

Adafruit Metro ESP32-S2
Created by Kattni Rembor

https://learn.adafruit.com/adafruit-metro-esp32-s2

Last updated on 2022-01-01 02:37:21 PM EST

©Adafruit Industries Page 1 of 136

7

9

10

10

11

11

12

13

14

14

15

15

16

16

16

18

20

20

20

22

23

24

24

24

25

25

26

26

27

27

28

28

29

29

30

32

33

34

34

35

36

36

37

Table of Contents

Overview

Pinouts

• Power

• Power Inputs

• Power Control

• Power Outputs

• ESP32-S2 WiFi Module

• Logic Pins

• LEDs and NeoPixel

• STEMMA QT

• UART Debug

• Reset and DFU

• JTAG Debug

ROM Bootloader

• Enter ROM Bootloader Mode

• Run esptool and check connection

Web Serial ESPTool

• Enabling Web Serial

• Connecting

• Erasing the Contents

• Programming the Microcontroller

Install UF2 Bootloader

• Step 1. Get into the ROM bootloader and install esptool.py

• Step 2. Download the TinyUF2 release for your board

• Step 3. Extract the combined.bin file from TinyUF2 release

• Step 4. Option A) Use esptool.py to upload

• Step 4 Option B) Use the Web Serial ESPTool to upload

Welcome To CircuitPython

• This guide will get you started with CircuitPython!

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

• Setting Permissions on Linux

• Using Something Else?

©Adafruit Industries Page 2 of 136

37

40

41

42

44

45

46

46

47

47

48

49

49

49

52

53

54

54

54

54

56

58

58

59

60

63

64

65

65

65

67

67

67

68

68

69

70

70

71

72

73

73

75

75

76

77

78

78

Interacting with the Serial Console

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

CircuitPython Libraries

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

Advanced Serial Console on Windows

• Windows 7 and 8.1

• What's the COM?

• Install Putty

Advanced Serial Console on Mac

• What's the Port?

• Connect with screen

Frequently Asked Questions

ESP32-S2 Bugs & Limitations

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

©Adafruit Industries Page 3 of 136

79

79

79

80

81

81

82

83

84

85

89

90

91

92

92

94

94

95

95

96

96

98

101

102

102

102

103

105

105

106

106

107

110

110

111

111

112

114

115

118

121

124

124

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

Install CircuitPython

• Set Up CircuitPython

CircuitPython Pin Names

• Pin Name Diagram

CircuitPython Internet Libraries

• Adafruit CircuitPython Library Bundle

CircuitPython Internet Test

• Secrets File

• Connect to WiFi

Getting The Date & Time

• Step 1) Make an Adafruit account

• Step 2) Sign into Adafruit IO

• Step 3) Get your Adafruit IO Key

• Step 4) Upload Test Python Code

CircuitPython Essentials

Blink

• LED Location

• Blinking an LED

Arduino IDE Setup

Using with Arduino IDE

• Blink

• Select ESP32-S2 Board in Arduino IDE

• Launch ESP32-S2 ROM Bootloader

• Load Blink Sketch

WiFi Test

• WiFi Connection Test

• Secure Connection Example

• JSON Parsing Demo

Usage with Adafruit IO

• Install Libraries

©Adafruit Industries Page 4 of 136

125

130

132

132

133

135

135

• Adafruit IO Setup

• Code Usage

Debugging with OpenOCD

• Metro ESP32S2

• OpenOCD Setup

Downloads

• Schematic and Fab Print

©Adafruit Industries Page 5 of 136

©Adafruit Industries Page 6 of 136

Overview

What's Metro shaped and has an ESP32-S2 WiFi module? What has a STEMMA QT

connector for I2C devices, and a Lipoly charger circuit? What's finishing up testing

and nearly ready for fabrication? That's right - its the new Adafruit Metro ESP32-S2!

With native USB and a load of PSRAM this board is perfect for use with CircuitPython

or Arduino, to add low-cost WiFi while keeping shield-compatibility.

©Adafruit Industries Page 7 of 136

Features:

ESP32-S2 240MHz Tensilica processor - the next generation of ESP32, now with

native USB so it can act like a keyboard/mouse, MIDI device, disk drive, etc!

WROVER module has FCC/CE certification and comes with 4 MByte of Flash and

2 MByte of PSRAM - you can have huge data buffers

Lotsa power options - 6-12VDC barrel jack or USB type C or Lipoly battery

Built-in battery charging when powered over DC or USB

UNO-shape so shields can plug in

Reset and DFU (BOOT0) buttons to get into the ROM bootloader (which is a USB

serial port so you don't need a separate cable!)

Serial debug pins (optional, for checking the hardware serial debug console)

JTAG pads for advanced debugging access.

On/Off switch

STEMMA QT connector for I2C devices

On/Charge/User LEDs + status NeoPixel

Works with Arduino or CircuitPython

53.2mm x 72mm / 2" x 2.8"

Height (w/ barrel jack): 14.8mm / 0.6"

Weight: 22.5g

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 136

Pinouts

The Metro ESP32-S2 is loaded with all kinds of features. There's lots of pins and

ports. Time to take a tour!

©Adafruit Industries Page 9 of 136

Power

There's a lot of power options available

on the Metro ESP32-S2, and they're a

little different than most Metro/Arduinos

Power Inputs

You have three power input options:

USB C port - This is used for both powering and programming the board. You

can power it with any USB C cable and will request 5V from a USB C PD.

When USB is plugged in it will charge the Lipoly battery. If there is no battery

attached, the yellow LED will flicker (it's looking for a battery!)

DC barrel jack - The DC Jack is a 5.5mm/2.1mm center-positive DC connector,

which is the most common available. Provide about 6V-12V here to power the

Metro. Great for when you have a wall adapter power supply. Don't use a center-

negative adapter, it won't work (the OK green LED will not light)

When DC power is plugged in it will charge the Lipoly battery. If there is no

•

•

©Adafruit Industries Page 10 of 136

https://learn.adafruit.com//assets/96697
https://learn.adafruit.com//assets/96697

battery attached, the yellow LED will flicker (it's looking for a battery!)

If both DC and USB are plugged in, the metro will power itself & recharge the

battery from whichever is highest

LiPoly connector/charger - You can plug in any 250mAh or larger 3.7/4.2V Lipoly

battery into this JST 2-PH port to both power your Metro and charge the battery.

The battery will charge from the USB or DC power (whichever is plugged in and

higher voltage), even if the board is powered off via the switch.

If the battery is plugged in and USB or DC is plugged in, the Metro will power

itself from USB or DC and it will charge the battery up.

When the battery is charging, the yellow CHG LED will be lit. When charging is

complete, the LED will turn off.

Power Control

On/Off switch - This switch controls power to the board. If you plug in your

board and nothing happens, make sure the switch is flipped to "ON"!

When switched off it will disable the 3.3V power which turns off the ESP32S2

and NeoPixel, but it does not turn off the VHI or VIN pins (see below) and will

leave the battery charging.

Power Outputs

3.3V - This is the output pin from the 3.3V regulator, you can grab up to 400mA

from this regulator for accessories, it's also used by the ESP32S2 which can

have spiky current draw.

VHI - This pin is usually marked 5V on Arduinos, and when USB or DC is

plugged in, it will in fact provide 5V. However, if you have the Metro on LiPo

battery power, it will be powered from the battery and thus between 3.7V to

4.2V

When powered from USB or DC it is regulated to 5V, when powered from

battery only, it's not regulated, but it is high-current, great for driving servos and

NeoPixels.

