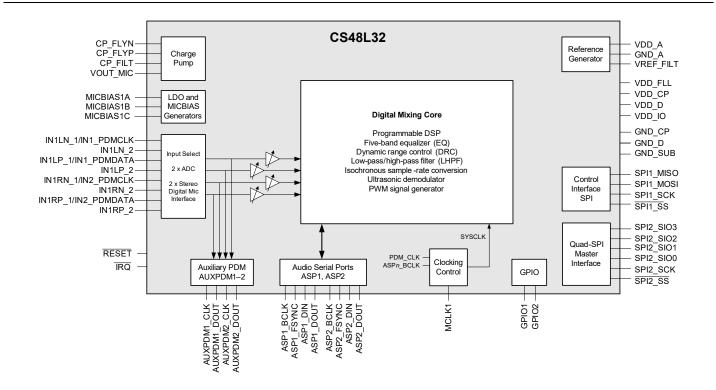


Low-Power Audio DSP with Microphone Interface


Features

- Halo Core[™] digital signal processor
 - Dual MAC, 100 MHz audio signal processor
 - 280 kB program memory, 768 kB data memory
 - FFT, LMS, and FIR accelerators
- Event logger with time-stamp and interrupt functions
- · Integrated multichannel 24-bit audio processor
 - 104 dB signal-to-noise ratio (SNR) mic input (16 kHz)
- · Programmable wideband, multimic audio processing
- Multichannel isochronous sample-rate conversion
- Up to four analog or digital microphone (DMIC) inputs
- · Ultrasonic signal detection and demodulation

- · Digital (PDM) output interface
- Two multichannel audio serial ports (ASP), supporting data formats up to 192 kHz, 32 bits
- · Flexible clocking configuration, incorporating a low-power frequency-locked loop (FLL)
- Configurable functions on up to 16 general-purpose input/output (GPIO) pins
- Integrated regulator and charge-pump circuits
 - Switchable microphone supply/bias outputs
- · WLCSP and QFN package variants, 0.4 mm pitch

Applications

- · Smartphones and mobile accessories
- Always-on voice-triggered devices

Description

The CS48L32 is a high-performance low-power audio DSP for smartphones and other portable audio devices. The CS48L32 combines a programmable Halo Core DSP with a variety of power-efficient fixed-function audio processors.

The Halo Core DSP supports multiple concurrent audio features, including voice-trigger detection, noise reduction, media enhancement, and many more. Support for third-party DSP programming provides far-reaching opportunities for product differentiation. The Halo Core DSP is integrated within a fully flexible, all-digital mixing and routing engine with sample rate converters, for wide use-case flexibility.

The CS48L32 supports up to four analog inputs or up to four PDM digital inputs. Low-power input modes are available for always-on (e.g., voice-trigger) functionality using either analog or digital input. Two further digital audio serial ports are provided, each supporting a wide range of standard audio sample rates and serial interface formats.

The audio serial port (ASP) interfaces support multichannel, 32-bit operation at sample rates up to 192 kHz. The integrated FLL provides support for a wide range of system-clock frequencies.

The CS48L32 is configured using the SPI™ interface. The device is powered from 1.8 V and 1.2 V supplies. The power, clocking, and output driver architectures are designed to maximize battery life in voice, music, and standby modes.

Table of Contents

1 Pin Descriptions 3	4 Functional Description	21
1.1 WLCSP Pinout		
1.2 QFN Pinout	4.2 Input Signal Path	23
1.3 Pin Descriptions	4.3 Digital Core	43
2 Typical Connection Diagram	4.4 DSP Firmware Control	72
3 Characteristics and Specifications	4.5 DSP Peripheral Control	
Table 3-1. Parameter Definitions	4.6 Audio Serial Port)7
Table 3-2. Absolute Maximum Ratings	4.7 Audio Serial Port Control	13
Table 3-3. Recommended Operating Conditions	4.8 Clocking and Sample Rates	20
Table 3-4. Analog Input Signal Level—IN1xx	4.9 Interrupts	33
Table 3-5. Analog Input Pin Characteristics9	4.10 General-Purpose I/O	37
Table 3-6. Analog Input Gain—Programmable Gain Amplifiers (PGAs)	4.11 Control Interface	
Table 3-7. Digital Input Signal Level—INn_PDMDATA9	4.12 Charge Pump, Regulators, and Voltage Reference 14	46
Table 3-8. Input Path Characteristics10	4.13 JTAG Interface	49
Table 3-9. Digital Input/Output11	4.14 Power-Up and Resets	50
Table 3-10. Miscellaneous Characteristics	4.15 Device ID	
	5 Applications	
Table 3-12. System Clock and Frequency-Locked Loop (FLL)		53
Table 3-13. Digital Input (PDM/DMIC) Interface Timing		
Table 3-14. AUX PDM Interface Timing14	5.3 PCB Layout Considerations	31
Table 3-15. Audio Serial Port—Master Mode	6 Register Map	ŝ1
Table 3-16. Audio Serial Port—Slave Mode	7 Thermal Characteristics18	38
Table 3-17. Audio Serial Port Timing—TDM Mode	8 Package Dimensions	39
Table 3-18. Control Interface Timing (SPI1 Slave)	9 Ordering Information)1
	10 Revision History	€1
Table 3-20. JTAG Interface Timing		
Table 3-21. Typical Signal Latency		

1 Pin Descriptions

1.1 WLCSP Pinout

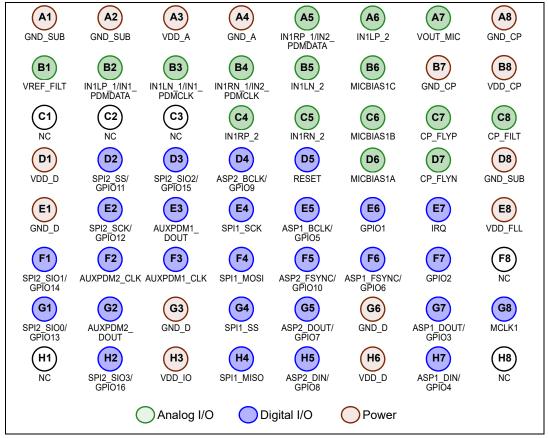


Figure 1-1. Top-Down (Through-Package) View—64-ball WLCSP Package

1.2 QFN Pinout

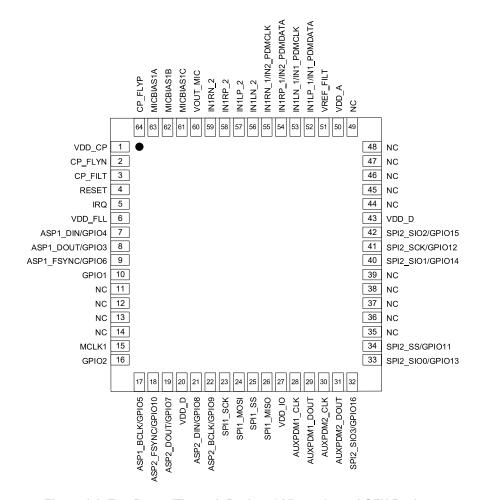


Figure 1-2. Top-Down (Through-Package) View—64-pad QFN Package

1.3 Pin Descriptions

Table 1-1 describes each pin on the CS48L32. Note that pins that share a common name should be tied together on the printed circuit board (PCB).

Table 1-1. Pin Descriptions

PU = Pull-up, PD = Pull-down, K = Bus keeper, H = Hysteresis on CMOS input, Z = Hi-Z (High impedance), C = CMOS, OD = Open drain.

Pin Name	Pin # (WLCSP)	Pin # (QFN)	Power Supply	I/O	Pin Description	Digital Pad Attributes	State at Reset			
	Analog I/O									
CP_FILT	C8	3	_	0	Charge Pump output decoupling pin	_	Output			
CP_FLYN	D7	2	_	0	Charge Pump fly-back capacitor pin	_				
CP_FLYP	C7	64	_	0	Charge Pump fly-back capacitor pin	_	_			
IN1LN_1/IN1_ PDMCLK	В3	53	VOUT_MIC or MICBIAS1 [1]	I/O	Left-channel negative differential mic/line input/ IN1 PDM clock.	С	IN1LN_1 input			
IN1LN_2	B5	56	VOUT_MIC	I	Left-channel negative differential mic/line input.	_	Input			
IN1LP_1/IN1_ PDMDATA	B2	52	VOUT_MIC or MICBIAS1 [1]	I	Left-channel single-ended mic/line input/positive differential mic/line input/IN1 PDM data input.	PD/H	IN1LP_1 input			
IN1LP_2	A6	57	VOUT_MIC	I	Left-channel single-ended mic/line input/positive differential mic/line input.	_	Input			

Table 1-1. Pin Descriptions (Cont.)

PU = Pull-up, PD = Pull-down, K = Bus keeper, H = Hysteresis on CMOS input, Z = Hi-Z (High impedance), C = CMOS, OD = Open drain.

Pin Name	Pin # (WLCSP)	Pin # (QFN)	Power Supply	I/O	Pin Description	Digital Pad Attributes	State at Reset
IN1RN_1/IN2_ PDMCLK	B4	55	VOUT_MIC or MICBIAS1 [1]	I/O	Right-channel negative differential mic/line input/IN2 PDM clock.	С	IN1RN_1 input
IN1RN_2	C5	59	VOUT_MIC	I	Right-channel negative differential mic/line input.	_	Input
IN1RP_1/IN2_ PDMDATA	A5	54	VOUT_MIC or MICBIAS1 [1]	I	Right-channel single-ended mic/line input/ positive differential mic/line input/IN2 PDM data input.	PD/H	IN1RP_1 input
IN1RP_2	C4	58	VOUT_MIC	I	Right-channel single-ended mic/line input/ positive differential mic/line input.	_	Input
MICBIAS1A	D6	63	VOUT_MIC	0	Microphone bias 1A	_	Output
MICBIAS1B	C6	62	VOUT_MIC	0	Microphone bias 1B	_	Output
MICBIAS1C	В6	61	VOUT_MIC	0	Microphone bias 1C	_	Output
VOUT_MIC	A7	60	_	0	LDO2 output decoupling pin (generated internally by CS48L32). Can also be used as reference/supply for external microphones.	_	Output
VREF_FILT	B1	51	_	0	Band-gap reference external capacitor connection	_	Output
					Digital I/O		
ASP1_BCLK/ GPIO5	E5	17	VDD_IO	I/O	Audio serial port 1 bit clock/GPIO5	PU/PD/K/H/ Z/C/OD	GPIO5 input with bus-keeper
ASP1_DIN/ GPIO4	H7	7	VDD_IO	I	Audio serial port 1 data input/GPIO4	PU/PD/K/H/ C/OD	GPIO4 input with bus-keeper
ASP1_DOUT/ GPIO3	G7	8	VDD_IO	0	Audio serial port 1 data output/GPIO3	PU/PD/K/H/ Z/C/OD	GPIO3 input with bus-keeper
ASP1_ FSYNC/ GPIO6	F6	9	VDD_IO	I/O	Audio serial port 1 frame sync/GPIO6	PU/PD/K/H/ Z/C/OD	GPIO6 input with bus-keeper
ASP2_BCLK/ GPIO9	D4	22	VDD_IO	I/O	Audio serial port 2 bit clock/GPIO9	PU/PD/K/H/ Z/C/OD	GPIO9 input with bus-keeper
ASP2_DIN/ GPIO8	H5	21	VDD_IO	I/O	Audio serial port 2 data input/GPIO8	PU/PD/K/H/ C/OD	GPIO8 input with bus-keeper
ASP2_DOUT/ GPIO7	G5	19	VDD_IO	I/O	Audio serial port 2 data output/GPIO7	PU/PD/K/H/ Z/C/OD	GPIO7 input with bus-keeper
ASP2_ FSYNC/ GPIO10	F5	18	VDD_IO	I/O	Audio serial port 2 frame sync/GPIO10	PU/PD/K/H/ Z/C/OD	GPIO10 input with bus-keeper
AUXPDM1_ CLK	F3	28	VDD_IO	I/O	Auxiliary PDM 1 clock	PD/H/C	Input
AUXPDM1_ DOUT	E3	29	VDD_IO	0	Auxiliary PDM 1 data output	С	Output
AUXPDM2_ CLK	F2	30	VDD_IO	I/O	Auxiliary PDM 2 clock	PD/H/C	Input
AUXPDM2_ DOUT	G2	31	VDD_IO	0	Auxiliary PDM 2 data output	С	Output
GPIO1	E6	10	VDD_IO	I/O	GPIO1	PU/PD/K/H/ C/OD	GPIO1 input with bus-keeper
GPIO2	F7	16	VDD_IO	I/O	GPIO2	PU/PD/K/H/ C/OD	GPIO2 input with bus-keeper
ĪRQ	E7	5	VDD_IO	0	Interrupt request (IRQ) output (default is active low)	C/OD	Open-drain output
MCLK1	G8	15	VDD_IO	I	Master clock 1	PD/H	Input
RESET	D5	4	VDD_IO	I	Digital reset input (active low)	PU/PD/K/H	Input with pull-up

Table 1-1. Pin Descriptions (Cont.)

PU = Pull-up, PD = Pull-down, K = Bus keeper, H = Hysteresis on CMOS input, Z = Hi-Z (High impedance), C = CMOS, OD = Open drain.

Pin Name	Pin # (WLCSP)	Pin # (QFN)	Power Supply	I/O	Pin Description	Digital Pad Attributes	State at Reset
SPI1_MISO	H4	26	VDD_IO	0	SPI1 control interface Master In <u>Slave Out</u> data. SPI1_MISO is high impedance if <u>SPI1_SS</u> is not asserted.	Z/C	Output
SPI1_MOSI	F4	24	VDD_IO	1	SPI1 control interface Master Out Slave In data	H/OD	Input
SPI1_SCK	E4	23	VDD_IO	I	SPI1 control interface clock input	Н	Input
SPI1_SS	G4	25	VDD_IO	I	SPI1 control interface slave select	Н	Input
SPI2_SCK/ GPIO12	E2	41	VDD_IO	I/O	SPI master interface clock output/GPIO12	PU/PD/K/H/ C/OD	GPIO12 input with bus-keeper
SPI2_SIO0/ GPIO13	G1	33	VDD_IO	I/O	SPI master interface Data 0 input/output/ GPIO13	PU/PD/K/H/ C/OD	GPIO13 input with bus-keeper
SPI2_SIO1/ GPIO14	F1	40	VDD_IO	I/O	SPI master interface Data 1 input/output/ GPIO14	PU/PD/K/H/ C/OD	GPIO14 input with bus-keeper
SPI2_SIO2/ GPIO15	D3	42	VDD_IO	I/O	SPI master interface Data 2 input/output/ GPIO15	PU/PD/K/H/ C/OD	GPIO15 input with bus-keeper
SPI2_SIO3/ GPIO16	H2	32	VDD_IO	I/O	SPI master interface Data 3 input/output/ GPIO16	PU/PD/K/H/ C/OD	GPIO16 input with bus-keeper
SPI2_SS/ GPIO11	D2	34	VDD_IO	I/O	SPI master interface slave select/GPIO11	PU/PD/K/H/ C/OD	GPIO11 input with bus-keeper
					Supply		
GND_A	A4	GND [2]	_	_	Analog ground (return path for VDD_A)	_	_
GND_CP	A8, B7	GND [2]	_	_	Charge pump ground (return path for VDD_CP)	_	_
GND_D	E1, G3, G6	GND [2]	_	_	Digital ground (return path for VDD_D and VDD_IO)	_	_
GND_SUB	A1, A2, D8	GND [2]	_	_	Substrate ground (also return path for VDD_ FLL)	_	
VDD_A	A3	50	_	_	Analog supply	_	_
VDD_D	D1, H6	20, 43	_	_	Digital core supply	_	_
VDD_FLL	E8	6	_	_	Analog FLL supply	_	_
VDD_IO	H3	27	_	_	Digital buffer (I/O) supply	_	_
VDD_CP	B8	1	_	_	Analog supply for Charge Pump	_	_
					No Connect		
NC	C1, C2, C3, F8, H1, H8	11, 12, 13, 14, 35, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49		_	_	_	

^{1.} The analog input functions on these pins are referenced to the VOUT_MIC power domain. The digital input/output functions are referenced to the VOUT_MIC or MICBIAS1 power domain, as selected by the applicable INn_PDM_SUP field.

^{2.} On the QFN package variant, all of the CS48L32 ground domains are connected to the exposed die pad.

2 Typical Connection Diagram

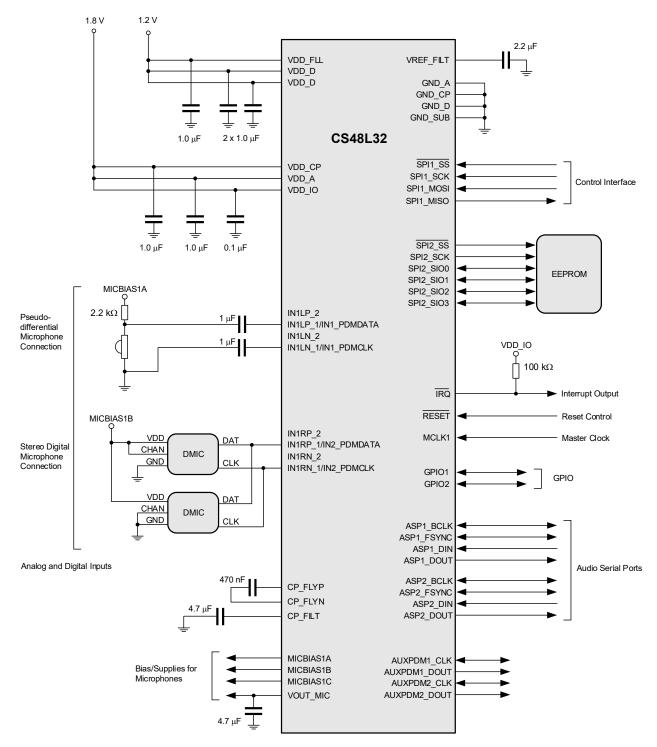


Figure 2-1. Typical Connection Diagram

3 Characteristics and Specifications

Table 3-1 defines parameters as they are characterized in this section.

Table 3-1. Parameter Definitions

Parameter	Definition
Channel separation	Left-to-right and right-to-left channel separation is the difference in level between the active channel (driven to maximum full scale output) and the measured signal level in the idle channel at the test signal frequency. The active channel is configured and supplied with an appropriate input signal to drive a full scale output, with signal measured at the output of the associated idle channel.
Common-mode rejection ratio (CMRR)	The ratio of a specified input signal (applied to both sides of a differential input), relative to the output signal that results from it.
Power-supply rejection ratio (PSRR)	The ratio of a specified power supply variation relative to the output signal that results from it. PSRR is measured under quiescent signal path conditions.
Signal-to-noise ratio (SNR)	A measure of the difference in level between the maximum full scale output signal and the output with no input signal applied.
Total harmonic distortion (THD)	The ratio of the RMS sum of the harmonic distortion products in the specified bandwidth ¹ relative to the RMS amplitude of the fundamental (i.e., test frequency) output.
Total harmonic distortion plus noise (THD+N)	The ratio of the RMS sum of the harmonic distortion products plus noise in the specified bandwidth ¹ relative to the RMS amplitude of the fundamental (i.e., test frequency) output.

^{1.}All performance measurements are specified with a 20 kHz, low-pass brick-wall filter and, where noted, an A-weighted filter. The low-pass filter removes out-of-band noise.

Table 3-2. Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under electrical characteristics at the test conditions specified.

Parameter		Symbol	Minimum	Maximum
Supply voltages		VDD_D [1], VDD_FLL [1] VDD_A, VDD_CP VDD_IO	-0.3 V -0.3 V -0.3 V	1.52 V 2.27 V 4.32 V
Voltage range digital inputs	VDD_IO domain IN <i>n</i> _PDMDATA	_ _	V _{GND_SUB} - 0.3 V V _{GND_SUB} - 0.3 V	$V_{VDD_IO} + 0.3 V$ $V_{VOUT_MIC} + 0.3 V$
Voltage range analog inputs		IN1xx_n	V _{GND_SUB} – 0.3 V	V _{VOUT_MIC} + 0.3 V
Ground ²		GND_A, GND_D, GND_CP	V _{GND_SUB} – 0.3 V	$V_{GND_SUB} + 0.3V$
Operating temperature range		T _A	-40°C	+85°C
Operating junction temperature		TJ	-40°C	+125°C
Storage temperature after soldering		_	−65°C	+150°C

ESD-sensitive device. The CS48L32 is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device. This device is qualified to current JEDEC ESD standards.

^{1.}The VDD_D and VDD_FLL pins should be tied to a common supply rail. The associated power domain is referred to as VDD_D.

^{2.}On the QFN package variant, all of the CS48L32 ground domains are connected to the exposed die pad.

Table 3-3. Recommended Operating Conditions

Parameter		Symbol	Minimum	Typical	Maximum	Units
Digital supply range ¹ Digital supply range	Core and FLL I/O	VDD_D, VDD_FLL VDD_IO	1.14 1.71	1.2 1.8	1.26 3.6	V
Charge pump supply range		VDD_CP	1.71	1.8	1.89	V
Analog supply range		VDD_A	1.71	1.8	1.89	V
Ground ^{2,3}		GND_D, GND_A, GND_CP, GND_SUB	_	0	_	V
Power supply rise time 4,5		VDD_D	10	_	2000	μs
		All other supplies	10	_	_	μs
Operating temperature range		T _A	-4 0	_	85	°C

Note: There are no power sequencing requirements; the supplies may be enabled and disabled in any order.

- 1. The VDD D and VDD FLL pins should be tied to a common supply rail. The associated power domain is referred to as VDD D.
- 2.The impedance between GND D, GND A, GND CP, and GND SUB must not exceed 0.1 Ω .
- 3.On the QFN package variant, all of the CS48L32 ground domains are connected to the exposed die pad.
- 4.If the VDD_D rise time exceeds 2 ms, RESET must be asserted during the rise and held asserted until after VDD_D is within the recommended operating limits.
- 5. The specified minimum power supply rise times assume a minimum decoupling capacitance of 100 nF per pin. However, Cirrus Logic strongly advises that the recommended decoupling capacitors are present on the PCB and that appropriate layout guidelines are observed. The specified minimum power supply rise times also assume a maximum PCB inductance of 10 nH between decoupling capacitor and pin.

Table 3-4. Analog Input Signal Level—IN1xx

Test conditions (unless specified otherwise): VDD_A = 1.8V; with the exception of the condition noted, the following electrical characteristics are valid across the full range of recommended operating conditions.

Parar	Minimum	Typical	Maximum	Units	
Full-scale input signal level (0 dBFS output)	Single-ended PGA input, 0 dB PGA gain	_	0.5	_	V _{RMS}
		_	-6	_	dBV
	Differential PGA input, 0 dB PGA gain	_	1	_	V _{RMS}
		_	0		dBV

Notes:

- The full-scale input signal level is also the maximum analog input level, before clipping occurs.
- The maximum input signal level is reduced by 6 dB if mid-power configuration is selected.
- The full-scale input signal level changes in proportion with VDD. A. For differential input, it is calculated as VDD. A. / 1.8.
- A 1.0V_{RMS} differential signal equates to 0.5V_{RMS}/–6dBV per input.
- · A sinusoidal input signal is assumed.

Table 3-5. Analog Input Pin Characteristics

Test conditions (unless specified otherwise): $T_A = +25^{\circ}C$; with the exception of the condition noted, the following electrical characteristics are valid across the full range of recommended operating conditions.

	Parameter	Minimum	Typical	Maximum	Units
Input resistance	Single-ended PGA input, All PGA gain settings	9	10.5	_	kΩ
	Differential PGA input, All PGA gain settings	18	21	_	kΩ
Input capacitance		_		5	pF

Table 3-6. Analog Input Gain—Programmable Gain Amplifiers (PGAs)

The following electrical characteristics are valid across the full range of recommended operating conditions.

Parameter	Minimum	Typical	Maximum	Units
Minimum programmable gain	_	0	_	dB
Maximum programmable gain	_	31	_	dB
Programmable gain step size Guaranteed monotonic	_	1	_	dB

Table 3-7. Digital Input Signal Level—INn_PDMDATA

The following electrical characteristics are valid across the full range of recommended operating conditions.

Paramete	r	Minimum	Typical	Maximum	Units
Full-scale input level ¹	0 dBFS digital core input, 0 dB gain	_	-6	_	dBFS

^{1.} The digital input signal level is measured in dBFS, where 0 dBFS is a signal level equal to the full-scale range (FSR) of the PDM input. The FSR is defined as the amplitude of a 1 kHz sine wave whose positive and negative peaks are represented by the maximum and minimum digital codes respectively—this is the largest 1 kHz sine wave that can fit in the digital output range without clipping.

Table 3-8. Input Path Characteristics

Test conditions (unless specified otherwise): $VDD_IO = VDD_CP = VDD_A = 1.8 \text{ V}$, $VDD_D = VDD_FLL = 1.2 \text{ V}$, $VOUT_MIC = 3.1 \text{ V}$ (powered from internal LDO); $T_A = +25$ °C; 1 kHz sinusoid signal; $F_S = 48 \text{ kHz}$; $F_S = 48 \text{ kHz}$;

	Parameter		Min	Тур	Max	Units
Analog input paths (IN1xx) to	SNR (A-weighted), defined in Table 3-1 20	Hz to 20 kHz, 48 kHz sample rate	91	99	_	dB
ADC (Differential Input Mode)	2	20 Hz to 8 kHz, 16 kHz sample rate	_	104	_	dB
	THD, defined in Table 3-1	–1 dBV input	_	-89	_	dB
	THD+N, defined in Table 3-1	–1 dBV input	_	-88	-79	dB
	Channel separation (L/R), defined in Table 3-1		_	109	_	dB
	Input-referred noise floor	A-weighted, PGA gain = +20 dB	_	2.6	_	μV_{RMS}
	CMRR, defined in Table 3-1	PGA gain = +30 dB PGA gain = 0 dB		83 72	_	dB dB
	PSRR (VDD_IO, VDD_CP, VDD_A), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz		91 81	_	dB dB
	PSRR (VDD_D, VDD_FLL), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz	_	98 92		dB dB
Analog input paths (IN1xx) to ADC (Single-Ended Input Mode)	2	OHz to 20 kHz, 48 kHz sample rate 20 Hz to 8 kHz, 16 kHz sample rate		98 103		dB dB
(Wede)	THD, defined in Table 3-1	–7dB V input	_	-84	_	dB
	THD+N, defined in Table 3-1	–7dB V input	_	-83	-78	dB
	Channel separation (L/R), defined in Table 3-1		_	107	_	dB
	Input-referred noise floor	A-weighted, PGA gain = +20 dB	_	4	_	μV_{RMS}
	PSRR (VDD_IO, VDD_CP, VDD_A), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz		77 52	_	dB dB
	PSRR (VDD_D, VDD_FLL), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz		96 80	_	dB dB
Analog input paths (IN1xx) to	SNR, defined in Table 3-1	A-weighted	77	86	_	dB
ADC (Differential Input, Mid-Power Mode)	THD, defined in Table 3-1	–7 dBV input	_	-81	_	dB
	THD+N, defined in Table 3-1	–7 dBV input	_	-80	-74	dB
	Channel separation (L/R), defined in Table 3-1		_	98	_	dB
	Input-referred noise floor	A-weighted, PGA gain = +20 dB	_	5.4	_	μV_{RMS}
	CMRR, defined in Table 3-1	PGA gain = +30 dB		83	_	dB
		PGA gain = 0 dB		68	_	dB
	PSRR (VDD_IO, VDD_CP, VDD_A), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz		87 70		dB dB
	PSRR (VDD_D, VDD_FLL), defined in Table 3-1	100 mV (peak-peak) 217 Hz 100 mV (peak-peak) 10 kHz		96 73		dB dB

Table 3-9. Digital Input/Output

The following electrical characteristics are valid across the full range of recommended operating conditions.

	Parameter		Minimum	Typical	Maximum	Units
Digital I/O (except INn_PDMDATA and	Input HIGH level	V _{VDD_IO} = 1.71–1.98 V	$0.75 \times V_{VDD\ IO}$	_	_	V
INn_PDMDATA and INn_PDMCLK) 1		$V_{VDD}_{IO} = 2.25 - 2.75 \text{ V}$	$0.8 \times V_{VDD}$ 10	_	_	
IIIVII_F DIVIGER)		$V_{VDD_{IO}} = 2.97 - 3.6 \text{ V}$	$0.7 \times V_{VDD_IO}$		_	
	Input LOW level	V _{VDD_IO} = 1.71–1.98 V	_	_	$0.3 \times V_{VDD_IO}$	V
		$V_{VDD_{IO}} = 2.25 - 2.75 V$	_	_	$0.25 \times V_{VDD_IO}$	
		$V_{VDD_{1O}} = 2.97 - 3.6 \text{ V}$	_	_	0.2 × V _{VDD_IO}	
	Output HIGH level (I _{OH} = 1 mA)	$V_{VDD_{10}} = 1.71 - 1.98 V$	$0.75 \times V_{VDD_IO}$	_	_	V
		$V_{VDD_{IO}} = 2.25 - 2.75 V$	$0.65 \times V_{VDD_IO}$	_	_	
		$V_{VDD_{IO}} = 2.97 - 3.6 \text{ V}$	$0.7 \times V_{VDD_IO}$	_	_	
	Output LOW level (I _{OL} = -1mA)	$V_{VDD_{10}} = 1.71 - 1.98 V$	_	_	$0.25 \times V_{VDD_IO}$	V
		$V_{VDD_IO} = 2.25-2.75 \text{ V}$ $V_{VDD_IO} = 2.97-3.6 \text{ V}$	_		$0.3 \times V_{VDD_IO}$	
		$V_{VDD_{1O}} = 2.97 - 3.6 \text{ V}$		_	$0.15 \times V_{VDD_IO}$	
	Input capacitance		_		5	pF
	Input leakage		-10	_	10	μΑ
	Pull-up/pull-down resistance (where	applicable)	35	_	55	kΩ
DMIC I/O	INn_PDMDATA input HIGH level		$0.65 \times V_{SUP}$		_	V
(INn_PDMDATA and INn_PDMCLK) 1,2	INn_PDMDATA input LOW level		_	_	$0.35 \times V_{SUP}$	V
2	INn_PDMCLK output HIGH level	I _{OH} = 1 mA	$0.8 \times V_{SUP}$	_	_	V
	INn_PDMCLK output LOW level	$I_{OL} = -1 \text{ mA}$	_		0.2 × V _{SUP}	V
	Input capacitance		_	25		pF
	Input leakage		-1	_	1	μΑ
GPIO <i>n</i>	Clock output frequency GPIO pi	n as OPCLK or FLL output	_		50	MHz

^{1.} Note that digital input pins should not be left floating. Undriven digital inputs can be held at Logic 0 or Logic 1 levels using pull resistors or bus-keeper circuits if required. 2.INn_PDMDATA and INn_PDMCLK are referenced to a selectable supply, V_{SUP} , according to the INn_PDM_SUP fields.

Table 3-10. Miscellaneous Characteristics

Test conditions (unless specified otherwise): VDD_IO = VDD_CP = VDD_A = 1.8 V, VDD_D = VDD_FLL = 1.2 V, VOUT_MIC = 3.1 V (powered from internal LDO); T_A = +25°C; 1 kHz sinusoid signal; Fs = 48 kHz; PGA gain = 0 dB, 24-bit audio data.

	Parameter	Min	Тур	Max	Units
Microphone bias	Minimum bias voltage ²	-5%	1.5	+5%	V
(MICBIAS1x) 1	Maximum bias voltage	-5%	2.8	+5%	V
	Bias voltage output step size	0.05	0.1	0.15	V
	Bias voltage accuracy	-5%	_	+5%	V
	Bias current ³ Regulator Mode (MICB1_BYPASS = 0), V _{VOUT_MIC} – V _{MICBIAS} >200 mV	_	1	2.4	mA
	Bypass Mode (MICB1_BYPASS = 1)	_	_	5.0	mA
	Output noise density Regulator Mode (MICB1_BYPASS = 0), MICB1_LVL = 0x4, Load current = 1 mA, measured at 1 kHz		50		nV/√Hz
	Integrated noise voltage Regulator Mode (MICB1_BYPASS = 0), MICB1_LVL = 0x4, Load current = 1 mA, 100 Hz to 7 kHz, A-weighted		3	_	μV _{RMS}
	PSRR (VDD_IO, VDD_CP, VDD_A), 100 mV (peak-peak) 217 Hz		92	_	dB
	defined in Table 3-1 100 mV (peak-peak) 10 kHz	_	95	_	dB
	PSRR (VDD D, VDD FLL), 100 mV (peak-peak) 217 Hz		100	_	dB
	defined in Table 3-1 100 mV (peak-peak) 10 kHz	_	100	_	dB
	Load capacitance ³ Regulator Mode (MICB1_BYPASS = 0), MICB1_EXT_CAP = 0	_	_	50	pF
	Regulator Mode (MICB1_BYPASS = 0), MICB1_EXT_CAP = 1	0.1	1.0	10	μF
	Output discharge resistance MICB1x_EN = 0, MICB1x_DISCH = 1	1.8	2.4	3	kΩ
VOUT_MIC	Output voltage	0.9	_	3.3	V
Charge Pump and Regulator	Programmable output voltage step size LDO2 VSEL = 0x00–0x14 (0.9–1.4V)	_	25	_	mV
(CP2 and LDO2)	LDO2_VSEL = 0x14 to 0x27 (1.4 V-3.3 V)	_	100	_	mV
,	Output current			8	mA
	Start-up time 4.7 µF on VOUT_MIC	_	1.0	2.5	ms
Frequency-Lock	Output frequency	45	_	50	MHz
ed Loop (FLL1)	Lock Time $F_{REF} = 32 \text{ kHz}, F_{FLL} = 49.152 \text{ MHz}$	_	5	_	ms
	F _{REF} = 12 MHz, F _{FLL} = 49.152 MHz	_	1	_	ms
RESET pin input	RESET input pulse width ⁴	1	_	_	μS

^{1.}No capacitor on MICBIAS1x. In Regulator Mode, it is required that $V_{VOUT\ MIC} - V_{MICBIAS} > 200\ mV$.

Table 3-11. Device Reset Thresholds

The following electrical characteristics are valid across the full range of recommended operating conditions.

Paramet	er	Symbol	Minimum	Typical	Maximum	Units
VDD_A reset threshold	V _{VDD A} rising	V _{VDD A}	_	_	1.66	V
	V _{VDD_A} falling	_	1.06	_	1.44	V
VDD_D reset threshold	V _{VDD D} rising	V _{VDD D}	_	_	1.04	V
	V _{VDD_D} falling	_	0.41	_	0.70	V
VDD_IO reset threshold	V _{VDD_IO} rising	V _{VDD IO}	_	_	1.66	V
	V _{VDD} _{IO} falling	= -	1.06		1.44	V

Note: The reset thresholds are derived from simulations only, across all operational and process corners. Device performance is not assured outside the voltage ranges defined in Table 3-3.

^{2.}Regulator Mode (MICB1 BYPASS = 0), Load current ≤ 1.0 mA.

^{3.}Bias current and load capacitance specifications are for the MICBIAS1 generator (i.e., total current/capacitance across all MICBIAS1x outputs).

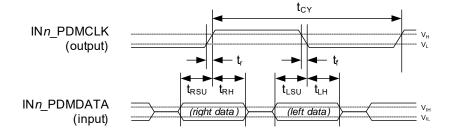
^{4.}To trigger a hardware reset, the RESET input must be asserted for longer than this duration.

Table 3-12. System Clock and Frequency-Locked Loop (FLL)

The following timing information is valid across the full range of recommended operating conditions.

		Parameter	Minimum	Typical	Maximum	Units
Master clock	MCLK cycle time	MCLK as input to FLL, FLL1_REFCLK_DIV = 00	77	_	_	ns
timing (MCLK1) ¹	_	MCLK as input to FLL, FLL1_REFCLK_DIV = 01	38		_	ns
		MCLK as input to FLL, FLL1_REFCLK_DIV = 10	19		_	ns
		MCLK as input to FLL, FLL1_REFCLK_DIV = 11	12.5		_	ns
		MCLK as direct SYSCLK source	20	_	_	ns
	MCLK duty cycle	MCLK as input to FLL	80:20	_	20:80	%
		MCLK as direct SYSCLK source	60:40	_	40:60	%
Frequency-locked	FLL input frequency	FLL1_REFCLK_DIV = 00	0.032	_	13	MHz
loop (FLL1)		FLL1_REFCLK_DIV = 01	0.064		26	MHz
		FLL1_REFCLK_DIV = 10	0.128		52	MHz
		FLL1_REFCLK_DIV = 11	0.256	_	80	MHz
Internal clocking	SYSCLK frequency	SYSCLK_FREQ = 000, SYSCLK_FRAC = 0	-1%	6.144	+1%	MHz
		SYSCLK_FREQ = 000, SYSCLK_FRAC = 1	-1%	5.6448	+1%	MHz
		SYSCLK_FREQ = 001, SYSCLK_FRAC = 0	-1%	12.288	+1%	MHz
		SYSCLK_FREQ = 001, SYSCLK_FRAC = 1	-1%	11.2896	+1%	MHz
		SYSCLK_FREQ = 010, SYSCLK_FRAC = 0	-1%	24.576	+1%	MHz
		SYSCLK_FREQ = 010, SYSCLK_FRAC = 1	-1%	22.5792	+1%	MHz
		SYSCLK_FREQ = 011, SYSCLK_FRAC = 0	-1%	49.152	+1%	MHz
		SYSCLK_FREQ = 011, SYSCLK_FRAC = 1	-1%	45.1584	+1%	MHz
		SYSCLK_FREQ = 100, SYSCLK_FRAC = 0		98.304	+1%	MHz
		SYSCLK_FREQ = 100, SYSCLK_FRAC = 1	-1%	90.3168	+1%	MHz

^{1.}If MCLK1 is selected as a source for SYSCLK (either directly or via the FLL), the frequency must be within 1% of the SYSCLK_FREQ setting.


Table 3-13. Digital Input (PDM/DMIC) Interface Timing

The following timing information is valid across the full range of recommended operating conditions.

Parameter ¹	Symbol	Minimum	Typical	Maximum	Units
INn_PDMCLK cycle time	t _{CY}	160	163	1432	ns
INn_PDMCLK duty cycle	_	45	_	55	%
INn_PDMCLK rise/fall time (25 pF load, 1.8 V supply)	t _r , t _f	5	_	30	ns
INn_PDMDATA (left) setup time to falling PDMCLK edge	t _{LSU}	15	_	_	ns
INn_PDMDATA (left) hold time from falling PDMCLK edge	t _{LH}	0	_	_	ns
INn_PDMDATA (right) setup time to rising PDMCLK edge	t _{RSU}	15	_	_	ns
INn_PDMDATA (right) hold time from rising PDMCLK edge	t _{RH}	0	_	_	ns

Note: The voltage reference for the DMIC interfaces is selectable, using the INn_PDM_SUP fields—each interface may be referenced to VOUT_MIC or MICBIAS1.

1.PDM/DMIC interface timing

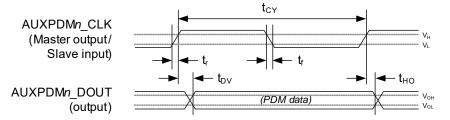


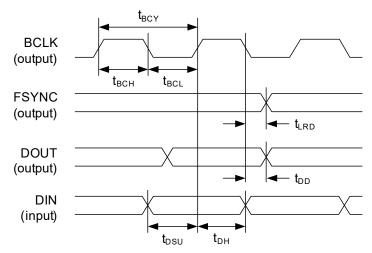
Table 3-14. AUX PDM Interface Timing

The following timing information is valid across the full range of recommended operating conditions.

	Parameter ¹		Symbol	Minimum	Typical	Maximum	Units
Master Mode	AUXPDMn_CLK cycle time		t _{CY}	320	_	1432	ns
	AUXPDMn_CLK duty cycle		_	45	_	55	%
	AUXPDMn_CLK rise/fall time (25 pF load, VDD_I	O = 1.8 V)	t _r , t _f	5	_	30	ns
	AUXPDMn_DOUT valid from active CLK edge	Analog input	t _{DV}	_	_	15	ns
	AUXPDMn_DOUT hold from active CLK edge	Analog input	t _{HO}	0	_	_	ns
	AUXPDMn_DOUT propagation delay ²	Digital input	t _{DD}	_	_	18	ns
	AUXPDMn_CLK phase alignment ³	Digital input	t _{CD}	- 5	_	5	ns
Slave Mode	AUXPDMn_CLK cycle time		t _{CY}	320	_	1432	ns
	AUXPDMn_CLK duty cycle		_	45	_	55	%
	AUXPDMn_DOUT valid from active CLK edge	Analog input	t _{DV}	_	_	20	ns
	AUXPDMn_DOUT hold from active CLK edge	Analog input	t _{HO}	0	_	_	ns
	AUXPDMn_DOUT propagation delay ²	Digital input	t _{DD}	_	_	18	ns
	AUXPDMn_CLK propagation delay ⁴	Digital input	t _{CD}	_	_	20	ns

1.AUX PDM interface timing.

- 2.DOUT propagation delay is measured from a rising/falling edge on INn_PDMDATA to the corresponding edge at AUXPDMn_DOUT.
 3.In Master Mode, CLK phase alignment represents the timing of the AUXPDMn_CLK signal with respect to the INn_PDMCLK.
 4.In Slave Mode, CLK propagation delay is measured from a rising/falling edge on AUXPDMn_CLK to the corresponding edge at INn_PDMCLK.


Table 3-15. Audio Serial Port—Master Mode

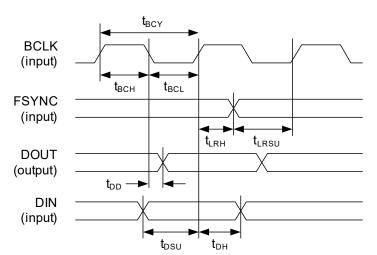
Test conditions (unless specified otherwise): C_{LOAD} = 25 pF (output pins); BCLK slew (10% to 90%) = 3.7–5.6 ns; with the exception of the conditions noted, the following electrical characteristics are valid across the full range of recommended operating conditions.

	Parameter ¹	Symbol	Minimum	Typical	Maximum	Units
Master Mode	ASPn_BCLK cycle time	t _{BCY}	40	_	_	ns
	ASPn_BCLK pulse width high	t _{BCH}	18	_	_	ns
	ASPn_BCLK pulse width low	t _{BCL}	18	_	_	ns
	ASP <i>n</i> _FSYNC propagation delay from BCLK falling edge ²	t _{LRD}	0	_	8.3	ns
	ASPn_DOUT propagation delay from BCLK falling edge	t _{DD}	0	_	5	ns
	ASPn_DIN setup time to BCLK rising edge	t _{DSU}	11	_	_	ns
	ASPn_DIN hold time from BCLK rising edge	t _{DH}	0	_	_	ns
Master Mode, Slave FSYNC	ASPn_FSYNC setup time to BCLK rising edge	t _{LRSU}	14	_	_	ns
Slave FSYNC	ASPn_FSYNC hold time from BCLK rising edge	t _{LRH}	0	_	_	ns

Notes: The descriptions above assume noninverted polarity of ASP*n* BCLK.

 Audio serial port timing—Master Mode. Note that BCLK and FSYNC outputs can be inverted if required; the figure shows the default, noninverted polarity.

2. The timing of the ASP*n_*FSYNC signal is selectable. If the FSYNC advance option is enabled, the FSYNC transition is timed relative to the preceding BCLK edge. Under the required condition that BCLK is inverted in this case, the FSYNC transition is still timed relative to the falling BCLK edge.


Table 3-16. Audio Serial Port—Slave Mode

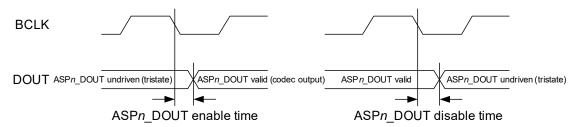
The following timing information is valid across the full range of recommended operating conditions, unless otherwise noted.

	Parameter 1,2	Symbol	Min	Тур	Max	Units
ASPn_BCLK cycle time		t _{BCY}	40	_	_	ns
ASPn_BCLK pulse width high	BCLK as direct SYSCLK source All other conditions	t _{BCH} t _{BCH}	16 14	_		ns ns
ASPn_BCLK pulse width low	BCLK as direct SYSCLK source All other conditions	t _{BCL} t _{BCL}	16 14	_ _		ns ns
C _{LOAD} = 15 pF (output pins), BCLK slew (10%–90%) = 3 ns	ASPn_FSYNC set-up time to BCLK rising edge	t _{LRSU}	7	_	-	ns
BCLK siew (10%–90%) = 3 ns	ASPn_FSYNC hold time from BCLK rising edge	t _{LRH}	0	_	_	ns
	ASPn_DOUT propagation delay from BCLK falling edge		0	_	13.6	ns
	ASPn_DIN set-up time to BCLK rising edge	t _{DSU}	2			ns
	ASPn_DIN hold time from BCLK rising edge	t _{DH}	0	_		ns
	Master FSYNC, ASP <i>n</i> _FSYNC propagation delay from BCLK falling edge	t_{LRD}	_	_	12.2	ns
C _{LOAD} = 25 pF (output pins), BCLK slew (10%–90%) = 6 ns	ASPn_FSYNC set-up time to BCLK rising edge	t _{LRSU}	7			ns
BCLK siew (10%–90%) = 6 fis	ASPn_FSYNC hold time from BCLK rising edge	t _{LRH}	0	_		ns
	ASPn_DOUT propagation delay from BCLK falling edge	t _{DD}	0	_	14.7	ns
	ASPn_DIN set-up time to BCLK rising edge	t _{DSU}	2	_		ns
	ASPn_DIN hold time from BCLK rising edge	t _{DH}	0	_		ns
	Master FSYNC, ASPn_FSYNC propagation delay from BCLK falling edge	t _{LRD}	_	_	13.4	ns

Note: The descriptions above assume noninverted polarity of ASP*n_*BCLK.

Audio serial port timing—Slave Mode. Note that BCLK and FSYNC inputs can be inverted if required; the figure shows the default, noninverted polarity.

2.If ASPn_BCLK or ASPn_FSYNC is selected as a source for SYSCLK (either directly or via the FLL), the frequency must be within 1% of the SYSCLK_FREQ setting.


Table 3-17. Audio Serial Port Timing—TDM Mode

The following timing information is valid across the full range of recommended operating conditions, unless otherwise noted.

	rameter ¹	Min	Тур	Max	Units
Master Mode— C_{LOAD} (ASP _n DOUT) = 15 to	0	_	_	ns	
25 pF. BCLK siew (10%–90%) = 3.7ns to 5.6 ns.	ASP <i>n</i> _DOUT enable time from BCLK falling edge ASP <i>n</i> _DOUT disable time from BCLK falling edge	_	_	6	ns
Slave Mode— C_{LOAD} (ASP <i>n</i> _DOUT) = 15 pF). ASP <i>n</i> _DOUT enable time from BCLK falling edge BCLK slew (10%–90%) = 3 \overline{n} s		2	_	_	ns
BCLK slew (10%–90%) = 3 hs	ASP <i>n</i> _DOUT disable time from BCLK falling edge	_	_	12.2	ns
Slave Mode— C_{LOAD} (ASP n _DOUT) = 25 pF). BCLK slew (10%–90%) = 6 \overline{n} s	ASP <i>n</i> _DOUT enable time from BCLK falling edge	2 — —		ns	
BCLK siew (10%–90%) = 6 ns	ASPn_DOUT disable time from BCLK falling edge	_	_	14.2	ns

Note: If TDM operation is used on the ASP*n*_DOUT pins, it is important that two devices do not attempt to drive the ASP*n*_DOUT pin simultaneously. To support this requirement, the ASP*n*_DOUT pins can be configured to be tristated when not outputting data.

1.Audio serial port timing— TDM Mode. The timing of the ASP*n*_DOUT tristating at the start and end of the data transmission is shown.

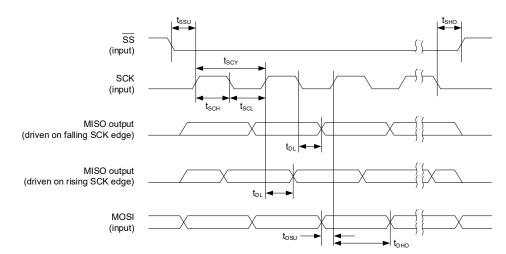


Table 3-18. Control Interface Timing (SPI1 Slave)

The following timing information is valid across the full range of recommended operating conditions.

	Parameter ¹	Symbol	Min	Тур	Max	Units
SS falling edge to SCK rising edge		t _{SSU}	2.6	_		ns
SCK falling edge to SS rising edge		t _{SHO}	0	_	_	ns
SCK pulse cycle time	SYSCLK disabled (SYSCLK_EN = 0)	tscy	20	_		ns
	SYSCLK_EN = 1, SYSCLK_FREQ = 000		38.4	_	_	ns
	SYSCLK_EN = 1, SYSCLK_FREQ > 000	t _{SCY}	20	_	_	ns
SCK pulse-width low		t _{SCL}	9	_	_	ns
SCK pulse-width high		t _{SCH}	9	_	_	ns
SCK falling edge to MISO transition	MISO driven on SCK falling edge (SPI1_DPHA = 0) SCK slew (90%-10%) = 5 ns, C _{LOAD} (MISO) = 10 pF	t _{DL}	4	_	12	ns
SCK rising edge to MISO transition	MISO driven on SCK rising edge (SPI1_DPHA = 1) SCK slew (10%–90%) = 5 ns, C _{LOAD} (MISO) = 10 pF	t _{DL}	4	_	10	ns
MOSI to SCK set-up time		t _{DSU}	1.5	_	_	ns
MOSI to SCK hold time		t _{DHO}	1.7	_		ns

1. Control interface timing

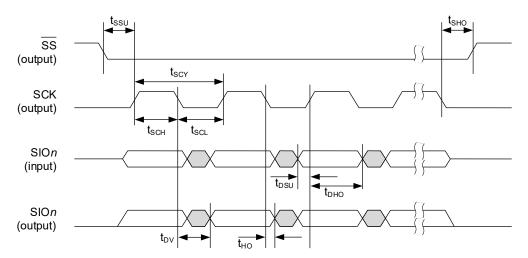


Table 3-19. Master Interface Timing (SPI2 Master)

The following timing information is valid across the full range of recommended operating conditions.

Parameter ¹	Symbol	Min	Тур	Max	Units
SS falling edge to SCK rising edge	t _{SSU}	5	_	_	ns
SCK falling edge to SS rising edge	t _{SHO}	15.3	_	_	ns
SCK pulse cycle time	t _{SCY}	40	_		ns
SCK pulse width low	t _{SCL}	19	_		ns
SCK pulse width high	t _{SCH}	19	_		ns
SIOn (input) to SCK set-up time	t _{DSU}	10.35	_		ns
SIOn (input) to SCK hold time	t _{DHO}	0	_		ns
SIOn (output) valid from falling SCK edge SCLK slew (90%–10%) = 5 ns, C_{LOAD} (SIOn) = 25 p	t _{DV}	_	_	18.3	ns
SIOn (output) hold from falling SCK edge SCLK slew (90%–10%) = 5 ns, C_{LOAD} (SIOn) = 25 p	t _{HO}	-3	_	_	ns

^{1.}Master interface (SPI2) timing

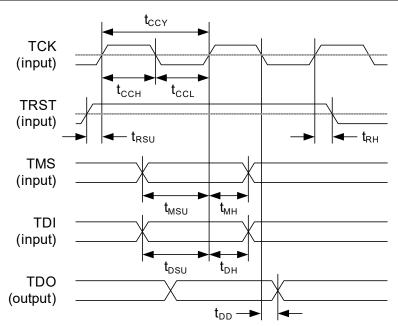


Table 3-20. JTAG Interface Timing

Test conditions (unless specified otherwise): $C_{LOAD} = 25 \text{ pF}$ (output pins); TCK slew (20%–80%) = 5 ns; with the exception of the conditions noted, the following electrical characteristics are valid across the full range of recommended operating conditions.

Parameter ¹	Symbol	Minimum	Typical	Maximum	Units
TCK cycle time	T _{CCY}	50		_	ns
TCK pulse width high	T _{CCH}	20		_	ns
TCK pulse width low	T _{CCL}	20	_	_	ns
TMS setup time to TCK rising edge	T _{MSU}	1		_	ns
TMS hold time from TCK rising edge	T _{MH}	2		_	ns
TDI setup time to TCK rising edge	T _{DSU}	1	_	_	ns
TDI hold time from TCK rising edge	T _{DH}	2		_	ns
TDO propagation delay from TCK falling edge	T _{DD}	0	_	17	ns
TRST setup time to TCK rising edge	T _{RSU}	3	_	_	ns
TRST hold time from TCK rising edge	T _{RH}	3		_	ns
TRST pulse-width low	_	20		_	ns

^{1.}JTAG Interface timing

Table 3-21. Typical Signal Latency

Test conditions (unless specified otherwise):

VDD_IO = VDD_CP = VDD_A = 1.8 V, VDD_D = VDD_FLL = 1.2 V; VOUT_MIC = Off (CP2 and LDO2 disabled); T_A = +25°C; Fs = 48 kHz; 24-bit audio data, I²S Slave Mode.

Operating Configuration					
ADC to ASP path—analog input (INn) to digital output (ASPn) 1	192 kHz input, 192 kHz output, Synchronous	50			
	96 kHz input, 96 kHz output, Synchronous	100			
	48 kHz input, 48 kHz output, Synchronous	195			
	44.1 kHz input, 44.1 kHz output, Synchronous	215			
	16 kHz input, 16 kHz output, Synchronous	560			
	8 kHz input, 8 kHz output, Synchronous	1170			
	8 kHz input, 48 kHz output, Isochronous 2	1700			
	16 kHz input, 48 kHz output, Isochronous ²	865			

^{1.}Digital core high-pass filter is included in the signal path.

^{2.} Signal is routed via the ISRC function in the isochronous cases only.

4 Functional Description

The CS48L32 is a low-power audio hub incorporating a programmable DSP and a multichannel microphone interface. It provides flexible, high-performance audio interfacing for handheld devices in a small and cost-effective package.

4.1 Overview

The CS48L32 block diagram is shown in Fig. 4-1.

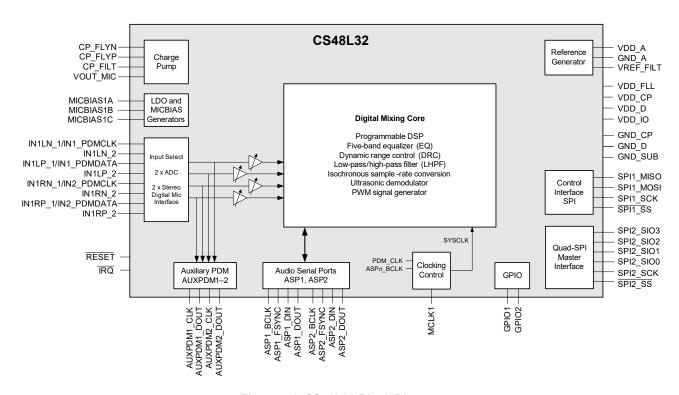


Figure 4-1. CS48L32 Block Diagram

The CS48L32 digital-mixing core supports a range of fixed-function and programmable DSP capabilities, ideally suited to low-power voice-trigger applications. Media enhancements such as dynamic range control (DRC) and multiband equalizer (EQ) are supported. The CS48L32 incorporates a Halo Core DSP, supporting the Cirrus Logic SoundClear™ suite of audio processing algorithms. The DSP is integrated within a fully flexible, all-digital mixing and routing engine with sample-rate converters, for wide use-case flexibility. Support for third-party DSP programming provides far-reaching opportunities for product differentiation.

The CS48L32 provides multiple digital audio interfaces—I2S and PDM—to provide independent isochronous connections to different processors (e.g., application processor, baseband processor, and wireless transceiver).

A flexible clocking arrangement supports a wide variety of external clock references, including clocking derived from the audio serial ports. The frequency-locked loop (FLL) circuit provides additional flexibility for system clocking, including low-power always-on operation. Seamless switching between clock sources is supported; free-running modes are also available.

Unused circuitry can be disabled under software control to save power; low leakage currents enable extended standby/off time in portable battery-powered applications. Versatile GPIO functionality is provided, including support for push-button inputs. Comprehensive interrupt functions, with status reporting, are also provided.

4.1.1 Digital Audio Core

The CS48L32 uses a core architecture based on all-digital signal routing, making digital audio effects available on all signal paths, regardless of whether the source data input is analog or digital. The digital mixing desk allows different audio effects to be applied simultaneously on many independent paths, while supporting a variety of sample rates. Soft mute and unmute control ensures smooth transitions between use cases without interrupting existing audio streams elsewhere.

The CS48L32 incorporates a Halo Core DSP, supporting programmable signal-processing algorithms. The DSP is optimized for audio applications, incorporating configurable FFT, FIR, LMS, and linear/dB-conversion accelerators. The DSP is supported by general-purpose timer and event-logger functions. A quad-SPI (QSPI) master interface enables high-speed data transfers between the DSP and external components such as flash-memory devices.

Highly flexible digital mixing, including mixing between audio interfaces, is possible. The CS48L32 performs multichannel full-duplex isochronous sample-rate conversion, providing use-case flexibility across a broad range of system architectures.

DRC functions are available for optimizing audio signal levels. In playback modes, the DRC can be used to maximize loudness, while limiting the signal level to avoid distortion, clipping, or battery droop, for high-power output drivers such as speaker amplifiers. In record modes, the DRC assists in applications where the signal level is unpredictable.

The five-band parametric EQ functions can be used to compensate for the frequency characteristics of the output transducers. EQ functions can be cascaded to provide additional frequency control. Programmable high-pass and low-pass filters are also available for general filtering applications, such as removal of wind and other low-frequency noise.

4.1.2 Analog and Digital Audio Interfaces

The CS48L32 supports up to four analog inputs or up to four digital inputs, multiplexed into two stereo input signal paths. The analog and digital microphone interfaces are powered from the integrated MICBIAS power-supply regulator. The input paths can be configured for low-power operation, ideal for analog or digital microphone input in always-on applications. Ultrasonic signal detection and demodulation functions are provided, supporting a variety of presence-detection applications.

The auxiliary PDM interface can be used to provide an audio path between microphones connected to the CS48L32 and a digital input to an external audio processor. The auxiliary PDM interface operates in master or slave modes.

Two audio serial ports (ASPs) each support PCM, TDM, and I²S data formats for compatibility with most industry-standard chipsets. ASP1 supports eight input/output channels; ASP2 supports four input/output channels. Bidirectional operation of 32-bit data at sample rates up to 192 kHz sample rates is supported.

4.1.3 Other Features

The CS48L32 incorporates a tone generator that can be used for beep functions through any of the audio signal paths. The tone generator provides two 1 kHz outputs, with configurable phase relationship, offering flexibility to create differential signals or test scenarios.

A white-noise generator is provided that can be routed within the digital core. The noise generator can provide comfort noise in cases where silence (digital mute) is not desirable.

Two pulse-width modulation (PWM) signal generators are incorporated. The duty cycle of each PWM signal can be modulated by an audio source or can be set to a fixed value using a control register setting. The PWM signal generators can be output directly on a GPIO pin.

The CS48L32 supports up to 16 GPIO pins, offering a range of input/output functions for interfacing, for detection of external hardware, and for providing logic outputs to other devices. The CS48L32 provides two dedicated GPIO pins; the remaining GPIOs are multiplexed with other pin-specific functions. Comprehensive interrupt functionality is also provided for monitoring internal and external event conditions.

System clocking can be derived from the MCLK1 input pin. Alternatively, a digital audio interface operating in Slave Mode (ASP or PDM) can be used to provide a clock reference. The CS48L32 also provides an integrated FLL circuit for clock frequency conversion and stability. The flexible clocking architecture supports low-power always-on operation, with reference frequencies down to 32 kHz. Seamless switching between clock sources is supported; free-running FLL modes are also available.

The CS48L32 is configured using control registers, accessed via a slave SPI interface operating at up to 50 MHz. The simple analog architecture, combined with the integrated tone generator, enables straightforward device configuration and testing, minimizing debug time and reducing software effort.

The CS48L32 is powered from 1.2 V and 1.8 V external supplies. Integrated charge-pump and LDO-regulator circuits are used to generate supply rails for internal functions and to support powering or biasing of external microphones. Power consumption is optimized across a wide variety of voice and multimedia use cases.

4.2 Input Signal Path

The CS48L32 provides flexible input channels, supporting up to four analog inputs or up to four digital inputs. Selectable combinations of analog (mic or line) and digital inputs are multiplexed into two stereo input signal paths. Input path IN1 supports analog and digital inputs; input path IN2 supports digital inputs only.

The analog input paths support single-ended and differential configurations, programmable gain control, and are digitized using a high performance sigma-delta ADC. The analog input paths can be configured for low-power operation, ideal for always-on applications.

The digital input paths interface directly with external digital microphones; a separate microphone interface clock is supported for two stereo pairs of digital microphones. Digital outputs can be configured on the auxiliary PDM interfaces; these can be sourced from either the analog input or the digital PDM inputs.

The microphone bias (MICBIAS) generator provides a low-noise reference for biasing electret condenser microphones (ECMs) or for use as a low-noise supply for MEMS microphones and digital microphones. Switchable outputs from the MICBIAS generator allows three separate reference/supply outputs to be independently controlled.

Digital volume control is available on all inputs (analog and digital), with programmable ramp control for smooth, glitch-free operation. A configurable signal-detect function is available on each input signal path. Ultrasonic signal detection and demodulation functions are provided on the input signal paths, supporting a variety of presence-detection applications.

The input signal paths and control fields are shown in Fig. 4-2.

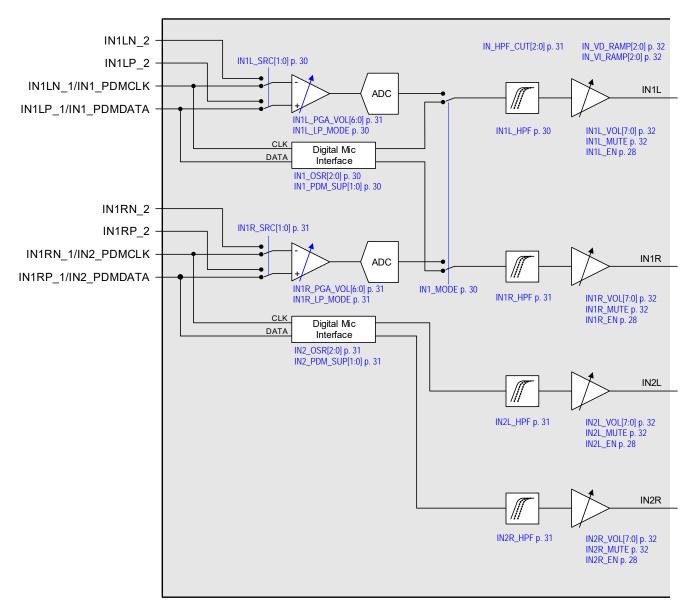
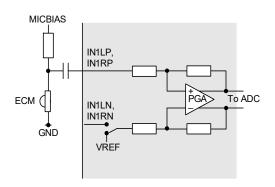


Figure 4-2. Input Signal Paths

4.2.1 Analog Microphone Input

Up to four analog microphones can be connected to the CS48L32, either in single-ended or differential configuration. The input configuration and pin selection is controlled using the IN1x_SRC bits as described in Section 4.2.6.


For single-ended input, the microphone signal is connected to the noninverting input of the PGAs. The inverting inputs of the PGAs are connected to an internal reference in this configuration.

For differential input, the noninverted microphone signal is connected to the noninverting input of the PGAs and the inverted (or noisy ground) signal is connected to the inverting input pins.

The gain of the input PGAs is controlled via register settings, as defined in Section 4.2.6. Note that the input impedance of the analog input paths is fixed across all PGA gain settings.

The ECM analog input configurations are shown in Fig. 4-3 and Fig. 4-4. The integrated MICBIAS generator provides a low noise reference for biasing the ECMs.

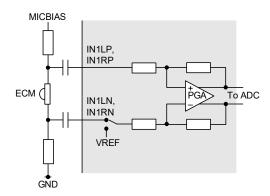


Figure 4-3. Single-Ended ECM Input

Figure 4-4. Differential ECM Input

Pseudodifferential connection is also possible—this is similar to the configuration shown in Fig. 4-4, but the GND connection is directly to the microphone (and IN1xN capacitor), instead of via a resistor. The typical connections for pseudodifferential input are shown in Fig. 4-5.

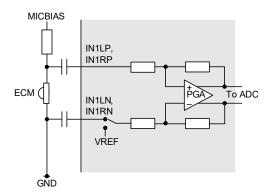


Figure 4-5. Pseudodifferential ECM Input

Analog MEMS microphones can be connected to the CS48L32 in a similar manner to the ECM configurations. Typical configurations are shown in Fig. 4-6 and Fig. 4-7. In this configuration, the integrated MICBIAS generator provides a low-noise power supply for the microphones.

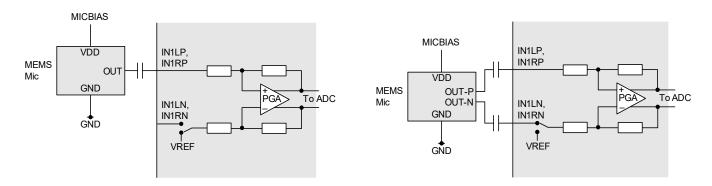
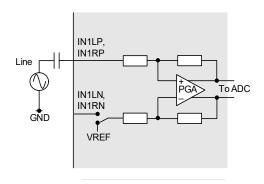


Figure 4-6. Single-Ended MEMS Input

Figure 4-7. Differential MEMS Input


Note: The VOUT_MIC pin can also be used (instead of MICBIAS) as a reference or power supply for external microphones. The MICBIAS outputs are recommended, because they offer better noise performance and independent enable/disable control.

4.2.2 Analog Line Input

Line inputs can be connected to the CS48L32 in a similar manner to the mic inputs. Single-ended and differential configurations are supported on each analog input path, using the IN1x SRC bits as described in Section 4.2.6.

The analog line input configurations are shown in Fig. 4-8 and Fig. 4-9. Note that the microphone bias (MICBIAS) is not used for line input connections.

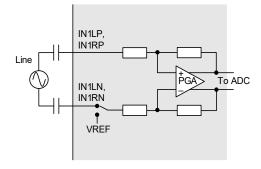


Figure 4-8. Single-Ended Line Input

Figure 4-9. Differential Line Input

4.2.3 PDM (DMIC) Input

The CS48L32 supports as many as four PDM input channels, ideal for use with digital microphone (DMIC) input and other digital interfaces. The IN1 input path supports analog and digital input; digital (PDM) operation is selected using IN1_MODE as described in Section 4.2.6.

In PDM mode, two channels of audio data are multiplexed on the associated $INn_PDMDATA$ pin. Each stereo interface is clocked using the respective INn_PDMCLK pin.

If PDM input is enabled, the CS48L32 outputs the CLK signal on the applicable IN*n*_PDMCLK pins. The CLK frequency is controlled by the respective IN*n*_OSR field, as described in Table 4-1 and Table 4-3. Note that the input-path PDM interfaces operate in Master Mode only—the clock (CLK) signal is generated by the CS48L32.

Note that, if ultrasonic signal detection or demodulation is enabled (see Section 4.2.9), the CLK frequency for the respective input path must be 1.536 MHz or 3.072 MHz.

Note that, if the 384 kHz or 768 kHz CLK frequency is selected, the maximum valid sample rate for the respective paths is restricted as described in Table 4-1. If the input sample rates are set globally using IN_RATE (i.e., IN_RATE_ MODE = 0), all input paths are affected similarly.

The system clock, SYSCLK, must be present and enabled if using the PDM inputs; see Section 4.8 for details of SYSCLK and the associated registers.

The PDM clock frequencies in Table 4-1 assume that the SYSCLK frequency is a multiple of 6.144 MHz (SYSCLK_FRAC = 0). If the SYSCLK frequency is a multiple of 5.6448 MHz (SYSCLK_FRAC = 1), the PDM clock frequencies are scaled accordingly.

Signal Passband Condition PDM Clock Frequency Valid Sample Rates INn OSR = 000384 kHz Up to 48 kHz Up to 4 kHz INn OSR = 001 768 kHz Up to 96 kHz Up to 8 kHz INn OSR = 010 1.536 MHz Up to 192 kHz Up to 20 kHz INn OSR = 011 2.048 MHz Up to 192 kHz Up to 20 kHz INn OSR = 100 2.4576 MHz Up to 192 kHz Up to 20 kHz INn OSR = 101 3.072 MHz Up to 192 kHz Up to 20 kHz INn OSR = 110 6.144 MHz Up to 192 kHz Up to 96 kHz

Table 4-1. PDM Clock Frequency

The voltage reference for the PDM interfaces is selectable, using IN*n*_PDM_SUP; each interface may be referenced to VOUT_MIC or MICBIAS1. For DMIC use cases, the voltage reference for each input path should be set equal to the power supply of the respective microphones.

A pair of digital microphones is connected as shown in Fig. 4-10. The microphones must be configured to ensure that the left mic transmits a data bit when INn_PDMCLK is high and the right mic transmits a data bit when INn_PDMCLK is low. The CS48L32 samples the DMIC data at the end of each INn_PDMCLK phase. Each microphone must tristate its data output while the other microphone is transmitting.

Note that the CS48L32 provides integrated pull-down resistors on the IN*n*_PDMDATA pins. This provides a flexible capability for interfacing with other devices.

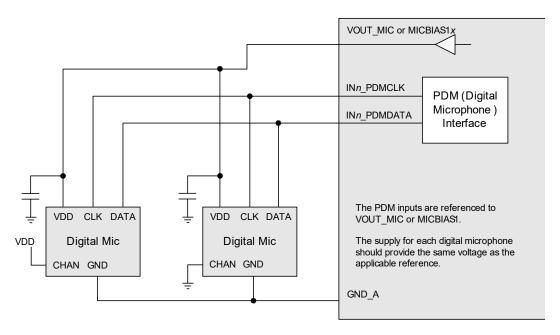


Figure 4-10. DMIC Input

Two PDM channels are interleaved on $INn_PDMDATA$, as shown in Fig. 4-11. If two microphones are connected to provide a stereo interface, each microphone must tristate its data output while the other microphone is transmitting.

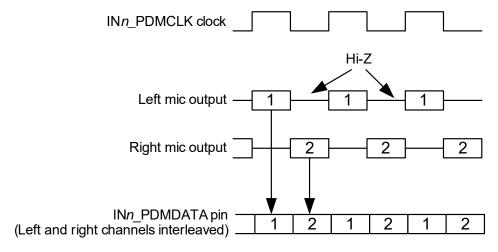


Figure 4-11. PDM (DMIC) Interface Timing

4.2.4 Input Signal Path Enable

The input signal paths are enabled using the bits described in Table 4-2. The respective bits must be enabled for analog or digital input on the respective input paths.

If the IN1 signal path is configured for analog input (IN1_MODE = 0, see Section 4.2.6), the following control sequence must be observed when enabling IN1 (left) or IN1 (right) input signal path:

- 1. If enabling the IN1 (left) path, write 0x2 to register 0x4688
- 2. If enabling the IN1 (right) path, write 0x2 to register 0x468C
- 3. Enable the required signal paths using IN1L_EN and IN1R_EN
- 4. Wait 200 μs
- 5. If enabling the IN1 (left) path, write 0x0 to register 0x4688
- 6. If enabling the IN1 (right) path, write 0x0 to register 0x468C

Notes: If enabling one channel, with the other channel already enabled, the control steps relating to the already-enabled channel should be omitted.

The IN1L EN and IN1R EN bits must be cleared before changing IN1 MODE.

The input signal paths are muted by default. It is recommended that deselecting the mute should be the final step of the path-enable control sequence. Similarly, the mute should be selected as the first step of the path-disable control sequence. The input signal path mute functions are controlled using the bits described in Table 4-4.

The VOUT_MIC power domain must be enabled when using the analog input signal paths. This power domain is provided using an internal charge pump (CP2) and LDO regulator (LDO2). See Section 4.12 for details of these circuits.

The system clock, SYSCLK, must be configured and enabled before any audio path is enabled. See Section 4.8 for details of the system clocks.

The CS48L32 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the input signal paths and associated ADCs. If the frequency is too low, an attempt to enable an input signal path fails. Note that active signal paths are not affected under such circumstances.

The status bits in register 0x4004 indicate the status of each input signal path. If an underclocked error condition occurs, these bits can be used to indicate which input signal paths have been enabled.

Register Address	Bit	Label	Default	Description
R16384 (0x4000)	3	IN2L_EN	0	Input Path 2 (left) enable
INPUT_CONTROL				0 = Disabled
				1 = Enabled
	2	IN2R_EN	0	Input Path 2 (right) enable
				0 = Disabled
				1 = Enabled
	1	IN1L_EN	0	Input Path 1 (left) enable
				0 = Disabled
				1 = Enabled
	0	IN1R_EN	0	Input Path 1 (right) enable
				0 = Disabled
				1 = Enabled

Table 4-2. Input Signal Path Enable

Table 4-2.	Input Signal Path Enable	(Cont.)
------------	--------------------------	---------

Register Address	Bit	Label	Default	Description
R16388 (0x4004)	3	IN2L_STS	0	Input Path 2 (left) enable status
INPUT_STATUS				0 = Disabled
				1 = Enabled
	2	IN2R_STS	0	Input Path 2 (right) enable status
				0 = Disabled
				1 = Enabled
	1	IN1L_STS	0	Input Path 1 (left) enable status
				0 = Disabled
				1 = Enabled
	0	IN1R_STS	0	Input Path 1 (right) enable status
				0 = Disabled
				1 = Enabled

4.2.5 Input Signal Path Sample-Rate Control

The input signal paths may be selected as input to the digital mixers or signal-processing functions within the CS48L32 digital core. The sample rate for the input signal paths can be set globally, or can be configured independently for each input channel.

The IN_RATE_MODE bit (defined in Table 4-3) controls whether the input sample rates are set globally using IN_RATE, or independently for each input channel using the IN*nx*_RATE fields (where *n* is 1–2 and *x* is L or R for the left/right channels respectively). The IN_RATE and IN*nx*_RATE fields are defined in Table 4-21.

Note that sample-rate conversion is required when routing the input signal paths to any signal chain that is configured for a different sample rate.

4.2.6 Input Signal Path Configuration

The CS48L32 supports up to four analog inputs or up to four digital inputs. Selectable combinations of analog (mic or line) and digital inputs are multiplexed into two stereo input signal paths:

- Input path IN1 can be configured for single-ended, differential, or digital (PDM) operation. The analog input
 configuration and pin selection is controlled using the IN1x_SRC bits; digital input mode is selected by setting IN1_
 MODE.
- Input path IN2 supports digital inputs only, using the respective IN2_PDMCLK and IN2_PDMDATA pins.

Note: The external pin connections for IN2 are shared with the IN1R analog input paths. If IN2L or IN2R input paths are enabled, the IN1R analog input is restricted to differential (IN1RP_2–IN1RN_2) or single-ended (IN1RP_2) configurations only.

A configurable high-pass filter (HPF) is provided on the left and right channels of each input path. The applicable cut-off frequency is selected using IN_HPF_CUT. The filter can be enabled on each path independently using the IN*nx*_HPF bits.

The analog input signal paths (single-ended or differential) each incorporate a PGA to provide gain in the range 0 dB to +31 dB in 1 dB steps. The analog input PGA gain is controlled using IN1L_PGA_VOL and IN1R_PGA_VOL. Note that the PGAs do not provide pop suppression; it is recommended that the gain should not be adjusted if the respective signal path is enabled.

If digital input mode is selected, the respective PDM clock (IN*n*_PDMCLK) is generated by the CS48L32. The frequency is controlled by IN*n*_OSR.

If a signal path is configured for digital input, the voltage reference for the associated input/output pins is selectable using IN*n*_PDM_SUP—each interface may be referenced to VOUT_MIC or MICBIAS1. For DMIC use cases, the voltage reference for each input path should be set equal to the power supply of the respective microphones.

Note: When writing to IN1_MODE, IN*n*_OSR, or IN*n*_PDM_SUP, take care not to change other nonzero bits that are configured at the same register address. Bit [5] should be set at all times.

The CS48L32 input paths can be configured for power-saving operation, ideal for always-on applications. The low-power configurations allow the power consumption to be optimized with respect to the required audio performance characteristics.

- If a signal path is configured for analog input, low-power operation can be selected by setting the respective IN1x_ LP_MODE bit.
 - The analog input path can be configured for mid-power operation by setting $INn_OSR = 010$. The $IN1x_LP_MODE$ bit should be cleared in the mid-power configuration. The maximum input-signal level is reduced by 6 dB if mid-power operation is selected (see Table 3-4); the minimum PGA gain is 6 dB. The mid-power configuration is deselected by setting $INn_OSR = 101$.
- If a signal path is configured for digital input, the respective INn_PDMCLK frequency is configured using the INn_OSR bits. Reducing the INn_PDMCLK frequency reduces power consumption at the expense of audio performance. The INn_OSR field also supports high performance PDM mode whenever 6.144 MHz INn_PDMCLK is selected.
 - If 384 kHz or 768 kHz CLK frequency is selected, the maximum sample rate for the respective paths is restricted as described in Table 4-1. If the input sample rates are set globally using IN_RATE (i.e., IN_RATE_MODE = 0), all input paths are affected similarly.

The VOUT_MIC voltage is generated by an internal charge pump and LDO regulator. The MICBIAS1x outputs are derived from VOUT_MIC; see Section 4.12.

The input signal paths are configured using the fields described in Table 4-3.

Table 4-3. Input Signal Path Configuration

Register Address	Bit	Label	Default	Description			
R16392 (0x4008)	10	IN_RATE_	1	Input Path Sample Rate Configuration			
INPUT_RATE_		MODE		0 = Global control (all input paths configured using IN_RATE)			
CONTROL				= Individual channel control (using the respective INnx_RATE fields)			
R16416 (0x4020)	18:16	IN1_OSR[2:0]	101	Input Path 1 Oversample Rate Control			
INPUT1_				If analog input is selected, this field is used to select Mid-Power Mode.			
CONTROL1				010 = Mid Power Mode All other codes are reserved			
				101 = Normal			
				If digital input is selected, this field controls the IN1_PDMCLK frequency.			
				000 = 384 kHz 100 = 2.4576 MHz			
				001 = 768 kHz			
				010 = 1.536 MHz			
				011 = 2.048 MHz 111 = Reserved			
	9:8	IN1_PDM_	00	Input Path 1 PDM Reference Select			
		SUP[1:0]		Sets the IN1_PDMDATA and IN1_PDMCLK logic levels			
				00 = VOUT_MIC All other codes are reserved			
				01 = MICBIAS1			
	0	IN1_MODE	0	Input Path 1 Mode			
				0 = Analog input			
				1 = Digital input			
R16420 (0x4024)	29:28	IN1L_SRC[1:0]	00	Input Path 1 (Left) Source			
IN1L_CONTROL1				00 = Differential (IN1LP_1-IN1LN_1) 10 = Differential (IN1LP_2-IN1LN_2)			
				01 = Single-ended (IN1LP_1) 11 = Single-ended (IN1LP_2)			
	2	IN1L_HPF	0	Input Path 1 (Left) HPF Enable			
				0 = Disabled			
				1 = Enabled			
	0	IN1L_LP_	0	Input Path 1 (Left) Low-Power Mode (applicable to analog input only)			
		MODE		0 = High Performance Mode			
				1 = Low Power Mode			

Table 4-3. Input Signal Path Configuration (Cont.)

