# RICOH

# Li-ion / Li-polymer Battery Management Analog Front-End IC

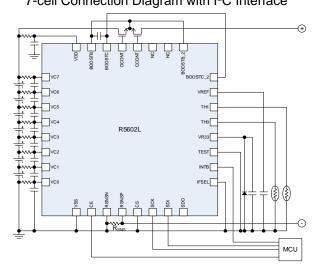
#### OVERVIEW

The R5602 is an analog front-end IC for 4-cell to 7-cell Li-ion / Li-polymer battery management. This IC provides cell voltage monitor, bidirectional current monitor based-on monitoring the voltage across an external sense resistor, two input pin for temperature monitoring by external NTC thermistors, Die temperature monitor, overcurrent protection, high-side NMOSFET control, a voltage regulator, cell balancing switches, switch for open-wire detection and I<sup>2</sup>C/SPI interface. The IC has a built-in A/D converter and an MCU can read each monitor value as a digital value.

#### KEY BENEFITS

- High accuracy voltage monitoring and low power consumption for saving battery life.
- Control High-side NMOSFET for ease of treatment and cost reduction of BOM.
- No limitation in cell connection sequence for cost reduction of battery pack assembling.

#### KEY SPECIFICATIONS


- Absolute Maximum Rating: 40 V
- Power Consumption Active: Typ. 150 μA Standby: Max. 1.0 μA
- Built-in 12-bit A/D Converter
- Cell Voltage Monitor:
  - Input Range: 1.5 V to 4.5 V Accuracy: +/-30mV<sup>(1)</sup>
- Current monitor based-on monitoring voltage across sense resistor
  - Gain: x2.5, x10, x20
- Temperature monitoring by two external NTC thermistors
- Die temperature monitoring and high temperature alert.
- Monitoring Speed: less than 1ms/1monitor (Max)
- Overcurrent Protection by Detectors: Overcharge, overdischarge, and short-circuit
- Voltage Regulator Output: Typ.3.4 V
- High-side NMOSFET Control
- Built-in Cell Balancing Switch: Cell Balancing Current depends on external resistor (up to 20mA)
- Built-in switch for Open-wire detection
- No limitation in cell connection sequence when CE = Low
- I<sup>2</sup>C / SPI interface with/without CRC

#### APPLICATIONS

7-cell Connection Diagram with I<sup>2</sup>C Interface

TYPICAL APPLICATION

No.EA-531-210401

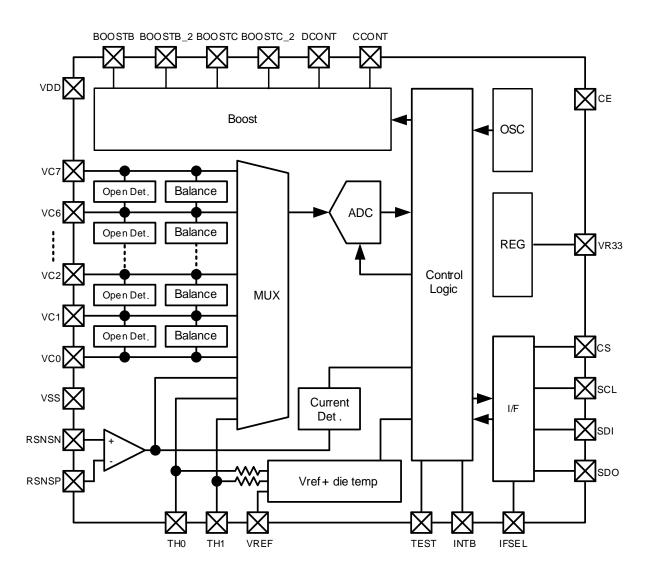


 PACKAG
 QFN0505-32C

 5mm x 5mm x 0.8mm

Power Tool, Power Storage, Cordless/Robot Cleaner, Pedelec, E-bike, Drone

<sup>(1)</sup>  $-20^{\circ}C \le Ta \le 85^{\circ}C$ ,  $V_{VCIN} = 3 V$  to 4.2 V,  $V_{DD} \ge 6.0 V$ . Cell voltages are balanced.

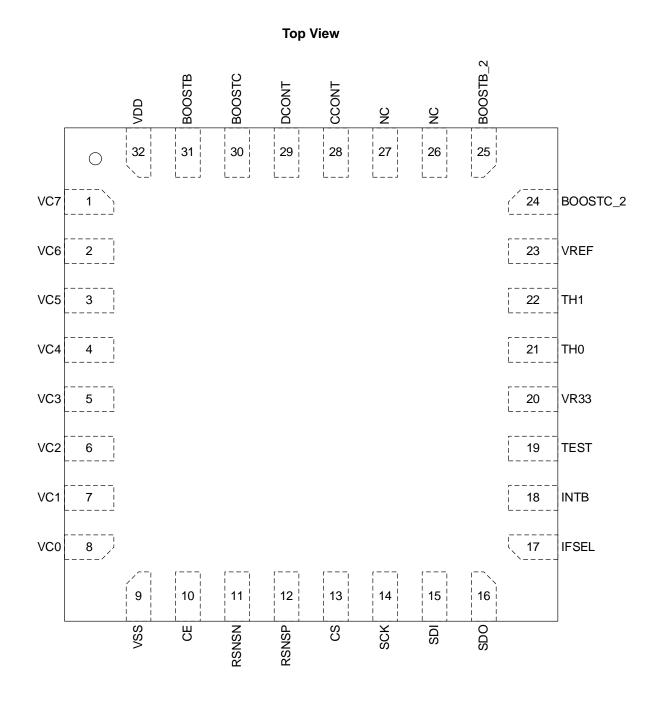

No.EA-531-210401

## **SELECTION GUIDE**

**Selection Guide** 

| Product Name   | Product Name Package |           | Pb Free | Halogen Free |  |  |
|----------------|----------------------|-----------|---------|--------------|--|--|
| R5602L001AA-E2 | QFN0505-32C          | 5,000 pcs | Yes     | Yes          |  |  |