GND - This is the common ground for all power and logic.

VIN - This is the higher of the DC jack or USB voltage. So if the DC jack is

plugged in and 9V, VIN is 9V. If only USB connected, this will be 5V.

•

•

•

•

•

•

©Adafruit Industries Page 11 of 136

ESP32-S2 WiFi Module

The ESP32-S2 WROVER module.

The ESP32-S2 is a highly-integrated, low-

power, 2.4 GHz Wi-Fi System-on-Chip

(SoC) solution that now has built-in native

USB as well as some other interesting

new technologies like Time of Flight

distance measurements. With its state-of-

the-art power and RF performance, this

SoC is an ideal choice for a wide variety

of application scenarios relating to the

Internet of Things (IoT) (https://adafru.it/

Bwq), wearable electronics (https://

adafru.it/Osb), and smart homes.

Please note, this is a single-core 240 MHz chip so it won't be as fast as ESP32's with

dual-core. Also, there is no Bluetooth support. However, we are super excited about

the ESP32-S2's native USB which unlocks a lot of capabilities for advanced

interfacing! This WROVER module comes with 4 MB flash and 2 MB PSRAM.

The 4 MB of flash is inside the module and is used for both program firmware and

filesystem storage. For example, in CircuitPython, we have 3 MB set aside for program

firmware (this includes two OTA option spots as well) and a 1MB section for

CircuitPython scripts and files.

©Adafruit Industries Page 12 of 136

https://learn.adafruit.com//assets/96698
https://learn.adafruit.com//assets/96698
https://www.adafruit.com/category/342
https://www.adafruit.com/category/65

Logic Pins

These are the logic pins that can be used

to connect shields, sensors, servos, LEDs

and more!

No pins are shared, and no pins are

'special' bootstrapping pins, so you can

use any of them for input, or output, will

pullups or pulldowns, without worry.

ESP32 chips allow for 'multiplexing' of

almost all signals so it isn't like some pins

can do PWM and others can. You can

connect any of the available PWM

channels, I2S channels, UART, I2C or SPI

ports to any pin. There are some

exceptions....

A0 and A1 are the only DAC output pins. These can be used as 8-bit true analog

outputs. No other pins can do so.

A0 thru A5, IO5 to IO16 - can also be analog inputs. The labeled SPI port, I2C

port and pins 21 and 42 cannot.

IO11 thru IO16 and A0 plus A1 are on ADC2

A2 thru A5 plus IO5 thru IO10 are on ADC1

Check the ESP32-S2 datasheet for the ADC channel names for each pin if you

need em!

The 2x3 SPI pins on the right side of the board is on the ESP32 high speed SPI

peripheral - you can set any pins to be the low-speed peripheral but you won't

get the speedy interface!

The SDA/SCL I2C pins have 3.3V pullups on them, and are shared with the

STEMMA QT port

Pin 42 is connected to a red LED and is also shared with the JTAG TMS pin. If

you happen to be JTAG debugging, this pin will not be available to you.

Pin 45 is connected to the NeoPixel and is a special bootrstap pin but we only

use it as an output so it doesn't matter that there's a pullup/down on it.

Pin numbers next to pins are the ESP32 IO pin number. E.g. pin 5 is IO5 and 21 is

IO21. This is not true for pin names such as A0 thru A5 (these are IO17, IO18, IO1,

IO2, IO3, and IO4 in that order), SPI pins (SCK is IO36, MOSI IS IO35 and MISO is

IO37) or I2C pins (SDA is IO33 and SCL is IO34)

•

•

•

•

•

•

©Adafruit Industries Page 13 of 136

https://learn.adafruit.com//assets/96704
https://learn.adafruit.com//assets/96704

LEDs and NeoPixel

NeoPixel LED - This addressable

RGB NeoPixel LED is both a status

LED and user controllable on IO45

LED - This red LED on IO42 is user

controllable for blinky needs, it is

shared with JTAG TMS and cannot

be used if you happen to be JTAG

decoding.

OK LED - This green LED indicates

the board is powered on, it is

connected to the 3.3V power

supply.

CHG LED - This yellow LED lets you

know when the plugged in battery

is charging and when it's fully

charged. It's normal for this LED to

flicker when no battery is in place,

that's the charge circuitry trying to

detect whether a battery is there or

not.

STEMMA QT

STEMMA QT (https://adafru.it/Ft4) - This

JST SH 4-pin connector breaks out I2C

(SCL, SDA, 3.3V, GND). It allows you to

connect to various breakouts and

sensors with STEMMA QT

connectors (https://adafru.it/HMF) or to

other things using assorted associated

accessories (https://adafru.it/Ft6).

Works great with any STEMMA QT or

Qwiic sensor/device

You can also use it with Grove I2C

devices thanks to this handy

cable (https://adafru.it/Ndk)

•

•

•

•

©Adafruit Industries Page 14 of 136

https://learn.adafruit.com//assets/96699
https://learn.adafruit.com//assets/96699
https://learn.adafruit.com//assets/96700
https://learn.adafruit.com//assets/96700
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/product/4528
https://www.adafruit.com/product/4528
https://www.adafruit.com/product/4528

UART Debug

The hardware UART debug port has two

broken out pins. You can connect these

to a USB console cable in order to read

the debug output from the ESP32

IDF (https://adafru.it/dDd). This is useful if

you are writing software and need to see

the low level debug output without using

JTAG debugging.

This is not where default

Serial.print() or CircuitPython

print() outputs go, because those will

go through the USB port instead!

Reset and DFU

Reset button - The reset button in

the top left corner is used to reset

the board.

DFU button - This is connected to

BOOT0 and can be used to put the

board into ROM bootloader mode.

To enter ROM bootloader mode,

hold down DFU button while

clicking reset button mentioned

above. When in the ROM

bootloader, you can upload code

and query the chip using esptool

•

•

©Adafruit Industries Page 15 of 136

https://learn.adafruit.com//assets/96701
https://learn.adafruit.com//assets/96701
https://www.adafruit.com/product/954
https://www.adafruit.com/product/954
https://www.adafruit.com/product/954
https://www.adafruit.com/product/954
https://learn.adafruit.com//assets/96703
https://learn.adafruit.com//assets/96703

JTAG Debug

If you'd like to do more advanced

development, trace-debugging, or not

use the bootloader, we have the JTAG

interface exposed. You'll need to solder

an 2x5 1.27mm pitch connector (https://

adafru.it/w5e) or Mini 2x5

connector (https://adafru.it/Osc) to your

board. A JLink or similar is needed to

perform debugging.

SEGGER J-Link EDU Mini - JTAG/SWD

Debugger

Doing some serious development on any

ARM-based platform, and tired of 'printf'

plus an LED to debug? A proper JTAG/

SWD HW debugger can make debugging

more of a pleasure and...

https://www.adafruit.com/product/3571

ROM Bootloader

The ESP32-S2 has a built in bootloader, which means you never have to worry about

'bricking' your board. You can use it to load code directly, say CircuitPython or the

binary output of an Arduino compilation or you can use it to load a second bootloader

on, like UF2 which has a drag-n-drop interface.

The ROM bootloader can never be disabled or erased, so its always there if you need

it!

Enter ROM Bootloader Mode

Entering the bootloader is easy. Complete the following steps.

