-P15-25PPM-M-HLP 10A24-P15-F-M 10A24-P15-I10-5PPM-F-M-HLP 10A24-P15-I10-5PPM-M-HLP 10A24-P15-I5-5PPM-F-M-HLP 10A24-P30-I10-5PPM-F-M-HLP 10A24-P30-I10-5PPM-M-HLP 10A24-P30-I5-5PPM-F-M-HLP 10A24-N15-I10-5PPM-F-M-HLP 10A24-N15-I10-5PPM-M-HLP 10A24-N15-I5-5PPM-F-M-HLP 10A24-N30-I10-5PPM-F-M-HLP 10A24-N30-I10-5PPM-M-HLP 10A24-N30-I5-5PPM-F-M-HLP 15A24-P30-25PPM-H 15A24-P30-25PPM-M 15A24-P30-25PPM-M-H 15A24-P30-F-M-H 15A24-P30-M 15A24-P30-M-H 15A24-P15-F-M-H 15A24-P15-M-H 15A24-P30-25PPM 15A24-P30-25PPM-F-M 15A24-P30-25PPM-F-M-H 15A24-P15-25PPM-F-M 15A24-P15-25PPM-F-M-H 15A24-P15-25PPM-H 15A24-P15-25PPM-M 15A24-P15-25PPM-M-H 15A24-P15-F-M 15A24-N30-F-M-H 15A24-N30-H 15A24-N30-M 15A24-N30-M-H 15A24-P15-25PPM 15A24-P15-25PPM-E 15A24-N30-25PPM-F-M 15A24-N30-25PPM-F-M-H 15A24-N30-25PPM-H 15A24-N30-25PPM-M 15A24-N30-25PPM-M-H 15A24-N30-F-M 15A24-N15-25PPM-M-H 15A24-N15-F-M-H 15A24-N15-M-H 15A24-N30-25PPM 15A24-N30-25PPM-E 15A24-N15-25PPM 15A24-N15-25PPM-F-M 15A24-N15-25PPM-F-M-H 15A24-N15-25PPM-H 15A24-N15-25PPM-M 15A12-P4-25PPM-F-M-H