# **BLOCK DIAGRAM**




**R5602L Block Diagram** 

**RICOH** 

No.EA-531-210401

## **PIN DESCRIPTION**



R5602L (QFN0505-32C) Pin Configuration

No.EA-531-210401

| R5602L Pin | Description |
|------------|-------------|
|------------|-------------|

| Pin<br>No. | Pin Name | I/O | D/A   | Description                                                             |
|------------|----------|-----|-------|-------------------------------------------------------------------------|
| 1          | VC7      | Ι   | A/P/G | Positive Pin for Cell 7                                                 |
| 2          | VC6      | Ι   | A/P/G | Positive Pin for Cell 6                                                 |
| 3          | VC5      | Ι   | A/P/G | Positive Pin for Cell 5                                                 |
| 4          | VC4      | Ι   | A/P/G | Positive Pin for Cell 4                                                 |
| 5          | VC3      | Ι   | A/P/G | Positive Pin for Cell 3                                                 |
| 6          | VC2      | Ι   | A/P/G | Positive Pin for Cell 2                                                 |
| 7          | VC1      | Ι   | A/P/G | Positive Pin for Cell 1                                                 |
| 8          | VC0      | Ι   | A/P/G | Negative Pin for Cell 1                                                 |
| 9          | VSS      | -   | G     | Ground Pin                                                              |
| 10         | CE       | -   | D     | Chip Enable Pin                                                         |
| 11         | RSNSN    | -   | А     | R <sub>SENS</sub> Negative Input Pin                                    |
| 12         | RSNSP    | -   | А     | R <sub>SENS</sub> Positive Input Pin                                    |
| 13         | CS       | -   | D     | SPI Chip Select Pin                                                     |
| 14         | SCK      | Ι   | D     | Clock Input Pin in Common to SPI and I <sup>2</sup> C                   |
| 15         | SDI      | Ю   | D     | Input Pin for SPI Data, Input / Output Pin for I <sup>2</sup> C Data    |
| 16         | SDO      | 0   | D     | Output Pin for SPI Data                                                 |
| 17         | IFSEL    | Ι   | D     | SPI / I <sup>2</sup> C Switching Pin (High: SPI, Low: I <sup>2</sup> C) |
| 18         | INTB     | 0   | D     | Interrupt Output Pin (Nch Open-drain Output)                            |
| 19         | TEST     | Ι   | D     | Connect to GND                                                          |
| 20         | VR33     | 0   | А     | Capacitor and Clamp Diode Connecting Pin for Power Supply               |
| 21         | TH0      | -   | А     | Thermistor Connecting Pin 0                                             |
| 22         | TH1      | Ι   | Α     | Thermistor Connecting Pin 1                                             |
| 23         | VREF     | 0   | А     | Reference Voltage Capacitor Pin for Internal Use Only                   |
| 24         | BOOSTC_2 | -   | А     | Boost Voltage Input Pin                                                 |
| 25         | BOOSTB_2 | Ι   | Α     | Boost Reference Voltage Input Pin                                       |
| 26         | NC       | -   | -     | Non-Connection                                                          |
| 27         | NC       | -   | -     | Non-Connection                                                          |
| 28         | CCONT    | 0   | Α     | FET Control Pin for Charger, High Potential SPI Chile Select Pin        |
| 29         | DCONT    | 0   | Α     | FET Control Pin for Discharger                                          |
| 30         | BOOSTC   | 0   | Α     | Boost Voltage Pin                                                       |
| 31         | BOOSTB   | -   | Р     | Boost Reference Voltage Pin                                             |
| 32         | VDD      | -   | Р     | Power Supply Pin                                                        |

No.EA-531-210401

# ABSOLUTE MAXIMUM RATINGS

| Symbol             | Parameter                  | Pin                             | Rating                                             | Unit |
|--------------------|----------------------------|---------------------------------|----------------------------------------------------|------|
| Power Supp         | ly Voltage                 |                                 |                                                    | •    |
| N/                 |                            |                                 | - 0.3 to 40                                        | V    |
| V <sub>PS1</sub>   | Power Supply Voltage1      | VDD                             | V <sub>IN1_6</sub> - 0.3 to V <sub>IN1_6</sub> + 6 | V    |
| V <sub>PS2</sub>   | Power Supply Voltage2      | BOOSTB                          | - 0.3 to 40                                        | V    |
| Input Voltage      | e Range                    |                                 |                                                    |      |
| V <sub>IN1_n</sub> | Input Voltage Range 1      | VCn                             | $V_{IN1_{(n-1)}}$ - 0.3 to $V_{IN1_{(n-1)}}$ + 6.0 | V    |
| V <sub>IN2</sub>   | Input Voltage Range 2      | VC0                             | $V_{SS}$ – 0.3 to $V_{SS}$ + 0.3                   | V    |
| VIN3               | Input Voltage Range 3      | RSENSN, RSNSP                   | Vss - 0.3 to Vout1 + 0.3                           | V    |
| V <sub>IN4</sub>   | Input Voltage Range 4      | TH0, TH1                        | Vss - 0.3 to Vout1 + 0.3                           | V    |
| V <sub>IN5</sub>   | Input Voltage Range 5      | CE                              | V <sub>SS</sub> – 0.3 to 6.0                       | V    |
| V <sub>IN6</sub>   | Input Voltage Range 6      | CS, TEST, IFSEL                 | Vss - 0.3 to Vout1 + 0.3                           | V    |
| M                  |                            | SDI, SCK(SPI)                   | V <sub>SS</sub> – 0.3 to V <sub>OUT1</sub> + 0.3   | V    |
| Vin7               | Input Voltage Range 7      | SDI(I/O), SCK(I <sup>2</sup> C) | V <sub>SS</sub> – 0.3 to 6.0                       | V    |
| V <sub>IN8</sub>   | Input Voltage Range 8      | BOOSTB_2                        | VPS2                                               | V    |
| V <sub>IN9</sub>   | Input Voltage Range 9      | BOOSTC_2                        | V <sub>OUT5</sub>                                  | V    |
| Output Volta       | ige Range                  |                                 |                                                    |      |
| Vout1              | Output Voltage Range 1     | VR33                            | V <sub>SS</sub> – 0.3 to 6.0                       | V    |
| $V_{OUT2}$         | Output Voltage Range 2     | VREF                            | $V_{\text{SS}}$ – 0.3 to $V_{\text{OUT1}}$ + 0.3   | V    |
| Vout3              | Output Voltage Range 3     | INTB                            | V <sub>SS</sub> – 0.3 to 6.0                       | V    |
| Vout4              | Output Voltage Range 4     | SDO                             | Vss - 0.3 to Vout1 + 0.3                           | V    |
| $V_{OUT5}$         | Output Voltage Range 5     | BOOSTC                          | $V_{PS2}$ – 0.3 to $V_{PS2}$ + 6                   | V    |
| Vout6              | Output Voltage Range 6     | CCONT, DCONT                    | V <sub>PS2</sub> - 0.3 to V <sub>OUT5</sub> + 0.3  | V    |
| ESD                | -                          |                                 |                                                    | _    |
| CDM                | Charged Device Model       |                                 | ± 0.5                                              | kV   |
| Power Dissi        | pation                     |                                 |                                                    |      |
| PD                 | Power Dissipation          | Refer to A                      | Appendix "Power Dissipation".                      |      |
| Temperature        | Range                      |                                 | 1                                                  |      |
| Tj                 | Junction Temperature Range |                                 | - 40 to 125                                        | °C   |
| Tstg               | Storage Temperature Range  |                                 | - 55 to 125                                        | °C   |