©Adafruit Industries Page 16 of 136

https://learn.adafruit.com//assets/96702
https://learn.adafruit.com//assets/96702
https://www.adafruit.com/product/752
https://www.adafruit.com/product/4048
https://www.adafruit.com/product/4048
https://www.adafruit.com/product/3571
https://www.adafruit.com/product/3571
https://www.adafruit.com/product/3571

Make sure your ESP32-S2 is

plugged into USB port to your

computer using a data/sync cable.

Charge-only cables will not work!

Turn on the On/Off switch - check

that you see the OK light on so you

know the board is powered, a

prerequisite!

Press and hold the DFU / Boot0

button down. Don't let go of it yet!

Press and release the Reset button.

You should have the DFU/Boot0

button pressed while you do this.

Now you can release the DFU /

Boot0 button

Check your computer for a new

serial / COM port. On windows

check the Device manager

On Windows check the Device manager -

you will see a COM port, for example

here its COM88. You may also see

another "Other device" called ESP32-S2

It's best to do this with no other dev

boards plugged in so you don't get

confused about which COM port is the

ESP32-S2

1.

2.

3.

4.

5.

6.

©Adafruit Industries Page 17 of 136

https://learn.adafruit.com//assets/96750
https://learn.adafruit.com//assets/96750
https://learn.adafruit.com//assets/97308
https://learn.adafruit.com//assets/97308
https://learn.adafruit.com//assets/96744
https://learn.adafruit.com//assets/96744

On Mac/Linux you will need to find the tty

name which lives under /dev

On Linux, try ls /dev/ttyS* for example, to

find the matching serial port name. In this

case it shows up as /dev/ttyS87. If you

don't see it listed try ls /dev/ttyA* on

some Linux systems it might show up like

/dev/ttyACM0

On Mac, try ls /dev/cu.usbmodem* for

example, to find the matching serial port

name. In this case, it shows up as /dev/

cu.usbmodem01

It's best to do this with no other dev

boards plugged in so you don't get

confused about which serial port is the

ESP32-S2

Run esptool and check connection

Once you have entered ROM bootloader mode, you can then use Espressif's esptool

program (https://adafru.it/E9p) to communicate with the chip! esptool is the 'official'

programming tool and is the most common/complete way to program an ESP chip.

You will need to use the command line / Terminal to install and run esptool .

You will also need to have pip and Python installed (any version!)

Install the latest version using pip (you may be able to run pip without the 3

depending on your setup):

pip3 install --upgrade esptool

Then, you can run:

esptool.py

©Adafruit Industries Page 18 of 136

https://learn.adafruit.com//assets/96745
https://learn.adafruit.com//assets/96745
https://learn.adafruit.com//assets/96751
https://learn.adafruit.com//assets/96751
https://github.com/espressif/esptool
https://github.com/espressif/esptool

Run esptool.py in a new terminal/command line and verify you get something like

the below:

Run the following command, replacing the identifier after --port with the COMxx , /

dev/cu.usbmodemxx or /dev/ttySxx you found above.

esptool.py --port COM88 chip_id

You should get a notice that it connected over that port and found an ESP32-S2

You can now upload a binary file with the following command

esptool.py --port COM88 --after=no_reset write_flash 0x0 firmware.bin

don't forget to change the --port name to match, and the file name from

firmware.bin to whatever the firmware file name is.

For example, I downloaded CircuitPython .bin and programmed it thus:

Make sure you are running esptool v 3.0 or higher, which adds ESP32-S2 support

©Adafruit Industries Page 19 of 136

Once the data is verified, press the Reset button once more to launch the code you

just programmed in!

Web Serial ESPTool

The WebSerial ESPTool was designed to be a web-capable option for programming

ESP32-S2 boards. It allows you to erase the contents of the microcontroller and

program up to 4 files at different offsets.

This tool is a good alternative to folks who cannot run Python esptool.py on their

computer or are having difficulty installing or using esptool.py

Enabling Web Serial

You will have to use the Chrome browser

for this to work, Safari and Firefox, etc

are not supported because we need Web

Serial and only Chrome is supporting it to

the level needed.

At the time of this tutorial, you'll need to

enable the Serial API, which is really

easy.

Visit chrome://flags from within Chrome.

Find and enable the Experimental Web

Platform features

Restart Chrome

Connecting

Before you can use the tool, you will need to put your board in bootloader mode and

connect. Here are the steps:

©Adafruit Industries Page 20 of 136

https://learn.adafruit.com//assets/97441
https://learn.adafruit.com//assets/97441
https://learn.adafruit.com//assets/97896
https://learn.adafruit.com//assets/97896

In the Chrome browser visit https://

adafruit.github.io/

Adafruit_WebSerial_ESPTool/ (https://

adafru.it/PMB) it should look like the

image to the left

Enter the ROM bootloader by holding

down the BOOT0 button while clicking

Reset.

Press the Connect button in the top right

of the web browser. You will get a pop up

asking you to select the COM or Serial

port. You may want to remove all other

USB devices so only the ESP32-S2 board

is attached, that way there's no confusion

over multiple ports!

The Javascript code will now try to

connect to the ROM bootloader. It may

timeout for a bit until it succeeds. On

success, you will see that it is Connected

and will print out a unique MAC address

identifying the board.

©Adafruit Industries Page 21 of 136

https://learn.adafruit.com//assets/97641
https://learn.adafruit.com//assets/97641
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://learn.adafruit.com//assets/97442
https://learn.adafruit.com//assets/97442
https://learn.adafruit.com//assets/97440
https://learn.adafruit.com//assets/97440
https://learn.adafruit.com//assets/97443
https://learn.adafruit.com//assets/97443

Once you have successfully connected,

the command toolbar will appear.

Erasing the Contents

If you would like to erase the entire flash area so that you can start with a clean slate,

you can use the erase feature. We recommend doing this if you are having issues.

To erase the contents, click the Erase

button. You will be prompted whether

you want to continue. Click OK to

continue or if you changed your mind,

just click cancel.

Watch the log messages to see when it

has completed. Please do not disconnect

until it has finished.

©Adafruit Industries Page 22 of 136

https://learn.adafruit.com//assets/97654
https://learn.adafruit.com//assets/97654
https://learn.adafruit.com//assets/97656
https://learn.adafruit.com//assets/97656
https://learn.adafruit.com//assets/97645
https://learn.adafruit.com//assets/97645

Programming the Microcontroller

Programming the microcontroller can be done with up to 4 files at different locations,

but if we use the tinyuf2combo BIN file, which is available on the Install UF2

Bootloader page, we only need to use 1 file.

You can click on Choose a file... from any

of the available buttons. It will only

attempt to program buttons with a file

and a unique location. Then select the

Adafruit CircuitPython BIN files (not the

UF2 file!)

Verify that the Offset box next to the file

location you used is 0x0.

Once you choose a file, the button text

will change to match your filename. You

can then select the Program button to

start flashing.

A progress bar will appear and after a

minute or two, you will have written the

firmware. Press the Reset button to get

out of the ROM bootloader and you

should see a MAGTAGBOOT drive

(METROS2BOOT for the Metro) appear in

your computer file explorer/finder.

You're now ready to copy the

CircuitPython UF2 on to the drive which

will set up CircuitPython!

