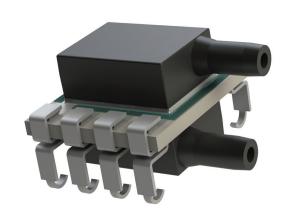


LP Series - Analog


LP Series - Analog is a surface mountable pressure sensor package with a compensated analog output suitable for **ultra-low pressure sensing applications**.

COMPANY: Merit Sensor is a leader in piezoresistive pressure sensing and partners with clients to create high performing solutions for a variety of applications and industries.

SENTIUM: Merit Sensor products incorporate a proprietary Sentium® technology developed to provide superior stability.

TECHNOLOGY: Merit Sensor utilizes a piezoresistive Wheatstone bridge in a design that anodically bonds glass to a chemically etched silicon diaphragm. All products are RoHS compliant.

CAPABILITIES: Merit Sensor designs, engineers, fabricates, dices, assembles, tests and sells die and packaged products from a state-of-the-art facility near Salt Lake City, Utah

FEATURES

Pressure 0.04 to 15 psi (2.5 mbar to 1 bar; 250 Pa to

Range 100 kPa; 1 in H_2O to 415 in H_2O)

Output Amplified Analog

Type Gage, Differential and Absolute

Media Clean, Dry Air and Non-corrosive Gases

Packaging Tape and Reel

Customization Supply Voltage, Temperature Calibration Range,

Output Range, Accuracy Specification,

Update Rate, etc.

BENEFITS

Performance Enjoy best-in-class performance due to Merit's

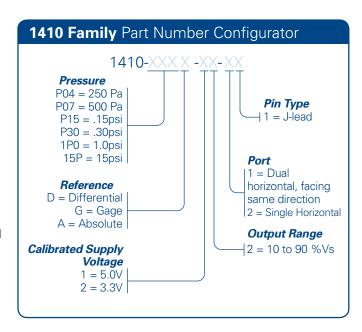
proprietary Sentium technology

Cost Save money over time with high-performing die

Security Feel confident doing business with an experienced

company backed by a solid parent company

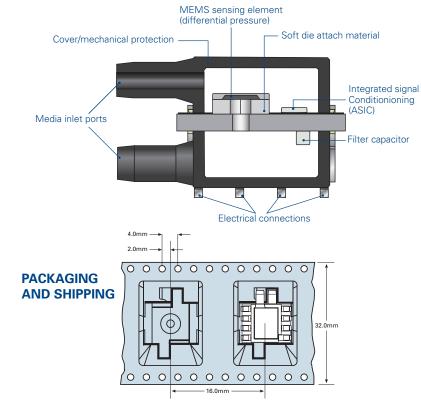
(NASDAQ: MMSI)