(n: 1 to 7)

#### ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

No.EA-531-210401

# **RECOMMENDED OPERATING CONDITIONS**

| Symbol            | Parameter                             | Rating                           | Unit |  |
|-------------------|---------------------------------------|----------------------------------|------|--|
| V <sub>DD</sub>   | Power Supply Voltage                  | 6.0 to 31.5                      | V    |  |
| V <sub>BSTB</sub> | Boost Reference Supply Voltage        | 0 to V <sub>DD</sub>             | V    |  |
| VVCIN             | Cell Voltage Input Range (Vcn –Vcn-1) | 1.5 to 4.5                       | V    |  |
| V <sub>C0</sub>   | Negative Pin for Cell 1 Voltage       | 0                                | V    |  |
| Vrsnsn            | RSENS Negative Input Pin Voltage      | 0                                | V    |  |
|                   | Derve Desitive Input Din Veltage      | -0.35 / [IS_GAIN] <sup>(1)</sup> | V    |  |
| Vrsnsp            | RSENS Positive Input Pin Voltage      | to 1.65 / [IS_GAIN]              | V    |  |
| VTHERM            | TH0 and TH1 Input Pin Voltage         | 0.25 to 2.25                     | V    |  |
| Та                | Operating Temperature Range           | -20 to 85                        | °C   |  |

#### **Recommended Operating Conditions**

(n: 1 to 7)

#### RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

<sup>(1)</sup> [IS\_GAIN] is set to 2.5, 10, or 20 by register.

No.EA-531-210401

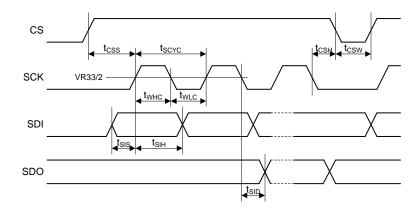
# **ELECTRICAL CHARACTERISTICS**

|                                  | acteristics                             |                                                                                                       | T    |      | ```  | 25°C) |
|----------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|------|------|------|-------|
| Symbol                           | Parameter                               | Conditions                                                                                            | Min. | Тур. | Max. | Unit  |
| Cell Bal                         | ancing                                  |                                                                                                       |      |      |      | _     |
| I <sub>CBn</sub>                 | Cell Balancing Current                  | $V_{Cn} - V_{C(n-1)} = 4.0 V$<br>100 $\Omega$ input-resistor                                          |      |      | 20   | mA    |
| I <sub>LVCn</sub> <sup>(1)</sup> | Input leakage Current of middle Cell    | $V_{Cn} - V_{C(n-1)} = 4.5$ V, CE: High,<br>Cell Balancing: OFF,<br>Cell Voltage Monitor: OFF         |      |      | 0.5  | μA    |
| Cell Vol                         | age Monitor (A/D Convert                | er: ADC)                                                                                              |      |      |      |       |
| VVCIN                            | Cell Voltage Input Range                | V <sub>Cn</sub> - V <sub>C(n-1)</sub>                                                                 | 1.5  |      | 4.5  | V     |
|                                  |                                         | Ta = $25^{\circ}$ C, V <sub>VCIN</sub> = 4.0 V,<br>Cell voltages are balanced.                        | -15  |      | 15   | mV    |
|                                  | Monitoring Accuracy for<br>Cell Voltage | $-20^{\circ}$ C ≤ Ta ≤ 85°C,<br>1.5 V ≤ V <sub>VCIN</sub> < 2.5 V,<br>Cell voltages are balanced.     | -40  |      | 40   | mV    |
| Vvca                             |                                         | $-20^{\circ}C \le Ta \le 85^{\circ}C$ ,<br>2.5 V $\le V_{VCIN} < 3$ V,<br>Cell voltages are balanced. | -35  |      | 35   | mV    |
|                                  |                                         | $-20^{\circ}$ C ≤ Ta ≤ 85°C,<br>3 V ≤ V <sub>VCIN</sub> ≤ 4.2 V,<br>Cell voltages are balanced.       | -30  |      | 30   | mV    |
|                                  |                                         | $-20^{\circ}$ C ≤ Ta ≤ 85°C,<br>4.2V < V <sub>VCIN</sub> ≤ 4.5 V,<br>Cell voltages are balanced.      | -35  |      | 35   | mV    |
| Input Cu                         | Irrent Monitoring (ADC)                 | · · · · ·                                                                                             |      |      |      |       |
|                                  | Monitoring Ranges for                   | $R_{SNS} = 5m\Omega$ , [IS_GAIN] = 20                                                                 | -3.5 |      | 16.5 | Α     |
| ICUR                             | Input Current                           | $R_{SNS} = 1m\Omega$ , [IS_GAIN] = 2.5                                                                | -140 |      | 660  | Α     |
|                                  |                                         | $R_{SNS} = 5m\Omega$ , [IS_GAIN] = 20                                                                 | -1   |      | 1    | Α     |
| ICUA                             | Monitoring Accuracy for                 | $R_{SNS} = 5m\Omega$ , [IS_GAIN] = 10                                                                 | -1.4 |      | 1.4  | Α     |
|                                  | Input Current                           | $R_{SNS} = 5m\Omega$ , [IS_GAIN] = 2.5                                                                | -2.4 |      | 2.4  | A     |

(n: 1 to 7)