©Adafruit Industries Page 23 of 136

https://learn.adafruit.com//assets/97444
https://learn.adafruit.com//assets/97444
https://learn.adafruit.com//assets/97657
https://learn.adafruit.com//assets/97657
https://learn.adafruit.com//assets/97658
https://learn.adafruit.com//assets/97658

Install UF2 Bootloader

If you're familiar with our other products and chipsets you may be famliar with our

drag-n-drop bootloader, a.k.a UF2. We have a UF2 bootloader for the ESP32-S2, that

will let you drag firmware on/off a USB disk drive

However, thanks to the ROM bootloader, you don't have to worry about it if the UF2

bootloader is damaged. You can simply re-load the UF2 bootloader (USB-disk-style)

with the ROM bootloader (non-USB-drive)

Step 1. Get into the ROM bootloader and install esptool.py

See the previous page on how to do that! (https://adafru.it/OBc)

Step 2. Download the TinyUF2 release for your board

Choose the right release file from the list below. If your board is not explicitly

mentioned, find it in the "all boards" link. These links are to .zip files.

Latest MagTag TinyUF2 release

https://adafru.it/TSf

Latest Metro ESP32-S2 TinyUF2

release

https://adafru.it/TSf

After using the tool, press the reset button to get out of bootloader mode and

launch the new firmware!

Unlike the M0 (SAMD21) and M4 (SAMD51) boards, there is no bootloader

protection for the UF2 bootloader. That means it is possible to erase or damage

the bootloader, especially if you upload Arduino sketches to ESP32S2 boards

that doesn't "know" there's a bootloader it should not overwrite!

Installing a new bootloader will erase your MagTag! Be sure to back up your data

first.

©Adafruit Industries Page 24 of 136

https://learn.adafruit.com/adafruit-magtag/rom-bootloader
https://github.com/adafruit/tinyuf2/releases/latest/tinyuf2-adafruit_magtag_29gray-*.zip
https://github.com/adafruit/tinyuf2/releases/latest/tinyuf2-adafruit_metro_esp32s2-*.zip

Latest Adafruit FunHouse TinyUF2

release

https://adafru.it/TSf

Look here if your board is not one of the ones above:

Latest TinyUF2 release for all

boards

https://adafru.it/TSA

Step 3. Extract the combined.bin file from TinyUF2

release

The file you downloaded in Step 2 is a .zip file. Unzip it and find the combined.bin file.

Note that this file is 3MB but that's because the bootloader is near the end of the

available flash. It's not actually 3MB of program: mostof the file is empty but it's easier

to program if we give you one combined 'swiss cheese' file. Save this file to your

desktop or wherever you plan to run esptool from.

Step 4. Option A) Use esptool.py to upload

Put the board into bootloader mode (hold down BOOT0/DFU and click reset)

Determine the serial or COM port of the board

Run this command and replace the serial port name with your matching port and the

file you just downloaded

esptool.py -p COM88 write_flash 0x0 combined.bin

There might be a bit of a 'wait' when programming, where it doesn't seem like its

working. Give it a minute, it has to erase the old flash code which can cause it to

seem like its not running.

You'll finally get an output like this:

•

•

©Adafruit Industries Page 25 of 136

https://github.com/adafruit/tinyuf2/releases/latest/tinyuf2-adafruit_funhouse_esp32s2-*.zip
https://github.com/adafruit/tinyuf2/releases/latest/

Click RESET button to launch the bootloader. You'll see a new disk drive on your

computer with the name MAGTAGBOOT or similar

Step 4 Option B) Use the Web Serial ESPTool to upload

Another option if you are having trouble getting ESPTool running, is to use the Web

Serial ESPTool (https://adafru.it/Pdq) in this guide. This tool uses Web Serial to erase

or upload firmware to your board.

Welcome To CircuitPython

©Adafruit Industries Page 26 of 136

https://learn.adafruit.com/adafruit-magtag/web-serial-esptool
https://learn.adafruit.com/adafruit-magtag/web-serial-esptool

So, you've got a new CircuitPython compatible board. You plugged it in. Maybe it

showed up as a disk drive called CIRCUITPY. Maybe it didn't! Either way, you need to

know where to go from here. Well, this guide has you covered!

This guide will get you started with CircuitPython!

There are many amazing things about your new board. One of them is the ability to

run CircuitPython. You may have seen that name on the Adafruit site (https://adafru.it/

dAR) somewhere. Not sure what it is? This guide can help!

"But I've never coded in my life. There's no way I do it!" You absolutely can!

CircuitPython is designed to help you learn from the ground up. If you're new to

everything, this is the place to start!

This guide will walk you through how to get started with CircuitPython. You'll learn

how to install CircuitPython, get updated to the newest version of CircuitPython,

setup a serial connection, and edit your code. You'll learn some basics of how

CircuitPython works, and about the CircuitPython libraries. You'll also find a list of

frequently asked questions, and a series of troubleshooting steps if you run into any

issues.

Welcome to CircuitPython!

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

©Adafruit Industries Page 27 of 136

https://www.adafruit.com/

Download and Install Mu

Download Mu from https://

codewith.mu (https://adafru.it/Be6).

Click the Download link for downloads

and installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the

lower right corner of the window, next to

the "gear" icon. If the mode says

"Microbit" or something else, click the

Mode button in the upper left, and then

choose "CircuitPython" in the dialog box

that appears.

Mu attempts to auto-detect your board

on startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board

and ensure that the CIRCUITPY drive is

mounted before starting Mu.

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

©Adafruit Industries Page 28 of 136

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://codewith.mu/
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page (https://adafru.it/Vue) has more details. Otherwise,

make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux after

writing a file if you aren't using Mu. (This is not a problem on MacOS.)

©Adafruit Industries Page 29 of 136

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your

editor, and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example (https://adafru.it/UDU).

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 30 of 136

https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them,

and they're indented exactly the same

amount. All the lines before that have no

spaces before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

©Adafruit Industries Page 31 of 136

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on

your CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page (https://adafru.it/Vue) for details on

different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 32 of 136

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY

Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting (https://adafru.it/Den) page

of every board guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

©Adafruit Industries Page 33 of 136

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.t

xt, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

©Adafruit Industries Page 34 of 136

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen

here, letting you know no CircuitPython

board was found and indicating where

your code will be stored until you plug in

a board.

If you are using Windows 7, make sure

you installed the drivers (https://adafru.it/

VuB).

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

©Adafruit Industries Page 35 of 136

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the modemma

nager service might be interfering. Just remove it; it doesn't have much use unless

you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 36 of 136

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Serial Console on Linux (https://adafru.it/VAO) for details on how to add yourself to

the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. (https://adafru.it/AAH)

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. (https://adafru.it/

AAI)

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. (https:

//adafru.it/VAO)

Once connected, you'll see something like the following.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board
import digitalio
import time

©Adafruit Industries Page 37 of 136

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello, CircuitPython!")
 led.value = True
 time.sleep(1)
 led.value = False
 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello back to you!")
 led.value = True
 time.sleep(1)
 led.value = False
 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

©Adafruit Industries Page 38 of 136

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello back to you!")
 led.value = Tru
 time.sleep(1)
 led.value = False
 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

©Adafruit Industries Page 39 of 136

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

©Adafruit Industries Page 40 of 136

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

©Adafruit Industries Page 41 of 136

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

©Adafruit Industries Page 42 of 136

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

©Adafruit Industries Page 43 of 136

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 44 of 136

You can return to the REPL at any time!