Register Address	Bit	Label	Default	
R16424 (0x4028)	7:1	IN1L_PGA_	0x40	Input Path 1 (Left) PGA Volume (applicable to analog input only)
IN1L_CONTROL2		VOL[6:0]		0x00 to 0x3F = Reserved
				0x40 = 0 dB (1 dB steps)
				0x41 = 1 dB
				Note: In Mid-Power Mode, a minimum gain of 6 dB is used. Volume selections of 5 dB or less are overridden to 6 dB.
R16452 (0x4044)	29:28	IN1R_SRC[1:0]	00	Input Path 1 (Right) Source
IN1R_CONTROL1				00 = Differential (IN1RP_1-IN1RN_1) 10 = Differential (IN1RP_2-IN1RN_2)
				01 = Single-ended (IN1RP_1) 11 = Single-ended (IN1RP_2)
	2	IN1R_HPF	0	Input Path 1 (Right) HPF Enable
				0 = Disabled
				1 = Enabled
	0	IN1R_LP_	0	Input Path 1 (Right) Low-Power Mode (applicable to analog input only)
		MODE		0 = High Performance Mode
				1 = Low Power Mode
R16456 (0x4048)	7:1	IN1R_PGA_	0x40	Input Path 1 (Right) PGA Volume (applicable to analog input only)
IN1R_CONTROL2		VOL[6:0]		0x00 to 0x3F = Reserved
				0x40 = 0 dB (1 dB steps)
				0x41 = 1 dB
				Note: In Mid-Power Mode, a minimum gain of 6 dB is used. Volume selections of 5 dB or less are overridden to 6 dB.
R16480 (0x4060)	18:16	IN2_OSR[2:0]	101	Input Path 2 Oversample Rate Control - selects the IN2_PDMCLK frequency.
INPUT2_				000 = 384 kHz 100 = 2.4576 MHz
CONTROL1				001 = 768 kHz 101 = 3.072 MHz
				010 = 1.536 MHz
				011 = 2.048 MHz 111 = Reserved
	9:8	IN2_PDM_	00	Input Path 2 PDM Reference Select
		SUP[1:0]		Sets the IN2_PDMDATA and IN2_PDMCLK logic levels
				00 = VOUT_MIC All other codes are reserved
				01 = MICBIAS1
R16484 (0x4064)	2	IN2L_HPF	0	Input Path 2 (Left) HPF Enable
IN2L_CONTROL1				0 = Disabled
				1 = Enabled
R16516 (0x4084)	2	IN2R_HPF	0	Input Path 2 (Right) HPF Enable
IN2R_CONTROL1				0 = Disabled
D (a a a a a a a a a a				1 = Enabled
R16964 (0x4244)	2:0	IN_HPF_	010	Input Path IN1–IN2 HPF select
INPUT_HPF_		CUT[2:0]		Controls the cut-off frequency of the input path HPF circuits.
CONTROL				000 = 2.5 Hz
				001 = 5 Hz 011 = 20 Hz All other codes are reserved

4.2.7 Input Signal Path Digital Volume Control

A digital volume control is provided on each input signal path, providing –64 dB to +31.5 dB gain control in 0.5 dB steps. An independent mute control is also provided for each input signal path.

Updates to the digital-volume and mute functions are gated by the IN_VU bit: writing to the volume- or mute-control fields does not become effective until a 1 is written to IN_VU. This makes it possible to apply changes to multiple signal paths simultaneously.

Whenever the gain or mute setting is changed, the signal path gain is ramped up or down to the new settings at a programmable rate. For increasing gain (or unmute), the rate is controlled by IN_VI_RAMP. For decreasing gain (or mute), the rate is controlled by IN_VD_RAMP.

Note: The IN_VI_RAMP and IN_VD_RAMP fields should not be changed while a volume ramp is in progress.

Note that, although the digital-volume controls provide 0.5 dB steps, the internal circuits provide signal gain adjustment in 0.125 dB steps. This allows a very high degree of gain control and smooth volume ramping under all operating conditions.

Note: The 0 dBFS level of the IN1–IN2 digital input paths is not equal to the 0 dBFS level of the CS48L32 digital core. The maximum digital input signal level is –6 dBFS (see Table 3-7). Under 0 dB gain conditions, a –6 dBFS input signal corresponds to a 0 dBFS input to the CS48L32 digital core functions.

The digital volume control registers are described in Table 4-4.

Table 4-4. Input Signal Path Digital Volume Control

Register Address	Bit	Label	Default		Description		
R16404 (0x4014)	29	IN_VU	See	Input signal paths volume a	and mute update.		
INPUT_			Footnote 1	Writing 1 to this bit causes	the IN1-IN2 input signal p	aths volume and mute	
CONTROL3				settings to be updated simu			
R16424 (0x4028)	28	IN1L_MUTE	1	Input Path 1 (Left) Digital M	/lute		
IN1L_CONTROL2				0 = Unmute			
				1 = Mute			
	23:16	IN1L_VOL[7:0]	0x80	Input Path 1 (Left) Digital V	olume, -64 dB to +31.5 dE	3 in 0.5 dB steps	
				0x00 = -64 dB	0x80 = 0 dB	0xC0 to 0xFF = Reserved	
				0x01 = -63.5 dB	(0.5 dB steps)		
				(0.5 dB steps)	0xBF = +31.5 dB		
R16456 (0x4048)	28	IN1R MUTE	1	Input Path 1 (Right) Digital	Mute		
IN1R_CONTROL2		_		0 = Unmute			
				1 = Mute			
	23:16	IN1R_VOL[7:0]	0x80	Input Path 1 (Right) Digital	Volume64 dB to +31.5	dB in 0.5 dB steps	
					0x80 = 0 dB	0xC0 to 0xFF = Reserved	
				0x01 = -63.5 dB	(0.5 dB steps)		
					0xBF = +31.5 dB		
R16488 (0x4068)	28	IN2L MUTE	1	Input Path 2 (Left) Digital M			
IN2L CONTROL2			·	0 = Unmute			
11122_0011111022				1 = Mute			
	23:16	IN2L VOL[7:0]	0x80	Input Path 2 (Left) Digital V	/olume =64 dB to +31.5 dF	3 in 0.5 dB stens	
	20.10	\\ZL_\\OL[7.0]	0,00	. , ,	0x80 = 0 dB	0xC0 to 0xFF = Reserved	
					(0.5 dB steps)	OXCO to OXI I = Neserved	
					0xBF = +31.5 dB		
R16520 (0x4088)	28	IN2R MUTE	1	Input Path 2 (Right) Digital			
IN2R CONTROL2	20	INZIN_WOTE	'	0 = Unmute	Mule		
INZIN_CONTINOLZ				1 = Mute			
	22:16	IN2R_VOL[7:0]	0x80	Input Path 2 (Right) Digital	Volume 64 dD to 124 F	dD in 0 E dD atoms	
	23:10	INZK_VOL[7:0]	UX8U	. , , ,	0x80 = 0 dB	0xC0 to 0xFF = Reserved	
						UXCU to UXFF = Reserved	
					(0.5 dB steps)		
D40000 (0, 4040)	0.4	INL VID. DAMBIO OL	040	()	0xBF = +31.5 dB		
R16968 (0x4248)	6:4	IN_VD_RAMP[2:0]	010	Input Volume Decreasing F			
INPUT_VOL_ CONTROL				This field should not be cha	•		
CONTROL				***	011 = 2 ms	110 = 15 ms	
					100 = 4 ms	111 = 30 ms	
					101 = 8 ms		
	2:0	IN_VI_RAMP[2:0]	010	Input Volume Increasing Ra			
				This field should not be cha	•	. •	
				000 = 0 ms	011 = 2 ms	110 = 15 ms	
					100 = 4 ms	111 = 30 ms	
				010 = 1 ms	101 = 8 ms		

^{1.} Default is not applicable to these write-only bits

4.2.8 Input Signal Path Signal-Detect Control

The CS48L32 provides a digital signal-detect function for the input signal path. This enables system actions to be triggered by signal detection and allows the device to remain in a low-power state until a valid audio signal is detected. A mute function is integrated with the signal-detect circuit, ensuring the respective digital audio path remains at zero until the detection threshold level is reached. Signal detection is also indicated via the interrupt controller.

The signal-detect function is supported on input paths IN1–IN2 in analog and digital configurations. (For the IN1 input path, digital input is selected by setting IN1_MODE.) Note that the valid operating conditions for this function vary, depending on the applicable signal-path configuration.

- The signal-detect function is supported on analog input paths for sample rates up to 16 kHz.
- The signal-detect function is supported on digital input paths for sample rates up to 16 kHz (if INn_PDMCLK ≥ 768kHz) and up to 48 kHz (if INn_PDMCLK ≥ 2.8224 MHz).

For each input path, the signal-detect function is enabled by setting the respective IN*nx*_SIG_DET_EN bit. The detection threshold level is set using IN SIG DET THR—this applies to all input paths.

If the signal-detect function is enabled, the respective input channel is muted if the signal level is below the configured threshold. If the input signal exceeds the threshold level, the respective channel is immediately unmuted.

If the input signal falls below the threshold level, the mute is applied. To prevent erroneous behavior, a time delay is applied before muting the input signal—the channel is only muted if the signal level remains below the threshold level for longer than the hold time. The hold time is set using IN_SIG_DET_HOLD.

Note that the signal-level detection is performed in the digital domain, after the ADC, PGA, digital mute and digital volume controls—the respective input channel must be enabled and unmuted when using the signal-detect function.

The signal-detect function is an input to the interrupt control circuit and can be used to trigger an interrupt event; see Section 4.9. Note that the respective interrupt event represents the logic OR of the signal detection on all input channels and does not provide indication of which input channel caused the interrupt. To avoid multiple interrupts, the signal-detect interrupt can be reasserted only after all input channels have fallen below the trigger threshold level.

The signal-detect status can be output directly on a GPIO pin as an external indication of the input path signal detection. See Section 4.10 to configure a GPIO pin for this function.

The input path signal-detection control registers are described in Table 4-5.

Table 4-5. Input Signal Path Signal-Detect Control

Register Address	Bit	Label	Default		Description	
R16420 (0x4024)	1	IN1L_SIG_DET_	0	Input Path 1 (Left) Sign	gnal-Detect Enable	
IN1L_CONTROL1		EN		0 = Disabled		
				1 = Enabled		
R16452 (0x4044)	1	IN1R_SIG_DET_	0	Input Path 1 (Right) S	Signal-Detect Enable	
IN1R_CONTROL1		EN		0 = Disabled		
				1 = Enabled		
R16484 (0x4064)	1	IN2L_SIG_DET_	0	Input Path 2 (Left) Sign	gnal-Detect Enable	
IN2L_CONTROL1		EN		0 = Disabled		
				1 = Enabled		
R16516 (0x4084)	1	IN2R_SIG_DET_	0	Input Path 2 (Right) 9	Signal-Detect Enable	
IN2R_CONTROL1	N2R_CONTROL1 EN		0 = Disabled			
				1 = Enabled		
R16960 (0x4240)	8:4	IN_SIG_DET_	0x00	Input Signal Path Sig	nal-Detect Threshold	
IN_SIG_DET_		THR[4:0]		0x00 = -30.1 dB	0x05 = -54.2 dB	0x0A = -72.2 dB
CONTROL				0x01 = -36.1 dB	0x06 = -56.7 dB	0x0B = -74.7 dB
				0x02 = -42.1 dB	0x07 = -60.2 dB	0x0C = -78.3 dB
				0x03 = -48.2 dB	0x08 = -66.2 dB	0x0D = -80.8 dB
				0x04 = -50.7 dB	0x09 = -68.7 dB	All other codes are reserved
	3:0	IN_SIG_DET_ HOLD[3:0]	0001	Input Signal Path Signs deasserted)	nal-Detect Hold Time (dela	ay before signal detect indication
				0000 = Reserved	(4 ms steps)	1100 = 96–100 ms
				0001 = 4-8 ms	1001 = 36–40 ms	1101 = 192–196 ms
				0010 = 8–12 ms	1010 = 40–44 ms	1110 = 384–388 ms
				0011 = 12–16 ms	1011 = 48–52 ms	1111 = 768–772 ms

DS1219F4 Cirrus Logic 33

4.2.9 Ultrasonic Signal Detection and Demodulation

The CS48L32 provides ultrasonic signal-processing functions on the input signal paths. Configurable filters and demodulator functions enable ultrasonic signals to be translated down to the audio band and routed through the digital mixer core. Ultrasonic signal detection is also supported, with an interrupt event generated when the detection conditions are met. Two ultrasonic processing blocks are incorporated, with independent configuration controls for each.

The input source for the ultrasonic blocks is configured using the USn_SRC fields (where n identifies the applicable block US1 or US2). The input signal gain is set using USn_SRC fields (where n identifies the applicable block US1 or US2). The input signal gain is set using USn_SRC fields (where n identifies the applicable block US1 or US2).

Note: The input path to the ultrasonic blocks incorporate a gain of –6 dB (in addition to the gain selected by USn GAIN).

The selected input source for ultrasonic signal detection may be either analog or digital (see Section 4.2.6 to configure the input path for analog or digital input). The CLK frequency for the digital (PDM) input signal paths is configured using INn_OSR for the respective path (see Table 4-3); the CLK frequency must be 1.536 MHz or 3.072 MHz if ultrasonic signal detection or demodulation is enabled.

The ultrasonic functions can be supported on any of the input signal paths (IN1–IN2). The inputs to the ultrasonic functions are independent of the enable, high-pass filter, mute, and digital-volume settings of the respective input signal paths—these controls have no effect on the ultrasonic functions.

The system clock, SYSCLK, must be present and enabled when using the ultrasonic functions. The SYSCLK frequency must be a multiple of 6.144 MHz (SYSCLK_FRAC = 0) in this case. See Section 4.8 for details of SYSCLK and the associated registers.

The signal-detection function is enabled by setting US*n*_DET_EN. Note that signal detection can be supported without enabling the ultrasonic demodulator—ideal for low power signal-detection use cases.

The signal-detection algorithm uses an accumulator to count the instances where the input signal exceeds a detection threshold level—the count increases on each valid detection. If the input signal is below the threshold, a delay (hold time) is applied before decreasing the accumulator value. If the accumulator reaches the signal-detect level, an interrupt event is generated to indicate the successful detection. If no valid detection is made for the duration of the hold time, the accumulator value decreases at an exponential rate characterized by a configurable decay time.

A low-pass filter is incorporated in the signal path of the ultrasonic-detection circuit; this can be used to remove unwanted signal content. The low-pass filter is enabled using USn_DET_LPF; the cut-off frequency is configured using USn_DET_LPF CUT. Note that the filter characteristics vary with USn_FREQ, as described in Table 4-6.

The USn_DET_THR field configures the detection threshold level. The signal-detection rate is determined by the USn_FREQ setting as described in Table 4-6—this is the frequency at which the input signal is measured against the detection threshold level.

The ultrasonic signal-detection function is an input to the interrupt control circuit and can be used to trigger an interrupt event—see Section 4.9.

The ultrasonic signal-detect status can be output directly on a GPIO pin as an external indication of the signal detection. See Section 4.10 to configure a GPIO pin for this function.

The signal-detection algorithm is illustrated in Fig. 4-12.

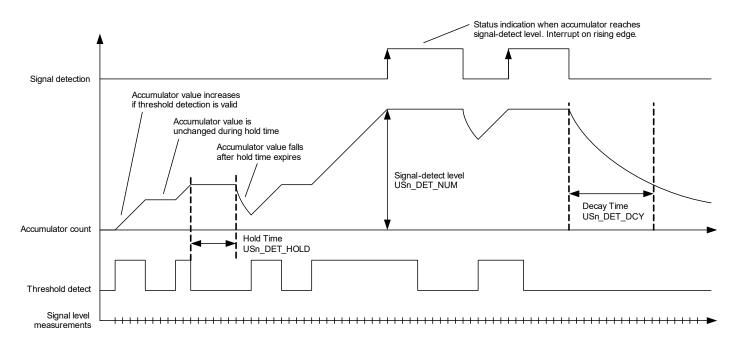


Figure 4-12. Ultrasonic Signal Detection

The ultrasonic demodulator function is enabled by setting USn_EN . The frequency band and signal gain are selected using USn_FREQ and USn_GAIN respectively.

The output from the ultrasonic demodulator is a frequency-modulated image of the selected input frequency range. The folding frequency that characterizes the frequency modulation is set according to the USn_FREQ setting—see Table 4-6. The relationship between input and output frequencies is described in Eq. 4-1.

Equation 4-1. Ultrasonic Demodulator Characteristic

Note that, depending on the input frequency range and the folding frequency, F_{FOLD}, the modulated output in respect of certain input frequencies may overlap others. This effect arises if the folding frequency lies within the input frequency range, with the result that two different input frequencies will each be modulated to the same output frequency. This effect is limited to the outer edges of the input frequency range in all cases. Amplitude response across the input frequency range is flat to within 1.5 dB in all cases.

The demodulated ultrasonic outputs can be selected as input to the digital mixers or signal-processing functions within the digital core by setting the respective x_SRCn fields as described in Section 4.3.1.

The sample rate for the demodulated ultrasonic output is configured using USn_RATE—see Table 4-21. The selected sample rate must be one of the SYSCLK-related rates, and must be equal to the output rate set by USn_FREQ (see Table 4-6). Note that sample-rate conversion is required when routing the ultrasonic signals to any signal chain that is configured for a different sample rate.

The characteristics associated with the USn_FREQ field setting are shown in Table 4-6.

Table 4-6. Ultrasonic Frequency Control

Condition	Input Frequency Band	Output Sample Rate	Demodulator Folding Frequency (F _{FOLD})	Signal-Detection Rate
US <i>n</i> _FREQ = 010	16–24 kHz	16 kHz	16 kHz	80.8 kHz
USn_FREQ = 011	20–28 kHz	16 kHz	20.21 kHz	96 kHz

The ultrasonic detection and demodulation control registers are described in Table 4-7.

Table 4-7. Ultrasonic Signal-Detect and Demodulation Control

Register Address	Bit	Label	Default	Description
R47104 (0xB800)	9	US2_DET_EN	0	Ultrasonic Detect 2 Enable
US_CONTROL				0 = Disabled
				1 = Enabled
	8	US1_DET_EN	0	Ultrasonic Detect 1 Enable
				0 = Disabled
				1 = Enabled
	1	US2_EN	0	Ultrasonic Demodulator 2 Enable
				0 = Disabled
				1 = Enabled
	0	US1_EN	0	Ultrasonic Demodulator 1 Enable
				0 = Disabled
				1 = Enabled
R47108 (0xB804)	13:12	US1_GAIN[1:0]	10	Ultrasonic Demodulator 1 Gain
US1_CONTROL				00 = Disabled (no signal) 10 = 1 dB
				01 = -5 dB $11 = 7 dB$
	11:8	US1_SRC[3:0]	0x0	Ultrasonic Demodulator 1 Source
				0x0 = IN1L All other codes are reserved
				0x1 = IN1R
				0x2 = IN2L
				0x3 = IN2R
	6:4	US1_FREQ[2:0]	011	Ultrasonic Demodulator 1 Frequency
				010 = 16–24 kHz All other codes are reserved
				011 = 20–28 kHz

Table 4-7. Ultrasonic Signal-Detect and Demodulation Control (Cont.)

Register Address	Bit	Label	Default		Description			
R47112 (0xB808)	30:28	US1_DET_DCY[2:0]	000	Ultrasonic Detect 1 De	Ultrasonic Detect 1 Decay Time Constant			
US1_DET_ CONTROL				Time period (after the hold time, and in the absence of valid detections) for the accumulated count to decrease to 37% of its previous value.				
				The quoted times are vitime period is multiplied	valid for US1_FREQ = 010; d by 0.84.	if US1_FREQ = 011, the		
				000 = 0 ms	011 = 3.16 ms	110 = 25.34 ms		
				001 = 0.79 ms	100 = 6.33 ms	111 = 50.69 ms		
				010 = 1.58 ms	101 = 12.67 ms			
	27:24	US1_DET_HOLD[3:0]	0000	Ultrasonic Detect 1 Ho	ld Time			
				decreases is 2(X+4) - 1	detections required before , where X is US1_DET_HO DLD = 0, the hold time is 0.			
				0000 = 0	0011 = 127	1110 = 262143		
				0001 = 31	•••	1111 = 524287		
				0010 = 63	1101 = 131071			
	23:20	US1_DET_NUM[3:0]	0000	Ultrasonic Detect 1 Ac	cumulator Count Threshold	I		
				Accumulated number on NUM in integer coding	of detections threshold is 22. The detection frequency is	X, where X is US1_DET_ s set by US1_FREQ.		
				0000 = 1	0011 = 8	1110 = 16384		
				0001 = 2		1111 = 32768		
				0010 = 4	1101 = 8192			
	18:16	US1_DET_THR[2:0	000	Ultrasonic Detect 1 Sig	nal Level Threshold			
				000 = -6 dBFS	011 = -15 dBFS	110 = -24 dBFS		
				001 = -9 dBFS	100 = -18 dBFS	111 = –27 dBFS		
				010 = -12 dBFS	101 = -21 dBFS			
	6:5	US1_DET_LPF_	00	Ultrasonic Detect 1 Lov	•			
		CUT[1:0]				, dependent on US1_FREQ.		
					e low-pass filter is set as fo			
					3 Hz, 10 = 408 Hz, 11 = 20			
					e low-pass filter is set as fo 9 Hz, 10 = 484 Hz, 11 = 24			
	4	US1 DET LPF	0	Ultrasonic Detect 1 Lov		1112		
	·			0 = Disabled	pass :eas.s			
				1 = Enabled				
R47124 (0xB814)	13:12	US2_GAIN[1:0]	10	Ultrasonic Demodulato	or 2 Gain			
US2 CONTROL				00 = Disabled (no sign	al) 10 = 1 dB			
_				01 = -5 dB	11 = 7 dB			
	11:8	US2_SRC[3:0]	0x0	Ultrasonic Demodulato	or 2 Source			
				0x0 = IN1L	All other codes are rese	erved		
				0x1 = IN1R				
				0x2 = IN2L				
				0x3 = IN2R				
	6:4	US2_FREQ[2:0]	011	Ultrasonic Demodulato	or 2 Frequency			
				010 = 16–24 kHz	All other codes are rese	erved		
				011 = 20–28 kHz				

Table 4-7. Ultrasonic Signal-Detect and Demodulation Control (Cont.)

Register Address	Bit	Label	Default		Description		
R47128 (0xB818)	14:12	US2_DET_DCY[2:0]	000	Ultrasonic Detect 2 De	cay Time Constant		
US2_DET_ CONTROL				Time period (after the hold time, and in the absence of valid detections) for the accumulated count to decrease to 37% of its previous value.			
				The quoted times are value period is multiplied	valid for US2_FREQ = 010 d by 0.84.). If US2_FREQ = 011, the	
				000 = 0 ms	011 = 3.16 ms	110 = 25.34 ms	
				001 = 0.79 ms	100 = 6.33 ms	111 = 50.69 ms	
				010 = 1.58 ms	101 = 12.67 ms		
	11:8	US2_DET_HOLD[3:0]	0000	Ultrasonic Detect 2 Ho	ld Time		
				The number of invalid detections required before the accumulated count decreases is 2(X+4) – 1, where X is US2_DET_HOLD in integer coding an X > 0. If US2_DET_HOLD = 0, the hold time is 0. The detection frequency set by US2_FREQ.			
				0000 = 0	0011 = 127	1110 = 262143	
				0001 = 31		1111 = 524287	
				0010 = 63	1101 = 131071		
	7:4	US2_DET_NUM[3:0]	0000	Ultrasonic Detect 2 Ac	cumulator Count Threshol	d	
					of detections threshold is 2 . The detection frequency	2X, where X is US2_DET_ is set by US2_FREQ.	
				0000 = 1	0011 = 8	1110 = 16384	
				0001 = 2		1111 = 32768	
				0010 = 4	1101 = 8192		
	2:0	US2_DET_THR[2:0	000	Ultrasonic Detect 2 Sig	nal Level Threshold		
				000 = -6 dBFS	011 = -15 dBFS	110 = -24 dBFS	
				001 = -9 dBFS	100 = -18 dBFS	111 = -27 dBFS	
				010 = -12 dBFS	101 = -21 dBFS		
	6:5	US2_DET_LPF_	00	Ultrasonic Detect 2 Lov	w-pass Filter Control		
		CUT[1:0]		Selects the cut-off freq	uency of the low-pass filte	r, dependent on US2_FREQ.	
					e low-pass filter is set as t		
					3 Hz, 10 = 408 Hz, 11 = 20		
				If US2_FREQ = 011 th 00 = 2044 Hz, 01 = 98	e low-pass filter is set as f 9 Hz, 10 = 484 Hz, 11 = 24	follows: 41 Hz	
	4	US2_DET_LPF	0	Ultrasonic Detect 2 Lo			
		_		0 = Disabled	•		
				1 = Enabled			

4.2.10 Auxiliary PDM Interface

The CS48L32 provides two auxiliary PDM (AUXPDM) interfaces; each interface supports a digital output derived from one of the analog input paths. This can be used to provide an audio path between a microphone connected to the CS48L32 and a digital input to an external audio processor.

If an analog input source is selected, the AUXPDM provides a one-channel PDM conversion path. If a digital input source is selected, the CS48L32 passes the respective $INn_PDMDATA$ signal directly to the AUXPDM data output pin—the interface can pass either mono or stereo data in this case.

The AUXPDM interface signal paths are shown in Fig. 4-13.

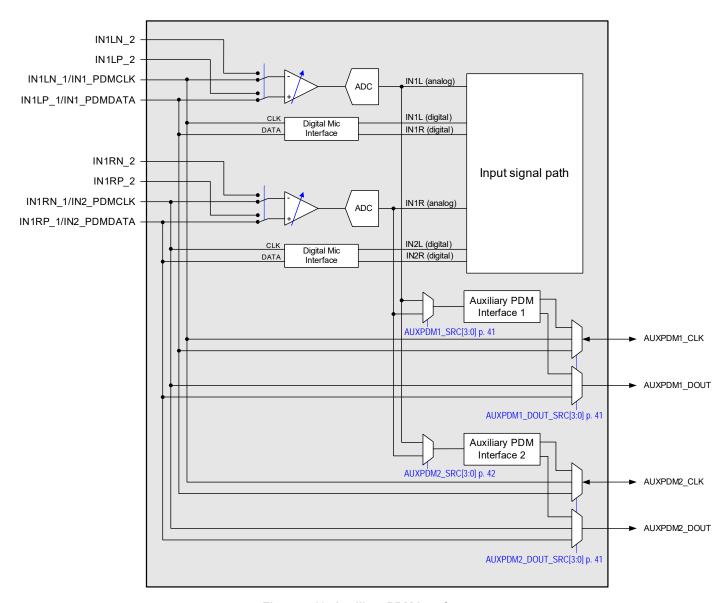


Figure 4-13. Auxiliary PDM Interface

The AUXPDM interfaces can be configured in Master or Slave Mode using AUXPDM*n*_MSTR (where *n* identifies the applicable interface 1 or 2). In Master Mode, the clock (CLK) signal is generated by the CS48L32; in Slave Mode, the CLK signal is an input to the CS48L32.

The CLK frequency is selected using AUXPDM*n*_FREQ. For each setting of this field, the actual frequency depends on whether SYSCLK is configured for 48 kHz- or 44.1 kHz-related sample rates. See Section 4.8 for details of the system clocks. Note that the CLK frequency must be configured in master and slave modes, using the AUXPDM*n*_FREQ field.

In Slave Mode, the CS48L32 system clock (SYSCLK) must be synchronized to the PDM CLK input. The applicable CLK must be selected using PDM_FLLCLK_SRC (see Table 4-8) and configured as FLL reference clock using FLL1_REFCLK_SRC. See Section 4.8 to configure SYSCLK using FLL1 as a clock reference.

Note: If one of the AUXPDM interfaces is configured in Slave Mode, the system clock (SYSCLK) must be synchronized to the respective CLK input. To operate more than one of these interfaces in Slave Mode concurrently, the respective interfaces must all be synchronous (i.e., referenced to a common clock source).

The input source for each AUXPDM interface is selected using AUXPDMn_SRC and AUXPDMn_DOUT_SRC.

• If analog input is selected (AUXPDMn_DOUT_SRC = 0x0), the respective input path and ADC are enabled automatically. Note that the mute and digital-volume settings of the IN1 path have no effect on the AUXPDM output. The AUXPDM interface is enabled by setting AUXPDMn_EN. Note that the other AUXPDM control fields should be configured before enabling the interface; the AUXPDMn_EN bit should be set as the final step of the AUXPDM-enable sequence. The AUXPDMn_EN bit should be cleared before changing the interface configuration. Note that, in Master Mode, the clock output is undriven (high-impedance) if the AUXPDM interface is disabled; the clock output is enabled by setting AUXPDMn_EN. Integrated pull-down resistors can be enabled on the clock pins as described in Section 4.2.11.

The output signal can be muted and unmuted using AUXPDM*n*_MUTE. The timing of the data (DOUT) signal can be controlled using AUXPDM*n*_TXEDGE—this selects whether DOUT changes on the rising or falling edge of CLK. The auxiliary PDM interface timing is shown in Fig. 4-14 (assuming analog input is selected). In Master Mode, the clock and data outputs are driven synchronously by the CS48L32. In Slave Mode, the timing of the output data is controlled by the external clock input. See Table 3-14 for timing information.

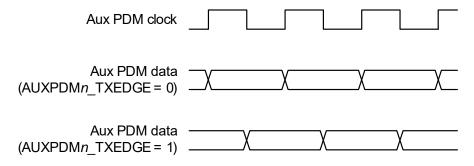


Figure 4-14. Auxiliary PDM Interface Timing (Analog Input Source)

- If digital input is selected (AUXPDMn_DOUT_SRC = 0x1 or 0x2), the respective INn_PDMDATA signal is passed directly to the AUXPDM data output pin— note that the interface can pass either mono or stereo data in this case.
 If IN1_PDMDATA is selected as source, IN1_MODE must be set and one or both of IN1L/IN1R must be enabled. If IN2_PDMDATA is selected as source, one or both of IN2L/IN2R must be enabled.
 Note that the AUXPDM interface EN, MUTE, and TXEDGE control fields have no effect if digital input is selected.
 - The auxiliary PDM interface timing needs to be considered in combination with the DMIC/PDM input path timing, if digital input is selected as the AUXPDM source. The associated signals are subject to propagation delays between the DMIC/PDM interface and the AUXPDM interface, as described in Table 3-14.
 - The AUXPDMn_DATA output is sourced directly from the INn_PDMDATA input.
 - In AUXPDM Master Mode, the IN*n*_PDMCLK and AUXPDMn_CLK outputs are generated from SYSCLK. In AUXPDM Slave Mode, the IN*n*_PDMCLK output is sourced directly from the AUXPDM*n*_CLK input.

The auxiliary PDM interface control registers are described in Table 4-8.

Table 4-8. Auxiliary PDM Interface Control

Register Address	Bit	Label	Default	Description
R4188 (0x105C)	7:4	AUXPDM2_DOUT_	0x0	Auxiliary PDM 2 data source
AUXPDM_CTRL2		SRC[3:0]		0x0 = Analog (mono, selected using AUXPDM2_SRC)
				0x1 = Digital (stereo, from IN1_PDMDATA)
				0x2 = Digital (stereo, from IN2_PDMDATA)
				All other codes are reserved
	3:0	AUXPDM1_DOUT_	0x0	Auxiliary PDM 1 data source
		SRC[3:0]		0x0 = Analog (mono, selected using AUXPDM1_SRC)
				0x1 = Digital (stereo, from IN1 PDMDATA)
				0x2 = Digital (stereo, from IN2_PDMDATA)
				All other codes are reserved
R16396 (0x400C)	3:0	PDM FLLCLK	0x0	PDM CLK source select for FLL input reference
INPUT		SRC[3:0]		(Only valid if the respective interface is configured in Slave Mode)
CONTROL2				0x8 = AUXPDM1 CLK
				0x9 = AUXPDM2 CLK
				All other codes are reserved
R17152 (0x4300)	1	AUXPDM2 EN	0	Auxiliary PDM 2 enable
AUXPDM		_		0 = Disabled
CONTROL1				1 = Enabled
	0	AUXPDM1 EN	0	Auxiliary PDM 1 enable
		_		0 = Disabled
				1 = Enabled
R17156 (0x4304)	1	AUXPDM2 MUTE	0	Auxiliary PDM 2 mute
AUXPDM		_		0 = Unmute
CONTROL2				1 = Mute
	0	AUXPDM1 MUTE	0	Auxiliary PDM 1 mute
		_		0 = Unmute
				1 = Mute
R17160 (0x4308)	17:16	AUXPDM1 FREQ[1:0]	01	Auxiliary PDM 1 CLK rate
AUXPDM1				00 = 3.072 MHz (2.8824 MHz)
CONTROL1				01 = 2.048 MHz (1.8816 MHz)
				The frequencies in brackets apply for 44.1 kHz-related sample rates only (i.e.,
				if SYSCLK_FRAC = 1). The Auxiliary PDM interface must be disabled when
				updating this field.
	11:8	AUXPDM1_SRC[3:0]	0x0	Auxiliary PDM 1 analog source
				0x0 = IN1L All other codes are reserved
				0x1 = IN1R
				Only valid if AUXPDM1_DOUT_SRC = 0x0. The Auxiliary PDM interface must
				be disabled when updating this field.
	4	AUXPDM1_TXEDGE	0	Auxiliary PDM 1 timing
				0 = Output data is driven on rising edge of AUXPDM1_CLK
				1 = Output data is driven on falling edge of AUXPDM1_CLK
		ALIVEDNA MOTE		The Auxiliary PDM interface must be disabled when updating this field.
	3	AUXPDM1_MSTR	1	Auxiliary PDM 1 Master Mode select
				0 = AUXPDM1_CLK Slave Mode (input)
				1 = AUXPDM1_CLK Master mode (output)
				The Auxiliary PDM interface must be disabled when updating this field.

Table 4-8. Auxiliary PDM Interface Control (Cont.)

Register Address	Bit	Label	Default	Description
R17168 (0x4310)	17:16	AUXPDM2_FREQ[1:0]	01	Auxiliary PDM 2 CLK rate
AUXPDM2_				00 = 3.072 MHz (2.8824 MHz) 10 = 1.536 MHz (1.4112 MHz)
CONTROL1				01 = 2.048 MHz (1.8816 MHz)
				The frequencies in brackets apply for 44.1 kHz–related sample rates only (i.e., if SYSCLK_FRAC = 1). The Auxiliary PDM interface must be disabled when updating this field.
	11:8	AUXPDM2_SRC[3:0]	0x0	Auxiliary PDM 2 analog source
				0x0 = IN1L All other codes are reserved
				0x1 = IN1R
				Only valid if AUXPDM2_DOUT_SRC = 0x0. The Auxiliary PDM interface must be disabled when updating this field.
	4	AUXPDM2_TXEDGE	0	Auxiliary PDM 2 timing
				0 = Output data is driven on rising edge of AUXPDM2_CLK
				1 = Output data is driven on falling edge of AUXPDM2_CLK
				The Auxiliary PDM interface must be disabled when updating this field.
	3	AUXPDM2_MSTR	1	Auxiliary PDM 2 Master Mode select
				0 = AUXPDM2_CLK Slave Mode (input)
				1 = AUXPDM2_CLK Master mode (output)
				The Auxiliary PDM interface must be disabled when updating this field.

4.2.11 PDM (DMIC) Pin Configuration

PDM operation on the IN1 input path is selected using IN1_MODE, as described in Table 4-3. If PDM input is selected, the respective analog input functions are disabled and the IN1_PDMCLK and IN1_PDMDATA pins are configured for digital input/output. The IN2 input path supports digital input only; if the IN2L or IN2 inputs paths are enabled, the IN2_PDMCLK and IN2_PDMDATA pins are configured for digital input/output.

The CS48L32 provides integrated pull-down resistors on the INn_PDMDATA pins. Integrated pull-down resistors are also provided on the AUXPDMn_CLK pins. This provides a flexible capability for interfacing with other devices. The pull resistors can be configured independently using the bits described in Table 4-9. Note that, if the PDM input paths are disabled, the pull resistors are disabled on the respective pins.

The output drive strength of AUXPDMn_CLK and AUXPDMn_DOUT is selectable using the respective _DRV_STR bits described in Table 4-9.

Register Address Label Default Bit Description R4148 (0x1034) IN2 PDMDATA PD IN2 PDMDATA pull-down control 5 DMIC PAD CTRL 0 = Disabled, 1 = Enabled 4 IN1 PDMDATA PD 0 IN1 PDMDATA pull-down control 0 = Disabled, 1 = Enabled R4164 (0x1044) 18 AUXPDM2 CLK PD 0 AUXPDM2 CLK pull-down control AUXPDM CTRL 0 = Disabled, 1 = Enabled 0 16 AUXPDM1_CLK_PD AUXPDM1_CLK pull-down control 0 = Disabled, 1 = Enabled AUXPDM2_CLK_DRV_STR AUXPDM2 CLK output drive strength 3 0 = 4 mA, 1 = 8 mA2 AUXPDM2 DOUT DRV STR AUXPDM2 DOUT output drive strength 0 = 4 mA. 1 = 8 mA 1 AUXPDM1 CLK DRV STR 1 AUXPDM1 CLK output drive strength 0 = 4 mA, 1 = 8 mAAUXPDM1 DOUT DRV STR AUXPDM1 DOUT output drive strength 0 = 4 mA, 1 = 8 mA

Table 4-9. PDM (DMIC) Pin Control

4.3 Digital Core

The CS48L32 digital core provides extensive mixing and processing capabilities for multiple signal paths. The configuration is highly flexible and supports virtually every conceivable input/output connection between the available processing blocks.

The digital core provides parametric equalization (EQ) functions, DRC, and low-/high-pass filters (LHPF).

The CS48L32 supports multiple signal paths through the digital core. Stereo full-duplex sample-rate conversion is provided to allow digital audio to be routed between input (ADC/PDM) paths and audio serial ports (ASP1–ASP2) operating at different sample rates.

The DSP functions are programmable, using application-specific control sequences. Note that the DSP configuration data is lost whenever the VDD_D power domain is removed; the DSP configuration data must be downloaded to the CS48L32 each time the device is powered up.

The CS48L32 incorporates a tone generator that can be used for beep functions through any of the audio signal paths. A white-noise generator is incorporated, to provide comfort noise in cases where silence (digital mute) is not desirable.

Two pulse-width modulation (PWM) signal generators are provided; the PWM waveforms can be modulated by an audio source within the digital core and can be output on a GPIO pin.

An overview of the digital-core mixing and signal-processing functions is provided in Fig. 4-15. The control registers associated with the digital-core signal paths are shown in Fig. 4-16 through Fig. 4-27. The full list of digital mixer control registers (0x8080–0x907C) is provided in Section 6. Generic register field definitions are provided in Table 4-10.

The digital audio core is predominantly a 24-bit architecture, but also provides support for 32-bit signal paths. Audio samples of up to 32 bits are supported by the ASP functions. The respective signal mixers provide full support for 32-bit data words. Note that all other signal paths and signal-processing blocks within the digital core are limited to 24-bit data length; data samples are truncated to 24-bit length if they are routed through any function that does not support 32-bit data words.

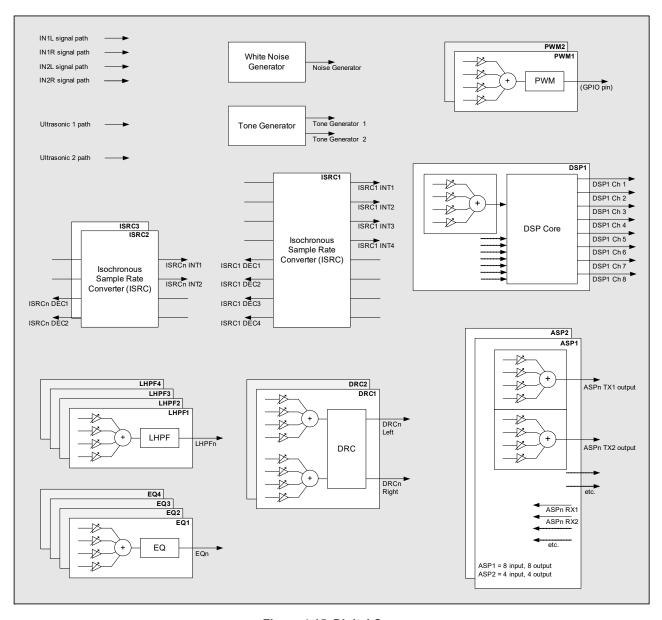


Figure 4-15. Digital Core

4.3.1 Digital-Core Mixers

The CS48L32 provides an extensive digital mixing capability. The digital-core mixing and signal-processing blocks are shown in Fig. 4-15. A four-input digital mixer is associated with many of these functions, as shown. The digital mixer circuit is identical in each instance, providing up to four selectable input sources, with independent volume control on each input.

The control registers associated with the digital-core signal paths are shown in Fig. 4-16–Fig. 4-27. The full list of digital mixer control registers (0x8080–0x907C) is provided in Section 6.

Further description of the associated control registers is provided throughout Section 4.3. Generic register field definitions are provided in Table 4-10.

The digital mixer input sources are selected using the associated x_SRCn fields; the volume control is implemented via the associated x_VOLn fields.

The ISRC input functions support selectable input sources, but do not incorporate any digital mixing. The respective input source (x_SRCn) fields are identical to those of the digital mixers.

The x_SRC*n* fields select the input sources for the respective mixer or signal-processing block. Note that the selected input sources must be configured for the same sample rate as the blocks to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.12.

A status bit is associated with each configurable input source, indicating whether the signal path is enabled. If an underclocked error condition occurs, these bits can be used to indicate which signal paths have been enabled.

The generic register field definition for the digital mixers is provided in Table 4-10.

Table 4-10. Digital-Core Mixer Control Registers

Register Address	Bit	Label	Default		Description					
R32896 (0x8080)	15	x_STSn	0	[Digital Core function] input	[Digital Core function] input <i>n</i> status					
to				0 = Disabled						
R39132 (0x907C)				1 = Enabled						
	7:1	x_VOLn	0x40	[Digital Core mixer] input n v	olume. (-32 dB to +16 dB ir	n 1 dB steps)				
				0x00 to 0x20 = -32 dB	(1 dB steps)	0x50 = +16 dB				
				0x21 = -31 dB	0x40 = 0 dB	0x51 to 0x7F = +16 dB				
				0x22 = -30 dB	(1 dB steps)					
	8:0	x_SRCn	0x000	[Digital Core function] input	n source select					
				0x000 = Silence (mute)	0x098 = ISRC1 INT1	0x0C0 = DRC1 Left				
				0x004 = Tone generator 1	0x099 = ISRC1 INT2	0x0C1 = DRC1 Right				
				0x005 = Tone generator 2	0x09A = ISRC1 INT3	0x0C2 = DRC2 Left				
				0x00C = Noise generator	0x09B = ISRC1 INT4	0x0C3 = DRC2 Right				
				0x010 = IN1L signal path	0x09C = ISRC1 DEC1	0x0C8 = LHPF1				
				0x011 = IN1R signal path	0x09D = ISRC1 DEC2	0x0C9 = LHPF2				
				0x012 = IN2L signal path	0x09E = ISRC1 DEC3	0x0CA = LHPF3				
				0x013 = IN2R signal path	0x09F = ISRC1 DEC4	0x0CB = LHPF4				
				0x020 = ASP1 RX1	0x0A0 = ISRC2 INT1	0x0D8 = Ultrasonic 1				
				0x021 = ASP1 RX2	0x0A1 = ISRC2 INT2	0x0D9 = Ultrasonic 2				
				0x022 = ASP1 RX3	0x0A4 = ISRC2 DEC1	0x100 = DSP1 channel 1				
				0x023 = ASP1 RX4	0x0A5 = ISRC2 DEC2	0x101 = DSP1 channel 2				
				0x024 = ASP1 RX5	0x0A8 = ISRC3 INT1	0x102 = DSP1 channel 3				
				0x025 = ASP1 RX6	0x0A9 = ISRC3 INT2	0x103 = DSP1 channel 4				
				0x026 = ASP1 RX7	0x0AC = ISRC3 DEC1	0x104 = DSP1 channel 5				
				0x027 = ASP1 RX8	0x0AD = ISRC3 DEC2	0x105 = DSP1 channel 6				
				0x030 = ASP2 RX1	0x0B8 = EQ1	0x106 = DSP1 channel 7				
				0x031 = ASP2 RX2	0x0B9 = EQ2	0x107 = DSP1 channel 8				
				0x032 = ASP2 RX3	0x0BA = EQ3					
				0x033 = ASP2 RX4	0x0BB = EQ4					

4.3.2 Digital-Core Inputs

The digital core comprises multiple input paths, as shown in Fig. 4-16. Any of these inputs may be selected as a source to the digital mixers or signal-processing functions within the CS48L32 digital core.

Note that the outputs from other blocks within the digital core may also be selected as input to the digital mixers or signal-processing functions within the CS48L32 digital core. Those input sources, which are not shown in Fig. 4-16, are described separately throughout Section 4.3.

The hexadecimal numbers in Fig. 4-16 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for the input signal paths is configured by using the applicable IN_RATE, ASP*n*_RATE, or US*n*_RATE; see Table 4-21. Note that sample-rate conversion is required when routing the input signal paths to any signal chain that is configured for a different sample rate.

Silence (mute) (0x000) IN1L signal path (0x010) IN1R signal path (0x011) IN2L signal path (0x012) IN2R signal path (0x013) ASP1 RX1 (0x020) ASP1 RX2 (0x021) ASP1 RX3 (0x022) ASP1 RX4 (0x023) ASP1 RX5 (0x024) ASP1 RX6 (0x025) ASP1 RX7 (0x026) ASP1 RX8 (0x027) ASP2 RX1 (0x030) ASP2 RX2 (0x031) ASP2 RX3 (0x032) ASP2 RX4 (0x033) Ultrasonic 1 (0x0D8) Ultrasonic 2 (0x0D9)

Figure 4-16. Digital-Core Inputs

4.3.3 Digital-Core Output Mixers

The digital core supports two audio serial port (ASP) interfaces. The output paths associated with ASP1–ASP2 are shown in Fig. 4-17. A four-input mixer is associated with each output. The four input sources are selectable in each case, and independent volume control is provided for each path.

The ASP1-ASP2 output mixer control fields (see Fig. 4-17) are located at addresses 0x8200 through 0x833C.

The full list of digital mixer control registers (0x8080–0x907C) is provided in Section 6. Generic register field definitions are provided in Table 4-10.

The x_SRC*n* fields select the input sources for the respective mixers. Note that the selected input sources must be configured for the same sample rate as the mixer to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.12.

The sample rate for the output signal paths is configured using the applicable ASP*n*_RATE; see Table 4-21. Note that sample-rate conversion is required when routing the output signal paths to any signal chain that is configured for a different sample rate.

The ASPn_RATE fields must not be changed if any of the respective x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing new values to ASPn_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to the associated ASPn_RATE fields. See Table 4-21 for details.

The ASP*n* output mixers provide full support for 32-bit data words. Audio samples of up to 32 bits are supported by the ASP functions. Note that other signal paths and signal-processing blocks within the digital core are limited to 24-bit data length; data samples are truncated to 24-bit length if they are routed through any function that does not support 32-bit data words.

The CS48L32 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the output mixer paths. If the frequency is too low, an attempt to enable an output mixer path fails. Note that active signal paths are not affected under such circumstances.

The status bits in registers 0x8080–0x907C indicate the status of each digital mixer. If an underclocked error condition occurs, these bits can be used to indicate which mixer paths have been enabled.

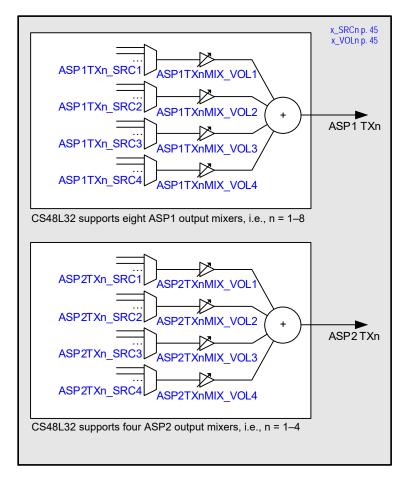


Figure 4-17. Digital-Core ASP Outputs

4.3.4 Five-Band Parametric Equalizer (EQ)

The digital core provides four EQ processing blocks as shown in Fig. 4-18. A four-input mixer is associated with each EQ. The four input sources are selectable in each case, and independent volume control is provided for each path. Each EQ block supports one output.

The EQ provides selective control of five frequency bands as follows:

- The low-frequency band (Band 1) filter can be configured as a peak filter or as a shelving filter. If configured as a shelving filter, it provides adjustable gain below the Band 1 cut-off frequency. As a peak filter, it provides adjustable gain within a defined frequency band that is centered on the Band 1 frequency.
- The midfrequency bands (Band 2–Band 4) filters are peak filters that provide adjustable gain around the respective center frequency.
- The high-frequency band (Band 5) filter is a shelving filter that provides adjustable gain above the Band 5 cut-off frequency.

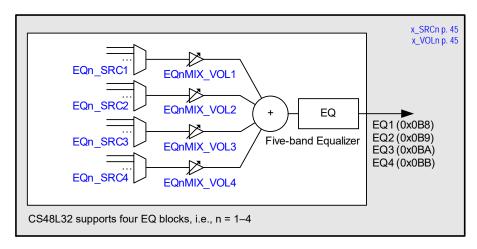


Figure 4-18. Digital-Core EQ Blocks

The EQ1–EQ4 mixer control fields (see Fig. 4-18) are located at addresses 0x8B80 through 0x8BBC.

The full list of digital-mixer control registers (0x8080–0x907C) is provided in Section 6. Generic register field definitions are provided in Table 4-10.

The x_SRC*n* fields select the input sources for the respective EQ processing blocks. Note that the selected input sources must be configured for the same sample rate as the EQ to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.12.

The hexadecimal numbers in Fig. 4-18 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for the EQ function is configured using FX_RATE; see Table 4-21. Note that the EQ, DRC, and LHPF functions must be configured for the same sample rate. Sample-rate conversion is required when routing the EQ signal paths to any signal chain that is configured for a different sample rate.

The FX_RATE field must not be changed if any of the associated x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing a new value to FX_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to FX_RATE. See Table 4-21 for details.

The cut-off or center frequencies for the five-band EQ are set by using the coefficients held in the registers identified in Table 4-11. These coefficients are derived using tools provided in Cirrus Logic's WISCE™ evaluation-board control software; please contact your Cirrus Logic representative for details.

Table 4-11. EQ Coefficient Registers

EQ	Register Addresses
EQ1	0xA818-0xA850
EQ2	0xA85C-0xA894
EQ3	0xA8A0-0xA8D8
EQ4	0xA8E4-0xA91C

The control registers associated with the EQ functions are described in Table 4-12.

Table 4-12. EQ Enable and Gain Control

Register Address	Bit	Label	Default	Description	
R43012 (0xA804)	11:0	FX_STS[11:0]	0x00	LHPF, DRC, EQ Enable Status. Indicates the status of each respective	
FX_STATUS				signal-processing function. Each bit is coded as follows:	
				0 = Disabled	
				1 = Enabled	
				[11] = EQ4 [7] = DRC2 (Right) [3] = LHPF4	
				[10] = EQ3 [6] = DRC2 (Left) [2] = LHPF3	
				[9] = EQ2 [5] = DRC1 (Right) [1] = LHPF2	
				[8] = EQ1 [4] = DRC1 (Left) [0] = LHPF1	
R43016 (0xA808)	3	EQ4_EN	0	EQ4 Enable	
EQ_CONTROL1				0 = Disabled	
				1 = Enabled	
	2	EQ3_EN	0	EQ3 Enable	
				0 = Disabled	
				1 = Enabled	
	1	EQ2_EN	0	EQ2 Enable	
				0 = Disabled	
				1 = Enabled	
	0	EQ1_EN	0	EQ1 Enable	
				0 = Disabled	
				1 = Enabled	
R43020 (0xA80C)	3	EQ4_B1_MODE	0	EQ4 Band 1 Mode	
EQ_CONTROL2				0 = Shelving filter	
				1 = Peak filter	
	2	EQ3_B1_MODE	0	EQ3 Band 1 Mode	
				0 = Shelving filter	
				1 = Peak filter	
	1	EQ2_B1_MODE	0	EQ2 Band 1 Mode	
				0 = Shelving filter	
				1 = Peak filter	
	0	EQ1_B1_MODE	0	EQ1 Band 1 Mode	
				0 = Shelving filter	
				1 = Peak filter	
R43024 (0xA810)	28:24	EQ1_B4_GAIN[4:0]	0x0C	EQ1 Band n Gain (-12 dB to +12 dB in 1 dB steps)	
EQ1_GAIN1	20:16	EQ1_B3_GAIN[4:0]	0x0C	0x00 = -12 dB	
	12:8	EQ1_B2_GAIN[4:0]	0x0C	0x01 = -11 dB (1 dB steps) All other codes are	
D40000 (0, A044)	4:0	EQ1_B1_GAIN[4:0]	0x0C	(1 dB steps) 0x17 = 11 dB reserved	
R43028 (0xA814)	4:0	EQ1_B5_GAIN[4:0]	0x0C		
EQ1_GAIN2		FO4 *		FOA Francisco Confliction to Defende MICOF control to a bound control	
R43032 (0xA818)	_	EQ1_*		EQ1 Frequency Coefficients. Refer to WISCE evaluation board control software for the derivation of these field values.	
to				Software for the derivation of these field values.	
R43088 (0xA850)	20.24	EOO DA CAINITA.OL	0.00	ECO Dand in Cain / 10 dD to 110 dD in 1 dD atoms)	
R43092 (0xA854)	28:24	EQ2_B4_GAIN[4:0]	0x0C	EQ2 Band <i>n</i> Gain (-12 dB to +12 dB in 1 dB steps)	
EQ2_GAIN1	20:16	EQ2_B3_GAIN[4:0]	0x0C	0x00 = -12 dB	
	12:8	EQ2_B2_GAIN[4:0] EQ2_B1_GAIN[4:0]	0x0C 0x0C	0x01 = -11 dB (1 dB steps) All other codes are (1 dB steps) 0x17 = 11 dB reserved	
R43096 (0xA858)	4:0 4:0	EQ2_B1_GAIN[4:0] EQ2_B5_GAIN[4:0]	0x0C	(1 dB steps) 0x17 = 11 dB reserved	
EQ2_GAIN2	4.0	LQZ_DO_GAIN[4:0]	UXUC		
R43100 (0xA85C)	_	EQ2_*		EQ2 Frequency Coefficients. Refer to WISCE evaluation board control	
	_	LQ2_	_	software for the derivation of these field values.	
to R43156 (0xA89C)				Table 1 and Samualian at these flow randon	
TY-3 130 (UMAGSC)		1			

Table 4-12. EQ Enable and Gain Control (Cont.)

Register Address	Bit	Label	Default	Description			
R43160 (0xA898)	28:24	EQ3_B4_GAIN[4:0]	0x0C	EQ3 Band <i>n</i> Gain (–12 dB to +12 dB in 1 dB steps)			
EQ3_GAIN1	20:16	EQ3_B3_GAIN[4:0]	0x0C	0x00 = -12 dB	0x0C = 0 dB	0x18 = 12 dB	
	12:8	EQ3_B2_GAIN[4:0]	0x0C	0x01 = -11 dB	(1 dB steps)	All other codes are	
	4:0	EQ3_B1_GAIN[4:0]	0x0C	(1 dB steps)	0x17 = 11 dB	reserved	
R43164 (0xA89C)	4:0	EQ3_B5_GAIN[4:0]	0x0C				
EQ3_GAIN2							
R43168 (0xA8A0)	_	EQ3_*	_			evaluation board control	
to				software for the derivat	tion of these field values		
R43224 (0xA8D8)							
R43228 (0xA8DC)	28:24	EQ4_B4_GAIN[4:0]	0x0C	EQ4 Band n Gain (-12	dB to +12 dB in 1 dB st	eps)	
EQ4_GAIN1	20:16	EQ4_B3_GAIN[4:0]	0x0C	0x00 = -12 dB	0x0C = 0 dB	0x18 = 12 dB	
	12:8	EQ4_B2_GAIN[4:0]	0x0C	0x01 = -11 dB	(1 dB steps)	All other codes are	
	4:0	EQ4_B1_GAIN[4:0]	0x0C	(1 dB steps)	0x17 = 11 dB	reserved	
R43232 (0xA8E0)	4:0	EQ4_B5_GAIN[4:0]	0x0C				
EQ4_GAIN2							
R43236 (0xA8E4)	_	EQ4_*	_	EQ4 Frequency Coefficients. Refer to WISCE evaluation board control			
to				software for the derivat	tion of these field values		
R43292 (0xA91C)							

The CS48L32 automatically checks to confirm whether the SYSCLK frequency is high enough to support the commanded EQ and digital mixing functions. If an attempt is made to enable an EQ signal path, and there are insufficient SYSCLK cycles to support it, the attempt does not succeed. Note that any signal paths that are already active are not affected under such circumstances.

The FX_STS field in register 0xA804 indicates the status of each EQ, DRC, and LHPF signal path. If an underclocked error condition occurs, this field can be used to indicate which EQ, DRC, or LHPF signal paths have been enabled.

The status bits in registers 0x8080–0x907C indicate the status of each digital mixer. If an underclocked error condition occurs, these bits can be used to indicate which mixer paths have been enabled.

4.3.5 Dynamic Range Control (DRC)

The digital core provides two stereo DRC processing blocks, as shown in Fig. 4-19. A four-input mixer is associated with each DRC input channel. The input sources are selectable in each case, and independent volume control is provided for each path. The stereo DRC blocks support two outputs each.

The function of the DRC is to adjust the signal gain in conditions where the input amplitude is unknown or varies over a wide range, for example, when recording from microphones built into a handheld system or to restrict the dynamic range of an output signal path.

To improve intelligibility in the presence of loud impulsive noises, the DRC can apply compression and automatic level control to the signal path. It incorporates anticlip and quick-release features for handling transients.

The DRC also incorporates a noise-gate function that provides additional attenuation of very low-level input signals. This means that the signal path is quiet when no signal is present, giving an improvement in background noise level under these conditions.

A signal-detect function is provided within the DRC; this can be used to detect the presence of an audio signal and to trigger other events. The DRC provides inputs to the interrupt control circuit for this purpose.

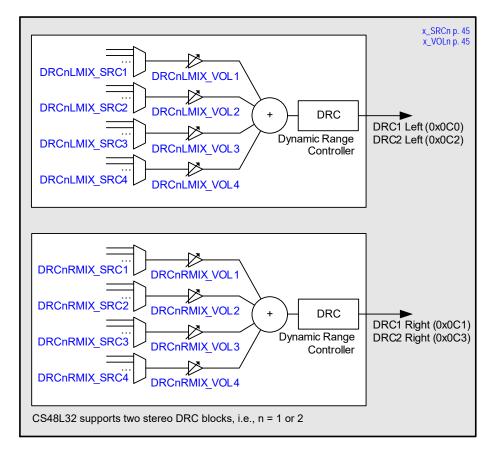


Figure 4-19. Dynamic Range Control (DRC) Block

The DRC1 and DRC2 mixer control fields (see Fig. 4-19) are located at addresses 0x8C00 through 0x8C3C.

The full list of digital mixer control registers (0x8080–0x907C) is provided in Section 6. Generic register field definitions are provided in Table 4-10.

The x_SRC*n* fields select the input sources for the respective DRC processing blocks. Note that the selected input sources must be configured for the same sample rate as the DRC to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.12.

The hexadecimal numbers in Fig. 4-19 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for the DRC function is configured using FX_RATE; see Table 4-21. Note that the EQ, DRC, and LHPF functions must all be configured for the same sample rate. Sample-rate conversion is required when routing the DRC signal paths to any signal chain that is configured for a different sample rate.

The FX_RATE field must not be changed if any of the associated x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing a new value to FX_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to FX_RATE. See Table 4-21 for details.

The DRC functions are enabled using the control bits described in Table 4-13.

Table 4-13.	DRC	Enable
-------------	-----	---------------

Register Address	Bit	Label	Default	Description
R43776 (0xAB00)	1	DRC1L_EN	0	DRC1 (left) enable
DRC1_CONTROL1				0 = Disabled
				1 = Enabled
	0	DRC1R_EN	0	DRC1 (right) enable
				0 = Disabled
				1 = Enabled
R43796 (0xAB14)	1	DRC2L_EN	0	DRC2 (left) enable
DRC2_CONTROL1				0 = Disabled
				1 = Enabled
	0	DRC2R_EN	0	DRC2 (right) enable
				0 = Disabled
				1 = Enabled

The following description of the DRC is applicable to each DRC. The associated control fields are described in Table 4-15 and Table 4-16 for DRC1 and DRC2 respectively.

4.3.5.1 DRC Compression, Expansion, and Limiting

The DRC supports two different compression regions, separated by a knee at a specific input amplitude (shown as Knee 1 in Fig. 4-20). In the region above the knee, the compression slope DRC*n*_HI_COMP applies; in the region below the knee, the compression slope DRC*n*_LO_COMP applies. Note that *n* identifies the applicable DRC 1 or 2.

The DRC also supports a noise-gate region, where low-level input signals are heavily attenuated. This function can be enabled or disabled according to the application requirements. The DRC response in this region is defined by the expansion slope DRC*n*_NG_EXP.

For additional attenuation of signals in the noise-gate region, an additional knee can be defined (shown as Knee 2 in Fig. 4-20). If this knee is enabled, there is an infinitely steep drop-off in the DRC response pattern between the DRC*n*_LO COMP and DRC*n* NG EXP regions.

The overall DRC compression characteristic in steady state (i.e., where the input amplitude is near constant) is shown in Fig. 4-20.

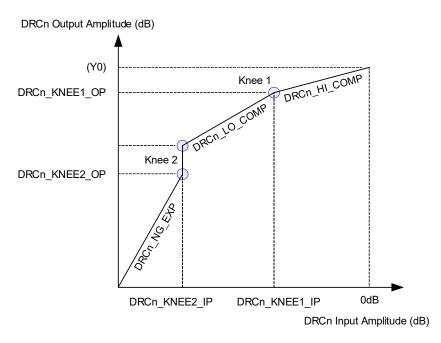


Figure 4-20. DRC Response Characteristic

The slope of the DRC response is determined by DRC*n_Hl_COMP* and DRC*n_LO_COMP*. A slope of 1 indicates constant gain in this region. A slope less than 1 represents compression (i.e., a change in input amplitude produces only a smaller change in output amplitude). A slope of 0 indicates that the target output amplitude is the same across a range of input amplitudes; this is infinite compression.

If the noise gate is enabled, the DRC response in this region is determined by DRC*n_NG_EXP*. A slope of 1 indicates constant gain in this region. A slope greater than 1 represents expansion (i.e., a change in input amplitude produces a larger change in output amplitude).

If the DRC*n_*KNEE2_OP knee is enabled (Knee 2 in Fig. 4-20), this introduces the vertical line in the response pattern shown, resulting in infinitely steep attenuation at this point in the response.

The DRC parameters are listed in Table 4-14.

Parameters	Parameter	Description
1	DRCn_KNEE1_IP	Input level at Knee 1 (dB)
2	DRCn_KNEE1_OP	Output level at Knee 1 (dB)
3	DRCn_HI_COMP	Compression ratio above Knee 1
4	DRCn_LO_COMP	Compression ratio below Knee 1
5	DRCn_KNEE2_IP	Input level at Knee 2 (dB)
6	DRCn_NG_EXP	Expansion ratio below Knee 2
7	DRCn KNEE2 OP	Output level at Knee 2 (dB)

Table 4-14. DRC Response Parameters

The noise gate is enabled by setting DRC*n*_NG_EN. When the noise gate is not enabled, Parameters 5–7 (see Table 4-14) are ignored, and the DRC*n*_LO_COMP slope applies to all input signal levels below Knee 1.

The DRCn_KNEE2_OP knee is enabled by setting DRCn_KNEE2_OP_EN. If this bit is not set, Parameter 7 is ignored and the Knee 2 position always coincides with the low end of the DRCn_LO_COMP region.

The Knee 1 point in Fig. 4-20 is determined by DRCn KNEE1 IP and DRCn KNEE1 OP.

Parameter Y0, the output level for a 0 dB input, is not specified directly but can be calculated from the other parameters using Eq. 4-2.

 $Y0 = DRCn_KNEE1_OP - (DRCn_KNEE1_IP \times DRCn_HI_COMP)$

Equation 4-2. DRC Compression Calculation

4.3.5.2 Gain Limits

The minimum and maximum gain applied by the DRC is set by DRC*n*_MINGAIN, DRC*n*_MAXGAIN, and DRC*n*_NG_MINGAIN. These limits can be used to alter the DRC response from that shown in Fig. 4-20. If the range between maximum and minimum gain is reduced, the extent of the dynamic range control is reduced.

The minimum gain in the compression regions of the DRC response is set by DRC*n*_MINGAIN. The minimum gain in the noise-gate region is set by DRC*n*_NG_MINGAIN. The minimum gain limit prevents excessive attenuation of the signal path.

The maximum gain limit set by DRCn MAXGAIN prevents quiet signals (or silence) from being excessively amplified.

4.3.5.3 Dynamic Characteristics

The dynamic behavior determines how quickly the DRC responds to changing signal levels. Note that the DRC responds to the average (RMS) signal amplitude over a period of time.

The DRC*n*_ATK determines how quickly the DRC gain decreases when the signal amplitude is high. The DRC*n*_DCY determines how quickly the DRC gain increases when the signal amplitude is low.

These fields are described in Table 4-15 and Table 4-16. The register defaults are suitable for general-purpose microphone use.

4.3.5.4 Anticlip Control

The DRC includes an anticlip function to avoid signal clipping when the input amplitude rises very quickly. This function uses a feed-forward technique for early detection of a rising signal level. Signal clipping is avoided by dynamically increasing the gain attack rate when required.

The anticlip function is enabled using the DRC*n*_ANTICLIP bit. Note that the feed-forward processing increases the latency in the input signal path.

The anticlip feature operates entirely in the digital domain; it cannot be used to prevent signal clipping in the analog domain nor in the source signal. Analog clipping can only be prevented by reducing the analog signal gain or by adjusting the source signal.

It is recommended to disable the anticlip function if the guick-release function (see Section 4.3.5.5) is enabled.

4.3.5.5 Quick Release Control

The DRC includes a quick-release function to handle short transient peaks that are not related to the intended source signal. For example, in handheld microphone recording, transient signal peaks sometimes occur due to user handling, key presses or accidental tapping against the microphone. The quick-release function ensures that these transients do not cause the intended signal to be masked by the longer time constant of DRC*n*_DCY.

The quick-release function is enabled by setting the DRC*n*_QR bit. When this bit is enabled, the DRC measures the crest factor (peak to RMS ratio) of the input signal. A high crest factor is indicative of a transient peak that may not be related to the intended source signal. If the crest factor exceeds the level set by DRC*n*_QR_THR, the normal decay rate (DRC*n*_DCY) is ignored and a faster decay rate (DRC*n*_QR_DCY) is used instead.

It is recommended to disable the quick-release function if the anticlip function (see Section 4.3.5.4) is enabled.

4.3.5.6 Signal Activity Detect

The DRC incorporates a configurable signal-detect function, allowing the signal level at the DRC input to be monitored and to be used to trigger other events. This can be used to detect the presence of a signal on a microphone-input channel, or to detect a signal received over the audio serial ports.

The DRC signal-detect function is enabled by setting DRC*n_*SIG_DET. Note that the respective DRC*n* must also be enabled. The detection threshold is either a peak level (crest factor) or an RMS level, depending on DRC*n_*SIG_DET_MODE. When peak level is selected, the threshold is determined by DRC*n_*SIG_DET_PK, which defines the applicable crest factor (peak-to-RMS ratio) threshold. If RMS level is selected, the threshold is set using DRC*n_*SIG_DET_RMS.

The DRC signal-detect function is an input to the interrupt control circuit and can be used to trigger an interrupt event—see Section 4.9.

4.3.5.7 DRC Register Controls

The DRC1 control registers are described in Table 4-15.

Table 4-15. DRC1 Control Registers

Register Address	Bit	Label	Default		Description				
R43012 (0xA804) FX STATUS	11:0	FX_STS[11:0]		LHPF, DRC, EQ enable status. Indicates the status of each respective signal-processing function. Each bit is coded as follows:					
				0 = Disabled					
				1 = Enabled					
				[11] = EQ4	[7] = DRC2 (Right)	[3] = LHPF4			
				[10] = EQ3	[6] = DRC2 (Left)	[2] = LHPF3			
				[9] = EQ2 [5] = DRC1 (Right) [1] = LHPF2					
				[8] = EQ1	[4] = DRC1 (Left)	[0] = LHPF1			

Table 4-15. DRC1 Control Registers (Cont.)

Register Address	Bit	Label	Default		Description	
R43780 (0xAB04)	31:28	DRC1_ATK[3:0]	0100	DRC1 Gain attack rate (sec	conds/6 dB)	
DRC1_CONTROL2				0000 = Reserved	0101 = 2.9 ms	1010 = 92.8 ms
				0001 = 181 μs	0110 = 5.8 ms	1011 = 185.6 ms
				0010 = 363 μs	0111 = 11.6 ms	1100 to 1111 = Reserved
				0011 = 726 μs	1000 = 23.2 ms	
				0100 = 1.45 ms	1001 = 46.4 ms	
	27:24	DRC1_DCY[3:0]	1001	DRC1 Gain decay rate (sec	conds/6 dB)	
				0000 = 1.45 ms	0101 = 46.5 ms	1010 = 1.49 s
				0001 = 2.9 ms	0110 = 93 ms	1011 = 2.97 s
				0010 = 5.8 ms	0111 = 186 ms	1100 to 1111 = Reserved
				0011 = 11.6 ms	1000 = 372 ms	
				0100 = 23.25 ms	1001 = 743 ms	
	20:18	DRC1_	100	DRC1 Minimum gain to atte	enuate audio signals	
		MINGAIN[2:0]		000 = 0 dB	011 = -24 dB	11X = Reserved
				001 = -12 dB	100 = -36 dB	
				010 = -18 dB	101 = Reserved	
	17:16	DRC1_	11	DRC1 Maximum gain to bo	ost audio signals (dB)	
		MAXGAIN[1:0]		00 = 12 dB	10 = 24 dB	
				01 = 18 dB	11 = 36 dB	
	15:11	DRC1_SIG_	0x00	DRC1 Signal-Detect RMS		l for signal-detect to be
		DET_RMS[4:0]		indicated when DRC1_SIG		
					(1.5 dB steps)	0x1F = -76.5 dB
				0x01 = -31.5 dB	0x1E = -75 dB	
	10:9	DRC1_SIG_	00			/RMS ratio, or Crest Factor,
		DET_PK[1:0]		level for signal-detect to be	-	$G_DEI_MODE = 0.$
				00 = 12 dB	10 = 24 dB	
		5564 116 511		01 = 18 dB	11 = 30 dB	
	8	DRC1_NG_EN	0	DRC1 Noise-Gate Enable		
				0 = Disabled		
			_	1 = Enabled		
	7	DRC1_SIG_	0	DRC1 Signal-Detect Mode		
		DET_MODE		0 = Peak threshold mode		
				1 = RMS threshold mode		
	6	DRC1_SIG_DET	0	DRC1 Signal-Detect Enable	9	
				0 = Disabled		
				1 = Enabled		
	5	DRC1_KNEE2_	0	DRC1 KNEE2_OP Enable		
		OP_EN		0 = Disabled		
				1 = Enabled		
	4	DRC1_QR	1	DRC1 Quick-release Enabl	е	
				0 = Disabled		
				1 = Enabled		
	3	DRC1_ANTICLIP	1	DRC1 Anticlip Enable		
				0 = Disabled		
				1 = Enabled		

Table 4-15. DRC1 Control Registers (Cont.)

Register Address	Bit	Label	Default		Description	
R43784 (0xAB08)	15:12	DRC1_NG_	0000	DRC1 Minimum gain to att	enuate audio signals when t	he Noise Gate is active.
DRC1_CONTROL3		MINGAIN[3:0]		0000 = -36 dB	0101 = -6 dB	1010 = 24 dB
				0001 = -30 dB	0110 = 0 dB	1011 = 30 dB
				0010 = -24 dB	0111 = 6 dB	1100 = 36 dB
				0011 = -18 dB	1000 = 12 dB	1101 to 1111 = Reserved
				0100 = -12 dB	1001 = 18 dB	
	11:10	DRC1_NG_	00	DRC1 Noise-Gate slope		
		EXP[1:0]		00 = 1 (no expansion)	10 = 4	
				01 = 2	11 = 8	
	9:8	DRC1_QR_	00	DRC1 Quick-release threst	hold (crest factor in dB)	
		THR[1:0]		00 = 12 dB	10 = 24 dB	
				01 = 18 dB	11 = 30 dB	
	7:6	DRC1_QR_	00	DRC1 Quick-release decay	y rate (seconds/6 dB)	
		DCY[1:0]		00 = 0.725 ms	10 = 5.8 ms	
				01 = 1.45 ms	11 = Reserved	
	5:3	DRC1_HI_	011	DRC1 Compressor slope (upper region)	
		COMP[2:0]		000 = 1 (no compression)	011 = 1/8	11X = Reserved
				001 = 1/2	100 = 1/16	
				010 = 1/4	101 = 0	
	2:0	DRC1_LO_	000	DRC1 Compressor slope (lower region)	
		COMP[2:0]		000 = 1 (no compression)	011 = 1/8	11X = Reserved
				001 = 1/2	100 = 0	
				010 = 1/4	101 = Reserved	
R43788 (0xAB0C)	28:24	DRC1_KNEE2_	0x00		the noise-gate threshold (Kr	
DRC1_CONTROL4		IP[4:0]		0x00 = -36 dB	0x02 = -39 dB	0x1E = -81 dB
				0x01 = -37.5 dB	(-1.5 dB steps)	0x1F = -82.5 dB
				Applicable if DRC1_NG_EI		
	20:16	DRC1_KNEE2_	0x00	. •	noise-gate threshold (Knee	2).
		OP[4:0]		0x00 = -30 dB	0x02 = -33 dB	0x1E = -75 dB
				0x01 = -31.5 dB	(–1.5 dB steps)	0x1F = -76.5 dB
				Applicable only if DRC1_K		
	13:8	DRC1_KNEE1_	0x00	. •	the compressor knee (Knee	1).
		IP[5:0]		0x00 = 0 dB	0x02 = -1.5 dB	0x3C = -45 dB
				0x01 = -0.75 dB	(-0.75 dB steps)	0x3D–0x3F = Reserved
	4:0	DRC1_KNEE1_	0x00		compressor knee (Knee 1).	
		OP[4:0]		0x00 = 0 dB	0x02 = -1.5 dB	0x1E = -22.5 dB
				0x01 = -0.75 dB	(-0.75 dB steps)	0x1F = Reserved

The DRC2 control registers are described in Table 4-16.

Table 4-16. DRC2 Control Registers

Register Address	Bit	Label	Default	Description			
R43012 (0xA804)	15:4	FX_STS[11:0]	0x00	LHPF, DRC, EQ Enable	LHPF, DRC, EQ Enable Status. Indicates the status of each respective		
FX STATUS				signal-processing function	on. Each bit is coded as foll	ows:	
_				0 = Disabled			
				1 = Enabled			
				[11] = EQ4	[7] = DRC2 (Right)	[3] = LHPF4	
				[10] = EQ3	[6] = DRC2 (Left)	[2] = LHPF3	
				[9] = EQ2 [5] = DRC1 (Right) [1] = LHPF2		[1] = LHPF2	
				[8] = EQ1	[4] = DRC1 (Left)	[0] = LHPF1	

Table 4-16. DRC2 Control Registers (Cont.)

Register Address	Bit	Label	Default		Description			
R43800 (0xAB18)	31:28	DRC2_ATK[3:0]	0100	DRC2 Gain attack rate (s	seconds/6 dB)			
DRC2_CONTROL2				0000 = Reserved	0101 = 2.9 ms	1010 = 92.8 ms		
				0001 = 181 μs	0110 = 5.8 ms	1011 = 185.6 ms		
				0010 = 363 μs	0111 = 11.6 ms	1100 to 1111 = Reserved		
				0011 = 726 μs	1000 = 23.2 ms			
				0100 = 1.45 ms	1001 = 46.4 ms			
	27:24	DRC2_DCY[3:0]	1001	DRC2 Gain decay rate (s	seconds/6 dB)			
				0000 = 1.45 ms	0101 = 46.5 ms	1010 = 1.49 s		
				0001 = 2.9 ms	0110 = 93 ms	1011 = 2.97 s		
				0010 = 5.8 ms	0111 = 186 ms	1100 to 1111 = Reserved		
				0011 = 11.6 ms	1000 = 372 ms			
				0100 = 23.25 ms	1001 = 743 ms			
	20:18	DRC2_	100	DRC2 Minimum gain to a	ttenuate audio signals			
		MINGAIN[2:0]		000 = 0 dB	011 = -24 dB	11X = Reserved		
				001 = -12 dB (default)	100 = -36 dB			
				010 = -18 dB	101 = Reserved			
	17:16	DRC2_	11	DRC2 Maximum gain to I	boost audio signals (dB)			
		MAXGAIN[1:0]		00 = 12 dB	10 = 24 dB			
				01 = 18 dB	11 = 36 dB			
	15:11	DRC2_SIG_	0x00	DRC2 Signal-Detect RMS	S Threshold. This is the RN	AS signal level for signal-detect		
		DET_RMS[4:0]			C2_SIG_DET_MODE = 1.			
				0x00 = -30 dB	(1.5 dB steps)	0x1E = -75 dB		
				0x01 = -31.5 dB		0x1F = -76.5 dB		
	10:9	DRC2_SIG_	00	DRC2 Signal-Detect Peak Threshold. Peak/RMS ratio, or Crest Factor, level for signal-detect to be indicated when DRC2_SIG_DET_MODE = 0.				
		DET_PK[1:0]		=		$I_MODE = 0.$		
				00 = 12 dB	10 = 24 dB			
		DDOO NO EN		01 = 18 dB	11 = 30 dB			
	8	DRC2_NG_EN	0	DRC2 Noise-Gate Enable	е			
				0 = Disabled				
		DD00 010	0	1 = Enabled	1			
	7	DRC2_SIG_ DET_MODE	0	DRC2 Signal-Detect Mod				
		DL1_WODL		0 = Peak threshold mode				
		DDOS OLO DET	0	1 = RMS threshold mode				
	6	DRC2_SIG_DET	0	DRC2 Signal-Detect Ena	ble			
				0 = Disabled				
		DD00 IAIEE0		1 = Enabled				
	5	DRC2_KNEE2_ OP_EN	0	DRC2 KNEE2_OP Enabl	le			
		OF_LIN		0 = Disabled				
	4	DD00 05		1 = Enabled	.L.I.			
	4	DRC2_QR	1	DRC2 Quick-release Ena	able			
				0 = Disabled				
		DDOG ANTIGUES		1 = Enabled				
	3	DRC2_ANTICLIP	1	DRC2 Anticlip Enable				
				0 = Disabled				
				1 = Enabled				

Table 4-16. DRC2 Control Registers (Cont.)

Register Address	Bit	Label	Default		Description	
R43808 (0xAB1C)	15:12	DRC2_NG_	0000	DRC2 Minimum gain to att	enuate audio signals when t	the Noise Gate is active.
DRC2_CONTROL3		MINGAIN[3:0]		0000 = -36 dB	0101 = -6 dB	1010 = 24 dB
				0001 = -30 dB	0110 = 0 dB	1011 = 30 dB
				0010 = -24 dB	0111 = 6 dB	1100 = 36 dB
				0011 = -18 dB	1000 = 12 dB	1101 to 1111 = Reserved
				0100 = -12 dB	1001 = 18 dB	
	11:10	DRC2_NG_	00	DRC2 Noise-Gate slope		
		EXP[1:0]		00 = 1 (no expansion)	10 = 4	
				01 = 2	11 = 8	
	9:8	DRC2_QR_	00	DRC2 Quick-release thres	hold (crest factor in dB)	
		THR[1:0]		00 = 12 dB	10 = 24 dB	
				01 = 18 dB	11 = 30 dB	
	7:6	DRC2_QR_	00	DRC2 Quick-release decay	y rate (seconds/6 dB)	
		DCY[1:0]		00 = 0.725 ms	10 = 5.8 ms	
				01 = 1.45 ms	11 = Reserved	
	5:3	DRC2_HI_	011	DRC2 Compressor slope (upper region)	
		COMP[2:0]		000 = 1 (no compression)	011 = 1/8	11X = Reserved
				001 = 1/2	100 = 1/16	
				010 = 1/4	101 = 0	
	2:0	DRC2_LO_	000	DRC2 Compressor slope (lower region)	
		COMP[2:0]		000 = 1 (no compression)	011 = 1/8	11X = Reserved
				001 = 1/2	100 = 0	
				010 = 1/4	101 = Reserved	
R43808 (0xAB20)	28:24	DRC2_KNEE2_	0x00	DRC2 Input signal level at	the noise-gate threshold (Ki	nee 2).
DRC2_CONTROL4		IP[4:0]		0x00 = -36 dB	0x02 = -39 dB	0x1E = -81 dB
				0x01 = -37.5 dB	(-1.5 dB steps)	0x1F = -82.5 dB
				Applicable only if DRC2_N		
	20:16	DRC2_KNEE2_	0x00	DRC2 Output signal at the	noise-gate threshold (Knee	2).
		OP[4:0]		0x00 = -30 dB	0x02 = -33 dB	0x1E = -75 dB
				0x01 = -31.5 dB	(–1.5 dB steps)	0x1F = -76.5 dB
				Applicable only if DRC2_K		
	13:8	DRC2_KNEE1_	0x00	DRC2 Input signal level at	the compressor knee (Knee	: 1).
		IP[5:0]		0x00 = 0 dB	0x02 = -1.5 dB	0x3C = -45 dB
				0x01 = -0.75 dB	(-0.75 dB steps)	0x3D-0x3F = Reserved
	4:0	DRC2_KNEE1_	0x00	I = =	compressor knee (Knee 1).	
		OP[4:0]		0x00 = 0 dB	0x02 = -1.5 dB	0x1E = -22.5 dB
				0x01 = -0.75 dB	(-0.75 dB steps)	0x1F = Reserved

The CS48L32 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the commanded DRC and digital mixing functions. If the frequency is too low, an attempt to enable a DRC signal path fails. Note that active signal paths are not affected under such circumstances.