No.EA-531-210401

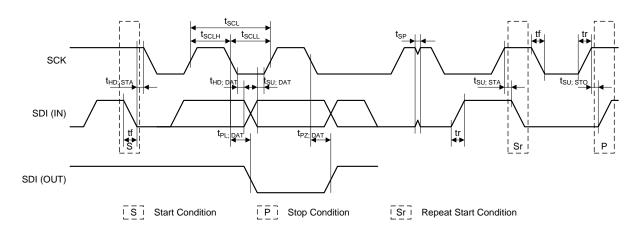
| DC Chara           | acteristics (Continued)                                       |                                                                      |                           |                         | (Ta  | = 25°C) |
|--------------------|---------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|-------------------------|------|---------|
| Symbol             | Parameter                                                     | Conditions                                                           | Min.                      | Тур.                    | Max. | Unit    |
| Current            | Protection                                                    |                                                                      |                           |                         |      |         |
| Rsns               | Resistance Range for<br>SENSE Pin                             |                                                                      | 1                         |                         | 5    | mΩ      |
| I <sub>SHORT</sub> | Setting of Short-circuit<br>Current <sup>(1)</sup>            | $[S_{SHORT}] = 2.4, R_{SNS} = 5m\Omega$<br>$[IS_GAIN] = 20$          |                           | 18                      |      | А       |
| Icuas              | Short-circuit Current<br>Detection Accuracy                   |                                                                      | -10                       |                         | +10  | %       |
| IDOC               | Setting of Discharge<br>Overcurrent <sup>(2)</sup>            | $[S_{DOC}] = 1.4, R_{SNS} = 5m\Omega$ $[IS_GAIN] = 20$               |                           | 8                       |      | А       |
| I <sub>CUAD</sub>  | Discharge Overcurrent<br>Detection Accuracy                   |                                                                      | -20                       |                         | +20  | %       |
| lcoc               | Setting of Charge<br>Overcurrent <sup>(3)</sup>               | [S <sub>COC</sub> ] = 0.05, R <sub>SNS</sub> = 5mΩ<br>[IS_GAIN] = 20 |                           | -5.5                    |      | А       |
| Icuac              | Charge Overcurrent<br>Detection Accuracy                      |                                                                      | -25                       |                         | +25  | %       |
| Voltage I          | Regulator                                                     |                                                                      |                           |                         |      |         |
| V <sub>VR33</sub>  | Output Voltage                                                | -20°C ≤ Ta ≤ 85°C, V <sub>DD</sub> ≥ 6.0V<br>I <sub>OUT</sub> ≤ 10mA | 3.2                       | 3.4                     | 3.5  | V       |
| ILIM               | Output Current Limit                                          |                                                                      | 10                        |                         |      | mA      |
| Die Tem            | perature Detection                                            |                                                                      |                           |                         |      |         |
|                    | Abnormal Detection<br>Temperature at Die High-<br>temperature |                                                                      |                           | 150                     |      | °C      |
| T <sub>SDR</sub>   | Abnormal Release<br>Temperature at Die High-<br>temperature   |                                                                      |                           | 125                     |      | °C      |
| NTC (Ne            | gative Temperature Coeffi                                     | cient) Thermistor for Monitoring                                     | •                         |                         |      |         |
| $R_{THn}$          | NTC Pulled-up<br>Resistance                                   |                                                                      |                           | 10                      |      | kΩ      |
| Boost Vo           | oltage for BOOSTC Pin                                         |                                                                      |                           |                         |      |         |
| V <sub>BSTC</sub>  | Voltage Boost                                                 |                                                                      | V <sub>вsтв</sub><br>+4.3 | V <sub>вsтв</sub><br>+5 |      | V       |
| FET Con            | troller for DCONT, CCONT                                      | Pin                                                                  |                           |                         |      |         |
| VFETH              | FET (DCONT, CCONT)<br>Pin Output Voltage, High                | lоuт = 0                                                             |                           | VBSTC                   |      | V       |
| VFETL              | FET (DCONT, CCONT)<br>Pin Output Voltage, Low                 | lоuт = 0                                                             |                           | VBSTB                   |      | V       |
| I <sub>FETIL</sub> | FET (DCONT, CCONT)<br>Pin Output Current, Low                 | $V_{FET} = V_{BSTC} = V_{BSTB} + 6V,$                                |                           | 2                       |      | mA      |


No.EA-531-210401

| Symbol           | Parameter                        | Conditions              | Min.                    | Тур. | Max.                   | Unit |
|------------------|----------------------------------|-------------------------|-------------------------|------|------------------------|------|
| Input V          | oltage for CS / CE / IFSEL Pin   |                         |                         |      | 1                      |      |
| Vcsh             | CS Pin Input Voltage, High       |                         | V <sub>VR33</sub> ×0.8  |      |                        | V    |
| Vcsl             | CS Pin Input Voltage, Low        |                         |                         |      | V <sub>VR33</sub> ×0.2 | V    |
| VIFSEL           | IFSEL Pin Input Voltage, High    |                         | V <sub>VR33</sub> ×0.8  |      |                        | V    |
| VIFSEL           | IFSEL Pin Input Voltage, Low     |                         |                         |      | V <sub>VR33</sub> ×0.2 | V    |
| $V_{CEH}$        | CE Pin Input Voltage, High       |                         | 3.0                     |      | 5.5                    | V    |
| VCEL             | CE Pin Input Voltage, Low        |                         | -0.3                    |      | 0.3                    | V    |
| Output           | Voltage for INTB Pin (Nch Open   | -drain Output)          |                         |      |                        |      |
| Vintel           | INTB Pin Output Voltage, Low     | $I_{OL} = 3 \text{ mA}$ |                         |      | 0.4                    | V    |
| Current          | Consumption                      | •                       | ·                       |      |                        |      |
| Icc              | Current Consumption              | Active <sup>(1)</sup>   |                         | 150  | 300                    | μA   |
|                  |                                  | Standby                 |                         |      | 1.0                    | μA   |
| Serial Ir        | nterface                         |                         |                         |      |                        |      |
| SCK: C           | MOS Input Pin (Schmitt Input)    |                         |                         |      |                        |      |
| VIH              | Input Voltage, High              |                         | V <sub>VR33</sub> ×0.7  |      |                        | V    |
| VIL              | Input Voltage, Low               |                         |                         |      | V <sub>VR33</sub> ×0.3 | V    |
| V <sub>HIS</sub> | Schmitt Hysteresis Voltage       |                         | V <sub>VR33</sub> ×0.05 |      |                        | V    |
| SDI: CN          | IOS Input Pin (Schmitt Input / N | ch Open-drain Outpu     | t)                      |      |                        |      |
| VIH              | Input Voltage, High              |                         | V <sub>VR33</sub> ×0.7  |      |                        | V    |
| VIL              | Input Voltage, Low               |                         |                         |      | V <sub>VR33</sub> ×0.3 | V    |
| V <sub>HIS</sub> | Schmitt Hysteresis Voltage       |                         | V <sub>VR33</sub> ×0.05 |      |                        | V    |
| Vol              | Output Voltage, Low              | lo∟ = 3 mA              |                         |      | 0.4                    | V    |
| SDO: C           | MOS Output Pin                   |                         |                         |      | 1                      |      |
| Voh              | Output Voltage, High             | I <sub>OH</sub> = -3 mA | V <sub>VR33</sub> - 0.4 |      |                        | V    |
| • 011            |                                  |                         |                         |      |                        |      |

 $<sup>\</sup>underline{^{(1)}$  7-cell (Vc\_TIME = 80µs) every 2ms. Alert and FET control OFF.