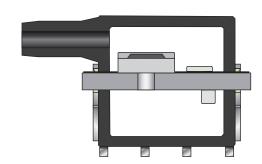

Speed Get to market quickly with creative and

flexible solutions

Service Experience prompt, personal and

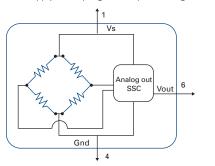
professional support



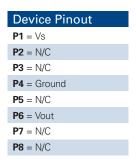

SPECIFICATIONS

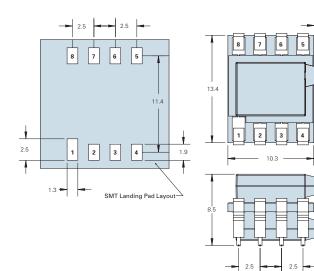
Parameter	Minimum	Typical	Maximum	Units	Notes		
Electrical							
Supply Voltage (Vs)	4.5	5	5.5	V	Depending on calibrated supply voltage		
Supply Voltage (Vs)	3.0	3.3	3.6	V			
Supply Current	1.25	2	2.4	mA	(1)		
Output Current			1.9	mA			
Min Output Load Resistance	5			$\mathbf{k}\Omega$	(2)	Notes: (1) @ 5V input voltage (2) Must be added at the point of use (3) Over 0°C to 60°C	
Operating Temperature	-40		85	°C			
Storage Temperature	-55		100	°C			
Performance						(4) Applicable if $Vs = \pm 5\%$ of	
DAC Resolution			12	Bit		calibrated supply voltage (5) Full scale pressure	
Ratiometric Output Range (Vout)		10 to 90		%Vs		(a) i an assis process	
Accuracy	-1.5		1.5	%FS	(3) (4)		
Lifetime Drift	-0.5		0.5	%FS			
Startup Time			8	ms			
Analog Update Time		25		ms			
Proof Pressure	5X				(5)		
Burst Pressure	10X						
Transfer Function Formula							
$P_{psi} = (P_{max} - P_{min}) \cdot \left(\frac{V_{out} - V_{min}}{V_{max} - V_{min}}\right) + P_{min}$			P _{Max} =	P _{psi} = Measured Pressure in PSI			
Media Compatibility							
For Use With Non-corrosive Dry Gasses Solder temperature: max 250 °C, 5 seconds max			V _{max} =				

CROSS SECTION FOR DIFFERENTIAL AND GAGE


CROSS SECTION FOR ABSOLUTE

ELECTRICAL


Note: Power supply decoupling and output filtering included



DIMENSIONS FOR STANDARD OPTIONS (in millimeters)

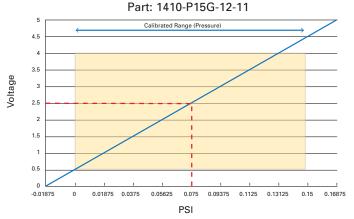
Dimensions for reference only. Engineering drawings (with tolerance) available upon order.

12.1

Example 1: 0.0 to 0.15 PSI Gage 0-60°C

Part: 1410-P15G-12-11

Pmin = 0.0 psi, Pmax = 0.15 psi


 $V_{out} = 2.5 V$

 $V_{minCompV} = 0.5 \text{ V}, V_{maxCompV} = 4.5 \text{ V}$

$$P_{psi} = \left(P_{max} - P_{min}\right) \cdot \left(\frac{V_{out} - V_{min}}{V_{max} - V_{min}}\right) + P_{min}$$

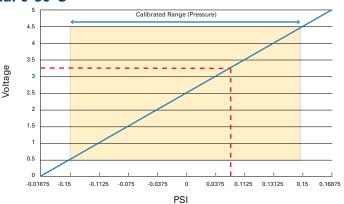
$$PSI = (0.15-0.0) \cdot \left(\frac{2.5-0.5}{4.5-0.5}\right) + 0$$

PSI=.075

Example 2: -0.15 to 0.15 PSI Differential 0-60°C

Part: 1410-P15D-12-11

Pmin =-0.15 psi, Pmax =0.15 psi


V_{out} =3.25 V

 $V_{minCompV} = 0.5 \text{ V}, V_{maxCompV} = 4.5 \text{ V}$

$$P_{psi} = \left(P_{max} - P_{min}\right) \cdot \left(\frac{V_{out} - V_{min}}{V_{max} - V_{min}}\right) + P_{min}$$

$$PSI = (0.15 - (-0.15)) \cdot \left(\frac{3.25 - 0.5}{4.5 - 0.5}\right) + (-0.15)$$

PSI=.05625

Part: 1410-P15D-12-11

Merit Sensor is based in Salt Lake City, Utah

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Merit Sensor:

<u>1410-P15D-12-11</u> <u>1410-P15G-12-11</u> <u>1410-P0D-12-11</u> <u>1410-P0G-12-11</u> <u>1410-P30G-12-11</u> <u>1410-P30D-12-11</u> <u>1410-P04D-22-11</u> <u>1410-P07D-12-11</u> <u>1410-P07D-22-11</u> <u>1410-P15D-22-11</u> <u>1410-P15G-22-11</u> <u>1410-P15G-22-11</u> <u>1410-P0D-22-11</u> <u>1410-P0G-22-11</u> <u>1410-P04D-12-11</u>