The FX_STS field in register 0xA804 indicates the status of each EQ, DRC, and LHPF signal path. If an underclocked error condition occurs, this field can be used to indicate which EQ, DRC, or LHPF signal paths have been enabled.

The status bits in registers 0x8080–0x907C indicate the status of each digital mixer. If an underclocked error condition occurs, these bits can be used to indicate which mixer paths have been enabled.

4.3.6 Low-/High-Pass Digital Filter (LHPF)

The digital core provides four LHPF processing blocks as shown in Fig. 4-21. A four-input mixer is associated with each filter. The four input sources are selectable in each case, and independent volume control is provided for each path. Each LHPF block supports one output.

The LHPF block can be used to remove unwanted out-of-band noise from a signal path. Each filter can be configured either as a low-pass filter (LPF) or a high-pass filter (HPF).

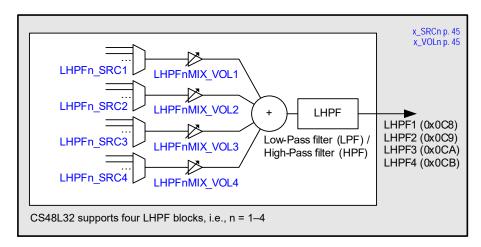


Figure 4-21. Digital-Core LPF/HPF Blocks

The LHPF1–LHPF4 mixer control fields (see Fig. 4-21), are located at addresses 0x8C80 through 0x8CBC.

The full list of digital mixer control registers (0x8080–0x907C) is provided in Section 6. Generic register field definitions are provided in Table 4-10.

The x_SRC*n* fields select the input sources for the respective LHPF processing blocks. Note that the selected input sources must be configured for the same sample rate as the LHPF to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.12.

The hexadecimal numbers in Fig. 4-21 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for the LHPF function is configured using FX_RATE; see Table 4-21. Note that the EQ, DRC, and LHPF functions must all be configured for the same sample rate. Sample-rate conversion is required when routing the LHPF signal paths to any signal chain that is configured for a different sample rate.

The FX_RATE field must not be changed if any of the associated x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing a new value to FX_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to FX_RATE. See Table 4-21 for details.

The control registers associated with the LHPF functions are described in Table 4-17.

The cut-off frequencies for the LHPF blocks are set by using the coefficients held in registers 0xAA38, 0xAA3C, 0xAA40, and 0xAA44 for LHPF1, LHPF2, LHPF3 and LHPF4 respectively. These coefficients are derived using tools provided in Cirrus Logic's WISCE evaluation board control software; please contact your Cirrus Logic representative for details.

Register Address	Bit	Label	Default	Description			
R43012 (0xA804) FX STATUS	11:0	FX_STS[11:0]		LHPF, DRC, EQ Enable Status. Indicates the status of the respective signal-processing functions. Each bit is coded as follows:			
_				0 = Disabled			
				1 = Enabled			
				[11] = EQ4	[7] = DRC2 (Right)	[3] = LHPF4	
				[10] = EQ3	[6] = DRC2 (Left)	[2] = LHPF3	
				[9] = EQ2	[5] = DRC1 (Right)	[1] = LHPF2	

[8] = EQ1

[4] = DRC1 (Left)

[0] = LHPF1

Table 4-17. Low-Pass Filter/High-Pass Filter

Table 4-17. Low-Pass Filter/High-Pass Filter (Cont.)

Register Address	Bit	Label	Default	Description
R43568 (0xAA30)	3	LHPF4_EN	0	Low-/High-Pass Filter 4 Enable
LHPF_CONTROL1				0 = Disabled
				1 = Enabled
	2	LHPF3_EN	0	Low-/High-Pass Filter 3 Enable
				0 = Disabled
				1 = Enabled
	1	LHPF2_EN	0	Low-/High-Pass Filter 2 Enable
				0 = Disabled
				1 = Enabled
	0	LHPF1_EN	0	Low-/High-Pass Filter 1 Enable
				0 = Disabled
				1 = Enabled
R43572 (0xAA34)	3	LHPF4_MODE	0	Low-/High-Pass Filter 4 Mode
LHPF_CONTROL2				0 = Low Pass
				1 = High Pass
	2	LHPF3_MODE	0	Low-/High-Pass Filter 3 Mode
				0 = Low Pass
				1 = High Pass
	1	LHPF2_MODE	0	Low-/High-Pass Filter 2 Mode
				0 = Low Pass
				1 = High Pass
	0	LHPF1_MODE	0	Low-/High-Pass Filter 1 Mode
				0 = Low Pass
				1 = High Pass
R43576 (0xAA38)	15:0	LHPF1_COEFF[15:0]	0x0000	Low-/High-Pass Filter 1 Frequency Coefficient
LHPF1_COEFF				Refer to WISCE evaluation board control software for the derivation of this
				field value.
R43580 (0xAA3C)	15:0	LHPF2_COEFF[15:0]	0x0000	Low-/High-Pass Filter 2 Frequency Coefficient
LHPF2_COEFF				Refer to WISCE evaluation board control software for the derivation of this field value.
R43584 (0xAA40)	15:0	LHPF3_COEFF[15:0]	0x0000	Low-/High-Pass Filter 3 Frequency Coefficient
LHPF3_COEFF				Refer to WISCE evaluation board control software for the derivation of this field value.
R43588 (0xAA44)	15:0	LHPF4_COEFF[15:0]	0x0000	Low-/High-Pass Filter 4 Frequency Coefficient
LHPF4_COEFF				Refer to WISCE evaluation board control software for the derivation of this field value.

The CS48L32 performs automatic checks to confirm whether the SYSCLK frequency is high enough to support the commanded LHPF and digital mixing functions. If the frequency is too low, an attempt to enable an LHPF signal path fails. Note that active signal paths are not affected under such circumstances.

The FX_STS field in register 0xA804 indicates the status of each EQ, DRC, and LHPF signal path. If an underclocked error condition occurs, this field can be used to indicate which EQ, DRC, or LHPF signal paths have been enabled.

The status bits in registers 0x8080–0x907C indicate the status of each digital mixer. If an underclocked error condition occurs, these bits can be used to indicate which mixer paths have been enabled.

4.3.7 Digital-Core DSP

The digital core provides a programmable DSP processing block as shown in Fig. 4-22. The DSP supports eight input channels. A four-input mixer is associated with each DSP input channel, providing further expansion of the input paths. The input sources are fully selectable, and independent volume controls are provided. The DSP block supports eight outputs.

The functionality of the DSP processing block is not fixed; application-specific algorithms can be implemented according to different customer requirements. The procedure for configuring the CS48L32 DSP functions is tailored to each customer's application; please contact your Cirrus Logic representative for details.

For details of the DSP firmware requirements relating to clocking, register access, and code execution, refer to Section 4.4.

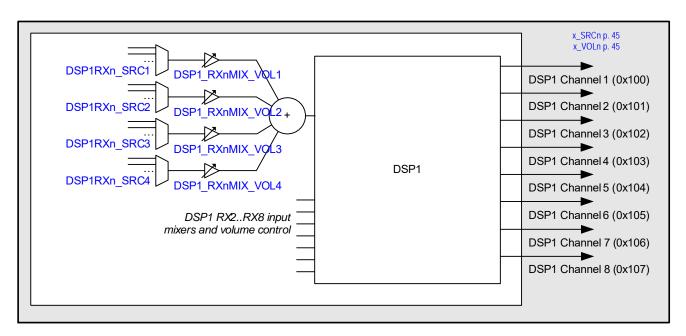


Figure 4-22. Digital-Core DSP Block

The DSP1 mixer input control fields (see Fig. 4-22) are located at addresses 0x9000 through 0x907C.

The full list of digital mixer control registers (0x8080–0x907C) is provided in Section 6. Generic register field definitions are provided in Table 4-10.

The x_SRC*n* fields select the input sources for the DSP processing block. Note that the selected input sources must be configured for the same sample rate as the DSP. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.12.

The hexadecimal numbers in Fig. 4-22 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for each DSP input channel is configured using DSP1_RX*m*_RATE. The sample rate for each DSP output channel is configured using DSP1_TX*m*_RATE. See Table 4-21 for a definition of these fields. Sample-rate conversion is required when routing the DSP signal paths to any signal chain that is configured for a different sample rate.

The DSP1_RXm_RATE fields must not be changed if any of the respective x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing new values to DSP1_RXm_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to the DSP1_RXm_RATE field. See Table 4-21 for details.

The CS48L32 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the required DSP mixing functions. If the frequency is too low, an attempt to enable a DSP mixer path fails. Note that active signal paths are not affected under such circumstances.

The status bits in registers 0x8080–0x907C indicate the status of each digital mixer. If an underclocked error condition occurs, these bits can be used to indicate which mixer paths have been enabled.

4.3.8 Tone Generator

The CS48L32 incorporates a tone generator that can be used for beep functions through any of the audio signal paths. The tone generator provides two 1 kHz outputs, with configurable phase relationship, offering flexibility to create differential signals or test scenarios.



Figure 4-23. Digital-Core Tone Generator

The tone generator outputs can be selected as input to any of the digital mixers or signal-processing functions within the CS48L32 digital core. The hexadecimal numbers in Fig. 4-23 indicate the corresponding x_SRC*n* setting for selection of that signal as an input to another digital-core function.

The sample rate for the tone generator is configured using TONE_RATE. See Table 4-21. Note that sample-rate conversion is required when routing the tone generator outputs to any signal chain that is configured for a different sample rate.

The tone generator outputs are enabled by setting the TONE1_EN and TONE2_EN bits as described in Table 4-18. The phase relationship is configured using TONE OFFSET.

The tone generator outputs can also provide a configurable DC signal level, for use as a test signal. The DC output is selected using the TONE*n*_OVD bits, and the DC signal amplitude is configured using the TONE*n*_LVL fields, as described in Table 4-18.

Register Address	Bit	Label	Default	Description
R45056 (0xB000)	9:8	TONE_	00	Tone Generator Phase Offset. Sets the phase of Tone Generator 2 relative to
TONE_		OFFSET[1:0]		Tone Generator 1
GENERATOR1				00 = 0° (in phase)
				01 = 90° ahead
				10 = 180° ahead
				11 = 270° ahead
	5	TONE2_OVD	0	Tone Generator 2 Override
				0 = Disabled (1 kHz tone output)
				1 = Enabled (DC signal output)
				The DC signal level, when selected, is configured using TONE2_LVL[23:0]
	4	TONE1_OVD	0	Tone Generator 1 Override
				0 = Disabled (1 kHz tone output)
				1 = Enabled (DC signal output)
				The DC signal level, when selected, is configured using TONE1_LVL[23:0]
	1	TONE2_EN	0	Tone Generator 2 Enable
				0 = Disabled
				1 = Enabled
	0	TONE1_EN	0	Tone Generator 1 Enable
				0 = Disabled
				1 = Enabled
R45060 (0xB004)	23:0	TONE1_LVL[23:0]	0x10_0000	Tone Generator 1 DC output level
TONE_				TONE1_LVL[23:0] is coded as 2's complement—bits [23:20] contain the integer
GENERATOR2				portion, bits [19:0] contain the fractional portion. The digital core 0 dBFS level
D45004 (0::D000)	00.0	TONES INVISOS ST	0.40 0000	corresponds to 0x10_0000 (+1) or 0xF0_0000 (-1).
R45064 (0xB008)	23:0	TONE2_LVL[23:0]	0x10_0000	'
TONE_ GENERATOR3				TONE2_LVL[23:0] is coded as 2's complement—bits [23:20] contain the integer portion, bits [19:0] contain the fractional portion. The digital core 0 dBFS level
GENERATORS				corresponds to 0x10 0000 (+1) or 0xF0 0000 (-1).

Table 4-18. Tone Generator Control

4.3.9 Noise Generator

The CS48L32 incorporates a white-noise generator that can be routed within the digital core. The main purpose of the noise generator is to provide comfort noise in cases where silence (digital mute) is not desirable.

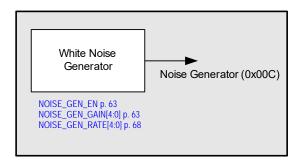


Figure 4-24. Digital-Core Noise Generator

The noise generator can be selected as input to any of the digital mixers or signal-processing functions within the CS48L32 digital core. The hexadecimal number (0x00C) in Fig. 4-24 indicates the corresponding x_SRC*n* setting for selection of the noise generator as an input to another digital-core function.

The sample rate for the noise generator is configured using NOISE_GEN_RATE. See Table 4-21. Note that sample-rate conversion is required when routing the noise generator output to any signal chain that is configured for a different sample rate.

The noise generator is enabled by setting NOISE_GEN_EN, described in Table 4-19. The signal level is configured using NOISE_GEN_GAIN.

Register Address	Bit	Label	Default	Description		
R46080 (0xB400)	5	NOISE_GEN_EN	0	Noise Generator Enable		
Comfort_Noise_				0 = Disabled		
Generator				1 = Enabled		
	4:0	NOISE_GEN_	0x00	Noise generator signa	l level	
		GAIN[4:0]		0x00 = -114 dBFS	(6 dB steps)	All other codes are
				0x01 = -108 dBFS	0x12 = -6 dBFS	reserved
				0x02 = -102 dBFS	0x13 = 0 dBFS	

Table 4-19. Noise Generator Control

4.3.10 PWM Generator

The CS48L32 incorporates two PWM signal generators as shown in Fig. 4-25. The duty cycle of each PWM signal can be modulated by an audio source, or can be set to a fixed value using a control register setting.

A four-input mixer is associated with each PWM generator. The four input sources are selectable in each case, and independent volume control is provided for each path.

PWM signal generators can be output directly on a GPIO pin. See Section 4.10 to configure a GPIO pin for this function.

Note that the PWM signal generators cannot be selected as input to the digital mixers or signal-processing functions within the CS48L32 digital core.

DS1219F4 Cirrus Logic 63

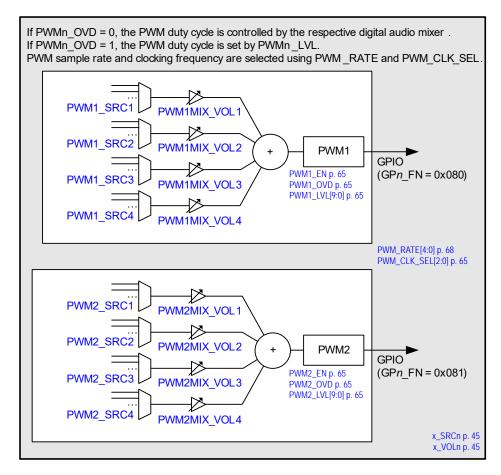


Figure 4-25. Digital-Core PWM Generator

The PWM1 and PWM2 mixer control fields (see Fig. 4-25) are located at addresses 0x8080 through 0x809C.

The full list of digital mixer control registers (0x8080–0x907C) is provided in Section 6. Generic register field definitions are provided in Table 4-10.

The x_SRC*n* fields select the input sources for the respective mixers. Note that the selected input sources must be configured for the same sample rate as the mixer to which they are connected. Sample-rate conversion functions are available to support flexible interconnectivity; see Section 4.3.12.

The PWM sample rate (cycle time) is configured using PWM_RATE. See Table 4-21. Note that sample-rate conversion is required when linking the PWM generators to any signal chain that is configured for a different sample rate.

The PWM_RATE field must not be changed if any of the associated x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing a new value to PWM_RATE. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to PWM_RATE. See Table 4-21 for details.

The PWM generators are enabled by setting PWM1_EN and PWM2_EN, respectively, as described in Table 4-20.

Under default conditions (PWMn_OVD = 0), the duty cycle of the PWM generators is controlled by an audio signal path; a 4-input mixer is associated with each PWM generator, as shown in Fig. 4-25.

When the PWMn_OVD bit is set, the duty cycle of the respective PWM generator is set to a fixed ratio; in this case, the duty cycle ratio is configurable using the PWMn LVL fields.

The PWM generator clock frequency is selected using PWM_CLK_SEL. For best performance, the highest available setting should be used. Note that the PWM generator clock must not be set to a higher frequency than SYSCLK.

Table 4-20. PWM Generator Control

Register Address	Bit	Label	Default	Description
R49152 (0xC000)	10:8	PWM_CLK_	000	PWM Clock Select
PWM_Drive_1		SEL[2:0]		000 = 6.144 MHz (5.6448 MHz)
				001 = 12.288 MHz (11.2896 MHz)
				010 = 24.576 MHz (22.5792 MHz)
				All other codes are reserved.
				The frequencies in brackets apply for 44.1 kHz–related sample rates only.
				PWM_CLK_SEL controls the resolution of the PWM generator; higher settings correspond to higher resolution.
				The PWM Clock must be less than or equal to the SYSCLK frequency.
	5	PWM2_OVD	0	PWM2 Generator Override
				0 = Disabled (PWM duty cycle is controlled by audio source)
				1 = Enabled (PWM duty cycle is controlled by PWM2_LVL).
	4	PWM1_OVD	0	PWM1 Generator Override
				0 = Disabled (PWM1 duty cycle is controlled by audio source)
				1 = Enabled (PWM1 duty cycle is controlled by PWM1_LVL).
	1	PWM2_EN	0	PWM2 Generator Enable
				0 = Disabled
				1 = Enabled
	0	PWM1_EN	0	PWM1 Generator Enable
				0 = Disabled
				1 = Enabled
R49156 (0xC004)	9:0	PWM1_LVL[9:0]	0x100	PWM1 Override Level.
PWM_Drive_2				Sets the PWM1 duty cycle (only valid if PWM1_OVD = 1).
				Coded as 2's complement.
				0x000 = 50% duty cycle
				0x200 = 0% duty cycle
R49160 (0xC008)	9:0	PWM2_LVL[9:0]	0x100	PWM2 Override Level.
PWM_Drive_3				Sets the PWM2 duty cycle (only valid if PWM2_OVD = 1).
				Coded as 2's complement.
				0x000 = 50% duty cycle
				0x200 = 0% duty cycle

The CS48L32 automatically checks to confirm that the SYSCLK frequency is high enough to support the digital mixer paths. If an attempt is made to enable a PWM signal mixer path, without sufficient SYSCLK cycles to support it, the attempt fails. Note that any signal paths that are already active are not affected under such circumstances.

The status bits in registers 0x8080–0x907C indicate the status of each digital mixer. If an underclocked error condition occurs, these bits can be used to indicate which mixer paths have been enabled.

4.3.11 Sample-Rate Control

The CS48L32 supports multiple signal paths through the digital core. Stereo full-duplex sample-rate conversion is provided to allow digital audio to be routed between interfaces operating at different sample rates.

The master clock reference for the audio signal paths is SYSCLK, as described in Section 4.8. Every digital signal path must be synchronized to SYSCLK.

Up to four different sample rates may be in use at any time on the CS48L32; all of these sample rates must be synchronized to SYSCLK. Sample-rate conversion is required when routing any audio path between digital functions that are configured for different sample rates.

There are three isochronous sample-rate converters (ISRCs). ISRC1 provides two-way, four-channel conversion paths between two different sample rates; ISRC2 and ISRC3 provide two-way, two-channel conversion paths. The ISRCs are described in Section 4.3.12.

The sample rate of different blocks within the CS48L32 digital core are controlled as shown in Fig. 4-26. The x_RATE fields select the applicable sample rate for each respective group of digital functions.

The x_RATE fields must not be changed if any of the x_SRCn fields associated with the respective functions is nonzero. The associated x_SRCn fields must be cleared before writing new values to the x_RATE fields. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to the associated x_RATE fields. See Table 4-21 for details.

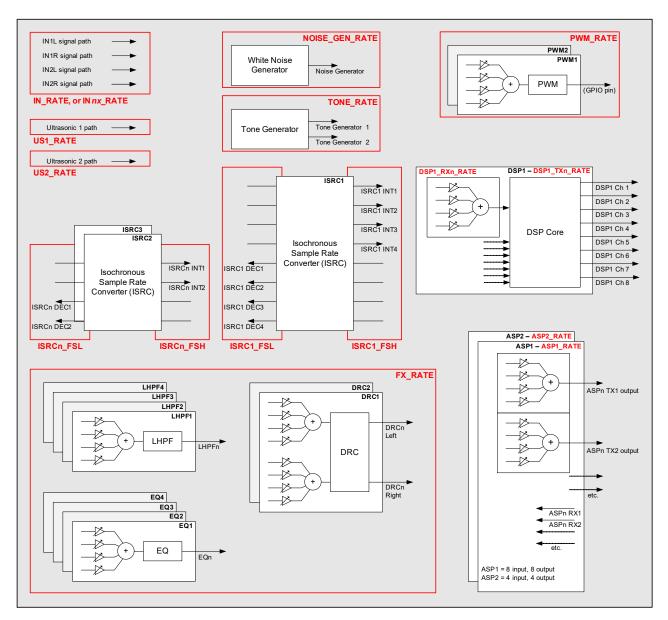


Figure 4-26. Digital-Core Sample-Rate Control

The input signal paths may be selected as input to the digital mixers or signal-processing functions. The sample rate for the input signal paths can either be set globally (using IN_RATE), or can be configured independently for each input channel (using the respective IN*nx*_RATE fields). The applicable mode depends on IN_RATE_MODE, as described in Table 4-3.

The ultrasonic demodulator circuits can be selected as input to the digital mixers or signal-processing functions. The sample rate for these signals are configured using US1_RATE and US2_RATE. The selected sample rate must be equal to the output rate of the demodulator function, set by the respective USn_FREQ field—see Section 4.2.9.

The ASPn RX inputs may be selected as input to the digital mixers or signal-processing functions. The ASPn TX outputs are derived from the respective output mixers. The sample rates for audio serial ports (ASP1–ASP2) are configured using the ASPn_RATE fields (where n identifies the applicable ASP 1 or 2) respectively.

The EQ, DRC, and LHPF functions can be enabled in any signal path within the digital core. The sample rate for these functions is configured using FX_RATE. Note that the EQ, DRC, and LHPF functions must all be configured for the same sample rate.

The DSP functions can be enabled in any signal path within the digital core. The DSP supports up to eight input channels and eight output channels. The sample rate of each input/output path can be configured independently, using DSP1_TX*n*_RATE and DSP1_RX*n*_RATE.

The tone generator and noise generator can be selected as input to any of the digital mixers or signal-processing functions. The sample rates for these sources are configured using the TONE RATE and NOISE GEN RATE fields, respectively.

The PWM signal generators can be modulated by an audio source, derived from the associated signal mixers. The sample rate (cycle time) for the PWM signal generators is configured using PWM_RATE.

The sample-rate control registers are described in Table 4-21. Refer to the field descriptions for details of the valid selections in each case. Note that the input (ADC/PDM) signal paths must always be associated with the SYSCLK clocking domain; different sample rates may be selected concurrently for different channels, but each sample rate must be synchronized to SYSCLK.

The control registers associated with the ISRCs are described in Table 4-22.

Table 4-21. Digital-Core Sample-Rate Control

Register Address	Bit	Label	Default	
R16392 (0x4008)	15:11	IN_RATE[4:0]	0x00	Input Signal Paths Sample Rate (valid if IN_RATE_MODE = 0)
INPUT_RATE_CONTROL				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x03 = SAMPLE_RATE_4
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				If 384 kHz/768 kHz PDM clock rate is selected on any of the
				input paths (INn_OSR = 01X), the input paths sample rate is
				valid up to 48 kHz/96 kHz respectively.
R16420 (0x4024)	15:11	IN1L_RATE[4:0]	0x00	Input Path n (Left/Right) Sample Rate (valid if IN_RATE_MODE
IN1L_CONTROL1				= 1)
R16452 (0x4044)	15:11	IN1R_RATE[4:0]	0x00	0x00 = SAMPLE_RATE_1
IN1R_CONTROL1				0x01 = SAMPLE_RATE_2
R16484 (0x4064)	15:11	IN2L_RATE[4:0]	0x00	0x02 = SAMPLE_RATE_3
IN2L_CONTROL1				0x03 = SAMPLE_RATE_4
R16516 (0x4084)	15:11	IN2R_RATE[4:0]	0x00	All other codes are reserved.
IN2R_CONTROL1				The selected sample rate is valid in the range 8–192 kHz.
				If 384 kHz/768 kHz PDM clock rate is selected (INn_
				OSR = 01X), the IN <i>n</i> L/IN <i>n</i> R sample rate is valid up to 48 kHz/ 96 kHz respectively.
R24580 (0x6004)	12:8	ASP1 RATE[4:0]	0x00	ASP <i>n</i> Audio Serial Port Sample Rate
ASP1 CONTROL1	12.0	ASP 1_KATE[4.0]	0,000	0x00 = SAMPLE RATE 1
_	12.0	ACDO DATE(4:0)	0x00	
R24708 (0x6084)	12:8	ASP2_RATE[4:0]	0,000	0x01 = SAMPLE_RATE_2
ASP2_CONTROL1				0x02 = SAMPLE_RATE_3
				0x03 = SAMPLE_RATE_4
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All ASPnTXm_SRCx fields must be cleared before changing ASPn RATE.

Table 4-21. Digital-Core Sample-Rate Control (Cont.)

Register Address	Bit	Label	Default	Description
R43008 (0xA800)	15:11	FX_RATE[4:0]	0x00	FX Sample Rate (EQ, LHPF, DRC)
FX_SAMPLE_RATE				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x03 = SAMPLE_RATE_4
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All EQn_SRCm, DRCnx_SRCm, and LHPFn_SRCm fields must be cleared before changing FX_RATE.
R45056 (0xB000)	15:11	TONE_RATE[4:0]	0x00	Tone Generator Sample Rate
TONE GENERATOR1	10.11	10112_10112[1.0]	ONOO	0x00 = SAMPLE_RATE_1
TONE_SENERURISH				0x01 = SAMPLE RATE 2
				0x02 = SAMPLE_RATE_3
				0x03 = SAMPLE RATE 4
				All other codes are reserved.
R46080 (0xB400)	15:11	NOISE_GEN_RATE[4:0]	0x00	The selected sample rate is valid in the range 8–192 kHz. Noise Generator Sample Rate
Comfort_Noise_Generator	13.11	INDISE_GEN_RATE[4.0]	0,000	0x00 = SAMPLE_RATE_1
Connort_Noise_Generator				0x01 = SAMPLE_RATE_1
				0x02 = SAMPLE_RATE_3
				0x03 = SAMPLE_RATE_4
				All other codes are reserved.
D47400 (0xD004)	24.07	LICA DATE(A.O)	0,,00	The selected sample rate is valid in the range 8–192 kHz.
R47108 (0xB804)	31:27	US1_RATE[4:0]	0x00	Ultrasonic Demodulator 1 Sample Rate
US1_CONTROL				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x03 = SAMPLE_RATE_4
				All other codes are reserved. The selected sample rate must be the same as the output rate set by US1_FREQ (i.e., 16 kHz).
R47124 (0xB814)	31:27	US2_RATE[4:0]	0x00	Ultrasonic Demodulator 2 Sample Rate
US2_CONTROL				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x03 = SAMPLE_RATE_4
				All other codes are reserved. The selected sample rate must be
				the same as the output rate set by US2_FREQ (i.e., 16 kHz).
R49152 (0xC000)	15:11	PWM_RATE[4:0]	0x00	PWM Frequency (sample rate)
PWM_Drive_1				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				0x02 = SAMPLE_RATE_3
				0x03 = SAMPLE_RATE_4
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All PWMn_SRC <i>m</i> fields must be cleared before changing PWM_RATE.

Table 4-21. Digital-Core Sample-Rate Control (Cont.)

Register Address	Bit	Label	Default	Description
0x2B80080	4:0	DSP1_RX1_RATE[4:0]	0x00	DSP1 RX Channel <i>n</i> Sample Rate
DSP1_SAMPLE_RATE_RX1				0x00 = SAMPLE_RATE_1
0x2B80088	4:0	DSP1_RX2_RATE[4:0]	0x00	0x01 = SAMPLE_RATE_2
DSP1_SAMPLE_RATE_RX2	1			0x02 = SAMPLE_RATE_3
0x2B80090	4:0	DSP1_RX3_RATE[4:0]	0x00	0x03 = SAMPLE_RATE_4
DSP1_SAMPLE_RATE_RX3				All other codes are reserved.
0x2B80098	4:0	DSP1_RX4_RATE[4:0]	0x00	The selected sample rate is valid in the range 8–192 kHz.
DSP1_SAMPLE_RATE_RX4	1			All DSP1RX <i>n</i> _SRC <i>x</i> fields must be cleared before changing
0x2B800A0	4:0	DSP1_RX5_RATE[4:0]	0x00	DSP1_RX <i>n</i> _RATE.
DSP1_SAMPLE_RATE_RX5	1			
0x2B800A8	4:0	DSP1_RX6_RATE[4:0]	0x00	
DSP1_SAMPLE_RATE_RX6				
0x2B800B0	4:0	DSP1_RX7_RATE[4:0]	0x00	
DSP1_SAMPLE_RATE_RX7	1			
0x2B800B8	4:0	DSP1_RX8_RATE[4:0]	0x00	
DSP1_SAMPLE_RATE_RX8	1			
0x2B80280	4:0	DSP1_TX1_RATE[4:0]	0x00	DSP1 TX Channel <i>n</i> Sample Rate
DSP1_SAMPLE_RATE_TX1	1			0x00 = SAMPLE_RATE_1
0x2B80288	4:0	DSP1_TX2_RATE[4:0]	0x00	0x01 = SAMPLE_RATE_2
DSP1_SAMPLE_RATE_TX2	1			0x02 = SAMPLE_RATE_3
0x2B80290	4:0	DSP1_TX3_RATE[4:0]	0x00	0x03 = SAMPLE_RATE_4
DSP1_SAMPLE_RATE_TX3	1			All other codes are reserved.
0x2B80298	4:0	DSP1_TX4_RATE[4:0]	0x00	The selected sample rate is valid in the range 8–192 kHz.
DSP1_SAMPLE_RATE_TX4				
0x2B802A0	4:0	DSP1_TX5_RATE[4:0]	0x00	
DSP1_SAMPLE_RATE_TX5				
0x2B802A8	4:0	DSP1_TX6_RATE[4:0]	0x00	
DSP1_SAMPLE_RATE_TX6	1			
0x2B802B0	4:0	DSP1_TX7_RATE[4:0]	0x00	
DSP1_SAMPLE_RATE_TX7				
0x2B802B8	4:0	DSP1_TX8_RATE[4:0]	0x00	
DSP1_SAMPLE_RATE_TX8				

4.3.12 Isochronous Sample-Rate Converter (ISRC)

The CS48L32 supports multiple signal paths through the digital core. The ISRCs provide sample-rate conversion between synchronized sample rates on the SYSCLK clock domain.

There are three ISRCs on the CS48L32. ISRC1 provides four signal paths between two different sample rates; ISRC2 and ISRC3 provide two signal paths between two different sample rates, as shown in Fig. 4-27. The sample rates associated with each ISRC can each be set equal to SAMPLE_RATE_1, SAMPLE_RATE_2, SAMPLE_RATE_3, or SAMPLE_RATE 4. See Section 4.8 for details of the sample-rate control registers.

Each ISRC converts between a sample rate selected by ISRC*n_FSL* and a sample rate selected by ISRC*n_FSH*, (where *n* identifies the applicable ISRC 1, 2, or 3). The higher of the two sample rates must be selected by ISRC*n_FSH* in each case.

The ISRCs support sample rates in the range 8–192 kHz. The sample-rate conversion ratio must be an integer (1–24) or equal to 1.5.

The ISRCn_FSL and ISRCn_FSH fields must not be changed if any of the respective x_SRCn fields is nonzero. The associated x_SRCn fields must be cleared before writing new values to ISRCn_FSL or ISRCn_FSH. A minimum delay of 125 μ s must be allowed between clearing the x_SRCn fields and writing to the associated ISRCn_FSL or ISRCn_FSH fields. See Table 4-22 for details.

The ISRC signal paths are enabled using the ISRC*n*_INT*m*_EN and ISRC*n*_DEC*m*_EN bits, as follows:

- The ISRC*n* interpolation paths (increasing sample rate) are enabled by setting the ISRC*n*_INT*m*_EN bits, (where *m* identifies the applicable channel).
- The ISRCn decimation paths (decreasing sample rate) are enabled by setting the ISRCn DECm EN bits.

The CS48L32 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the commanded ISRC and digital mixing functions. If the frequency is too low, an attempt to enable an ISRC signal path fails. Note that active signal paths are not affected under such circumstances.

The status bits in registers 0x8080–0x907C indicate the status of each digital mixer. If an underclocked error condition occurs, these bits can be used to indicate which mixer paths have been enabled.

The ISRC signal paths and control registers are shown in Fig. 4-27.

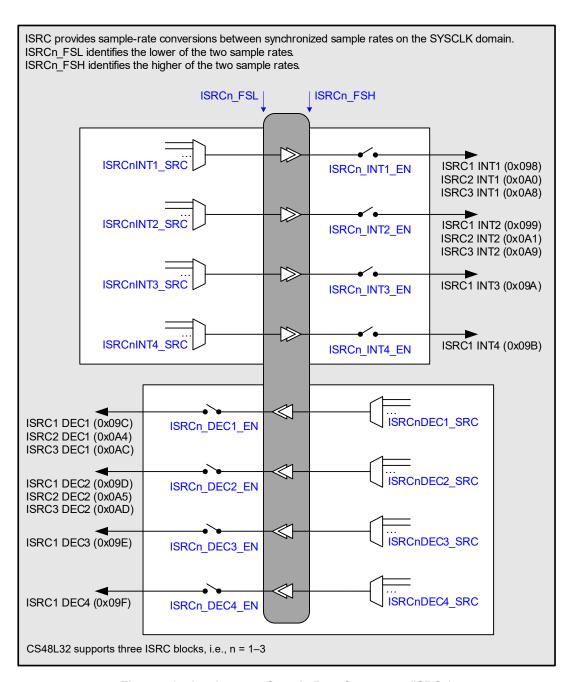


Figure 4-27. Isochronous Sample-Rate Converters (ISRCs)

The ISRC input control fields (see Fig. 4-27) are located at addresses 0x8980 through 0x8AD0.

The full list of digital mixer control registers (0x8080–0x907C) is provided in Section 6. Generic register field definitions are provided in Table 4-10.

The x_SRC fields select the input sources for the respective ISRC processing blocks. Note that the selected input sources must be configured for the same sample rate as the ISRC to which they are connected.

The hexadecimal numbers in Fig. 4-27 indicate the corresponding x_SRC setting for selection of that signal as an input to another digital-core function.

The fields associated with the ISRCs are described in Table 4-22.

Table 4-22. Digital-Core ISRC Control

Register Address	Bit	Label	Default	Description
R41984 (0xA400)	31:27	ISRC1_FSL[4:0]	0x00	ISRC1 Low Sample Rate (Sets the lower of the ISRC1 sample rates)
ISRC1_				0x00 = SAMPLE_RATE_1
CONTROL1				0x01 = SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All ISRC1_INT <i>n</i> _SRC fields must be cleared before changing ISRC1_FSL.
	15:11	ISRC1_FSH[4:0]	0x00	ISRC1 High Sample Rate (Sets the higher of the ISRC1 sample rates)
				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All ISRC1_DECn_SRC fields must be cleared before changing ISRC1_FSH.
R41988 (0xA404)	11	ISRC1 INT4 EN	0	ISRC1 INT4 Enable
ISRC1				Interpolation Channel 4 path from ISRC1_FSL rate to ISRC1_FSH rate
CONTROL2				0 = Disabled, 1 = Enabled
	10	ISRC1 INT3 EN	0	ISRC1 INT3 Enable
				Interpolation Channel 3 path from ISRC1_FSL rate to ISRC1_FSH rate
				0 = Disabled, 1 = Enabled
	9	ISRC1_INT2_EN	0	ISRC1 INT2 Enable
				Interpolation Channel 2 path from ISRC1_FSL rate to ISRC1_FSH rate
				0 = Disabled, 1 = Enabled
	8	ISRC1_INT1_EN	0	ISRC1 INT1 Enable
				Interpolation Channel 1 path from ISRC1_FSL rate to ISRC1_FSH rate
				0 = Disabled, 1 = Enabled
	3	ISRC1_DEC4_EN	0	ISRC1 DEC4 Enable
				Decimation Channel 4 path from ISRC1_FSH rate to ISRC1_FSL rate
				0 = Disabled, 1 = Enabled
	2	ISRC1_DEC3_EN	0	ISRC1 DEC3 Enable
				Decimation Channel 3 path from ISRC1_FSH rate to ISRC1_FSL rate
				0 = Disabled, 1 = Enabled
	1	ISRC1_DEC2_EN	0	ISRC1 DEC2 Enable
				Decimation Channel 2 path from ISRC1_FSH rate to ISRC1_FSL rate
				0 = Disabled, 1 = Enabled
	0	ISRC1_DEC1_EN	0	ISRC1 DEC1 Enable
				Decimation Channel 1 path from ISRC1_FSH rate to ISRC1_FSL rate
				0 = Disabled, 1 = Enabled

Table 4-22. Digital-Core ISRC Control (Cont.)

Register Address	Bit	Label	Default	Description
R42256 (0xA510)	31:27	ISRC2_FSH[4:0]	0x00	ISRC2 High Sample Rate (Sets the higher of the ISRC2 sample rates)
ISRC2				0x00 = SAMPLE RATE 1
CONTROL1				0x01 = SAMPLE RATE 2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All ISRC2 DECn SRC fields must be cleared before changing ISRC2 FSH.
	15:11	ISRC2_FSL[4:0]	0x00	ISRC2 Low Sample Rate (Sets the lower of the ISRC2 sample rates)
				0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE RATE 2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All ISRC2_INTn_SRC fields must be cleared before changing ISRC2_FSL.
R42260 (0xA514)	9	ISRC2 INT2 EN	0	ISRC2 INT2 Enable
ISRC2	Ū			Interpolation Channel 2 path from ISRC2_FSL rate to ISRC2_FSH rate
CONTROL2				0 = Disabled, 1 = Enabled
CONTROLZ	8	ISRC2_INT1_EN	0	ISRC2 INT1 Enable
				Interpolation Channel 1 path from ISRC2_FSL rate to ISRC2_FSH rate
				0 = Disabled, 1 = Enabled
	1	ISRC2 DEC2 EN	0	ISRC2 DEC2 Enable
		IONOZ_BEOZ_EN		Decimation Channel 2 path from ISRC2_FSH rate to ISRC2_FSL rate
				0 = Disabled, 1 = Enabled
	0	ISRC2 DEC1 EN	0	ISRC2 DEC1 Enable
	U	IONOZ_DEO1_EN		Decimation Channel 1 path from ISRC2_FSH rate to ISRC2_FSL rate
				0 = Disabled, 1 = Enabled
R42528 (0xA620)	31:27	ISRC3 FSH[4:0]	0x00	ISRC3 High Sample Rate (Sets the higher of the ISRC3 sample rates)
ISRC3	01.27	101100_1 011[4.0]	0,00	0x00 = SAMPLE_RATE_1
CONTROL1				0x01 = SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All ISRC3 DEC <i>n</i> SRC fields must be cleared before changing ISRC3 FSH.
	15:11	ISRC3 FSL[4:0]	0x00	ISRC3 Low Sample Rate (Sets the lower of the ISRC3 sample rates)
	10.11	101100_1 02[4.0]	OXOO	0x00 = SAMPLE_RATE_1
				0x01 = SAMPLE_RATE_2
				All other codes are reserved.
				The selected sample rate is valid in the range 8–192 kHz.
				All ISRC3_INT <i>n</i> _SRC fields must be cleared before changing ISRC3_FSL.
R42532 (0xA624)	9	ISRC3 INT2 EN	0	ISRC3 INT2 Enable
, ,		101100_11112_211		Interpolation Channel 2 path from ISRC3_FSL rate to ISRC3_FSH rate
ISRC3_ CONTROL2				0 = Disabled, 1 = Enabled
CONTROL2	8	ISRC3_INT1_EN	0	ISRC3 INT1 Enable
				Interpolation Channel 1 path from ISRC3_FSL rate to ISRC3_FSH rate
				0 = Disabled, 1 = Enabled
	1	ISRC3_DEC2_EN	0	ISRC3 DEC2 Enable
	'	.5.100_5202_211		Decimation Channel 2 path from ISRC3_FSH rate to ISRC3_FSL rate
				0 = Disabled, 1 = Enabled
	0	ISRC3 DEC1 EN	0	ISRC3 DEC1 Enable
	0	IOTOO_DEGT_EN		Decimation Channel 1 path from ISRC3_FSH rate to ISRC3_FSL rate
				0 = Disabled, 1 = Enabled

4.4 DSP Firmware Control

The CS48L32 digital core incorporates a Halo Core DSP, capable of running a wide range of audio-enhancement functions. Different firmware configurations can be loaded onto the DSP, enabling the CS48L32 to be highly customized for specific application requirements. DSP firmware can be configured using software packages provided by Cirrus Logic, such as the SoundClear suite of audio-processing algorithms.

The DSP is designed specifically for audio applications, employing a small gate-count architecture to support an optimized mix of processing features while fulfilling a low power-consumption requirement. The instruction set is highly efficient and targeted, with a high degree of parallelism and efficient multicore integration to reduce power consumption and increase processing speed.

The DSP core incorporates two data memories supporting high-bandwidth access: parallel memory access can fetch two short (24-bit) operands per memory per cycle; simultaneous memory access enables up to four 24-bit accesses per clock cycle. Multiple data formats are supported, including basic 24-bit register and 56-bit accumulator. Native support for 48-bit double-precision calculations is also provided.

The DSP core is supported by an interrupt controller (up to 24 inputs), JTAG debugger, memory protection unit (MPU) with error-trace stack, and watchdog timer. Arbitrated multiple-access to the program and data memories is provided, with support for configurable FFT, FIR, LMS, and linear/dB-conversion accelerators. Note that different instances of the Halo Core DSP may provide different feature sets; specific details for the CS48L32 are provided in Section 4.4.1.

To use the programmable DSP, the required firmware configuration must first be loaded onto the device by writing the appropriate files to the CS48L32 register map; the firmware configuration comprises program and data memory contents. After loading the DSP firmware, the DSP functions must be enabled using the associated control fields.

Details of the DSP firmware memory registers are provided in Section 4.4.2. Note that the WISCE evaluation board control software provides support for loading the CS48L32 program and data memories. A software programming guide can be provided to assist users in developing their own software algorithms—please contact your Cirrus Logic representative for further information.

The audio signal paths to and from the DSP processing block are configured as described in Section 4.3. Note that the DSP firmware must be loaded and enabled before audio signal paths can be enabled.

4.4.1 DSP Configuration Definition

The Halo Core DSP uses an adaptable design that can be tailored to suit different target applications. Each instance of the DSP (either on a single device, or from one device to another) may offer different capabilities in terms of memory size, hardware accelerators, and other features.

The parameters defining the CS48L32 Halo Core DSP are described in Table 4-23.

Description DSP1 Start address in device register map 0x200 0000 X-memory bank size (number of 48-bit words) 4096 Y-memory bank size (number of 48-bit words) 4096 8192 P-memory bank size (number of 40-bit words) Boot-memory bank size (number of 40-bit words) 8192 Address offset for PM (packed) 0x0180 0000 Address offset for XM (packed, 32-bit) 0x0000 0000 0x00C0 0000 Address offset for YM (packed, 32-bit) 0x0080 0000 Address offset for XM (unpacked, 24-bit) Address offset for YM (unpacked, 24-bit) 0x0140 0000 Address offset for XM (unpacked, 32-bit) 0x0040 0000 0x0100 0000 Address offset for YM (unpacked, 32-bit) Number of external debug triggers 0 JTAG debug ID 100 MHz Maximum clock speed Accelerator functions—dB/linear converters Yes LMS (least mean square) filters 5 FIR (finite impulse response) filters 8 FFT (fast Fourier transform) accelerators Yes MIPS profiler Yes

Table 4-23. Halo Core DSP Definition

Table 4-23. Halo Core DSP Definition (Cont.)

Description	DSP1
Trace buffer	Yes
Trace buffer depth	16
Trace stack depth	16
Watchdog timer	Yes
Interrupt controller	Yes
Stream arbiter	Yes
Number of receive channels	8
Number of transmit channels	8
Number of master controllers	6
Number of interrupt generators	8
Data width—integer part	4 bits
Data width—fractional part	31 bits
AHB bus master	Yes
Memory protection unit	Yes
Memory controller	Yes
Number of X-memory banks	24
Number of Y-memory banks	8
Number of P-memory banks	7
Number of boot-memory banks	0

Status registers describing the Halo Core DSP are provided within the CS48L32 register map, as shown in Table 4-24. The default values of these fields are provided in Section 6.

Table 4-24. DSP Configuration Definition

Register Address	Bit	Label	Description
DSP1 base address = 0x200_0000			
base address + 0x5E_0000	31:0	DSPn_SYS_ID[31:0]	DSP identifier
DSPn_SYS_INFO_ID			
base address + 0x5E_0004	31:0	DSPn_SYS_VERSION[31:0]	DSP version number
DSPn_SYS_INFO_VERSION			
base address + 0x5E_0008	31:0	DSPn_SYS_CORE_ID[31:0]	DSP instance
DSPn_SYS_INFO_CORE_ID			
base address + 0x5E_000C	31:0	DSPn_SYS_AHB_BASE_ADDR[31:0]	DSP start address in the device register map
DSPn_SYS_INFO_AHB_ADDR			
base address + 0x5E_0010	31:0	DSPn_SYS_XM_SRAM_SIZE[31:0]	X-memory size (number of 24-bit words)
DSPn_SYS_INFO_XM_SRAM_SIZE			
base address + 0x5E_0018	31:0	DSPn_SYS_YM_SRAM_SIZE[31:0]	Y-memory size (number of 24-bit words)
DSPn_SYS_INFO_YM_SRAM_SIZE			
base address + 0x5E_0020	31:0	DSPn_SYS_PM_SRAM_SIZE[31:0]	P-memory size (number of 20-bit words)
DSPn_SYS_INFO_PM_SRAM_SIZE			Note this includes the boot memory, if present.
base address + 0x5E_0028	31:0	DSPn_SYS_PM_BOOT_SIZE[31:0]	Boot-memory size (number of 20-bit words)
DSPn_SYS_INFO_PM_BOOT_SIZE			
base address + 0x5E_002C	31	DSPn_SYS_SELF_BOOT	1 = DSP supports self-boot on release from reset
DSPn_SYS_INFO_FEATURES	13	DSPn_SYS_DB_RAND_EXISTS	1 = DSP provides dB/linear conversion
	12	DSPn_SYS_LMS_EXISTS	1 = DSP provides LMS filters
	11	DSPn_SYS_FIR_EXISTS	1 = DSP provides FIR filters
	10	DSPn_SYS_FFT_EXISTS	1 = DSP provides FFT accelerator
	9	DSPn_SYS_MIPS_EXISTS	1 = DSP provides MIPS profiler
	8	DSPn_SYS_TRB_EXISTS	1 = DSP provides trace buffer
	7	DSPn_SYS_WDT_EXISTS	1 = DSP provides watchdog timer
	5	DSPn_SYS_STREAM_ARB_EXISTS	1 = DSP provides stream arbiter control
	4	DSPn_SYS_AHBM_EXISTS	1 = DSP provides AHB bus master
	3	DSPn_SYS_MPU_EXISTS	1 = DSP provides MPU function
base address + 0x5E_0030	5:0	DSPn_SYS_NUM_FIR_FILTERS[5:0]	Number of FIR filters
DSPn_SYS_INFO_FIR_FILTERS			

Table 4-24.	DSP	Configuration	Definition	(Cont.)	

Register Address	Bit	Label	Description
base address + 0x5E_0034	5:0	DSPn_SYS_NUM_LMS_FILTERS[5:0]	Number of LMS filters
DSPn_SYS_INFO_LMS_FILTERS			
base address + 0x5E_0038	31:0	DSPn_SYS_XM_BANK_SIZE[31:0]	X-memory bank size (number of 24-bit words)
DSPn_SYS_INFO_XM_BANK_SIZE			
base address + 0x5E_003C	31:0	DSPn_SYS_YM_BANK_SIZE[31:0]	Y-memory bank size (number of 24-bit words)
DSPn_SYS_INFO_YM_BANK_SIZE			
base address + 0x5E_0040	31:0	DSPn_SYS_PM_BANK_SIZE[31:0]	P-memory bank size (number of 20-bit words)
DSPn_SYS_INFO_PM_BANK_SIZE			

4.4.2 DSP Firmware Memory and Register Mapping

The DSP firmware memory comprises program memory (P-memory) and two regions of data memory (X-memory and Y-memory). Each memory (X, Y, or P) is arranged as a number of banks; the size of each is defined by the bank size and the number or banks as shown in Table 4-23. The banked configuration enables each memory to support multiple simultaneous read/write accesses.

The program memory is formatted as 40-bit words. Most of the processor functionality uses 20-bit instructions, but some make use of the 40-bit width. Referenced to the CS48L32 register map, blocks of four 40-bit words are packed into five 32-bit registers.

The data memory is formatted as 24-bit words. Each of the data memories is mapped to three different locations of the CS48L32 register map, with a different packing layout used in each case; this provides flexibility to access the data memory in different ways according to the specific task that is being performed. Note that the three sections all represent the same data—data that is written to one section can be read back either at the same address or at the corresponding address within either of the other sections.

- In the packed data-memory, blocks of four 24-bit words are packed into three 32-bit registers. This tightly-packed layout does not include any padding bits; it provides efficient access to the data memory, ideal for transfer of large volumes of audio data.
- In the unpacked 24-bit memory, each 24-bit data word occupies one 32-bit register; the MSBs of each register are unused. This layout is ideal for read/write access to individual 24-bit words.
- In the unpacked 32-bit memory, 32-bit data is supported in 32-bit registers. Each 32-bit data word uses the space of two 24-bit words in the DSP memory. This provides support for 32-bit data within the 24-bit X- or Y-memory regions. Note that the usable capacity of the data memory is reduced in this format, as some bits are not used.

The CS48L32 program- and data-register memory space is described in Table 4-25. The full register map listing is provided in Section 6.

Table 4-25. DSP Program, Data, and Coefficient Registers

DSP Number	Description		Register Address	Number of Registers	DSP Memory Size
DSP1	Program memory		0x380_0000-0x384_5FFC	71680	56k x 40-bit words
	X-memory	Packed	0x200_0000-0x208_FFFC	147456	192k x 24-bit words
		Unpacked-24	0x280_0000-0x28B_FFFC	196608	192k x 24-bit words
		Unpacked-32	0x240_0000-0x245_FFFC	98304	96k x 32-bit words
	Y-memory	Packed	0x2C0_0000-0x2C2_FFFC	49152	64k x 24-bit words
		Unpacked-24	0x340_0000-0x343_FFFC	65536	64k x 24-bit words
		Unpacked-32	0x300_0000-0x301_FFFC	32768	32k x 32-bit words

The DSP firmware memory is configured by writing to the registers referenced in Table 4-25. Note that clocking is not required for access to the firmware registers by the host processor.

4.4.3 DSP Firmware Control

The configuration and control of the DSP firmware is described in the following subsections.

4.4.3.1 **DSP Memory**

The DSP firmware memory comprises program memory (P-memory) and data memory (X-memory and Y-memory) as described in Section 4.4.2. Each memory (X, Y, or P) is arranged as a number of banks; the banked configuration enables each memory to support multiple simultaneous read/write accesses.

Each bank of memory can be individually enabled or disabled; the power consumption of the firmware memory can be optimized by enabling only the banks that are required for a particular application.

The CS48L32 firmware memory also supports a low-power retention state; in this state, the memory contents are retained, but read/write access is not supported. The low-power retention state is selectable for each memory region (P, X, or Y), and applies to all enabled banks of the respective memory.

The DSP firmware memory is controlled using the x_PWD_N and x_EXT_N_n fields described in Table 4-27. Separate controls are provided for odd-numbered and even-numbered words within each memory region.

- x_PWD_N selects the active or data-retention state for the respective memory. In the active state, read/write access is supported. In the data-retention state, the memory contents are maintained, but read/write access is not possible.
- x_EXT_N_n selects the enabled or disabled state for the respective memory bank n. If the bank is disabled, the contents are lost. If the bank is enabled, read/write access is supported (provided the respective memory is active).

The memory-control fields are summarized in Table 4-26.

 x_PWD_N
 x_EXT_N_n
 Description

 0
 0
 Memory disabled, contents lost

 0
 1
 Memory enabled in data-retention state

 1
 0
 Memory disabled, contents lost

 1
 1
 Memory enabled for read/write access

Table 4-26. DSP Memory Control

Notes: If a memory bank is disabled, the contents of this bank are lost—the low-power retention state is not valid for disabled memory banks. The memory is not actively cleared in the disabled state—some contents of the memory may persist in the disabled state, but the integrity of the memory contents is not assured.

If a memory bank is disabled, all higher-numbered banks in the same memory (X, Y, or P) are unavailable. It is recommended to disable the higher-numbered banks by clearing the respective $x \in XT \setminus N$ n bits.

The DSP memory-control fields are not affected by software reset; these bits remain in their previous state under software-reset conditions. The DSP firmware memory contents are maintained through software reset, provided the respective memory bank is enabled.

The DSP1 memory-control fields are defined in Table 4-27.

Table 4-27. DSP Memory Control Registers

Register Address	Bit	Label	Default	Description
R94220 (0x1700C)	1	DSP1_XM_SRAM_IBUS_E_PWD_N	0	X-memory even-address power control
DSP1_XM_SRAM_IBUS_SETUP_0				0 = Data-retention state
				1 = Memory active
				Only valid for enabled memory banks
	0	DSP1_XM_SRAM_IBUS_O_PWD_N	0	X-memory odd-address power control
				0 = Data-retention state
				1 = Memory active
				Only valid for enabled memory banks
R94224 (0x17010)	1	DSP1_XM_SRAM_IBUS_E_EXT_N_n	0	X-memory even-address Bank n enable
DSP1_XM_SRAM_IBUS_SETUP_1				0 = Disabled
to				1 = Enabled
R94316 (0x1706C)	0	DSP1_XM_SRAM_IBUS_O_EXT_N_n	0	X-memory odd-address Bank <i>n</i> enable
DSP1_XM_SRAM_IBUS_SETUP_24				0 = Disabled
				1 = Enabled

Table 4-27. DSP Memory Control Registers (Cont.)

Register Address	Bit	Label	Default	Description
R94320 (0x17070)	1	DSP1_YM_SRAM_IBUS_E_PWD_N	0	Y-memory even-address power control
DSP1_YM_SRAM_IBUS_SETUP_0				0 = Data-retention state
				1 = Memory active
				Only valid for enabled memory banks
	0	DSP1_YM_SRAM_IBUS_O_PWD_N	0	Y-memory odd-address power control
				0 = Data-retention state
				1 = Memory active
				Only valid for enabled memory banks
R94324 (0x17074)	1	DSP1_YM_SRAM_IBUS_E_EXT_N_n	0	Y-memory even-address Bank <i>n</i> enable
DSP1_YM_SRAM_IBUS_SETUP_1				0 = Disabled
to				1 = Enabled
R94352 (0x17090)	0	DSP1_YM_SRAM_IBUS_O_EXT_N_n	0	Y-memory odd-address Bank <i>n</i> enable
DSP1_YM_SRAM_IBUS_SETUP_8				0 = Disabled
				1 = Enabled
R94356 (0x17094)	1	DSP1_PM_SRAM_IBUS_E_PWD_N	0	P-memory even-address power control
DSP1_PM_SRAM_IBUS_SETUP_0				0 = Data-retention state
				1 = Memory active
				Only valid for enabled memory banks
	0	DSP1_PM_SRAM_IBUS_O_PWD_N	0	P-memory odd-address power control
				0 = Data-retention state
				1 = Memory active
				Only valid for enabled memory banks
R94360 (0x17098)	1	DSP1_PM_SRAM_IBUS_E_EXT_N_n	0	P-memory even-address Bank <i>n</i> enable
DSP1_PM_SRAM_IBUS_SETUP_1				0 = Disabled
to				1 = Enabled
R94384 (0x170B0)	0	DSP1_PM_SRAM_IBUS_O_EXT_N_n	0	P-memory odd-address Bank <i>n</i> enable
DSP1_PM_SRAM_IBUS_SETUP_7				0 = Disabled
				1 = Enabled

The firmware memory contents are maintained through software reset. The DSP firmware memory contents are not retained under power-on-reset or hardware-reset conditions.

Note that the DSP firmware memory is not actively cleared under power-on-reset or hardware-reset conditions; some contents of the memory may persist through these events, but the integrity of the memory is not assured.

See Section 4.14 for details of the CS48L32 reset functions.

4.4.3.2 DSP Clocking

A clock signal is required when executing software on the DSP core, or if any of the stream-arbiter master controllers is enabled. (Note that clocking is not required for access to the firmware registers by the host processor.)

The clock source for the DSP is derived from SYSCLK. See Section 4.8 for details of how to configure SYSCLK. Note that the internal clock signals within the DSP are enabled and disabled automatically, as required by the DSP-core and stream-arbiter status.

The DSP clock frequency is selected using DSP1_CLK_FREQ_SEL. Note that the clock frequency must be less than or equal to the SYSCLK frequency.

The DSP1_CLK_FREQ_STS field indicates the clock frequency for the DSP core. This can be used to confirm the clock frequency—for example, in cases where code execution has a minimum clock-frequency requirement. Note that DSP1_CLK_FREQ_STS is only valid while the core is running code; typical usage of this field would be for the DSP core to read the clock status and to take action as applicable, in particular, if the available clock does not meet the application requirements.

Note that, depending on the clock-source frequency and the available dividers, the DSP1 clock frequency may differ from the selected frequency. In most cases, the DSP1 clock frequency equals or exceeds the requested frequency. A lower frequency is implemented if limited by either the clock-source frequency or the maximum DSP1 clocking frequency.

The system-clock configuration provides input to the interrupt control circuit and can be used to trigger an interrupt event if the DSP1 clock frequency is less than the requested frequency—see Section 4.9.

4.4.3.3 DSP Core Control

To enable firmware execution on the DSP block, the DSP must be enabled by setting DSP1_CCM_CORE_EN. Note that the DSP firmware should be loaded, and the clocks configured, before the DSP is enabled. The DSP1_CCM_CORE_EN bit must remain set while the program is running—including during the wait state.

The DSP core is held in its reset state if DSP1_CCM_CORE_EN = 0. The DSP core is also reset by writing 1 to DSP1_CCM_CORE_RESET. Following a reset, the DSP commences code execution starting at the base address of the DSP program memory.

Note: The DSP core is disabled by clearing DSP1_CCM_CORE_EN. After disabling the DSP core, it is recommended to reset the entire DSP subsystem using DSP1_CORE_SOFT_RESET as described in Section 4.4.3.4.

4.4.3.4 DSP Subsystem Control

The DSP subsystem (including the core, stream-arbiter controllers, NMI configuration, watchdog timer, and DSP clock-frequency configuration) is reset by writing 1 to DSP1_CORE_SOFT_RESET.

The stream-arbiter controllers are resynchronized by writing 1 to DSP1_STREAM_ARB_RESYNC. This can be used to synchronize two or more controllers. The DSP1_STREAM_ARB_RESYNC_MSK field selects which controllers are affected by the resynchronize action.

4.4.3.5 DSP Control Registers

RESYNC MSK1

The DSP clocking, code-execution, and watchdog control registers are described in Table 4-28.

The audio signal paths connecting to/from the DSP processing block are configured as described in Section 4.3. Note that the DSP firmware must be loaded and enabled before audio signal paths can be enabled.

Register Address	Bit	Label	Default	Description
DSP1 base address = 0x200_000	00			,
base address + 0xB8_0000	15:0	DSPn_CLK_FREQ_SEL[15:0]		DSP clock frequency select
DSPn_CLOCK_FREQ				Coded as LSB = 1/64 MHz.
				The DSP clock must be less than or equal to the clock source frequency. The DSP clock is generated by division of the clock source, and may differ from the selected frequency. The DSP clock frequency can be read from DSP <i>n</i> _CLK_FREQ_STS.
base address + 0xB8_0008	15:0	DSPn_CLK_FREQ_STS[15:0]		DSP clock frequency (read only). Only valid if the DSP
DSPn_CLOCK_STATUS				core is enabled. Coded as LSB = 1/64 MHz.
base address + 0xB8_0010	0	DSPn_CORE_SOFT_RESET		Write 1 to reset the DSP subsystem, including the
DSPn_CORE_SOFT_RESET				core, stream arbiters, NMI, watchdog timer, and DSP clock-frequency selection.
base address + 0xB8_0050	0	DSPn_STREAM_ARB_RESYNC		Write 1 to reset the stream arbiter controllers. Only
DSPn_STREAM_ARB_ CONTROL				affects the controllers that are unmasked in DSP <i>n</i> _STREAM_ARB_RESYNC_MSK.
base address + 0xBC_1000	9	DSPn_CCM_CORE_RESET		Write 1 to reset the DSP core.
DSPn_CCM_CORE_CONTROL	0	DSPn_CCM_CORE_EN		DSP enable. Controls the DSP firmware execution.
				0 = Disabled
				1 = Enabled
base address + 0xBC_5A00	7:0	DSPn_STREAM_ARB_RESYNC_ MSK[7:0]		Selects which stream-arbiter masters are reset by DSPn STREAM ARB RESYNC. For each master,
DSPn_STREAM_ARB_		WOTE		setting the respective hit enables that master to be

Table 4-28. DSP Control Registers

reset.

setting the respective bit enables that master to be

4.4.4 DSP Interrupts

The Halo Core DSP incorporates a comprehensive interrupt controller, supporting a flexible capability to take input from many different events and status indications, and to adapt the program flow according to different priority levels assigned to each event. A high-priority non-maskable interrupt (NMI) is provided in case of a serious failure mode requiring a reset of the DSP.

The DSP also provides input to the device-level interrupt controller. The DSP-derived inputs to the CS48L32 interrupt controller include DSP error indications and general-purpose interrupt signals under control of the DSP firmware.

The following events are supported as inputs to the CS48L32 interrupt controller:

- · Memory protection error
- · Watchdog timeout
- · Memory controller error
- · AHB system error
- · AHB packing error
- · NMI error
- General-purpose IRQ 0–3
- · Trace buffer stack error
- · MIPS profile 1 done
- · MIPS profile 0 done

See Section 4.9 for further details of the CS48L32 interrupt controller.

4.5 DSP Peripheral Control

The CS48L32 incorporates a suite of DSP peripheral functions that can be integrated together to provide an enhanced capability for DSP applications. Configurable event log functions provide multichannel monitoring of internal and external signals. The general-purpose timers provide time-stamp data for the event logger; they also provide input to the alarm-generator circuits, enabling time-dependent interrupt events to be generated. Maskable GPIO provides an efficient mechanism for the Halo Core DSP to access the required input and output signals. The quad-SPI (QSPI) master interface enables high-speed data transfers between the DSP and external components such as flash-memory devices.

The DSP peripherals are designed to provide a comprehensive DSP capability, operating with a high degree of autonomy from the host processor.

4.5.1 Event Logger

The CS48L32 provides an event-log function, supporting multichannel, edge-sensitive monitoring and recording of internal or external signals.

4.5.1.1 Overview

The event logger allows status information to be captured from a large number of sources, to be prioritized and acted upon as required. For the purposes of the event logger, an event is recorded when a logic transition (edge) is detected on a selected signal source.

The logged events are held in a FIFO buffer, which is managed by the application software. A 32-bit time stamp, derived from one of the general-purpose timers, is associated and recorded with each FIFO index, to provide a comprehensive record of the detected events.

The event logger is associated with one of the general-purpose timers (see Section 4.5.3). The selected timer is the source of time stamp data for any logged events.

A maximum of one event per cycle of the clock source can be logged. If more than one event occurs within the cycle time, the highest priority (lowest channel number) event is logged at the rising edge of the clock. In this case, any lower priority events are queued, and are logged as soon as no higher priority events are pending. It is possible for recurring events on a high-priority channel to be logged, while low-priority ones remain queued. Note that recurring instances of queued events are not logged.

The event logger can use a slow clock (e.g., 32 kHz), but higher clock frequencies may also be commonly used, depending on the application and use case. The clock frequency determines the maximum possible event logging rate.

4.5.1.2 Event Logger Control

The event logger is enabled by setting EVENTLOG1_EN. The event logger can be reset by writing 1 to EVENTLOG1_RST—executing this function clears all the event logger status flags and clears the contents of the FIFO buffer.

The associated timer (and time-stamp source) is selected using EVENTLOG1_TIMER_SEL. Note that the event logger must be disabled (EVENTLOG1_EN = 0) when changing the timer source.

4.5.1.3 Input Channel Configuration

The event logger allows up to 16 input channels to be configured for detection and logging. The EVENTLOG1_CHx_SRC field selects the applicable input source for each channel (where x identifies the channel number, 1 to 16). The polarity selection and debounce options are configured using the EVENTLOG1_CHx_POL and EVENTLOG1_CHx_DB bits respectively. The debounce time is configurable using EVENTLOG1_DBTIME.

To avoid filling the FIFO buffer with repeated instances of any event, a selectable filter is provided for each input channel. If the EVENTLOG1_CHx_FILT bit is set, new events on the respective channel are ignored by the event logger if the unread entries in the FIFO buffer indicate a previous event of the same type (i.e., same input source and same polarity). The read/write pointers of the FIFO buffer (see Section 4.5.1.4) are used to determine which FIFO entries are unread (i.e., have not yet been read by the host processor).

The input channels can be enabled or disabled freely, using EVENTLOG1_CHx_EN, without having to disable the event logger entirely. An input channel must be disabled whenever the associated x_SRC, x_FILT, x_POL, or x_DB fields are written. It is possible to reconfigure input channels while the event logger is enabled, provided the channels being reconfigured are disabled when doing so.

The available input sources include FLL-lock status, input-path signal detection, GPIO inputs and signals generated by the integrated Halo Core DSP. A list of the valid input sources for the event logger is provided in Table 4-30. Note that, to log both rising and falling events from any source, two separate input channels must be configured—one for each polarity.

If an input channel is configured for rising edge detection (EVENTLOG1_CHx_POL = 0), and the corresponding input signal is asserted (Logic 1) at the time when the event logger is enabled, an event is logged in respect of this initial state. Similarly, if an input channel is configured for falling edge detection, and is deasserted (Logic 0) when the event logger is enabled, a corresponding event is logged. If rising and falling edges are both configured for detection, an event is always logged in respect of the initial condition.

4.5.1.4 FIFO Buffer

Each event (signal transition) that meets the criteria of an enabled channel is written to the 16-stage FIFO buffer. The buffer is filled cyclically, but does not overwrite unread data when full. A status bit is provided to indicate if the buffer fills up completely.

Note that the FIFO behavior is not enforced or fully implemented in the device hardware, but assumes that a compatible software implementation is in place. New events are written to the buffer in a cyclic manner, but the data can be read out in any order, if desired. The designed FIFO behavior requires the software to update the read pointer (RPTR) in the intended manner for smooth operation.

The entire contents of the 16-stage FIFO buffer can be accessed directly in the register map. Each FIFO index (y = 0 to 15) comprises the EVENTLOG1_FIFOy_ID (identifying the source signal of the associated log event), the EVENTLOG1_FIFOy_POL (the polarity of the respective event transition), and the EVENTLOG1_FIFOy_TIME field (containing the 32-bit time stamp from the timer).

The FIFO buffer is managed using EVENTLOG1_FIFO_WPTR and EVENTLOG1_FIFO_RPTR. The write pointer (WPTR) field identifies the index location (0 to 15) in which the next event is logged. The read pointer (RPTR) field identifies the index location of the first set of unread data, if any exists. Both of these fields are initialized to 0 when the event logger is reset.

- If RPTR ≠ WPTR, the buffer contains new data. The number of new events is equal to the difference between the two pointer values (WPTR RPTR, allowing for wraparound beyond Index 15). For example, if WPTR = 12 and RPTR = 8, this means that there are four unread data sets in the buffer, at index locations 8, 9, 10, and 11.
 After reading the new data from the buffer, the RPTR value should be incremented by the corresponding amount (e.g., increment by 4, in the example described above). Note that the RPTR value can either be incremented once
- If RPTR = WPTR, the buffer is either empty (0 events) or full (16 events). In this case, the status bits described in Section 4.5.1.5 confirm the current status of the buffer.

4.5.1.5 Status Bits

The EVENTLOG1 CHx STS bits indicate the status of the source signal for the respective input channel.

for each read, or can be incremented in larger steps after a batch read.

The EVENTLOG1_NOT_EMPTY bit indicates whether the FIFO buffer is empty. If this bit is set, it indicates one or more new sets of data in the FIFO.

The EVENTLOG1_WMARK_STS bit indicates when the number of FIFO index locations available for new events reaches a configurable threshold, known as the watermark level. The watermark level is held in the EVENTLOG1_FIFO_WMARK field.

The EVENTLOG1_FULL bit indicates when the FIFO buffer is full. If this bit is set, it indicates that there are 16 sets of new event data in the FIFO. Note that this does not mean that a buffer overflow condition has occurred, but further events are not logged or indicated until the buffer has been cleared.

Note: Following a buffer full condition, the FIFO operation resumes as soon as the RPTR field has been updated to a new value. Writing the same value to RPTR does not restart the FIFO operation, even if the entire buffer contents have been read. After all of the required data has been read from the buffer, the RPTR value should be set equal to the WPTR value; an intermediate (different) value must also be written to the RPTR field in order to clear the buffer full status and restart the FIFO operation.

4.5.1.6 Interrupts

The event log status flags are inputs to the interrupt control circuit and can be used to trigger an interrupt event when the FIFO-full condition occurs—see Section 4.9.

4.5.1.7 Event Logger Control Registers

The event logger control registers are described in Table 4-29.

Table 4-29. Event Logger (EVENTLOG1) Control

Register Address	Bit	Label	Default	Des	scription
R1114112 (0x110000)	19:16	EVENTLOG1_DBTIME[3:0]	0x0	Event Log input debounce	
EVENTLOG1_CONTROL				0x0 = 93.75 μs	0x6 = 48 ms
				0x1 = 1.5 ms	0x7 = 96 ms
				0x2 = 3 ms	0x8 = 192 ms
				0x3 = 6 ms	0x9 = 384 ms
				0x4 = 12 ms	0xA = 768 ms
				0x5 = 24 ms	0xB-0xF = Reserved
	8	EVENTLOG1_DSP_CLK_EN	0	Event Log clock control	
				0 = Disabled	
				1 = Enabled	
				If this bit is set, SYSCLK is e	enabled whenever the Event Log
				process events if the system	
	1	EVENTLOG1_RST	0	Event Log Reset	
		_		Write 1 to reset the status or	utputs and clear the FIFO buffer.
	0	EVENTLOG1_EN	0	Event Log Enable	
		_		0 = Disabled	
				1 = Enabled	
R1114120 (0x110008)	0	EVENTLOG1_TIMER_SEL	0	Event Log Timer Source Se	lect
EVENTLOG1_TIMER_SEL				0 = Timer 1	
				1 = Timer 2	
				Note that the event log mus field.	t be disabled when updating this
R1114136 (0x110018)	3:0	EVENTLOG1_FIFO_	0x1		The watermark status output is
EVENTLOG1_FIFO_		WMARK[3:0]			f FIFO locations available for new
CONTROL1				events is less than or equal	to the FIFO watermark.
D1111110 (0.110010)	40	EVENT OOA EUU		Valid from 0 to 15.	TI. 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R1114140 (0x11001C) EVENTLOG1 FIFO	18	EVENTLOG1_FULL	0		This bit, when set, indicates that eared when a new value is written
POINTER1				_	when the event log is Reset.
	17	EVENTLOG1_WMARK_STS	0	Event Log FIFO Watermark	, ,
					e available for new events to be
				logged is less than or equal	
	16	EVENTLOG1_NOT_EMPTY	0	Event Log FIFO Not-Empty	Status. This bit, when set, sets of logged event data in the
				FIFO.	sets of logged event data in the
	11:8	EVENTLOG1_FIFO_	0x0	Event Log FIFO Write Point	er. Indicates the FIFO index
		WPTR[3:0]		location in which the next ev	
				This is a read-only field.	
	3:0	EVENTLOG1_FIFO_	0x0	Event Log FIFO Read Point	er. Indicates the FIFO index
		RPTR[3:0]			read data, if any exists. For the sfield must be incremented after
				the respective data has bee	
				line respective data has bee	II I Cau.

Table 4-29. Event Logger (EVENTLOG1) Control (Cont.)

Register Address	Bit	Label	Default	<u> </u>
R1114176 (0x110040)	15	EVENTLOG1_CH16_EN	0	Event Log Channel 16 Enable
EVENTLOG1_CH_ENABLE1				0 = Disabled, 1 = Enabled
	14	EVENTLOG1_CH15_EN	0	Event Log Channel 15 Enable
				0 = Disabled, 1 = Enabled
	13	EVENTLOG1_CH14_EN	0	Event Log Channel 14 Enable
				0 = Disabled, 1 = Enabled
	12	EVENTLOG1_CH13_EN	0	Event Log Channel 13 Enable
				0 = Disabled, 1 = Enabled
	11	EVENTLOG1_CH12_EN	0	Event Log Channel 12 Enable
				0 = Disabled, 1 = Enabled
	10	EVENTLOG1_CH11_EN	0	Event Log Channel 11 Enable
				0 = Disabled, 1 = Enabled
	9	EVENTLOG1_CH10_EN	0	Event Log Channel 10 Enable
				0 = Disabled, 1 = Enabled
	8	EVENTLOG1_CH9_EN	0	Event Log Channel 9 Enable
				0 = Disabled, 1 = Enabled
	7	EVENTLOG1_CH8_EN	0	Event Log Channel 8 Enable
				0 = Disabled, 1 = Enabled
	6	EVENTLOG1_CH7_EN	0	Event Log Channel 7 Enable
				0 = Disabled, 1 = Enabled
	5	EVENTLOG1_CH6_EN	0	Event Log Channel 6 Enable
				0 = Disabled, 1 = Enabled
	4	EVENTLOG1_CH5_EN	0	Event Log Channel 5 Enable
				0 = Disabled, 1 = Enabled
	3	EVENTLOG1_CH4_EN	0	Event Log Channel 4 Enable
				0 = Disabled, 1 = Enabled
	2	EVENTLOG1_CH3_EN	0	Event Log Channel 3 Enable
				0 = Disabled, 1 = Enabled
	1	EVENTLOG1_CH2_EN	0	Event Log Channel 2 Enable
				0 = Disabled, 1 = Enabled
	0	EVENTLOG1_CH1_EN	0	Event Log Channel 1 Enable
				0 = Disabled, 1 = Enabled
R1114184 (0x110048)	15	EVENTLOG1_CH16_STS	0	Event Log Channel 16 Status
EVENTLOG1_EVENT_	14	EVENTLOG1_CH15_STS	0	Event Log Channel 15 Status
STATUS	13	EVENTLOG1_CH14_STS	0	Event Log Channel 14 Status
	12	EVENTLOG1_CH13_STS	0	Event Log Channel 13 Status
	11	EVENTLOG1_CH12_STS	0	Event Log Channel 12 Status
	10	EVENTLOG1_CH11_STS	0	Event Log Channel 11 Status
	9	EVENTLOG1_CH10_STS	0	Event Log Channel 10 Status
	8	EVENTLOG1_CH9_STS	0	Event Log Channel 9 Status
	7	EVENTLOG1_CH8_STS	0	Event Log Channel 8 Status
	6	EVENTLOG1_CH7_STS	0	Event Log Channel 7 Status
	5	EVENTLOG1_CH6_STS	0	Event Log Channel 6 Status
	4	EVENTLOG1_CH5_STS	0	Event Log Channel 5 Status
	3	EVENTLOG1_CH4_STS	0	Event Log Channel 4 Status
	2	EVENTLOG1_CH3_STS	0	Event Log Channel 3 Status
	1	EVENTLOG1_CH2_STS	0	Event Log Channel 2 Status
	0	EVENTLOG1_CH1_STS	0	Event Log Channel 1 Status
			1	

Table 4-29. Event Logger (EVENTLOG1) Control (Cont.)

Register Address	Bit	Label	Default	Description
R1114240 (0x110080)	15	EVENTLOG1 CHn DB	0	Event Log Channel <i>n</i> debounce
EVENTLOG1 CH1 DEFINE				0 = Disabled, 1 = Enabled
to				Note that channel must be disabled when updating this field.
R1114300 (0x1100BC)	14	EVENTLOG1 CHn POL	0	Event Log Channel <i>n</i> polarity
EVENTLOG1 CH16 DEFINE				0 = Rising edge triggered, 1 = Falling edge triggered
				Note that channel must be disabled when updating this field.
	13	EVENTLOG1 CHn FILT	0	Event Log Channel <i>n</i> filter
				0 = Disabled, 1 = Enabled
				If the filter is enabled, the channel is ignored if the FIFO
				contains unread events of the same source/polarity.
				Note that channel must be disabled when updating this field.
	9:0	EVENTLOG1_CHn_SRC[9:0]	0x000	Event Log Channel <i>n</i> source ¹
				Note that channel must be disabled when updating this field.
R1114368 (0x110100)	12	EVENTLOG1 FIFO0 POL	0	Event Log FIFO Index 0 polarity
EVENTLOG1 FIFO0 READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1_FIFO0_ID[9:0]	0x000	Event Log FIFO Index 0 source 1
R1114372 (0x110104)	31:0	EVENTLOG1 FIFO0		Event Log FIFO Index 0 Time
EVENTLOG1 FIFO0 TIME	0	TIME[31:0]	_0000	
R1114376 (0x110108)	12	EVENTLOG1 FIFO1 POL	0	Event Log FIFO Index 1 polarity
EVENTLOG1 FIFO1 READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1 FIFO1 ID[9:0]	0x000	Event Log FIFO Index 1 source 1
R1114380 (0x11010C)		EVENTLOG1_FIFO1_		Event Log FIFO Index 1 Time
EVENTLOG1_FIFO1_TIME	01.0	TIME[31:0]	_0000	Evolt Edg Til O Ilidox T Tillio
R1114384 (0x110110)	12	EVENTLOG1 FIFO2 POL	- 0	Event Log FIFO Index 2 polarity
EVENTLOG1 FIFO2 READ	'-	2721112001_11102_102		0 = Rising edge, 1 = Falling edge
EVENTEGG1_1	9:0	EVENTLOG1_FIFO2_ID[9:0]	0x000	Event Log FIFO Index 2 source ¹
R1114388 (0x110114)	31:0	EVENTLOG1_FIFO2		Event Log FIFO Index 2 Time
EVENTLOG1_FIFO2_TIME	31.0	TIME[31:0]	_0000	Event Log I ii O index 2 Time
R1114392 (0x110118)	12	EVENTLOG1 FIFO3 POL	0	Event Log FIFO Index 3 polarity
EVENTLOG1 FIFO3 READ	12			0 = Rising edge, 1 = Falling edge
EVENTEOGI_TITOS_READ	9:0	EVENTLOG1_FIFO3_ID[9:0]	0x000	Event Log FIFO Index 3 source 1
R1114396 (0x11011C)	31:0	EVENTLOG1_FIFO3		Event Log FIFO Index 3 Source
EVENTLOG1 FIFO3 TIME	31.0	TIME[31:0]	_0000	Event Log I ii O index 5 Time
R1114400 (0x110120)	12	EVENTLOG1_FIFO4_POL	0	Event Log FIFO Index 4 polarity
EVENTLOG1_FIFO4_READ	12	LVLN1LOG1_III O4_FOL	0	0 = Rising edge, 1 = Falling edge
EVENTLOGI_FIFO4_READ	9:0	EVENTLOG1 FIFO4 ID[9:0]	0x000	Event Log FIFO Index 4 source ¹
R1114404 (0x110124)	31:0	EVENTLOG1_FIFO4_ID[9.0]		Event Log FIFO Index 4 Source
` ,	31.0	TIME[31:0]	0000	Event Log FIFO index 4 fillie
EVENTLOG1_FIFO4_TIME	12	EVENTLOG1_FIFO5_POL	0	Event Log FIFO Index 5 polarity
R1114408 (0x110128)	12	EVENTLOGI_FIFO5_FOL	0	Field description is as above.
EVENTLOG1_FIFO5_READ	9:0	EVENTLOG1 FIFO5 ID[9:0]	0x000	Event Log FIFO Index 5 source 1
D11114112 (0:11012C)				I
R1114412 (0x11012C)	31:0	EVENTLOG1_FIFO5_ TIME[31:0]	0x0000 _0000	Event Log FIFO Index 5 Time
EVENTLOG1_FIFO5_TIME	40			Event Lea FIEO Index 6 malarity
R1114416 (0x110130)	12	EVENTLOG1_FIFO6_POL	0	Event Log FIFO Index 6 polarity
EVENTLOG1_FIFO6_READ	0.0	EVENTI OCA EIEOG IDIO O	0,,000	0 = Rising edge, 1 = Falling edge
D4444400 (0::440404)		EVENTLOG1_FIFO6_ID[9:0]	0x000	Event Log FIFO Index 6 source 1
R1114420 (0x110134)	31:0	EVENTLOG1_FIFO6_ TIME[31:0]	0x0000 _0000	Event Log FIFO Index 6 Time
EVENTLOG1_FIFO6_TIME	40			French on FIFO laday 7 malady
R1114424 (0x110138)	12	EVENTLOG1_FIFO7_POL	0	Event Log FIFO Index 7 polarity
EVENTLOG1_FIFO7_READ		EVENTI OCA SISCE ISSUE	0.000	0 = Rising edge, 1 = Falling edge
D4444400 (0.410100)		EVENTLOG1_FIFO7_ID[9:0]		Event Log FIFO Index 7 source 1
R1114428 (0x11013C)	31:0	EVENTLOG1_FIFO7_		Event Log FIFO Index 7 Time
EVENTLOG1_FIFO7_TIME	4.5	TIME[31:0]	_0000	5 11 5501 1 0 1 "
R1114432 (0x110140)	12	EVENTLOG1_FIFO8_POL	0	Event Log FIFO Index 8 polarity
EVENTLOG1_FIFO8_READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1_FIFO8_ID[9:0]	0x000	Event Log FIFO Index 8 source ¹

Table 4-29. Event Logger (EVENTLOG1) Control (Cont.)