No.EA-531-210401


| AC Chai          | racteristics                              |            |      |      | (Ta = | 25°C) |
|------------------|-------------------------------------------|------------|------|------|-------|-------|
| Symbol           | Parameter                                 | Conditions | Min. | Тур. | Max.  | Unit  |
| Single/S         | Sequential Read and Detection             | Delay Time | ·    |      |       |       |
| t <sub>AC</sub>  | Time Accuracy                             |            | -20  |      | 30    | %     |
| SPI Con          | nmunication                               |            | ·    |      |       |       |
| tscyc            | SCK Clock Cycle Time                      |            | 1    |      |       | μs    |
| twнc             | SCK Clock Cycle Time,<br>High             |            | 400  |      |       | ns    |
| t <sub>WLC</sub> | SCK Clock Cycle Time,<br>Low              |            | 400  |      |       | ns    |
| tsis             | Serial Data Set-up Time                   |            | 100  |      |       | ns    |
| tsıн             | Serial Data Hold Time                     |            | 100  |      |       | ns    |
| t <sub>csw</sub> | Setup Time for Transmission and Reception |            | 3    |      |       | μs    |
| tcss             | Setup Time for Chip Enable                |            | 200  |      |       | ns    |
| tсsн             | Hold Time for Chip Enable                 |            | 200  |      |       | ns    |
| t <sub>SID</sub> | Delay Time for Serial Data                |            |      |      | 200   | ns    |



SPI Bus Timing Diagram

No.EA-531-210401

| AC Char              | acteristics (Continued)                   |                      |      |      | (Ta  | = 25°C) |
|----------------------|-------------------------------------------|----------------------|------|------|------|---------|
| Symbol               | Parameter                                 | Conditions           | Min. | Тур. | Max. | Unit    |
| I <sup>2</sup> C Com | munication                                |                      | ·    |      |      |         |
| fськ                 | SCK Clock Frequency                       |                      |      |      | 400  | kHz     |
| tsc∟                 | SCK Clock Cycle                           |                      | 2.5  |      |      | μs      |
| tscll                | SCK Clock, Low                            |                      | 1.3  |      |      | μs      |
| <b>t</b> sclh        | SCK Clock, High                           |                      | 0.6  |      |      | μs      |
| t <sub>su:sta</sub>  | Start Condition Setup Time                |                      | 0.6  |      |      | μs      |
| tsu:dat              | Data Setup Time                           |                      | 200  |      |      | ns      |
| tsu:sto              | Stop Condition Setup Time                 |                      | 0.6  |      |      | μs      |
| t <sub>HD:STA</sub>  | Start Condition Hold Time                 |                      | 0.6  |      |      | μs      |
| thd:dat              | Data Hold Time                            |                      | 0    |      |      | ns      |
| tr                   | Rising Time for SDI and SCK               |                      |      |      | 300  | ns      |
| t <sub>f</sub>       | Falling Time for SDI and SCK              |                      |      |      | 300  | ns      |
| tpl:dat              | Falling Time required for SDI output Low  | After falling of SCK |      |      | 0.9  | μs      |
| <b>t</b> pz:dat      | Rising Time required for SDI output High  | After falling of SCK |      |      | 0.9  | μs      |
| t <sub>SP</sub>      | Removal Spike Width by Input<br>Filters   |                      |      |      | 50   | ns      |
| Св                   | Capacitive Load for SDI and SCK Bus lines |                      |      |      | 50   | pF      |



I<sup>2</sup>C Bus Timing Diagram

No.EA-531-210401

# THEORY OF OPERATION

#### Internal 12-bit ADC

The R5602L has a 12-bit high-accuracy analog-digital converter (ADC), and it can measure cell voltages for the VCn pins, the voltage between the RSNSP and the RSNSN pins generated by charge/discharge current, a voltage divided by an external NTC and an internal resistor, and an internal voltage to monitor the die temperature. While measuring one voltage, the R5602L is impossible to measure another voltage.

#### **Cell Voltage Monitoring**

After the analog-to-digital converting by order of the micro-controller unit (MCU), the data for cell voltages  $V_{Cn} - V_{C(n-1)}$  (n: 1 to 7) is stored into the internal registers. The MCU can read each cell voltage from the register.

#### **Current Monitoring**

The R5602L can read a current that flows via the RSENS resistor between the RSNSN and the RSNSP pins. By following the MCU, the R5602L measures the difference voltage between the RSNSN pin and the RSNSP pin to multiply it by a gain and stores it into the internal register.

The MCU can read the measured voltage from the internal register with the three-step selectable gain of 2.5 / 10 / 20 times.

#### **Temperature Monitoring**

#### [Outside]

By connecting a 10 k $\Omega$  NTC thermistor between VSS and TH0 / TH1 pin, the R5602L can supervise the temperatures for external two points of the device. The TH0 and the TH1 pins are pulled-up to the reference voltage 2.5 V with 10 k $\Omega$  resistor connected internally to each pin.

#### [Inside]

By following the MCU's supervising order, the R5602L can measure the voltage met the temperature sensed in the internal temperature-monitoring circuit. The MCU can read the voltage from the register. When the internal temperature is high, an alert signal can be output via the INTB pin.

#### Sequential Read

The R5602L can monitor the following data of items in sequence.

- 1. VC7  $\rightarrow$  VC6  $\rightarrow$  VC5  $\rightarrow$  VC4  $\rightarrow$  VC3  $\rightarrow$  VC2  $\rightarrow$  VC1
- 2. Current via Charger / Discharger path
- 3. Die Temperature
- 4. TH1 Temperature
- 5. Th0 Temperature

When using six-cell or less, the connected cell only can be selected to monitor its voltage. The MCU can control above items of 2 to 5 regardless of the cell voltage.

No.EA-531-210401

#### **Overcurrent Detection**

Overcurrent Detection is a function to detect overcurrent by the current monitoring. After detection, this function is reset by the external MCU. The overcurrent detection voltage and the overcurrent detection delay time are settable for each of charge and discharge.

#### High-side NMOSFET Control

By following the MCU's order, the R5602L can control outputs of the CCONT and the DCONT pins that control High-side NMOSFETs. Outputs of the CCONT and the DCONT pins become a CMOS output with the BOOSTC voltage that was risen up as reference to the BOOSTB voltage. Setting the pin to Low can turn off the FET, setting it to High can turn on the FET. When the MCU enable current protection, the CCONT pin becomes Low if detected charge overcurrent, the DCONT pin becomes Low if detected discharge overcurrent or detected short. When the MCU disable current protection, the MCU should turn NMOSFET off at the overcurrent.