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 45 of 136

https://circuitpython.org/downloads
https://circuitpython.org/libraries

CircuitPython libraries work in the same way as regular Python modules so the Python

docs (https://adafru.it/rar) are an excellent reference for how it all should work. In

Python terms, you can place our library files in the lib directory because it's part of the

Python path by default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

©Adafruit Industries Page 46 of 136

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

©Adafruit Industries Page 47 of 136

https://circuitpython.org/libraries
https://github.com/adafruit/CircuitPython_Community_Bundle/releases

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

©Adafruit Industries Page 48 of 136

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

•

•

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

©Adafruit Industries Page 49 of 136

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time
import board
import neopixel
import adafruit_lis3dh
import usb_hid
from adafruit_hid.consumer_control import ConsumerControl
from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

•

•

•

•

©Adafruit Industries Page 50 of 136

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL page (http

s://adafru.it/Awz) in this guide, the help("modules") command is discussed. This

command provides a list of all of the built-in modules available in CircuitPython for

your board. So, if you connect to the serial console on your board, and enter the

REPL, you can run help("modules") to see what modules are available for your

board. Then, as you read through the import statements, you can, for the purposes

of figuring out which libraries to load, ignore the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

©Adafruit Industries Page 51 of 136

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.LED)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

©Adafruit Industries Page 52 of 136

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportE

rror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

©Adafruit Industries Page 53 of 136

to resolve this issue. You'll find suggestions on the Troubleshooting page (https://

adafru.it/Den).

Updating CircuitPython Libraries and Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7

and 8.1 Drivers page (https://adafru.it/VuB) for details. You will not need to install

drivers on Mac, Linux or Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows

7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives

security updates. A free upgrade to Windows 10 is still available (https://adafru.it/

RWc).

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The

easiest way to determine which port the board is using is to first check without the

board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find

something already in that list with (COM#) after it where # is a number.

©Adafruit Industries Page 54 of 136

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

Now plug in your board. The Device Manager list will refresh and a new item will

appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the

list.

Sometimes the item will refer to the name of the board. Other times it may be called

something like USB Serial Device, as seen in the image above. Either way, there is a

new (COM#) following the name. This is the port your board is using.

©Adafruit Industries Page 55 of 136

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to

use PuTTY.

The first thing to do is download the latest version of PuTTY (https://adafru.it/Bf1).

You'll want to download the Windows installer file. It is most likely that you'll need the

64-bit version. Download the file and install the program on your machine. If you run

into issues, you can try downloading the 32-bit version instead. However, the 64-bit

version will work on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.

In the box under Serial line, enter the serial port you found that your board is

using.

In the box under Speed, enter 115200. This called the baud rate, which is the

speed in bits per second that data is sent over the serial connection. For boards

with built in USB it doesn't matter so much but for ESP8266 and other board

with a separate chip, the speed required by the board is 115200 bits per second.

So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete

a stored session. Enter a name in the box under Saved Sessions, and click the Save

button on the right.

•

•

•

©Adafruit Industries Page 56 of 136

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Once your settings are entered, you're ready to connect to the serial console. Click

"Open" at the bottom of the window. A new window will open.

If no code is running, the window will either be blank or will look like the window

above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

©Adafruit Industries Page 57 of 136

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or

extra software. You'll use a terminal program to find your board, and screen to

connect to it. Terminal and screen both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with

tty. . The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

different. In this case, you're asking to see all of the listings in /dev/ that start with t

ty. and end in anything. This will show us the current serial connections.

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

©Adafruit Industries Page 58 of 136

A new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodem

141441 part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of

this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You're going to use a command called screen . The screen command is

included with MacOS. To connect to the serial console, use Terminal. Type the

following command, replacing board_name with the name you found your board is

using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

©Adafruit Industries Page 59 of 136

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

I have to continue using CircuitPython 6.x or earlier.

Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 6.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest

version (https://adafru.it/Em8) and use the current version of the libraries (https://

adafru.it/ENC). However, if for some reason you cannot update, here are the last

available library bundles for older versions:

2.x bundle (https://adafru.it/FJA)

3.x bundle (https://adafru.it/FJB)

4.x bundle (https://adafru.it/QDL)

5.x bundle (https://adafru.it/QDJ)

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

•

•

•

•

©Adafruit Industries Page 60 of 136

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip

6.x bundle (https://adafru.it/Xmf)

Is ESP8266 or ESP32 supported in CircuitPython? Why

not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here (https://adafru.it/CiG)!

We do not support ESP32 because it does not have native USB.

We do support ESP32-S2, which has native USB.

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, check out this guide (https://adafru.it/

F5X) on using AirLift with CircuitPython. For further project examples, and guides

about using AirLift with specific hardware, check out the Adafruit Learn

System (https://adafru.it/VBr).

Is there asyncio support in CircuitPython?

There is preliminary support for asyncio starting with CircuitPython 7.1.0. Read

about using it in the Cooperative Multitasking in CircuitPython (https://adafru.it/

XnA) Guide.

My RGB NeoPixel/DotStar LED is blinking funny colors -

what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! (https://adafru.it/Den)

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

•

©Adafruit Industries Page 61 of 136

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://learn.adafruit.com/search?q=airlift
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24

What do I do when I encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle (https://adafru.it/uap) for

your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (https://

adafru.it/QDK). Builds are available for Windows, macOS, x64 Linux, and Raspberry

Pi Linux. Choose the latest mpy-cross whose version matches the version of

CircuitPython you are using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

©Adafruit Industries Page 62 of 136

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts. We do not have an

estimated time for when they will be included

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run

CircuitPython?

No.

Commonly Used Acronyms

CP or CPy = CircuitPython (https://adafru.it/KJD)

CPC = Circuit Playground Classic (https://adafru.it/ncE)

CPX = Circuit Playground Express (https://adafru.it/wpF)

CPB = Circuit Playground Bluefruit (https://adafru.it/Gpe)

ESP32-S2 Bugs & Limitations

Nobody likes bugs, but all nontrivial software and hardware has some. The master list

of problems is the Issues list on github (https://adafru.it/PEk).

Cannot reinitialize certain peripherals (especially

busio.I2C)

If you create a busio.I2C object, call .deinit() on it, and then create another

one, CircuitPython will lock up.

Workaround: Do not deinitialize I2C objects, except by soft reload or entering deep

sleep.

Adafruit considers CircuitPython for the ESP32-S2 to be beta quality software.

©Adafruit Industries Page 63 of 136

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3Aesp32s2++label%3Abug

No DAC-based audio output

Current versions of esp-idf do not have the required APIs for DAC-based audio

output. Once a future version of esp-idf that adds it, it will be possible to

implement DAC-based AudioOut in CircuitPython.

Workaround: PWMOut can create tones and buzzes.

Workaround: I2SOut audio is currently being developed and will work with boards

such as the Adafruit I2S Stereo Decoder - UDA1334A Breakout (https://adafru.it/

PEl).

Deep Sleep & Wake-up sources

ESP32-S2 has hardware limitations on what kind of "pin alarms" can wake it. The

following combinations are possible:

EITHER one or two pins that wake from deep sleep when they are pulled

LOW

OR an arbitrary number of pins that wake from deep sleep when they are

pulled HIGH, and optionally one pin that wakes from deep sleep when pulled

LOW

This means that "wake" buttons should be wired so that pressing them pulls HIGH

and a pull DOWN resistor is used with the pin. However, in some hardware designs

including the original MagTag, the integrated buttons are pulled LOW when

pressed and so only 1 or 2 buttons can be selected to wake the MagTag.