Register Address	Bit	Label	Default	· ·
R1114436 (0x110144)	31:0	EVENTLOG1_FIFO8_		Event Log FIFO Index 8 Time
EVENTLOG1_FIFO8_TIME		TIME[31:0]	_0000	
R1114440 (0x110148)	12	EVENTLOG1_FIFO9_POL	0	Event Log FIFO Index 9 polarity
EVENTLOG1_FIFO9_READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1_FIFO9_ID[9:0]	0x000	Event Log FIFO Index 9 source 1
R1114444 (0x11014C)	31:0	EVENTLOG1_FIFO9_		Event Log FIFO Index 9 Time
EVENTLOG1_FIFO9_TIME		TIME[31:0]	_0000	
R1114448 (0x110150)	12	EVENTLOG1_FIFO10_POL	0	Event Log FIFO Index 10 polarity
EVENTLOG1_FIFO10_READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1_FIFO10_ID[9:0]		Event Log FIFO Index 10 source 1
R1114452 (0x110154)	31:0	EVENTLOG1_FIFO10_		Event Log FIFO Index 10 Time
EVENTLOG1_FIFO10_TIME		TIME[31:0]	_0000	
R1114456 (0x110158)	12	EVENTLOG1_FIFO11_POL	0	Event Log FIFO Index 11 polarity
EVENTLOG1_FIFO11_READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1_FIFO11_ID[9:0]		Event Log FIFO Index 11 source 1
R1114460 (0x11015C)	31:0	EVENTLOG1_FIFO11_	0x0000	Event Log FIFO Index 11 Time
EVENTLOG1_FIFO11_TIME		TIME[31:0]	_0000	
R1114464 (0x110160)	12	EVENTLOG1_FIFO12_POL	0	Event Log FIFO Index 12 polarity
EVENTLOG1_FIFO12_READ				0 = Rising edge, 1 = Falling edge
		EVENTLOG1_FIFO12_ID[9:0]		Event Log FIFO Index 12 source 1
R1114468 (0x110164)	31:0	EVENTLOG1_FIFO12_		Event Log FIFO Index 12 Time
EVENTLOG1_FIFO12_TIME		TIME[31:0]	_0000	
R1114472 (0x110168)	12	EVENTLOG1_FIFO13_POL	0	Event Log FIFO Index 13 polarity
EVENTLOG1_FIFO13_READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1_FIFO13_ID[9:0]		Event Log FIFO Index 13 source ¹
R1114476 (0x11016C)	31:0	EVENTLOG1_FIFO13_	0x0000	Event Log FIFO Index 13 Time
EVENTLOG1_FIFO13_TIME		TIME[31:0]	_0000	
R1114480 (0x110170)	12	EVENTLOG1_FIFO14_POL	0	Event Log FIFO Index 14 polarity
EVENTLOG1_FIFO14_READ				0 = Rising edge, 1 = Falling edge
	9:0	EVENTLOG1_FIFO14_ID[9:0]		Event Log FIFO Index 14 source ¹
R1114484 (0x110174)	31:0	EVENTLOG1_FIFO14_		Event Log FIFO Index 14 Time
EVENTLOG1_FIFO14_TIME		TIME[31:0]	_0000	
R1114488 (0x110178)	12	EVENTLOG1_FIFO15_POL	0	Event Log FIFO Index 15 polarity
EVENTLOG1_FIFO15_READ				0 = Rising edge, 1 = Falling edge
		EVENTLOG1_FIFO15_ID[9:0]		Event Log FIFO Index 15 source 1
R1114492 (0x11017C)	31:0	EVENTLOG1_FIFO15_		Event Log FIFO Index 15 Time
EVENTLOG1_FIFO15_TIME		TIME[31:0]	_0000	

^{1.}See Table 4-30 for valid channel source selections

4.5.1.8 Event Logger Input Sources

A list of the valid input sources for the event logger is provided in Table 4-30.

Table 4-30. Event Logger Input Sources

ID	Description
0x007	Boot done
0x018	FLL1 lock
0x08C	Input signal path signal detect
0x090	Ultrasonic 1 signal detect
	Ultrasonic 2 signal detect
0x108	GPIO1
0x10A	GPIO2
0x10C	GPIO3
0x10E	GPIO4
0x110	GPIO5
0x112	GPIO6

ID	Description
0x230	Alarm 1 Channel 1
0x231	Alarm 1 Channel 2
0x232	Alarm 1 Channel 3
0x233	Alarm 1 Channel 4
0x250	Timer 1
0x251	Timer 2
0x2E9	DSP1 non-maskable interrupt
0x2EA	DSP1 AHB slave error
0x2EB	DSP1 AHB master error
0x2EC	DSP1 IHB master error
0x2ED	DSP1 profiler Out 0 done

ID	Description
0x2FD	DSP1 FIR Filter 1 done
0x2FE	DSP1 FIR Filter 2 done
0x2FF	DSP1 FIR Filter 3 done
0x300	DSP1 FIR Filter 4 done
0x301	DSP1 FIR Filter 5 done
0x302	DSP1 FIR Filter 6 done
0x303	DSP1 FIR Filter 7 done
0x355	DSP1 LMS coefficient overflow
0x356	DSP1 LMS done
0x357	DSP1 LMS 0 done
0x358	DSP1 LMS 1 done

Table 4-30.	Event Logger	Input Sources	(Cont.)
I UDIO T OU.	E vont Eoggo	iiipat ooai ooo	(00

ID	Description
	GPIO7
0x116	GPIO8
	Event Log 1 full
0x168	Event Log 1 watermark
0x1E0	SPI2 done
0x1E1	SPI2 overclocked
0x1E2	SPI2 block
0x1E3	SPI2 stalling

ID	Description
0x2EE	DSP1 profiler Out 1 done
0x2F5	DSP1 watchdog expire
	DSP1 memory protection unit error
	DSP1 trace buffer stack error
0x2FA	DSP1 FIR error
	DSP1 FIR done
0x2FC	DSP1 FIR Filter 0 done

ID	Description
	DSP1 LMS 2 done
	DSP1 LMS 3 done
	DSP1 LMS 4 done
	DSP1 GP Interrupt 0
	DSP1 GP Interrupt 1
	DSP1 GP Interrupt 2
0x372	DSP1 GP Interrupt 3

4.5.2 Alarm Generator

The CS48L32 alarm-generator circuit is associated with the general-purpose timers. It can be used to generate interrupt events according to the count value of the timer. The alarm interrupts can be either one-off events, or can be configured for cyclic (repeated) triggers. One alarm generator is provided, supporting up to four outputs.

4.5.2.1 Alarm Control

An alarm is enabled by writing 1 to the ALM1_CHx_START bit (where x identifies the channel number, 1–4). An alarm is disabled by writing 1 to ALM1_CHx_STOP.

The alarm status is indicated using ALM1_CHx_STS. Note that this indicates the status of the alarm-generator function only—it does not provide indication of an alarm event.

The timer (and time-stamp source) associated with each alarm generator is selected using ALM1_TIMER_SRC. Note that all ALM1 channels must be stopped (ALM1_CHx_STS = 0) when updating the timer source. See Section 4.5.3 for details of the general-purpose timers.

The operating mode of each alarm channel is configured using ALM1_CHx_TRIG_MODE. In each case, the alarm events are controlled by the alarm-trigger value, ALM1_CHx_TRIG_VAL.

- In Absolute Mode, the alarm output is triggered when the timer count value is equal to the alarm trigger value.
- In Relative Mode, the alarm output is triggered when the timer count value has incremented by a number equal to the alarm trigger value—this mode counts the number of clock cycles after the ALM1 CHx START bit is written.
- In Combination Mode, the alarm output is initially triggered as described for the Absolute Mode; the alarm then operates as described for the Relative Mode.

When the alarm output is triggered, an output signal is asserted for the respective alarm. The alarm output can be used to trigger an interrupt event or to generate an external signal via a GPIO pin, as described in Section 4.5.2.2.

The ALM1 CHx CONT bit configures the alarm channel for once-only event or for continuous/repeated operation.

If an alarm channel is enabled and an update is written to ALM1_CHx_TRIG_VAL or ALM1_CHx_PULSE_DUR, the new value is loaded into the respective control register, but does not reconfigure the alarm immediately. If the ALM1_CHx_UPD bit is set, the alarm-trigger and pulse-duration values are updated when the alarm is next triggered. The alarm-trigger and pulse-duration settings can also be updated by writing 1 to ALM1_CHx_START.

Note that, if an alarm channel is enabled, the general-purpose timer associated with that alarm must be configured for continuous, count-up operation. The applicable TIMER n_MAX_COUNT value must be greater than the ALM1_CHx_TRIG_VAL setting.

4.5.2.2 Interrupts and GPIO Output

The alarm generator provides input to the interrupt control circuit and can be used to trigger an interrupt event when the alarm-trigger conditions are met. An interrupt event is triggered on the rising edge of the alarm output signal. See Section 4.9 for details of the CS48L32 interrupt controller.

The alarm can generate an output via a GPIO pin to provide an external indication of the alarm events. When the alarm output is triggered, the respective GPIO output is asserted for a duration that is configured using ALM1_CHx_PULSE_DUR. See Section 4.10 to configure a GPIO pin for this function.

4.5.2.3 Alarm Control Registers

The alarm control registers are described in Table 4-31.

Table 4-31. Alarm (ALMn) Control

Register Address	Bit	Label	Default	Description	
Alarm 1 Base Address =	R1130	496 (0x114000)	I.		
base address	0	ALMn_TIMER_SRC	0	Alarm block ALMn timer source select	
ALMn_TIMER				0 = Timer 1	
				1 = Timer 2	
				All ALMn channels must be disabled when updating this register.	
base address + 0x20	4	ALMn_CH1_CONT	0	Channel 1 continuous mode select	
ALMn_CONFIG1				0 = Single mode	
				1 = Continuous mode	
				Channel 1 must be disabled (ALM <i>n</i> _CH1_STS = 0) when updating this field.	
	1:0	ALMn_CH1_TRIG_	00	Channel 1 trigger mode select	
		MODE[1:0]		00 = Absolute Mode: Alarm is triggered when the count value of the timer source is equal to ALM <i>n</i> _CH1_TRIG_VAL.	
				01 = Relative Mode: Alarm is triggered when the count value has incremented by a number equal to ALM <i>n</i> _CH1_TRIG_VAL.	
				10 = Combination Mode: Alarm is initially triggered as described for Absolute Mode; the alarm then operates as described for Relative Mode.	
				11 = Reserved	
				Channel 1 must be disabled (ALM <i>n</i> _CH1_STS = 0) when updating this field.	
base address + 0x24 ALMn CTRL1	15	ALMn_CH1_UPD	0	Channel 1 update control—Write 1 to indicate a new trigger value or pulse duration is ready to be applied.	
_	If Channel 1 is enabled and ALMn_CH1_UPD is set, the ALTRIG_VAL and ALMn_CH1_PULSE_DUR settings are upd		If Channel 1 is enabled and ALMn_CH1_UPD is set, the ALMn_CH1_TRIG_VAL and ALMn_CH1_PULSE_DUR settings are updated when the alarm is next triggered or by writing 1 to ALMn_CH1_START.		
				If Channel 1 is disabled, the ALMn_CH1_UPD bit has no effect, and the ALMn_CH1_TRIG_VAL and ALMn_CH1_PULSE_DUR settings are updated immediately when writing to the respective fields.	
	4	ALMn_CH1_STOP	_	Channel 1 stop control—Write 1 to disable Channel 1	
		ALMn_CH1_START	_	Channel 1 start control—Write 1 to enable or restart Channel 1	
base address + 0x28	31:0	ALMn_CH1_TRIG_	0x0000_	Channel 1 alarm trigger value	
ALM <i>n</i> _TRIG_VAL1		VAL[31:0]	0000		
base address + 0x2C	31:0	ALMn_CH1_	0x0000_	Channel 1 alarm output pulse duration	
ALM <i>n</i> _PULSE_DUR1		PULSE_DUR[31:0]	0000	Configures the duration of the GPIO alarm output indication. The pulse duration is referenced to the count rate of the selected timer source.	
base address + 0x30	0	ALMn_CH1_STS	0	Channel 1 status	
ALM <i>n</i> _STATUS1				0 = Disabled	
				1 = Enabled	

Table 4-31. Alarm (ALMn) Control (Cont.)

Register Address	Bit	Label	Default	Description
base address + 0x40	4	ALMn_CH2_CONT	0	Channel 2 continuous mode select
ALMn_CONFIG2				0 = Single mode
				1 = Continuous mode
				Channel 2 must be disabled (ALM <i>n</i> _CH2_STS = 0) when updating this field.
	1:0	ALMn_CH2_TRIG_	00	Channel 2 trigger mode select
		MODE[1:0]		00 = Absolute Mode: Alarm is triggered when the count value of the timer source is equal to ALMn_CH2_TRIG_VAL.
				01 = Relative Mode: Alarm is triggered when the count value has incremented by a number equal to ALM <i>n</i> _CH2_TRIG_VAL.
				10 = Combination Mode: Alarm is initially triggered as described for Absolute Mode; the alarm then operates as described for Relative Mode.
				11 = Reserved
				Channel 2 must be disabled (ALM <i>n</i> _CH2_STS = 0) when updating this field.
base address + 0x44 ALMn_CTRL2	15	ALM <i>n</i> _CH2_UPD	0	Channel 2 update control—Write 1 to indicate a new trigger value or pulse duration is ready to be applied.
_				If Channel 2 is enabled and ALMn_CH2_UPD is set, the ALMn_CH2_TRIG_VAL and ALMn_CH2_PULSE_DUR settings are updated when the alarm is next triggered or by writing 1 to ALMn_CH2_START.
				If Channel 2 is disabled, the ALMn_CH2_UPD bit has no effect, and the ALMn_CH2_TRIG_VAL and ALMn_CH2_PULSE_DUR settings are updated immediately when writing to the respective fields.
	4	ALMn_CH2_STOP	_	Channel 2 stop control—Write 1 to disable Channel 2
	0	ALMn_CH2_START	_	Channel 2 start control—Write 1 to enable or restart Channel 2
base address + 0x48	31:0	ALM <i>n</i> _CH2_TRIG_ VAL[31:0]	0x0000_ 0000	Channel 2 alarm trigger value
ALMn_TRIG_VAL2	04.0			Observation and Ostaria and ostaria and ostaria
base address + 0x4C ALMn_PULSE_DUR2	31:0	ALMn_CH2_ PULSE_DUR[31:0]	0x0000_ 0000	Channel 2 alarm output pulse duration Configures the duration of the GPIO alarm output indication. The pulse
	_			duration is referenced to the count rate of the selected timer source.
base address + 0x50	0	ALMn_CH2_STS	0	Channel 2 status
ALM <i>n</i> _STATUS2				0 = Disabled 1 = Enabled
base address + 0x60	4	ALMn CH3 CONT	0	Channel 3 continuous mode select
ALMn_CONFIG3		/ 12.11.7_01.10_00111	Ŭ	0 = Single mode
				1 = Continuous mode
				Channel 3 must be disabled (ALM <i>n</i> _CH3_STS = 0) when updating this field.
	1:0	ALMn_CH3_TRIG_	00	Channel 3 trigger mode select
		MODE[1:0]		00 = Absolute Mode: Alarm is triggered when the count value of the timer source is equal to ALMn_CH3_TRIG_VAL.
				01 = Relative Mode: Alarm is triggered when the count value has incremented by a number equal to ALM <i>n</i> _CH3_TRIG_VAL.
				10 = Combination Mode: Alarm is initially triggered as described for Absolute Mode; the alarm then operates as described for Relative Mode.
				11 = Reserved
				Channel 3 must be disabled (ALM <i>n</i> _CH3_STS = 0) when updating this field.
base address + 0x64 ALMn_CTRL3	15	ALM <i>n</i> _CH3_UPD	0	Channel 3 update control—Write 1 to indicate a new trigger value or pulse duration is ready to be applied.
				If Channel 3 is enabled and ALMn_CH3_UPD is set, the ALMn_CH3_ TRIG_VAL and ALMn_CH3_PULSE_DUR settings are updated when the alarm is next triggered or by writing 1 to ALMn_CH3_START.
				If Channel 3 is disabled, the ALMn_CH3_UPD bit has no effect, and the ALMn_CH3_TRIG_VAL and ALMn_CH3_PULSE_DUR settings are updated immediately when writing to the respective fields.
	4	ALMn_CH3_STOP	_	Channel 3 stop control—Write 1 to disable Channel 3
	0	ALMn_CH3_START	_	Channel 3 start control—Write 1 to enable or restart Channel 3
base address + 0x68	31:0	ALMn_CH3_TRIG_	0x0000_	Channel 3 alarm trigger value
ALM <i>n</i> _TRIG_VAL3		VAL[31:0]	0000	

Table 4-31. Alarm (ALMn) Control (Cont.)

Register Address	Bit	Label	Default	Description		
base address + 0x6C	31:0	ALMn_CH3_	0x0000_	Channel 3 alarm output pulse duration		
ALMn_PULSE_DUR3		PULSE_DUR[31:0]	0000	Configures the duration of the GPIO alarm output indication. The pulse duration is referenced to the count rate of the selected timer source.		
base address + 0x70	0	ALMn_CH3_STS	0	Channel 3 status		
ALMn_STATUS3				0 = Disabled		
				1 = Enabled		
base address + 0x80	4	ALMn_CH4_CONT	0	Channel 4 continuous mode select		
ALMn_CONFIG4				0 = Single mode		
				1 = Continuous mode		
				Channel 4 must be disabled (ALMn_CH4_STS = 0) when updating thi field.		
	1:0	ALMn_CH4_TRIG_	00	Channel 4 trigger mode select		
		MODE[1:0]		00 = Absolute Mode: Alarm is triggered when the count value of the timer source is equal to ALMn_CH4_TRIG_VAL.		
				01 = Relative Mode: Alarm is triggered when the count value has incremented by a number equal to ALM <i>n</i> _CH4_TRIG_VAL.		
				10 = Combination Mode: Alarm is initially triggered as described for Absolute Mode; the alarm then operates as described for Relative Mode.		
				11 = Reserved		
				Channel 4 must be disabled (ALM <i>n</i> _CH4_STS = 0) when updating this field.		
base address + 0x84 ALMn CTRL4	15	ALM <i>n</i> _CH4_UPD	0	Channel 4 update control—Write 1 to indicate a new trigger value or pulse duration is ready to be applied.		
				If Channel 4 is enabled and ALMn_CH4_UPD is set, the ALMn_CH4_TRIG_VAL and ALMn_CH4_PULSE_DUR settings are updated when the alarm is next triggered or by writing 1 to ALMn_CH4_START.		
				If Channel 4 is disabled, the ALMn_CH4_UPD bit has no effect, and the ALMn_CH4_TRIG_VAL and ALMn_CH4_PULSE_DUR settings are updated immediately when writing to the respective fields.		
	4	ALMn_CH4_STOP		Channel 4 stop control—Write 1 to disable Channel 4		
	0	ALMn_CH4_START	_	Channel 4 start control—Write 1 to enable or restart Channel 4		
base address + 0x88	31:0	ALMn_CH4_TRIG_	0x0000_	Channel 4 alarm trigger value		
ALMn_TRIG_VAL4		VAL[31:0]	0000			
base address + 0x8C	31:0	ALMn_CH4_	0x0000_	Channel 4 alarm output pulse duration		
ALMn_PULSE_DUR4		PULSE_DUR[31:0]	0000	Configures the duration of the GPIO alarm output indication. The pulse duration is referenced to the count rate of the selected timer source.		
base address + 0x90	0	ALMn_CH4_STS	0	Channel 4 status		
ALMn_STATUS4				0 = Disabled		
				1 = Enabled		

4.5.3 General-Purpose Timer

The CS48L32 incorporates two general-purpose timers, which support a wide variety of uses. The general-purpose timers provide time-stamp data for the event logger; they also provide input to the alarm-generator circuits, enabling time-dependent interrupt events to be generated.

4.5.3.1 Overview

The timers allow time-stamp information to be associated with external signal detection, and other system events, enabling real-time data to be more easily integrated into user applications. The timers allow many advanced functions to be implemented with a high degree of autonomy from a host processor.

The timers can use either internal system clocks, or external clock signals, as a reference. The selected reference is scaled down, using configurable dividers, to the required clock count frequency.

4.5.3.2 Timer Control

The clock source for the timer is selected using TIMER n_REFCLK_SRC, (where n identifies the applicable timer, 1–2).

If SYSCLK is selected as the source, a lower clocking frequency can be configured using TIMER*n*_REFCLK_FREQ_SEL field (if TIMER*n*_REFCLK_SRC = 0x8) or TIMER*n*_DSPCLK_FREQ_SEL field (if TIMER*n*_REFCLK_SRC = 0x0). The applicable division ratio is determined automatically, assuming the SYSCLK frequency has been correctly configured as described in Section 4.8.

Note that, depending on the SYSCLK frequency and the available clock dividers, the timer reference frequency may differ from the frequency configured by TIMER*n*_DSPCLK_FREQ_SEL. In most cases, the timer reference equals or exceeds the requested frequency; a lower frequency is implemented if limited by either the SYSCLK frequency or the maximum TIMER*n* clocking frequency.

If TIMERn_REFCLK_SRC > 0x0, the clock source can be further divided using TIMERn_REFCLK_DIV. Division ratios in the range 1 to 128 can be selected.

The reference frequency (after TIMER*n*_REFCLK_FREQ_SEL, TIMER*n*_DSPCLK_FREQ_SEL, and TIMER*n*_REFCLK_DIV) must be compatible with the following constraints:

- The reference frequency must be less than 12 MHz, and close to 50% duty cycle
- If SYSCLK is enabled, the reference frequency must be less than SYSCLK / 3

One final division, controlled by TIMER*n*_PRESCALE, determines the timer count frequency. This field is valid for all clock reference sources; division ratios in the range 1 to 128 can be selected. The output from this division corresponds to the frequency at which the TIMER*n*_COUNT field is incremented (or decremented).

The maximum count value of the timer is determined by TIMER n_MAX_COUNT. This is the final count value (if counting up), or the initial count value (if counting down). The current value of the timer counter can be read from the TIMER n_CUR_COUNT field.

The timer is started by writing 1 to TIMERn_START. Note that, if the timer is already running, it restarts from its initial value. The timer is stopped by writing 1 to TIMERn STOP. The count direction (up or down) is selected using TIMERn DIR.

The TIMER *n*_CONT bit selects whether the timer automatically restarts after the end-of-count condition has been reached. The TIMER *n*_RUNNING_STS bit indicates whether the timer is running, or if it has stopped.

Note that the timer should be stopped before making any changes to the timer control registers. The timer configuration should only be changed if $TIMER_n$ RUNNING_STS = 0.

4.5.3.3 Interrupts and GPIO Output

The timer status is an input to the interrupt control circuit and can be used to trigger an interrupt event after the final count value is reached—see Section 4.9. Note that the interrupt does not occur immediately when the final count value is reached; the interrupt is triggered at the point when the next update to the timer count value would be due.

The timer status can be output directly on a GPIO pin as an external indication of the timer activity. See Section 4.10 to configure a GPIO pin for this function.

4.5.3.4 Timer Block Diagram and Control Registers

The timer block is shown in Fig. 4-28.

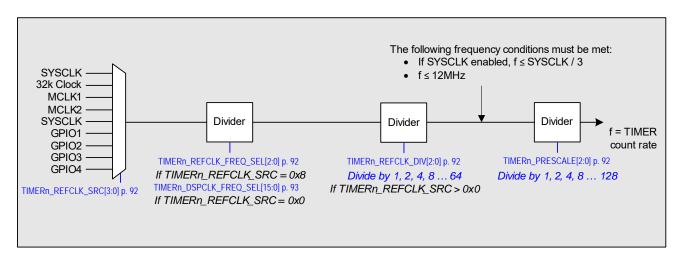


Figure 4-28. General-Purpose Timer

The timer control registers are described in Table 4-32.

Table 4-32. General-Purpose Timer (TIMERn) Control

Register Address	Bit	Label	Default	Description
Timer 1 Base Address :	= R114	6880 (0x118000)	•	
Timer 2 Base Address :	= R114	7136 (0x118100)		
base address	21	TIMERn_CONT	0	Timer Continuous Mode select
TIMERn_CONTROL				0 = Single mode
_				1 = Continuous mode
				Timer must be stopped (TIMER <i>n</i> _RUNNING_STS = 0) when updating this field
	20	TIMERn DIR	0	Timer Count Direction
		_		0 = Down
				1 = Up
				Timer must be stopped (TIMER n RUNNING STS = 0) when updating this field
	18:16	TIMERn	000	Timer Count Rate Prescale
		PRESCĀLE[2:0]		000 = Divide by 1 011 = Divide by 8 110 = Divide by 64
				001 = Divide by 2 100 = Divide by 16 111 = Divide by 128
				010 = Divide by 4
				Timer must be stopped (TIMER <i>n</i> _RUNNING_STS = 0) when updating this field
	14.12	TIMERn	000	Timer Reference Clock Divide (Not valid if TIMER REFCLK SRC = 0x0).
		REFCLK_DIV[2:0]		000 = Divide by 1
				001 = Divide by 2 100 = Divide by 16 111 = Divide by 128
				010 = Divide by 4
				If SYSCLK is enabled, and is not selected as clock source, the output frequency
				from this divider must be \leq SYSCLK / 3, and \leq 12 MHz.
				If SYSCLK is disabled, the output of this divider is used as clock reference for the
				event logger. In this case, the divider output corresponds to the frequency of event
				logging opportunities on the respective modules.
				Timer must be stopped (TIMER n _RUNNING_STS = 0) when updating this field.
	10:8	TIMERn_	000	Timer Reference Frequency Select (valid if TIMERn_REFCLK_SRC = 0x8)
		REFCLK_FREQ_		000 = 6.144 MHz (5.6448 MHz) 010 = 24.576 MHz (22.5792 MHz)
		SEL[2:0]		001 = 12.288 MHz (11.2896 MHz) 011 = 49.152 MHz (45.1584 MHz)
				All other codes are reserved.
				The selected frequency must be less than or equal to the frequency of the source.
				Timer must be stopped (TIMER n _RUNNING_STS = 0) when updating this field.
	3:0	TIMERn	0x0	Timer Reference Source Select.
		REFCLK_		Timer must be stopped (TIMER <i>n</i> _RUNNING_STS=0) when updating this field.
		SRC[3:0]		0x0 = SYSCLK
				0x1 = 32 kHz clock 0xD = GPIO2 reserved.
				0x4 = MCLK1
				0x8 = SYSCLK
base address + 0x04	31:0	TIMERn MAX	0x0000	Timer Maximum Count.
TIMER <i>n</i> _COUNT_		COUNT[31:0]		Final count value (when counting up). Starting count value (when counting down).
PRESET				Timer must be stopped (TIMER <i>n</i> RUNNING STS = 0) when updating this field.
base address + 0x0C	4	TIMERn_STOP	0	Timer Stop Control
TIMER <i>n</i> _START_	'			Write 1 to stop.
AND_STOP	0	TIMER <i>n_</i> START	0	Timer Start Control
_		THINE THE		Write 1 to start.
				If the timer is already running, it restarts from its initial value.
base address + 0x10	0	TIMER <i>n</i> _	0	Timer Running Status
TIMER <i>n</i> _STATUS		RUNNING STS		0 = Timer stopped
TIWILINI_STATUS				1 = Timer running
				1 - Time running

Table 4-32. General-Purpose Timer (TIMERn) Control (Cont.	Table 4-32.	General-Purpose	Timer (TIMERn)	Control	(Cont.
---	-------------	-----------------	----------------	---------	--------

Register Address	Bit	Label	Default	Description
base address + 0x14 TIMER <i>n</i> _COUNT_ READBACK	31:0	TIMER <i>n_</i> CUR_ COUNT[31:0]	0x0000	Timer Current Count value
base address + 0x18 TIMERn_DSP_ CLOCK_CONFIG	15:0	TIMERn_ DSPCLK_FREQ_ SEL[15:0]		Timer Reference Frequency Select (valid if TIMERn_REFCLK_SRC = 0x0) Coded as LSB = 1/64 MHz, Valid from 5.6 MHz to 148 MHz. The timer reference frequency must be less than or equal to the SYSCLK frequency. The timer reference is generated by division of SYSCLK, and may differ from the selected frequency. The timer reference frequency can be read from TIMERn_DSPCLK_FREQ_STS. Timer must be stopped (TIMERn_RUNNING_STS=0) when updating this field.
base address + 0x1C TIMER <i>n_</i> DSP_ CLOCK_STATUS	15:0	TIMER <i>n_</i> DSPCLK_FREQ_ STS[15:0]	0x0000	Timer Reference Frequency (Read only) Only valid if TIMER <i>n</i> _REFCLK_SRC = 0x0. Coded as LSB = 1/64 MHz.

4.5.4 **DSP GPIO**

The DSP GPIO function provides an advanced I/O capability, supporting enhanced flexibility for signal-processing applications.

4.5.4.1 Overview

The CS48L32 supports up to 16 GPIO pins, which can be assigned to application-specific functions. There are two dedicated GPIO pins; the remaining GPIOs are implemented as alternate functions to a pin-specific capability.

The GPIOs can be used to provide status outputs and control signals to external hardware; the supported functions include interrupt output, FLL clock output, and PWM-coded audio channels; see Section 4.10.

The GPIOs can support miscellaneous logic input and output, interfacing directly with the integrated DSP, or with the host application software. A basic level of I/O functionality is described in Section 4.10, under the configuration where GPn_{-} FN = 0x001. The GPn_{-} FN field selects the functionality for the respective pin, $GPIOn_{-}$

The DSP GPIO pins are accessed using maskable sets of I/O control registers; this allows the selected combinations of GPIOs to be controlled with ease, regardless of how the allocation of GPIO pins has been implemented in hardware. In a typical use case, one GPIO mask is defined for each DSP function; this provides a highly efficient mechanism for the DSP to independently access the respective input and output signals.

4.5.4.2 DSP GPIO Control

The DSP GPIO function is selected by setting $GPn_FN = 0x002$ for the respective GPIO pin (where n identifies the applicable GPIOn pin).

Each DSP GPIO is controlled using bits that determine the direction (input/output) and the logic state (0/1) of the pin. These bits are replicated in eight control sets; each which can determine the logic level of any DSP GPIO.

Mask bits are provided within each control set, to determine which of the control sets has control of each DSP GPIO. To avoid logic contention, a DSP GPIO output must be controlled (unmasked) in a maximum of one control set at any time.

Note that write access to the direction control bits (DSPGPn_SETx_DIR) and level control bits (DSPGPn_SETx_LVL) is only valid when the channel (DSPGPn) is unmasked in the respective control set. Writes to these fields are implemented for the unmasked DSP GPIOs, and are ignored in respect of the masked DSP GPIOs. Note that the level control bits (DSPGPn_SETx_LVL) provide output level control only—they cannot be used to read the status of DSP GPIO inputs.

The logic level of the unmasked DSP GPIO outputs in any control set can be configured using a single register write. Writing to the output level control registers determines the logic level of the unmasked DSP GPIOs in that set only; all other outputs are unaffected.

DSP GPIO status bits are provided, indicating the logic level of every input or output pin that is configured as a DSP GPIO. The DSPGPn_STS bits also provide logic-level indication for any pin that is configured as a GPIO input, with GPn_ FN = 0x001.Note that there is only one set of DSP GPIO status bits.

The status bits indicate the logic level of the DSP GPIO outputs. The respective pins are driven as outputs if configured as a DSP GPIO output, and unmasked in one of the control sets. Note that a DSP GPIO continues to be driven as an output, even if the mask bit is subsequently asserted in that set. The pin only ceases to be driven if it is configured as a DSP GPIO input and is unmasked in one of the control sets, or if the pin is configured as an input under a different GP*n*_FN field selection.

4.5.4.3 Common Functions to Standard GPIOs

The DSP GPIO functions are implemented alongside the standard GPIO capability, providing an alternative method of maskable I/O control for all of the GPIO pins. The DSP GPIO control bits in the register map are implemented in a manner that supports efficient read/write access for multiple GPIOs at once.

The DSP GPIO logic is shown in Fig. 4-29, which also shows the control fields relating to the standard GPIO.

The DSP GPIO function is selected by setting $GPn_FN = 0x002$ for the respective GPIO pin. Integrated pull-up and pull-down resistors are provided on each GPIO pin, which are also valid for DSP GPIO function. A bus keeper function is supported on the GPIO pins; this is enabled using the respective pull-up and pull-down control bits. The bus keeper function holds the logic level unchanged whenever the pin is undriven (e.g., if the signal is tristated). See Table 4-49 for details of the GPIO pull-up and pull-down control bits.

4.5.4.4 DSP GPIO Block Diagram and Control Registers

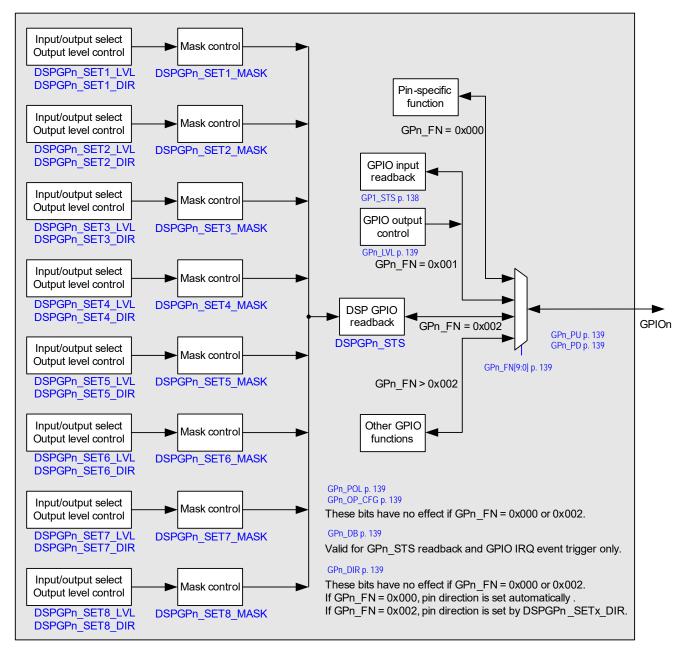


Figure 4-29. DSP GPIO Control

The control registers associated with the DSP GPIO are described in Table 4-33.

Table 4-33. DSP GPIO Control

Register Address	Bit	Label	Default	Description
R1167360 (0x11D000)	15	DSPGP16_STS	0	DSPGP16 Status
DSPGP_STATUS1				Valid for DSPGP input and output
		DSPGP15_STS	0	DSPGP15 Status
	13	DSPGP14_STS	0	DSPGP14 Status
	12	DSPGP13_STS	0	DSPGP13 Status
	11	DSPGP12_STS	0	DSPGP12 Status
	10	DSPGP11_STS	0	DSPGP11 Status
		DSPGP10_STS	0	DSPGP10 Status
		DSPGP9_STS	0	DSPGP9 Status
	7	DSPGP8_STS	0	DSPGP8 Status
		DSPGP7_STS	0	DSPGP7 Status
	5	DSPGP6_STS	0	DSPGP6 Status
	4	DSPGP5_STS	0	DSPGP5 Status
		DSPGP4_STS	0	DSPGP4 Status
		DSPGP3_STS	0	DSPGP3 Status
		DSPGP2_STS	0	DSPGP2 Status
		DSPGP1_STS	0	DSPGP1 Status
R1167424 (0x11D040)	15	DSPGP16_SETn_MASK	1	DSP SETn GPIO16 Mask Control
DSPGP_SET1_MASK1				0 = Unmasked, 1 = Masked
R1167488 (0x11D080)				A GPIO pin should be unmasked in a maximum of one SET at any time.
DSPGP_SET2_MASK1		DSPGP15_SETn_MASK	1	DSP SETn GPIO15 Mask Control
R1167552 (0x11D0C0)		DSPGP14_SETn_MASK	1	DSP SETn GPIO14 Mask Control
DSPGP_SET3_MASK1		DSPGP13_SETn_MASK	1	DSP SETn GPIO13 Mask Control
R1167616 (0x11D100)		DSPGP12_SETn_MASK	1	DSP SETn GPIO12 Mask Control
DSPGP_SET4_MASK1		DSPGP11_SETn_MASK	1	DSP SETn GPIO11 Mask Control
R1167680 (0x11D140)		DSPGP10_SETn_MASK	1	DSP SETn GPIO10 Mask Control
DSPGP_SET5_MASK1		DSPGP9_SETn_MASK	1	DSP SETn GPIO9 Mask Control
R1167744 (0x11D180)		DSPGP8_SETn_MASK	1	DSP SETn GPIO8 Mask Control
DSPGP_SET6_MASK1		DSPGP7_SETn_MASK	1	DSP SETn GPIO7 Mask Control
R1167808 (0x11D1C0)		DSPGP6_SETn_MASK	1	DSP SETn GPIO6 Mask Control
DSPGP_SET7_MASK1		DSPGP5_SETn_MASK	1	DSP SETn GPIO5 Mask Control
R1167872 (0x11D200)		DSPGP4_SETn_MASK	1	DSP SETn GPIO4 Mask Control
DSPGP_SET8_MASK1		DSPGP3_SETn_MASK	1	DSP SETn GPIO3 Mask Control
		DSPGP2_SETn_MASK	1	DSP SETn GPIO2 Mask Control
		DSPGP1_SETn_MASK	1	DSP SETn GPIO1 Mask Control
R1167440 (0x11D050)	15	DSPGP16_SETn_DIR	1	DSP SETn GPIO16 Direction Control
DSPGP_SET1_DIRECTION1				0 = Output, 1 = Input
R1167504 (0x11D090)		DSPGP15_SETn_DIR	1	DSP SETn GPIO15 Direction Control
DSPGP_SET2_DIRECTION1		DSPGP14_SETn_DIR	1	DSP SETn GPIO14 Direction Control
R1167568 (0x11D0D0)		DSPGP13_SETn_DIR	1	DSP SETn GPIO13 Direction Control
DSPGP_SET3_DIRECTION1		DSPGP12_SETn_DIR	1	DSP SETn GPIO12 Direction Control
R1167632 (0x11D100)		DSPGP11_SETn_DIR	1	DSP SETn GPIO11 Direction Control
DSPGP_SET4_DIRECTION1		DSPGP10_SETn_DIR	1	DSP SETn GPIO10 Direction Control
R1167696 (0x11D150)		DSPGP9_SETn_DIR	1	DSP SETn GPIO9 Direction Control
DSPGP_SET5_DIRECTION1		DSPGP8_SETn_DIR	1	DSP SETn GPIO8 Direction Control
R1167760 (0x11D190)		DSPGP7_SETn_DIR	1	DSP SETn GPIO7 Direction Control
DSPGP_SET6_DIRECTION1		DSPGP6_SETn_DIR	1	DSP SETn GPIO6 Direction Control
R1167824 (0x11D1D0)		DSPGP5_SETn_DIR	1	DSP SETn GPIO5 Direction Control
DSPGP_SET7_DIRECTION1		DSPGP4_SETn_DIR	1	DSP SETn GPIO3 Direction Control
R1167888 (0x11D200)		DSPGP3_SETn_DIR	1	DSP SETn GPIO3 Direction Control
DSPGP_SET8_DIRECTION1		DSPGP2_SETn_DIR	1	DSP SETn GPIO2 Direction Control
	0	DSPGP1_SETn_DIR	1	DSP SETn GPIO1 Direction Control

Table 4-33. DSP GPIO Control (Con

Register Address	Bit	Label	Default	Description
R1167456 (0x11D060)	15	DSPGP16_SETn_LVL	0	DSP SETn GPIO16 Output Level
DSPGP_SET1_LEVEL1				0 = Logic 0, 1 = Logic 1
R1167520 (0x11D0A0)	14	DSPGP15_SETn_LVL	0	DSP SETn GPIO15 Output Level
DSPGP_SET2_LEVEL1	13	DSPGP14_SETn_LVL	0	DSP SETn GPIO14 Output Level
R1167584 (0x11D0E0)	12	DSPGP13_SETn_LVL	0	DSP SETn GPIO13 Output Level
DSPGP_SET3_LEVEL1	11	DSPGP12_SETn_LVL	0	DSP SETn GPIO12 Output Level
R1167648 (0x11D120)	10	DSPGP11_SETn_LVL	0	DSP SETn GPIO11 Output Level
DSPGP_SET4_LEVEL1	9	DSPGP10_SETn_LVL	0	DSP SETn GPIO10 Output Level
R1167712 (0x11D160)	8	DSPGP9_SETn_LVL	0	DSP SETn GPIO9 Output Level
DSPGP_SET5_LEVEL1	7	DSPGP8_SETn_LVL	0	DSP SETn GPIO8 Output Level
R1167776 (0x11D1A0)	6	DSPGP7_SETn_LVL	0	DSP SETn GPIO7 Output Level
DSPGP_SET6_LEVEL1	5	DSPGP6_SETn_LVL	0	DSP SETn GPIO6 Output Level
R1167840 (0x11D1E0)	4	DSPGP5_SETn_LVL	0	DSP SETn GPIO5 Output Level
DSPGP_SET7_LEVEL1	3	DSPGP4_SETn_LVL	0	DSP SETn GPIO4 Output Level
R1167904 (0x11D220)	2	DSPGP3_SETn_LVL	0	DSP SETn GPIO3 Output Level
DSPGP_SET8_LEVEL1	1	DSPGP2_SETn_LVL	0	DSP SETn GPIO2 Output Level
	0	DSPGP1_SETn_LVL	0	DSP SETn GPIO1 Output Level

4.5.5 Quad SPI Master Interface

The CS48L32 incorporates a quad-SPI master interface, offering flexible capability to support external components such as flash-memory devices.

4.5.5.1 Overview

The SPI master interface (SPI2) supports high-speed data transfers to/from external components or accessories. It is ideally suited to controlling flash-memory components. The interface supports four slave-select (SS) outputs and quad (four-bit) data input/output. High-bandwidth transfers are supported at clock (SCK) frequencies up to 24.576 MHz.

The interface supports write, read, and write-then-read commands, enabling compatibility with a wide variety of control protocols for external devices. In Host Mode, 64-byte data buffers are used to support continuous transfers (up to 4 MB) across the external interface. In DMA Mode, the interface transfers data to/from a configurable location within the register map; circular-buffer operation can be configured, accessing one region of address on a cyclic basis.

4.5.5.2 Interface Configuration

The SPI master interface speed (SCK frequency) is selected using SPI2_SCLK_FREQ_SEL. Clocking for the SPI interface is derived from SYSCLK, which must be enabled and present whenever the SPI master interface is used. See Section 4.8 for details of the system clocks.

Note that, depending on the SYSCLK frequency and the available dividers, the actual SCK frequency may differ from the selected frequency. The SCK frequency, indicated by SPI2_SCLK_FREQ_STS, is the closest available frequency that is less than or equal to the frequency selection.

The interface supports four slave-select (\$\overline{SS}\$) outputs, enabling multiple devices to be individually accessed on a shared bus. The active SS output is configured using SPI2_SS_SEL; the selected pin is asserted (Logic 0) at the start of a transaction and deasserted (Logic 1) at the end. Timing of the SS function is configurable using SPI2_SS_IDLE_DUR and SPI2_SS_DELAY_DUR as defined in Table 4-34. The SS output can also be asserted by setting SPI2_SS_FRC.

The interface supports selectable phase/polarity control of the clock (SCK) and data (SIO) lines; this is provided using SPI2 DPHA, SPI2 CPHA, and SPI2 CPOL as described in Table 4-34.

The SPI master interface supports four data pins, SIO0 through SIO3, enabling high-speed transfers in parallel-data configuration. The interface is configured for one-, two-, or four-bit data using SPI2_SIO_WIDTH. Quad-SPI operation is supported using four-bit data.

If one-bit data is selected (SPI2_SIO_WIDTH = 0x0), the interface supports either bidirectional data on the SIO0 pin or separate input/output data connections on SIO0 and SIO1—this is configured using SPI2_3WIRE.

The SPI2_SIO_SWITCH field enables the interface to switch between one-bit and multibit operation during a single transaction—the interface starts in one-bit mode (e.g., to send a command byte), then switches to multibit operation after a defined number of SCK cycles.

Typical connections for the SPI master interface are illustrated in Fig. 4-30, Fig. 4-31, and Fig. 4-32. Note that the external connections associated with the SPI master interface (SPI2) are implemented on multifunction GPIO pins, which must be configured for the respective functions when required. See Section 4.10 to configure the GPIO pins for SPI2 operation.

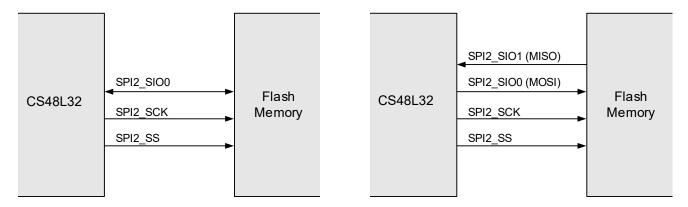


Figure 4-30. 3-Wire Mode

Figure 4-31. 4-Wire Mode

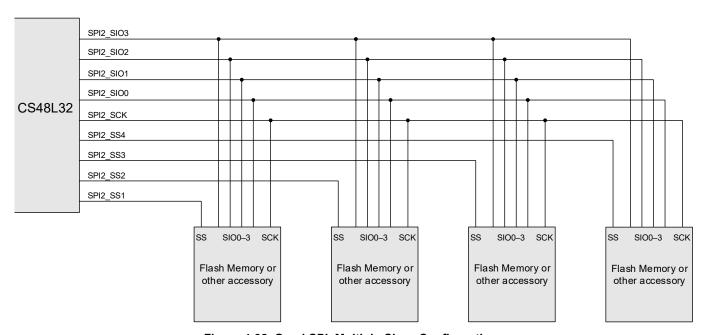


Figure 4-32. Quad-SPI, Multiple-Slave Configuration

The SPI master interface supports write (TX), read (RX), and write-then-read (TX-RX) transactions. The TX-RX transaction is typically used to read data from a slave device—the TX phase is used to send command words to the slave, and the RX phase is used to receive the respective data words.

The SPI interface can provide *dummy cycles* between the TX phase and the RX phase of a write-then-read transaction; these additional SCK cycles enable flexible support for different slave devices. The number of dummy cycles is configured using SPI2_DUMMY_CYCLE. Note this is valid for write-then-read commands only; SPI2_DUMMY_CYCLE has no effect on other commands.

As many as eight data bits within the dummy-cycle phase can be actively driven and controlled if required. The drive status and logic level of these bits are controlled using SPI2_DUMMY_DRV and SPI2_DUMMY_DATA as described in Table 4-34. Note that, depending on the number of dummy cycles and the SIOn data width, there may be more than or less than eight data slots available during the dummy cycles; the interface provides control for the first eight bit slots only.

The data-bit format within the dummy cycles is illustrated in Fig. 4-33 through Fig. 4-35 for one-, two-, or four-bit data respectively. In these figures, D7 represents the most-significant bit of SPI2_DUMMY_DATA; D0 represents the least-significant bit.

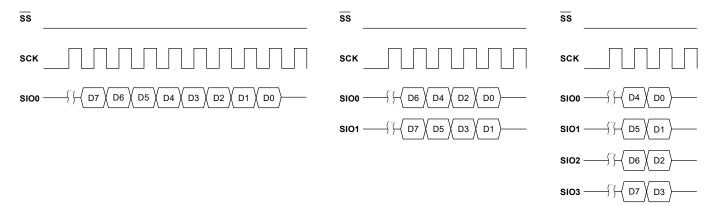


Figure 4-33. Dummy Data—1-bit Mode

Figure 4-34. Dummy Data—2-bit Mode Figure 4-35. Dummy Data—4-bit Mode

4.5.5.3 Host Mode

In Host Mode, the transmit (master write) and receive (master read) actions are supported by 64-byte data buffers, allowing continuous SPI transfers of up to 4,194,304 data bytes. The SPI master interface is in Host Mode if SPI2_DMA_EN = 0.

The SPI transmit and receive operations are implemented as follows:

- Data to be transmitted is managed using the TX data buffer; the application software must load data into the buffer and then commit that data for transmission by writing 1 to SPI2_TX_DONE. The SPI2_TX_REQUEST bit, if set, indicates the buffer is ready for new data. Internal buffering of the TX data enables uninterrupted SPI writes.
 The TX data buffer is accessed at a single register address: the SPI2_TX_DATA field should be written up to 16 times (corresponding to the TX block length—up to 64 bytes) before writing to SPI2_TX_DONE.
- Data received on the interface is managed using the RX data buffer; the SPI2_RX_REQUEST bit, if set, indicates
 the buffer contains new data. The application software must read the buffer data and then confirm the data has been
 read by writing 1 to SPI2_RX_DONE. Internal buffering of the RX data enables uninterrupted SPI reads.
 The RX data buffer is accessed at a single register address: the SPI2_RX_DATA field should be read up to 16 times
 (corresponding to the RX block length—up to 64 bytes) before writing to SPI2_RX_DONE.

The interface may stall (SCK stopped) if TX data is not available or if RX data is not read at the required rate. An interrupt event is triggered under these conditions—see Section 4.5.5.5.

Note: The SPI2_STALL_EN bit must be set in all cases.

The SPI master divides each SPI transaction into one or more data blocks. The block length—configured using SPI2_TX_BLOCK_LENGTH and SPI2_RX_BLOCK_LENGTH—is equal to the number of bytes transmitted/received for each TX_DONE/RX_DONE action. The maximum block length is 64 bytes, corresponding to the size of the TX and RX data buffers. The block interrupt (see Section 4.5.5.5) is triggered following each TX/RX block transferred.

The total number of data bytes transferred in each SPI transaction is configured using SPI2_TX_LENGTH and SPI2_RX_LENGTH. In the case of a Write-then-Read command, both fields must be configured for the respective portions of the SPI transaction. Note that dummy cycles (see Section 4.5.5.2) are not included in the number of data bytes configured by these fields.

The order in which the data bytes in the TX/RX buffers are transferred depends on the selected SPI2_WORD_SIZE setting. Correct setting of the word size ensures that each data word is transmitted/received most-significant byte first.

Note: The block length (SPI2_TX_BLOCK_LENGTH and SPI2_RX_BLOCK_LENGTH) and the total number of data bytes (SPI2_TX_LENGTH and SPI2_RX_LENGTH) must each represent an integer multiple of the selected word size. For example, if the word size is 32 bits, the block length and transfer length must be a multiple of four bytes.

The SPI command type (read, write, or write-then-read) is configured using SPI2 CMD.

The SPI command is started by writing 1 to SPI2_START. In the case of a master write, data must be committed to the TX data buffers using the TX_DONE bit to enable the transfer to proceed—note that the first block of transmit data can be committed to the TX buffers before or after writing to SPI2_START for the respective transfer.

An ongoing SPI transaction can be aborted by writing 1 to SPI2_ABORT.

Fig. 4-36 shows a write-then-read transaction, including SIO switching and dummy-data cycles.

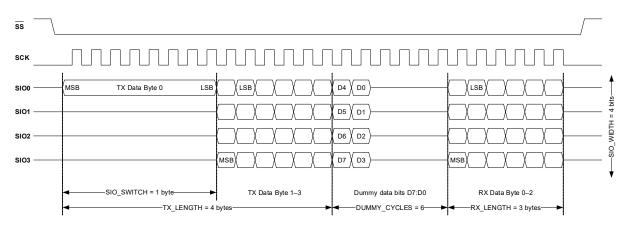


Figure 4-36. SPI Master Write-then-Read, with SIO Switching

4.5.5.4 DMA Mode

In DMA Mode, the SPI master interface transfers data directly to/from a configurable location within the register map. Circular-buffer operation can be configured, with the interface accessing a defined region of addresses on a cyclic basis. The SPI master interface is in DMA Mode if SPI2 DMA EN = 1.

In DMA Mode, SPI transactions are configured by defining the start-address location and the length of the transfer. The start address (SPI2_TX_DMA_START_ADDR and SPI2_RX_DMA_START_ADDR) defines the register location of the first data word in the transfer. The register address auto-increments by four bytes for every 32-bit word transmitted or received.

The SPI master divides each SPI transaction into one or more data blocks. In DMA Mode, the block length is configured using SPI2_TX_DMA_BLOCK_LEN or SPI2_RX_DMA_BLOCK_LEN. The block interrupt (see Section 4.5.5.5) is triggered following each TX/RX block transferred. The SPI2_DMA_BLOCK_DONE_STS bit is set following each TX/RX block.

Note: SPI2 TX BLOCK LENGTH and SPI2 RX BLOCK LENGTH should be set to 0x03 in DMA Mode.

Circular-buffer operation is supported in DMA Mode. The size of the circular buffer is defined as a number of data blocks; this is configured using SPI2_TX_DMA_BUF_BLOCK_NUM or SPI2_RX_DMA_BUF_BLOCK_NUM. The circular buffer is disabled if the number of blocks is 0.

- If the circular buffer is disabled, one or more blocks of data are transferred until the transfer length is reached.
- If the circular buffer is enabled, the contents of the buffer are transferred in a cyclic pattern until the transfer length is reached. At the end of the buffer (DMA_BUF_BLOCK_NUM * DMA_BLOCK_LEN bytes), the register address returns to START_ADDR. Note that each SPI transaction starts from START_ADDR, regardless of the end address of the previous transaction.

The total number of data bytes transferred in each SPI transaction is configured using SPI2_TX_LENGTH and SPI2_RX_LENGTH. In the case of a write-then-read command, both fields must be configured for the respective portions of the SPI transaction. Note that preamble bytes (see below) and dummy cycles (see Section 4.5.5.2) are not included in the number of data bytes configured by these fields.

The order in which the data bytes are transferred depends on the selected SPI2_WORD_SIZE setting. Correct setting of the word size ensures that each data word is transmitted/received most-significant byte first.

Note: The block length (SPI2_TX_DMA_BLOCK_LEN and SPI2_RX_DMA_BLOCK_LEN) and the total number of data bytes (SPI2_TX_LENGTH and SPI2_RX_LENGTH) must each represent a multiple of four bytes. This is required regardless of the selected word size.

The SPI command type (Read, Write, or Write-then-Read) is configured using SPI2_CMD. The SPI command is started by writing 1 to SPI2_START. An ongoing SPI transaction can be aborted by writing 1 to SPI2_ABORT.

In DMA Mode, the data associated with a read or write command is received or transmitted at register addresses that are referenced to the respective start-address location (SPI2_TX_DMA_START_ADDR or SPI2_RX_DMA_START_ADDR). For a write-then-read command, the data associated with the read phase is referenced to the respective start address; the write data is configured using the TX data buffer as described below.

- The write phase of a write-then-read command is managed using the TX data buffer; the application software must load data into the buffer and then commit that data for transmission by writing 1 to SPI2_TX_DONE. The SPI2_TX_ REQUEST bit, if set, indicates the buffer is ready for new data.
- The TX data buffer is accessed at a single register address: the SPI2_TX_DATA field should be written up to 16 times (corresponding to the write-data length) before writing to SPI2_TX_DONE. The maximum length of the write data is 64 bytes, corresponding to the size of the TX data buffer.
- The write data must be loaded into the TX data buffer before writing to SPI2 START to initiate the command.

In DMA Mode, data output of a write command can be preceded by *preamble* data bytes. The preamble phase of the transfer can be used for configuration bytes at the start of the SPI transaction; this may be desirable if the configuration bytes are formatted differently to the main data. Note the preamble is not supported for a write-then-read command.

- The preamble phase is enabled by setting SPI2_DMA_PREAMBLE_EN. The preamble is valid for write commands only—SPI2_DMA_PREAMBLE_EN has no effect on other commands. The number of preamble data words (up to 64 bytes) is configured using SPI2_DMA_PREAMBLE_LENGTH.
- The preamble data to be transmitted is managed using the TX data buffer; the application software must load data
 into the buffer and then commit that data for transmission by writing 1 to SPI2_TX_DONE. The SPI2_TX_
 REQUEST bit, if set, indicates the buffer is ready for new data.
 - The TX data buffer is accessed at a single register address: the SPI2_TX_DATA field should be written up to 16 times (corresponding to the preamble length—up to 64 bytes) before writing to SPI2_TX_DONE.
- The preamble data must be loaded into the TX data buffer before writing to SPI2_START to initiate the command.
- The order in which the preamble bytes are transmitted depends on the word size; this is configured using SPI2_WORD_SIZE and applies to the main data transfer as well as the preamble data. Correct setting of the word size ensures that each data word is transmitted/received most-significant byte first. The preamble length must represent an integer multiple of the selected word size.

Fig. 4-37 shows a write transaction, including preamble data bytes.

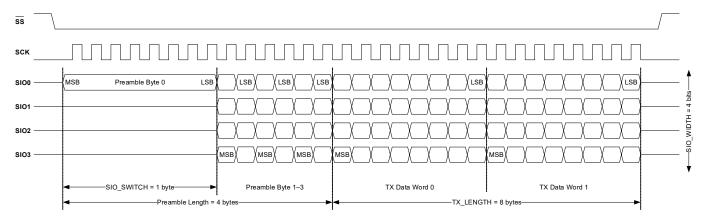


Figure 4-37. SPI Master Write, with Preamble

4.5.5.5 Interrupts and Status Bits

The SPI2_BUSY_STS bit, if set, indicates that the master interface is executing an SPI transaction—this bit is set during each SPI transaction and cleared on completion. Additional status bits are provided to indicate successful transfer, aborted transfer, DMA error, and DMA block-done conditions—see Table 4-34.

The number of data bytes transferred in the current SPI transaction is indicated using SPI2_TX_BYTE_COUNT and SPI2_RX_BYTE_COUNT.

In DMA Mode, the register address of the data word currently being transferred is indicated using SPI2_TX_DMA_ADDR and SPI2_RX_DMA_ADDR. The block number (within the circular buffer) currently being transferred is indicated using SPI2_TX_DMA_BUF_BLOCK_CUR and SPI2_RX_DMA_BUF_BLOCK_CUR.

The SPI master interface provides inputs to the interrupt control circuit. An interrupt event is triggered by a stall condition, completion of each TX/RX block, and on completion of the SPI transaction—see Section 4.9.

- Stall interrupt indicates TX (or preamble) data has not been written to the TX buffer, or RX data has not been read from the RX buffer.
- Block interrupt indicates a block of data has been transferred. In Host Mode, each block represents SPI2_[TX/RX]_
 BLOCK LENGTH bytes. In DMA Mode, each block represents SPI2 [TX/RX] DMA BLOCK LEN bytes.
- Done interrupt indicates completion of a SPI transfer, including when an error condition has occurred. It is recommended that the status bits should be checked after each SPI transaction, so corrective action can be taken if necessary.

4.5.5.6 External Connections

The external connections associated with the SPI master interface (SPI2) are implemented on multifunction GPIO pins, which must be configured for the respective functions when required. Most of the SPI2 connections are pin-specific alternative functions available on specific GPIO pins; the Slave Select 1–4 outputs are available on all GPIOs. See Section 4.10 to configure the GPIO pins for SPI2 operation.

4.5.5.7 Master Interface Control Registers

The SPI2 control registers are described in Table 4-34.

Table 4-34. SPI2 Master Interface Control

Register Address	Bit	Label	Default		Desc	ription	
R1067008 (0x104800)	5:0	SPI2_SCLK_FREQ_	0x00	SPI2 master inter	face frequency (i.e	e., SCK frequency)	in MHz
SPI2_SPI_CLK_		SEL[5:0]		0x00=0.53125	0x0C=1.5	0x18=4.21875	0x24=11.92188
CONFIG				0x01=0.578125	0x0D=1.625	0x19=4.609375	0x25=13
				0x02=0.640625	0x0E=1.78125	0x1A=5.015625	0x26=14.1875
				0x03=0.6875	0x0F=1.9375	0x1B=5.46875	0x27=15.46875
				0x04=0.75	0x10=2.109375	0x1C=5.96875	0x28=16.85938
				0x05=0.8125	0x11=2.3125	0x1D=6.5	0x29=18.39063
				0x06=0.890625	0x12=2.515625	0x1E=7.09375	0x2A=20.0625
				0x07=0.96875	0x13=2.734375	0x1F=7.734375	0x2B=21.875
				0x08=1.0625	0x14=2.984375	0x20=8.4375	0x2C=23.84375
				0x09=1.15625	0x15=3.25	0x21=9.203125	0x2D=26
				0x0A=1.265625	0x16=3.546875	0x22=10.03125	
				0x0B=1.375	0x17=3.875	0x23=10.9375	
				All other codes a	re reserved.		
				U	ed from SYSCLK, vacies are approximately.		'
R1067020 (0x10480C)	15:0	SPI2_SCLK_FREQ_	0x0000	SPI2 master inter	face frequency (Re	ead only)	
SPI2_SPI_CLK_ STATUS1		STS[15:0]		Coded as LSB =	1/64 MHz.		

Register Address	Bit	Label	Default	Description
R1067024 (0x104810)	27:24	SPI2_SS_IDLE_	0x0	SPI2 slave select (SS) idle duration
SPI2_SPI_CONFIG1		DUR[3:0]		Minimum idle time between successive transactions, measured with respect to SCK cycle time.
				0x0 = 0.5 cycles $0x4 = 2.0 cycles$
				0x1 = 0.5 cycles
				$0x2 = 1.0 \text{ cycle} \qquad 0xF = 7.5 \text{ cycles}$
				0x3 = 1.5 cycles
	19:16	SPI2_SS_DELAY_	0x0	SPI2 slave select (SS) delay duration
		DUR[3:0]		Time between asserting SS and the first data bit, also the time between the last data bit and deasserting SS, each measured with respect to SCK cycle time.
				0x0 = 0.5 cycles $0x4 = 2.0$ cycles
				0x1 = 0.5 cycles
				0x2 = 1.0 cycle $0xF = 7.5 cycles$
				0x3 = 1.5 cycles
	8	SPI2_3WIRE	0	SPI2 three-wire mode
				Configures the SIO0 data pin for bidirectional data input/output. Only valid if SPI2_SIO_WIDTH = 0.
				0 = 4-wire Mode (SIO0 is MOSI, SIO1 is MISO)
				1 = 3-wire Mode (SIO0 is bidirectional MOSI/MISO)
	6	SPI2_DPHA	0	SPI2 data (SIOn) phase control
				0 = RX data is valid 180 degrees (half SCK cycle) after TX data valid
				1 = RX data is valid 360 degrees (full SCK cycle) after TX data valid
	5	SPI2_CPHA	0	SPI2 clock (SCK) phase control
				0 = TX data is valid on odd-numbered SCK edges (1, 3, 5, etc.)
				1 = TX data is valid on even-numbered SCK edges (2, 4, 6, etc.)
	4	SPI2_CPOL	0	SPI2 clock (SCK) polarity control
				0 = SCK idle state is Logic 0
				1 = SCK idle state is Logic 1
	2:0	SPI2_SS_SEL[2:0]	000	SPI2 slave select (SS) control
				Selects the active SS pin. The active SS pin is asserted (Logic 0) at the start of the transaction and deasserted (Logic 1) at the end of the transaction.
				000 = SPI2_SS1
				001 = SPI2_SS2 All other codes are reserved.
				010 = SPI2_SS3
R1067028 (0x104814)	0	SPI2_SS_FRC	0	SPI2 slave select (SS) force
SPI2_SPI_CONFIG2				Forces the active SS pin to be asserted (Logic 0).
				0 = Normal
				1 = SS asserted (Logic 0)
R1067044 (0x104824)	16	SPI2_STALL_EN	0	SPI2 stall control
SPI2_SPI_CONFIG3				0 = Disabled
				1 = Enabled
				This bit should be set at all times.

Register Address	Bit	Label	Default	Description
R1067048 (0x104828)	13:8	SPI2_SIO_	0x00	SPI2 serial data (SIO) switch point
SPI2_SPI_CONFIG5		SWITCH[5:0]		Defines the point at which the SPI transaction switches from single data pin (SIO0) to multiple data pins (SIOn). The switch point is measured in data sections; a data section is defined as a preamble byte, a TX data
				byte, or the dummy-cycle phase. Only valid if SPI2_SIO_WIDTH > 0.
				0x00 = Switch immediately (all sections use multiple data pins)
				0x01 = Switch after 1 section
				0x02 = Switch after 2 sections
	4.0		0.0	0x3F = Switch after 63 sections.
	1:0	SPI2_SIO_WIDTH[1:0]	00	SPI2 serial data (SIO) width
				Selects the data width (i.e., the number of SIO data pins used)
				00 = 1-bit
				01 = 2-bit
				10 = 4-bit 11 = Reserved
R1067052 (0x10482C)	21.24	SPI2_DUMMY_	0x00	SPI2 dummy drive control
SPI2_SPI_CONFIG6	01.24	DRV[7:0]	0.00	Enables up to eight data bits to be actively driven during the dummy cycles. The first eight data-bit positions are configured, MSB first, using SPI2_DUMMY_DRV. If fewer than eight data bits are available in the dummy cycles, the LSBs are not used. If more than eight data bits are available, the remaining data bits are undriven.
				Each bit is coded as:
				0 = Undriven
				1 = Driven
	23:16	SPI2_DUMMY_	0x00	SPI2 dummy data
	20.10	DATA[7:0]	OXO O	Enables up to eight data bits to be configured during the dummy cycles. The first eight data-bit positions are controlled, MSB first, using SPI2_DUMMY_DATA. If fewer than eight data bits are available in the dummy cycles, the LSBs are not used. Only valid if the respective data bit is actively driven by setting the respective bit in SPI2_DUMMY_DRV.
	5:0	SPI2_DUMMY_	0x00	SPI2 dummy cycles
		CYCLE[5:0]		Selects the number of SCK cycles between the TX bytes and RX bytes. Valid for Write-then-Read commands only.
				0x00 = 0 cycles
				0x01 = 1 cycle
				0x02 = 2 cycles
				0x3F = 63 cycles
R1067056 (0x104830)	0	SPI2_DMA_EN	0	SPI2 Mode select
SPI2_SPI_CONFIG7				0 = Host Mode
				1 = DMA Mode
R1067264 (0x104900)	3	SPI2_DMA_BLOCK_	0	SPI2 DMA block status
SPI2_SPI_STATUS1		DONE_STS		This bit, if set, indicates completion of a TX/RX data-block transfer (the block length is configured using SPI2_TX/RX_DMA_BLOCK_LEN). Valid in DMA Mode only. The bit is cleared by writing 1; it is also cleared when SPI2_START is written.
	2	SPI2_DMA_ERR_STS	0	SPI2 DMA error status
				This bit, if set, indicates an error was encountered during the DMA transaction. The bit is cleared when SPI2_START is written or when DMA Mode is disabled.
	1	SPI2_ABORT_STS	0	SPI2 abort status
				This bit, if set, indicates a SPI transaction was aborted. The bit is cleared when SPI2_START is written.
	0	SPI2_DONE_STS	0	SPI2 done status
				This bit, if set, indicates a SPI transaction completed successfully. The bit is cleared when SPI2_START is written.
R1067520 (0x104A00)	0	SPI2_START	0	SPI2 start control
SPI2_CONFIG1				Write 1 to start the SPI transaction.

Register Address	Bit	Label	Default	Description
R1067524 (0x104A04)	0	SPI2_ABORT	0	SPI2 abort control
SPI2_CONFIG2				Write 1 to abort the SPI transaction.
R1067528 (0x104A08)	18:16	SPI2_WORD_	00	SPI2 word size
SPI_CONFIG3		SIZE[2:0]		Selects the data-word format, ensuring each data word is transmitted/received MSB first.
				00 = 8-bit (7:0, 15:8, 23:16, 31:24)
				01 = 16-bit (15:9, 31:16)
				10 = 32-bit (31:0)
				11 = Reserved
				The bracketed numbers describe the order in which the TX/RX data bits are transmitted/received over the SPI interface.
	1:0	SPI2_CMD[1:0]	0	SPI2 command type
				00 = Write
				01 = Read
				10 = Write then Read
				11 = Reserved
R1067532 (0x104A0C)	21:0	SPI2_TX_	0x00_	SPI2 transmit length
SPI_CONFIG4		LENGTH[21:0]	0000	Selects the number of data bytes in a SPI Write operation.
				0x00_0000 = 1 byte
				0x00_0001 = 2 bytes
				0x00_0010 = 3 bytes
				 0x3F_FFFF = 4,194,304 bytes
				Note this field selects the number of data bytes only—it does not include
				dummy cycles or preamble bytes. The number of data bytes must
				represent an integer number of data words (where the data-word size is
				set by SPI2_WORD_SIZE). In DMA Mode, the transmit length must represent a multiple of four bytes.
R1067552 (0x104A20)	21:0	SPI2 RX	0x00	SPI2 receive length
SPI CONFIG5	21.0	LENGTH[21:0]	0000	Selects the number of data bytes in a SPI Read operation.
01 1_001 ti 100				0x00 0000 = 1 byte
				0x00_0001 = 2 bytes
				0x00_0010 = 3 bytes
				0x3F_FFFF = 4,194,304 bytes
				Note this field selects the number of data bytes only—it does not include
				dummy cycles. The number of data bytes must represent an integer
				number of data words (where the data-word size is set by SPI2_WORD_ SIZE). In DMA Mode, the receive length must represent a multiple of four
				bytes.
R1067556 (0x104A24)	5:0	SPI2 TX BLOCK	0x00	SPI2 transmit block length
SPI2_CONFIG6	0.0	LENGTH[5:0]	0,000	In Host Mode, this field selects the interval at which the SPI2 block
01 12_00111 100				interrupt is triggered during SPI write operations.
				0x00 = 1 byte
				0x01 = 2 bytes
				0x02 = 3 bytes
				0x3F = 64 bytes
				In DMA Mode, this field should be set to 0x03.
R1067560 (0x104A28)	5:0	SPI2 RX BLOCK	0x00	SPI2 receive block length
SPI2_CONFIG7		LENGTH[5:0]		In Host Mode, this field selects the interval at which the SPI2 block
				interrupt is triggered during SPI read operations.
				0x00 = 1 byte
				0x01 = 2 bytes
				0x02 = 3 bytes
				0x3F = 64 bytes
				In DMA Mode, this field should be set to 0x03.

Register Address	Bit	Label	Default	Description
R1067564 (0x104A2C)	4	SPI2_RX_DONE	0	SPI2 receive buffer control
SPI2_CONFIG8				Write 1 to indicate that data in the RX buffer has been read. In normal operation, a 1 is written after reading the RX buffer; this causes SPI2_RX_REQUEST to be cleared. Note that, if further data is available to read, SPI2_RX_REQUEST remains set.
				Valid in Host Mode only; the RX buffer is used for read commands and for write-then-read commands.
	0	SPI2_TX_DONE	0	SPI2 transmit buffer control
				Write 1 to indicate the TX buffer has been filled with data for transmission. In normal operation, a 1 is written after writing the TX buffer; this causes SPI2_TX_REQUEST to be cleared.
				In Host Mode, the TX buffer is used for write commands and for write-then-read commands.
				In DMA Mode, the TX buffer is used for write-command preamble data, and for the write phase of a write-then-read command.
R1067568 (0x104A30)	24	SPI2_DMA_	0	SPI2 preamble enable
SPI2_DMA_CONFIG1		PREĀMBLĒ_EN		Enables preamble data bytes to be transmitted at the start of a Write command. Preamble bytes are configured using the transmit-data buffer. Valid in DMA Mode only.
				0 = Disabled
		0010 0111		1 = Enabled
	5:0	SPI2_DMA_ PREAMBLE	0x00	SPI2 preamble length
		LENGTH[5:0]		Configures the number of preamble data bytes.
				0x00 = 1 byte
				0x01 = 2 bytes 0x02 = 3 bytes
				0x02 – 3 bytes
				 0x3F = 64 bytes
R1067776 (0x104B00)	8	SPI2_BUSY_STS	0	SPI2 busy status
SPI2_STATUS1	Ü	0112_5001_010		This bit, if set, indicates a transaction is in progress on the SPI master interface.
	4	SPI2_RX_REQUEST	0	SPI2 receive buffer status
				0 = No data available to read
				1 = Buffer data is available to read
				Valid in Host Mode only; the RX buffer is used for read commands and for write-then-read commands.
	0	SPI2_TX_REQUEST	0	SPI2 transmit buffer status
				0 = TX buffer not available to write
				1 = TX buffer is available to write
				In Host Mode, the TX buffer is used for write commands and for write-then-read commands.
				In DMA Mode, the TX buffer is used for write-command preamble data, and for the write phase of a write-then-read command.
R1067780 (0x104B04)	21:0	SPI2_TX_BYTE_	0x00_	SPI2 transmit byte count
SPI2_STATUS2	04.0	COUNT[21:0]	0000	Indicates the number of data bytes transferred in the current transaction.
R1067784 (0x104B08)	21:0	SPI2_RX_BYTE_ COUNT[21:0]	0x00_ 0000	SPI2 receive byte count
SPI2_STATUS3 R1067792 (0x104B10)	26:0	SPI2 TX DMA	0x000	Indicates the number of data bytes transferred in the current transaction. SPI2 transmit DMA start address
SPI2_TX_DMA_ START_ADDR	20.0	START_ADDR[26:0]	0000_	Register address of the first data word of an TX DMA transaction.
R1067796 (0x104B14) SPI2 TX DMA ADDR	26:0	SPI2_TX_DMA_ ADDR[26:0]	0x000_ 0000	SPI2 transmit DMA current address Register address of the current data word of an TX DMA transaction.
R1067804 (0x104B1C)	26.0	SPI2 RX DMA	0x000	SPI2 receive DMA start address
SPI2_RX_DMA_ START_ADDR	20.0	START_ADDR[26:0]	0000_	Register address of the first data word of an RX DMA transaction.
R1067808 (0x104B20)	26:0	SPI2 RX DMA	0x000	SPI2 receive DMA current address
SPI2_RX_DMA_ADDR		ADDR[26:0]	0000	Register address of the current data word of an RX DMA transaction.

Table 4-34. SPI2 Master Interface Control (Cont.)

Register Address	Bit	Label	Default	Description
R1067820 (0x104B2C)	21:0	SPI2_TX_DMA_	0x00_	SPI2 transmit DMA block length
SPI2_TX_DMA_		BLOCK_LEN[21:0]	0000	Selects the block size for a TX DMA transaction.
BLOCK_LEN				0x00_0000 = 0 bytes
				0x00_0004 = 4 bytes
				0x00_0008 = 8 bytes
				 0x3F_FFFC = 4,194,300 bytes
				All other codes are reserved
R1067824 (0x104B30)	7:0	SPI2_TX_DMA_BUF_	0x00	SPI2 transmit DMA block control
SPI2_TX_DMA_BUF_		BLOCK_NUM[7:0]		Selects the number of blocks in the TX DMA circular buffer.
BLOCK_NUM				0x00 = 0 blocks (circular buffer disabled)
				0x01 = 1 block
				0x02 = 2 blocks
				0xFF = 255 blocks
R1067828 (0x104B34)	7:0	SPI2_TX_DMA_BUF_	0x00	SPI2 transmit DMA block status
SPI2_TX_DMA_BUF_		BLOCK_CUR[7:0]		Indicates the block number (within the TX DMA circular buffer) currently
BLOCK_CUR				being processed.
R1067832 (0x104B38)	21:0	SPI2_RX_DMA_	0x00_	SPI2 receive DMA block length
SPI2_RX_DMA_		BLOCK_LEN[21:0]	0000	Selects the block size for a RX DMA transaction.
BLOCK_LEN				0x00_0000 = 0 bytes
				0x00_0004 = 4 bytes
				0x00_0008 = 8 bytes
				0x3F FFFC = 4,194,300 bytes
				All other codes are reserved
R1067836 (0x104B3C)	7:0	SPI2 RX DMA BUF	0x00	SPI2 receive DMA block control
SPI2_RX_DMA_BUF_		BLOCK_NUM[7:0]		Selects the number of blocks in the RX DMA circular buffer.
BLOCK_NUM				0x00 = 0 blocks (circular buffer disabled)
				0x01 = 1 block
				0x02 = 2 blocks
				0xFF = 255 blocks
R1067840 (0x104B40)	7:0	SPI2_RX_DMA_BUF_	0x00	SPI2 receive DMA block status
SPI2_RX_DMA_BUF_		BLOCK_CUR[7:0]		Indicates the block number (within the RX DMA circular buffer) currently
BLOCK_CUR				being processed.
R1068032 (0x104C00)	31:0	SPI2_TX_DATA[31:0]	0x0000_	SPI2 transmit data
SPI2_TX_DATA			0000	Data for transmission is written to this field. The field can be written up to 16 times (corresponding to the maximum TX data-block size) before writing to SPI2_TX_DONE.
				In Host Mode, the TX buffer is used for write commands and for write-then-read commands.
				In DMA Mode, the TX buffer is used for write-command preamble data, and for the write phase of a write-then-read command.
R1068544 (0x104E00)	31:0	SPI2_RX_DATA[31:0]	0x0000_	SPI2 receive data
SPI2_RX_DATA			0000	Received data is read from this field. The field can be read up to 16 times (corresponding to the maximum RX data-block size) before writing to SPI2_RX_DONE.
				Valid in Host Mode only; the RX buffer is used for read commands and for write-then-read commands.

4.6 Audio Serial Port

The CS48L32 provides two audio serial ports, ASP1–ASP2. Each interface is independently configurable on the respective transmit (TX) and receive (RX) paths. ASP1 supports up to eight channels of input and output signal paths; ASP2 supports up to four channels of input and output signal paths.

The data sources for the audio serial port transmit (TX) paths can be selected from any of the CS48L32 input signal paths, or from the digital-core processing functions. The audio serial port receive (RX) paths can be selected as inputs to any of the digital-core processing functions or digital-core outputs. See Section 4.3 for details of the digital-core routing options.