#### **Cell Balancing**

When the MCU controls the cell balancing switch, the R5602L can flow the discharge current for each cell into the IC. The discharge current value is set with the external resistor. Select external components with due consideration for the power dissipation of the device and external components.

#### **Open-wire Detection**

By flowing the discharge current for each cell into the internal resistor of the device, the R5602L monitors the cell voltage and the MCU can detect an open-wire.

#### **INTB Pin Output**

When the R5602L detects an event such as the followings, the INTB pin outputs Low. As the output type of the INTB pin is NMOSFET open-drain, pull up it with external resistors.

- Abnormal detection at die high-temperature
- Completion of start-up
- Low-voltage detection VR33 pin output
- CRC error detection
- Completion of ADC read
- Discharge overcurrent detection
- Charge overcurrent detection
- Short-circuit detection

#### Standby Mode

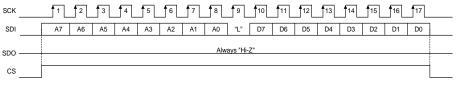
When the CE pin is Low, the R5602L is in the Standby state and registers become initial settings. Usually, setting the CE pin to High goes to the Normal state.

No.EA-531-210401

#### **Serial Communication Interfaces**

As for communication method to the MCU, the R5602L can select either of two kinds of serial interfaces, SPI or I<sup>2</sup>C.

| Method           | Control Pin                | Pin Name |
|------------------|----------------------------|----------|
|                  | CS (Chip Select)           | CS       |
| SPI              | SCK (Serial Clock)         | SCK      |
| (IFSEL: High)    | MISO (Master In Slave Out) | SDO      |
|                  | MOSI (Master Out Slave In) | SDI      |
| l <sup>2</sup> C | SCL (Serial Clock)         | SCK      |
| (IFSEL: Low)     | SDA (Serial Data)          | SDI      |


When using the  $I^2C$  interface, set the CS pin to VSS.

#### SPI Communication

Setting the IFSEL pin to High enables the communication with the SPI interface. This interface has four pins of serial clock (SCK), serial data input pin (SDI), serial data output pin (SDO), and chip-select input pin (CS). The following Write / Read processing is shown as viewed from the master. On the data transferring, Master must transfer from the most significant bit (MSB) of the byte data, first. Likewise, on the data receiving, Slave (R5602L) must transfer from MSB of the byte data first.

#### [Write Processing]

- 1. The data is loaded into the internal shift-register at rising edge of SCK (SCK Frequency: Max.1MHz).
- 2. During the CS pin of High, the data receiving becomes enabled (Active-High). However, the write processing does not work if fixing to High.
- 3. The loaded data is transferred from the SDI pin, in order of 8-bit address data, one bit for Low data, and 8-bit control command data in the control register.

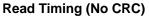


#### Write Timing (No CRC)

No.EA-531-210401

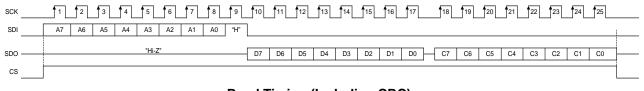
4. Setting the CRC\_EN register to "1" enables to transfer the data including CRC data (Initial value of [CRC\_EN] is "0"). In the case of the data including CRC, 8-bit packet error code (PEC) is transferred after the above transferring. The CRC is calculated over the 8-bit address data, one bit for Low data, and 8-bit control command data. The CRC data is given by the following polynomial.

 $C(x) = X^8 + X^2 + X^1 + 1$ 


| SCK   | 1             | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9   | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |   |
|-------|---------------|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|
| SDI   | A7            | A6 | A5 | A4 | A3 | A2 | A1 | A0 | "L" | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 | ] |
| SDO — | Always "Hi-Z" |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
| CS    |               |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |

#### Write Timing (Including CRC)

[Read Processing]


- 1. The data is loaded into the internal shift-register at rising edge of SCK (SCK Frequency: Max.1MHz).
- 2. During the CS pin of High, the data receiving and transferring becomes enabled (Active-High). However, the read processing does not work if fixing to High.
- 3. After 8-bit address data and one bit for High data is transferred from the SDI pin, 8-bit control register specified is transferred from the SDO pin.

| SCK | 1  | 2  | <b>1</b> 3 | 4  | 5     | 6  | 7  | 8  | 9   | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |          |
|-----|----|----|------------|----|-------|----|----|----|-----|----|----|----|----|----|----|----|----|----------|
| SDI | A7 | A6 | A5         | A4 | A3    | A2 | A1 | A0 | "H" |    |    |    |    |    |    |    |    |          |
| SDO |    |    |            |    | "Hi-Z | -  |    |    |     | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | <u> </u> |
| cs  |    |    |            |    |       |    |    |    |     |    |    |    |    |    |    |    |    | 1        |

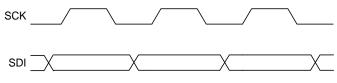


4. Setting the CRC\_EN register to "1" enables to transfer the data including CRC data (Initial value of [CRC\_EN] is "0"). In the case of the data including CRC, 8-bit packet error code (PEC) is transferred after the above transferring. The CRC is calculated over the 8-bit address data, one bit for High data, and 8-bit read data. The CRC data is given by the following polynomial.

```
C(x) = X^8 + X^2 + X^1 + 1
```



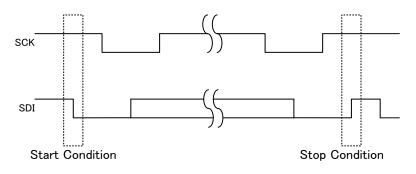
Read Timing (Including CRC)


No.EA-531-210401

#### ■ I<sup>2</sup>C Interface Communication

Setting the IFSEL pin to Low enables the communication with the I<sup>2</sup>C interface. Each of the SCK and the SDI pins equates to the SCL and the SDA pins in the SPI interface.

#### Availability of Data


During the SCK pin of High for the data transferring duration, the SDI data of I<sup>2</sup>C-bus must be maintained constant. The SDI can change between High and Low states only when the SCK pin is Low except Start and Stop conditions.

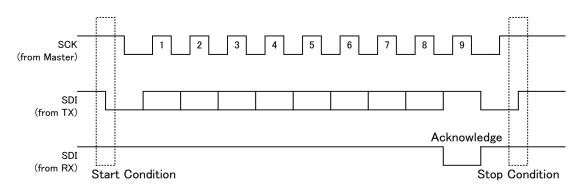


**SDI Timing Chart** 

#### **Start and Stop Conditions**

The SCK and the SDI pins are pulled up to High except for the data transferring duration. The start condition is met when being pulled the SDI pin down from High to Low, and the start and the stop conditions are generated by master only.