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

•

•

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 64 of 136

https://www.adafruit.com/product/3678
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Always Run the Latest Version of

CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. (https:

//adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle (http

s://adafru.it/ENC).

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

I have to continue using CircuitPython 5.x or earlier.

Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version (http

s://adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).

However, if for some reason you cannot update, links to the previous bundles are

available in the FAQ (https://adafru.it/FwY).

Bootloader (boardnameBOOT) Drive Not

Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader (https://adafru.it/zbX)installed. The Feather M0 Basic, Feather M0

Adalogger, and similar boards use a regular Arduino-compatible bootloader, which

does not show a boardnameBOOT drive.

©Adafruit Industries Page 65 of 136

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground

Express, press the reset button just once to get the CPLAYBOOT drive to show up.

Pressing it twice will not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here (https://adafru.it/VuB).

It is recommended (https://adafru.it/Amd) that you upgrade to Windows 10 if possible;

an upgrade is probably still free for you. Check here (https://adafru.it/Amd).

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit

Discord () if this does not work for you!

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A

new release of the drivers is in process.

©Adafruit Industries Page 66 of 136

file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord
https://adafru.it/discord

Windows Explorer Locks Up When

Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive

Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

•

•

•

•

©Adafruit Industries Page 67 of 136

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended (https://adafru.it/Amd) that you upgrade

to Windows 10 if possible; an upgrade is probably still free for you: see this link (https

://adafru.it/V2a).

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool (http

s://adafru.it/RWd). Download and unzip the tool. Unplug all the boards and other USB

devices you want to clean up. Run the tool as Administrator. You will see a listing like

this, probably with many more devices. It is listing all the USB devices that are not

currently attached.

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying

Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

©Adafruit Industries Page 68 of 136

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
 File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

©Adafruit Industries Page 69 of 136

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " (https://adafru.it/XDZ)Acr

onis Managed Machine Service Mini" (https://adafru.it/XDZ).

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.disable_autoreload()

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing reset

during this time will restart the board and then enter safe mode. On Bluetooth

capable boards, after the yellow blinks, there will be a set of faster blue blinks.

Pressing reset during the BLUE blinks will clear Bluetooth information and start the

device in discoverable mode, so it can be used with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

•

•

©Adafruit Industries Page 70 of 136

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 71 of 136

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

Serial console showing ValueError:
Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle (https://adafru.it/y8E).

•

•

•

©Adafruit Industries Page 72 of 136

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

©Adafruit Industries Page 73 of 136

Entering Safe Mode in CircuitPython 7.x

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

©Adafruit Industries Page 74 of 136

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version (https://adafru.it/Amd) to do this.

Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal

program.

Type the following into the REPL:

>>> import storage
>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

1.

2.

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 75 of 136

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

https://adafru.it/AdI

Feather M0 Express

https://adafru.it/AdJ

Feather M4 Express

https://adafru.it/EVK

Metro M0 Express

https://adafru.it/AdK

Metro M4 Express QSPI Eraser

https://adafru.it/EoM

Trellis M4 Express (QSPI)

https://adafru.it/DjD

Grand Central M4 Express (QSPI)

https://adafru.it/DBA

PyPortal M4 Express (QSPI)

https://adafru.it/Eca

Circuit Playground Bluefruit (QSPI)

https://adafru.it/Gnc

Monster M4SK (QSPI)

https://adafru.it/GAN

©Adafruit Industries Page 76 of 136

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433

PyBadge/PyGamer QSPI Eraser.UF2

https://adafru.it/GAO

CLUE_Flash_Erase.UF2

https://adafru.it/Jat

Matrix_Portal_M4_(QSPI).UF2

https://adafru.it/Q5B

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd). You'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

©Adafruit Industries Page 77 of 136

https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython

 1. Download the erase file:

SAMD21 non-Express Boards

https://adafru.it/VB-

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd) YYou'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that do not have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (https://adafru.it/Bed),

which will erase and re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-

Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

©Adafruit Industries Page 78 of 136

https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

©Adafruit Industries Page 79 of 136

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal

commands that stop hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

©Adafruit Industries Page 80 of 136

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !
cp -X file_name.mpy /Volumes/CIRCUITPY/lib
This is safer, and will complain if a lib folder does not exist.
cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

©Adafruit Industries Page 81 of 136

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

©Adafruit Industries Page 82 of 136

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

©Adafruit Industries Page 83 of 136

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

©Adafruit Industries Page 84 of 136

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (https://adafru.it/KJD).

Everything you need to get started with your new microcontroller and beyond is

available. You can do things like download CircuitPython for your microcontroller (htt

ps://adafru.it/Em8) or download the latest CircuitPython Library bundle (https://

adafru.it/ENC), or check out which single board computers support Blinka (https://

adafru.it/EA8). You can also get to various other CircuitPython related things like

Awesome CircuitPython or the Python for Microcontrollers newsletter. This is all

incredibly useful, but it isn't necessarily community related. So why is it included

here? The Contributing page (https://adafru.it/VD7).

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (https://adafru.it/VD7).

You'll find information pertaining to every Adafruit CircuitPython library GitHub

repository, giving you the opportunity to join the community by finding a contributing

option that works for you.

©Adafruit Industries Page 85 of 136

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing

Note the date on the page next to Current Status for:

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 86 of 136

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

©Adafruit Industries Page 87 of 136

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide (

https://adafru.it/Dkh) to walk you through the entire process. As well, there are always

folks available on Discord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

©Adafruit Industries Page 88 of 136

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord

incredibly important to provide the best experience possible for all users.

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page (https://adafru.it/VD7)

is an excellent place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (https://adafru.it/tB7), and

the CircuitPython libraries (https://adafru.it/VFv). If you need an account, visit https://

github.com/ (https://adafru.it/d6C) and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues (https://adafru.it/tBb)", and you'll find a list that includes issues labeled

"good first issue (https://adafru.it/Bef)". For the libraries, head over to the Contributing

page Issues list (https://adafru.it/VFv), and use the drop down menu to search for "go

od first issue (https://adafru.it/VFw)". These issues are things that have been identified

as something that someone with any level of experience can help with. These issues

include options like updating documentation, providing feedback, and fixing simple

bugs. If you need help getting started with GitHub, there is an excellent guide on Con

tributing to CircuitPython with Git and GitHub (https://adafru.it/Dkh).

©Adafruit Industries Page 89 of 136

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (https://adafru.it/tBb). For the libraries, file an

issue on the specific library repository on GitHub. Be sure to include the steps to

replicate the issue as well as any other information you think is relevant. The more

detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit

has wonderful paid support folks to answer any questions you may have. Whether

your hardware is giving you issues or your code doesn't seem to be working, the

forums are always there for you to ask. You need an Adafruit account to post to the

forums. You can use the same account you use to order from Adafruit.

©Adafruit Industries Page 90 of 136

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython (https://adafru.it/xXA) category under "Supported

Products & Projects" is the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs (https://adafru.it/Beg) is a an excellent resource for a more detailed

look at the CircuitPython core and the CircuitPython libraries. This is where you'll find

©Adafruit Industries Page 91 of 136

https://forums.adafruit.com/viewforum.php?f=60
https://circuitpython.readthedocs.io/

things like API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation (https://

adafru.it/VFx) page!

Install CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

Set Up CircuitPython

Follow the steps to get CircuitPython installed on your Metro ESP32-S2.

Download the latest CircuitPython

for your board from

circuitpython.org

https://adafru.it/OsB

Click the link above and download the

latest .BIN file.