The ASPs provide flexible connectivity for multiple processors and other audio devices. Typical connections include applications processor, baseband processor, and wireless transceiver. A typical configuration is shown in Fig. 4-38.

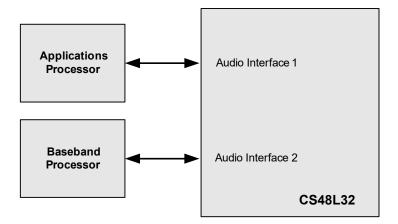


Figure 4-38. Typical ASP Connections

In the general case, the ASP uses four pins:

- DOUT: data outputDIN: data input
- · BCLK: bit clock, for synchronization
- FSYNC: left/right data-alignment clock

In Master Mode, the clock signals BCLK and FSYNC are outputs from the CS48L32. In Slave Mode, these signals are inputs, as shown in Section 4.6.1.

The following interface formats are supported on ASP1-ASP2:

- TDM 0
- TDM 1
- I2S
- · Left-justified
- TDM 1.5

The left-justified, TDM 0, and TDM 1.5 formats are valid in Master Mode only (i.e., BCLK and FSYNC are outputs from the CS48L32). These modes cannot be supported in Slave Mode.

The ASP interface formats are described in Section 4.6.2. The bit order is MSB-first in each case; data words are encoded in 2's complement (signed, fixed-point) format. Mono PCM operation can be supported using the TDM modes. Refer to Table 3-15 through Table 3-17 for signal timing information.

4.6.1 Master and Slave Mode Operation

The CS48L32 audio serial ports can operate as a master or slave, as shown in Fig. 4-39 and Fig. 4-40. The associated control bits are described in Section 4.7. Note that the BCLK and FSYNC signals are independently configurable as inputs or outputs, enabling mixed master/slave operation.

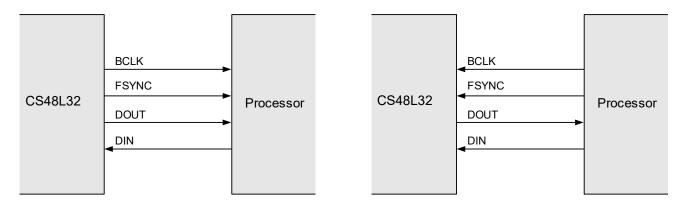


Figure 4-39. Master Mode

Figure 4-40. Slave Mode

4.6.2 Audio Data Formats

The CS48L32 audio serial ports can be configured to operate in I²S, left-justified, TDM 0, TDM 1, or TDM 1.5 interface modes. Note that left-justified, TDM 0, and TDM 1.5 modes are valid in Master Mode only (i.e., BCLK and FSYNC are outputs from the CS48L32).

The ASPs also provide flexibility to support multiple slots of audio data within each FSYNC frame. This flexibility allows multiple audio channels to be supported within a single FSYNC frame.

The data formats described in this section are generic descriptions, assuming only one stereo pair of audio samples per FSYNC frame. In these cases, the ASP is configured to transmit (or receive) in the first available position in each frame (i.e., the Slot 0 position). The options for multichannel operation are described in Section 4.6.3.

The audio data modes supported by the CS48L32 are described as follows. Note that the polarity of the BCLK and FSYNC signals can be inverted if required; unless otherwise noted, the following descriptions assume the default, noninverted polarity of these signals.

- In TDM modes, the left channel MSB is available 0, 1, or 1.5 BCLK cycles following a rising edge of FSYNC. Right-channel data immediately follows left channel data. Depending on word length, BCLK frequency, and sample rate, there may be unused BCLK cycles between the LSB of the right channel data and the next sample.
 - In Master Mode, the FSYNC output resembles the frame pulse shown in Fig. 4-41 through Fig. 4-43. In Slave Mode, it is possible to use any length of frame pulse less than 1/Fs, providing the falling edge of the frame pulse occurs at least one BCLK period before the rising edge of the next frame pulse.
 - TDM mode is suited to mono PCM operation—data that is output at the start of the FSYNC frame is read as mono data by the receiving equipment. Mono PCM data received by the CS48L32 can be routed and mixed with stereo signal paths using the control fields described in Section 4.3.

TDM 0 Mode data format is shown in Fig. 4-41.

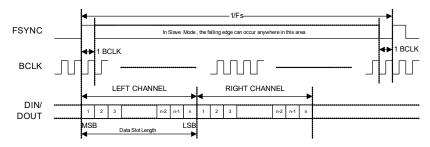


Figure 4-41. TDM 0 Data Format

TDM 1 Mode data format is shown in Fig. 4-42.

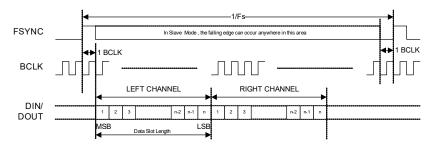


Figure 4-42. TDM 1 Data Format

TDM 1.5 Mode data format is shown in Fig. 4-42. Note that, in TDM 1.5 Mode, the BCLK polarity must be inverted, as shown.

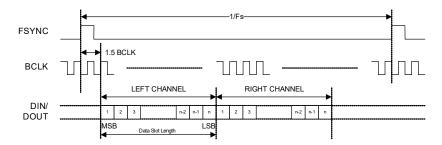


Figure 4-43. TDM 1.5 Data Format

In I2S Mode, the MSB is available on the second rising edge of BCLK following a FSYNC transition. The other bits
up to the LSB are then transmitted in order. Depending on word length, BCLK frequency, and sample rate, there
may be unused BCLK cycles between the LSB of one sample and the MSB of the next.
 I2S Mode data format is shown in Fig. 4-44.

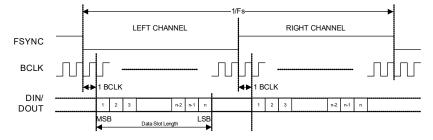


Figure 4-44. I2S Data Format

In Left-Justified Mode, the MSB is available on the first rising edge of BCLK following a FSYNC transition. The other
bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency, and sample rate, there
may be unused BCLK cycles before each FSYNC transition.

Left-Justified Mode data format is shown in Fig. 4-45.

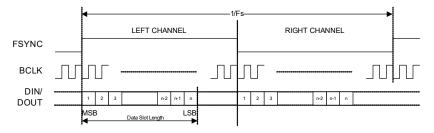


Figure 4-45. Left-Justified Data Format

4.6.3 ASP Time-Slot Configuration

Multichannel operation is supported on ASP1–ASP2, with up to eight channels of input and output on ASP1, and up to four channels of input and output on ASP2. A high degree of flexibility is provided to define the position of the audio samples within each FSYNC frame; the audio channel samples may be arranged in any order within the frame. Note that, on each interface, all input and output channels must operate at the same sample rate (Fs).

Each audio channel can be enabled or disabled independently on the transmit (TX) and receive (RX) signal paths. For each enabled channel, the audio samples are assigned to one time slot within the FSYNC frame.

In TDM modes, the time slots are ordered consecutively from the start of the FSYNC frame. In I2S and left-justified modes, the even-numbered time slots are arranged in the first half of the FSYNC frame, and the odd-numbered time slots are arranged in the second half of the frame.

The time slots are assigned independently for the transmit (TX) and receive (RX) signal paths. There is no requirement to assign every available time slot to an audio sample; slots may be left unused, if desired. Care is required, however, to ensure that no time slot is allocated to more than one audio channel.

The number of BCLK cycles within a slot is configurable; this is the slot length. The number of valid data bits within a slot is also configurable; this is the word length. The number of BCLK cycles per FSYNC frame must be configured; it must be ensured that there are enough BCLK cycles within each FSYNC frame to transmit or receive all of the enabled audio channels.

Examples of the ASP time-slot configurations are shown in Fig. 4-46 through Fig. 4-48.

Fig. 4-46 shows an example of TDM 1 Mode data format. Four enabled audio channels are shown, allocated to time slots 0 through 3.

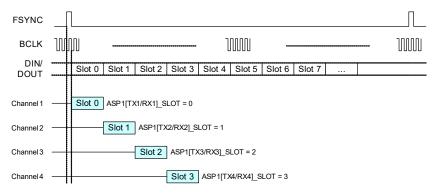


Figure 4-46. TDM 1 Mode Example

DS1219F4 Cirrus Logic 111

Fig. 4-47 shows an example of I2S format. Four enabled channels are shown, allocated to time slots 0 through 3.

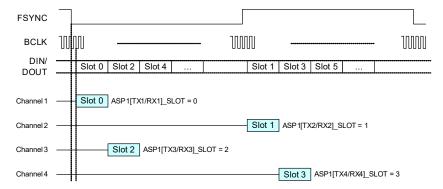


Figure 4-47. I²S Example

Fig. 4-48 shows an example of left-justified format. Six enabled channels are shown.

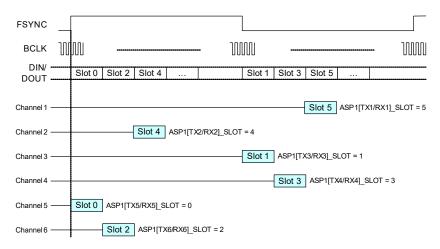
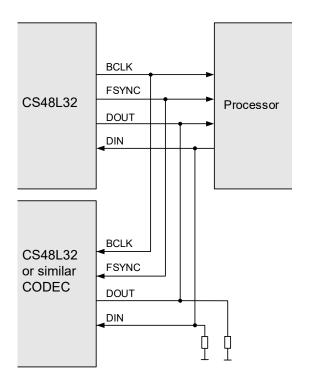


Figure 4-48. Left-Justified Example


4.6.4 ASP Operation Between Three or More Devices

The ASP operation described in Section 4.6.3 illustrates how multiple audio channels can be interleaved on a single DIN or DOUT pin. The interface allocates time slots, for use by each audio channel in turn. This configuration is implemented between two devices using the electrical connections shown Fig. 4-39 and Fig. 4-40.

It is also possible for the ASPs to operate between three or more devices. This allows one codec to transmit or receive audio data between two other devices simultaneously on a single ASP, as shown in Fig. 4-49, Fig. 4-50, and Fig. 4-51.

The CS48L32 provides full support for ASP operation between multiple devices. The DOUT pin can be tristated when not transmitting data, in order to allow other devices to transmit on the same wire. The behavior of the DOUT pin is configurable, to allow maximum flexibility to interface with other devices in this way.

Typical configurations of ASP operation between three devices are shown in Fig. 4-49, Fig. 4-50, and Fig. 4-51.

CS48L32

DOUT

DIN

BCLK

FSYNC

DOUT

DIN

BCLK

FSYNC

DOUT

DIN

DIN

DIN

DIN

DIN

Figure 4-49. ASP Operation with CS48L32 as Master

Figure 4-50. ASP Operation with Other Codec as Master

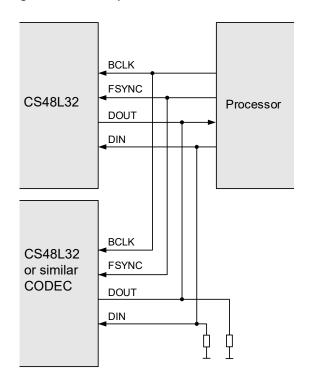


Figure 4-51. ASP Operation with Processor as Master

4.7 Audio Serial Port Control

This section describes the configuration of the ASP signal paths.

ASP1 supports up to eight input signal paths and up to eight output signal paths. ASP2 supports up to four input signal paths and up to four output signal paths. The ASPs can be configured as master or slave interfaces; mixed master/slave configurations are also possible.

Each input and output signal path can be independently enabled or disabled. The ASP output (TX) and ASP input (RX) paths use shared BCLK and FSYNC control signals. The ASPs support flexible data formats, selectable word length, configurable time-slot allocations, and data-output (DOUT) tristate control.

The ASP interfaces provide full support for 32-bit data words (input and output). Audio data samples up to 32 bits can be routed to the ASP paths. Note that other signal paths and signal-processing blocks within the digital core are limited to 24-bit data length; data samples are truncated to 24-bit length if they are routed through any function that does not support 32-bit data words.

The audio serial ports can be reconfigured on-the-fly (i.e., while input/output channels are enabled), though some restrictions must be observed. Care is required to ensure that any on-the-fly reconfiguration does not cause corruption to the active signal paths.

4.7.1 ASP Sample-Rate Control

The ASP RX inputs may be selected as input to the digital mixers or signal-processing functions within the CS48L32 digital core. The ASP TX outputs are derived from the respective output mixers.

The sample rate for each audio serial port ASP*n* is configured using the respective ASP*n*_RATE field—see Table 4-21. The ASP supports on-the-fly changes to the sample-rate selection, but seamless transition of active channels is not possible.

Note that sample-rate conversion is required when routing the ASP paths to any signal chain that is configured for a different sample rate.

4.7.2 ASP Pin Configuration

The external connections associated with each ASP are implemented on multifunction GPIO pins, which must be configured for the respective ASP functions when required. The ASP connections are pin-specific alternative functions available on specific GPIO pins. See Section 4.10 to configure the GPIO pins for ASP operation.

The CS48L32 supports configurable drive-strength control for the digital-output pins. The drive strength of the ASP1–ASP2 output pins is configured using the respective GPIO control fields described in Table 4-49.

Integrated pull-up and pull-down resistors can be enabled on the ASPn_FSYNC, ASPn_BCLK and ASPn_DIN pins. This is provided as part of the GPIO functionality, and provides a flexible capability for interfacing with other devices. The CS48L32 also provides a bus-keeper function on the GPIO pins; the bus-keeper holds the logic level unchanged whenever the pin is undriven (e.g., if the signal is tristated)—see Section 4.10 for further details.

4.7.3 ASP Master/Slave Control

The audio serial ports can operate in master or slave modes and also in mixed master/slave configurations. In Master Mode, the BCLK and FSYNC signals are generated by the CS48L32 when any of the respective audio serial port channels is enabled. In Slave Mode, the BCLK and FSYNC pins are configured as inputs, to allow another device to drive the respective signals.

The BCLK master/slave configuration is set as follows:

- Master Mode is selected on the ASPn_BCLK pin by setting ASPn_BCLK_MSTR. In Master Mode, the ASPn_BCLK signal is generated by the CS48L32 if one or more ASPn channels is enabled.
- If the ASP*n_*BCLK_FRC bit is set in BCLK Master Mode, the ASP*n_*BCLK signal is output at all times, including when none of the ASP*n* channels is enabled.
- The ASPn BCLK signal can be inverted in master or slave modes using the ASPn BCLK INV bit.

Note: BCLK inversion must be enabled (ASPn_BCLK_INV = 1) if TDM 1.5 Mode is selected.

The FSYNC master/slave configuration is set as follows:

- Master Mode is selected on the ASPn_FSYNC pin by setting ASPn_FSYNC_MSTR. In Master Mode, the ASPn_FSYNC signal is generated by the CS48L32 if one or more ASPn channels is enabled.
- If ASP*n_*FSYNC_FRC is set in FSYNC Master Mode, the ASP*n_*FSYNC signal is output at all times, including when none of the ASP*n* channels is enabled. Note that ASP*n_*FSYNC is derived from ASP*n_*BCLK, and an internal or external ASP*n_*BCLK signal must be present to generate ASP*n_*FSYNC.
- The ASPn_FSYNC signal can be inverted in master or slave modes using the ASPn_FSYNC_INV bit.

The ASP master/slave control registers are described in Table 4-35. Note that all ASP*n* channels should be disabled when changing the master/slave configuration of the respective ASP.

Register Address Bit Label Default Description R24584 (0x6008) 6 ASP1 BCLK INV ASP1 Audio Serial Port BCLK Invert ASP1 CONTROL2 0 = ASP1 BCLK not inverted 1 = ASP1 BCLK inverted 5 ASP1 BCLK FRC ASP1 Audio Serial Port BCLK Output Control 0 = Normal 1 = ASP1_BCLK always enabled in Master Mode 4 ASP1 BCLK MSTR ASP1 Audio Serial Port BCLK Master Select 0 = ASP1 BCLK Slave Mode 1 = ASP1 BCLK Master Mode ASP1 FSYNC INV ASP1 Audio Serial Port FSYNC Invert 2 0 = ASP1 FSYNC not inverted 1 = ASP1 FSYNC inverted ASP1 Audio Serial Port FSYNC Output Control ASP1 FSYNC FRC 0 = Normal1 = ASP1 FSYNC always enabled in Master Mode 0 ASP1 FSYNC MSTR ASP1 Audio Serial Port FSYNC Master Select 0 = ASP1 FSYNC Slave Mode 1 = ASP1 FSYNC Master Mode R24712 (0x6088) 6 ASP2 BCLK INV 0 ASP2 Audio Serial Port BCLK Invert ASP2 CONTROL2 0 = ASP2 BCLK not inverted 1 = ASP2 BCLK inverted 5 ASP2 BCLK FRC ASP2 Audio Serial Port BCLK Output Control 0 = Normal1 = ASP2 BCLK always enabled in Master Mode ASP2 BCLK MSTR ASP2 Audio Serial Port BCLK Master Select 0 = ASP2 BCLK Slave Mode 1 = ASP2 BCLK Master Mode ASP2_FSYNC INV 2 0 ASP2 Audio Serial Port FSYNC Invert 0 = ASP2 FSYNC not inverted 1 = ASP2 FSYNC inverted ASP2 FSYNC_FRC ASP2 Audio Serial Port FSYNC Output Control 0 = Normal 1 = ASP2 FSYNC always enabled in Master Mode ASP2 FSYNC MSTR 0 ASP2 Audio Serial Port FSYNC Master Select 0 0 = ASP2 FSYNC Slave Mode 1 = ASP2 FSYNC Master Mode

Table 4-35. ASP Master/Slave Control

4.7.4 ASP Signal Path Enable

The ASP1 interface supports up to eight input (RX) channels and up to eight output (TX) channels. The ASP2 interface supports up to four input (RX) channels and up to four output (TX) channels. Each channel is enabled or disabled using the bits defined in Table 4-36.

The system clock, SYSCLK, must be configured and enabled before any audio path is enabled. See Section 4.8 for details of the system clocks.

DS1219F4 Cirrus Logic 115

The audio serial ports can be reconfigured on-the-fly (i.e., while input/output channels are enabled), though some restrictions must be observed, as noted in the respective functional descriptions. Care is required to ensure that any on-the-fly reconfiguration does not cause corruption to the active signal paths.

The CS48L32 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the commanded signal paths and processing functions. If the frequency is too low, an attempt to enable an ASP signal path fails. Note that active signal paths are not affected under such circumstances.

The ASP signal-path-enable registers are described in Table 4-36.

Register Address Bit Default Description Label R24576 (0x6000) 23 ASP1 RX8 EN ASP1 Audio Serial Port RX Channel n Enable ASP1_ENABLES1 ASP1 RX7 EN 22 0 0 = Disabled ASP1 RX6 EN 21 0 1 = Enabled 20 ASP1 RX5 EN 0 19 ASP1 RX4 EN 0 18 ASP1 RX3 EN 0 17 ASP1 RX2 EN 0 16 ASP1 RX1 EN 0 ASP1 Audio Serial Port TX Channel n Enable ASP1 TX8 EN 0 6 ASP1_TX7_EN 0 0 = Disabled 5 ASP1_TX6_EN 0 1 = Enabled ASP1 TX5 EN 0 4 3 ASP1 TX4 EN 0 2 ASP1_TX3_EN 0 ASP1 TX2 EN 1 0 0 ASP1 TX1 EN 0 ASP2 Audio Serial Port RX Channel n Enable R24704 (0x6080) ASP2 RX4 EN 19 0 ASP2 ENABLES1 18 ASP2 RX3 EN 0 0 = Disabled 17 ASP2 RX2 EN 0 1 = Fnabled 16 ASP2 RX1 EN 0 3 ASP2 TX4 EN 0 ASP2 Audio Serial Port TX Channel n Enable 2 ASP2_TX3_EN 0 0 = Disabled 0 1 = Enabled 1 ASP2_TX2_EN

Table 4-36. ASP Signal Path Enable

4.7.5 ASP BCLK and FSYNC Control

0

ASP2 TX1 EN

The ASPn_FSYNC frequency is configured using ASPn_RATE (see Table 4-21). This field selects one of up to four sample rates as described in Section 4.8.2. The four available sample rates are configured using SAMPLE_RATE_n (where n = 1, 2, 3, or 4).

0

The ASPn_BCLK frequency is configured using ASPn_BCLK_FREQ, as described in Table 4-37. Note that the BCLK frequency must be configured if ASPn_BCLK_MSTR = 1 or ASPn_FSYNC_MSTR = 1. In Slave Mode (ASPn_BCLK_MSTR = 0 and ASPn_FSYNC_MSTR = 0), the ASPn_BCLK_FREQ field is not used.

Note that, if BCLK_MSTR = 1, the selected ASPn_BCLK frequency must be less than or equal to SYSCLK / 2. See Section 4.8 for details of SYSCLK and the associated control registers.

Note that all ASPn channels should be disabled when changing the BCLK frequency of the respective ASP.

Table 4-37. ASP BCLK Control

Register Address	Bit	Label	Default		Description	
R24580 (0x6004)	5:0	ASP1_BCLK_	0x28	ASP1_BCLK Rate		
ASP1_		FREQ[5:0]		0x0C = 128 kHz	0x15 = 768 kHz	0x26 = 5.6448 MHz
CONTROL1				0x0D = 176.4 kHz	0x17 = 1.024 MHz	0x28 = 6.144 MHz
				0x0E = 192 kHz	0x19 = 1.4112 MHz	0x2F = 8.192 MHz
				0x0F = 256 kHz	0x1B = 1.536 MHz	0x31 = 11.2896 MHz
				0x10 = 352.8 kHz	0x1D = 2.048 MHz	0x33 = 12.288 MHz
				0x11 = 384 kHz	0x1F = 2.8824 MHz	0x39 = 22.5792 MHz
				0x12 = 512 kHz	0x21 = 3.072 MHz	0x3B = 24.576 MHz
				0x13 = 705.6 kHz	0x24 = 4.096 MHz	All other codes are reserved
R24708 (0x6084)	5:0	ASP2_BCLK_	0x28	ASP2_BCLK Rate		
ASP2_		FREQ[5:0]		0x0C = 128 kHz	0x15 = 768 kHz	0x26 = 5.6448 MHz
CONTROL1				0x0D = 176.4 kHz	0x17 = 1.024 MHz	0x28 = 6.144 MHz
				0x0E = 192 kHz	0x19 = 1.4112 MHz	0x2F = 8.192 MHz
				0x0F = 256 kHz	0x1B = 1.536 MHz	0x31 = 11.2896 MHz
				0x10 = 352.8 kHz	0x1D = 2.048 MHz	0x33 = 12.288 MHz
				0x11 = 384 kHz	0x1F = 2.8824 MHz	0x39 = 22.5792 MHz
				0x12 = 512 kHz	0x21 = 3.072 MHz	0x3B = 24.576 MHz
				0x13 = 705.6 kHz	0x24 = 4.096 MHz	All other codes are reserved

4.7.6 ASP Digital Audio Data Control

The fields controlling the audio data format, word length, and slot configurations for ASP1–ASP2 are described in Table 4-38 and Table 4-39 respectively.

The ASP*n* data format is configured using ASP*n*_FMT. Note that left-justified, TDM 0, and TDM 1.5 modes are valid in Master Mode only (i.e., BCLK and FSYNC are outputs from the CS48L32). BCLK inversion must be enabled (ASP*n*_BCLK_INV = 1) if TDM 1.5 Mode is selected.

The ASP*n* slot width is the number of BCLK cycles in each time slot within the overall FSYNC frame. This is configured using the ASP*n*_TX*m*_WIDTH and ASP*n*_RX*m*_WIDTH fields. In typical use cases, the slot width is equal to the data width (i.e., number of data bits per sample).

The data width (number of valid data bits within each time slot) is configurable using ASP*n*_TX*m*_WL and ASP*n*_RX*m*_WL. If the data width is less than the slot width, there are unused BCLK cycles at the end of each time slot; the unused data bits in these cycles are set to 0 on the TX paths and are ignored on the RX paths.

For each ASP input (RX) and ASP output (TX) channel, the position of the audio data sample within the FSYNC frame is configurable. The x_SLOT fields define the time-slot position of the audio sample for the associated audio channel. Valid selections are Slot 0 upwards. The time slots are numbered as shown in Fig. 4-46 through Fig. 4-48.

Note that, in TDM modes, the time slots are ordered consecutively from the start of the FSYNC frame. In I²S and left-justified modes, the even-numbered time slots are arranged in the first half of the FSYNC frame, and the odd-numbered time slots are arranged in the second half of the frame.

The ASP1 data control fields are described in Table 4-38. Note that all ASP*n* channels should be disabled when changing the ASP*n* data format. The slot-configuration fields can be updated on-the-fly, subject to the conditions noted in Table 4-38.

Table 4-38. ASP1 Digital Audio Data Control

Register Address	Bit	Label	Default	Description
R24584 (0x6008)	31:24	ASP1_RX_WIDTH[7:0]	0x18	ASP1 RX Slot Width (Number of BCLK cycles per slot)
ASP1_CONTROL2				Integer (LSB = 1); Valid from 16 to 128.
				All ASP1 RX channels must be disabled when writing to this field.
	23:16	ASP1_TX_WIDTH[7:0]	0x18	ASP1 TX Slot Width (Number of BCLK cycles per slot)
				Integer (LSB = 1); Valid from 16 to 128.
				All ASP1 TX channels must be disabled when writing to this field.
	10:8	ASP1_FMT[2:0]	010	ASP1 Audio Serial Port Format
				000 = TDM 1 Mode
				001 = TDM 0 Mode
				010 = I ² S Mode
				011 = Left-Justified Mode
				100 = TDM 1.5 Mode
				Other codes are reserved.
				All ASP1 channels must be disabled when writing to this field.
R24592 (0x6010)	29:24	ASP1_TX4_SLOT[5:0]	0x3	ASP1 TX Channel n Slot position
ASP1_FRAME_	21:16	ASP1_TX3_SLOT[5:0]	0x2	Defines the TX time slot position of the Channel n audio sample.
CONTROL1	13:8	ASP1_TX2_SLOT[5:0]	0x1	Integer (LSB=1); Valid from 0 to 63.
	5:0	ASP1_TX1_SLOT[5:0]	0x0	TX Channel n must be disabled when configuring the respective
R24596 (0x6014)	29:24	ASP1_TX8_SLOT[5:0]	0x7	slot-position field.
ASP1_FRAME_	21:16	ASP1_TX7_SLOT[5:0]	0x6	
CONTROL2	13:8	ASP1_TX6_SLOT[5:0]	0x5	
	5:0	ASP1_TX5_SLOT[5:0]	0x4	
R24608 (0x6020)	29:24	ASP1_RX4_SLOT[5:0]	0x3	ASP1 RX Channel n Slot position
ASP1_FRAME_	21:16	ASP1_RX3_SLOT[5:0]	0x2	Defines the RX time slot position of the Channel n audio sample.
CONTROL5	13:8	ASP1_RX2_SLOT[5:0]	0x1	Integer (LSB=1); Valid from 0 to 63.
	5:0	ASP1_RX1_SLOT[5:0]	0x0	RX Channel n must be disabled when configuring the respective
R24612 (0x6024)	29:24	ASP1_RX8_SLOT[5:0]	0x7	slot-position field.
ASP1_FRAME_	21:16	ASP1_RX7_SLOT[5:0]	0x6	
CONTROL6	13:8	ASP1_RX6_SLOT[5:0]	0x5	
	5:0	ASP1_RX5_SLOT[5:0]	0x4	
R24624 (0x6030)	5:0	ASP1_TX_WL[5:0]	0x20	ASP1 TX Data Width (Number of valid data bits per slot)
ASP1_DATA_				Integer (LSB = 1); Valid from 16 to 32.
CONTROL1				All ASP1 TX channels must be disabled when writing to this field.
R24640 (0x6040)	5:0	ASP1_RX_WL[5:0]	0x20	ASP1 RX Data Width (Number of valid data bits per slot)
ASP1_DATA_				Integer (LSB = 1); Valid from 16 to 32.
CONTROL5				All ASP1 RX channels must be disabled when writing to this field.

The ASP2 data control fields are described in Table 4-39.

Table 4-39. ASP2 Digital Audio Data Control

Register Address	Bit	Label	Default	Description
R24712 (0x6088)	31:24	ASP2_RX_WIDTH[7:0]	0x18	ASP2 RX Slot Width (Number of BCLK cycles per slot)
ASP2_CONTROL2				Integer (LSB = 1); Valid from 16 to 128.
				All ASP2 RX channels must be disabled when writing to this field.
	23:16	ASP2_TX_WIDTH[7:0]	0x18	ASP2 TX Slot Width (Number of BCLK cycles per slot)
				Integer (LSB = 1); Valid from 16 to 128.
				All ASP2 TX channels must be disabled when writing to this field.
	10:8	ASP2_FMT[2:0]	010	ASP2 Audio Serial Port Format
				000 = TDM 1 Mode
				001 = TDM 0 Mode
				010 = I2S Mode
				011 = Left-Justified Mode
				100 = TDM 1.5 Mode
				Other codes are reserved.
R24720 (0x6090)	29:24	ASP2_TX4_SLOT[5:0]	0x3	ASP2 TX Channel n Slot position
AS2_FRAME_	21:16	ASP2_TX3_SLOT[5:0]	0x2	Defines the TX time slot position of the Channel n audio sample.
CONTROL1	13:8	ASP2_TX2_SLOT[5:0]	0x1	Integer (LSB=1); Valid from 0 to 63.
	5:0	ASP2_TX1_SLOT[5:0]	0x0	TX Channel n must be disabled when configuring the respective slot-position field.
R24736 (0x60A0)	29:24	ASP2_RX4_SLOT[5:0]	0x3	ASP2 RX Channel n Slot position
ASP2_FRAME_	21:16	ASP2_RX3_SLOT[5:0]	0x2	Defines the RX time slot position of the Channel n audio sample.
CONTROL5	13:8	ASP2_RX2_SLOT[5:0]	0x1	Integer (LSB=1); Valid from 0 to 63.
	5:0	ASP2_RX1_SLOT[5:0]	0x0	RX Channel n must be disabled when configuring the respective slot-position field.
R24752 (0x60B0)	5:0	ASP2_TX_WL[5:0]	0x20	ASP2 TX Data Width (Number of valid data bits per slot)
ASP2_DATA_				Integer (LSB = 1); Valid from 16 to 32.
CONTROL1				All ASP2 TX channels must be disabled when writing to this field.
R24768 (0x60C0)	5:0	ASP2_RX_WL[5:0]	0x20	ASP2 RX Data Width (Number of valid data bits per slot)
ASP2_DATA_				Integer (LSB = 1); Valid from 16 to 32.
CONTROL5				All ASP2 RX channels must be disabled when writing to this field.

4.7.7 DOUT Tristate Control

If the CS48L32 is not transmitting data, the DOUT signal is either held at Logic 0 or is undriven (high impedance). The behavior is configured using ASPn_DOUT_HIZ_CTRL.

- If one or more TX channels is enabled, the DOUT drive status during unused time slots is controlled by Bit 0 of ASPn_DOUT_HIZ_CTRL.
- If all TX channels are disabled, the DOUT drive status is controlled by Bit 1 of ASPn DOUT HIZ CTRL.

The ASP*n*_DOUT tristate-control fields are described in Table 4-40.

Table 4-40. ASP TDM and Tristate Control

Register Address	Bit	Label	Default	Description
R24588 (0x600C)		ASP1_DOUT_HIZ_	10	ASP1_DOUT Tristate Control
ASP1_CONTROL3		CTRL[1:0]		00 = Logic 0 during unused time slots, Logic 0 if all transmit channels are disabled
				01 = High impedance during unused time slots, Logic 0 if all transmit channels are disabled
				10 = Logic 0 during unused time slots, High impedance if all transmit channels are disabled
				11 = High impedance during unused time slots, High impedance if all transmit channels are disabled
R24716 (0x608C)	1:0	ASP2_DOUT_HIZ_	10	ASP2_DOUT Tristate Control
ASP2_CONTROL3		CTRL[1:0]		00 = Logic 0 during unused time slots, Logic 0 if all transmit channels are disabled
				01 = High impedance during unused time slots, Logic 0 if all transmit channels are disabled
				10 = Logic 0 during unused time slots, High impedance if all transmit channels are disabled
				11 = High impedance during unused time slots, High impedance if all transmit channels are disabled

4.8 Clocking and Sample Rates

The CS48L32 requires a clock reference for its internal functions and also for the input (ADC) paths and audio serial ports. Under typical clocking configurations, all commonly used audio sample rates can be derived directly from the external reference; for additional flexibility, the CS48L32 incorporates an FLL circuit to perform frequency conversion and filtering.

External clock signals may be connected via the MCLK1 input pin. In ASP Slave Modes, the BCLK signals may be used as a reference for the system clocks. The input-path PDM interfaces can also provide the clock reference, when used as the input to one of the FLLs. To avoid audible glitches, all clock configurations must be set up before enabling playback.

4.8.1 System Clocking Overview

The SYSCLK system clock is the reference clocks for all the audio signal paths on the CS48L32. Up to four different sample rates may be independently selected for audio interfaces and other input/output signal paths; each selected sample rate must be synchronized to SYSCLK as described in Section 4.8.2.

The SYSCLK system clock is also the reference clock for the programmable Halo Core DSP on the CS48L32. A wide range of frequencies can be supported; a programmable clock divider is provided for the DSP, allowing the clocking (and power consumption) to be optimized according to the applicable processing requirements. See Section 4.3 for further details.

Excluding the DSP, each subsystem within the CS48L32 digital core is clocked at a dynamically controlled rate, limited by the SYSCLK frequency. For maximum signal mixing and processing capacity, it is recommended that the highest possible SYSCLK frequency is configured.

The DSP is clocked at the SYSCLK rate (or supported divisions of the SYSCLK frequency). The SYSCLK configuration must ensure that sufficient clock cycles are available for the processing requirements of the DSP. The requirements vary, according to the particular software that is in use.

4.8.2 Sample-Rate Control

The CS48L32 audio signal paths are synchronized to the SYSCLK system clock. Different sample rates may be selected for each of the digital audio interfaces (ASPn) and for the input (ADC/PDM) paths, but each enabled interface must still be synchronized to SYSCLK.

The CS48L32 supports a maximum of four different sample rates at any time, configured using SAMPLE_RATE_1, SAMPLE_RATE_2, SAMPLE_RATE_3, and SAMPLE_RATE_4. The sample rates must each be numerically related to each other and to the SYSCLK frequency (further details of these requirements are provided in Table 4-41 and the accompanying text).

Each of the audio interfaces, input paths, and output paths is associated with one of the sample rates selected by the SAMPLE RATE n fields.

When any of the SAMPLE_RATE_n fields is written to, the activation of the new setting is automatically synchronized by the CS48L32 to ensure continuity of all active signal paths. The SAMPLE_RATE_n_STS bits provide indication of the sample rate selections that have been implemented.

The following restrictions must be observed regarding the sample-rate control configuration:

- If 384 kHz or 768 kHz PDM clock rate is selected, the supported sample rate for the respective input paths is restricted as described in Table 4-1. The sample rate for the input signal paths can be set globally, or can be configured independently for each input channel—see Section 4.2.5.
- The isochronous sample-rate converters (ISRCs) support sample rates 8–192 kHz. The sample-rate conversion ratio must be an integer (1–24) or equal to 1.5.
- All external clock references (MCLK input or Slave Mode ASP input) must be within 1% of the applicable register field settings.

4.8.3 SYSCLK Configuration

The SYSCLK clock may be provided directly from external inputs (MCLK, or Slave Mode BCLK inputs). Alternatively, SYSCLK can be derived using the integrated FLL, with MCLK, BCLK, or PDM_CLK as a reference. The SYSCLK must be configured and enabled before any audio path is enabled.

The required SYSCLK frequency is dependent on the SAMPLE_RATE_n fields. Table 4-41 illustrates the valid SYSCLK frequencies for every supported sample rate.

The SYSCLK frequency must be valid for all of the SAMPLE_RATE_n fields. It follows that all of the SAMPLE_RATE_n fields must select numerically-related values, that is, all from the same group of sample rates as represented in Table 4-41.

SYSCLK_FREQ	SYSCLK_FRAC	Sample Rate (kHz)	SAMPLE_RATE_n	
000	0	12	0x01	
		24	0x02	
		48	0x03	
		96	0x04	
100		192	0x05	
		8	0x11	
		16	0x12	
		32	0x13	
000	1	11.025	0x09	
001 010			22.05	0x0A
		44.1	0x0B	
-		88.2	0x0C	
. 30		176.4	0x0D	
	000 001 010 011 100	000 0 001 0 010 0 011 1 100 1 000 1 001 010 011	000 001 010 011 100 011 100 011 100 011 010 010 011 011 100 011 100 011 100 011 100 011 100 011 100 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 012 013 014 015 016 017 017 018 019 019 019 019 019 019 019 019	

Table 4-41. SYSCLK Frequency Selection

Note: The SAMPLE_RATE_*n* fields must each be set to a value from the same group of sample rates, and from the same group as the SYSCLK frequency.

SYSCLK_SRC is used to select the SYSCLK source, as described in Table 4-42. The source may be MCLK1, ASP*n*_ BCLK, or FLL1. If FLL1 is selected as the source, the FLL must be enabled and configured, as described in Section 4.8.7.

Note: If FLL1 is selected as SYSCLK source, two different clock frequencies are available. Typical use cases should select a SYSCLK frequency equal to $F_{FLL1} \times 2$ (i.e., in the range 90–100 MHz). A lower frequency selection, equal to F_{FLL1} , is provided to support low-power always-on use cases.

SYSCLK FREQ and SYSCLK FRAC must be set according to the frequency of the selected SYSCLK source.

The SYSCLK-referenced circuits within the digital core are clocked at a dynamically controlled rate that is limited by the SYSCLK frequency. For maximum signal mixing and processing capacity, the highest possible SYSCLK frequency should be used.

The SAMPLE_RATE_n fields are set according to the sample rates that are required by one or more of the CS48L32 audio interfaces. The CS48L32 supports sample rates ranging from 8–192 kHz. See Section 4.8.2 for further details of the supported sample rates for each of the digital-core functions.

The SYSCLK signal is enabled by setting SYSCLK_EN. The applicable clock source (MCLK1, ASP*n*_BCLK, or FLL1) must be enabled before setting SYSCLK_EN. This bit should be cleared before stopping or removing the applicable clock source.

The CS48L32 supports seamless switching between clock sources. To change the SYSCLK configuration while SYSCLK is enabled, the SYSCLK_FRAC, SYSCLK_FREQ, and SYSCLK_SRC fields must be updated together in one register write operation. Note that, if changing the frequency only (not the source), SYSCLK_EN should be cleared before the clock frequency is updated. The current SYSCLK frequency and source can be read from the SYSCLK_FREQ_STS, SYSCLK_FREQ_FINE_STS, and SYSCLK_SRC_STS fields.

The CS48L32 performs automatic checks to confirm that the SYSCLK frequency is high enough to support the commanded signal paths and processing functions. If the frequency is too low, an attempt to enable a signal path or processing function fails. Note that active signal paths are not affected under such circumstances.

The SYSCLK frequency check provides input to the interrupt-control circuit and can be used to trigger an interrupt event if the frequency is not high enough to support the commanded functionality—see Section 4.9.

4.8.4 Miscellaneous Clock Controls

The CS48L32 incorporates a 32 kHz clock circuit, which is required for input-signal debounce. The 32 kHz clock is also used to support the DSP-watchdog function. The 32 kHz clock must be configured and enabled whenever either of these features is used.

The 32 kHz clock can be generated automatically from SYSCLK, or may be provided externally via the MCLK1 input pin. The 32 kHz clock source is selected using CLK_32K_SRC. The 32 kHz clock is enabled by setting CLK_32K_EN.

A clock output (OPCLK, derived from SYSCLK) can be configured and output on GPIO pins—see Section 4.10 for details on configuring a GPIO pin for this function.

The CS48L32 provides an integrated pull-down resistor on the MCLK1 pin. This provides a flexible capability for interfacing with other devices.

The clocking scheme for the CS48L32 is shown in Fig. 4-52.

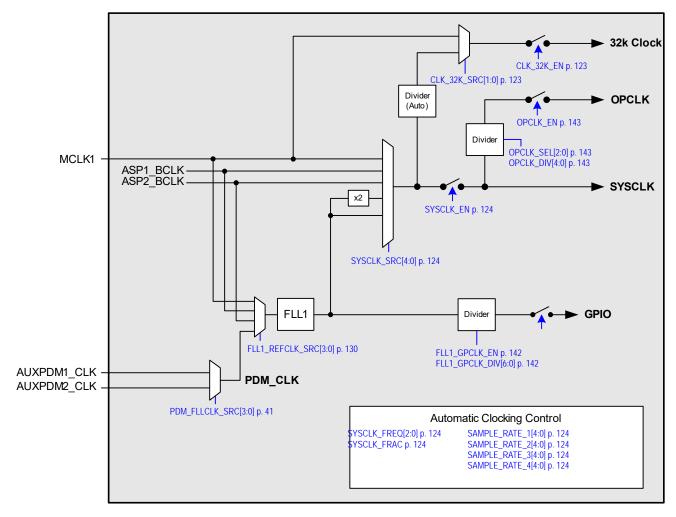


Figure 4-52. System Clocking

The CS48L32 clocking control registers are described in Table 4-42.

Table 4-42. Clocking Control

Register Address	Bit	Label	Default	Description
R4144 (0x1030)	7	MCLK1_PD	0	MCLK1 Pull-Down Control
CLKGEN_PAD_				0 = Disabled
CTRL				1 = Enabled
R5120 (0x1400)	6	CLK_32K_EN	0	32kHz Clock Enable
CLOCK32K				0 = Disabled
				1 = Enabled
	1:0	CLK_32K_SRC[1:0]	10	32kHz Clock Source
				00 = MCLK1 (direct) All other codes are reserved
				10 = SYSCLK (auto divided)

Table 4-42. Clocking Control (Cont.)

Register Address	Bit	Label	Default		ription
R5124 (0x1404)	15	SYSCLK_FRAC	0	SYSCLK Frequency	
SYSTEM_CLOCK1				0 = SYSCLK is a multiple of 6.144 I	ИНz
				1 = SYSCLK is a multiple of 5.6448	MHz
	10:8	SYSCLK_FREQ[2:0]	100	SYSCLK Frequency	
				000 = 6.144 MHz (5.6448 MHz)	011 = 49.152 MHz (45.1584 MHz)
				001 = 12.288 MHz (11.2896 MHz)	100 = 98.304 MHz (90.3168 MHz)
				010 = 24.576 MHz (22.5792 MHz)	All other codes are reserved
				The frequencies in brackets apply for (i.e., SAMPLE_RATE_n = 0x09-0x0	r 44.1 kHz–related sample rates only DD).
	6	SYSCLK_EN	0	SYSCLK Control	
				0 = Disabled	
				1 = Enabled	
					he selected clock source is available
				at the selected frequency. Clear this	
				clock or changing the frequency of	
					SYSCLK frequency can be changed in be used to change the clock source
	4:0	SYSCLK SRC[4:0]	0x04	SYSCLK Source	
				0x00 = MCLK1	0x09 = ASP2_BCLK
				$0x04 = FLL1 \times 2 (90-100 MHz)$	0x0C = FLL1 (45–50 MHz)
				0x08 = ASP1 BCLK	All other codes are reserved
R5128 (0x1408)	31:16	SYSCLK_FREQ_	0x0000	SYSCLK Frequency (Read only)	
SYSTEM_CLOCK2		FINE_STS[15:0]		Coded as LSB = 1/64 MHz.	
	10:8	SYSCLK FREQ	000	SYSCLK Frequency (Read only)	
		STS[2:0]		000 = 6.144 MHz (5.6448 MHz)	011 = 49.152 MHz (45.1584 MHz)
				001 = 12.288 MHz (11.2896 MHz)	100 = 98.304 MHz (90.3168 MHz)
				010 = 24.576 MHz (22.5792 MHz)	All other codes are reserved
				The frequencies in brackets apply fo	r 44.1 kHz–related sample rates only
				(i.e., SAMPLE_RATE_ $n = 0x09-0x0$	DD).
	4:0	SYSCLK_SRC_	0x00	SYSCLK Source (Read only)	
		STS[4:0]		0x00 = MCLK1	0x09 = ASP2_BCLK
				$0x04 = FLL1 \times 2 (90-100 MHz)$	0x0C = FLL1 (45–50 MHz)
				0x08 = ASP1_BCLK	All other codes are reserved
R5152 (0x1420)	4:0	SAMPLE_RATE_1[4:0]	0x03	Sample Rate <i>n</i> select	
SAMPLE_RATE1				0x00 = None	0x0B = 44.1 kHz
R5156 (0x1424)	4:0	SAMPLE_RATE_2[4:0]	0x03	0x01 = 12 kHz	0x0C = 88.2 kHz
SAMPLE_RATE2				0x02 = 24 kHz	0x0D = 176.4 kHz
R5160 (0x1428)	4:0	SAMPLE_RATE_3[4:0]	0x03	0x03 = 48 kHz	0x11 = 8 kHz
SAMPLE_RATE3				0x04 = 96 kHz	0x12 = 16 kHz
R5164 (0x142C)	4:0	SAMPLE_RATE_4[4:0]	0x03	0x05 = 192 kHz	0x13 = 32 kHz
SAMPLE_RATE4				0x09 = 11.025 kHz	All other codes are reserved
				0x0A = 22.05 kHz	
R5184 (0x1440)	4:0	SAMPLE_RATE_1_	0x00	Sample Rate <i>n</i> status (read only)	
SAMPLE_RATE_		STS[4:0]		0x00 = None	0x0B = 44.1 kHz
STATUS1	4.0	CAMPLE DATE :	0.00	0x01 = 12 kHz	0x0C = 88.2 kHz
R5188 (0x1444)	4:0	SAMPLE_RATE_2_ STS[4:0]	0x00	0x02 = 24 kHz	0x0D = 176.4 kHz
SAMPLE_RATE_ STATUS2		010[4.0]		0x03 = 48 kHz	0x11 = 8 kHz
R5192 (0x1448)	4:0	CAMDLE DATE 2	0x00	0x04 = 96 kHz	0x12 = 16 kHz
` '	4.0	SAMPLE_RATE_3_ STS[4:0]	UXUU	0x05 = 192 kHz	0x13 = 32 kHz
SAMPLE_RATE_ STATUS3		J . J[¬.0]		0x09 = 11.025 kHz	All other codes are reserved
R5196 (0x144C)	4:0	SAMPLE_RATE_4_	0x00	0x0A = 22.05 kHz	
SAMPLE RATE		STS[4:0]	0,00		
STATUS4					
	1	l			

In ASP Slave Modes, it is important to ensure SYSCLK is synchronized with the associated external FSYNC. This can be achieved by selecting MCLK1 as the SYSCLK source (provided it is derived from the same reference as the FSYNC), or else by selecting the BCLK signal as a reference input to one of the FLLs, as a source for SYSCLK.

If the ASP clock domain is not synchronized with the FSYNC, clicks arising from dropped or repeated audio samples occur, due to the inherent tolerances of multiple, asynchronous, system clocks. See Section 5.2 for further details on valid clocking configurations.

4.8.5 BCLK and FSYNC Control

The audio serial ports (ASP1–ASP2) use BCLK and FSYNC signals for synchronization. In Master Mode, these are output signals, generated by the CS48L32. In Slave Mode, these are input signals to the CS48L32. It is also possible to support mixed master/slave operation.

The BCLK and FSYNC signals are controlled as shown in Fig. 4-53. See Section 4.7 for details of the associated control fields.

Note that the BCLK and FSYNC signals are synchronized to SYSCLK. See Section 4.3.11 for further details.

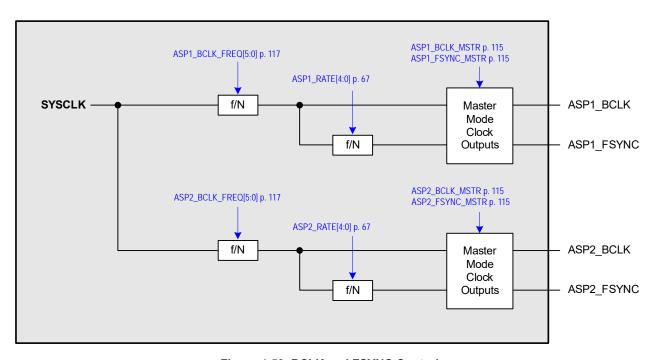


Figure 4-53. BCLK and FSYNC Control

4.8.6 Control Interface Clocking

Register map access is possible with or without a system clock—there is no requirement for SYSCLK to be enabled when accessing the register map. See Section 4.11 for details of control-register access.

Timing specifications for the control interface is provided in Table 3-18. In some applications, additional system-wide constraints must be observed to ensure control interface limits are not exceeded. These constraints need to be considered if any of the following conditions is true:

- SYSCLK is enabled and is < 11.2896 MHz
- Control-register access is scheduled at register address 0x80000 or above

The control interface limits vary depending on the system clock (SYSCLK) configuration, the address of the control register access, and on which control interfaces are being used.

Table 4-43 describes valid system conditions for accessing the codec registers (0x0000–0x7FFFC). The control interfaces must operate within the limits represented by one of the permitted configurations shown, in accordance with the applicable SYSCLK frequency.

Table 4-43. Maximum Control Interface Speeds—Codec Register Access

SYSCLK Condition	SPI Interface
SYSCLK is disabled	50 MHz
SYSCLK < 11.2896 MHz	26 MHz
SYSCLK ≥ 11.2896 MHz	50 MHz

Table 4-44 describes valid system conditions for accessing the DSP firmware registers (0x80000 and above). The control interfaces must operate within the limits represented by one of the permitted configurations shown, in accordance with the applicable SYSCLK frequency.

Table 4-44. Maximum Control Interface Speeds—DSP Firmware Register Access

SYSCLK Condition	SPI Interface
SYSCLK is disabled	50 MHz
SYSCLK < 11.2896 MHz	11 MHz
SYSCLK < 22.5792 MHz	13 MHz
SYSCLK < 45.1584 MHz	26 MHz
SYSCLK ≥ 45.1584 MHz	50 MHz

4.8.7 Frequency-Locked Loop

The integrated FLL supports the clocking requirements of the CS48L32. It can be configured according to the available reference clocks and the application requirements. The reference clock may use a high frequency (e.g., 12.288 MHz) or low frequency (e.g., 32.768 kHz). The FLL is tolerant of jitter and may be used to generate a stable output clock from a less stable input reference.

4.8.7.1 Overview

The FLL characteristics are summarized in Table 3-10. In normal operation, the FLL output is frequency locked to an input clock reference. The FLL can be used to generate a free-running clock in the absence of any external reference, as described in Section 4.8.7.6.

4.8.7.2 FLL Enable

The FLL is enabled by setting FLL1_EN. Note that the other FLL fields should be configured before enabling the FLL; the FLL1_EN bit should be set as the final step of the FLL1-enable sequence.

The FLL supports configurable free-running operation in FLL Hold Mode, using the FLL1_HOLD bit described in Section 4.8.7.6. If the FLL is enabled and FLL Hold Mode is selected, the configured output frequency is maintained without any input reference required. Note that, once the FLL output has been established, the FLL is always free running if the input reference clock is stopped, regardless of the FLL1_HOLD bit.

Note that, to disable the FLL while the input reference clock has stopped, FLL1_HOLD must be set before clearing FLL1_EN.

When changing FLL settings, it is recommended to disable the FLL by clearing FLL1_EN before updating the other register fields. It is possible to configure the FLL while the FLL is enabled, as described in Section 4.8.7.4. As a general rule, however, it is recommended to configure the FLL before setting FLL1_EN.

The procedure for configuring the FLL is described in the following subsections. The description is applicable to each of the FLLs; the associated control fields are described in Table 4-46.

4.8.7.3 Input Frequency Control

The main input reference is selected using FLL1_REFCLK_SRC. The available options are MCLK1, PDM_CLK, and ASP*n*_BCLK.

 The PDM_CLK reference can be derived from auxiliary PDM interfaces. The applicable source is selected using PDM_FLLCLK_SRC (see Table 4-8). Note that the PDM_CLK reference is only valid if the applicable PDM interface is operating in Slave Mode. See Section 4.2.10 for details of the auxiliary PDM interfaces.

The FLL1_REFCLK_DIV field controls a programmable divider on the selected input reference. The input can be divided by 1, 2, 4 or 8. The divider should be configured to bring the reference down to 13 MHz or below. For best performance, it is recommended that the highest possible frequency—within the 13 MHz limit—should be selected.

The FLL incorporates a reference-detection circuit for the main input clock. This ensures best FLL performance in the event of the main input clock being interrupted. If there is a possibility of the main input being interrupted while the FLL is enabled, then the reference-detection circuit must be enabled by setting FLL1_REFDET. The reference detection also provides input to the interrupt control circuit and can be used to trigger an interrupt event when the input reference is stopped—see Section 4.9.

4.8.7.4 Output Frequency Control

The FLL output frequency, F_{FLL}, relative to the main input reference F_{REF}, is a function of:

- The frequency ratio set by FLL1 FB DIV
- The real number represented by N.K. (N = integer; K = fractional portion, i.e., < 1)

The output frequency must be in the range 45-50 MHz.

If the FLL is selected as SYSCLK source, the F_{FLL} frequency must be exactly 49.152 MHz (for 48 kHz–related sample rates) or 45.1584 MHz (for 44.1 kHz–related sample rates).

If the FLL is selected as SYSCLK source, two different frequencies are available. Typical use cases should select the higher frequency ($F_{FLL} \times 2$); a lower frequency (F_{FLL}) is available to support low-power always-on use cases.

The FLL clock can be used to provide a GPIO output (see Section 4.8.7.8); a programmable divider supports division ratios in the range 1–127, enabling a wide range of GPIO clock output frequencies.

To configure the FLL output frequency, it must be determined whether Integer Mode or Fractional Mode is required.

- If the ratio F_{FLI} / F_{RFF} is an integer, then Integer Mode applies
- If the ratio F_{FLL} / F_{REF} is not an integer, then Fractional Mode applies

The input reference must be identified in one of three frequency ranges:

- If F_{REF} < 192 kHz, this is low clock frequency
- If $F_{REF} \ge 192$ kHz and $F_{REF} < 1.152$ MHz, this is *mid* clock frequency
- If F_{REF} ≥ 1.152 MHz, this is *high* clock frequency

Note: F_{RFF} is the input frequency, after division by FLL1 REFCLK DIV, where applicable.

The FLL output frequency, F_{FLL}, is set according to the following equation:

$$F_{FII} = (F_{RFF} \times N.K \times FLL1_FB_DIV)$$

The FLL1_FB_DIV value should be configured according to the applicable mode and input reference frequency.

- If Integer Mode is used and F_{REF} is low frequency, then FLL1_FB_DIV should be set to 4
- If Integer Mode is used and F_{REF} is mid frequency, then FLL1_FB_DIV should be set to 2
- If Fractional Mode is used and F_{REF} is low frequency, then FLL1_FB_DIV should be set to 256
- If Fractional Mode is used and F_{REF} is mid frequency, then FLL1_FB_DIV should be set to 16
- Otherwise, FLL1_FB_DIV should be set to 1

The value of N.K can be determined as follows:

$$N.K = F_{FLL} / (FLL1_FB_DIV \times F_{REF})$$

The calculated value of N must lie within a valid range, according to the applicable mode.

- If Integer Mode is used, N is valid in the range 1-1023
- If Fractional Mode is used, N is valid in the range 2–255

If the calculated value of N is too high, a higher FLL1_FB_DIV is required. If the calculated value of N is too low, a lower FLL1_FB_DIV is required. It is recommended to adjust the FLL1_FB_DIV value by multiplying or dividing by 2 until a valid N is achieved.

The value of N is held in FLL1_N.

The value of K is determined by the ratio FLL1_THETA / FLL1_LAMBDA. In Fractional Mode, the FLL1_THETA and FLL1_LAMBDA fields can be derived as described in Section 4.8.7.5.

The FLL1 N, FLL1 THETA, and FLL1 LAMBDA fields are all coded as integers (LSB = 1).

When changing FLL settings, it is recommended to disable the FLL by clearing FLL1_EN before updating the other register fields. If the FLL settings or input reference are changed without disabling the FLL, the FLL Hold Mode must be selected before writing to any other FLL control fields. FLL Hold Mode is selected by setting FLL1_HOLD.

If the FLL control fields are written while the FLL is enabled (FLL1_EN = 1), the new values are only effective when a 1 is written to FLL1_CTRL_UPD. This makes it possible to update the FLL configuration fields simultaneously, without disabling the FLL.

To change FLL settings without disabling the FLL, the recommended control sequence is:

- Select FLL Hold Mode (FLL1 HOLD = 1)
- · Write to the FLL control fields
- Update the FLL control registers (write 1 to FLL1_CTRL_UPD)
- Disable FLL Hold Mode (FLL1_HOLD = 0)

Note that, if the FLL is disabled, the FLL control fields can be updated without writing to FLL1 CTRL UPD.

The FLL1_PD_GAIN_FINE, FLL1_PD_GAIN_COARSE, FLL1_FD_GAIN_FINE, FLL1_FD_GAIN_COARSE, and FLL1_HP fields should be configured as described in Table 4-45.

The FLL1_INTEG_DLY_MODE bit must be set (default) in all cases.

The FLL1_FB_DIV_SDM_ORD2_EN bit must be set in all cases.

Note: When writing to FLL1_FB_DIV_SDM_ORD2_EN, take care not to change other nonzero bits that are configured at the same register address.

Table 4-45. FLL Control Field Settings

Condition	FLL1_PD_ GAIN_FINE	FLL1_PD_ GAIN_COARSE	FLL1_FD_ GAIN_FINE	FLL1_FD_ GAIN_COARSE	FLL1_ LOCKDET_THR	FLL1_HP
Low clock frequency Mid clock frequency High clock frequency	0x2	0x3 0x2 0x1	0xF 0xF 0xF	0x0 0x2 0x0	0x2 0x8 0x8	_
Integer Mode Fractional Mode				_	_	0x1 0x3

4.8.7.5 Calculation of Theta and Lambda

In Fractional Mode, FLL1 THETA and FLL1 LAMBDA are calculated with the following steps:

1. Calculate GCD(FLL) using the Greatest Common Denominator function:

 $GCD(FLL) = GCD(FLL1_FB_DIV \times F_{REF}, F_{FLL}),$

where GCD(x, y) is the greatest common denominator of x and y.

F_{REF} is the input frequency, after division by FLL1_REFCLK_DIV, where applicable.

2. Calculate FLL1_THETA and FLL1_LAMBDA using the following equations:

Notes: The values of GCD(FLL), FLL1_THETA, and FLL1_LAMBDA should be calculated using the applicable frequency values in Hz (i.e., not kHz or MHz).

In Fractional Mode, the values of FLL1_THETA and FLL1_LAMBDA must be coprime (i.e., not divisible by any common integer). The calculation above ensures that the values are coprime.

The value of K must be less than 1 (i.e., FLL1 THETA must be less than FLL1 LAMBDA).

4.8.7.6 FLL Hold Mode

FLL Hold Mode enables the FLL to generate a clock signal even if no external reference is available, such as when the normal input reference has been interrupted during a standby or start-up period. FLL Hold Mode is selected by setting FLL1 HOLD.

If the FLL is enabled and FLL Hold Mode is selected, the normal feedback mechanism of the FLL is halted and the FLL oscillates independently of the external input references—the FLL output frequency remains unchanged if FLL Hold Mode is enabled.

If the FLL is enabled and the input reference clock is stopped, the loop always runs freely, regardless of the FLL1_HOLD setting. If FLL1_HOLD = 0, the FLL relocks to the input reference whenever it is available.

If the FLL configuration or input reference are changed without disabling the FLL, the FLL Hold Mode must be selected before writing to any other FLL control fields—see Section 4.8.7.4.

The free-running FLL clock may be selected as the SYSCLK source, as shown in Fig. 4-52.

4.8.7.7 FLL Control Registers

The FLL1 control registers are described in Table 4-46.

Example settings for a variety of reference frequencies and output frequencies are shown in Section 4.8.7.10.

Table 4-46. FLL1 Register Map

Register Address	Bit	Label	Default	Description
R7168 (0x1C00)	2	FLL1_CTRL_UPD	0	FLL1 Control Update
FLL1_CONTROL1				Write 1 to apply the FLL1 configuration field settings. (Only valid if FLL1_EN = 1)
	1	FLL1_HOLD	1	FLL1 Hold Mode Enable
				0 = Disabled
				1 = Enabled
				The FLL feedback mechanism is halted in FLL Hold Mode, and the latest integrator setting is maintained.
	0	FLL1_EN	0	FLL1 Enable
				0 = Disabled
				1 = Enabled
				This should be set as the final step of the FLL1 enable sequence.

Table 4-46. FLL1 Register Map (Cont.)

Register Address	Bit	Label	Default	Description		
R7172 (0x1C04)	31:28	FLL1_LOCKDET_	0x8	FLL1 Lock Detect threshold		
FLL1_CONTROL2		THR[3:0]		Valid from 0x0 (low threshold) to 0xF (high threshold)		
	27	FLL1_LOCKDET	1	FLL1 Lock Detect enabled		
				0 = Disabled		
				1 = Enabled		
	22	FLL1_PHASEDET	0	FLL1 Phase Detect control		
	ĺ			0 = Disabled		
				1 = Enabled		
	21	FLL1_REFDET	1	FLL1 Reference Detect control		
				0 = Disabled		
				1 = Enabled		
	17:16	FLL1_REFCLK_	00	FLL1 Clock Reference divider		
	ĺ	DIV[1:0]		00 = 1		
				01 = 2		
				MCLK (or other input reference) must be divided down to \leq 13 MHz.		
	15:12	FLL1_REFCLK_	0011	FLL1 Clock source		
		SRC[3:0]		0000 = MCLK1 1000 = ASP1_BCLK		
				0011 = No input 1001 = ASP2_BCLK		
				0101 = PDM_CLK All other codes are reserved		
	9:0	FLL1_N[9:0]	0x004	FLL1 Integer multiply for F _{REF}		
				Coded as LSB = 1.		
, ,		FLL1_	0x0000	FLL1 Fractional multiply for F _{REF} .		
FLL1_CONTROL3	ĺ	LAMBDA[15:0]	Sets the denominator (dividing) part of the FLL1_THETA/FLL1_LAMBDA ratio.			
	ĺ			Coded as LSB = 1.		
	15:0	FLL1_	0x0000	FLL1 Fractional multiply for F _{REF} .		
		THETA[15:0]		Sets the numerator (multiply) part of the FLL1_THETA/FLL1_LAMBDA ratio.		
	ł			Coded as LSB = 1.		

Table 4-46. FLL1 Register Map (Cont.)

Register Address	Bit	Label	Default		Description			
R7180 (0x1C0C)	31:28	FLL1_PD_GAIN_	0x2	FLL1 Phase Detector (Gain 2			
FLL1_CONTROL4		FINE[3:0]		Gain is 2-X, where X is	s FLL1_PD_GAIN_FINE in 2's	s complement coding.		
				0000 = 1	0110 = 2-6	1100 = 16		
				0001 = 0.5	0111 = 2-7	1101 = 8		
				0010 = 0.25	1000 = 256	1110 = 4		
				0011 = 0.125	1001 = 128	1111 = 2		
				0100 = 2-4	1010 = 64			
				0101 = 2-5	1011 = 32			
	27:24	FLL1 PD GAIN	0x1	FLL1 Phase Detector (Gain 1			
		COARSE[3:0]		Gain is 2-X, where X is	FLL1 PD GAIN COARSE	in 2's complement coding.		
				0000 = 1	0110 = 2 ⁻⁶	1100 = 16		
				0001 = 0.5	$0111 = 2^{-7}$	1101 = 8		
				0010 = 0.25	1000 = 256	1110 = 4		
				0011 = 0.125	1001 = 128	1111 = 2		
				0100 = 2-4	1010 = 64			
				0101 = 2-5	1011 = 32			
	23:20	FLL1_FD_GAIN_	0xF	FLL1 Frequency Detector Gain 2				
		FINE[3:0]		Gain is 2 ^{-X} , where X is FLL1_FD_GAIN_FINE in integer coding.				
				0000 = 1	0011 = 0.125	1110 = 2-14		
				0001 = 0.5		1111 = Disabled		
				0010 = 0.25	1101 = 2-13			
	19:16	FLL1 FD GAIN	0x0	FLL1 Frequency Detec				
		COARSE[3:0]			FLL1_FD_GAIN_COARSE	in 2's complement coding.		
				0000 = 1	0110 = 2 ⁻⁶	1100 = 16		
				0001 = 0.5	0111 = 2-7	1101 = 8		
				0010 = 0.25	1000 = 256	1110 = 4		
				0011 = 0.125	1001 = 128	1111 = 2		
				0100 = 2-4	1010 = 64			
				0101 = 2-5	1011 = 32			
	14	FLL1 INTEG	1	FLL1 Integrator Delay				
		DLY_MODE		This bit should be set a				
	13:12	FLL1 HP[1:0]	01	FLL1 Fractional Mode				
		[]		00 = Reserved	10 = Reserved			
				01 = Integer Mode	11 = Fractional Mode			
	9:0	FLL1_FB_DIV[9:0]	0x001	FLL1 Clock Feedback				
		[0.0]		Coded as LSB = 1.				
R7220 (0x1C34)	10	FLL1 FB DIV	0	FLL1 Fractional divide	r control			
FLL1 DIGITAL	-	SDM_ORD2_EN	-	0 = Disabled, 1 = Enab				
TEST2				This bit should be set a				

4.8.7.8 FLL Interrupts and GPIO Output

The CS48L32 provides status signals that indicate whether the input reference is present and whether FLL lock has been achieved (i.e., the FLL is locked to the input reference signal).

To enable the FLL lock indication, the FLL1_LOCKDET bit must be set. The FLL lock condition is measured with respect to a configurable threshold that is set using FLL1_LOCKDET_THR. Note that the FLL1_LOCKDET_THR field controls the lock indication only—it does not control the behavior of the FLL.

To enable the FLL input reference indication, the FLL1_REFDET bit must be set.

The FLL status signals are inputs to the interrupt control circuit and can be used to trigger an interrupt event when the input reference is stopped or when the FLL lock status changes—see Section 4.9.

The FLL lock signal can be output directly on a GPIO pin as an external indication of the FLL status. See Section 4.10 to configure a GPIO pin for these functions.

Clock output signals derived from the FLL can be output on a GPIO pin. See Section 4.10 to configure a GPIO pin for this function.

4.8.7.9 Example FLL Calculation

The following example illustrates how to derive the FLL1 register fields to generate an FLL output frequency (F_{FLL}) of 49.152 MHz from a 12.000 MHz reference clock (F_{REF}). This is suitable for generating SYSCLK at 98.304 MHz.

1. Set FLL1 REFCLK DIV to generate F_{RFF} ≤ 13 MHz:

```
FLL1_REFCLK_DIV = 00 (divide by 1)
```

2. Determine if Integer Mode or Fractional Mode is required:

```
F_{FLL} / F_{REF} is 4.096. Therefore, Fractional Mode applies.
```

3. Identify the input clock frequency range:

```
F<sub>REF</sub> ≥ 1.152 MHz. This is high clock frequency.
```

4. Select the required value of FLL1 FB DIV:

```
In Fractional Mode, with high clock frequency input, FLL1_FB_DIV = 1
```

5. Calculate N.K as given by N.K = F_{FLL} / (FLL1_FB_DIV × F_{REF}):

```
N.K = 49152000 / (1 \times 12000000) = 4.096
```

- 6. Confirm that the calculated value of N is within the valid range for fractional mode (2–255).
- 7. Determine FLL1 N from the integer portion of N.K:

```
FLL1 N = 4 (0x004)
```

8. Determine GCD(FLL), as given by GCD(FLL) = GCD(FLL1 FB DIV × F_{RFF}, F_{FLL}):

```
GCD(FLL) = GCD(1 \times 12000000, 49152000) = 96000
```

9. Determine FLL1_THETA, as given by FLL1_THETA = (F_{FLL} – (FLL1_N × FLL1_FB_DIV × F_{REF})) / GCD(FLL):

```
FLL1\_THETA = (49152000 - (4 \times 1 \times 12000000)) / 96000
FLL1\_THETA = 12 (0x000C)
```

10. Determine FLL1_LAMBDA, as given by FLL1_LAMBDA = (FLL1_FB_DIV x F_{RFF}) / GCD(FLL):

```
FLL1_LAMBDA = (1 × 12000000) / 96000
FLL1_LAMBDA = 125 (0x007D)
```

11. Determine other FLL settings (see Table 4-45) for Fractional Mode and high clock-frequency input:

```
FLL1_PD_GAIN_FINE = 0x2
FLL1_PD_GAIN_COARSE = 0x1
FLL1_FD_GAIN_FINE = 0xF
FLL1_FD_GAIN_COARSE = 0x0
FLL1_HP = 0x3
FLL1_INTEG_DLY_MODE = 1
FLL1_FB_DIV_SDM_ORD2_EN = 1
```

4.8.7.10 Example FLL Settings

Table 4-47 shows FLL settings for generating an output frequency (F_{FLL}) of 49.152 MHz from a variety of low- and high-frequency reference inputs. This is suitable for generating SYSCLK at 98.304 MHz.

Note that FLL1_INTEG_DLY_MODE, FLL1_FB_DIV_SDN_ORD2_EN, and other fields referenced in Table 4-45 must also be configured according to the required FLL operation.

F _{SOURCE}	F _{FLL} (MHz)	F _{REF} Divider ¹	FB_DIV1	N.K ²	FLL1_N	FLL1_ THETA	FLL1_ LAMBDA
32.000 kHz	49.152	1	4	384	0x180	0x0000	0x0001
32.768 kHz	49.152	1	4	375	0x177	0x0000	0x0001
44.100 kHz	49.152	1	256	4.3537415	0x004	0x0034	0x0093
48 kHz	49.152	1	4	256	0x100	0x0000	0x0001
128 kHz	49.152	1	4	96	0x060	0x0000	0x0001
9.6 MHz	49.152	1	1	5.12	0x005	0x0003	0x0019
10 MHz	49.152	1	1	4.9152	0x004	0x023C	0x0271
11.2896 MHz	49.152	1	1	4.3537415	0x004	0x0034	0x0093
12.000 MHz	49.152	1	1	4.096	0x004	0x000C	0x007D
12.288 MHz	49.152	1	1	4	0x004	0x0000	0x0001
13.000 MHz	49.152	1	1	3.7809231	0x003	0x04F5	0x0659
19.200 MHz	49.152	2	1	5.12	0x005	0x0003	0x0019
22.5792 MHz	49.152	2	1	4.3537415	0x004	0x0034	0x0093
24 MHz	49.152	2	1	4.096	0x004	0x000C	0x007D
24.576 MHz	49.152	2	1	4	0x004	0x0000	0x0001
26 MHz	49.152	2	1	3.7809231	0x003	0x04F5	0x0659

Table 4-47. Example FLL Settings

4.9 Interrupts

The interrupt controller has multiple inputs. These include the GPIO input pins, FLL-lock detection, and status flags from DSP peripheral functions. See Table 4-48 for a full definition of the interrupt controller inputs. Any combination of these inputs can be used to trigger an interrupt request event.

An interrupt register field is associated with each interrupt input. All interrupts support edge-sensitive triggering (i.e., the interrupt is asserted when a logic edge is detected on the respective input). Some interrupts are triggered on rising edges of the respective input only; for others, separate rising- and falling-edge interrupts are provided. The interrupt register fields can be polled at any time or in response to the interrupt request output being signaled via the IRQ pin or a GPIO pin.

The interrupt-status fields indicate the current value of the corresponding inputs to the interrupt controller. Note that the status of any GPIO (or DSP GPIO) inputs can also be read using the GPIO (or DSP GPIO) control fields, as described in Table 4-49 and Table 4-33.

Mask bits are provided for each interrupt signal, to enable or disable the respective functions from the IRQ output. Note that the interrupt register fields remain valid—even if masked—but the masked interrupts do not cause the IRQ output to be asserted.

The interrupt-request output represents the logical OR of all the unmasked interrupt registers. The interrupt register fields are latching fields and, once they are set, they are not reset until a 1 is written to the respective bits. The interrupt request outputs are not reset until each of the associated interrupts has been reset.

The GPIO interrupts can be configured for edge- or level-triggered behavior using the respective GPIOn_FALL_EDGE1 and GPIOn_RISE_EDGE1 fields. A debounce circuit can be enabled on the GPIO inputs, to avoid false event triggers; this is enabled on each pin using the fields described in Table 4-49. The GPIO debounce circuit uses the 32 kHz clock, which must be enabled whenever the GPIO debounce function is required.

The IRQ output can be globally masked using IRQ1_MASK. The IRQ status can be read from IRQ1_STS—note that this bit is not affected by IRQ1_MASK.

The IRQ1 output is provided externally on the $\overline{\text{IRQ}}$ pin. Under default conditions, this output is active low. The polarity can be inverted using IRQ_POL. The IRQ pin can be configured as a CMOS-driven or open-drain output using IRQ_OP_CFG. The IRQ output is referenced to the VDD_IO power domain.

The IRQ1 signal can also be output on a GPIO pin—see Section 4.10. Note that the GPIO output is not affected by IRQ_POL; the polarity can, instead, be selected using the GPIO control fields.

^{1.}See Table 4-46 for the coding of the FLL1 REFCLK DIV and FLL1 FB DIV fields.

^{2.}N.K values are represented in the FLL1 N, FLL1 THETA, and FLL1 LAMBDA fields.

The CS48L32 interrupt controller circuit is shown in Fig. 4-54. (Note that not all interrupt inputs are shown.) The control fields associated with IRQ1 are described in Table 4-48. Note that, under default register conditions, the boot done status is the only unmasked interrupt source; a falling edge on the IRQ pin indicates completion of the boot sequence.

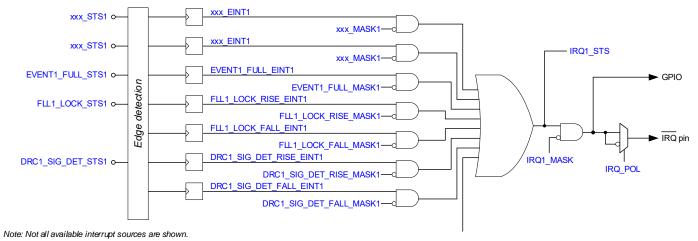


Figure 4-54. Interrupt Controller

The IRQ1 control registers are described in Table 4-48.

Table 4-48. Interrupt 1 Control Registers

Register Address	Bit	Label	Default	Description
R10000 (0x2710)	11	IRQ1_MASK	0	IRQ1 output interrupt mask.
IRQ1_CTRL_AOD				0 = Do not mask interrupt.
				1 = Mask interrupt.
	10	IRQ_POL	1	IRQ output polarity select
				0 = Noninverted (active high)
				1 = Inverted (active low)
	9	IRQ_OP_CFG	1	IRQ output configuration
				0 = CMOS
				1 = Open drain
R98308 (0x18004)	0	IRQ1_STS	0	IRQ1 status
IRQ1_STATUS				Logical OR of all unmasked x_EINT1 interrupts.
				0 = Not asserted
				1 = Asserted
				This bit is valid regardless of IRQ1_MASK
R98320 (0x18010)	10	SYSCLK_ERR_EINT1	0	SYSCLK Error Interrupt (Rising edge triggered)
IRQ1_EINT_1	8	SYSCLK_FAIL_EINT1	0	SYSCLK Fail Interrupt (Rising edge triggered)
R98324 (0x18014)	3	BOOT_DONE_EINT1	0	Boot Done Interrupt (Rising edge triggered)
IRQ1_EINT_2				
R98336 (0x18020) IRQ1_EINT_5	25	US2_SIG_DET_FALL_EINT1	0	US2 Ultrasonic Signal-Detect Interrupt (Falling edge triggered)
	24	US2_SIG_DET_RISE_EINT1	0	US2 Ultrasonic Signal-Detect Interrupt (Rising edge triggered)
	23	US1_SIG_DET_FALL_EINT1	0	US1 Ultrasonic Signal-Detect Interrupt (Falling edge triggered)
	22	US1_SIG_DET_RISE_EINT1	0	US1 Ultrasonic Signal-Detect Interrupt (Rising edge triggered)
	21	INPUTS_SIG_DET_FALL_EINT1	0	Input Path Signal-Detect Interrupt (Falling edge triggered)
	20	INPUTS_SIG_DET_RISE_EINT1	0	Input Path Signal-Detect Interrupt (Rising edge triggered)
	19	DRC2_SIG_DET_FALL_EINT1	0	DRC2 Signal-Detect Interrupt (Falling edge triggered)
	18	DRC2_SIG_DET_RISE_EINT1	0	DRC2 Signal-Detect Interrupt (Rising edge triggered)
	17	DRC1_SIG_DET_FALL_EINT1	0	DRC1 Signal-Detect Interrupt (Falling edge triggered)
	16	DRC1_SIG_DET_RISE_EINT1	0	DRC1 Signal-Detect Interrupt (Rising edge triggered)

Table 4-48. Interrupt 1 Control Registers (Cont.)

Register Address	Bit	Label	Default	Description
R98340 (0x18024)	8	FLL1_REF_LOST_EINT1	0	FLL1 Reference Lost Interrupt (Rising edge triggered)
IRQ1_EINT_6	1	FLL1_LOCK_FALL_EINT1	0	FLL1 Lock Interrupt (Falling edge triggered)
	0	FLL1_LOCK_RISE_EINT1	0	FLL1 Lock Interrupt (Rising edge triggered)
R98344 (0x18028)	21	DSP1_MPU_ERR_EINT1	0	DSP1 memory protection error (rising-edge triggered)
IRQ1_EINT_7	20	DSP1_WDT_EXPIRE_EINT1	0	DSP1 watchdog timer expiry (rising-edge triggered)
	19	DSP1_IHB_ERR_EINT1	0	DSP1 memory controller error (rising-edge triggered)
	18	DSP1_AHB_SYS_ERR_EINT1	0	DSP1 AHB system error (rising-edge triggered)
	17	DSP1_AHB_PACK_ERR_EINT1	0	DSP1 AHB packing error (rising-edge triggered)
	16	DSP1_NMI_ERR_EINT1	0	DSP1 NMI error (rising-edge triggered)
R98352 (0x18030)	31	MCU_HWERR_IRQ_OUT_EINT1	0	Memory control error (rising-edge triggered)
IRQ1_EINT_9	3	DSP1_IRQ3_EINT1	0	DSP1 IRQ3 interrupt (rising-edge triggered)
	2	DSP1_IRQ2_EINT1	0	DSP1 IRQ2 interrupt (rising-edge triggered)
	1	DSP1_IRQ1_EINT1	0	DSP1 IRQ1 interrupt (rising-edge triggered)
	0	DSP1_IRQ0_EINT1	0	DSP1 IRQ0 interrupt (rising-edge triggered)
R98360 (0x18038)	31	GPIO8_FALL_EINT1	0	GPIO8 Interrupt (Falling edge triggered)
IRQ1_EINT_11	30	GPIO8_RISE_EINT1	0	GPIO7 Interrupt (Rising edge triggered)
	29	GPIO7_FALL_EINT1	0	GPIO6 Interrupt (Falling edge triggered)
	28	GPIO7_RISE_EINT1	0	GPIO5 Interrupt (Rising edge triggered)
	27	GPIO6_FALL_EINT1	0	GPIO4 Interrupt (Falling edge triggered)
	26	GPIO6_RISE_EINT1	0	GPIO3 Interrupt (Rising edge triggered)
	25	GPIO5_FALL_EINT1	0	GPIO2 Interrupt (Falling edge triggered)
	24	GPIO5_RISE_EINT1	0	GPIO1 Interrupt (Rising edge triggered)
	23	GPIO4_FALL_EINT1	0	GPIO8 Interrupt (Falling edge triggered)
	22	GPIO4_RISE_EINT1	0	GPIO7 Interrupt (Rising edge triggered)
	21	GPIO3 FALL EINT1	0	GPIO6 Interrupt (Falling edge triggered)
	20	GPIO3_RISE_EINT1	0	GPIO5 Interrupt (Rising edge triggered)
	19	GPIO2_FALL_EINT1	0	GPIO4 Interrupt (Falling edge triggered)
	18	GPIO2_RISE_EINT1	0	GPIO3 Interrupt (Rising edge triggered)
	17	GPIO1_FALL_EINT1	0	GPIO2 Interrupt (Falling edge triggered)
	16	GPIO1_RISE_EINT1	0	GPIO1 Interrupt (Rising edge triggered)
R98364 (0x1803C) IRQ1_EINT_12	16	EVENT1_FULL_EINT1	0	Event Log 1 FIFO Full Interrupt (Rising edge triggered)
R98368 (0x18040)	3	DSP1 TRB STACK ERR EINT1	0	DSP1 trace buffer stack interrupt (rising-edge triggered)
IRQ1_EINT_13	1	DSP1_MIPS_PROF1_DONE_EINT1	0	DSP1 MIPS profile 1 done interrupt (rising-edge triggered)
	0	DSP1_MIPS_PROF0_DONE_EINT1	0	DSP1 MIPS profile 0 done interrupt (rising-edge triggered)
R98376 (0x18048)	3	SPI2 STALLING EINT1	0	SPI2 Stall Interrupt (Rising edge triggered)
IRQ1_EINT_15		SPI2 BLOCK EINT1	0	SPI2 Block Interrupt (Rising edge triggered)
	0	SPI2_DONE_EINT1	0	SPI2 Done Interrupt (Rising edge triggered)
R98384 (0x18050)	17	TIMER2 EINT1	0	Timer 1 Interrupt (Rising edge triggered)
IRQ1 EINT 17	16	TIMER1 EINT1	0	Timer 1 Interrupt (Rising edge triggered)
R98388 (0x18054)	3	TIMER_ALM1_CH4_EINT1	0	Alarm 1 Channel 4 Interrupt (Rising edge triggered)
IRQ1_EINT_18	2	TIMER ALM1 CH3 EINT1	0	Alarm 1 Channel 3 Interrupt (Rising edge triggered)
	1	TIMER ALM1 CH2 EINT1	0	Alarm 1 Channel 2 Interrupt (Rising edge triggered)
	0	TIMER_ALM1_CH1_EINT1	0	Alarm 1 Channel 1 Interrupt (Rising edge triggered)
R98448 (0x18090)	10	SYSCLK ERR STS1	0	SYSCLK error interrupt status
IRQ1_STS_1	10	6166 <u>21(_21((_</u> 6161	Ü	0 = Normal, 1 = Insufficient SYSCLK cycles for the requested signal path functionality
R98452 (0x18094)	3	BOOT_DONE_STS1	0	Boot Status
IRQ1_STS_2				0 = Busy (boot sequence in progress)
				1 = Idle (boot sequence completed)
				Control register writes should not be attempted until Boot
				Sequence has completed.