#### Start and Stop Conditions

#### **Data Transfer Method**

After the start condition is generated, the data transferring is done every one-byte from the MSB of a byte. An acknowledge signal is sent from the receiver to the sender at the end of transferring one-byte data.

After transferring a byte data, the master as sender makes the SDI signal Open (= High) and the slave (R5602L) makes the SDI signal Low as acknowledge signal. On the other hand, the slave as sender makes the SDI signal Open (= High). If maintaining to receive the acknowledge signal without interruption, the master makes the SDI signal Low. The master can indicate the end of the data transferring to the slave by making the SDI signal Open (= High).

No.EA-531-210401



#### Data Transfer when Master is Sender

#### Format for Data Transfer

The format to transfer data via the I<sup>2</sup>C bus is as follows. Be sure to begin with start condition and finish with stop condition. On the data transferring, Master must transfer from the most significant bit (MSB) of the byte data, first. Likewise, on the data receiving, Slave (R5602L) must transfer from MSB of the byte data first.

#### [Write Processing]

The format for write processing after the start condition consists as shown in the following figure.

1<sup>st</sup> byte: Slave address (32h = 0110010b) + Write instruction

2<sup>nd</sup> byte: Address for internal register to write the data.

3<sup>rd</sup> byte: Data to write in the second byte.

4<sup>th</sup> byte: Packet error code (PEC) if including the Cyclic Redundancy Check (CRC) data.

The PEC is an 8-bit data to indicate the result of the CRC error detection. The CRC data is given by the following polynomial.

#### $C(x) = X^8 + X^2 + X^1 + 1$

The CRC is calculated for the slave address, register address, and data. When burst write transaction, the CRC for subsequent data bytes is calculated for the data byte only.

No.EA-531-210401

Slave Address (7bit) Address "n" (8bit) ACK Star SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/WB ACK A7 A6 A5 A4 A3 A2 A1 A0 SCK SDI 0x32 Data of Address "n" (8bit) PEC "n" (8bit) D4 D3 D2 C4 C3 ACK D5 D1 ACK C7 C6 C5 C2 C1 C0 PEC "n+1" (8bit) Data of Address "n+1" (8bit) D5 D4 D3 D2 D0 ACK C7 C6 C5 C4 C3 C1 C0 ACK D7 D6 D1 C2 Data of Address "n+x" (8bit) PEC "n+x" (8bit) D6 D5 D4 D3 D2 D1 D0 ACK C7 C6 C5 C4 C3 C2 C1 C0 ACK Stop D7 : Output from Master

An example of the burst write format is as follows:

Write Timing Chart (with CRC, Continuous writing)

[Read Processing]

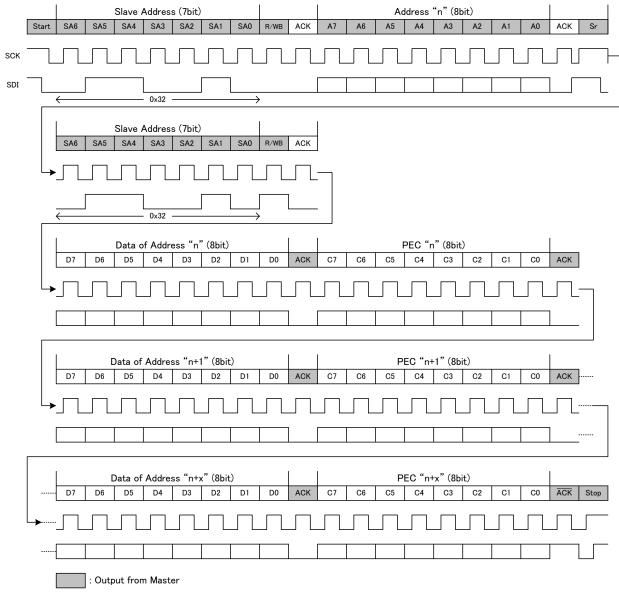
The format for read processing after the start condition consists as shown in the following figure.

1<sup>st</sup> byte: Slave address (32h = 0110010b) + Write instruction

 $2^{nd}$  byte: Address for the internal register to read the data.

3<sup>rd</sup> byte: Slave address + Read instruction

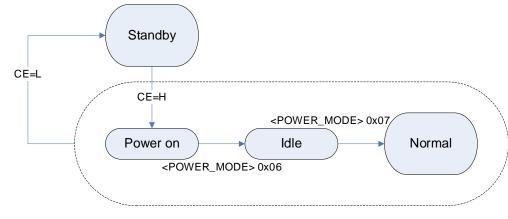
4<sup>th</sup> byte: Data read out from the address specified in the second byte.


 $5^{th}$  byte: Packet error code (PEC) only when including the CRC data

The PEC is an 8-bit data to indicate the result of the CRC error detection. The CRC is calculated after the second start and uses the slave address and data byte. When burst write transaction, the CRC for subsequent data bytes is calculated over the data byte only.

 $C(x) = X^8 + X^2 + X^1 + 1$ 

No.EA-531-210401

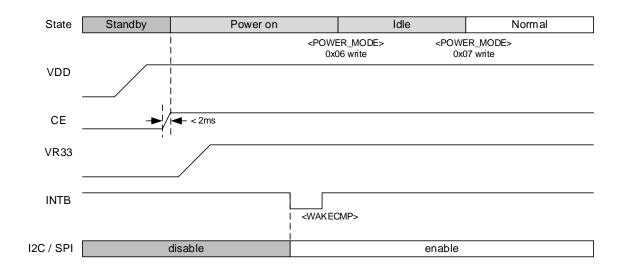

An example of the burst read format is as follows:



Read Timing Chart (with CRC, Continuous reading)

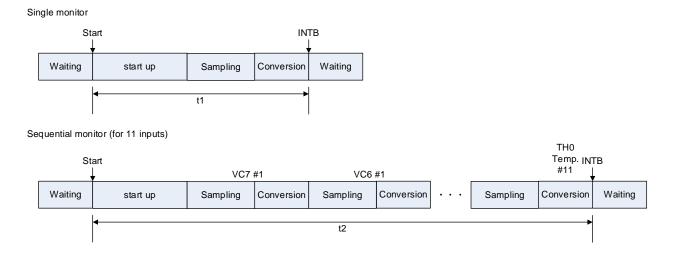
No.EA-531-210401

**Power on Sequence** 




Power Mode Transition Diagram

The 5602L enters in Standby state by the CE pin being Low when connecting with a battery. Even if having connected with the battery, the R5602L enters in Standby state by the CE pin being Low. The Standby state goes to the Normal state by the CE pin being High.