Download and save it to your desktop (or

wherever is handy).

©Adafruit Industries Page 92 of 136

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_metro_esp32s2/
https://learn.adafruit.com//assets/96756
https://learn.adafruit.com//assets/96756

Plug your Metro ESP32-S2 into your

computer using a known-good USB

cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Follow the 6 steps listed in the Enter the

ROM Bootloader section of the ROM

Bootloader page (https://adafru.it/OsC) to

enter the bootloader.

Follow the initial steps found in the Run

esptool and check connection section of

the ROM Bootloader page (https://

adafru.it/OsC) to verify your environment

is set up, your board is successfully

connected, and which port it's using.

In the final command to write a binary file

to the board, replace the port with your

port, and replace "firmware.bin" with the

the file you downloaded above.

The output should look something like

the output in the image.

Press reset to exit the bootloader.

Your CIRCUITPY drive should appear!

You're all set!

©Adafruit Industries Page 93 of 136

https://learn.adafruit.com//assets/96757
https://learn.adafruit.com//assets/96757
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com//assets/96759
https://learn.adafruit.com//assets/96759
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#run-esptool-and-check-connection-3076823-5
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#run-esptool-and-check-connection-3076823-5
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#run-esptool-and-check-connection-3076823-5
https://learn.adafruit.com//assets/96760
https://learn.adafruit.com//assets/96760

CircuitPython Pin Names

CircuitPython for the Metro ESP32-S2 uses different pin names than you may be used

to. Many CircuitPython boards use the D prefix for digital pin names, such as D1 or

D12. The pin names for the Metro ESP32-S2 use the IO prefix, such as IO1 or IO12.

The pin numbers on the Metro ESP32-S2 match the ESP32-S2 'low level chip pin

numbers' that ESP32 users are most familiar with. The pins are not numbered like

other typical Metro-shaped boards, so where you may expect pin 0 to be, its actually

IO5.

We're not yet using D prefix names to avoid the confusion of having D-prefix names

not match the IO pins.

The following pins have both the standard CircuitPython pin name and the IOx pin

name available:

Analog pins A0-A5

Default I2C port SCL & SDA

Default SPI port SCK, MISO, MOSI

Default hardware Serial port RX, TX

LED (red LED)

NEOPIXEL (built in RGB LED)

Pin Name Diagram

The following diagram shows the standard CircuitPython pin names, the IO pin

names, the singleton names and the debug/DFU pins.

•

•

•

•

•

•

©Adafruit Industries Page 94 of 136

CircuitPython Internet Libraries

To use the internet-connectivity built into your ESP32-S2 with CircuitPython, you must

first install a number of libraries. This page covers that process.

Adafruit CircuitPython Library Bundle

Download the Adafruit CircuitPython Bundle. You can find the latest release here:

Download latest CircuitPython

Library Bundle

https://adafru.it/ENC

Download the adafruit-circuitpython-bundle-version-mpy-*.zip bundle zip file, and

unzip a folder of the same name. Inside you'll find a lib folder. The entire collection of

libraries is too large to fit on the CIRCUITPY drive. Instead, add each library as you

need it, this will reduce the space usage but you'll need to put in a little more effort.

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_requests.mpy - A requests-like library for HTTP commands.

•

©Adafruit Industries Page 95 of 136

https://circuitpython.org/libraries

neopixel.mpy - Helper library to use NeoPixel LEDs, often built into the boards

so they're great for quick feedback

Once you have added those files, please continue to the next page to set up and test

Internet connectivity

CircuitPython Internet Test

Once you have CircuitPython installed and the minimum libraries installed we can get

your board connected to the Internet.

To get connected, you will need to start by creating a secrets.py file.

Secrets File

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file, that is

in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share

your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : 'home_wifi_network',
 'password' : 'wifi_password',
 'aio_username' : 'my_adafruit_io_username',
 'aio_key' : 'my_adafruit_io_key',
 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones
 }

•

©Adafruit Industries Page 96 of 136

Copy and paste that text/code into a file called secrets.py and save it to your

CIRCUITPY folder like so:

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need to adjust the ssid and password for your local WiFi setup

so do that now!

As you make projects you may need more tokens and keys, just add them one line at

a time. See for example other tokens such as one for accessing github or the

hackaday API. Other non-secret data like your timezone can also go here, just cause

its called secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://

adafru.it/EcP) and remember that if your city is not listed, look for a city in the same

time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami

are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

Don't share your secrets.py file, it has your passwords and API keys in it!

©Adafruit Industries Page 97 of 136

http://worldtimeapi.org/timezones

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet using the

Requests module.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU).

adafruit_requests

neopixel

Before continuing make sure your board's CIRCUITPY/lib folder or root filesystem has

the above files copied over.

Once that's done, load up the following example using Mu or your favorite editor:

import ipaddress
import ssl
import wifi
import socketpool
import adafruit_requests

URLs to fetch from
TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_QUOTES_URL = "https://www.adafruit.com/api/quotes.php"
JSON_STARS_URL = "https://api.github.com/repos/adafruit/circuitpython"

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")

•

•

©Adafruit Industries Page 98 of 136

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

 raise

print("ESP32-S2 WebClient Test")

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

print("Available WiFi networks:")
for network in wifi.radio.start_scanning_networks():
 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),
 network.rssi, network.channel))
wifi.radio.stop_scanning_networks()

print("Connecting to %s"%secrets["ssid"])
wifi.radio.connect(secrets["ssid"], secrets["password"])
print("Connected to %s!"%secrets["ssid"])
print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")
print("Ping google.com: %f ms" % (wifi.radio.ping(ipv4)*1000))

pool = socketpool.SocketPool(wifi.radio)
requests = adafruit_requests.Session(pool, ssl.create_default_context())

print("Fetching text from", TEXT_URL)
response = requests.get(TEXT_URL)
print("-" * 40)
print(response.text)
print("-" * 40)

print("Fetching json from", JSON_QUOTES_URL)
response = requests.get(JSON_QUOTES_URL)
print("-" * 40)
print(response.json())
print("-" * 40)

print()

print("Fetching and parsing json from", JSON_STARS_URL)
response = requests.get(JSON_STARS_URL)
print("-" * 40)
print("CircuitPython GitHub Stars", response.json()["stargazers_count"])
print("-" * 40)

print("done")

And save it to your board. Make sure the file is named code.py.

Open up your REPL, you should see something like the following:

©Adafruit Industries Page 99 of 136

In order, the example code...

Checks the ESP32-S2's MAC address.