Table 4-48. Interrupt 1 Control Registers (Cont.)

Register Address	Bit	Label	Default	Description
R98464 (0x180A0)	24	US2_SIG_DET_STS1	0	US2 ultrasonic signal-detect status
IRQ1_STS_5				0 = Normal, 1 = Signal detected
	22	US1_SIG_DET_STS1	0	US1 ultrasonic signal-detect status
				0 = Normal, 1 = Signal detected
	20	INPUTS_SIG_DET_STS1	0	Input path signal-detect status
				0 = Normal, 1 = Signal detected
	18	DRC2_SIG_DET_STS1	0	DRC2 signal-detect status
				0 = Normal, 1 = Signal detected
	16	DRC1_SIG_DET_STS1	0	DRC1 signal-detect status
				0 = Normal, 1 = Signal detected
R98468 (0x180A4)	8	FLL1_REF_LOST_STS1	0	FLL1 reference-lost status
IRQ1_STS_6				0 = Normal, 1 = Reference lost
	0	FLL1_LOCK_STS1	0	FLL1 lock status
				0 = Not locked, 1 = Locked
R98472 (0x180A8)	20	DSP1_WDT_EXPIRE_STS1		DSP1 watchdog timer status
IRQ1_STS_7				0 = Normal, 1 = Watchdog timer expired
	18	DSP1_AHB_SYS_ERR_STS1		DSP1 AHB system status
				0 = Normal, 1 = Error
	17	DSP1_AHB_PACK_ERR_STS1		DSP1 AHB packing status
				0 = Normal, 1 = Error
	16	DSP1_NMI_ERR_STS1		DSP1 NMI status
D00400 (0.400D0)				0 = Normal, 1 = NMI asserted
R98480 (0x180B0)	3	DSP1_IRQ3_STS1	0	DSP1 IRQ3 status
IRQ1_STS_9		DODA IDOS OTOA		0 = Normal, 1 = Interrupt asserted
	2	DSP1_IRQ2_STS1	0	DSP1 IRQ2 status
		DODA IDOA OTOA		0 = Normal, 1 = Interrupt asserted
	1	DSP1_IRQ1_STS1	0	DSP1 IRQ1 status
		DOD4 IDOO CTC4	0	0 = Normal, 1 = Interrupt asserted DSP1 IRQ0 status
	0	DSP1_IRQ0_STS1	0	
D00400 (0v400D0)	20	GPIO8 STS1	0	0 = Normal, 1 = Interrupt asserted GPIOn input status. Reads back the logic level of GPIOn.
R98488 (0x180B8) IRQ1_STS_11	30 28	GPI07_STS1	0	Only valid for pins configured as GPIO input (does not include
KQ1_313_11	26	GPIO6 STS1	0	DSPGPIO inputs).
	24	GPI05_STS1	0	
	22	GPIO4_STS1	0	-
	20	GPI03_STS1	0	-
	18	GPIO2_STS1	0	-
	16	GPIO1_STS1	0	-
R98492 (0x180BC)	16	EVENT1 FULL STS1	0	Event Log 1 FIFO Full status
IRQ1_STS_12	10	2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3		0 = FIFO Not Full, 1 = FIFO Full
R98576 (0x18110)		x MASK1	See	For each x EINT1 interrupt bit in registers
to			Footnote 1	0x18010-0x18054, a corresponding mask bit (x_MASK1) is
R98644 (0x18154)				provided in registers 0x18110–0x18154.
(3,710,10,7)				The mask bits are coded as follows:
				0 = Do not mask interrupt
				1 = Mask interrupt

Table 4-48.	Interrunt 1	Control	Registers	(Cont)	١
I able 4-40.	IIILEIIUPL I	COILLIO	ivediarei a	(<i>COHE.)</i>	4

Register Address	Bit	Label	Default	Description
R98872 (0x18238)	31	GPIO8_FALL_EDGE1	0	GPIOn interrupt type
IRQ1_EDGE_11	30	GPIO8_RISE_EDGE1	0	0 = Level-triggered
	29	GPIO7_FALL_EDGE1	0	1 = Edge-triggered
	28	GPIO7_RISE_EDGE1	0	
	27	GPIO6_FALL_EDGE1	0]
	26	GPIO6_RISE_EDGE1	0]
	25	GPIO5_FALL_EDGE1	0]
	24	GPIO5_RISE_EDGE1	0]
	23	GPIO4_FALL_EDGE1	0	
	22	GPIO4_RISE_EDGE1	0	
	21	GPIO3_FALL_EDGE1	0	
	20	GPIO3_RISE_EDGE1	0	
	19	GPIO2_FALL_EDGE1	0	
	18	GPIO2_RISE_EDGE1	0]
	17	GPIO1_FALL_EDGE1	0]
	16	GPIO1_RISE_EDGE1	0	

^{1.} The BOOT DONE EINT1 interrupt is 0 (unmasked) by default; all other interrupts are 1 (masked) by default.

4.10 General-Purpose I/O

The CS48L32 supports up to 16 GPIO pins, which can be assigned to application-specific functions. The GPIOs enable interfacing and detection of external hardware and can provide logic outputs to other devices. The GPIO input functions can be used to generate an interrupt (IRQ) event.

There are two dedicated GPIO pins; the remaining GPIOs are implemented as alternate functions to a pin-specific capability. The GPIO and interrupt circuits support the following functions:

- Pin-specific alternative functions for external interfaces (ASP, PDM, SPI2)
- Logic input/button detect (GPIO input)
- Logic 1 and Logic 0 output (GPIO output)
- Interrupt (IRQ) status
- Clock output
- Frequency-locked loop (FLL) status
- FLL clock output
- Pulse-width modulation (PWM) signal output
- · Input signal-detection status
- · Alarm generator output
- · General-purpose timer status
- DSP busy/idle status
- SPI master interface

Logic input and output (GPIO) can be supported in two different ways on the CS48L32. The standard mechanism described in this section provides a comprehensive suite of options including input debounce, and selectable output drive configuration. The DSP GPIO circuit is tailored towards more advanced requirements typically demanded by DSP software features. The DSP GPIO functions are described in Section 4.5.4.

4.10.1 GPIO Control

For each GPIO, the selected function is determined by the GPn_FN field, where n identifies the GPIO pin (1–16). The pin direction, set by GPn_DIR , must be set according to function selected by GPn_FN .

If a pin is configured as a GPIO input ($GPn_DIR = 1$, $GPn_FN = 0x001$), the logic level at the pin can be read from the respective $GPn_DIR = 1$, $GPn_FN = 0x001$), the logic level at the pin can be read from the respective $GPn_DIR = 1$.

A debounce circuit can be enabled on any GPIO input, to avoid false event triggers. This is enabled on each pin by setting the respective GPn_DB bit. The debounce circuit uses the 32 kHz clock, which must be enabled whenever input debounce functions are required. The debounce time is configurable for each GPIO using GPn_DBTIME . See Section 4.8 for further details of the CS48L32 clocking configuration.

Each GPIO pin is an input to the interrupt control circuit and can be used to trigger an interrupt event. An interrupt event is triggered on the rising and falling edges of the GPIO input. The associated interrupt bit is latched once set; it can be polled at any time or used to control the IRQ signal. See Section 4.9 for details of the interrupt event handling.

Integrated pull-up and pull-down resistors are provided on each GPIO pin; these can be configured independently using the GPn_PU and GPn_PD fields. When the pull-up and pull-down control bits are both enabled, the CS48L32 provides a bus keeper function on the respective pin. The bus keeper function holds the logic level unchanged whenever the pin is undriven (e.g., if the signal is tristated).

Note: The bus keeper is enabled by default on all GPIO pins and, if not actively driven, may result in either a Logic 0 or Logic 1 at the respective input on start-up. If an external pull resistor is connected, the chosen resistance should take account of the bus keeper resistance (see Table 3-9). A strong pull resistor (e.g., 10 kΩ) is required, if a specific start-up condition is to be forced by the external pull component.

If a pin is configured as a GPIO output ($GPn_DIR = 0$, $GPn_FN = 0x001$), its level can be set to Logic 0 or Logic 1 using the GPn_LVL field. Note that the GPn_LVL bits are write-only—they do not provide status indication of GPIO input or output levels.

If a pin is configured as an output ($GPn_DIR = 0$), the polarity can be selected using GPn_POL . If $GPn_POL = 1$, the selected output function is inverted. Note that, if $GPn_FN = 0x000$ or 0x002, the GPn_POL bit has no effect on the respective GPIO pin.

A GPIO output can be either CMOS driven or open drain. This is selected on each pin using the respective GPn_OP_CFG bit. Note that if $GPn_FN = 0x000$ the GPn_OP_CFG bit has no effect on the respective GPIO pin—see Table 4-49 for further details. If $GPn_FN = 0x002$, the respective pin output is CMOS.

The output drive strength of GPIOs is selectable using the respective GPn_DRV_STR bits.

The register fields that control the GPIO pins are described in Table 4-49.

Table 4-49. GPIO Control

Register Address	Bit	Label	Default	Description
R3072 (0x0C00)	15	GP16_STS	0	GPIOn input level. Read this bit to read GPIO input level.
GPIO_STATUS1	14	GP15_STS	0	
	13	GP14_STS	0	
	12	GP13_STS	0	
	11	GP12_STS	0	
	10	GP11_STS	0	
	9	GP10_STS	0	
	8	GP9_STS	0	
	7	GP8_STS	0	
	6	GP7_STS	0	
	5	GP6_STS	0	
	4	GP5_STS	0	
	3	GP4_STS	0	
	2	GP3_STS	0	
	1	GP2_STS	0	
	0	GP1_STS	0	1

Table 4-49. GPIO Control (Cont.)

Register Address	Bit	Label	Default	Description
R3080 (0x0C08)	31	GPn_DIR	1	GPIOn pin direction
GPIO1_CTRL1				0 = Output
to				1 = Input
R3140 (0x0C44)				Note that, if $GPn_FN = 0x000$ or $0x002$, this bit has no effect on the $GPIOn$ pin.
GPIO16_CTRL1				If GPn_FN = 0x000, the pin direction is set according to the applicable
				pin-specific function (see Table 4-51). If GPn_FN = 0x002, the pin direction is set according to the DSP GPIO configuration.
	30	GPn_PU	1	GPIOn pull-up enable
				0 = Disabled
				1 = Enabled
				Note: If GP <i>n_</i> PD and GP <i>n_</i> PU are both set, a bus keeper function is enabled on the respective GPIO <i>n</i> pin.
	29	GPn_PD	1	GPIO <i>n</i> pull-down enable
				0 = Disabled
				1 = Enabled
				Note: If GP <i>n_</i> PD and GP <i>n_</i> PU are both set, a bus keeper function is enabled on the respective GPIO <i>n</i> pin.
	24	GPn_DRV_STR	1	GPIOn output drive strength
				0 = 4 mA
				1 = 8 mA
	19:16	GPn_DBTIME[3:0]	0x0	GPIOn input debounce time
				$0x0 = 100 \mu s$ $0x3 = 6 ms$ $0x6 = 48 ms$ $0x9 = 384 ms$
				0x1 = 1.5 ms $0x4 = 12 ms$ $0x7 = 96 ms$ $0xA = 768 ms$
				0x2 = 3 ms $0x5 = 24 ms$ $0x8 = 192 ms$ $0xB-0xF = Reserved$
	15	GPn_LVL	See	GPIOn level (write-only). Write to this bit to set a GPIO output.
			Footnote 2	If GPn_POL is set, the GPn_LVL bit is the opposite logic level to the external pin.
	14	GPn_OP_CFG	0	GPIO <i>n</i> output configuration
				0 = CMOS
				1 = Open drain
				Note that, if $GPn_FN = 0x000$ or $0x002$, this bit has no effect on the $GPIOn$
				output. If GPn_FN = 0x000, the pin configuration is set according to the
				applicable pin-specific function (see Table 4-51). If GPn_FN = 0x002, the pin configuration is CMOS.
	13	GPn DB	0	GPIOn input debounce select
		_		0 = Disabled
				1 = Enabled
	12	GPn_POL	0	GPIO <i>n</i> output polarity
				0 = Noninverted (Active High)
				1 = Inverted (Active Low)
				Note that, if $GPn_FN = 0x000$ or $0x002$, this bit has no effect on the $GPIOn$
				output.
	9:0	GP <i>n</i> _FN[9:0]	0x001	GPIOn Pin Function
				(see Table 4-50 for details)

^{1.} n is a number (1–16) that identifies the individual GPIO.

4.10.2 GPIO Function Select

The available GPIO functions are described in Table 4-50. The function of each GPIO is set using GPn_FN , where n identifies the GPIO pin (1–16). Note that the respective GPn_DIR must also be set according to whether the function is an input or output.

^{2.} The default value of GPn_LVL depends upon whether the pin is actively driven by another device. If the pin is actively driven, the bus keeper maintains this logic level. If the pin is not actively driven, the bus keeper may establish either a Logic 1 or Logic 0 as the initial input level.

Table 4-50. GPIO Function Select

GPn_FN	Valid On	Description	Comments
0x000	All GPIOs (1–16)	Pin-specific alternate function	Alternate configuration supporting ASP <i>n</i> and SPI2 interface functions.
0x001	All GPIOs (1–16)	Button-detect input/logic-level output	GPn_DIR = 0: GPIO pin logic level is set by GPn_LVL.
			GPn_DIR = 1: Button detect or logic level input.
0x002	All GPIOs (1–16)	DSP GPIO	Low latency input/output for DSP functions.
0x003	GPIO1-8 only	IRQ1 output	Interrupt (IRQ1) output
			0 = IRQ1 not asserted
			1 = IRQ1 asserted
0x010	GPIO1-8 only	FLL1 clock	Clock output from FLL1
0x018	GPIO1-8 only	FLL1 lock	Indicates FLL1 lock status
			0 = Not locked
			1 = Locked
0x048	GPIO1-8 only	OPCLK clock output	Configurable clock output derived from SYSCLK
0x080	All GPIOs (1–16)	PWM1 output	Configurable PWM output PWM1
0x081	All GPIOs (1–16)	PWM2 output	Configurable PWM output PWM2
0x08C	GPIO1-8 only	Input signal path signal detect	Indicates inputs signal path signal detect status
			0 = Signal threshold not exceeded
			1 = Signal threshold exceeded
0x090	GPIO1-8 only	US1 ultrasonic signal detect	Indicates US1 ultrasonic signal-detect status
			0 = Signal threshold not exceeded
			1 = Signal threshold exceeded
0x092	GPIO1-8 only	US2 ultrasonic signal detect	Indicates US2 ultrasonic signal-detect status
			0 = Signal threshold not exceeded
			1 = Signal threshold exceeded
0x158	GPIO1-8 only	Event Log 1 FIFO not-empty status	Event Log 1 FIFO not-empty status
			0 = FIFO empty
			1 = FIFO not empty
0x230-	All GPIOs (1–16)	Alarm 1 Channel <i>n</i> status	Alarm 1 Channel <i>n</i> status (<i>n</i> is 1–4)
0x233			A pulse is output when the respective alarm-trigger conditions are met. The pulse duration is configurable.
0x250	All GPIOs (1–16)	Timer 1 status	Timer 1 status
			A pulse is output after the respective timer reaches its final count value.
0x251	All GPIOs (1–16)	Timer 2 status	Timer 2 status
	,		A pulse is output after the respective timer reaches its final count value.
0x373	GPIO1-8 only	DSP1 power status	DSP1 power status
		' -	0 = Busy
			1 = Idle
0x608- 0x60B	GPIO1-10 only	SPI2 Slave Select 1–4	Slave-select outputs controlled by the SPI2 master interface

4.10.3 Pin-Specific Alternate Function— $GPn_FN = 0x000$

The CS48L32 provides two dedicated GPIO pins (GPIO1, GPIO2). The remaining GPIOs are multiplexed with the pin-specific functions listed in Table 4-51. The alternate functions are selected by setting the respective GP*n*_FN fields to 0x000, as described in Section 4.10.1. Note that each function is unique to the associated pin and can be supported only on that pin.

If the alternate function is selected on a GPIO pin, the pin direction (input or output) and the output driver configuration (CMOS or open drain) are set as described in Table 4-51. The respective GPn_DIR and GPn_OP_CFG bits have no effect in this case.

GPIO	Alternate Function ¹	Description	Direction	Output Driver Configuration
GPIO3	ASP1_DOUT	Audio Serial Port 1 data output	Digital output	CMOS
GPIO4	ASP1_DIN	Audio Serial Port 1 data input	Digital input	_
GPIO5	ASP1_BCLK	Audio Serial Port 1 bit clock	Digital I/O	CMOS
GPIO6	ASP1_FSYNC	Audio Serial Port 1 frame sync	Digital I/O	CMOS
GPIO7	ASP2_DOUT	Audio Serial Port 2 data output	Digital output	CMOS
GPIO8	ASP2_DIN	Audio Serial Port 2 data input	Digital input	_
GPIO9	ASP2_BCLK	Audio Serial Port 2 bit clock	Digital I/O	CMOS
GPIO10	ASP2_FSYNC	Audio Serial Port 2 frame sync	Digital I/O	CMOS
GPIO11	SPI2_SS	SPI master interface Slave Select 1	Digital output	CMOS
GPIO12	SPI2_SCK	SPI master interface clock	Digital output	CMOS
GPIO13	SPI2_SIO0	SPI master interface Data 0 input/output	Digital I/O	CMOS
GPIO14	SPI2_SIO1	SPI master interface Data 1 input/output	Digital I/O	CMOS
GPIO15	SPI2_SIO2	SPI master interface Data 2 input/output	Digital I/O	CMOS
GPIO16	SPI2_SIO3	SPI master interface Data 3 input/output	Digital I/O	CMOS

Table 4-51. GPIO Alternate Functions

4.10.4 Button Detect input/Logic Level output—GPn_FN = 0x001

The GPIO pins can be configured for general-purpose digital input/output by setting the respective GPIO fields as described in Section 4.10.1.

- The GPIO input configuration is suitable for button-detect functionality. Note that it is recommended to enable the GPIO input debounce feature when using GPIOs as button input.
 - The GPn_STS fields indicate the logic levels on each GPIO input—after the respective debounce function. Note that GPn_STS is not affected by the GPn_POL bit.
 - The debounced GPIO signals are also inputs to the interrupt-control circuit. Separate interrupts are associated with the rising and falling edges of the GPIO input. The associated interrupt bits are latched once set; they can be polled at any time or used to control the IRQ signal. See Section 4.9 for details of the interrupt event handling.
- The GPIO output can be used to drive a logic high or logic low level to provide an indication or control signal to an external circuit.
 - The output logic level is selected using the respective GPn_LVL bit. Note that the GPn_LVL bits are write-only—they do not provide status indication of GPIO input or output levels.

The polarity of the GPIO output can be inverted using the GPn_POL bits. If $GPn_POL = 1$, the external output is the opposite logic level to GPn_LVL .

4.10.5 DSP GPIO (Low-Latency DSP Input/Output)— $GPn_FN = 0x002$

The DSP GPIO function provides an advanced I/O capability for signal-processing applications. The DSP GPIO pins are accessed using maskable sets of I/O control registers; this allows the selected combinations of GPIOs to be controlled with ease, regardless of how the allocation of GPIO pins has been implemented in hardware.

The DSP GPIO function is selected by setting the respective GPIO fields as described in Section 4.10.1. A full description of the DSP GPIO function is provided in Section 4.5.4.

Note that, if GPn_FN is set to 0x002, the respective pin direction (input or output) is set according to the DSP GPIO configuration for that pin—the GPn_FN DIR control bit has no effect in this case.

4.10.6 Interrupt (IRQ) Status Output— $GPn_FN = 0x003$

The CS48L32 has an interrupt controller, which can be used to indicate when any selected interrupt events occur. Individual interrupts may be masked in order to configure the interrupt as required. See Section 4.9 for a full definition of all supported interrupt events.

^{1.} The alternate function is enabled if the respective GPn FN value is 0x000.

The IRQ1 interrupt-request status may be output directly on a <u>GPIO</u> pin by setting the respective GPIO fields as described in <u>Section 4.10.1</u>. Note that the IRQ1 status is output on the <u>IRQ</u> pin at all times.

4.10.7 Frequency-Locked Loop (FLL) Clock Output—GPn_FN = 0x010

The FLL clock can be output on a GPIO pin. The GPIO output is controlled by FLL1_GPCLK_DIV and FLL1_GPCLK_EN, as described in Table 4-52.

To support the FLL clock output, the respective FLL1_GPCLK_SRC field must be cleared. If the FLL clock output is not used, it is recommended to set FLL1_GPCLK_SRC = 11 in order to minimize power consumption.

It is recommended to disable the clock output (FLL1_GPCLK_EN = 0) before making any change to FLL1_GPCLK_DIV.

Note that FLL1_GPCLK_DIV and FLL1_GPCLK_EN affect the GPIO output only; they do not affect the FLL frequency. The maximum output frequency supported for GPIO output is noted in Table 3-9.

The FLL clock output is configured by setting the respective GPIO fields as described in Section 4.10.1. See Section 4.8 for details of the CS48L32 system clocking and how to configure the FLL.

Register Address	Bit	Label	Default		Description
R7328 (0x1CA0)	11:10	FLL1_GPCLK_SRC[1:0]	11	FLL1 GPIO Clock Source	
FLL1_GPIO_CLOCK				00 = FLL	10 = Reserved
				01 = Reserved	11 = Disabled
	7:1	FLL1_GPCLK_DIV[6:0]	0x02	FLL1 GPIO Clock Divider	
				0x00 = Reserved	0x04 = Divide by 4
				0x01 = Reserved	
				0x02 = Divide by 2	0x7F = Divide by 127
				0x03 = Divide by 3	$(F_{GPIO} = F_{FLL}/FLL1_GPCLK_DIV)$
	0	FLL1_GPCLK_EN	0	FLL1 GPIO Clock Enable	
				0 = Disabled	
				1 = Enabled	

Table 4-52. FLL Clock Output Control

4.10.8 Frequency-Locked Loop (FLL) Status Output—GPn_FN = 0x018, 0x01A, 0x01C

The CS48L32 provides FLL status flags, which may be used to control other events. The FLL lock signals indicate whether FLL lock has been achieved. See Section 4.8.7 for details of the FLLs.

The FLL lock signals may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.10.1.

The FLL lock signals are inputs to the interrupt controller circuit. Separate interrupts are associated with the rising and falling edges of the <u>FLL</u>-lock status. The associated interrupt bits are latched once set; they can be polled at any time or used to control the <u>IRQ</u> signal. See <u>Section 4.9</u> for details of the interrupt event handling.

4.10.9 OPCLK Clock Output—GPn FN = 0x048

A clock output (OPCLK) derived from SYSCLK can be output on a GPIO pin. The OPCLK frequency is controlled by OPCLK_DIV and OPCLK_SEL. The OPCLK output is enabled by setting OPCLK_EN, as described in Table 4-53.

It is recommended to disable the clock output before making any change to the respective x_DIV or x_SEL fields.

The source frequency for OPCLK must be selected using the respective x_SEL field. The selected frequency must be less than or equal to the applicable system clock source. The maximum output frequency supported for GPIO output is noted in Table 3-9.

The OPCLK signal can be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.10.1.

See Section 4.8 for details of the system clocks.

Table 4-53. OPCLK Control

Register Address	Bit	Label	Default	Description
R4128 (0x1020)	15	OPCLK_EN	0	OPCLK Enable
OUTPUT_SYS_CLK				0 = Disabled
				1 = Enabled
	7:3	OPCLK_DIV[4:0]	0x00	OPCLK Divider
				0x02 = Divide by 2
				0x04 = Divide by 4
				0x06 = Divide by 6
				(even numbers only)
				0x1E = Divide by 30
				Note that only even numbered divisions (2, 4, 6, etc.) are valid selections. All other codes are reserved if the OPCLK signal is enabled.
	2:0	OPCLK_SEL[2:0]	000	OPCLK Source Frequency
				000 = 6.144 MHz (5.6448 MHz)
				001 = 12.288 MHz (11.2896 MHz)
				010 = 24.576 MHz (22.5792 MHz)
				011 = 49.152 MHz (45.1584 MHz)
				All other codes are reserved
				The frequencies in brackets apply for 44.1 kHz–related SYSCLK rates only (i.e., SAMPLE_RATE_n = 0x09–0x0D).
				The OPCLK source frequency must be less than or equal to the SYSCLK frequency.

4.10.10 Pulse-Width Modulation (PWM) Signal Output—GPn_FN = 0x080, 0x081

The CS48L32 incorporates two PWM signal generators, which can be enabled as GPIO outputs. The duty cycle of each PWM signal can be modulated by an audio source, or can be set to a fixed value using a control register setting.

The PWM outputs may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.10.1.

See Section 4.3.10 for details of how to configure the PWM signal generators.

4.10.11 Input Signal Path Signal Detect—GPn_FN = 0x08C

The input path signal-detect function provides an output that indicates the status of one or more selected input channels. The signal-detect status indicates when one or more of the input channels exceeds the configured signal-threshold level. See Section 4.2.8 for details of the input path signal-detect function.

The input path signal-detect status may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.10.1.

The signal-detect function is an input to the interrupt control circuit. Separate interrupts are associated with the rising and falling edges of the signal-detect status. The associated interrupt bits are latched once set; they can be polled at any time or used to control the IRQ signal. See Section 4.9 for details of the interrupt event handling.

4.10.12 Ultrasonic Signal Detect—GPn_FN = 0x090, 0x092

The ultrasonic signal-detect function provides an output that indicates the signal-detection status. The output is asserted if the detection conditions are met. See Section 4.2.9 for details of the ultrasonic signal-detect function.

The input path signal-detect status may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.10.1.

The signal-detect function is an input to the interrupt control circuit. Separate interrupts are associated with the rising and falling edges of the signal-detect status. The associated interrupt bits are latched once set; they can be polled at any time or used to control the IRQ signal. See Section 4.9 for details of the interrupt event handling.

4.10.13 Alarm Generator Status Output—GPn_FN = 0x230-0x233

The CS48L32 alarm-generator circuit is associated with the general-purpose timers. The alarm generator supports up to four output channels; these can be used to indicate one-off events, or can be configured for cyclic (repeated) triggers. See Section 4.5.2 for details of the alarm-control circuits.

The alarm status may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.10.1. The alarm status is asserted when the respective alarm-trigger conditions are met. The signal is asserted for a duration that is configurable as described in Section 4.5.2.1.

The alarm generators also provide input to the interrupt control circuit. An interrupt event is triggered whenever the alarm-trigger conditions are met. The associated interrupt bits are latched once set; they can be polled at any time or used to control the IRQ signal. See Section 4.9 for details of the interrupt event handling.

4.10.14 General-Purpose Timer Status Output—GPn_FN = 0x250–0x251

The CS48L32 incorporates two general-purpose timers, which support a wide variety of uses. The timers can count up or down, and support continuous or single count modes. A status output, indicating the progress of each timer, is provided. See Section 4.5.3 for details of the general-purpose timers.

A logic signal from each general-purpose timer may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.10.1. This logic signal is pulsed high whenever the timer reaches its final count value.

The general-purpose timers also provide input to the interrupt control circuit. An interrupt event is triggered whenever the timer reaches its final count value. The associated interrupt bits are latched once set; they can be polled at any time or used to control the IRQ signal. See Section 4.9 for details of the interrupt event handling.

4.10.15 DSP1 Power Status—GPn_FN = 0x373

The Halo Core DSP supports a wide range of audio-enhancement functions. In typical applications, the DSP operates intermittently, waiting for an interrupt or other event before proceeding. A status output, indicating DSP activity, is provided to assist in the development of DSP firmware code. See Section 4.4 for details of the Halo Core DSP.

A logic signal from the DSP may be output directly on a GPIO pin by setting the respective GPIO fields as described in Section 4.10.1. The power-status indication is asserted if the DSP is idle.

4.10.16 SPI2 Slave-Select Output—GPn FN = 0x608, 0x609, 0x60A, 0x60B

The SPI master interface supports four slave-select (SS) connections, enabling multiple devices to be accessed on a shared bus. The SS output is asserted (Logic 0) at the start of a SPI transaction and deasserted (Logic 1) at the end. See Section 4.5.5 for details of the SPI master interface.

The slave-select outputs, SS1–SS4, may be configured on a GPIO pin by setting the respective GPIO fields as described in Section 4.10.1. Active-low output is configured by setting the respective GPn_POL bit.

Note the Slave Select 1 function ($GPn_FN = 0x608$) is the same signal as the pin-specific \overline{SS} function on GPIO11 ($GP11_FN = 0x000$).

4.11 Control Interface

The CS48L32 is controlled by read/write access to its control registers using the SPI1 control interface.

The CS48L32 executes a boot sequence following power-on reset, hardware reset, or software reset. Note that control register writes should not be attempted until the boot sequence has completed. See Section 4.14 for further details.

Note that the control interface function can be supported with or without system clocking—there is no requirement for SYSCLK to be enabled when accessing the register map.

Timing specifications for the control interface is provided in Table 3-18. In some applications, additional system-wide constraints must be observed to ensure control interface limits are not exceeded. Full details of these requirements are provided in Section 4.8.6. These constraints need to be considered if any of the following conditions is true.

- SYSCLK is enabled and is < 11.2896 MHz
- Control-register access is scheduled at register address 0x80000 or above

The SPI1 control interface comprises four pins; each is referenced to the VDD_IO power domain.

- SPI1 MISO—Data output
- SPI1_MOSI—Data input
- SPI1 SCK—Interface clock input
- SPI1_SS—Slave select input

The SPI1 control interface supports selectable drive-strength, pull-down, and phase control using the register fields described in Table 4-54.

Register Address	Bit	Label	Default	Description
R144 (0x0090)	0	SPI1_DPHA	0	SPI1 data phase control
CTRL_IF_DPHA				0 = MISO driven on falling SCK edge
				1 = MISO driven on rising SCK edge
R4100 (0x1004)	8	SPI1_MISO_	1	SPI1_MISO output drive strength
SPI1_CFG_1		DRV_STR		0 = 4 mA
				1 = 8 mA
	7	SPI1_MISO_PD	0	SPI1_MISO pull-down control
				0 = Disabled
				1 = Enabled

Table 4-54. Control Interface Configuration

A detailed description of the SPI1 control interface operation is provided in Section 4.11.1.

Note the CS48L32 also incorporates a quad-SPI master interface (SPI2); this feature is described in Section 4.5.5.

4.11.1 Four-Wire (SPI) Control Mode

The SPI1 control interface mode is supported using the SPI1_SS, SPI1_SCK, SPI1_MOSI, and SPI1_MISO pins.

The MOSI (data-input) pin supports the following behavior:

- In write operations ($R/\overline{W} = 0$), the MOSI pin input is driven by the controlling device.
- In read operations (R/ \overline{W} = 1), the MOSI pin is ignored following receipt of the valid register address.

The MISO (data-output) pin supports the following behavior:

- If SS is asserted (Logic 0), the MISO output is actively driven when outputting data and is high impedance at other times. If SS is not asserted, the MISO output is high impedance.
- The timing of the MISO data output is configurable using SPI1_DPHA. Depending on the host-interface behavior and timing requirements, SPI1_DPHA can be used to support a wide range of SCK frequencies. See Table 3-18 for timing information.
- The high-impedance state of the MISO output allows the pin to be shared with other slaves. An internal pull-down resistor can be enabled on the MISO pin, as described in Table 4-54.

The SPI interface uses a 31-bit register address and 32-bit data words. Note that the full SPI message protocol also includes a read/write bit and a 32-bit padding phase (see Fig. 4-55 and Fig. 4-56).

Continuous read and write modes enable multiple register operations to be scheduled faster than is possible with single register operations. <u>In these modes</u>, the CS48L32 automatically increments the register address at the end of each data word, for as long as SS is held low and SCK is toggled. Successive data words can be input/output every 32 clock cycles.

The SPI protocol is shown in Fig. 4-55 and Fig. 4-56.

Fig. 4-55 shows a single register write to a specified address.

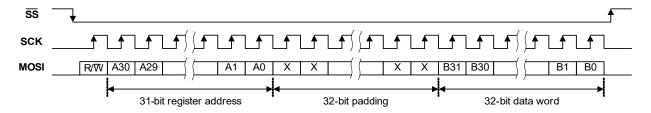


Figure 4-55. Control Interface SPI Register Write

Fig. 4-56 shows a single register read from a specified address. Note that Fig. 4-56 assumes MISO is driven on the falling SCK edge, i.e., SPI1_DPHA = 0.

Figure 4-56. Control Interface SPI Register Read

4.12 Charge Pump, Regulators, and Voltage Reference

The CS48L32 incorporates a charge-pump and an LDO-regulator circuit to generate supply rails for internal functions and to support external microphone requirements. The CS48L32 also incorporates a MICBIAS generator (with three switchable outputs), that provides low-noise reference voltages suitable for biasing ECM-type microphones or powering digital microphones.

The VDD_CP (1.8 V) domain powers the Charge Pump circuit. Refer to Section 5.1 for recommended external components.

4.12.1 Charge Pump and LDO Regulator

The charge pump (CP2) powers the regulator (LDO2), which provides the supply rail for analog input circuits and for the MICBIAS generator. CP2 and LDO2 are enabled by setting CP2_EN.

If CP2 and LDO2 are enabled, the VOUT_MIC voltage is selected using the LDO2_VSEL field. Note that if the MICBIAS generator is in normal (regulator) mode, the VOUT_MIC voltage must be at least 200 mV greater than the selected MICBIAS1x output voltages.

If CP2 and LDO2 are enabled, an internal bypass path may be selected, connecting the VOUT_MIC pin directly to the VDD_CP supply. This path is controlled using the CP2_BYPASS bit. Note that the bypass path is only supported if CP2 is enabled.

Note: The 32 kHz clock must be configured and enabled if CP2 is enabled in its normal operating mode. The 32 kHz clock is not required in bypass mode (CP2_BYPASS = 1). See Section 4.8 for details of the system clocks.

If CP2 is disabled, the CP_FILT pin can be either floating or actively discharged. The behavior is configured using the CP2_DISCH bit.

If LDO2 is disabled, the VOUT_MIC pin can be either floating or actively discharged. The behavior is configured using the LDO2_DISCH bit.

The charge pump and LDO-regulator circuits are shown in Fig. 4-57. The associated control bits are described in Table 4-55.

Note that decoupling capacitors and flyback capacitors are required for these circuits. Refer to Section 5.1.5 for recommended external components.

4.12.2 Microphone Bias (MICBIAS) Control

The MICBIAS generator provides a low-noise reference voltage suitable for biasing ECM-type microphones or powering digital microphones. Refer to Section 5.1.3 for recommended external components.

The MICBIAS generator is powered from VOUT_MIC, which is generated by an internal charge pump and LDO, as shown in Fig. 4-57.

Switchable outputs from the MICBIAS generator allow three separate reference/supply outputs to be independently controlled. The MICBIAS regulator is enabled using MICB1_EN. The MICBIAS output switches are enabled using MICB1x_EN (where x is A, B, or C for the respective outputs MICBIAS1A, MICBIAS1B, or MICBIAS1C.

Note that, to enable any of the MICBIAS1x outputs, both the output switch and the respective regulator must be enabled.

If a MICBIAS output is disabled, it can be configured to be floating or to be actively discharged. This is configured using the MICB1_DISCH bit (for the MICBIAS regulator), and the MICB1x_DISCH bits (for the switched outputs). Each discharge path is only effective when the respective regulator, or switched output, is disabled.

The MICBIAS generator can operate in Regulator Mode or in Bypass Mode. The applicable mode is selected using the MICB1 BYPASS.

- In Regulator Mode (MICB1_BYPASS = 0), the output voltage is selected using the MICB1_LVL field. In this mode, VOUT_MIC must be at least 200 mV greater than the required MICBIAS output voltage. The MICBIAS outputs are powered from the VOUT_MIC pin and use the internal band-gap circuit as a reference.
 - In Regulator Mode, the MICBIAS regulators are designed to operate without external decoupling capacitors. The regulators can be configured to support a capacitive load if required, using the MICB1_EXT_CAP bit. (This may be appropriate for a DMIC supply.) It is important that the external capacitance is compatible with the applicable MICB1_EXT_CAP setting. The compatible load conditions are detailed in Table 3-10.
- In Bypass Mode (MICB1_BYPASS = 1), the respective outputs (MICBIAS1x), when enabled, are connected directly to VOUT_MIC. This enables a low-power operating state. Note that the MICB1_EXT_CAP setting is not applicable in Bypass Mode—there are no restrictions on the external MICBIAS capacitance in Bypass Mode.

The MICBIAS generator incorporates a pop-free control circuit to ensure smooth transitions when the MICBIAS output is enabled or disabled in Bypass Mode; this feature is enabled using MICB1 RATE.

The MICBIAS generator is shown in Fig. 4-57. The MICBIAS control fields are described in Table 4-55.

The maximum output current for the MICBIAS regulator is noted in Table 3-10. This limit must be observed across all of the MICBIAS1x outputs, especially if more than one microphone is connected. Note that the maximum output current differs between Regulator Mode and Bypass Mode.

4.12.3 Voltage-Reference Circuit

The CS48L32 incorporates a voltage-reference circuit, powered by VDD_A. This circuit ensures the accuracy of the LDO-regulator and MICBIAS voltage settings.

4.12.4 Block Diagram and Control Registers

The charge-pump and regulator circuits are shown in Fig. 4-57. Note that decoupling capacitors and flyback capacitors are required for these circuits. Refer to Section 5.1 for recommended external components.

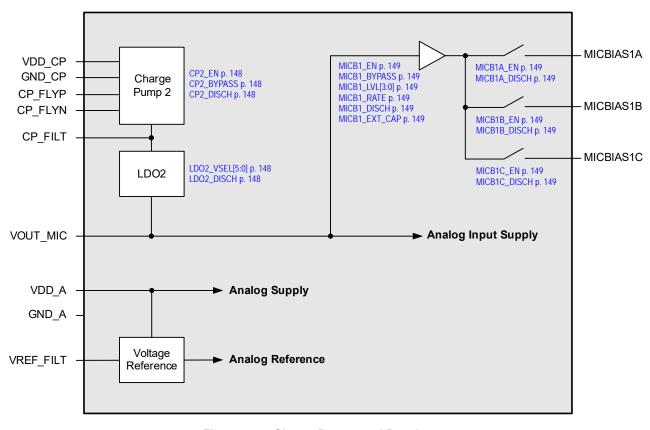


Figure 4-57. Charge Pumps and Regulators

The charge-pump and regulator control registers are described in Table 4-55.

Table 4-55. Charge-Pump and LDO Control Registers

Register Address	Bit	Label	Default		Description		
R8192 (0x2000)	2	CP2_DISCH	1	Charge Pump Discharge			
MIC_CHARGE_				0 = CP_FILT floating when disabled			
PUMP1				1 = CP_FILT discharged	when disabled		
	1	CP2_BYPASS	1	Charge Pump and LDO	Bypass Mode		
				0 = Normal			
				1 = Bypass Mode			
				In Bypass Mode, VDD_C	CP is connected directly to VO	OUT_MIC.	
				Note that CP2_EN must	also be set.		
	0	CP2_EN	0	Charge Pump and LDO2	2 Control		
				(Provides analog input a	nd VOUT_MIC supplies)		
				0 = Disabled			
				1 = Enabled			
R9224 (0x2408)	10:5	LDO2_VSEL[5:0]	0x1F	LDO2 Output Voltage Se	elect		
LDO2_CTRL1				0x00 = 0.900 V	0x13 = 1.375 V	0x1F = 2.500 V	
				0x01 = 0.925 V	0x14 = 1.400 V	(100 mV steps)	
				0x02 = 0.950 V	0x15 = 1.500 V	0x26 = 3.200 V	
				(25 mV steps)	(100 mV steps)	0x27 to 0x3F = 3.300 V	
	2	LDO2_DISCH	1	LDO2 Discharge			
				0 = VOUT_MIC floating v	when disabled		
				1 = VOUT_MIC discharg	ed when disabled		

Table 4-55. Charge-Pump and LDO Control Registers (Cont.)

Register Address	Bit	Label	Default	• • • • • • • • • • • • • • • • • • •				
R9232 (0x2410)	15	MICB1_EXT_CAP	0	Microphone Bias 1 External Capacitor (if MICB1_BYPASS = 0).				
MICBIAS_CTRL1				Configures the MICBIAS1 regulator according to the specified capacitance connected to the MICBIAS1x outputs.				
				0 = No external capacitor				
				1 = External capacitor connected				
	8:5	MICB1_LVL[3:0]	0x7	Microphone Bias 1 Voltage Control (in Regulator Mode, i.e., MICB1_BYPASS = 0)				
				0x0 = 1.5 V $0x5 = 2.0 V$ $0xA = 2.5 V$				
				0x1 = 1.6 V $0x6 = 2.1 V$ $0xB = 2.6 V$				
				0x2 = 1.7 V $0x7 = 2.2 V$ $0xC = 2.7 V$				
				0x3 = 1.8 V $0x8 = 2.3 V$ $0xD = 2.8 V$				
				0x4 = 1.9 V $0x9 = 2.4 V$ $0xE-0xF = Reserved$				
	3	MICB1_RATE	0	Microphone Bias 1 Rate (Bypass Mode)				
				0 = Fast start-up/shutdown				
				1 = Pop-free start-up/shutdown				
	2	MICB1_DISCH	1	Microphone Bias 1 Discharge				
				0 = MICBIAS1 floating when disabled				
				1 = MICBIAS1 discharged when disabled				
	1	MICB1_BYPASS	1	Microphone Bias 1 Mode				
				0 = Regulator Mode				
				1 = Bypass Mode				
	0	MICB1_EN	0	Microphone Bias 1 Enable				
				0 = Disabled				
				1 = Enabled				
R9240 (0x2418)	9	MICB1C_DISCH	1	Microphone Bias 1C Discharge				
MICBIAS_CTRL5				0 = MICBIAS1C floating when disabled				
				1 = MICBIAS1C discharged when disabled				
	8	MICB1C_EN	0	Microphone Bias 1C Enable				
				0 = Disabled				
				1 = Enabled				
	5	MICB1B_DISCH	1	Microphone Bias 1B Discharge				
				0 = MICBIAS1B floating when disabled				
				1 = MICBIAS1B discharged when disabled				
	4	MICB1B_EN	0	Microphone Bias 1B Enable				
				0 = Disabled				
				1 = Enabled				
	1	MICB1A_DISCH	1	Microphone Bias 1A Discharge				
				0 = MICBIAS1A floating when disabled				
				1 = MICBIAS1A discharged when disabled				
	0	MICB1A_EN	0	Microphone Bias 1A Enable				
				0 = Disabled				
				1 = Enabled				

4.13 JTAG Interface

The JTAG interface provides test and debug access to the CS48L32 DSP. The interface comprises five connections that are multiplexed with the GPIO/ASP2 pins as described in Table 4-56.

Table 4-56. JTAG Interface Connections

Pin No	Pin Name	JTAG Function	JTAG Description
D4	ASP2_BCLK/GPIO9	TCK	Clock input
E6	GPIO1	TDI	Data input
F5	ASP2_FSYNC/GPIO10	TDO	Data output
H5	ASP2_DIN/GPIO8	TMS	Mode select input
G5	ASP2_DOUT/GPIO7	TRST	Test access port reset input (active low)

The JTAG interface is selected by setting the DSP_JTAG_MODE bit. If the JTAG interface is selected, the ASP and GPIO functions on the respective pins are disabled.

Note that, under default register conditions, DSP_JTAG_MODE is locked to prevent accidental selection—the user key must be set before writing to DSP_JTAG_MODE. The user key is set by writing 0x55, followed by 0xAA, to the USER_KEY_CTRL field.

It is recommended to clear the user key after writing to DSP_JTAG_MODE. (Note that clearing the user key does not change the value of DSP_JTAG_MODE.) The user key is cleared by writing 0xCC, followed by 0x33, to USER_KEY_CTRL.

For normal operation (test and debug access disabled), the JTAG interface should be disabled or held in reset. If DSP_JTAG_MODE = 0, the JTAG interface is disabled. If DSP_JTAG_MODE = 1, the JTAG interface is held in reset if the TRST pin is Logic 0. An internal pull-down resistor can be used to hold the TRST pin at Logic 0 (i.e., JTAG interface in reset) when not actively driven.

Integrated pull-up and pull-down resistors can be enabled on each of the JTAG pins. This is provided as part of the GPIO functionality, and provides a flexible capability for interfacing with other devices. The pull-up and pull-down resistors can be configured independently using the fields described in Table 4-49. Note that the respective pins must be configured as general-purpose inputs (GPn FN = 0x001, GPn DIR = 1) to support the pull-up/pull-down functions.

If the JTAG interface is enabled (TRST deasserted and TCK active) at the time of any reset, a software reset must be scheduled, with the TCK input stopped or TRST asserted (Logic 0), before using the JTAG interface.

It is recommended to always schedule a software reset before starting the JTAG clock or deasserting the JTAG reset. In this event, the JTAG interface should be held in its reset state until the software reset has completed, BOOT_DONE_STS1 is set, and DSP_JTAG_MODE is set. See Section 4.14.3 for further details of the CS48L32 software reset.

The JTAG interface control registers are described in Table 4-57.

Register Address	Bit	Label	Default	Description
R52 (0x0034)	7:0	USER_KEY_CTRL[7:0]	0x00	User Key Control
USER_KEY_CTRL				Write 0x55, then 0xAA, to set the key. (Registers unlocked.)
				Write 0xCC, then 0x33, to clear the key. (Registers locked.)
R4156 (0x103C)	16	DSP_JTAG_MODE	0	DSP JTAG Mode Enable
MISC_TST_CTRL1				0 = Disabled
				1 = Enabled
				Under default conditions, this bit is locked and cannot be written. To change the value of this bit, the user key must be set before writing to DSP_JTAG_MODE.

Table 4-57. JTAG Interface Control

4.14 Power-Up and Resets

The CS48L32 incorporates a power-on reset function to control the device start-up procedure. Hardware- and software-controlled reset functions are also supported. The resets each provide similar functionality, and are described in the following subsections.

4.14.1 Power-On Reset (POR)

The CS48L32 remains in the reset state until VDD_A, VDD_IO, and VDD_D are above their respective reset thresholds. Note that specified device performance is not assured outside the voltage ranges defined in Table 3-3.

The POR sequence is scheduled on initial power-up, when VDD_A, VDD_IO, and VDD_D are above their respective reset thresholds. After the initial power-up, the POR is also scheduled following an interrupt to the VDD_IO or VDD_A supplies.

If external bus interfaces (e.g., SPI, I²S/ASP) are in use when POR is scheduled, it is possible that CS48L32 data output pins could disrupt ongoing transactions. To avoid possible disruption to other devices, all interface activity with the CS48L32 should be ceased before scheduling POR.

4.14.2 Hardware Reset

The CS48L32 provides a hardware reset function, which is executed whenever the RESET input is asserted (Logic 0). The RESET input is active low and is referenced to the VDD_IO power domain. A hardware reset causes all of the CS48L32 control registers to be reset to their default states.

An internal pull-up resistor is enabled by default on the RESET pin; this can be configured using the RESET_PU bit. A pull-down resistor is also available, as described in Table 4-58. When the pull-up and pull-down resistors are both enabled, the CS48L32 provides a bus keeper function on the RESET pin. The bus keeper function holds the input logic level unchanged whenever the external circuit removes the drive (e.g., if the signal is tristated).

If external bus interfaces (e.g., SPI, I²S/ASP) are in use when hardware reset is scheduled, it is possible that CS48L32 data output pins could disrupt ongoing transactions. To avoid possible disruption to other devices, all interface activity with the CS48L32 should be ceased before scheduling a hardware reset.

Register Address	Bit	Label	Default	Description
R10008 (0x2718)	1	RESET_PU	1	RESET pull-up enable
AOD_PAD_CTRL				0 = Disabled
				1 = Enabled
				Note: If RESET_PD and RESET_PU are both set, a bus keeper function is enabled on the RESET pin.
	0	RESET_PD	0	RESET pull-down enable
		_		0 = Disabled
				1 = Enabled
				Note: If RESET_PD and RESET_PU are both set, a bus keeper function is enabled on the RESET pin.

Table 4-58. Reset Pull-Up/Pull-Down Configuration

4.14.3 Software Reset

A software reset is executed by writing 0x5A to the SFT_RESET field. A software reset causes the CS48L32 control registers to be reset to their default states.

Note: The DSP firmware-memory control registers (see Table 4-27) are unaffected by software reset. The DSP firmware memory contents are maintained through software reset, provided the respective memory bank is enabled.

Register Address	Bit	Label	Default	Description
R32 (0x0020)	31:24	SFT_RESET	0x00	Software reset control.
SFT_RESET				Write 0x5A to reset the device.

Table 4-59. Software Reset

4.14.4 Boot Sequence

The CS48L32 executes a boot sequence following power-on reset, hardware reset, or software reset. The boot sequence configures the CS48L32 with factory-set trim (calibration) data.

The BOOT_DONE_STS1 bit is asserted on completion of the boot sequence, as described in Table 4-60. Control-register writes should not be attempted until BOOT_DONE_STS1 has been asserted.

The BOOT_DONE_STS1 signal is an input to the interrupt control circuit and can be used to trigger an interrupt event on completion of the boot sequence; see Section 4.9. Under default register conditions, a falling edge on the IRQ pin indicates completion of the boot sequence.

Table 4-60. Device Boot-Up Status

Register Address	Bit	Label	Default	Description
R98452 (0x18094)	3	BOOT_DONE_STS1	0	Boot Status
IRQ1_STS2				0 = Busy (boot sequence in progress)
				1 = Idle (boot sequence completed)
				Control register writes should not be attempted until the boot sequence has completed.

4.14.5 Digital I/O Status in Reset

Table 1-1 describes the default status of the CS48L32 digital I/O pins on completion of power-on reset and before any register writes. The same conditions are also applicable on completion of a hardware reset or software reset.

4.14.6 DSP Firmware Memory Control in Reset

The firmware memory contents are maintained through software reset, provided the respective memory bank is enabled—see Section 4.4.3.1 to enable the DSP firmware memory. The DSP firmware memory contents are not retained under power-on-reset or hardware-reset conditions.

Note that the DSP firmware memory is not actively cleared under power-on-reset or hardware-reset conditions; some contents of the memory may persist through these events, but the integrity of the memory is not assured.

4.15 Device ID

The device ID and associated related data can be read from registers 0x0000 and 0x0004, as described in Table 4-61.

Table 4-61. Device ID

Register Address	Bit	Label	Default	Description
R0 (0x0000)	23:0	DEVID[23:0]	0x048A32	Device ID
DEVID				
R4 (0x0004)	7:4	AREVID[3:0]	_	All-layer device revision.
REVID				This field is incremented for every all-layer revision of the device.
	3:0	MTLREVID[3:0]	_	Metal-layer device revision.
				This field is incremented for every metal-layer revision of the device.

5 Applications

5.1 Recommended External Components

This section provides information on the recommended external components for use with the CS48L32.

5.1.1 Analog Input Paths

The CS48L32 supports up to four analog audio input connections. Each input is biased to the internal DC reference, VREF. (Note that this reference voltage is present on the VREF_FILT pin.) A DC-blocking capacitor is required for each analog input pin used in the target application. The choice of capacitor is determined by the filter that is formed between that capacitor and the impedance of the input pin. The circuit is shown in Fig. 5-1.

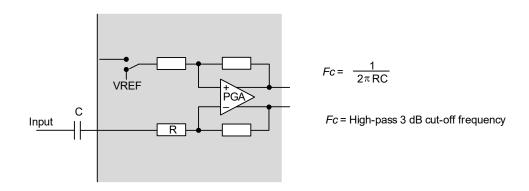


Figure 5-1. Audio Input Path DC-Blocking Capacitor

In accordance with the CS48L32 input pin resistance (see Table 3-5), a 1 μ F capacitance for all input connections gives good results in most cases, with a 3 dB cut-off frequency around 13 Hz.

Ceramic capacitors are suitable, but take care to ensure the desired capacitance is maintained at the VDD_A operating voltage. Also, ceramic capacitors may show microphonic effects, where vibrations and mechanical conditions give rise to electrical signals. This is particularly problematic for microphone input paths where a large signal gain is required.

A single capacitor is required for a single-ended line or microphone input connection. For a differential input connection, a DC-blocking capacitor is required on both input pins.

The external connections for single-ended and differential microphones, incorporating the CS48L32 microphone bias circuit, are shown in Fig. 5-2.

5.1.2 PDM (DMIC) Input Paths

The CS48L32 supports as many as four PDM input channels, ideal for use with digital microphone (DMIC) input and other digital interfaces. Two channels of audio data can be multiplexed on each $INn_PDMDATA$ pin; each stereo interface is clocked using the respective INn_PDMCLK pin.

The external connections for digital microphones, incorporating the CS48L32 microphone bias circuit, are shown in Fig. 5-4. Ceramic decoupling capacitors for the digital microphones may be required—refer to the specific recommendations for the application microphones.

If two microphones are connected to a single IN*n_PDMDATA* pin, the microphones must be configured to ensure that the left mic transmits a data bit when IN*n_PDMCLK* is high and the right mic transmits a data bit when IN*n_PDMCLK* is low. The CS48L32 samples the DMIC data at the end of each IN*n_PDMCLK* phase. Each microphone must tristate its data output while the other microphone is transmitting. Integrated pull-down resistors can be enabled on the IN*n_PDMDATA* pins if required.

The voltage reference for the IN1 and IN2 PDM interfaces is selectable. The DMIC use cases, the power supply for each digital microphone should be set equal to the applicable voltage reference.

5.1.3 Microphone Bias Circuit

The CS48L32 is designed to interface easily with analog or digital microphones.

Each microphone requires a bias current (electret condenser microphones) or voltage supply (silicon microphones); these can be provided by the MICBIAS regulator on the CS48L32. The MICBIAS generator supports switchable outputs that allow three separate reference/supply outputs to be independently controlled.

Note that the VOUT_MIC pin can also be used (instead of MICBIAS1x) as a reference or power supply for external microphones. The MICBIAS outputs are recommended, as these offer better noise performance and independent enable/ disable control.

Analog microphones may be connected in single-ended or differential configurations, as shown in Fig. 5-2. The differential configuration provides better performance due to its rejection of common-mode noise; the single-ended method provides a reduction in external component count.

A bias resistor is required when using an ECM. The bias resistor should be chosen according to the minimum operating impedance of the microphone and MICBIAS voltage so that the maximum bias current of the CS48L32 is not exceeded.

A 2.2 k Ω bias resistor is recommended; this provides compatibility with a wide range of microphone components.

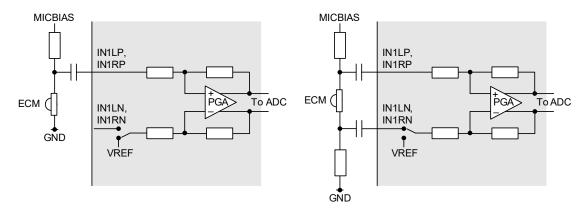


Figure 5-2. Single-Ended and Differential Analog Microphone Connections

Analog MEMS microphones can be connected to the CS48L32 as shown in Fig. 5-3. In this configuration, the MICBIAS generator provides a low-noise supply for the microphones; a bias resistor is not required.



Figure 5-3. Single-Ended and Differential Analog Microphone Connections

DMIC connection to the CS48L32 is shown in Fig. 5-4. Note that ceramic decoupling capacitors at the DMIC power supply pins may be required—refer to the specific recommendations for the application microphones.

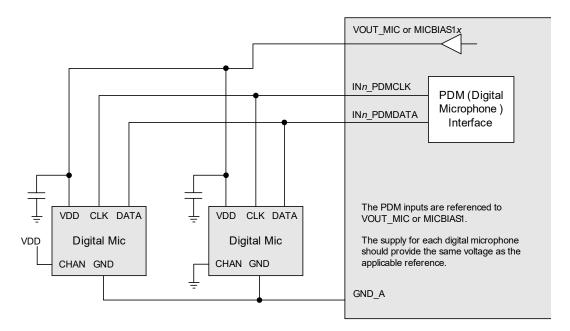


Figure 5-4. DMIC Connection

The MICBIAS generator can operate in Regulator Mode or in Bypass Mode. See Section 4.12 for details of the MICBIAS generators.

In Regulator Mode, the MICBIAS regulator is designed to operate without external decoupling capacitors. The regulator can be configured to support a capacitive load if required (e.g., for DMIC supply decoupling). The compatible load conditions are detailed in Table 3-10.

If the total capacitive load on MICBIAS1 exceeds the specified conditions for Regulator Mode (e.g., due to a decoupling capacitor or long PCB trace), the respective generator must be configured in Bypass Mode.

The maximum output current for the MICBIAS regulator is noted in Table 3-10. This limit must be observed across all of the MICBIAS1x outputs, especially if more than one microphone is connected. Note that the maximum output current differs between Regulator Mode and Bypass Mode. The MICBIAS output voltage can be adjusted using register control in Regulator Mode.

5.1.4 Power Supply/Reference Decoupling

Electrical coupling exists particularly in digital logic systems where switching in one subsystem causes fluctuations on the power supply. This effect occurs because the inductance of the power supply acts in opposition to the changes in current flow that are caused by the logic switching. The resultant variations (spikes) in the power-supply voltage can cause malfunctions and unintentional behavior in other components. A decoupling (bypass) capacitor can be used as an energy storage component that provides power to the decoupled circuit for the duration of these power-supply variations, protecting it from malfunctions that could otherwise arise.

Coupling also occurs in a lower frequency form when ripple is present on the power supply rail caused by changes in the load current or by limitations of the power-supply regulation method. In audio components such as the CS48L32, these variations can alter the performance of the signal path, leading to degradation in signal quality. A decoupling capacitor can be used to filter these effects by presenting the ripple voltage with a low-impedance path that does not affect the circuit to be decoupled.

These coupling effects are addressed by placing a capacitor between the supply rail and the corresponding ground reference. In the case of systems comprising multiple power supply rails, decoupling should be provided on each rail.

PCB layout is also a contributory factor for coupling effects. If multiple power supply rails are connected to a single supply source, it is recommended to provide separate PCB tracks connecting each rail to the supply. See Section 5.3 for PCB-layout recommendations.

The recommended decoupling capacitors for CS48L32 are detailed in Table 5-1.

Power Supply	Ground ¹	Decoupling Capacitor
VDD_A	GND_A	1.0 μF ceramic
VDD_D	GND_D	2 x 1.0 μF ceramic—one capacitor on each VDD_D pin
VDD_FLL	GND_D	1.0 μF ceramic
VDD_IO	GND_D	0.1 μF ceramic ²
VDD_CP	GND_CP	1.0 μF ceramic
VOUT_MIC	GND_A	4.7 μF ceramic
VREF_FILT	GND_A	2.2 μF ceramic

Table 5-1. Power Supply Decoupling Capacitors

All decoupling capacitors should be placed as close as possible to the CS48L32 device. The connection between GND_A, the VDD_A decoupling capacitor, and the main system ground should be made at a single point as close as possible to the GND_A ball of the CS48L32.

Due to the wide tolerance of many types of ceramic capacitors, care must be taken to ensure that the selected components provide the required capacitance across the required temperature and voltage ranges in the intended application. For most application the use of ceramic capacitors with capacitor dielectric X7R is recommended.

5.1.5 Charge-Pump Components

The CS48L32 incorporates a charge-pump circuit (CP2), which generates the supply rail for the microphone bias (MICBIAS) regulators.

Decoupling capacitors are required on the charge-pump output (CP_FILT). A fly-back capacitor is also required. The recommended charge-pump capacitors for CS48L32 are detailed in Table 5-2.

Description	Capacitor
CP_FILT decoupling	Required capacitance is 1.0 μF at 3.6 V. Suitable component typically 4.7 μF.
CP2 fly-back (connect between CP_FLYP and CP_FLYN)	Required capacitance is 220 nF at 2 V. Suitable component typically 470 nF.

Table 5-2. Charge-Pump External Capacitors

Ceramic capacitors are recommended for these charge-pump requirements. Note that, due to the wide tolerance of many types of ceramic capacitors, care must be taken to ensure that the selected components provide the required capacitance across the required temperature and voltage ranges in the intended application. Ceramic capacitors with X7R dielectric are recommended.

The positioning of the charge-pump capacitors is important. These capacitors (particularly the fly-back capacitor) must be placed as close as possible to the CS48L32.

5.2 Audio Serial Port Clocking Configurations

The audio serial ports (ASP1–ASP2) can be configured in master or slave modes. In all applications, it is important that the system clocking configuration is correctly designed. Incorrect clock configurations lead to audible clicks arising from dropped or repeated audio samples; this is caused by the inherent tolerances of multiple asynchronous system clocks.

To ensure reliable clocking of the audio serial port functions, the external interface clocks (e.g., BCLK, FSYNC) must be derived from the same clock source as SYSCLK.

^{1.}On the QFN package variant, all of the CS48L32 ground domains are connected to the exposed die pad.

^{2.}Total capacitance of 4.7 μF is required for the VDD_IO domain. This can be provided by dedicated VDD_IO decoupling or by other capacitors on the same power rail.

In ASP-Master Mode, the external BCLK and FSYNC signals are generated by the CS48L32 and synchronization of these signals with SYSCLK is ensured. In this case, clocking of the ASP is typically derived from the MCLK1 input, either directly or via one of the FLL circuits. Alternatively, another ASP*n* or PDM interface can be used to provide the reference clock to which the ASP master can be synchronized.

In ASP-Slave Mode, the external BCLK and FSYNC signals are generated by another device, as inputs to the CS48L32. In this case, the system clock (SYSCLK) must be generated from a source that is synchronized to the external BCLK and FSYNC inputs.

In a typical ASP-Slave Mode application, the BCLK input is selected as the clock reference, using the FLL to perform frequency shifting. The MCLK1 input can also be used, but only if it is synchronized externally to the BCLK and FSYNC inputs. The PDM interface can also provide the clock reference, via one of the FLLs, provided that the BCLK and FSYNC signals are externally synchronized with the respective clock signal.

The valid ASP clocking configurations are listed in Table 5-3 for ASP-Master and ASP-Slave Modes.

ASP Mode	Clocking Configuration
Master Mode	SYSCLK_SRC selects MCLK1 as SYSCLK source.
	SYSCLK_SRC selects FLL1 as SYSCLK source; FLL1_REFCLK_SRC selects MCLK1 as FLL1 source.
	SYSCLK_SRC selects FLL1 as SYSCLK source; FLL1_REFCLK_SRC selects a different interface (BCLK, PDM) as FLL1 source.
Slave Mode	SYSCLK_SRC selects FLL1 as SYSCLK source; FLL1_REFCLK_SRC selects BCLK as FLL1 source.
	SYSCLK_SRC selects MCLK1 as SYSCLK source, provided MCLK is externally synchronized to the BCLK input.
	SYSCLK_SRC selects FLL1 as SYSCLK source; FLL1_REFCLK_SRC selects MCLK1 as FLL1 source, provided MCLK is externally synchronized to the BCLK input.
	SYSCLK_SRC selects FLL1 as SYSCLK source; FLL1_REFCLK_SRC selects a different interface (BCLK, PDM) as FLL1 source, provided the other interface is externally synchronized to the BCLK input.

Table 5-3. ASP Clocking Configurations

In each case, the SYSCLK frequency must be a valid ratio to the FSYNC frequency; the supported clocking rates are defined by the SYSCLK FREQ and SAMPLE RATE n fields.

The valid ASP clocking configurations are shown in Fig. 5-5 to Fig. 5-11.

Fig. 5-5 shows ASP Master Mode operation, using MCLK as the clock reference.

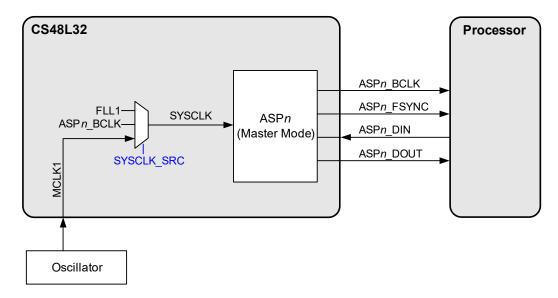


Figure 5-5. ASP Master Mode, Using MCLK as Reference

Fig. 5-6 shows ASP Master Mode operation, using MCLK as the clock reference. In this example, the FLL is used to generate the system clock, with MCLK as the reference.

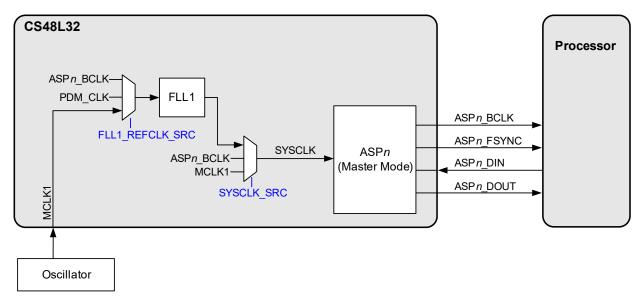


Figure 5-6. ASP Master Mode, Using MCLK and FLL as Reference

Fig. 5-7 shows ASP Master Mode operation, using a separate interface as the clock reference. In this example, the FLL is used to generate the system clock, with PDM_CLK as the reference.

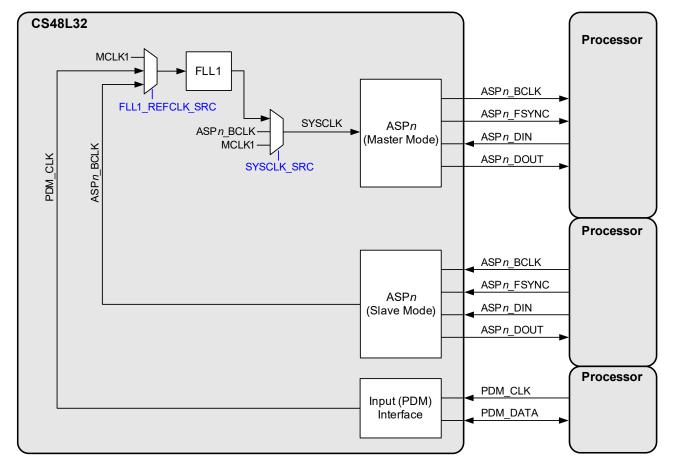


Figure 5-7. ASP Master Mode, Using Another Interface as Reference

Fig. 5-8 shows ASP Slave Mode operation, using BCLK as the clock reference. In this example, the FLL is used to generate the system clock, with BCLK as the reference.

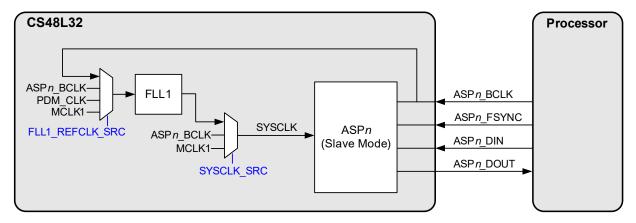


Figure 5-8. ASP Slave Mode, Using BCLK and FLL as Reference

Fig. 5-9 shows ASP Slave Mode operation, using MCLK as the clock reference. For correct operation, the MCLK input must be fully synchronized to the audio serial port.

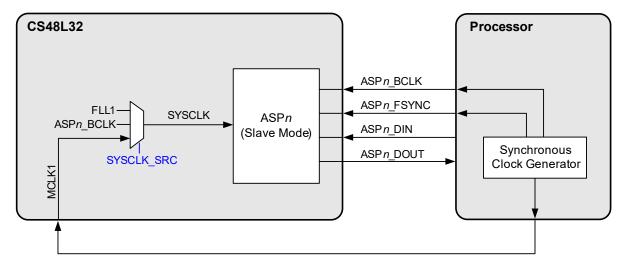


Figure 5-9. ASP Slave Mode, Using MCLK as Reference

Fig. 5-10 shows ASP Slave Mode operation, using MCLK as the clock reference. For correct operation, the MCLK input must be fully synchronized to the audio serial port. In this example, the FLL is used to generate the system clock, with MCLK as the reference.

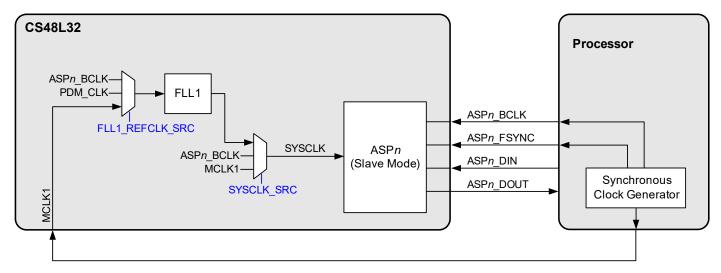


Figure 5-10. ASP Slave Mode, Using MCLK and FLL as Reference

Fig. 5-11 shows ASP Slave Mode operation, using a separate interface as the clock reference. In this example, the FLL is used to generate the system clock, with PDM_CLK as the reference. For correct operation, the PDM_CLK input must be fully synchronized to the other audio serial ports.

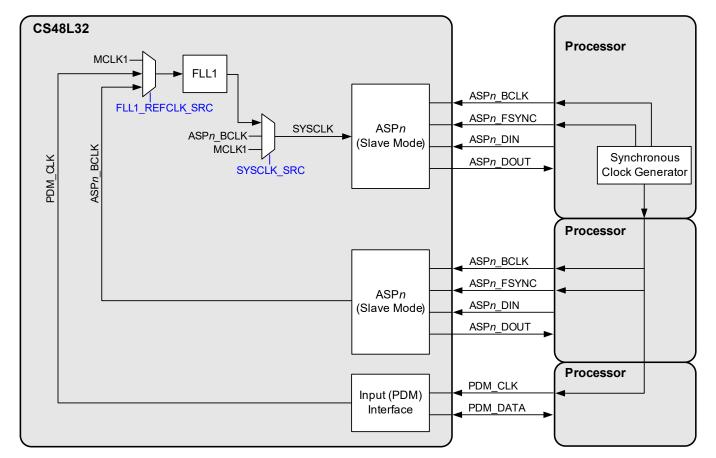


Figure 5-11. ASP Slave Mode, Using Another Interface as Reference

5.3 PCB Layout Considerations

PCB layout should be carefully considered, to ensure optimum performance of the CS48L32. Poor PCB layout degrades the performance and is a contributory factor in EMI, ground bounce, and resistive voltage losses. All external components should be placed close to the CS48L32, with current loop areas kept as small as possible. The following specific considerations should be noted:

- Placement of the charge pump capacitors is a high priority requirement—these capacitors (particularly the fly-back capacitor) must be placed as close as possible to the CS48L32.
- Decoupling capacitors should be placed as close as possible to the CS48L32. The connection between GND_A, the VDD_A decoupling capacitor, and the main system ground should be made at a single point as close as possible to the GND_A ball of the CS48L32.
- The VREF_FILT capacitor should be placed as close as possible to the CS48L32. The ground connection to the VREF_FILT capacitor should be as close as possible to the GND_A ball of the CS48L32.
- If multiple power supply rails are connected to a single supply source, it is recommended to provide separate PCB tracks connecting each rail to the supply. This configuration is also known as *star connection*.
- If power supply rails are routed between different layers of the PCB, it is recommended to use several track vias, in order to minimize resistive voltage losses.
- Differential input signal tracks should be routed as a pair, ensuring similar length/width dimensions on each track. Input signal paths should be kept away from high frequency digital signals.
- Differential output signal tracks should be routed as a pair, ensuring similar length/width dimensions on each track. The tracks should provide a low resistance path from the device output pin to the load (< 1% of the minimum load).

6 Register Map

The CS48L32 control registers are listed in Table 6-1. Note that only the register addresses described here should be accessed; writing to other addresses may result in undefined behavior. Register bits that are not documented should not be changed from the default values.