In the Normal state, setting the register enables a sequential reading for voltage, current, and temperature. In addition, the Cell Balancing, and the open-wire detection registers can be set individually.

The sequence is shown below.



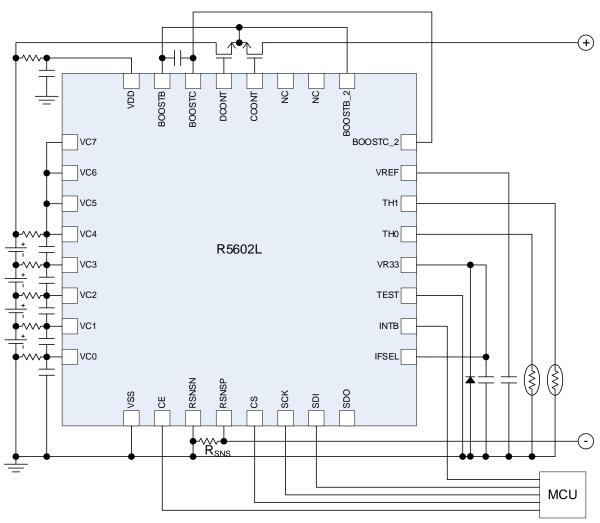
No.EA-531-210401

#### Single and Sequential Read Status



#### **Monitoring Timing Diagram**

The ADC monitors in fixed order as shown in above timing charts. The sequential read setting is possible to skip monitoring unassigned VCn pins. The start-up time is 60us, the conversion time is 30µs. t1 and t2 are is specified by the sampling time set registers and the averaged read time set registers.


Minimum sampling time settings are 80µs for VCn at 3 V ≤  $V_{VCIN}$  ≤ 4.5 V, 400µs for VCn at 1.5 V ≤  $V_{VCIN}$  < 3 V, 40us for the others, respectively. (n: 1 to 7)

# RICOH

No.EA-531-210401

#### **Battery Connection**

The R5602L can support from four- to seven-cell. When using six-cell or less as shown the below diagram, contiguous lower input pins (VC0 to VC4) must be connected with a battery in order of lower voltage, and contiguous upper input pins (VC5 to VC7) must be shorted to VC4 that is a highest potential input pin of used input pins.



4-cell Connection with SPI Interface Diagram<sup>(1)</sup>

 $<sup>^{(1)}</sup>$  A clamp diode is required for VR33 pin. Recommended VF < 0.4V@100mA

# POWER DISSIPATION

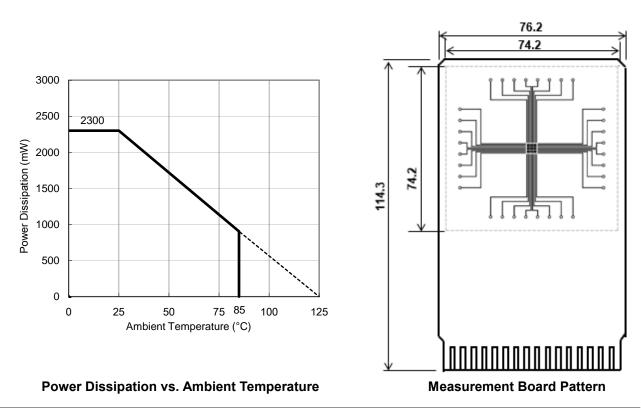
## QFN0505-32C

PD-QFN0505-32-(85125)-JE-A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51.

#### **Measurement Conditions**

| ltem             | Measurement Conditions                                                                                                                                          |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Environment      | Mounting on Board (Wind Velocity = 0 m/s)                                                                                                                       |  |  |  |  |  |
| Board Material   | Glass Cloth Epoxy Plastic (Four-Layer Board)                                                                                                                    |  |  |  |  |  |
| Board Dimensions | 76.2 mm × 114.3 mm × 1.6 mm                                                                                                                                     |  |  |  |  |  |
| Copper Ratio     | Outer Layer (First Layer): Less than 10%<br>Inner Layers (Second and Third Layers): Approx. 100% of 74.2 mm Square<br>Outer Layer (Fourth Layer): Less than 10% |  |  |  |  |  |
| Through-holes    | φ 0.3 mm × 9pcs                                                                                                                                                 |  |  |  |  |  |

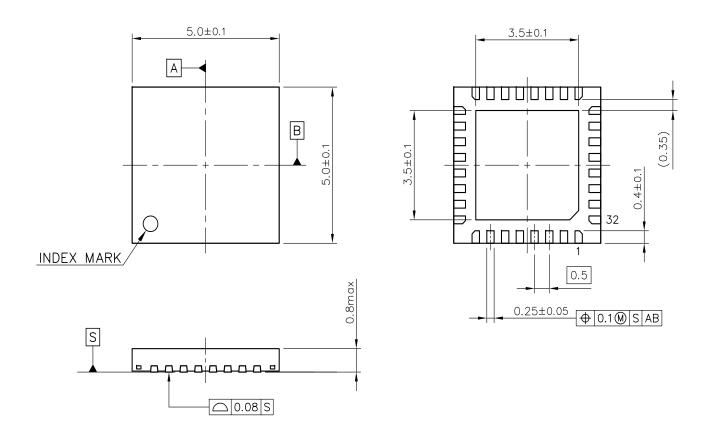

#### **Measurement Result**

(Ta = 25°C, Tjmax = 125°C)

| Item                                     | Measurement Result |
|------------------------------------------|--------------------|
| Power Dissipation                        | 2300mW             |
| Thermal Resistance (θja)                 | θja = 43°C/W       |
| Thermal Characterization Parameter (ψjt) | ψjt = 16°C/W       |

 $\theta$ ja: Junction-to-Ambient Thermal Resistance

wit: Junction-to-top of package thermal characterization parameter




**RICOH** 

# PACKAGE DIMENSIONS

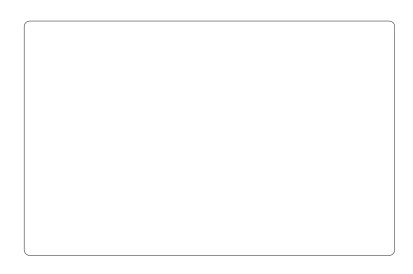
# QFN0505-32C

DM-QFN0505-32C-JE-A



QFN0505-32C Package Dimensions (Unit: mm)

# RICOH


- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.



**Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.** Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

# **RICOH** RICOH ELECTRONIC DEVICES CO., LTD.

Official website https://www.n-redc.co.jp/en/ Contact us https://www.n-redc.co.jp/en/buy/



# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Ricoh Electronics: R5602L001AA-E2