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R0	DEVID	0	0	0	0	0	0	0	0		•		DEVID	[23:16]		•	•	0x00048A32
(0x0)				•	•	•	•		DEVID	[15:0]								
R4	REVID	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x000000A0
(0x4)		0	0	0	0	0	0	0	0		AREV	ID [3:0]			MTLRE\	/ID [3:0]		
R32	SFT_RESET				SFT_RE	SET [7:0]				0	0	0	0	0	0	0	0	0x00000000
(0x20)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R52	USER_KEY_CTRL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x34)		0	0	0	0	0	0	0	0				USER_KEY	/_CTRL[7:0]			
R144	CTRL_IF_DPHA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x90)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SPI1 DPHĀ	
R3072	GPIO_STATUS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0xC00)		GP16_STS	GP15_STS	GP14_STS	GP13_STS	GP12_STS	GP11_STS	GP10_STS	GP9_STS	GP8_STS	GP7_STS	GP6_STS	GP5_STS	GP4_STS	GP3_STS	GP2_STS	GP1_STS	
R3080 (0xC08)	GPIO1_CTRL1	_	GP1_PU	_	0	0	0	0	GP1_ DRV_STR	0	0	0	0		GP1_DB1	TIME [3:0]		0xE1000001
		GP1_LVL	GP1_OP_ CFG	GP1_DB	GP1_POL	0					G	P1_FN [10	[0]					
R3084 (0xC0C)	GPIO2_CTRL1	GP2_DIR	GP2_PU	GP2_PD	0	0	0	0	GP2_ DRV_STR	0	0	0	0		GP2_DB1	TIME [3:0]		0xE1000001
, ,		GP2_LVL	GP2_OP_ CFG	GP2_DB	GP2_POL	0					G	P2_FN [10	0]					
R3088 (0xC10)	GPIO3_CTRL1	GP3_DIR	GP3_PU	GP3_PD	0	0	0	0	GP3_ DRV_STR	0	0	0	0		GP3_DB1	TIME [3:0]		0xE1000001
, ,		GP3_LVL	GP3_OP_ CFG	GP3_DB	GP3_POL	0					G	P3_FN [10	0]					
R3092 (0xC14)	GPIO4_CTRL1	GP4_DIR	GP4_PU	GP4_PD	0	0	0	0	GP4_ DRV_STR	0	0	0	0		GP4_DB1	TIME [3:0]		0xE1000001
, , ,		GP4_LVL	GP4_OP_ CFG	GP4_DB	GP4_POL	0		•	•	•	G	P4_FN [10	0]	•				1
R3096 (0xC18)	GPIO5_CTRL1	GP5_DIR	GP5_PU	GP5_PD	0	0	0	0	GP5_ DRV_STR	0	0	0	0		GP5_DBT	TIME [3:0]		0xE1000001
()		GP5_LVL	GP5_OP_ CFG	GP5_DB	GP5_POL	0				•	G	P5_FN [10	0]	•				1

Table 6-1. Register Map Definition

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R3100 (0xC1C)	GPIO6_CTRL1	GP6_DIR	GP6_PU	GP6_PD	0	0	0	0	GP6_ DRV_STR	0	0	0	0		GP6_DB	TIME [3:0]	•	0xE1000001
,		GP6_LVL	GP6_OP_ CFG	GP6_DB	GP6_POL	0					G	SP6_FN [10	:0]					
R3104 (0xC20)	GPIO7_CTRL1	GP7_DIR	GP7_PU	GP7_PD	0	0	0	0	GP7_ DRV_STR	0	0	0	0		GP7_DB	TIME [3:0]		0xE1000001
(/		GP7_LVL	GP7_OP_ CFG	GP7_DB	GP7_POL	0		•		•	G	SP7_FN [10	:0]					
R3108 (0xC24)	GPIO8_CTRL1	GP8_DIR	GP8_PU	GP8_PD	0	0	0	0	GP8_ DRV_STR	0	0	0	0		GP8_DB	TIME [3:0]		0xE1000001
(====,		GP8_LVL	GP8_OP_ CFG	GP8_DB	GP8_POL	0		•		•	G	SP8_FN [10	:0]					
R3112 (0xC28)	GPIO9_CTRL1	GP9_DIR	GP9_PU	GP9_PD	0	0	0	0	GP9_ DRV_STR	0	0	0	0		GP9_DB	FIME [3:0]		0xE1000001
(====)		GP9_LVL	GP9_OP_ CFG	GP9_DB	GP9_POL	0					G	SP9_FN [10	:0]					1
R3116 (0xC2C)	GPIO10_CTRL1	GP10_DIR	GP10_PU	GP10_PD	0	0	0	0	GP10_ DRV_STR	0	0	0	0		GP10_DB	TIME [3:0]		0xE1000001
(0,020)		GP10_LVL	GP10_ OP CFG	GP10_DB	GP10_ POL	0		ı			G	P10_FN [10	0:0]	I				
R3120 (0xC30)	GPIO11_CTRL1	GP11_DIR		GP11_PD	0	0	0	0	GP11 DRV STR	0	0	0	0		GP11_DB	TIME [3:0]		0xE1000001
(0,000)		GP11_LVL	.GP11_OP_ CFG	GP11_DB	GP11_POL	0					G	P11_FN [10	0:0]	I				
R3124 (0xC34)	GPIO12_CTRL1	GP12_DIR	GP12_PU	GP12_PD	0	0	0	0	GP12 DRV_STR	0	0	0	0		GP12_DB	TIME [3:0]		0xE1000001
(0,004)		GP12_LVL	GP12_ OP CFG	GP12_DB	GP12_ POL	0		1		1	G	P12_FN [10	0:0]	l				
R3128 (0xC38)	GPIO13_CTRL1	GP13_DIR		GP13_PD	0	0	0	0	GP13 DRV STR	0	0	0	0		GP13_DB	TIME [3:0]		0xE1000001
(0xC36)		GP13_LVL	GP13_ OP CFG	GP13_DB	GP13_ POL	0		<u> </u>	D.W_0	1	G	P13_FN [10	0:0]	<u> </u>				1
R3132	GPIO14_CTRL1	GP14_DIR		GP14_PD	0	0	0	0	GP14 DRV STR	0	0	0	0		GP14_DB	TIME [3:0]		0xE1000001
(0xC3C)		GP14_LVL	GP14_ OP CFG	GP14_DB	GP14_ POL	0			D.W_0	1	G	P14_FN [10	0:0]	I				1
R3136	GPIO15_CTRL1	GP15_DIR		GP15_PD	0	0	0	0	GP15 DRV STR	0	0	0	0		GP15_DB	TIME [3:0]		0xE1000001
(0xC40)		GP15_LVL	GP15_ OP CFG	GP15_DB	GP15_ POL	0			DIV-011V	1	G	P15_FN [10	0:0]					1
R3140	GPIO16_CTRL1	GP16_DIR		GP16_PD	0	0	0	0	GP16_ DRV_STR	0	0	0	0		GP16_DB	TIME [3:0]		0xE1000001
(0xC44)		GP16_LVL	GP16_ OP CFG	GP16_DB	GP16_ POL	0		l	BIW_OIIV	1	G	P16_FN [10	0:0]					1
R4100	SPI1_CFG_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000300
(0x1004)		0	0	0	0	0	0	1	SPI1_ MISO_ DRV_STR	SPI1_ MISO_PD	0	0	0	0	0	0	0	
R4128	OUTPUT_SYS_CLK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x1020)		OPCLK_ EN	0	0	0	0	0	0	0			PCLK_DIV [CLK_SEL		
R4144 (0x1030)	CLKGEN_PAD_CTRL	0	0	0	0	0	0	0	0	0 MCLK1_	0	0	0	0	0	0	0	0x00000000
R4148	PDM_PAD_CTRL	0	0	0	0	0	0	0	0	PD O	0	0	0	0	0	0	0	0x00000000
(0x1034)		0	0	0	0	0	0	0	0	0	0	IN2_ PDMDĀTA		0	0	0	0	
R4156	MISC_TST_CTRL1	0	0	0	0	0	0	0	0	0	0	_PD	_PD 0	0	0	0	DSP_	0x0000016D
(0x103C)																	JTAG_ MODE (K)	
		0	0	0	0	0	0	0	1	0	1	1	0	1	1	0	1	
R4164 (0x1044)	AUXPDM_CTRL	0	0	0	0	0	0	0	0	0	0	0	0	0	AUXPDM2 _CLK_PD	0	AUXPDM1 _CLK_PD	0x0000000F
		0	0	0	0	0	0	0	0	0	0	0	0	CLK	AUXPDM2 _DOUT_	CLK	DOUT	
R4188	AUXPDM_CTRL2	0	0	0	0	0	0	0	0	0	0	0	0	0	DRV_STR 0	0	0	0x00000000
(0x105C) R5120	CLOCK32K	0	0	0	0	0	0	0	0	AL 0	JXPDM2_D0	OUT_SRC[[3:0]	AL 0	JXPDM1_DO	OUT_SRC	[3:0]	0x00000002
(0x1400)	OLO ONOLIN	0	0	0	0	0	0	0	0	0	CLK_32K_ EN	. 0	0	0	0	CLK_32K	_SRC [1:0]	0.000000002
R5124 (0x1404)	SYSTEM_CLOCK1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000404
	OVOTEN OF COMO	SYSCLK_ FRAC	0	0	0	0	SYS	CLK_FREC		0	SYSCLK_ EN	0		SY	SCLK_SRC	[4 :U]		00000000
R5128 (0x1408)	SYSTEM_CLOCK2	0	0	0	0	0	SYSCL	SYS K_FREQ_S	CLK_FREQ STS [2:0]	_FINE_STS	0	0		SYSC	LK_SRC_ST	ΓS [4:0]		0x00000000
R5152 (0x1420)	SAMPLE_RATE1	0	0	0	0	0	0	0	0	0	0	0	0	0 SAMI	0 PLE_RATE_	0	0	0x00000003
R5156	SAMPLE_RATE2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000003
(0x1424) R5160	SAMPLE_RATE3	0	0	0	0	0	0	0	0	0	0	0	0	SAMI 0	PLE_RATE_ 0	2 [4:0]	0	0x00000003
(0x1428)		0	0	0	0	0	0	0	0	0	0	0			PLE_RATE_			1

					Iable		9				,	-,						
Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R5164	SAMPLE_RATE4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000003
(0x142C)		0	0	0	0	0	0	0	0	0	0	0			PLE_RATE_			
R5184 (0x1440)	SAMPLE_RATE_ STATUS1	0	0	0	0	0	0	0	0	0	0	0	0	0 SAMDLI	0 E RATE 1	0 0.01 272	0	0x00000000
R5188	SAMPLE RATE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x1444)	STATUS2	0	0	0	0	0	0	0	0	0	0	0		SAMPLI	E_RATE_2_	STS [4:0]		
R5192	SAMPLE_RATE_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x1448)	STATUS3	0	0	0	0	0	0	0	0	0	0	0			E_RATE_3_			
R5196 (0x144C)	SAMPLE_RATE_ STATUS4	0	0	0	0	0	0	0	0	0	0	0	0	0 SAMDLI	0 E_RATE_4_	0	0	0x00000000
R7168	FLL1 CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	SAIVIPLI 0	E_RATE_4_	0	0	0x00000002
(0x1C00)	I LET_OOMMOET	0	0	0	0	0	0	0	0	0	0	0	0	0	FLL1_ CTRL_ UPD	FLL1_ HOLD	FLL1_EN	CXCCCCCC2
R7172 (0x1C04)	FLL1_CONTROL2			DET_THR [3		FLL1_ LOCKDET	0	0	0	0	FLL1_ PHASEDE T		0	0	0		FCLK_DIV 1:0]	0x88203004
R7176	ELL1 CONTROL 2	F	LL1_REFC	LK_SRC [3:	0]	0	0		FLL1 LAN	IDDV [1E·U	ı	FLL1	N [9:0]					0x00000000
(0x1C08)	FLL1_CONTROL3									ETA [15:0]								UXUUUUUUU
R7180	FLL1 CONTROL4	FI	LL1 PD GA	AIN FINE [3	:0]	FLL	1 PD GAIN	N COARSE			LL1 FD G/	AIN FINE [3	3:0]	FLL	1 FD GAIN	N COARSE	[3:0]	0x21F05001
(0x1C0C)		0	1	FLL1_I	HP [1:0]	0	0	Ī		l		FLL1_FE	_DIV [9:0]					
R7328	FLL1_GPIO_CLOCK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000C04
(0x1CA0)		0	0	0	0	_ [1	PCLK_SRC I:0]	0	0				_GPCLK_DI			_	FLL1_ GPCLK_ EN	
R7220 (0x1C34)	FLL1_DIGITAL_TEST2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x000033E8
, ,	OLIA DOE DUMBA	0	0	1	1	0	FLL1_FB_ DIV_SDM_ ORD2_EN	I	1	1	1	1	0	1	0	0	0	0.0000000
R8192 (0x2000)	CHARGE_PUMP1	0	0	0	0	0	0	0	0	0	0	0	0	0	0 CP2	0 CP2	0 CP2 EN	0x00000006
, ,			U	Ů				Ů	U	-	Ů				DISCH	BYPASS	OI Z_LIV	
R9224 (0x2408)	LDO2_CTRL1	0	0	0	0	0	0	0	LDO2_V	0 SEL [5:0]	0	0	0	0	DISCH	0	0	0x000003E4
R9232	MICBIAS_CTRL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x000000E6
(0x2410)		MICB1_ EXT_CAP	0	0	0	0	0	0		MICB1_	LVL [3:0]		0	MICB1_ RATE	MICB1_ DISCH	MICB1_ BYPASS	MICB1_EN	l
R9240	MICBIAS CTRL5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000222
(0x2418)	_	0	0	0	0	0	0	MICB1C_ DISCH	MICB1C_ EN	0	0	MICB1B_ DISCH	MICB1B_ EN	0	0	MICB1A_ DISCH	MICB1A_ EN	
R10000 (0x2710)	IRQ1_CTRL_AOD	0	0	0	0	0 IRQ1	0 IRQ POL	0 IRQ OP	0	0	0	0	0	0	0	0	0	0x00004600
(0,12, 10)		0	'	U	0	MASK	IIIQ_FOL	CFG _		0	0	0	U	0	0	U	0	
R10008	AOD_PAD_CTRL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00004002
(0x2718)		0	1	0	0	0	0	0	0	0	0	0	0	0	0	RESET_ PU	RESET_ PD	
R16384	INPUT_CONTROL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x4000)	_	0	0	0	0	0	0	0	0	0	0	0	0	IN2L_EN	IN2R_EN	IN1L_EN	IN1R_EN	
R16388	INPUT_STATUS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x4004)	INDUT DATE	0	0	0	0	0	0	0	0	0	0	0	0	_	IN2R_STS		_	
R16392 (0x4008)	INPUT_RATE_ CONTROL	0	0	0 N RATE [4:		U	IN RATE	0	0	0	0	0	0	0	0	0	0	0x00000400
, ,					~1		MODE		Ů	Ů	Ů	Ů	Ů	Ů	Ů		Ů	
R16396 (0x400C)	INPUT_CONTROL2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
R16404	INPUT CONTROL3	0	0	0 IN VU	0	0	0	0	0	0	0	0	0	0	PDM_FLLCI 0	_K_SRC [3:	0]	0x00000000
(0x4014)	INPUT_CONTROLS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	UXUUUUUUU
R16416	INPUT1 CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0		N1_OSR [2:		0x00050020
(0x4020)	_	0	0	0	0	0	0		_SUP [1:0]	0	0	1	0	0	0	0	IN1_ MODE	
R16420 (0x4024)	IN1L_CONTROL1	0	0	IN1L_S I1L RATE [4	RC [1:0]	0	0	0	0	0	0	0	0	0	0 IN11 HDE	0 IN1L SIG	0 IN11 I D	0x00000000
(0,4024)			IIN	IIL_RAIE [4	F.UJ		U	U	U	U	U	U	U	U	IN IL_HPF	DET_EN		
R16424 (0x4028)	IN1L_CONTROL2	0	0	0	IN1L MUTE	0	0	0	0				_	OL [7:0]				0x10800080
D.10.150	NULD CONTROL (0	0	0	0	0	0	0	0	•			_PGA_VOL			•	0	
R16452 (0x4044)	IN1R_CONTROL1	0	0 IN	IN1R_S 1R_RATE [4	RC [1:0] 4:0]	0	0	0	0	0	0	0	0	0	0 IN1R_HPF	0 IN1R_ SIG_DET_ EN	0 IN1R_LP_ MODE	0x00000000
R16456	IN1R CONTROL2	0	0	0	IN1R	0	0	0	0		l	l	IN1R V	OL [7:0]	1		l	0x10800080
(0x4048)					MUTĒ												_	
D46400	INDUTA CONTROL 4	0	0	0	0	0	0	0	0	0	۸		R_PGA_VOI		"	No Octobro	0	0,0005000
R16480 (0x4060)	INPUT2_CONTROL1	0	0	0	0	0	0	0 IN2 PDM	0 _SUP [1:0]	0	0	0	0	0	0	N2_OSR [2:	0	0x00050020
R16484	IN2L CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x4064)				2L_RATE [4			0	0	0	0	0	0	0	0	IN2L_HPF		0	
	1						1	1	1	Ī	1	1	i	1	i	1	1	1

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R16488 (0x4068)	IN2L_CONTROL2	0	0	0	IN2L MUTE	0	0	0	0	0				OL [7:0]				0x10800000
R16516	IN2R CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x4084)	INZR_CONTROLT	U		2R_RATE [4		0	0	0	0	0	0	0	0	0	IN2R_HPF		0	0x00000000
R16520 (0x4088)	IN2R_CONTROL2	0	0	0	IN2R MUTE	0	0	0	0					OL [7:0]		,	,	0x10800000
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R16960 (0x4240)	IN_SIG_DET_ CONTROL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000001
R16964	INPUT HPF CONTROL	0	0	0	0	0	0	0	0	0	G_DET_TH 0	K [4:0]	0	0	N_SIG_DET 0	0 0	0	0x00000002
(0x4244)	INFOT_HET_CONTROL	0	0	0	0	0	0	0	0	0	0	0	0	0		HPF CUT		0x00000002
R16968	INPUT VOL CONTROL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000022
(0x4248)		0	0	0	0	0	0	0	0	0	IN_	VD_RAMP	[2:0]	0	IN_	VI_RAMP [2:0]	
R17152	AUXPDM_CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x4300)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	AUXPDM2 _EN	AUXPDM1 _EN	
R17156	AUXPDM_CONTROL2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x4304)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	AUXPDM2 MUTE	AUXPDM1	
R17160	AUXPDM1_CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	AUXPDN	_MUTE //1_FREQ	0x00010008
(0x4308)		0	0	0	0		AUXPDM1	1_SRC [3:0]		0	0	0	AUXPDM1	AUXPDM1	0	0	:0] 0	
R17168	AUXPDM2_CONTROL1	0	0	0	0	0	0	0	0	0	0	0	_TXEDGE 0	_MSTR 0	0		12_FREQ	0x00010008
(0x4310)		0	0	0	0		AUXPDM2	2_SRC [3:0]		0	0	0	AUXPDM2	AUXPDM2	0	0	0	
R24576	ASP1 ENABLES1	0	0	0	0	0	0	0	0	ASP1_	ASP1_	ASP1_	_TXEDGE ASP1_	_MSTR ASP1_	ASP1_	ASP1_	ASP1_	0x00000000
(0x6000)	_				_				_	RX8_EN	RX7_EN	RX6_EN	RX5_EN	RX4_EN	RX3_EN	RX2_EN	RX1_EN	
		0	0	0	0	0	0	0	0	ASP1_ TX8_EN	ASP1_ TX7_EN	ASP1_ TX6_EN	ASP1_ TX5_EN	ASP1_ TX4_EN	ASP1_ TX3_EN	ASP1_ TX2_EN	ASP1_ TX1_EN	
R24580 (0x6004)	ASP1_CONTROL1	0	0	0	0	0 Δ9	0 SP1 RATE [0 4·01	0	0	0	0	0	O ASP1 BCLK	0 (FREQ [5:0	0	0	0x00000028
R24584	ASP1 CONTROL2	-			ASP1 RX		_ `	7.0]		<u> </u>		l		WIDTH [7:0		<u> </u>		0x18180200
(0x6008)	VIOI 1_GOIVINGEZ	0	0	0	0	0		SP1_FMT [2	:0]	0	ASP1_ BCLK_INV	ASP1_ BCLK_ FRC	ASP1_ BCLK_ MSTR	0	ASP1_ FSYNC_ INV	ASP1_ FSYNC_ FRC	ASP1_ FSYNC_ MSTR	0.000000
R24588 (0x600C)	ASP1_CONTROL3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 ASP1_D0	0 DUT_HIZ_	0x00000002
R24592	ASP1 FRAME	0	0			ASP1 TX4	SLOT [5:0	1		0	0			ASP1 TX3	SLOT [5:0]		_ [1:0]	0x03020100
(0x6010)	CONTROL1	0	0				SLOT [5:0			0	0				SLOT [5:0]			0000020100
R24596	ASP1 FRAME	0	0				S_SLOT [5:0			0	0				_SLOT [5:0]			0x07060504
(0x6014)	CONTROL2	0	0			ASP1_TX6	S_SLOT [5:0]		0	0			ASP1_TX5	_SLOT [5:0]]		
R24608	ASP1_FRAME_	0	0				LSLOT [5:0			0	0				_SLOT [5:0			0x03020100
(0x6020)	CONTROL5	0	0				2_SLOT [5:0			0	0				_SLOT [5:0			0.07000504
R24612 (0x6024)	ASP1_FRAME_ CONTROL6	0	0				3_SLOT [5:0 3_SLOT [5:0			0	0				_SLOT [5:0 SLOT [5:0			0x07060504
R24624	ASP1 DATA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000020
(0x6030)	CONTROL1	0	0	0	0	0	0	0	0	0	0		1		WL [5:0]			0.000000020
R24640	ASP1_DATA_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000020
(0x6040)	CONTROL5	0	0	0	0	0	0	0	0	0	0				(_WL [5:0]			
R24704 (0x6080)	ASP2_ENABLES1	0	0	0	0	0	0	0	0	0	0	0	0	ASP2_ RX4_EN		ASP2_ RX2_EN		0x00000000
		0	0	0	0	0	0	0	0	0	0	0	0	ASP2_ TX4_EN	ASP2_ TX3_EN	ASP2_ TX2_EN	ASP2_ TX1_EN	
R24708	ASP2_CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000028
(0x6084)		0	0	0			SP2_RATE [4:0]		0	0				_FREQ [5:0	0]		
R24712 (0x6088)	ASP2_CONTROL2	0	0	0	ASP2_RX_ 0	WIDTH [7:0	-	SP2_FMT [2	:0]	0	ASP2_ BCLK_INV	ASP2_ BCLK	ASP2_ BCLK	WIDTH [7:0 0	ASP2_ FSYNC_	ASP2_ FSYNC_	ASP2_ FSYNC_	0x18180200
R24716	ASP2 CONTROL3	0	0	0	0	0	0	0	0	0	0	FRC 0	MSTR 0	0	INV 0	FRC 0	MSTR ⁻	0x00000002
(0x608C)	2_00NTNOE0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ASP2 DO		JA00000000
R24720 (0x6090)	ASP2_FRAME_ CONTROL1	0	0				SLOT [5:0			0	0				_SLOT [5:0]		£ 11-13	0x03020100
R24736	ASP2 FRAME	0	0				2_SLOT [5:0 SLOT [5:0			0	0				_SLOT [5:0] SLOT [5:0]			0x03020100
(0x60A0)	CONTROL5	0	0				SLOT [5:0			0	0				_SLOT [5:0]			UAU3UZU 1UU
R24752 (0x60B0)	ASP2_DATA_ CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000020
R24768	ASP2_DATA_	0	0	0	0	0	0	0	0	0	0	0	0	ASP2_1X	C_WL [5:0]	0	0	0x00000020
(0x60C0)	CONTROL5	0	0	0	0	0	0	0	0	0	0	DIAT	AMIV VO:		C_WL [5:0]			
R32896 (0x8080)	PWM1_INPUT1	PWM1_	0	0	0	0	0	0	0				1MIX_VOL M1_SRC1				0	0x00800000
		SRC1_ STS																

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R32900	PWM1_INPUT2	0	0	0	0	0	0	0	0	- 1			1MIX_VOL	_		<u> </u>	0	0x00800000
(0x8084)		PWM1_ SRC2_ STS	0	0	0	0	0	0		I			M1_SRC2				1	
R32904	PWM1 INPUT3	0	0	0	0	0	0	0	0			PWM	1MIX_VOL	3 [6:0]			0	0x00800000
(0x808x0)	5.5	PWM1_ SRC3_ STS	0	0	0	0	0	0					M1_SRC3				1 -	
R32908	PWM1_INPUT4	0	0	0	0	0	0	0	0			PWM	1MIX_VOL	4 [6:0]			0	0x00800000
(0x808C)	_	PWM1_ SRC4_ STS	0	0	0	0	0	0				PW	M1_SRC4	[8:0]				
R32912	PWM2_INPUT1	0	0	0	0	0	0	0	0				2MIX_VOL				0	0x00800000
(0x8090)		PWM2_ SRC1_ STS	0	0	0	0	0	0				PW	M2_SRC1	[8:0]				
R32916	PWM2_INPUT2	0	0	0	0	0	0	0	0				2MIX_VOL				0	0x00800000
(0x8094)		PWM2_ SRC2_ STS	0	0	0	0	0	0					M2_SRC2					
R32920	PWM2_INPUT3	0	0	0	0	0	0	0	0				2MIX_VOL				0	0x00800000
(0x8098)		PWM2_ SRC3_ STS	0	0	0	0	0	0				PW	M2_SRC3	[8:0]				
R32924	PWM2_INPUT4	0	0	0	0	0	0	0	0				2MIX_VOL				0	0x00800000
(0x809C)		PWM2_ SRC4_ STS	0	0	0	0	0	0					M2_SRC4					
R33280	ASP1TX1_INPUT1	0	0	0	0	0	0	0	0				X1MIX_VO				0	0x00800000
(0x8200)		ASP1TX1_ SRC1_ STS	0	0	0	0	0	0					ITX1_SRC	. ,				
R33284	ASP1TX1_INPUT2	0	0	0	0	0	0	0	0				X1MIX_VO				0	0x00800000
(0x8204)		ASP1TX1_ SRC2_ STS	0	0	0	0	0	0				ASP ⁻	ITX1_SRC	2 [8:0]				
R33288	ASP1TX1_INPUT3	0	0	0	0	0	0	0	0				X1MIX_VO				0	0x00800000
(0x8208)		ASP1TX1_ SRC3_ STS	0	0	0	0	0	0				ASP ⁻	ITX1_SRC	3 [8:0]				
R33292	ASP1TX1_INPUT4	0	0	0	0	0	0	0	0				X1MIX_VO				0	0x00800000
(0x820C)		ASP1TX1_ SRC4_ STS	0	0	0	0	0	0				ASP ⁻	ITX1_SRC4	1 [8:0]				
R33296	ASP1TX2_INPUT1	0	0	0	0	0	0	0	0				X2MIX_VO				0	0x00800000
(0x8210)		ASP1TX2_ SRC1_ STS	0	0	0	0	0	0					ITX2_SRC					
R33300	ASP1TX2_INPUT2	0	0	0	0	0	0	0	0				X2MIX_VO				0	0x00800000
(0x8214)		ASP1TX2_ SRC2_ STS	0	0	0	0	0	0					ITX2_SRC					
R33304 (0x8218)	ASP1TX2_INPUT3	0	0	0	0	0	0	0	0				X2MIX_VO				0	0x00800000
		ASP1TX2_ SRC3_ STS	0	0	0	0	0	0					ITX2_SRC	. ,				
(0 0040)	ASP1TX2_INPUT4	0	0	0	0	0	0	0	0				X2MIX_VO				0	0x00800000
(0x821C)		ASP1TX2_ SRC4_ STS	0	0	0	0	0	0					ITX2_SRC4					
R33312 (0x8220)	ASP1TX3_INPUT1	0	0	0	0	0	0	0	0				X3MIX_VO				0	0x00800000
		ASP1TX3_ SRC1_ STS	0	0	0	0	0	0					ITX3_SRC					
R33316	ASP1TX3_INPUT2	0	0	0	0	0	0	0	0				X3MIX_VO				0	0x00800000
(0x8224)		ASP1TX3_ SRC2_ STS	0	0	0	0	0	0					ITX3_SRC					
R33320	ASP1TX3_INPUT3	0	0	0	0	0	0	0	0				X3MIX_VO				0	0x00800000
(0x8228)		ASP1TX3_ SRC3_ STS	0	0	0	0	0	0				ASP ⁻	ITX3_SRC	3 [8:0]				
R33324	ASP1TX3_INPUT4	0	0	0	0	0	0	0	0				X3MIX_VO				0	0x00800000
(0x822C)		ASP1TX3_ SRC4_ STS	0	0	0	0	0	0				ASP.	ITX3_SRC4	1 [8:0]				
R33328	ASP1TX4_INPUT1	0	0	0	0	0	0	0	0				X4MIX_VO				0	0x00800000
(0x8230)		ASP1TX4_ SRC1_ STS	0	0	0	0	0	0				ASP.	ITX4_SRC	1 [8:0]				
R33332	ASP1TX4_INPUT2	0	0	0	0	0	0	0	0				X4MIX_VO				0	0x00800000
(0x8234)		ASP1TX4_ SRC2_ STS	0	0	0	0	0	0				ASP.	ITX4_SRC	2 [8:0]				

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2		17 1	16 0	Default
R33336	ASP1TX4_INPUT3	0	0	0	0	0	0	0	0	-			TX4MIX_VC				-	0	0x00800000
(0x8238)		ASP1TX4_ SRC3_ STS	0	0	0	0	0	0		I			1TX4_SRC						
R33340	ASP1TX4_INPUT4	0	0	0	0	0	0	0	0			ASP1T	ΓΧ4ΜΙΧ_VC	0.4 [6:0]				0	0x00800000
(0x823C)	NOI 11X4_INI 014	ASP1TX4_ SRC4_ STS	0	0	0	0	0	0					1TX4_SRC						000000000
R33344	ASP1TX5_INPUT1	0	0	0	0	0	0	0	0			ASP1T	TX5MIX_VC	DL1 [6:0]				0	0x00800000
(0x8240)		ASP1TX5_ SRC1_ STS	0	0	0	0	0	0					1TX5_SRC						
R33348	ASP1TX5_INPUT2	0	0	0	0	0	0	0	0			ASP1T	TX5MIX_VC	L2 [6:0]				0	0x00800000
(0x8244)	_	ASP1TX5_ SRC2_ STS	0	0	0	0	0	0				ASP	1TX5_SRC	2 [8:0]					
R33352	ASP1TX5_INPUT3	0	0	0	0	0	0	0	0			ASP1T	TX5MIX_VC	L3 [6:0]				0	0x00800000
(0x8248)		ASP1TX5_ SRC3_ STS	0	0	0	0	0	0				ASP	1TX5_SRC	3 [8:0]					
R33356	ASP1TX5_INPUT4	0	0	0	0	0	0	0	0				TX5MIX_VC					0	0x00800000
(0x824C)		ASP1TX5_ SRC4_ STS	0	0	0	0	0	0				ASP	1TX5_SRC	4 [8:0]					
R33360	ASP1TX6_INPUT1	0	0	0	0	0	0	0	0				TX6MIX_VC					0	0x00800000
(0x8250)		ASP1TX6_ SRC1_ STS	0	0	0	0	0	0					1TX6_SRC						
R33364	ASP1TX6_INPUT2	0	0	0	0	0	0	0	0				TX6MIX_VC					0	0x00800000
(0x8254)		ASP1TX6_ SRC2_ STS	0	0	0	0	0	0					1TX6_SRC						
R33368	ASP1TX6_INPUT3	0	0	0	0	0	0	0	0				TX6MIX_VC					0	0x00800000
(0x8258)		ASP1TX6_ SRC3_ STS	0	0	0	0	0	0					1TX6_SRC						
R33372	ASP1TX6_INPUT4	0	0	0	0	0	0	0	0				TX6MIX_VC					0	0x00800000
(0x825C)		ASP1TX6_ SRC4_ STS	0	0	0	0	0	0					1TX6_SRC						
R33376	ASP1TX7_INPUT1	0	0	0	0	0	0	0	0				TX7MIX_VC					0	0x00800000
(0x8260)		ASP1TX7_ SRC1_ STS	0	0	0	0	0	0					1TX7_SRC				_		
R33380	ASP1TX7_INPUT2	0	0	0	0	0	0	0	0			ASP1T	TX7MIX_VC	L2 [6:0]				0	0x00800000
(0x8264)		ASP1TX7_ SRC2_ STS	0	0	0	0	0	0					1TX7_SRC						
R33384 (0x8268)	ASP1TX7_INPUT3	0	0	0	0	0	0	0	0				TX7MIX_VC					0	0x00800000
		ASP1TX7_ SRC3_ STS	0	0	0	0	0	0		1			1TX7_SRC						
R33388 (0x826C)	ASP1TX7_INPUT4	0 ASP1TX7	0	0	0	0	0	0	0				TX7MIX_VC					0	0x00800000
(0.0200)		SRC4_ STS	U	U	U	0	0	0				AOF	IIA/_SKO	4 [0.0]					
R33392	ASP1TX8_INPUT1	0	0	0	0	0	0	0	0			ASP1T	TX8MIX_VC	L1 [6:0]				0	0x00800000
(0x8270)	_	ASP1TX8_ SRC1_ STS	0	0	0	0	0	0				ASP	1TX8_SRC	1 [8:0]			•		
R33396	ASP1TX8_INPUT2	0	0	0	0	0	0	0	0				LX8WIX_AC					0	0x00800000
(0x8274)		ASP1TX8_ SRC2_ STS	0	0	0	0	0	0				ASP	1TX8_SRC	2 [8:0]					
R33400	ASP1TX8_INPUT3	0	0	0	0	0	0	0	0				TX8MIX_VC	. ,				0	0x00800000
(0x8278)		ASP1TX8_ SRC3_ STS	0	0	0	0	0	0				ASP	1TX8_SRC	3 [8:0]					
R33404	ASP1TX8_INPUT4	0	0	0	0	0	0	0	0				TX8MIX_VC					0	0x00800000
(0x827C)		ASP1TX8_ SRC4_ STS	0	0	0	0	0	0				ASP	1TX8_SRC	4 [8:0]					
R33536	ASP2TX1_INPUT1	0	0	0	0	0	0	0	0				TX1MIX_VC					0	0x00800000
(0x8300)		ASP2TX1_ SRC1_ STS	0	0	0	0	0	0				ASP	2TX1_SRC	1 [8:0]					
R33540	ASP2TX1_INPUT2	0	0	0	0	0	0	0	0				FX1MIX_VC					0	0x00800000
(0x8304)		ASP2TX1_ SRC2_ STS	0	0	0	0	0	0				ASP	2TX1_SRC	2 [8:0]					
R33544	ASP2TX1_INPUT3	0	0	0	0	0	0	0	0				TX1MIX_VC					0	0x00800000
(0x8308)		ASP2TX1_ SRC3_ STS	0	0	0	0	0	0				ASP	2TX1_SRC	3 [8:0]		_			

March Marc	Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
Section Sect		ASP2TX1_INPUT4												X1MIX_VO	L4 [6:0]		1 -	0	0x00800000
Registry Registry	(0x830C)	_	SRC4	0	0	0	0	0	0				ASP2	2TX1_SRC4	4 [8:0]			•	
(MOSING)	R33552	ASP2TX2 INPUT1		0	0	0	0	0	0	0			ASP2T	X2MIX_VO	L1 [6:0]			0	0x00800000
R33566 R5P2TV2_INPUTS	(0x8310)		ASP2TX2_ SRC1_ STS	0	0	0	0	0	0		I		ASP2	TX2_SRC	1 [8:0]			1	
R3396 SPETIZ NPUT S		ASP2TX2_INPUT2	0	0	0	0	0	0	0	0			ASP2T	X2MIX_VO	L2 [6:0]			0	0x00800000
(0.66316)	(0x8314)	_	ASP2TX2_ SRC2_ STS	0	0	0	0	0	0				ASP2	2TX2_SRC	2 [8:0]			•	
Section Sect	R33560	ASP2TX2_INPUT3				0			0	0								0	0x00800000
MASSIC MASS	(0x8318)		ASP2TX2_ SRC3_ STS	0	0	0	0	0	0				ASP2	2TX2_SRC	3 [8:0]				
SPEZIX3_INPUT1		ASP2TX2_INPUT4								0								0	0x00800000
Charles Char	, ,		SRC4	0	0	0	0	0	0				ASP2	2TX2_SRC4	4 [8:0]				
SISC1 SISC		ASP2TX3_INPUT1								0								0	0x00800000
	(0x8320)		SRC1 -	0	0	0	0	0	0					_					
SRC27 SRC2 SRC357 SRC357		ASP2TX3_INPUT2								0								0	0x00800000
MASPETAL MASPETAL			SRC2_ STS	0	0	0	0	0	0					_					
R3580		ASP2TX3_INPUT3								0								0	0x00800000
R35964 R35971 R	(UX8328)		SRC3	0	0	0	0	0	0					_					
R35864 ASPZTX4_INPUT1 0 0 0 0 0 0 0 0 0		ASP2TX3_INPUT4								0								0	0x00800000
R3598 R3598 R3597X4_INPUT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			ASP2TX3_ SRC4_ STS	0	0	0	0	0	0				ASP2	2TX3_SRC4	4 [8:0]				
R3588 R3P2TX4_INPUT2		ASP2TX4_INPUT1								0								0	0x00800000
R3592 R3592 R3592TX4 NPUT3 0 0 0 0 0 0 0 0 0			ASP2TX4_ SRC1_ STS	0	0	0	0	0	0					_					
R33592	R33588	ASP2TX4_INPUT2								0			ASP2T	X4MIX_VO	L2 [6:0]			0	0x00800000
R3590 R3500 R350				·		0	0		0		<u>.</u>								
R3596 R3596 R3591 R3596 R3590 R359		ASP2TX4_INPUT3								0								0	0x00800000
ASPZTM_ SRC1 SRC1 NT1_INPUT1 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														_					
R35200		ASP2TX4_INPUT4								0								0	0x00800000
Company Comp		100011111111111111111111111111111111111	STS				-									1 0	1 ^	1 0	
R35216 (0x8990) R35216 (0x8990) R35216 (0x8980) R35216 (0x8980) R35216 (0x8980) R35232 (0x8000) R35232 (0x80000) R35232 (0x800000) R35232 (0x8000000) R35232 (0x8000000) R35232 (0x80000000) R35232 (0x800000000000000000000000000000000000		ISRC1INT1_INPUT1								0	0	0				0	0	0	0x00000000
Combined Combined	,		1_SRC1_ STS	,			-									,		, .	
R35232	(0 0000)	ISRC1INT2_INPUT1								0	0	0				0	0	0	0x00000000
R35248 (0x89B0) R35C1 NT4_INPUT1 0			2_SRC1_ STS													1	1 .	1 .	
R35248 SRC1INT4_INPUT1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R35232 (0x89A0)	ISRC1INT3_INPUT1								0	0	0				0	0	0	0x00000000
COMMINION COMM			3_SRC1_ STS																
R35264 SRC1DEC1_INPUT1 0 0 0 0 0 0 0 0 0		ISRC1INT4_INPUT1								0	0	0				0	0	0	0x00000000
R35280 RSC1DEC2_INPUT1 0 0 0 0 0 0 0 0 0			4_SRC1_ STS																
R35280 SRC1DEC2_INPUT1 0 0 0 0 0 0 0 0 0		ISRC1DEC1_INPUT1								0	0	0				0	0	0	0x00000000
COX89D0 SRC1DEC 0 0 0 0 0 0 0 0 0			1_SRC1_ 1_SRC1_ STS	0	0	0	0	0	0				ISRC1	DEC1_SR	21 [8:0]				
R35296 SRC1DEC3_INPUT1 0 0 0 0 0 0 0 0 0	R35280	ISRC1DEC2_INPUT1								0	0	0				0	0	0	0x00000000
(0x89E0) SRC1DEC 0 0 0 0 0 0 0			2_SRC1_ STS										ISRC1						
3_SRC1 STS	R35296	ISRC1DEC3_INPUT1								0	0	0				0	0	0	0x000000000
SRC1DECQ 0 0 0 0 0 0 SRC1DEC4_SRC1 [8:0] 4_SRC1 STS		ISRC1DEC4_INPUT1								0	0	0				0	0	0	0x000000000
	(UXOSFU)		ISRC1DEC 4_SRC1_ STS	0	0	0	0	0	0				ISRC1	DEC4_SR	J1 [8:0]				

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R35328	ISRC2INT1 INPUT1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x8A00)	10110211111_IIII 011	ISRC2INT 1_SRC1_ STS	0	0	0	0	0	0		-	-		2INT1_SRC	1 [8:0]				
R35344 (0x8A10)	ISRC2INT2_INPUT1	0 ISRC2INT	0	0	0	0	0	0	0	0	0	0 ISRC	0 2INT2_SRC	0	0	0	0	0x00000000
	DDOODEOU INDUITA	2_SRC1_ STS									0						1 0	0.0000000
R35392 (0x8A40)	ISRC2DEC1_INPUT1	0 ISRC2DEC 1_SRC1_ STS	0	0	0	0	0	0	0	0	0	0 ISRC	0 2DEC1_SR0	0 C1 [8:0]	0	0	0	0x00000000
R35408	ISRC2DEC2_INPUT1	STS 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x8A50)		ISRC2DEC 2_SRC1_ STS	0	0	0	0	0	0				ISRC	DEC2_SRC	C1 [8:0]	1	ı		
R35456 (0x8A80)	ISRC3INT1_INPUT1	0 ISRC3INT	0	0	0	0	0	0	0	0	0	0 ISRC	0 3INT1 SRC	0	0	0	0	0x00000000
	IODOONITO INDUITA	ISRC3INT 1_SRC1_ STS						-			•				1 0	1 ^		0.0000000
R35472 (0x8A90)	ISRC3INT2_INPUT1	0 ISRC3INT 2_SRC1_ STS	0	0	0	0	0	0	0	0	0	0 ISRC	0 3INT2_SRC	0 (1 [8:0]	0	0	0	0x00000000
R35520	ISRC3DEC1_INPUT1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x8AC0)		ISRC3DEC 1_SRC1_ STS	0	0	0	0	0	0					BDEC1_SRO					
R35536 (0x8AD0)	ISRC3DEC2_INPUT1	0 ISRC3DEC 2_SRC1_ STS	0	0	0	0	0	0	0	0	0	0 ISRC:	0 BDEC2_SRO	0 (1 [8:0]	0	0	0	0x00000000
R35712 (0x8B80)	EQ1_INPUT1	0	0	0	0	0	0	0	0				1MIX_VOL1				0	0x00800000
,		EQ1_ SRC1_ STS	0	0	0	0	0	0					Q1_SRC1 [8	•				
R35716 (0x8B84)	EQ1_INPUT2	EQ1_ SRC2_	0	0	0	0	0	0	0				1MIX_VOL2 Q1_SRC2 [8				0	0x00800000
R35720	EQ1 INPUT3	STS 0	0	0	0	0	0	0	0			FO:	1MIX_VOL3	I6·01			0	0x00800000
(0x8B88)	LQ1_INFO13	EQ1_ SRC3_ STS	0	0	0	0	0	0	Ů				Q1_SRC3 [8					000000000
R35724 (0x8B8C)	EQ1_INPUT4	0 FO1	0	0	0	0	0	0	0				1MIX_VOL4 Q1_SRC4 [8				0	0x00800000
		EQ1_ SRC4_ STS					-	-		•								
R35728 (0x8B90)	EQ2_INPUT1	0 EQ2_ SRC1_ STS	0	0	0	0	0	0	0				2MIX_VOL1 Q2_SRC1 [8				0	0x00800000
R35732 (0x8B94)	EQ2_INPUT2	0	0	0	0	0	0	0	0				2MIX_VOL2 Q2 SRC2 [8				0	0x00800000
(0.10201)		EQ2_ SRC2_ STS	U	0									Q2_5NO2 [C	5.0]				
R35736 (0x8B98)	EQ2_INPUT3	0 EQ2	0	0	0	0	0	0	0				2MIX_VOL3 Q2_SRC3 [8				0	0x00800000
		EQ2_ SRC3_ STS										_		,				
R35740 (0x8B9C)	EQ2_INPUT4	0 EQ2_	0	0	0	0	0	0	0				2MIX_VOL4 Q2_SRC4 [8				0	0x00800000
		EQ2_ SRC4_ STS								1								
R35744 (0x8BA0)	EQ3_INPUT1	EQ3_ SRC1_ STS	0	0	0	0	0	0	0				3MIX_VOL1 Q3_SRC1 [8				0	0x00800000
R35748 (0x8BA4)	EQ3_INPUT2	0	0	0	0	0	0	0	0				3MIX_VOL2				0	0x00800000
(UX8BA4)		EQ3_ SRC2_ STS	0	0	0	0	0	0				E	Q3_SRC2 [8	3:0]				
R35752 (0x8BA8)	EQ3_INPUT3	0 EQ3_ SRC3_ STS	0	0	0	0	0	0	0				3MIX_VOL3 Q3_SRC3 [8				0	0x00800000
R35756	EQ3_INPUT4	0	0	0	0	0	0	0	0			EQ:	3MIX_VOL4	[6:0]			0	0x00800000
(0x8BAC)		EQ3_ SRC4_ STS	0	0	0	0	0	0		•		E	Q3_SRC4 [8	3:0]			•	
R35760 (0x8BB0)	EQ4_INPUT1	0	0	0	0	0	0	0	0				4MIX_VOL1				0	0x00800000
(UAUDDU)		EQ4_ SRC1_ STS	0	0	0	0	0	0				E	Q4_SRC1 [8	S:U]				

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R35764	EQ4_INPUT2	0	0	0	0	0	0	0	0	- 1		_	MIX_VOL2	_			0	0x00800000
(0x8BB4)		EQ4_ SRC2_ STS	0	0	0	0	0	0		I			Q4_SRC2 [8				I.	
R35768	EQ4_INPUT3	0	0	0	0	0	0	0	0	l		EQ4	MIX_VOL3	[6:0]			0	0x00800000
(0x8BB8)		EQ4_ SRC3_ STS	0	0	0	0	0	0					Q4_SRC3 [8					
R35772	EQ4_INPUT4	0	0	0	0	0	0	0	0			EQ4	IMIX_VOL4	[6:0]			0	0x00800000
(0x8BBC)		EQ4_ SRC4_ STS	0	0	0	0	0	0		I			Q4_SRC4 [8				1	
R35840	DRC1L_INPUT1	0	0	0	0	0	0	0	0			DRC′	ILMIX_VOL	.1 [6:0]			0	0x00800000
(0x8C00)	_	DRC1L_ SRC1_ STS	0	0	0	0	0	0		l.		DR	C1L_SRC1	[8:0]			1	
R35844	DRC1L_INPUT2	0	0	0	0	0	0	0	0			DRC′	ILMIX_VOL	2 [6:0]			0	0x00800000
(0x8C04)		DRC1L_ SRC2_ STS	0	0	0	0	0	0					C1L_SRC2					
R35848	DRC1L_INPUT3	0	0	0	0	0	0	0	0				ILMIX_VOL				0	0x00800000
(0x8C08)		DRC1L_ SRC3_ STS	0	0	0	0	0	0					C1L_SRC3					
R35852	DRC1L_INPUT4	0	0	0	0	0	0	0	0				ILMIX_VOL				0	0x00800000
(0x8C0C)		DRC1L_ SRC4_ STS	0	0	0	0	0	0				DR	C1L_SRC4	[8:0]				
R35856	DRC1R_INPUT1	0	0	0	0	0	0	0	0				RMIX_VOL				0	0x00800000
(0x8C10)		DRC1R_ SRC1_ STS	0	0	0	0	0	0					C1R_SRC1					
R35860	DRC1R_INPUT2	0	0	0	0	0	0	0	0				RMIX_VOL				0	0x00800000
(0x8C14)		DRC1R_ SRC2_ STS	0	0	0	0	0	0				DRO	C1R_SRC2	[8:0]				
R35864	DRC1R_INPUT3	0	0	0	0	0	0	0	0				RMIX_VOL				0	0x00800000
(0x8C18)		DRC1R_ SRC3_ STS	0	0	0	0	0	0				DRO	C1R_SRC3	[8:0]				
R35868	DRC1R_INPUT4	0	0	0	0	0	0	0	0				RMIX_VOL				0	0x00800000
(0x8C1C)		DRC1R_ SRC4_ STS	0	0	0	0	0	0				DRO	C1R_SRC4	[8:0]				
R35872	DRC2L_INPUT1	0	0	0	0	0	0	0	0				ZLMIX_VOL				0	0x00800000
(0x8C20)		DRC2L_ SRC1_ STS	0	0	0	0	0	0				DR	C2L_SRC1	[8:0]				
R35876	DRC2L_INPUT2	0	0	0	0	0	0	0	0				LMIX_VOL				0	0x00800000
(0x8C24)		DRC2L_ SRC2_ STS	0	0	0	0	0	0					C2L_SRC2					
R35880 (0x8C28)	DRC2L_INPUT3	0	0	0	0	0	0	0	0				LMIX_VOL				0	0x00800000
, ,		DRC2L_ SRC3_ STS	0	0	0	0	0	0					C2L_SRC3					
(0 0000)	DRC2L_INPUT4	0	0	0	0	0	0	0	0				LMIX_VOL				0	0x00800000
(0X8C2C)		DRC2L_ SRC4_ STS	0	0	0	0	0	0					C2L_SRC4					
R35888 (0x8C30)	DRC2R_INPUT1	0	0	0	0	0	0	0	0				RMIX_VOL				0	0x00800000
		DRC2R_ SRC1_ STS	0	0	0	0	0	0					C2R_SRC1					
R35892	DRC2R_INPUT2	0	0	0	0	0	0	0	0				RMIX_VOL				0	0x00800000
(0x8C34)		DRC2R_ SRC2_ STS	0	0	0	0	0	0					C2R_SRC2					
R35896	DRC2R_INPUT3	0	0	0	0	0	0	0	0				RMIX_VOL				0	0x00800000
(0x8C38)		DRC2R_ SRC3_ STS	0	0	0	0	0	0				DRO	C2R_SRC3	[8:0]				
R35900	DRC2R_INPUT4	0	0	0	0	0	0	0	0				RMIX_VOL				0	0x00800000
(0x8C3C)		DRC2R_ SRC4_ STS	0	0	0	0	0	0				DRO	C2R_SRC4	[8:0]				
R35968	LHPF1_INPUT1	0	0	0	0	0	0	0	0				1MIX_VOL	• •			0	0x00800000
(0x8C80)		LHPF1_ SRC1_ STS	0	0	0	0	0	0				LH	PF1_SRC1	[8:0]				
R35972	LHPF1_INPUT2	0	0	0	0	0	0	0	0				1MIX_VOL	• •			0	0x00800000
(0x8C84)		LHPF1_ SRC2_ STS	0	0	0	0	0	0				LHF	PF1_SRC2	[8:0]				

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R35976	LHPF1 INPUT3	0	0	0	0	0	0	0	0				-1MIX VOL				0	0x00800000
(0x8C88)		LHPF1_ SRC3_ STS	0	0	0	0	0	0					PF1_SRC3				ı	
R35980 (0x8C8C)	LHPF1_INPUT4	0 LHPF1	0	0	0	0	0	0	0				F1MIX_VOL PF1 SRC4				0	0x00800000
		SRC4_ STS				_				,			_					
R35984 (0x8C90)	LHPF2_INPUT1	0 LHPF2	0	0	0	0	0	0	0				F2MIX_VOL				0	0x00800000
		SRC1_ STS								1			_					
R35988 (0x8C94)	LHPF2_INPUT2	0 LHPF2_	0	0	0	0	0	0	0				-2MIX_VOL PF2_SRC2				0	0x00800000
	LUDES MIRUTS	SRC2_ STS								1								
R35992 (0x8C98)	LHPF2_INPUT3	0 LHPF2	0	0	0	0	0	0	0				PF2 SRC3				0	0x00800000
		SRC3_ STS											_					
R35996 (0x8C9C)	LHPF2_INPUT4	0 LHPF2	0	0	0	0	0	0	0				F2MIX_VOL PF2 SRC4				0	0x00800000
		SRC4_ STS								•			_					
R36000 (0x8CA0)	LHPF3_INPUT1	0 LHPF3	0	0	0	0	0	0	0				-3MIX_VOL PF3_SRC1				0	0x00800000
(0,000,10)		SRC1_ STS	U	0	U	U	U	0				LII	PF3_SRCI	[0:0]				
R36004 (0x8CA4)	LHPF3_INPUT2	0	0	0	0	0	0	0	0				-3MIX_VOL				0	0x00800000
(0X0CA4)		SRC2_ STS	0	0	0	0	0	0				LH	PF3_SRC2	[8:0]				
R36008	LHPF3_INPUT3	0	0	0	0	0	0	0	0				-3MIX_VOL				0	0x00800000
(0x8CA8)		LHPF3_ SRC3_ STS	0	0	0	0	0	0				LH	PF3_SRC3	[8:0]				
R36012	LHPF3_INPUT4	0	0	0	0	0	0	0	0				3MIX_VOL				0	0x00800000
(0x8CAC)		LHPF3_ SRC4_ STS	0	0	0	0	0	0				LH	PF3_SRC4	[8:0]				
R36016	LHPF4_INPUT1	0	0	0	0	0	0	0	0				-4MIX_VOL				0	0x00800000
(0x8CB0)		LHPF4_ SRC1_ STS	0	0	0	0	0	0				LH	PF4_SRC1	[8:0]				
R36020	LHPF4_INPUT2	0	0	0	0	0	0	0	0				4MIX_VOL				0	0x00800000
(0x8CB4)		LHPF4_ SRC2_ STS	0	0	0	0	0	0				LH	PF4_SRC2	[8:0]				
R36024 (0x8CB8)	LHPF4_INPUT3	0	0	0	0	0	0	0	0				4MIX_VOL				0	0x00800000
(UXOCDO)		LHPF4_ SRC3_ STS	0	0	0	0	0	0				LH	PF4_SRC3	[8:0]				
R36028 (0x8CBC)	LHPF4_INPUT4	0	0	0	0	0	0	0	0				4MIX_VOL				0	0x00800000
(UXOCBC)		LHPF4_ SRC4_ STS	0	0	0	0	0	0				LH	PF4_SRC4	[8:0]				
R36864 (0x9000)	DSP1RX1_INPUT1	0	0	0	0	0	0	0	0				RX1MIX_V				0	0x00800000
(0x9000)		DSP1RX1 _SRC1_ STS	0	0	0	0	0	0				DSP	1RX1_SRC	1 [8:0]				
R36868	DSP1RX1_INPUT2	0	0	0	0	0	0	0	0				RX1MIX_V				0	0x00800000
(0x9004)		DSP1RX1 _SRC2_ STS	0	0	0	0	0	0				DSP	1RX1_SRC	2 [8:0]				
R36872	DSP1RX1_INPUT3	0	0	0	0	0	0	0	0				RX1MIX_V				0	0x00800000
(0x9008)		DSP1RX1 _SRC3_ STS	0	0	0	0	0	0				DSP	1RX1_SRC	3 [8:0]				
R36876	DSP1RX1_INPUT4	0	0	0	0	0	0	0	0				RX1MIX_V				0	0x00800000
(0x900C)		DSP1RX1 _SRC4_ STS	0	0	0	0	0	0				DSP	1RX1_SRC	4 [8:0]				
R36880	DSP1RX2_INPUT1	0	0	0	0	0	0	0	0				RX2MIX_V				0	0x00800000
(0x9010)		DSP1RX2 _SRC1_ STS	0	0	0	0	0	0				DSP	1RX2_SRC	1 [8:0]				
R36884	DSP1RX2_INPUT2	0	0	0	0	0	0	0	0				RX2MIX_V				0	0x00800000
(0x9014)		DSP1RX2 _SRC2_ STS	0	0	0	0	0	0				DSP	1RX2_SRC	2 [8:0]				
R36888	DSP1RX2_INPUT3	0	0	0	0	0	0	0	0			DSP1F	RX2MIX_V	DL3 [6:0]			0	0x00800000
(0x9018)		DSP1RX2 _SRC3_ STS	0	0	0	0	0	0				DSP	1RX2_SRC	3 [8:0]				
		313	1	1	l	l	1	1	l									1

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R36892	DSP1RX2_INPUT4	0	0	0	0	0	0	0	0	,			RX2MIX VO			<u>'</u>	0	0x00800000
(0x901C)		DSP1RX2 _SRC4_ _STS	0	0	0	0	0	0		I		DSP	1RX2_SRC	4 [8:0]			ı	
R36896 (0x9020)	DSP1RX3_INPUT1	DSP1RX3 _SRC1_ STS	0	0	0	0	0	0	0				RX3MIX_VO 1RX3_SRC	. ,			0	0x00800000
R36900 (0x9024)	DSP1RX3_INPUT2	0 DSP1RX3 _SRC2_ _STS	0	0	0	0	0	0	0				RX3MIX_VC				0	0x00800000
R36904 (0x9028)	DSP1RX3_INPUT3	0 DSP1RX3	0	0	0	0	0	0	0				RX3MIX_VC				0	0x00800000
R36908 (0x902C)	DSP1RX3_INPUT4	_SRC3_ STS 0 DSP1RX3	0	0	0	0	0	0	0				RX3MIX_VC				0	0x00800000
R36912 (0x9030)	DSP1RX4_INPUT1	_SRC4_ STS	0	0	0	0	0	0	0			DSP1F	RX4MIX_V	DL1 [6:0]			0	0x00800000
R36916	DSP1RX4 INPUT2	DSP1RX4 _SRC1_ _STS	0	0	0	0	0	0	0	I			1RX4_SRC				0	0x00800000
(0x9034)	_	DSP1RX4 _SRC2_ STS	0	0	0	0	0	0		I.		DSP	1RX4_SRC	2 [8:0]				
R36920 (0x9038)	DSP1RX4_INPUT3	DSP1RX4 _SRC3_ _STS	0	0	0	0	0	0	0				RX4MIX_VO 1RX4_SRC				0	0x00800000
R36924 (0x903C)	DSP1RX4_INPUT4	0 DSP1RX4 _SRC4_ STS	0	0	0	0	0	0	0				RX4MIX_VO 1RX4_SRC				0	0x00800000
R36928 (0x9040)	DSP1RX5_INPUT1	0 DSP1RX5 _SRC1_ STS	0	0	0	0	0	0	0				RX5MIX_VO 1RX5_SRC				0	0x00800000
R36932 (0x9044)	DSP1RX5_INPUT2	0 DSP1RX5 SRC2 STS	0	0	0	0	0	0	0				RX5MIX_VC 1RX5_SRC				0	0x00800000
R36936 (0x9048)	DSP1RX5_INPUT3	0 DSP1RX5 SRC3	0	0	0	0	0	0	0				RX5MIX_VC 1RX5_SRC				0	0x00800000
R36940 (0x904C)	DSP1RX5_INPUT4	DSP1RX5 SRC4 STS	0	0	0	0	0	0	0				RX5MIX_VC 1RX5_SRC				0	0x00800000
R36944 (0x9050)	DSP1RX6_INPUT1	DSP1RX6 SRC1 STS	0	0	0	0	0	0	0				RX6MIX_VC 1RX6_SRC				0	0x00800000
R36948 (0x9054)	DSP1RX6_INPUT2	0 DSP1RX6 _SRC2_ _STS	0	0	0	0	0	0	0				RX6MIX_VC 1RX6_SRC				0	0x00800000
R36952 (0x9058)	DSP1RX6_INPUT3	0 DSP1RX6 _SRC3_ _STS	0	0	0	0	0	0	0				RX6MIX_VC				0	0x00800000
R36956 (0x905C)	DSP1RX6_INPUT4	0 DSP1RX6 _SRC4_ _STS	0	0	0	0	0	0	0				RX6MIX_VC 1RX6_SRC				0	0x00800000
R36960 (0x9060)	DSP1RX7_INPUT1	0 DSP1RX7 _SRC1_ _STS	0	0	0	0	0	0	0				RX7MIX_VO				0	0x00800000
R36964 (0x9064)	DSP1RX7_INPUT2	0 DSP1RX7 _SRC2_ _STS	0	0	0	0	0	0	0				RX7MIX_VC 1RX7_SRC				0	0x00800000
R36968 (0x9068)	DSP1RX7_INPUT3	0 DSP1RX7 _SRC3_ _STS	0	0	0	0	0	0	0				RX7MIX_VO				0	0x00800000
R36972 (0x906C)	DSP1RX7_INPUT4	DSP1RX7 SRC4 STS	0	0	0	0	0	0	0				RX7MIX_VO				0	0x00800000

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R36976	DSP1RX8_INPUT1	0	0	0	0	0	0	0	0		ı	DSP1F	XX8MIX_VC	DL1 [6:0]	1	1	0	0x00800000
(0x9070)		DSP1RX8 _SRC1_ STS	0	0	0	0	0	0				DSP	1RX8_SRC	1 [8:0]				
R36980	DSP1RX8_INPUT2	0	0	0	0	0	0	0	0				RX8MIX_V				0	0x00800000
(0x9074)		DSP1RX8 _SRC2_ STS	0	0	0	0	0	0				DSP	1RX8_SRC	2 [8:0]				
R36984	DSP1RX8_INPUT3	0	0	0	0	0	0	0	0				X8MIX_V				0	0x00800000
(0x9078)		DSP1RX8 _SRC3_ STS	0	0	0	0	0	0					1RX8_SRC					
R36988 (0x907C)	DSP1RX8_INPUT4	0	0	0	0	0	0	0	0				RX8MIX_VC				0	0x00800000
. ,		DSP1RX8 _SRC4_ STS	0		0	0		0		1 .			1RX8_SRC					
R41984 (0xA400)	ISRC1_CONTROL1			RC1_FSL [4 RC1_FSH [4			0	0	0	0	0	0	0	0	0	0	0	0x00000000
R41988	ISRC1_CONTROL2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0xA404)	-	0	0	0	0	ISRC1_ INT4_EN	ISRC1_ INT3_EN	ISRC1_ INT2_EN	ISRC1_ INT1_EN	0	0	0	0		_	ISRC1_ DEC2_EN		
R42256 (0xA510)	ISRC2_CONTROL1			RC2_FSL [4 RC2_FSH [4			0	0	0	0	0	0	0	0	0	0	0	0x00000000
R42260	ISRC2 CONTROL2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0xA514)	_	0	0	0	0	0	0	ISRC2_ INT2_EN	ISRC2_ INT1_EN	0	0	0	0	0	0		ISRC2_ DEC1_EN	
R42528 (0xA620)	ISRC3_CONTROL1			RC3_FSL [4 RC3_FSH [4			0	0	0	0	0	0	0	0	0	0	0	0x00000000
R42532	ISRC3 CONTROL2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0xA624)	_	0	0	0	0	0	0	ISRC3_ INT2_EN	ISRC3_ INT1_EN	0	0	0	0	0	0	ISRC3_ DEC2_EN	ISRC3_ DEC1_EN	1
R43008 (0xA800)	FX_SAMPLE_RATE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
R43012	FX STATUS	0	0 1	X_RATE [4:	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0xA804)	_	0	0	0	0	-					FX_ST	S [11:0]						
R43016 (0xA808)	EQ_CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0 EQ4 EN	0 EQ3 EN	0 EQ2 EN	0 EQ1 EN	0x00000000
R43020	EQ_CONTROL2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0xA80C)		0	0	0	0	0	0	0	0	0	0	0	0	EQ4_B1_ MODE	EQ3_B1_ MODE	EQ2_B1_ MODE	EQ1_B1_ MODE	
R43024	EQ1_GAIN1	0	0	0		EQ:	1_B4_GAIN	[4:0]	L	0	0	0			_B3_GAIN			0x0C0C0C0C
(0xA810)		0	0	0			1_B2_GAIN			0	0	0			_B1_GAIN			
R43028 (0xA814)	EQ1_GAIN2	0	0	0	0	0	0	0	0	0	0	0	0	0	0 B5 GAIN	0	0	0x0000000C
R43032	EQ1 BAND1 COEFF1	U	U	U	U	U	U	U		B [15:0]	U	U		LQ	_DJ_GAIN	[4.0]		0x03FE0FC8
(0xA818)									EQ1_B1	_A [15:0]								
R43036 (0xA81C)	EQ1_BAND1_COEFF2	0	0	0	0	0	0	0		0 _C [15:0]	0	0	0	0	0	0	0	0x00000B75
R43040 (0xA820)	EQ1_BAND1_PG	0	0	0	0	0	0	0	0 FO1 B1	0 PG [15:0]	0	0	0	0	0	0	0	0x000000E0
R43044	EQ1 BAND2 COEFF1									_B [15:0]								0xF1361EC4
(0xA824)			1			,		•		_A [15:0]	1				1			
R43048 (0xA828)	EQ1_BAND2_COEFF2	0	0	0	0	0	0	0	0 EQ1_B2	0 _C [15:0]	0	0	0	0	0	0	0	0x00000409
R43052 (0xA82C)	EQ1_BAND2_PG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x000004CC
R43056	EQ1 BAND3 COEFF1									PG [15:0] B [15:0]								0xF3371C9B
(0xA830)	LQ1_B/1100_COLITT									_A [15:0]								OXI 007 100B
R43060 (0xA834)	EQ1_BAND3_COEFF2	0	0	0	0	0	0	0	0 EQ1_B3	0 _C [15:0]	0	0	0	0	0	0	0	0x0000040B
R43064	EQ1_BAND3_PG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000CBB
(0xA838)	FOA BANDA COFFEA									PG [15:0] B [15:0]								0xF7D916F8
R43068 (0xA83C)	EQ1_BAND4_COEFF1		·		1 .		1 .		EQ1_B4	_A [15:0]	·		1	1 .	1 .	1 .		
R43072 (0xA840)	EQ1_BAND4_COEFF2	0	0	0	0	0	0	0	0 EQ1_B4	0 _C [15:0]	0	0	0	0	0	0	0	0x0000040A
R43076	EQ1_BAND4_PG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00001F14
(0xA844) R43080	EQ1_BAND5_COEFF1								EQ1_B5	PG [15:0] B [15:0]								0x0563058C
(0xA848)	FOA DANDS DO									_A [15:0]								00000 (000
R43088 (0xA850)	EQ1_BAND5_PG	0	0	0	0	0	0	0	0 EQ1_B5_	0 PG [15:0]	0	0	0	0	0	0	0	0x00004000
R43092 (0xA854)	EQ2_GAIN1	0	0	0			2_B4_GAIN 2_B2_GAIN			0	0	0			B3_GAIN B1_GAIN			0x0C0C0C0C
R43096	EQ2 GAIN2	0	0	0	0	0	2_B2_GAIN	0	0	0	0	0	0	0	2_B1_GAIN	0	0	0x0000000C
(0xA858)	1	0	0	0	0	0	0	0	0	0	0	0		EQ2	B5_GAIN	[4:0]	1	1

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R43100 (0xA85C)	EQ2_BAND1_COEFF1		•	•	•	•	•			_B [15:0] A [15:0]			•					0x03FE0FC8
R43104 (0xA860)	EQ2_BAND1_COEFF2	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0x00000B75
R43108 (0xA864)	EQ2_BAND1_PG	0	0	0	0	0	0	0	0 EQ2 B1	0 PG [15:0]	0	0	0	0	0	0	0	0x000000E0
R43112 (0xA868)	EQ2_BAND2_COEFF1								EQ2_B2	B [15:0]								0xF1361EC4
R43116 (0xA86C)	EQ2_BAND2_COEFF2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000409
R43120 (0xA870)	EQ2_BAND2_PG	0	0	0	0	0	0	0	0	_C [15:0] 0 PG [15:0]	0	0	0	0	0	0	0	0x000004CC
R43124 (0xA874)	EQ2_BAND3_COEFF1								EQ2_B3	_B [15:0]								0xF3371C9B
R43128 (0xA878)	EQ2_BAND3_COEFF2	0	0	0	0	0	0	0	0	0 C [15:0]	0	0	0	0	0	0	0	0x0000040B
R43132 (0xA87C)	EQ2_BAND3_PG	0	0	0	0	0	0	0	0	0 PG [15:0]	0	0	0	0	0	0	0	0x00000CBB
R43136 (0xA880)	EQ2_BAND4_COEFF1								EQ2_B4	_B [15:0] A [15:0]								0xF7D916F8
R43140 (0xA884)	EQ2_BAND4_COEFF2	0	0	0	0	0	0	0	0	0 C [15:0]	0	0	0	0	0	0	0	0x0000040A
R43144 (0xA888)	EQ2_BAND4_PG	0	0	0	0	0	0	0	0	0 PG [15:0]	0	0	0	0	0	0	0	0x00001F14
R43148	EQ2_BAND5_COEFF1								EQ2_B5	_B [15:0]								0x0563058C
(0xA88C) R43156 (0xA894)	EQ2_BAND5_PG	0	0	0	0	0	0	0	0	_A [15:0]	0	0	0	0	0	0	0	0x00004000
R43160 (0xA898)	EQ3_GAIN1	0	0	0			3_B4_GAIN		EQ2_B5_	PG [15:0]	0	0			3_B3_GAIN			0x0C0C0C0C
R43164	EQ3_GAIN2	0	0	0	0	0	3_B2_GAIN 0	0	0	0	0	0	0	0	03_B1_GAIN	0	0	0x0000000C
(0xA89C) R43168	EQ3_BAND1_COEFF1	0	0	0	0	0	0	0		0 _B [15:0]	0	0		EC	3_B5_GAIN	[4:0]		0x03FE0FC8
(0xA8A0) R43172	EQ3_BAND1_COEFF2	0	0	0	0	0	0	0	EQ3_B1	_A [15:0] 0	0	0	0	0	0	0	0	0x00000B75
(0xA8A4) R43176	EQ3_BAND1_PG	0	0	0	0	0	0	0	0	_C [15:0]	0	0	0	0	0	0	0	0x000000E0
(0xA8A8) R43180 (0xA8AC)	EQ3_BAND2_COEFF1								EQ3_B2	PG [15:0]								0xF1361EC4
R43184	EQ3_BAND2_COEFF2	0	0	0	0	0	0	0	0	_A [15:0] 0	0	0	0	0	0	0	0	0x00000409
(0xA8B0) R43188 (0xA8B4)	EQ3_BAND2_PG	0	0	0	0	0	0	0	0	_C [15:0]	0	0	0	0	0	0	0	0x000004CC
R43192	EQ3_BAND3_COEFF1								EQ3_B3	PG [15:0] _B [15:0]								0xF3371C9B
(0xA8B8) R43196	EQ3_BAND3_COEFF2	0	0	0	0	0	0	0	EQ3_B3	_A [15:0] 0	0	0	0	0	0	0	0	0x0000040B
(0xA8BC) R43200	EQ3_BAND3_PG	0	0	0	0	0	0	0	EQ3_B3	_C [15:0]	0	0	0	0	0	0	0	0x00000CBB
(0xA8C0) R43204	EQ3_BAND4_COEFF1									PG [15:0] _B [15:0]								0xF7D916F8
(0xA8C4) R43208	EQ3 BAND4 COEFF2	0	0	0	0	0	0	0	EQ3_B4	_A [15:0]	0	0	0	0	0	0	0	0x0000040A
(0xA8C8) R43212	EQ3 BAND4 PG	0	0	0	0	0	0	0		_C [15:0]	0	0	0	0	0	0	0	0x00001F14
(0xA8CC) R43216	EQ3 BAND5 COEFF1		1	<u> </u>	1		1		EQ3_B4	PG [15:0]	l .	l .	1	· · · · · ·				0x0563058C
(0xA8D0) R43224	EQ3_BAND5_COLITI	0	0	0	0	0	0	0		_B [15:0] _A [15:0]	0	0	0	0	0	0	0	0x00004000
(0xA8D8)					I ^V	<u>l</u>		I .		PG [15:0]	l	l	I "		ļ.	I.	I v	
R43228 (0xA8DC)	EQ4_GAIN1	0	0	0	_	EQ	4_B4_GAIN 4_B2_GAIN	I [4:0]	T -	0	0	0	_	EC	04_B3_GAIN 04_B1_GAIN	[4:0]		0x0C0C0C0C
R43232 (0xA8E0)	EQ4_GAIN2	0	0	0	0	0	0	0	0	0	0	0	0	0 EC	0 04_B5_GAIN	0 [4:0]	0	0x0000000C
R43236 (0xA8E4)	EQ4_BAND1_COEFF1									_B [15:0] _A [15:0]								0x03FE0FC8
R43240 (0xA8E8)	EQ4_BAND1_COEFF2	0	0	0	0	0	0	0	0 EQ4_B1	0 _C [15:0]	0	0	0	0	0	0	0	0x00000B75
R43244 (0xA8EC)	EQ4_BAND1_PG	0	0	0	0	0	0	0	0	0 PG [15:0]	0	0	0	0	0	0	0	0x000000E0
R43248 (0xA8F0)	EQ4_BAND2_COEFF1								EQ4_B2	_B [15:0]								0xF1361EC4
	1	L							-~									1

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25	24 8	23 7	22	21	20 4	19 3	18 2	17 1	16 0	Default
R43252	EQ4_BAND2_COEFF2	0	0	0	0	0	0	9	0	0	6	5	0	0	0	0	0	0x00000409
(0xA8F4) R43256	EQ4 BAND2 PG	0	0	0	0	0	0	0	EQ4_B2	_C [15:0]	0	0	0	0	0	0	0	0x000004CC
(0xA8F8)					1					PG [15:0]			1					
R43260 (0xA8FC)	EQ4_BAND3_COEFF1								EQ4_B3 EQ4_B3	_B [15:0] _A [15:0]								0xF3371C9B
R43264 (0xA900)	EQ4_BAND3_COEFF2	0	0	0	0	0	0	0	0 FQ4_R3	0 C [15:0]	0	0	0	0	0	0	0	0x0000040B
R43268 (0xA904)	EQ4_BAND3_PG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000CBB
R43272	EQ4_BAND4_COEFF1								EQ4_B4	PG [15:0] B [15:0]								0xF7D916F8
(0xA908) R43276	EQ4 BAND4 COEFF2	0	0	0	0	0	0	0	EQ4_B4	_A [15:0] 0	0	0	0	0	0	0	0	0x0000040A
(0xA90C) R43280	EQ4 BAND4 PG	0	0	0	0	0	0	0	EQ4_B4	_C [15:0]	0	0	0	0	T 0	0	0	0x00001F14
(0xA910)		U							EQ4_B4	PG [15:0]					, o			
R43284 (0xA914)	EQ4_BAND5_COEFF1									_B [15:0] _A [15:0]								0x0563058C
R43292 (0xA91C)	EQ4_BAND5_PG	0	0	0	0	0	0	0	0 EQ4_B5	0 PG [15:0]	0	0	0	0	0	0	0	0x00004000
R43568 (0xAA30)	LHPF_CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
R43572	LHPF_CONTROL2	0	0	0	0	0	0	0	0	0	0	0	0	LHPF4_EF	LHPF3_EN	0	LHPF1_EN	0x00000000
(0xAA34)		0	0	0	0	0	0	0	0	0	0	0	0	LHPF4_ MODE	LHPF3_ MODE	LHPF2_ MODE	LHPF1_ MODE	
R43576 (0xAA38)	LHPF1_COEFF	0	0	0	0	0	0	0	0 LHPF1 C0	0 DEFF [15:0]	0	0	0	0	0	0	0	0x00000000
R43580 (0xAA3C)	LHPF2_COEFF	0	0	0	0	0	0	0	0	0 DEFF [15:0]	0	0	0	0	0	0	0	0x00000000
R43584	LHPF3_COEFF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0xAA40) R43588	LHPF4_COEFF	0	0	0	0	0	0	0	LHPF3_C0	DEFF [15:0] 0	0	0	0	0	0	0	0	0x00000000
(0xAA44) R43776	DRC1 CONTROL1	0	0	0	0	0	0	0	LHPF4_C0	DEFF [15:0] 0	0	0	0	0	0	0	0	0x00000000
(0xAB00)	Dito 1_00MintoE1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DRC1L_ EN	DRC1R_ EN	OXOGGGGGG
R43780 (0xAB04)	DRC1_CONTROL2			ATK [3:0] SIG DET R	10-N1 2MG			DCY [3:0] G DET PK	DRC1	0 DRC1	0 DRC1	0 DRC1	DRC DRC1 QR	1_MINGAII DRC1	N [2:0]		XGAIN [1:0] 0	0x49130018
(0.0 1.20 1)			DIVO1_V	SIG_DET_I	uvio [4.0]			1:0]	NG_EN	SIG_DET_ MODE	SIG_DET	KNEE2_ OP_EN	DICT_QI	ANTICLĪP				
R43784 (0xAB08)	DRC1_CONTROL3	0	0 RC1 NG N	O INGAIN 13	0	0 DRC1 NO	0 EXD [1:0]	0 DRC1 QF	0 THR (1:0)	0 DRC1_OR	0	0 DRC	0 1 HI COM	0	0 DRC	0 1 LO COM	0	0x00000018
R43788	DRC1_CONTROL4	0	0	0	.0]	DRC	1_KNEE2_I	P [4:0]		0	0	0	1_111_00111	DRC′	1_KNEE2_C	P [4:0]	1 [£.0]	0x00000000
(0xAB0C) R43796	DRC2_CONTROL1	0	0	0	0	DRC1_KN	EE1_IP [5:0	0	0	0	0	0	0	DRC ²	1_KNEE1_C	0 [4:0]	0	0x00000000
(0xAB14)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	DRC2L_ EN	DRC2R_ EN	
R43800 (0xAB18)	DRC2_CONTROL2			ATK [3:0] SIG DET R	RMS [4:0]			DCY [3:0] G_DET_PK	DRC2	0 DRC2	0 DRC2	0 DRC2	DRC2_QR	2_MINGAII DRC2	N [2:0]	DRC2_MA	XGAIN [1:0] 0	0x49130018
,			_	-	,			1:0]	NG_EN	SIG_DET_ MODE	SIG_DĒT	KNEE2_ OP_EN		ANTICLĪP				
R43804 (0xAB1C)	DRC2_CONTROL3	0 D	0 RC2_NG_N	0 /INGAIN [3:	0	0 DRC2_NO	0 G_EXP [1:0]	0 DRC2_QF	0 R_THR [1:0]	0 DRC2_QR	0 R_DCY [1:0]	0 DRC	0 2_HI_COM	0 P [2:0]	0 DRC	0 2_LO_COM	0 P [2:0]	0x00000018
R43808 (0xAB20)	DRC2_CONTROL4	0	0	0			2_KNEE2_I EE1 IP [5:0			0	0	0			2_KNEE2_C			0x00000000
R45056	TONE_GENERATOR1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0xB000)				NE_RATE [0	_	FSET [1:0]	0	0	TONE2_ OVD	TONE1_ OVD	0	0	TONE2_ EN	TONE1_ EN	
R45060 (0xB004)	TONE_GENERATOR2	0	0	0	0	0	0	0	TONE1_	LVL [15:0]			TONE1_L	VL [23:16]				0x00100000
R45064 (0xB008)	TONE_GENERATOR3	0	0	0	0	0	0	0	0 TONE2	LVL [15:0]			TONE2_L	VL [23:16]				0x00100000
R46080 (0xB400)	Comfort_Noise_ Generator	0	0	0 CEN BAT	0	0	0	0	0 0	0 0	0	0	0	0	0 E GEN GA	0	0	0x00000000
R47104		0		_GEN_RAT			0	0	0	0	0	NOISE_ GEN_EN	0			IN [4:0]	0	0,0000000
(0xB800)	US_CONTROL	0	0	0	0	0	0	US2_DET_ EN	US1_DET_ EN	. 0	0	0	0	0	0	US2_EN	US1_EN	0x00000000
R47108	US1_CONTROL			S1_RATE [4	•		0	0	0	0	0	0	0	0	0	0	0	0x00002020
(0xB804) R47112	US1_DET_CONTROL	0	0 US1	US1_G/ DET_DCY	AIN [1:0] ' [2:0]			RC [3:0] _HOLD [3:0]]	0		31_FREQ [2 _NUM [3:0]	2:0]	0	0 US1	0 _DET_THR	0 [2:0]	0x00000000
(0xB808)		0	0	0	0	0	0	0	0	0	US1_DET	_LPF_CUT :0]	US1_DET_ LPF	. 0	0	0	0]
R47124 (0xB814)	US2_CONTROL	0	0	S2_RATE [4	i:0] AIN [1:0]		0 US2 S	0 RC [3:0]	0	0	0	0 62 FREQ [2	0	0	0	0	0	0x00002020
/	l .	J		002_0	[1.0]	1	302_0					: \L\C\(\)[4	/]	U	U			l

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R47128	US2_DET_CONTROL	0		_DET_DCY				_HOLD [3:0]				_NUM [3:0]		0		_DET_THR		0x00000000
(0xB818)		0	0	0	0	0	0	0	0	0	US2_DET [1	LPF_CUT :0]	US2_DET_ LPF	0	0	0	0	
R49152 (0xC000)	PWM_Drive_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x0000)			PV	VM_RATE [4	1:0]		PWN	M_CLK_SEL	L [2:0]	0	0	PWM2_ OVD	PWM1_ OVD	0	0	PWM2_EN	PWM1_EN	
R49156 (0xC004)	PWM_Drive_2	0	0	0	0	0	0	0	0	0	0	0	0 LVL [9:0]	0	0	0	0	0x00000100
R49160	PWM_Drive_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000100
(0xC008)		0	0	0	0	0	0		1	1			LVL [9:0]					
R94220 (0x1700C)	DSP1_XM_SRAM_ IBUS_SETUP_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1_	0x00000000
, ,				Ů	-	-		Ů		·	Ů			Ů		XM_ SRAM_ IBUS_E_ PWD_N	XM_ SRAM_ IBUS_O_ PWD_N	
R94224 (0x17010)	DSP1_XM_SRAM_ IBUS_SETUP_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1	0x00000000
		V		v	V			U			0			U		XM SRAM IBUS E	XM SRAM IBUS O EXT_N_1	
R94228 (0x17014)	DSP1_XM_SRAM_ IBUS_SETUP_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0	0x00000000
(0.0017-014)	B00_0E101_2	0	0	0	U	0	U	U	U	U	U	U	U	U	U	SRAM_ IBUS E	DSP1_ XM_ SRAM_ IBUS_O_ EXT_N_2	
R94232 (0x17018)	DSP1_XM_SRAM_ IBUS_SETUP_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1	0x00000000
,					-	-	·			·						XM_ SRAM_ IBUS_E_ EXT_N_3	XM_ SRAM_ IBUS_O_ EXT_N_3	
R94236 (0x1701C)	DSP1_XM_SRAM_ IBUS_SETUP_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1	0x00000000
(0.000)	.500_02101_1	U	0	0	U	0	0	0				0	0	0	0	SRAM_ IBUS E	XM SRAM IBUS_O EXT_N_4	
R94240	DSP1_XM_SRAM_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x17020)	IBUS_SETUP_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ XM_ SRAM_ IBUS_E_ EXT_N_5	DSP1_ XM_ SRAM_ IBUS_O_ EXT_N_5	
R94244	DSP1_XM_SRAM_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x17024)	IBUS_SETUP_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0		DSP1_ XM_ SRAM_ IBUS_O_ EXT_N_6	
R94248 (0x17028)	DSP1_XM_SRAM_ IBUS_SETUP_7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1_	0 DSP1_	0x00000000
, ,			Ů		-		·		Ů	Ů				Ů	Ů	XM SRAM IBUS E EXT_N_7	XM_ SRAM_ IBUS_O_ EXT_N_7	
	DSP1_XM_SRAM_ IBUS_SETUP_8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSD1	0 DSP1_	0x00000000
					-		·			·							XM SRAM IBUS_O_ EXT_N_8	
R94256 (0x17030)	DSP1_XM_SRAM_ IBUS_SETUP_9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1	0x00000000
		Ů		Ů	Š	J	·	J	Ů	ľ					Ů	DSP1_ XM_ SRAM_ IBUS_E_ EXT_N_9	SRAM_ IBUS O	
R94260 (0x17034)	DSP1_XM_SRAM_ IBUS_SETUP_10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0X17034)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ XM_ SRAM_ IBUS_E_ EXT_N_10	DSP1_ XM_ SRAM_ IBUS_O_ EXT_N_10	
R94264 (0x17038)	DSP1_XM_SRAM_ IBUS_SETUP_11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	EXT_N_11		
R94268 (0x1703C)	DSP1_XM_SRAM_ IBUS_SETUP_12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1	0x00000000
(3		J	J	J	9		J					U	U	U	0	SRAM_ IBUS E	XM SRAM IBUS O EXT_N_12	

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R94272	DSP1_XM_SRAM_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
	IBUS_SETUP_13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EXT_N_13	DSP1_ XM_ SRAM_ IBUS_O_ BEXT_N_13	
R94276 (0x17044)	DSP1_XM_SRAM_ IBUS_SETUP_14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
		0	0	0	0	0	0	0	0	0	0	0	0	0	0		DSP1_ XM_ SRAM_ IBUS_O_ EXT_N_14	
R94280 (0x17048)	DSP1_XM_SRAM_ IBUS_SETUP_15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
				·							·	0				EXT_N_15	DSP1_ XM_ SRAM_ IBUS_O_ SEXT_N_15	
R94284 (0x1704C)	DSP1_XM_SRAM_ IBUS_SETUP_16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0	0x00000000
				·							·					XM_ SRAM_ IBUS_E_ EXT_N_16	DSP1_ XM_ SRAM_ IBUS_O_ SEXT_N_16	
R94288 (0x17050)	DSP1_XM_SRAM_ IBUS_SETUP_17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	$EXT_{\bar{N}}_{\bar{1}}$	DSP1_ XM_ SRAM_ IBUS_O_ ZEXT_N_17	000000000
R94292 (0x17054)	DSP1_XM_SRAM_ IBUS_SETUP_18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1	0x00000000
				·												XM_ SRAM_ IBUS_E_ EXT_N_18	XM_ SRAM_ IBUS_O_ BEXT_N_18	
R94296 (0x17058)	DSP1_XM_SRAM_ IBUS_SETUP_19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1_	0 DSP1	0x00000000
				·										Ů		XM SRAM IBUS E EXT_N_19	XM_ SRAM_ IBUS_O_ EXT_N_19	
R94300 (0x1705C)	DSP1_XM_SRAM_ IBUS_SETUP_20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0X1703C)	IBU3_3E1UF_2U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ XM_ SRAM_ IBUS_E_ EXT_N_20	DSP1_ XM_ SRAM_ IBUS_O_ EXT_N_20	
R94304	DSP1_XM_SRAM_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
	IBUS_SETUP_21	0	0	0	0	0	0	0	0	0	0	0	0	0	0		DSP1_ XM_ SRAM_ IBUS_O_ IEXT_N_21	
R94308 (0x17064)	DSP1_XM_SRAM_ IBUS_SETUP_22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1_	0x00000000
				·												XM_ SRAM_ IBUS_E_ EXT_N_22	XM_ SRAM_ IBUS_O_ PEXT_N_22	
	DSP1_XM_SRAM_ IBUS_SETUP_23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1_	0x00000000
																	XM SRAM IBUS O BEXT_N_23	
R94316 (0x1706C)	DSP1_XM_SRAM_ IBUS_SETUP_24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_	0 DSP1	0x00000000
			•	·												XM_ SRAM_ IBUS_E_ EXT_N_24	XM_ SRAM_ IBUS_O_ EXT_N_24	
R94320 (0x17070)	DSP1_YM_SRAM_ IBUS_SETUP_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ YM_ SRAM_ IBUS_E_ PWD_N	DSP1_ YM_ SRAM_ IBUS_O_ PWD_N	
R94324 (0x17074)	DSP1_YM_SRAM_ IBUS_SETUP_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1_	0 DSP1	0x00000000
				·												YM_ SRAM_ IBUS_E_ EXT_N_1	YM_ SRAM_ IBUS_O_ EXT_N_1	
R94328 (0x17078)	DSP1_YM_SRAM_ IBUS_SETUP_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0///10/0)	.555_51.01_2	U	0	U	U	U	0	0	0	0	0	0	U	0	0	DSP1_ YM_ SRAM_ IBUS_E_ EXT_N_2	DSP1_ YM_ SRAM_ IBUS_O_ EXT_N_2	

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R94332	DSP1_YM_SRAM_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x1707C)	IBUS_SETUP_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ YM_ SRAM_ IBUS_E_ EXT_N_3		
R94336 (0x17080)	DSP1_YM_SRAM_ IBUS_SETUP_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ YM_ SRAM_ IBUS_E_ EXT_N_4	DSP1_ YM_ SRAM_ IBUS_O_ EXT_N_4	0x00000000
R94340 (0x17084)	DSP1_YM_SRAM_ IBUS_SETUP_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ YM_ SRAM_ IBUS_E_ EXT_N_5	DSP1_ YM_ SRAM_ IBUS_O_	0x00000000
R94344	DSP1 YM SRAM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EXT_N_5	EXT_N_5	0x00000000
(0x17088)	IBUS_SETUP_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ YM_ SRAM_ IBUS_E_ EXT_N_6	DSP1_ YM_ SRAM	000000000
R94348	DSP1_YM_SRAM_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x1708C)	IBUS_SETUP_7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ YM_ SRAM_ IBUS_E_ EXT_N_7		
R94352 (0x17090)	DSP1_YM_SRAM_ IBUS_SETUP_8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1	0x00000000
,								-								YM_ SRAM_ IBUS_E_ EXT_N_8	YM_ SRAM_ IBUS_O_ EXT_N_8	
R94356 (0x17094)	DSP1_PM_SRAM_ IBUS_SETUP_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1	0x00000000
(Ü	Ů	Ü	Ů	o o	v	V		o	o	Ů	Ů	U	Ů	PM_ SRAM_ IBUS_E_ PWD_N	PM_ SRAM_ IBUS_O_ PWD_N	
R94360 (0x17098)	DSP1_PM_SRAM_ IBUS_SETUP_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
,		0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ PM_ SRAM_ IBUS_E_ EXT_N_1	DSP1_ PM_ SRAM_ IBUS_O_ EXT_N_1	
R94364	DSP1_PM_SRAM_ IBUS_SETUP_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x1709C)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ PM_ SRAM_ IBUS_E_ EXT_N_2		
R94368 (0x170A0)	DSP1_PM_SRAM_ IBUS_SETUP_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	DSP1_	0x00000000
,								-								PM_ SRAM_ IBUS_E_ EXT_N_3	PM_ SRAM_ IBUS_O_ EXT_N_3	
	DSP1_PM_SRAM_ IBUS_SETUP_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1_	0x00000000
, ,																PM_ SRAM_ IBUS_E_ EXT_N_4	PM_ SRAM_ IBUS_O_ EXT_N_4	
R94376 (0x170A8)	DSP1_PM_SRAM_ IBUS_SETUP_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1	0 DSP1	0x00000000
								-								PM_ SRAM_ IBUS_E_ EXT_N_5		
R94380 (0x170AC)	DSP1_PM_SRAM_ IBUS_SETUP_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP1_	0 DSP1	0x00000000
								-								PM_ SRAM_ IBUS_E_ EXT_N_6	DSP1_ PM_ SRAM_ IBUS_O_ EXT_N_6	
R94384 (0x170B0)	DSP1_PM_SRAM_ IBUS_SETUP_7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_	0 DSP1_	0x00000000
																PM_ SRAM_ IBUS_E_ EXT_N_7	PM_ SRAM_ IBUS_O_ EXT_N_7	
R98308 (0x18004)	IRQ1_STATUS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 IRQ1 STS	0x00000000
R98320	IRQ1_EINT_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x18010)		0	0	0	0	0	SYSCLK_ ERR_ EINT1	0	SYSCLK_ FAIL_ EINT1	0	0	0	0	0	0	0	0	

Register	Name	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Default
R98324	IRQ1_EINT_2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	0	0	0x00000000
(0x18014)	INQI_EINI_Z	0	0	0	0	0	0	0	0	0	0	0	0	BOOT_ DONE_ EINT1	0	0	0	0x00000000
R98336 (0x18020)	IRQ1_EINT_5	0	0	0	0	0	0	US2_SIG_ DET_ FALL_ EINT1	US2_SIG_ DET_ RISE_ EINT1	US1_SIG_ DET_ FALL_ EINT1	US1_SIG_ DET_ RISE_ EINT1	INPUTS SIG_DET_ FALL_ EINT1	INPUTS_ SIG_DET_ RISE_ EINT1	DRC2 SIG_DET_ FALL_ EINT1 0	DRC2 SIG_DET_ RISE_ EINT1	DRC1_ SIG_DET_ FALL_ EINT1 0	DRC1_ SIG_DET_ RISE_ EINT1	0x00000000
R98340	IRQ1_EINT_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x18024)		0	0	0	0	0	0	0	FLL1_ REF_ LOST_ EINT1	0	0	0	0	0	0	FLL1_ LOCK_ FALL_ EINT1	FLL1_ LOCK_ RISE_ EINT1	
R98344 (0x18028)	IRQ1_EINT_7	0	0	0	0	0	0	0	0	0	0	DSP1_ MPU_ ERR_ EINT1	DSP1_ WDT_ EXPIRE_ EINT1	DSP1_ IHB_ERR_ EINT1	DSP1_ AHB_ SYS_ ERR_ EINT1	DSP1_ AHB_ PACK_ ERR_ EINT1	DSP1_ NMI_ERR_ EINT1	0x00000000
R98352	IRQ1_EINT_9	0 MCU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x18030)	IRQ1_EIN1_9	HWERR IRQ OUT EINT1	0	0	0	0	0	0	0	0	0	0	0					0x0000000
R98360	IRQ1_EINT_11	GPIO8	GPIO8_	GPIO7_	GPI07_	GPIO6_		GPIO5_	GPIO5_		GPIO4_		GPIO3_	DSP1_ IRQ3_ EINT1 GPIO2_	DSP1_ IRQ2_ EINT1 GPIO2_	DSP1_ IRQ1_ EINT1	DSP1_ IRQ0_ EINT1	0x00000000
(0x18038)	II.OKI_LINI_II	FALL_ EINT1	RISE_ EINT1	FALL_ EINT1	RISE_ EINT1	FALL_ EINT1	GPIO6_ RISE_ EINT1	FALL_ EINT1	RISE_ EINT1	GPIO4_ FALL_ EINT1	RISE_ EINT1	GPIO3_ FALL_ EINT1	RISE_ EINT1	FALL_ EINT1	RISE_ EINT1	GPIO1_ FALL_ EINT1	GPIO1_ RISE_ EINT1	
R98364 (0x1803C)	IRQ1_EINT_12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ FULL_ EINT1	0x00000000
R98368	IRQ1_EINT_13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x18040)	INGI_LINI_IS	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ TRB_ STACK_ ERR_ EINT1	0	DSP1_ MIPS_ PROF1_ DONE_ EINT1	DSP1_ MIPS_ PROF0_ DONE_ EINT1	0.000000000
R98376	IRQ1_EINT_15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x18048)		0	0	0	0	0	0	0	0	0	0	0	0	SPI2 STALLING _EINT1	SPI2 BLOCK_ EINT1	SPI2_ OVERCLO CKED_ EINT1	SPI2_ DONE_ EINT1	
R98384 (0x18050)	IRQ1_EINT_17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	TIMER2_ EINT1	TIMER1_ EINT1	0x00000000
R98388	IRQ1_EINT_18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x18054)		0	0	0	0	0	0	0	0	0	0	0	0	TIMER_ ALM1_ CH4_ EINT1	TIMER_ ALM1_ CH3_ EINT1	TIMER_ ALM1_ CH2_ EINT1	TIMER_ ALM1_ CH1_ EINT1	
R98448 (0x18090)	IRQ1_STS_1	0	0	0	0	0	9 SYSCLK_ ERR_ STS1	0	0	0	0	0	0	0	0	0	0	0x00000000
R98452 (0x18094)	IRQ1_STS_2	0	0	0	0	0	0	0	0	0	0	0	0	0 BOOT_ DONE_ STS1	0	0	0	0x00000000
R98464 (0x180A0)	IRQ1_STS_5	0	0	0	0	0	0		US2_SIG_ DET_STS1		US1_SIG_ DET_STS1	0	INPUTS_ SIG_DET_ STS1	0	DRC2_ SIG_DET_ STS1	0	DRC1_ SIG_DET_ STS1	0x00000000
R98468	IRQ1_STS_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x180A4)		0	0	0	0	0	0	0	FLL1_ REF_ LOST_ STS1	0	0	0	0	0	0	0	FLL1_ LOCK_ STS1	. 000000000
R98472 (0x180A8)	IRQ1_STS_7	0	0	0	0	0	0	0	0	0	0	0	DSP1_ WDT_ EXPIRE_ STS1	0	DSP1_ AHB_ SYS_ ERR_ STS1	DSP1_ AHB_ PACK_ ERR_ STS1	DSP1_ NMI_ERR_ STS1	0x00000000
D00400	IDO4 CTC C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	000000000
R98480 (0x180B0)	IRQ1_STS_9	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ IRQ3_ STS1	DSP1_ IRQ2_ STS1	DSP1_ IRQ1_ STS1	DSP1_ IRQ0_ STS1	0x00000000
R98488 (0x180B8)	IRQ1_STS_11	0	GPIO8_ STS1	0	GPIO7_ STS1	0	GPIO6_ STS1	0	GPIO5_ STS1	0	GPIO4_ STS1_	0	GPIO3_ STS1	0	GPIO2_ STS1	0	GPIO1_ STS1_	0x00000000
R98492 (0x180BC)	IRQ1_STS_12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ FULL_ STS1	0x00000000
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R98504	IRQ1_STS_15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x180C8)		0	0	0	0	0	0	0	0	0	0	0	0	SPI2_ STALLING _STS1	SPI2 BLOCK_ STS1	SPI2_ OVERCLO CKED_ STS1	SPI2_ DONE_ STS1	
R98576 (0x18110)	IRQ1_MASK_1	0	0	0	0	0	0 SYSCLK_ ERR_ MASK1	1	0 SYSCLK_ FAIL_ MASK1	0	0	0	0	0	0	0	0	0x00000700
R98580 (0x18114)	IRQ1_MASK_2	0	0	0	0	0	0	0	0	0	0	0	0	0 BOOT_ DONE_ MASK1	0	0	0	0x00000004
R98592 (0x18120)	IRQ1_MASK_5	0	0	0	0	0	0	US2_SIG_ DET_ FALL_ MASK1	US2_SIG_ DET_ RISE_ MASK1	US1_SIG_ DET_ FALL_ MASK1	US1_SIG_ DET_ RISE_ MASK1	INPUTS_ SIG_DET_ FALL_ MASK1	INPUTS_ SIG_DET_ RISE_ MASK1	DRC2_ SIG_DET_ FALL_ MASK1	DRC2 SIG_DET_ RISE_ MASK1	DRC1_ SIG_DET_ FALL_ MASK1	DRC1_ SIG_DET_ RISE_ MASK1	0x03FF0000
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R98596 (0x18124)	IRQ1_MASK_6	0	0	0	0	0	0	0	FLL1_ REF_ LOST_ MASK1	0	0	0	0	0	0	FLL1_ LOCK_ FALL_ MASK1	FLL1_ LOCK_ RISE_ MASK1	0x00000103
R98600 (0x18128)	IRQ1_MASK_7	0	0	0	0	0	0	0	0	0	0	DSP1_ MPU_ ERR_ MASK1	DSP1_ WDT_ EXPIRE_ MASK1	DSP1 IHB_ERR MASK1	DSP1_ AHB_ SYS_ ERR_ MASK1	DSP1_ AHB_ PACK_ ERR_ MASK1	DSP1_ NMI_ERR_ MASK1	0x003F0000
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R98608 (0x18130)	IRQ1_MASK_9	MCU_ HWERR_ IRQ_OUT_ MASK1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0xFF00000F
		0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ IRQ3_ MASK1	DSP1_ IRQ2_ MASK1	DSP1_ IRQ1_ MASK1	DSP1_ IRQ0_ MASK1	
R98616 (0x18138)	IRQ1_MASK_11	GPIO8_ FALL_ MASK1	GPIO8_ RISE_ MASK1	GPIO7_ FALL_ MASK1	GPIO7_ RISE_ MASK1	GPIO6_ FALL_ MASK1	GPIO6_ RISE_ MASK1	GPIO5_ FALL_ MASK1	GPIO5_ RISE_ MASK1	GPIO4_ FALL_ MASK1	GPIO4_ RISE_ MASK1	GPIO3_ FALL_ MASK1	GPIO3_ RISE_ MASK1	GPIO2_ FALL_ MASK1	GPIO2_ RISE_ MASK1	GPIO1_ FALL_ MASK1	GPIO1_ RISE_ MASK1	0xFFFF0000
R98620 (0x1813C)	IRQ1_MASK_12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EVENT1_ FULL_ MASK1	0x00010000
R98624	IRQ1_MASK_13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000000B
(0x18140)	11.01.01.10	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ TRB_ STACK_ ERR_ MASK1	0	DSP1_ MIPS_ PROF1_ DONE_ MASK1	DSP1_ MIPS_ PROF0_ DONE_ MASK1	000000000
R98632	IRQ1_MASK_15	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0x0700000F
(0x18148)		0	0	0	0	0	0	0	0	0	0	0	0	SPI2_ STALLING _MASK1	MASK1	SPI2_ OVERCLO CKED_ MASK1	SPI2_ DONE_ MASK1	
R98640 (0x18150)	IRQ1_MASK_17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	TIMER2_ MASK1	TIMER1_ MASK1	0x00030000
R98644	IRQ1_MASK_18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000000F
(0x18154)		0	0	0	0	0	0	0	0	0	0	0	0	TIMER_ ALM1_ CH4_ MASK1	TIMER_ ALM1_ CH3_ MASK1	TIMER_ ALM1_ CH2_ MASK1	TIMER_ ALM1_ CH1_ MASK1	
R98872 (0x18238)	IRQ1_EDGE_11	GPIO8_ FALL_ EDGE1	GPIO8_ RISE_ EDGE1	GPIO7_ FALL_ EDGE1	GPIO7_ RISE_ EDGE1	GPIO6_ FALL_ EDGE1	GPIO6_ RISE_ EDGE1	GPIO5_ FALL_ EDGE1	GPIO5_ RISE_ EDGE1	GPIO4_ FALL_ EDGE1	GPIO4_ RISE_ EDGE1	GPIO3_ FALL_ EDGE1	GPIO3_ RISE_ EDGE1	GPIO2_ FALL_ EDGE1	GPIO2_ RISE_ EDGE1	GPIO1_ FALL_ EDGE1	GPIO1_ RISE_ EDGE1	0xFFFF0000
	SPI2_SPI_CLK_ CONFIG	0	0	0	0	0	0	0	0	0	0	0	0 SP	0 I2 SCLK F	0 REQ SEL I	0	0	0x00000000
R1067020 (0x10480C)	SPI2_SPI_CLK_ STATUS1	0	0	0	0	0	0	0 SPI	0	0 REQ_STS [0	0	0	0	0	0	0	0x00000000
R1067024 (0x104810)	SPI2_SPI_CONFIG1	0	0	0	0	0 0	PI2_SS_IDI 0	_E_DUR [3:	0] SPI2_ 3WIRE	0	0 SPI2 DPHĀ	0 SPI2 CPHĀ	0 SPI2 CPOL	SF 0	PI2_SS_DEI SPI	_ay_dur [: 2_ss_sel		0x00000000
R1067028 (0x104814)	SPI2_SPI_CONFIG2	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0	0	0	0	0 SPI2_SS_ FRC	0x00000000
R1067044 (0x104824)	SPI2_SPI_CONFIG3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SPI2_ STALL_EN	0x00000000
R1067048 (0x104828)	SPI2_SPI_CONFIG5	0	0 0	0	0	0	0 SWITCH [5:0	0	0	0	0	0	0	0	0	0	0 D_WIDTH	0x00000000
,		U	U					וי		U	U					3F1Z_310 [1	:0]	
R1067052 (0x10482C)	SPI2_SPI_CONFIG6	0	0	0	PI2_DUMN 0	IY_DRV [7: 0	0]	0	0	0	0	S	PI2_DUMM SF		:0] Y_CYCLE [5	5:0]		0x00000000

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R1067056 (0x104830)	SPI2_SPI_CONFIG7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 SPI2	0x00000000
,		0	0	0	0		0	0	0	0	0			0	0	0	DMA_ĒN	
R1067264 (0x104900)	SPI2_SPI_STATUS1	0	0	0	0	0	0	0	0	0	0	0	0	0 SPI2	0 SPI2	0 SPI2	0 SPI2	0x00000000
														DMA_ BLOCK_ DONE_ STS	DMA_ ERR_STS	ABORT	DONE_ STS	
R1067520 (0x104A00)	SPI2_CONFIG1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0.04700)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SPI2_ START	
R1067524 (0x104A04)	SPI2_CONFIG2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O SPI2_ ABORT	0x00000000
R1067528 (0x104A08)	SPI2_CONFIG3	0	0	0	0	0	0	0	0	0	0	0	0	0	SPI2_ 0	WORD_SIZ	ZE [2:0] CMD [1:0]	0x00000000
R1067532	SPI2_CONFIG4	0	0	0	0	0	0	0	0	0	0	U			NGTH [21:1	_	JIVID [1.0]	0x00000000
(0x104A0C)	ODIO CONFICE	0	0	0	0	0	0	0	SPI2_TX_LE	NGTH [15:	0]	1		DIA DV LE	NOTH 124.	161		000000000
R1067552 (0x104A20)	SPI2_CONFIG5	U	U	U	U	U	U		SPI2_RX_LE				3	PIZ_RX_LE	ENGTH [21:1	10]		0x00000000
R1067556 (0x104A24)	SPI2_CONFIG6	0	0	0	0	0	0	0	0	0	0	0	0 SPI2	0 TX BLOC	0 CK LENGTH	0	0	0x00000000
R1067560	SPI2_CONFIG7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x104A28)	CDI2 CONFICE	0	0	0	0	0	0	0	0	0	0	0	SPI2		CK_LENGTH		1 0	0,,000,000
R1067564 (0x104A2C)	SPI2_CONFIG8	0	0	0	0	0	0	0	0	0	0	0	SPI2_RX_	0	0	0	0 SPI2_TX_	0x00000000
R1067568	SPI2_DMA_CONFIG1	0	0	0	0	0	0	0	SPI2_	0	0	0	DONE 0	0	0	0	DONE 0	0x00000000
(0x104A30)		0		0		0		0	DMA_ PREAMBL E_EN	0			ODIO DI	MA DDEAL	MDIE LENG	2711 (5.0)		
R1067776	SPI2 STATUS1	0	0	0	0	0	0	0	0	0	0	0	5PIZ_DI	MA_PREAI	MBLE_LENG	0 H [5:0]	0	0x00000001
(0x104B00)	o	0	0	0	0	0	0	0	SPI2 BUSY_ STS	0	0	0	SPI2 RX REQUEST	0	0	0	SPI2_TX_ REQUEST	
R1067780 (0x104B04)	SPI2_STATUS2	0	0	0	0	0	0	0	0 I2 TX BYTE	0	0		SPI2	2_TX_BYTE	_COUNT [2	21:16]	1	0x00000000
R1067784 (0x104B08)	SPI2_STATUS3	0	0	0	0	0	0	0	0 2_RX_BYTE	0	0		SPI2	RX_BYTE	E_COUNT [2	21:16]		0x00000000
R1067792 (0x104B10)	SPI2_TX_DMA_START_ ADDR	0	0	0	0	0		SPI2	TX DMA S			IA_START_	_ADDR [26:	16]				0x00000000
R1067796 (0x104B14)	SPI2_TX_DMA_ADDR	0	0	0	0	0		_	PI2 TX DM/	_	SPI2_TX	_DMA_ADI	DR [26:16]					0x00000000
R1067804 (0x104B1C)	SPI2_RX_DMA_START_ ADDR	0	0	0	0	0		SPI2 I	RX DMA S			MA_START_	_ADDR [26:	16]				0x00000000
R1067808 (0x104B20)	SPI2_RX_DMA_ADDR	0	0	0	0	0		-	PI2 RX DM/	A ANNR [1		_DMA_AD	DR [26:16]					0x00000000
R1067820	SPI2_TX_DMA_ BLOCK_LEN	0	0	0	0	0	0	0	0	0	0		SPI2_	TX_DMA_B	BLOCK_LEN	[21:16]		0x00000000
R1067824	SPI2_TX_DMA_BUF_	0	0	0	0	0	0	5PIZ_ 0	_TX_DMA_B 0	0	0	0	0	0	0	0	0	0x00000000
	BLOCK_NUM SPI2 TX DMA BUF	0	0	0	0	0	0	0	0	0	0	SPI2_TX	C_DMA_BUI	F_BLOCK_ 0	NUM [7:0] 0	0	0	0x00000000
(0x104B34)	BLOCK_CUR	0	0	0	0	0	0	0	0				C_DMA_BUI	F_BLOCK_			1 -	
R1067832 (0x104B38)	SPI2_RX_DMA_ BLOCK_LEN	0	0	0	0	0	0	0 SPI2	RX_DMA_B	0 BLOCK_LEN	0 N [15:0]		SPI2_F	RX_DMA_E	BLOCK_LEN	[21:16]		0x00000000
R1067836 (0x104B3C)	SPI2_RX_DMA_BUF_ BLOCK_NUM	0	0	0	0	0	0	0	0	0	0	0 SPI2 RX	0 K DMA BUI	0 F BLOCK	0 NUM [7:0]	0	0	0x00000000
R1067840	SPI2_RX_DMA_BUF_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
,	BLOCK_CUR SPI2 TX DATA	0	0	0	0	0	0	0	O SPI2 TX D	ATA [31·16	1	SPI2_R	K_DMA_BU	F_BLOCK_	CUR [7:0]			0x00000000
(0x104C00)									SPI2_TX_I	DATA [15:0]								
R1068544 (0x104E00)	SPI2_RX_DATA								SPI2_RX_E		•							0x00000000
	EVENTLOG1_ CONTROL	0	0	0	0	0	0	0	0 EVENTLO	0	0	0	0		VENTLOG1		3:0] EVENTLO	0x00000000
,			-			_			G1_DSP_ CLK_EN					0	0	G1_RST	G1_EN	0.0000000
R1114120 (0x110008)	EVENTLOG1_TIMER_ SEL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 EVENTLO	0x00000000
,		·			-	-											G1_ TIMER_ SEL	
	EVENTLOG1_FIFO_ CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0 EVEI	0 NTLOG1 FI	0 FO WMAR	0 K [3:0]	0x00000001
	1	•			-				<u> </u>				1 -				F - 1-2	

Register	Name	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Default
	EVENTLOG1 FIFO	15	14	13	12	11	10	9	8	7	6	5	4	3	2 EVENTLO	1 EVENTLO	0 EVENTLO	0x00000000
(0x11001C)						E) (E		IFO WETE	10.01					5.45	G1_FULL	WMARK_ STS	G1_NOT_ EMPTY	
R1114176	EVENTLOG1 CH	0	0	0	0	0 EVE	NILOG1_F	IFO_WPTR 0	[3:0]	0	0	0	0	0	NTLOG1_F	IFO_RPTR	0	0x00000000
(0x110040)	EVENTLOG1_CH_ ENABLE1	EVENTLO G1_CH16_ EN	EVENTLO G1_CH15_ EN	EVENTLO G1_CH14_ EN	EVENTLO G1_CH13_ EN	EVENTLO G1_CH12_ EN	EVENTLO G1_CH11_ EN	EVENTLO G1_CH10_ EN	EVENTLO G1_CH9_ EN	EVENTLO G1_CH8_ EN	EVENTLO G1_CH7_ EN	EVENTLO G1_CH6_ EN	EVENTLO G1_CH5_ EN	EVENTLO G1_CH4_ EN	EVENTLO G1_CH3_ EN	EVENTLO G1_CH2_ EN	EVENTLO G1_CH1_ EN	
R1114184 (0x110048)	EVENTLOG1_EVENT_ STATUS	0 EVENTLO G1_CH16_ STS	0 EVENTLO G1_CH15_ STS	0 EVENTLO G1_CH14_ STS	0 EVENTLO G1_CH13_ STS	0 EVENTLO G1_CH12_ STS	0 EVENTLO G1_CH11_ STS	0 EVENTLO G1_CH10_ STS	0 EVENTLO G1_CH9_ STS	0 EVENTLO G1_CH8_ STS	0 EVENTLO G1_CH7_ STS	0 EVENTLO G1_CH6_ STS	0 EVENTLO G1_CH5_ STS	0 EVENTLO G1_CH4_ STS	0 EVENTLO G1_CH3_ STS	0 EVENTLO G1_CH2_ STS	0 EVENTLO G1_CH1_ STS	0x00000000
R1114240 (0x110080)	EVENTLOG1_CH1_ DEFINE	0	0 EVENTLO G1_CH1_ POL	0	0	0	0	0	0	0	0	0	0 CH1_SRC [0	0	0	0	0x00000000
	EVENTLOG1_CH2_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x110084)		EVENTLO G1_CH2_ DB	EVENTLO G1_CH2_ POL	EVENTLO G1_CH2_ FILT	0	0	0				EV	ENTLOG1_	CH2_SRC [9:0]				
R1114248 (0x110088)	EVENTLOG1_CH3_ DEFINE	0 EVENTLO G1_CH3_ DB	0 EVENTLO G1_CH3_ POL	0 EVENTLO G1_CH3_ FILT	0	0	0	0	0	0	0 EV	0 ENTLOG1_	0 CH3_SRC [9:0]	0	0	0	0x00000000
R1114252 (0x11008C)	EVENTLOG1_CH4_ DEFINE	0 EVENTLO G1_CH4_ DB	0 EVENTLO G1_CH4_ POL	0 EVENTLO G1_CH4_ FILT	0	0	0	0	0	0	0 EV	0 ENTLOG1_	0 CH4_SRC [9:0]	0	0	0	0x00000000
R1114256 (0x110090)	EVENTLOG1_CH5_ DEFINE	0 EVENTLO	0 EVENTLO G1_CH5_ POL	0 EVENTLO	0	0	0	0	0	0	0 EV	0 ENTLOG1_	0 CH5_SRC [9:0]	0	0	0	0x00000000
R1114260 (0x110094)	EVENTLOG1_CH6_ DEFINE	0 EVENTLO	0 EVENTLO G1_CH6_ POL	0 EVENTLO	0	0	0	0	0	0	0 EV	0 ENTLOG1_	0 CH6_SRC [0 9:0]	0	0	0	0x00000000
R1114264 (0x110098)	EVENTLOG1_CH7_ DEFINE	0 EVENTLO	0 EVENTLO G1_CH7_ POL	0 EVENTLO	0	0	0	0	0	0	0 EV	0 ENTLOG1_	0 CH7_SRC [9:0]	0	0	0	0x00000000
R1114268 (0x11009C)	EVENTLOG1_CH8_ DEFINE	0 EVENTLO G1_CH8_ DB	0 EVENTLO	0 EVENTLO G1_CH8_ FILT	0	0	0	0	0	0	0 EV	0 ENTLOG1_	0 CH8_SRC [0 9:0]	0	0	0	0x00000000
R1114272 (0x1100A0)	EVENTLOG1_CH9_ DEFINE	0 EVENTLO	0 EVENTLO G1_CH9_ POL	0 EVENTLO	0	0	0	0	0	0	0 EV	0 ENTLOG1_	0 CH9_SRC [0 9:0]	0	0	0	0x00000000
R1114276 (0x1100A4)	EVENTLOG1_CH10_ DEFINE	0 EVENTLO G1_CH10	0 EVENTLO G1 CH10	0 EVENTLO G1_CH10	0	0	0	0	0	0	0 EVE	0 ENTLOG1_0	0 CH10_SRC	0 [9:0]	0	0	0	0x00000000
	EVENTLOG1_CH11_ DEFINE	G1 CH11	POL 0 EVENTLO G1_CH11_	G1_CH11_	0	0	0	0	0	0	0 EVE	0 ENTLOG1_0	0 CH11_SRC	0 [9:0]	0	0	0	0x00000000
R1114284 (0x1100AC)	EVENTLOG1_CH12_ DEFINE	DB 0 EVENTLO G1 CH12	POL 0 EVENTLO G1_CH12	FILT 0 EVENTLO G1 CH12	0	0	0	0	0	0	0 EVE	0 ENTLOG1_0	0 CH12_SRC	0	0	0	0	0x00000000
R1114288 (0x1100B0)	EVENTLOG1_CH13_ DEFINE	DB 0	POL 0 EVENTLO G1_CH13_	FILT 0	0	0	0	0	0	0	0 EVE	0 ENTLOG1_0	0 CH13_SRC	0	0	0	0	0x00000000
R1114292 (0x1100B4)	EVENTLOG1_CH14_ DEFINE	DB 0	POL 0 EVENTLO	FILT 0	0	0	0	0	0	0	0 EVE	0 ENTLOG1 (0 CH14 SRC	0	0	0	0	0x00000000
	EVENTLOG1_CH15_	G1_CH14_ DB 0	G1_CH14_ POL 0	G1_CH14_ FILT 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x1100B8) R1114300	EVENTLOG1 CH16	EVENTLO G1_CH15_ DB 0	EVENTLO G1_CH15_ POL 0	EVENTLO G1_CH15_ FILT 0	0	0	0	0	0	0	EVE 0	ENTLOG1_0	CH15_SRC	[9:0]	0	0	0	0x00000000
(0x1100BC)	DEFINE	EVENTLO G1_CH16_ DB	EVENTLO G1_CH16_ POL	EVENTLO G1_CH16_ FILT	0	0	0		-		EVE	NTLOG1_0	CH16_SRC	[9:0]		-		
R1114368 (0x110100)	EVENTLOG1_FIFO0_ READ	0	0	0	0 EVENTLO G1_ FIFO0_ POL	0	0	0	0	0	0 EV	0 'ENTLOG1_	0 _FIFO0_ID [9:0]	0	0	0	0x00000000
R1114372 (0x110104)	EVENTLOG1_FIFO0_ TIME		1		· · · · ·		1			FO0_TIME IFO0_TIME								0x00000000

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
	EVENTLOG1_FIFO1_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x110108)	READ	0	0	0	EVENTLO G1_ FIFO1_ POL	0	0				EV	ENTLOG1	_FIFO1_ID [9:0]				
R1114380 (0x11010C)	EVENTLOG1_FIFO1_ TIME			•						FO1_TIME (IFO1_TIME								0x00000000
R1114384 (0x110110)	EVENTLOG1_FIFO2_ READ	0	0	0	0 EVENTLO G1_ FIFO2_ POL	0	0	0	0	0	0 EV	0 ENTLOG1_	0 _FIFO2_ID [9:0]	0	0	0	0x00000000
R1114388 (0x110114)	EVENTLOG1_FIFO2_ TIME			l .	1					FO2_TIME IFO2_TIME								0x00000000
R1114392 (0x110118)	EVENTLOG1_FIFO3_ READ	0	0	0	0 EVENTLO G1_ FIFO3_	0	0	0	0	0	0	0 ENTLOG1_	0 _FIFO3_ID [9:0]	0	0	0	0x00000000
R1114396 (0x11011C)	EVENTLOG1_FIFO3_				POL					FO3_TIME [0x00000000
R1114400	EVENTLOG1 FIFO4	0	0	0	0	0	0	0 EVEN	IILOG1_F	IFO3_TIME 0	[15:0] 0	0	0	0	0	0	0	0x00000000
(0x110120)		0	0	0	EVENTLO G1_ FIFO4_ POL	0	0				EV	ENTLOG1_	FIFO4_ID [9:0]				
R1114404 (0x110124)	EVENTLOG1_FIFO4_ TIME									FO4_TIME [IFO4_TIME								0x00000000
R1114408 (0x110128)	EVENTLOG1_FIFO5_ READ	0	0	0	0 EVENTLO	0	0	0	0	0	0 EV	0 ENTLOG1	0 FIFO5 ID [9:01	0	0	0	0x00000000
Patricia	EVENTI OOA EIEOE	_		·	G1_ FIFO5_ POL		, and the second	5) (5)	TI 004 FI	505 TIME !				,				0.0000000
(0x11012C)	EVENTLOG1_FIFO5_ TIME									FO5_TIME [IFO5_TIME								0x00000000
R1114416 (0x110130)	EVENTLOG1_FIFO6_ READ	0	0	0	0 EVENTLO G1_ FIFO6_ POL	0	0	0	0	0	0 EV	0 ENTLOG1	0 _FIFO6_ID [9:0]	0	0	0	0x00000000
R1114420 (0x110134)	EVENTLOG1_FIFO6_				102					FO6_TIME								0x00000000
	EVENTI OG1 FIFO7	0	0	0	0 EVENTLO G1_ FIFO7	0	0	0	0	0	0	0 'ENTLOG1_	0 FIFO7_ID [9:0]	0	0	0	0x00000000
D1114429	EVENTLOG1 FIFO7				POL_			E\/EN	TLOG1 FI	FO7 TIME	31-161							0x00000000
(0x11013C)	TIME		1					EVEN	TLOG1_F	IFO7_TIME	[15:0]				1	_		
R1114432 (0x110140)	EVENTLOG1_FIFO8_ READ	0	0	0	0 EVENTLO G1_ FIFO8_ POL	0	0	0	0	0	0 EV	0 'ENTLOG1_	0 _FIFO8_ID [9:0]	0	0	0	0x00000000
R1114436 (0x110144)	EVENTLOG1_FIFO8_ TIME			I						FO8_TIME IFO8_TIME								0x00000000
R1114440	EVENTLOG1 FIFO9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x110148)		0	0	0	EVENTLO G1_ FIFO9_ POL	0	0					ENTLOG1_	FIFO9_ID [9:0]				
R1114444 (0x11014C)	EVENTLOG1_FIFO9_ TIME									FO9_TIME IFO9_TIME								0x00000000
R1114448 (0x110150)	EVENTLOG1_FIFO10_ READ	0	0	0	0 EVENTLO G1_ FIFO10_ POL	0	0	0	0	0	0 EV	0 ENTLOG1_	0 FIFO10_ID	0 [9:0]	0	0	0	0x00000000
	EVENTLOG1_FIFO10_				FOL					O10_TIME								0x00000000
(0x110154) R1114456	EVENTLOG1_FIFO11_	0	0	0	0	0	0	EVEN 0	TLOG1_FI 0	FO10_TIME 0	0	0	0	0	0	0	0	0x00000000
(0x110158)	READ	0	0	0	EVENTLO G1_ FIFO11_ POL	0	0				EV	ENTLOG1_	FIFO11_ID	[9:0]				
R1114460 (0x11015C)	EVENTLOG1_FIFO11_ TIME									FO11_TIME								0x00000000
R1114464 (0x110160)	EVENTLOG1_FIFO12_ READ	0	0	0	0 EVENTLO	0	0	0	0	0	0	0 ENTLOG1	0 FIFO12_ID	0	0	0	0	0x00000000
		U	U	U	G1_ FIFO12_ POL	U	U					LIVILUUI_	ו ורטוצ_וט	[ʊ.U]				
R1114468 (0x110164)	EVENTLOG1_FIFO12_ TIME									FO12_TIME FO12_TIME								0x00000000

Register	Name	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Default
R1114472	EVENTLOG1 FIFO13	15	14 0	13	12	11 0	10	9	8	7	6	5	4	3	2	0	0	0x00000000
(0x110168)	READ — —	0	0	0	EVENTLO G1_ FIFO13_ POL	0	0	Ů		ı			FIFO13_ID] °	1 0		_0x00000000
R1114476 (0x11016C)	EVENTLOG1_FIFO13_ TIME						1			O13_TIME FO13_TIME								0x00000000
	EVENTLOG1_FIFO14_	0	0	0	0 EVENTLO G1_ FIFO14_ POL	0	0	0	0	0	0	0 ENTLOG1_	0 FIFO14_ID	[9:0]	0	0	0	0x00000000
R1114484 (0x110174)	EVENTLOG1_FIFO14_ TIME	1			1					O14_TIME FO14_TIME								0x00000000
(0x110178)		0	0	0	0 EVENTLO G1_ FIFO15_ POL	0	0	0	0	0		0 ENTLOG1_	0 FIFO15_ID	0 [9:0]	0	0	0	0x00000000
R1114492 (0x11017C)	EVENTLOG1_FIFO15_ TIME									O15_TIME FO15_TIME								0x00000000
R1130496 (0x114000)	ALM1_TIMER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 ALM1_ TIMER_ SRC	0x00000000
R1130528 (0x114020)	ALM1_CONFIG1	0	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH1_ CONT	0	0	0 ALM1_C MOD	0 H1_TRIG_ E [1:0]	0x00000000
R1130532 (0x114024)	ALM1_CTRL1	0 ALM1_ CH1_UPD	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH1_ STOP	0	0	0	0 ALM1_ CH1_ START	0x00000000
R1130536 (0x114028)	ALM1_TRIG_VAL1									RIG_VAL [3 ⁻ RIG_VAL [1								0x00000000
R1130540 (0x11402C)	ALM1_PULSE_DUR1							ALM ⁻	1_CH1_PU	LSE_DUR (31:16]							0x00000000
R1130544 (0x114030)	ALM1_STATUS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH1_STS	0x00000000
R1130560 (0x114040)	ALM1_CONFIG2	0	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH2_ CONT	0	0	0 ALM1_C MOD	0 H2_TRIG_ IE [1:0]	0x00000000
R1130564 (0x114044)	ALM1_CTRL2	0 ALM1_ CH2_UPD	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH2_ STOP	0	0	0	0 ALM1_ CH2_ START	0x00000000
R1130568 (0x114048)	ALM1_TRIG_VAL2						•			RIG_VAL [3 ⁻ RIG_VAL [1		•	•	•	•		•	0x00000000
R1130572 (0x11404C)	ALM1_PULSE_DUR2							ALM ⁻	1_CH2_PU	LSE_DUR (31:16]							0x00000000
R1130576 (0x114050)	ALM1_STATUS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 ALM1	0x00000000
R1130592 (0x114060)	ALM1_CONFIG3	0	0	0	0 0	0	0 0	0	0 0	0 0	0 0	0	0 ALM1_	0 0	0 0	0 ALM1 C	CH2_STS 0 H3 TRIG	0x00000000
R1130596 (0x114064)	ALM1_CTRL3	0 ALM1	0	0	0	0	0	0	0	0	0	0	CH3_ CONT 0 ALM1_	0	0	0 0	0 ALM1_	0x00000000
,	TRIO VIVIO	CH3_UPD	U	U	U	0	U					U	CH3 STOP	U	U	U	CH3_ START	
(0x114068)	ALM1_TRIG_VAL3							AL	M1_CH3_T	RIG_VAL [3 [.] RIG_VAL [1	5:0]							0x00000000
R1130604 (0x11406C)	ALM1_PULSE_DUR3							ALM	1_CH3_PL	LSE_DUR (LSE_DUR	15:0]							0x00000000
R1130608 (0x114070)	ALM1_STATUS3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH3_STS	0x00000000
R1130624 (0x114080)	ALM1_CONFIG4	0	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH4_ CONT	0	0	0 ALM1_C MOD	0 H4_TRIG_ E [1:0]	0x00000000
R1130628 (0x114084)	ALM1_CTRL4	0 ALM1_ CH4_UPD	0	0	0	0	0	0	0	0	0	0	0 ALM1_ CH4_ STOP	0	0	0	0 ALM1_ CH4_ START	0x00000000
R1130632 (0x114088)	ALM1_TRIG_VAL4				<u> </u>		1			RIG_VAL [3:		ı	1		1	1	1	0x00000000
R1130636	ALM1_PULSE_DUR4							ALM:	1_CH4_PU	RIG_VAL [1 LSE_DUR [:	31:16]							0x00000000
(0x11408C)								ALM	1_CH4_PL	LSE_DUR	15:0]							

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R1130640	ALM1_STATUS4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x114090)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ALM1_ CH4_STS	
R1146880 (0x118000)	TIMER1_CONTROL	0	0	0	0	0	0	0	0	0	0	TIMER1_ CONT	TIMER1_ DIR	0	TIMER	1_PRESCA	LE [2:0]	0x00000000
(* *****)		0	TIMER1	_REFCLK_	DIV [2:0]	0	TIMER1_	REFCLK_F [2:0]	REQ_SEL	0	0	0	0	TIN	MER1_REF	CLK_SRC [[3:0]	
	TIMER1_COUNT_ PRESET		-			l		TIM		COUNT [3		-	l	I				0x00000000
R1146892	TIMER1_START_AND_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x11800C)	STOP	0	0	0	0	0	0	0	0	0	0	0	TIMER1_ STOP	0	0	0	TIMER1_ START	
R1146896 (0x118010)	TIMER1_STATUS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 TIMER1	0x00000000
(0x110010)		0	U	0	0	U	U	U	0	U	U	U	U	0	0	U	RUNNING _STS	
	TIMER1_COUNT_ READBACK			I	l	ı	1			COUNT [3			l	l		l	0.0	0x00000000
R1146904	TIMER1_DSP_CLOCK_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(CONFIG TIMER1 DSP CLOCK	0	0	0	0	0	0	TIMER 0	1_DSPCLK	FREQ_SE	L [15:0]	0	0	0	0	0	0	0x00000000
	STATUS	U	U	U	U	U			_	FREQ_ST	-	U	U	U	U	U	U	0x00000000
R1147136 (0x118100)	TIMER2_CONTROL	0	0	0	0	0	0	0	0	0	0	TIMER2_ CONT	TIMER2_ DIR	0	TIMER	2_PRESCA	LE [2:0]	0x00000000
,		0	TIMER2	_REFCLK_	DIV [2:0]	0	TIMER2_	REFCLK_F [2:0]	REQ_SEL	0	0	0	0	TIN	MER2_REF	CLK_SRC [[3:0]	
	TIMER2_COUNT_ PRESET									COUNT [3								0x00000000
R1147148	TIMER2 START AND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x11810C)	STOP	0	0	0	0	0	0	0	0	0	0	0	TIMER2_ STOP	0	0	0	TIMER2_ START	
R1147152 (0x118110)	TIMER2_STATUS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 TIMER2	0x00000000
(0)												0					RUNNING _STS	
	TIMER2_COUNT_ READBACK			I	I	ı	1			COUNT [3			ı	I		I	-	0x00000000
R1147160	TIMER2_DSP_CLOCK_	0	0	0	0	0	0	0	0	_COUNT [1	0	0	0	0	0	0	0	0x00000000
(0x118118) R1147164	CONFIG TIMER2 DSP CLOCK	0	0	0	0	0	0	TIMER 0	2_DSPCLK 0	_FREQ_SE	L [15:0]	0	0	0	0	0	0	0x00000000
(0x11811C)	STATUS				l			TIMER	2_DSPCLK	_FREQ_ST	S [15:0]			l		l		
R1167360 (0x11D000)	DSPGP_STATUS1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x00000000
R1167424	DSPGP SET1 MASK1	_STS	_STS	_STS	_STS	_STS	STS 0	_STS	STS 0	STS 0	STS 0	0x0000FFFF						
(0x11D040)	BOT OF _OETT_WAORT		DSPGP15 SET1		DSPGP13 SET1		DSPGP11_ SET1	DSPGP10 SET1		DSPGP8_ SET1	DSPGP7_ SET1	DSPGP6_ SET1	DSPGP5_ SET1	DSPGP4_ SET1	DSPGP3_ SET1	DSPGP2_ SET1	DSPGP1_ SET1	0000001111
D4407440	DODOD OFTA	MASK	MASK	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK	MASK 0	MASK	MASK 0	MASK 0	00000				
	DSPGP_SET1_ DIRECTION1		0 DSPGP15	DSPGP14	DSPGP13	DSPGP12	DSPGP11	DSPGP10	DSPGP9_	DSPGP8	DSPGP7	DSPGP6	DSPGP5	DSPGP4	DSPGP3_	DSPGP2	DSPGP1	0x0000FFFF
		SET1 DIR	_SET1_ DIR	_SET1_ DIR	_SET1_ DIR	_SET1_ DIR	SET1_DIR	DIR _	_	_	_	_	_	_	SET1_DIR	_	_	
R1167456 (0x11D060)	DSPGP_SET1_LEVEL1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3_ SET1_LVL	0 DSPGP2	0 DSPGP1	0x00000000
		SET1 LVL	_SET1_ LVL	_SET1_ LVL	_SET1_ LVL	LVL	SET1_LVL	SET1_ LVL	SET1_LVL	SET1_LVL	SET1_LVL	SET1_LVL	SET1_LVL	SET1_LVL	.SET1_LVL	SET1_LVL	. SET1_LVL	
R1167488 (0x11D080)	DSPGP_SET2_MASK1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8_	0 DSPGP7_	0 DSPGP6	0 DSPGP5	0 DSPGP4_	0 DSPGP3_	0 DSPGP2	0 DSPGP1_	0x0000FFFF
,		_SET2_ MASK	_SET2_ MASK	_SET2_ MASK	_SET2_ MASK	_SET2_ MASK	SET2_ MASK	_SET2_ MASK	SET2_ MASK	SET2_ MASK	SET2_ MASK	SET2_ MASK	SET2_ MASK	SET2 MASK	SET2_ MASK	SET2_ MASK	SET2_ MASK	
R1167504 (0x11D090)	DSPGP_SET2_ DIRECTION1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000FFFF
(OXTIDOOO)	BIRLETION	DSPGP16 _SET2_ DIR	SET2_ DIR	DSPGP14 _SET2_ DIR	DSPGP13 _SET2_ DIR	_SET2_ DIR	SET2_DIR	SET2_ DIR	SET2_DIR	SET2_DIR	SET2_DIR	SET2_DIR	SET2_DIR	SET2_DIR	DSPGP3_ SET2_DIR	SET2_DIR	SET2_DIR	
	DSPGP_SET2_LEVEL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x11D0A0)		DSPGP16 _SET2_ LVL	DSPGP15 _SET2_ LVL	DSPGP14 _SET2_ LVL	DSPGP13 _SET2_ LVL	DSPGP12 _SET2_ LVL	DSPGP11_ SET2_LVL	DSPGP10 _SET2_ LVL	DSPGP9_ SET2_LVL	DSPGP8_ SET2_LVL	DSPGP7_ SET2_LVL	DSPGP6_ SET2_LVL	DSPGP5_ SET2_LVL	DSPGP4_ SET2_LVL	DSPGP3_ SET2_LVL	DSPGP2_ SET2_LVL	DSPGP1_ SET2_LVL	
	DSPGP_SET3_MASK1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000FFFF
(0x11D0C0)		DSPGP16 _SET3_	SET3	SET3	DSPGP13 _SET3_	DSPGP12 _SET3_	DSPGP11_ SET3_	DSPGP10 _SET3_	DSPGP9_ SET3_	DSPGP8_ SET3_	DSPGP7_ SET3_	DSPGP6_ SET3_	DSPGP5_ SET3_	DSPGP4_ SET3_	DSPGP3_ SET3_	DSPGP2_ SET3_	DSPGP1_ SET3_	
	DSPGP_SET3_	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	MASK 0	0x0000FFFF				
	DIRECTĪON1 —	DSPGP16 _SET3_	SET3	DSPGP14 _SET3_	DSPGP13 _SET3_	SET3	DSPGP11 SET3_DIR	DSPGP10 _SET3_	DSPGP9 SET3 DIR	DSPGP8 SET3 DIR	DSPGP7 SET3 DIR	DSPGP6 SET3 DIR	DSPGP5 SET3 DIR	DSPGP4 SET3 DIR	DSPGP3 SET3_DIR	DSPGP2 SET3 DIR	DSPGP1 SET3 DIR	
R1167584	DSPGP SET3 LEVEL1	DIR 0	0	DIR 0	0	0	0	0	0	0	0	0	0	0x00000000				
(0x11D0E0)		DSPGP16 _SET3_			DSPGP13 _SET3_	-	DSPGP11_ SET3_LVL	DSPGP10			-		-	-	DSPGP3_ SET3_LVL	-	-	
		-LVL	-UVL	-LVL	-UVL	_UVL	J2210_LVL	LVL	3210_LVL			JOE 10_LVL	J-10_LVL	5210_LVL		3210_LVL	J-10_LVL	

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R1167616 (0x11D100)	DSPGP_SET4_MASK1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x0000FFFF
,		_SET4_ MASK	_SET4_ MASK	_SET4_ MASK	_SET4_ MASK	_SET4_ MASK	SET4_ MASK	_SET4_ MASK	SET4_ MASK	SET4_ MASK	SET4_ MASK	SET4_ MASK	SET4_ MASK	SET4_ MASK	SET4_ MASK	SET4_ MASK	SET4_ MASK	
R1167632 (0x11D110)	DSPGP_SET4_ DIRECTION1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x0000FFFF
		SET4 DIR	_SET4_ DIR	_SET4_ DIR	_SET4_ DIR	_SET4_ DIR	SET4_DIR	_SET4_ DIR	SET4_DIR	SET4_DIR	SET4_DIR	SET4_DIR	SET4_DIR	SET4_DIR	DSPGP3_ SET4_DIR	SET4_DIR	SET4_DIR	
R1167648 (0x11D120)	DSPGP_SET4_LEVEL1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x00000000
		SET4 LVL	_SET4_ LVL	_SET4_ LVL	_SET4_ LVL	_SET4_ LVL	SET4_LVL	_SET4_ LVL		SET4_LVL	SET4_LVL	SET4_LVL	SET4_LVL	SET4_LVL	SET4_LVL			
R1167680 (0x11D140)	DSPGP_SET5_MASK1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x0000FFFF
		SET5 MASK	_SET5_ MASK	_SET5_ MASK	_SET5_ MASK	_SET5_ MASK	SET5_ MASK	_SET5_ MASK	SET5_ MASK	SET5_ MASK	SET5_ MASK	SET5_ MASK	SET5_ MASK	SET5_ MASK	SET5_ MASK	SET5_ MASK	SET5_ MASK	
	DSPGP_SET5_ DIRECTION1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x0000FFFF
		SET5 DIR	_SET5_ DIR	_SET5_ DIR	_SET5_ DIR	_SET5_ DIR	SET5_DIR								SET5_DIR			
R1167712 (0x11D160)	DSPGP_SET5_LEVEL1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x00000000
		SET5 LVL	_SET5_ LVL	_SET5_ LVL	_SET5_ LVL	_SET5_ LVL	SET5_LVL		SET5_LVL	SET5_LVL	SET5_LVL	SET5_LVL	SET5_LVL	SET5_LVL	SET5_LVL	SET5_LVL	SET5_LVL	
R1167744 (0x11D180)	DSPGP_SET6_MASK1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x0000FFFF
		SET6 MASK	_SET6_ MASK	_SET6_ MASK	_SET6_ MASK	_SET6_ MASK	SET6_ MASK	_SET6_ MASK	SET6_ MASK	SET6_ MASK	SET6_ MASK	SET6_ MASK	SET6_ MASK	SET6_ MASK	SET6_ MASK	SET6_ MASK	SET6_ MASK	
	DSPGP_SET6_ DIRECTION1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x0000FFFF
		SET6 DIR	_SET6_ DIR	_SET6_ DIR	_SET6_ DIR	_SET6_ DIR	SET6_DIR		SET6_DIR	SET6_DIR	SET6_DIR	SET6_DIR	SET6_DIR	SET6_DIR	SET6_DIR	SET6_DIR	SET6_DIR	
R1167776 (0x11D1A0)	DSPGP_SET6_LEVEL1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x00000000
,		_SET6_ LVL	_SET6_ LVL	_SET6_ LVL	_SET6_ LVL	_SET6_ LVL	SET6_LVL				SET6_LVL	SET6_LVL			SET6_LVL			
R1167808 (0x11D1C0)	DSPGP_SET7_MASK1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1_	0x0000FFFF
,		_SET7_ MASK	_SET7_ MASK	_SET7_ MASK	_SET7_ MASK	_SET7_ MASK	SET7 MASK	_SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7_ MASK	SET7 MASK	SET7_ MASK	SET7_ MASK	SET7 MASK	
	DSPGP_SET7_ DIRECTION1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x0000FFFF
,		_SET7_ DIR	_SET7_ DIR	_SET7_ DIR	_SET7_ DIR	_SET7_ DIR	SET7_DIR		SET7_DIR	SET7_DIR	SET7_DIR		SET7_DIR	SET7_DIR	SET7_DIR			
R1167840 (0x11D1E0)	DSPGP_SET7_LEVEL1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7_	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x00000000
		SET7 LVL	_SET7_ LVL	_SET7_ LVL	_SET7_ LVL	_SET7_ LVL	SET7_LVL		SET7_LVL	SET7_LVL	SET7_LVL	SET7_LVL	SET7_LVL	SET7_LVL	DSPGP3_ SET7_LVL	SET7_LVL	SET7_LVL	
R1167872 (0x11D200)	DSPGP_SET8_MASK1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x0000FFFF
,		_SET8_ MASK	_SET8_ MASK	_SET8_ MASK	_SET8_ MASK	_SET8_ MASK	SET8_ MASK	_SET8_ MASK	SET8_ MASK	SET8_ MASK	SET8_ MASK	SET8_ MASK	SET8_ MASK	SET8_ MASK	SET8_ MASK	SET8_ MASK	SET8_ MASK	
	DSPGP_SET8_ DIRECTION1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3 SET8_DIR	0 DSPGP2	0 DSPGP1	0x0000FFFF
		SET8 DIR	_SET8_ DIR	_SET8_ DIR	_SET8_ DIR	_SET8_ DIR	SET8_DIR	_SET8_ DIR	SET8_DIR	SET8_DIR	SET8_DIR	SET8_DIR	SET8_DIR	SET8_DIR	SET8_DIR	SET8_DIR	SET8_DIR	
R1167904 (0x11D220)	DSPGP_SET8_LEVEL1	0 DSPGP16	0 DSPGP15	0 DSPGP14	0 DSPGP13	0 DSPGP12	0 DSPGP11	0 DSPGP10	0 DSPGP9	0 DSPGP8	0 DSPGP7	0 DSPGP6	0 DSPGP5	0 DSPGP4	0 DSPGP3	0 DSPGP2	0 DSPGP1	0x00000000
		SET8 LVL	_SET8_ LVL	_SET8_ LVL	LVL	LVL	SET8_LVŪ	_SET8_ LVL	SET8_LVĒ	SET8_LVL	SET8_LVĪ				DSPGP3_ SET8_LVL	SET8_LVĪ	SET8_LVL	
R33554432 (0x2000000)	DSP1_XMEM_ PACKED_0				DSP1_XN	1_P_1 [7:0]		D	SP1 XM P	START [15	i:0]	DS	P1_XM_P_	START [23	:16]			0x00000000
R33554436 (0x2000004)	DSP1_XMEM_ PACKED_1									P_2 [15:0]								0x00000000
R33554440	DSP1 XMEM									_P_1 [23.6] _P_3 [23:8]								0x00000000
(0x2000008) R34144244	DSP1 XMFM			D		1_P_3 [7:0] 196605 [7	[:0]						DSP1_XM_ P1 XM P					0x00000000
(0x208FFF4)	PACKED_147453 DSP1 XMEM									_196604 [15 196606 [15	,							0x00000000
(0x208FFF8)	PACKĒD_147454							DS	SP1_XM_P	196605 [15	5:0]							
	DSP1_XMEM_ PACKED_147455				DSP1 XM	P END [7:0	01		OSP1_XM_F	P_END [23:	8]	DS	P1 XM P	196606 [23	:16]			0x00000000
R37748736 (0x2400000)	DSP1_XMEM_ UNPACKED32_0									2_START [3 32_START [-			0x00000000
R37748740	DSP1 XMEM							D	SP1_XM_U	P32_1 [31:	16]							0x00000000
` ,	UNPAČKED32_1 DSP1 XMEM									JP32_1 [15: 32_98302 [3								0x00000000
(0x245FFF8)	UNPACKED32_98302 DSP1_XMEM							DSF	P1_XM_UP	32_98302 [1 32_END [31	15:0]							0x00000000
(0x245FFFC)	UNPACKED32_98303							DS	P1_XM_UF	32_END [1	5:0]							
R39714816 (0x25E0000)	DSP1_SYS_INFO_ID									S_ID [31:16] S_ID [15:0]								0x68616C6F

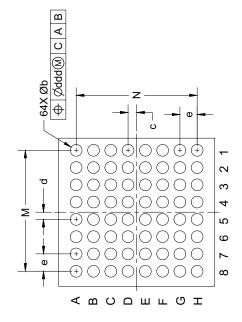
Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17	16 0	Default
R39714820 (0x25E0004)	DSP1_SYS_INFO_				I					ERSION [3						1		0x00000001
. ,	DSP1 SYS INFO									/ERSION [1 ORE ID [31	•							0x00000001
(0x25E0008)	CORE_ID							DS	SP1_SYS_C	ORE_ID [1	5:0]							
R39714828 (0x25E000C)	DSP1_SYS_INFO_ AHB_ADDR									BASE_ADD BASE_ADD								0x02000000
R39714832	DSP1_SYS_INFO_XM_ SRAM_SIZE							DSP1_	SYS_XM_S	SRAM_SIZE	[31:16]							0x00030000
	DSP1 SYS INFO YM									SRAM_SIZE								0x00010000
(0x25E0018)	SRAM_SIZĒ							DSP1	SYS_YM_	SRAM_SIZ	E [15:0]							
R39714848 (0x25E0020)	DSP1_SYS_INFO_PM_ SRAM_SIZE									SRAM_SIZE SRAM SIZE								0x0001C000
R39714856	DSP1_SYS_INFO_PM_ BOOT_SIZE									BOOT_SIZE								0x00000000
R39714860	DSP1 SYS INFO	DSP1_	0	0	0	0	0	0	_SYS_PM_ 0	BOOT_SIZI	0 [15:0]	0	0	0	0	0	0	0x00003FB8
(0x25E002C)	FEATŪRES -	SYS_ SELF_ BOOT																
		0	0	DSP1 SYS_DB_ RAND_ EXISTS	DSP1_ SYS_ LMS_ EXISTS	DSP1_ SYS_FIR_ EXISTS	DSP1_ SYS_FFT_ EXISTS	DSP1_ SYS_ MIPS_ EXISTS	DSP1_ SYS_ TRB_ EXISTS	DSP1_ SYS_ WDT_ EXISTS	0	DSP1_ SYS_ STREAM_ ARB_ EXISTS	DSP1_ SYS_ AHBM_ EXISTS	DSP1_ SYS_ MPU_ EXISTS	0	0	0	
R39714864 (0x25E0030)	DSP1_SYS_INFO_FIR_ FILTERS	0	0	0	0	0	0	0	0	0	0	0	0 DSD1	0 SVS NIIIM	0 FIR FILTE	0	0	0x00000008
R39714868	DSP1_SYS_INFO_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000005
	LMS_FILTERS DSP1 SYS INFO XM	0	0	0	0	0	0	0	0 9 MY 9 V9	0 BANK SIZE	0		DSP1_	SYS_NUM_	LMS_FILTE	ERS [5:0]		0x00002000
(0x25E0038)	BANK_SIZE									BANK_SIZI								0x00002000
	DSP1_SYS_INFO_YM_ BANK_SIZE									BANK_SIZE BANK SIZI								0x00002000
R39714880	DSP1_SYS_INFO_PM_ BANK_SIZE							DSP1_	SYS_PM_E	BANK_SIZE BANK SIZI	[31:16]							0x00004000
R39723008	DSP1_AHBM_							DSP1	_AHBM_W	IN0_ADDR	[31:16]							0x00000000
(0x25E2000)	WINDOW0_CONTROL_ 0							DSP ²	1_AHBM_W	/IN0_ADDR	[15:0]							
	DSP1_XMEM_ UNPACKED24_0	0	0	0	0	0	0	0	0	24 START	45.01	DSP	1_XM_UP2	4_START [23:16]			0x00000000
R41943044	DSP1_XMEM UNPACKED24_1	0	0	0	0	0	0	0	0	JP24 1 [15		D	SP1_XM_U	JP24_1 [23:	16]			0x00000000
R41943048	DSP1_XMEM_ UNPACKED24_2	0	0	0	0	0	0	0	0			D	SP1_XM_U	JP24_2 [23:	16]			0x00000000
R41943052	DSP1 XMEM	0	0	0	0	0	0	0	0	JP24_2 [15:		D	SP1_XM_U	JP24_3 [23:	16]			0x00000000
R42729456	UNPACKED24_3 DSP1_XMEM_	0	0	0	0	0	0	0	0	JP24_3 [15:		DSP	1_XM_UP2	4_196604 [23:16]			0x00000000
,	UNPACKED24_196604 DSP1 XMEM	0	0	0	0	0	0	DSF 0	1_XM_UP2	24_196604	[15:0]	DSP	1_XM_UP2	4 196605 [23:161			0x00000000
(0x28BFFF4)	UNPACKED24_196605							DSF		24_196605	[15:0]							
R42729464 (0x28BFFF8)	DSP1_XMEM_ UNPACKED24_196606	0	0	0	0	0	0	0 DSF	0 1_XM_UP2	24_196606	[15:0]	DSP	1_XM_UP2	4_196606 [23:16]			0x00000000
	DSP1_XMEM_ UNPACKED24_196607	0	0	0	0	0	0	0 DS	0 P1 XM UF	P24 END [1	5:0]	DS	P1_XM_UP	24_END [2	3:16]			0x00000000
R45613056 (0x2B80000)	DSP1_CLOCK_FREQ	0	0	0	0	0	0	0	0	0 REQ SEL[0	0	0	0	0	0	0	0x00000000
R45613064	DSP1_CLOCK_STATUS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x2B80008)	DSP1 CORE SOFT	0	0	0	0	0	0	DS 0	P1_CLK_FF	REQ_STS[15:0] 0	0	0	0	0	T 0	0	0x00000000
(0x2B80010)	RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ CORE_ SOFT_ RESET	000000000
R45613136	DSP1_STREAM_ARB_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
(0x2B80050)	CONTROL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DSP1_ STREAM_ ARB_ RESYNC	
R45613184 (0x2B80080)	DSP1_SAMPLE_RATE_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
R45613192	DSP1_SAMPLE_RATE_	0	0	0	0	0	0	0	0	0	0	0	0	0	1_RX1_RAT	0	0	0x00000000
(0x2B80088) R45613200	DSP1 SAMPLE RATE	0	0	0	0	0	0	0	0	0	0	0	0	DSP ²	1_RX2_RAT 0	TE [4:0]	0	0x00000000
(0x2B80090)	RX3	0	0	0	0	0	0	0	0	0	0	0		DSP*	1_RX3_RAT			
R45613208 (0x2B80098)	DSP1_SAMPLE_RATE_ RX4	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP	0 1_RX4_RAT	[0 [E [4:0]	0	0x00000000
R45613216 (0x2B800A0)	DSP1_SAMPLE_RATE_ RX5	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1 RX5 RAT	0	0	0x00000000
(5,12000,10)	[U	U	U	U	U	U	U	U	U	U	U	1	מסרו	-INVO_KAI	L [4.0]		<u> </u>

Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
R45613224 (0x2B800A8)	DSP1_SAMPLE_RATE_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
R45613232	DSP1_SAMPLE_RATE_	0	0	0	0	0	0	0	0	0	0	0	0	0	1_RX6_RAT	0	0	0x00000000
(0x2B800B0)	RX7 DSP1_SAMPLE_RATE_	0	0	0	0	0	0	0	0	0	0	0	0	DSP ²	1_RX7_RAT	E [4:0]	0	0x00000000
(0x2B800B8)	RX8	0	0	0	0	0	0	0	0	0	0	0		DSP*	1_RX8_RAT	E [4:0]		
R45613696 (0x2B80280)	DSP1_SAMPLE_RATE_ TX1	0	0	0	0	0	0	0	0	0	0	0	0	DSP ⁻	0 1 TX1 RAT	0 E [4:0]	0	0x00000000
R45613704 (0x2B80288)	DSP1_SAMPLE_RATE_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
R45613712	DSP1_SAMPLE_RATE_	0	0	0	0	0	0	0	0	0	0	0	0	0	1_TX2_RAT 0	0	0	0x00000000
(0x2B80290)	TX3 DSP1 SAMPLE RATE	0	0	0	0	0	0	0	0	0	0	0	0	DSP ⁻	1_TX3_RAT 0	E [4:0]	0	0x00000000
(0x2B80298)	TX4	0	0	0	0	0	0	0	0	0	0	0		DSP	1_TX4_RAT	E [4:0]		
R45613728 (0x2B802A0)	DSP1_SAMPLE_RATE_ TX5	0	0	0	0	0	0	0	0	0	0	0	0	0 DSP	0 1 TX5 RAT	0 E [4:0]	0	0x00000000
R45613736 (0x2B802A8)	DSP1_SAMPLE_RATE_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
R45613744	DSP1_SAMPLE_RATE_	0	0	0	0	0	0	0	0	0	0	0	0	0	1_TX6_RAT 0	E [4:0]	0	0x00000000
(0x2B802B0)	TX7 DSP1 SAMPLE RATE	0	0	0	0	0	0	0	0	0	0	0	0	DSP ⁻	1_TX7_RAT 0	E [4:0]	0	0x00000000
(0x2B802B8)	TX8	0	0	0	0	0	0	0	0	0	0	0		DSP	1_TX8_RAT	E [4:0]		
R45879296 (0x2BC1000)	DSP1_CCM_CORE_ CONTROL	0	0	0	0	0	0	0 DSP1_	0	0	0	0	0	0	0	0	0 DSP1_	0x00000000
								CCM_ CORE_ RESET									CCM_ CORE_EN	
	DSP1_STREAM_ARB_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x00000000
,	RESYNC_MSK1	0	0	0	0 DSP1_YM	0 I P 1 [7:0]	0	0	0				REAM_ARE		_ : :			0x00000000
(0x2C00000)	PACKĒD_0 —				_	,		D		_START [15	i:0]			•	•			
(0x2C00004)	DSP1_YMEM_ PACKED_1									_P_2 [15:0] _P_1 [23:8]								0x00000000
R46137352 (0x2C00008)	DSP1_YMEM_ PACKED 2				DSP1 YM	1 P 3 [7·0]			DSP1_YM	_P_3 [23:8]			DSP1 YM	D 2 [23:16	1			0x00000000
R46333940	DSP1_YMEM_			D		P_65533 [7:	0]						SP1_YM_P					0x00000000
,	PACKED_49149 DSP1_YMEM									2_65532 [15 2_65534 [15	-							0x00000000
,	PACKED_49150									_65533 [23 P END [23:								000000000
(0x2C2FFFC)	DSP1_YMEM_ PACKED_49151			[DSP1_YM_	P_END [7:0)]		JSF1_TW_I	F_END (23.	oj	D	SP1_YM_P	_65534 [23	:16]			0x00000000
	DSP1_YMEM_ UNPACKED32_0									2_START [3 32_START [0x00000000
	DSP1_YMEM_ UNPACKED32_1							D	SP1_YM_U	P32_1 [31:	16]							0x00000000
,	DSP1 YMEM									JP32_1 [15: 32_32766 [3								0x00000000
,	UNPACKED32_32766 DSP1_YMEM									32_32766 [⁻ 32_END [3 ⁻								0x00000000
(0x301FFFC)	UNPACKED32_32767							DS		32_END [3 232_END [1								
	DSP1_YMEM_ UNPACKED24_0	0	0	0	0	0	0	0 DSF	0 21 YM UP2	24 START (15:0]	DSP	1_YM_UP2	4_START [23:16]			0x00000000
	DSP1_YMEM_ UNPACKED24_1	0	0	0	0	0	0	0	0 OCD1 VM I	JP24_1 [15:	01	D	SP1_YM_U	IP24_1 [23:	16]			0x00000000
R54525960	DSP1 YMEM	0	0	0	0	0	0	0	0	JF24_1 [15.	uj	D	SP1_YM_U	IP24_2 [23:	16]			0x00000000
,	UNPAČKED24_2 DSP1_YMEM	0	0	0	0	0	0	0	SP1_YM_U	JP24_2 [15:	0]	D	SP1 YM U	IP24 3 [23:	161			0x00000000
(0x340000C)	UNPACKED24_3					ı				JP24_3 [15:	0]				•			
(0x343FFF0)	DSP1_YMEM_ UNPACKED24_65532	0	0	0	0	0	0	0 DSF	0 P1_YM_UP	<u> </u> 24_65532 [⁻	15:0]	DSF	P1_YM_UP2	24_00032 [2	23:16]			0x00000000
R54788084 (0x343FFF4)	DSP1_YMEM_ UNPACKED24_65533	0	0	0	0	0	0	0 DSI	0 P1 YM UP	24 65533 [15:01	DSF	P1_YM_UP2	24_65533 [2	23:16]			0x00000000
R54788088	DSP1_YMEM_ UNPACKED24_65534	0	0	0	0	0	0	0	0			DSF	P1_YM_UP2	24_65534 [2	23:16]			0x00000000
R54788092	DSP1_YMEM_	0	0	0	0	0	0	0	0	24_65534 [DS	P1_YM_UP	24_END [2	3:16]			0x00000000
,	UNPACKED24_65535 DSP1 PMEM 0									P24_END [1 START [31:1								0x00000000
(0x3800000)									OSP1_PM_	START [15:	•							
R58720260 (0x3800004)	DSP1_PMEM_1				DSP1_P	M_1 [7:0]			DSP1_PI	M_1 [23:8]		С	SP1_PM_S	START [39:	32]			0x00000000
R58720264 (0x3800008)	DSP1_PMEM_2									M_2 [15:0] M 1 [39:24]								0x00000000
R58720268	DSP1_PMEM_3				DSP1_P	M_3 [7:0]			_				DSP1_PM	Л_2 [39:32]				0x00000000
(0x380000C)									DSP1_PN	1_2 [31:16]								

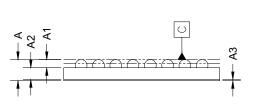
Register	Name	31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0	Default
	DSP1_PMEM_4								DSP1_PN	1_3 [39:24]								0x00000000
(0x3800010)									DSP1_Pf	И_3 [23:8]								
	DSP1_PMEM_71675							[SP1_PM_	7341 [31:1	6]							0x00000000
(0x3845FEC)									DSP1_PM_	57341 [15:0]							
	DSP1_PMEM_71676								DSP1_PM_	57342 [23:8	[]							0x00000000
(0x3845FF0)					DSP1_PM_	57342 [7:0]						[OSP1_PM_	57341 [39:3	2]			
	DSP1_PMEM_71677								DSP1_PM_	57343 [15:0]							0x00000000
(0x3845FF4)								[SP1_PM_	7342 [39:2	4]							
	DSP1_PMEM_71678				DSP1_PM	_END [7:0]						[OSP1_PM_	57343 [39:3	2]			0x00000000
(0x3845FF8)								[SP1_PM_	7343 [31:1	6]							
	DSP1_PMEM_71679								DSP1_PM_	END [39:24]							0x00000000
(0x3845FFC)									DSP1_PM	END [23:8]								

7 Thermal Characteristics

Table 7-1. Typical JEDEC Four-Layer, 2s2p Board Thermal Characteristics


Parameter	Symbol	WLCSP	QFN	Units
Junction-to-ambient thermal resistance	θ_{JA}	55.6	22.3	°C/W
Junction-to-board thermal resistance	θЈВ	27.0	7.47	°C/W
Junction-to-case thermal resistance	θ _{JC}	2.83	13.5	°C/W
Junction-to-board thermal-characterization parameter	Ψ_{JB}	26.7	7.22	°C/W
Junction-to-package-top thermal-characterization parameter	Ψ_{JT}	0.18	0.78	°C/W

Notes:


- Natural convection at the maximum recommended operating temperature T_A (see Table 3-3)
- Four-layer, 2s2p PCB as specified by JESD51–9 and JESD51–11; dimensions: 101.5 x 114.5 x 1.6 mm
- Thermal parameters as defined by JESD51–12

8 Package Dimensions

BOTTOM VIEW

>	
М	
۳	
<u></u>	
쁘	
븠	

o ionio		Millimeters	
חווופווופו	Minimum	Nominal	Maximum
A	0.46	0.49	0.52
A1	0.175	0.19	0.205
A2	0.26	0.275	0.29
A3	REF	0.025	REF
q	0.24	0.27	0.3
C	0.1925	0.2	0.2075
О	0.1565	0.164	0.1715
е	BSC	0.4	BSC
Σ	BSC	2.8	BSC
Z	BSC	2.8	BSC
×	3.408	3.433	3.458
٨	3.588	3.613	3.638
ddd=0.015			
Motor: Controlling	Noto: Controlling dimension is millimeters		

for illustration purposes only. Dimension "b" applies to the solder sphere diameter and is measured at the maximum solder sphere diameter, parallel to primary Datum C. X/Y Tolerances can apply to an individual edge increasing or decreasing by 25um. Dimensioning and tolerances per ASME Y 14.5-2009. The Ball A1 position indicator is

Ball A1 Corner

Figure 8-1. WLCSP Package Drawing (POD00106 Rev B)

TOP VIEW

m

		SYMBOL	MIN	MOM	MAX
TOTAL THICKNESS		¥	8.0	0.85	6.0
STAND OFF		A1	0	0.035	0.05
MOLD THICKNESS		A2	-	0.65	0.67
L/F THICKNESS		A3		0.203 REF	
LEAD WIDTH		٩	0.15	0.2	0.25
2000	×	٥		8 BSC	
DOD 1 312E	>	ш		8 BSC	
LEAD PITCH		e		0.4 BSC	
22.50	×	ſ	6.4	6.5	9.9
	>	×	6.4	6.5	9.9
LEAD LENGTH		٦	0.35	0.4	0.45
PACKAGE EDGE TOLERANCE	ANCE	000		0.1	
MOLD FLATNESS		qqq		0.1	
COPLANARITY		၁၁၁		0.08	
LEAD OFFSET		ppp		0.1	
EXPOSED PAD OFFSET		eee		0.1	

NOTES
1.0 COPLANARITY APPLIES TO LEADS, CORNER LEADS AND DIE
ATTACH PAD.

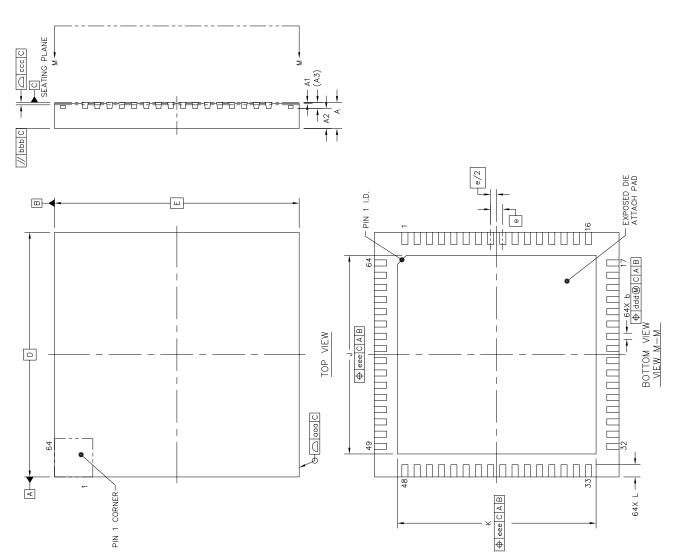


Figure 8-2. QFN Package Drawing (ASE Group, 98A0064QN Rev O)

9 Ordering Information

Table 9-1. Ordering Information

Product	Description	Package	RoHS Compliant	Grade	Temperature Range	Container	Order #
CS48L32	Low-Power Audio DSP with Microphone Interface	64-ball WLCSP	Yes	Commercial	–40 to +85°C	Tape and Reel ¹	CS48L32-CWZR
CS48L32	Low-Power Audio DSP with Microphone Interface	64-pad QFN	Yes	Commercial	–40 to +85°C	Tape and Reel ²	CS48L32-CNZR
CS48L32	Low-Power Audio DSP with Microphone Interface	64-pad QFN	Yes	Commercial	-40 to +85°C	Tray ³	CS48L32-CNZ

^{1.}Reel quantity = 6000 units. 2.Reel quantity = 4000 units. 3.Tray quantity = 260 units.

10 Revision History

Table 10-1. Revision History

Revision	Changes				
F1	SPI2 (QSPI) master interface function description deleted (Section 4.5.5)				
MAR 2019	SPI1 data-phase control (SPI1_DPHA) added (Table 3-18, Section 4.11, Section 4.11.1)				
	AUXPDMn_CLK_PD default changed (Table 1-1, Section 4.2.11)				
F2	SPI1 data-phase control (SPI1_DPHA) default changed to 0 (Section 4.11)				
MAR 2019					
F3	Correction to IN1R_SRC field description (Table 4-3)				
JUN 2019	Deleting erroneous reference to Sleep Mode (Section 4.4.3.1)				
00.1.20.0	Clarification of software-reset conditions (Section 4.4.3.1, Section 4.14.3, Section 4.14.6)				
	SPI2 (QSPI) master interface function description added (Section 4.5.5)				
F4	Correction to FLL1_REFCLK_SRC default (Table 4-46).				
NOV 2019					

Contacting Cirrus Logic Support

For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com.

IMPORTANT NOTICE

The products and services of Cirrus Logic International (UK) Limited; Cirrus Logic, Inc.; and other companies in the Cirrus Logic group (collectively either "Cirrus Logic" or "Cirrus") are sold subject to Cirrus Logic's terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. Software is provided pursuant to applicable license terms. Cirrus Logic reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Cirrus Logic to verify that the information is current and complete. Testing and other quality control techniques are utilized to the extent Cirrus Logic deems necessary. Specific testing of all parameters of each device is not necessarily performed. In order to minimize risks associated with customer applications, the customer must use adequate design and operating safeguards to minimize inherent or procedural hazards. Cirrus Logic is not liable for applications assistance or customer product design. The customer is solely responsible for its product design, including the specific manner in which it uses Cirrus Logic components, and certain uses or product designs may require an intellectual property license from a third party. Customers are responsible for overall system design, and system security. While Cirrus Logic is confident in the performance capabilities of its components, it is not possible to provide an absolute guarantee that they will deliver the outcomes or results envisaged by each of our customers. Features and operations described herein are for illustrative purposes only and do not constitute a suggestion or instruction to adopt a particular product design or a particular mode of operation for a Cirrus Logic component.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS LOGIC PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, NUCLEAR SYSTEMS, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS LOGIC PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS LOGIC DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS LOGIC PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS LOGIC PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS LOGIC, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

This document is the property of Cirrus Logic, and you may not use this document in connection with any legal analysis concerning Cirrus Logic products described herein. No license to any technology or intellectual property right of Cirrus Logic or any third party is granted herein, including but not limited to any patent right, copyright, mask work right, or other intellectual property rights. Any provision or publication of any third party's products or services does not constitute Cirrus Logic's approval, license, warranty or endorsement thereof. Cirrus Logic gives consent for copies to be made of the information contained herein only for use within your organization with respect to Cirrus Logic integrated circuits or other products of Cirrus Logic, and only if the reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices and conditions (including this notice). This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. This document and its information is provided "AS IS" without warranty of any kind (express or implied). All statutory warranties and conditions are excluded to the fullest extent possible. No responsibility is assumed by Cirrus Logic for the use of information herein, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. Cirrus Logic, Cirrus, the Cirrus Logic logo design, and SoundClear are among the trademarks of Cirrus Logic. Other brand and product names may be trademarks or service marks of their respective owners.

Copyright © 2018-2019 Cirrus Logic, Inc. and Cirrus Logic International Semiconductor Ltd. All rights reserved.

SPI is a trademark of Motorola.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cirrus Logic:

CS48L32-CNZR CS48L32-CWZR