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

Performs a scan of all access points and prints out the access point's name (SSID),

signal strength (RSSI), and channel.

print("Avaliable WiFi networks:")
for network in wifi.radio.start_scanning_networks():
 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),
 network.rssi, network.channel))
wifi.radio.stop_scanning_networks()

Connects to the access point you defined in the secrets.py file, prints out its local IP

address, and attempts to ping google.com to check its network connectivity.

print("Connecting to %s"%secrets["ssid"])
wifi.radio.connect(secrets["ssid"], secrets["password"])
print(print("Connected to %s!"%secrets["ssid"]))
print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")
print("Ping google.com: %f ms" % wifi.radio.ping(ipv4))

©Adafruit Industries Page 100 of 136

The code creates a socketpool using the wifi radio's available sockets. This is

performed so we don't need to re-use sockets. Then, it initializes a a new instance of

the requests (https://adafru.it/E9o) interface - which makes getting data from the

internet really really easy.

pool = socketpool.SocketPool(wifi.radio)
requests = adafruit_requests.Session(pool, ssl.create_default_context())

To read in plain-text from a web URL, call requests.get - you may pass in either a

http, or a https url for SSL connectivity.

print("Fetching text from", TEXT_URL)
response = requests.get(TEXT_URL)
print("-" * 40)
print(response.text)
print("-" * 40)

Requests can also display a JSON-formatted response from a web URL using a call to

requests.get .

print("Fetching json from", JSON_QUOTES_URL)
response = requests.get(JSON_QUOTES_URL)
print("-" * 40)
print(response.json())
print("-" * 40)

Finally, you can fetch and parse a JSON URL using requests.get . This code snippet

obtains the stargazers_count field from a call to the GitHub API.

print("Fetching and parsing json from", JSON_STARS_URL)
response = requests.get(JSON_STARS_URL)
print("-" * 40)
print("CircuitPython GitHub Stars", response.json()["stargazers_count"])
print("-" * 40)

OK you now have your ESP32-S2 board set up with a proper secrets.py file and can

connect over the Internet. If not, check that your secrets.py file has the right ssid and

password and retrace your steps until you get the Internet connectivity working!

Getting The Date & Time

A very common need for projects is to know the current date and time. Especially

when you want to deep sleep until an event, or you want to change your display

based on what day, time, date, etc. it is

©Adafruit Industries Page 101 of 136

http://docs.python-requests.org/en/master/

Determining the correct local time is really really hard. There are various time zones,

Daylight Savings dates, leap seconds, etc. Trying to get NTP time and then back-

calculating what the local time is, is extraordinarily hard on a microcontroller just isn't

worth the effort and it will get out of sync as laws change anyways.

For that reason, we have the free adafruit.io time service. Free for anyone, with a free

adafruit.io account. You do need an account because we have to keep accidentally

mis-programmed-board from overwhelming adafruit.io and lock them out temporarily.

Again, it's free!

Step 1) Make an Adafruit account

It's free! Visit https://accounts.adafruit.com/ (https://adafru.it/dyy) to register and make

an account if you do not already have one

Step 2) Sign into Adafruit IO

Head over to io.adafruit.com (https://adafru.it/fsU) and click Sign In to log into IO using

your Adafruit account. It's free and fast to join.

Step 3) Get your Adafruit IO Key

Click on My Key in the top bar

You will get a popup with your Username and Key (In this screenshot, we've covered it

with red blocks)

There are other services like WorldTimeAPI, but we don't use those for our

guides because they are nice people and we don't want to accidentally overload

their site. Also, there's a chance it may eventually go down or also require an

account.

©Adafruit Industries Page 102 of 136

https://accounts.adafruit.com/
https://io.adafruit.com/

Go to your secrets.py file on your CIRCUITPY drive and add three lines for aio_user

name , aio_key and timezone so you get something like the following:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : 'home_wifi_network',
 'password' : 'wifi_password',
 'aio_username' : 'my_adafruit_io_username',
 'aio_key' : 'my_adafruit_io_key',
 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones
 }

The timezone is optional, if you don't have that entry, adafruit.io will guess your

timezone based on geographic IP address lookup. You can visit http://

worldtimeapi.org/timezones (https://adafru.it/EcP) to see all the time zones available

(even though we do not use worldtimeapi for time-keeping we do use the same time

zone table)

Step 4) Upload Test Python Code

This code is like the Internet Test code from before, but this time it will connect to

adafruit.io and get the local time

import ipaddress
import ssl
import wifi
import socketpool
import adafruit_requests
import secrets

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_QUOTES_URL = "https://www.adafruit.com/api/quotes.php"
JSON_STARS_URL = "https://api.github.com/repos/adafruit/circuitpython"

Get wifi details and more from a secrets.py file

©Adafruit Industries Page 103 of 136

http://worldtimeapi.org/timezones
http://worldtimeapi.org/timezones

try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

Get our username, key and desired timezone
aio_username = secrets["aio_username"]
aio_key = secrets["aio_key"]
location = secrets.get("timezone", None)
TIME_URL = "https://io.adafruit.com/api/v2/%s/integrations/time/strftime?x-aio-
key=%s" % (aio_username, aio_key)
TIME_URL += "&fmt=%25Y-%25m-%25d+%25H%3A%25M%3A%25S.%25L+%25j+%25u+%25z+%25Z"

print("ESP32-S2 Adafruit IO Time test")

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

print("Available WiFi networks:")
for network in wifi.radio.start_scanning_networks():
 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),
 network.rssi, network.channel))
wifi.radio.stop_scanning_networks()

print("Connecting to %s"%secrets["ssid"])
wifi.radio.connect(secrets["ssid"], secrets["password"])
print("Connected to %s!"%secrets["ssid"])
print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")
print("Ping google.com: %f ms" % wifi.radio.ping(ipv4))

pool = socketpool.SocketPool(wifi.radio)
requests = adafruit_requests.Session(pool, ssl.create_default_context())

print("Fetching text from", TIME_URL)
response = requests.get(TIME_URL)
print("-" * 40)
print(response.text)
print("-" * 40)

After running this, you will see something like the below text. We have blocked out

the part with the secret username and key data!

Note at the end you will get the date, time, and your timezone! If so, you have

correctly configured your secrets.py and can continue to the next steps!

©Adafruit Industries Page 104 of 136

CircuitPython Essentials

You've been introduced to CircuitPython, and worked through getting everything set

up. What's next? CircuitPython Essentials!

There are a number of core modules built into CircuitPython, which can be used along

side the many CircuitPython libraries available. The following pages demonstrate

some of these modules. Each page presents a different concept including a code

example with an explanation. All of the examples are designed to work with your

microcontroller board.

Time to get started learning the CircuitPython essentials!

Blink

In learning any programming language, you often begin with some sort of Hello,

World! program. In CircuitPython, Hello, World! is blinking an LED. Blink is one of the

simplest programs in CircuitPython. It involves three built-in modules, two lines of set

up, and a short loop. Despite its simplicity, it shows you many of the basic concepts

needed for most CircuitPython programs, and provides a solid basis for more complex

projects. Time to get blinky!

©Adafruit Industries Page 105 of 136

LED Location

The Built-in Red LED is located in the

upper right of the board below the OK

LED and has the number 42 to the left of

it.

Blinking an LED

Save the following as code.py on your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: Unlicense
"""CircuitPython Blink Example - the CircuitPython 'Hello, World!'"""
import time
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

The built-in LED begins blinking!

Note that the code is a little less "Pythonic" than it could be. It could also be written as

led.value = not led.value with a single time.sleep(0.5) . That way is more

difficult to understand if you're new to programming, so the example is a bit longer

than it needed to be to make it easier to read.

It's important to understand what is going on in this program.

First you import three modules: time , board and digitalio . This makes these

modules available for use in your code. All three are built-in to CircuitPython, so you

don't need to download anything to get started.

©Adafruit Industries Page 106 of 136

https://learn.adafruit.com//assets/106905
https://learn.adafruit.com//assets/106905

Next, you set up the LED. To interact with hardware in CircuitPython, your code must

let the board know where to look for the hardware and what to do with it. So, you

create a digitalio.DigitalInOut() object, provide it the LED pin using the boa

rd module, and save it to the variable led . Then, you tell the pin to act as an OUTP

UT .

Finally, you create a while True: loop. This means all the code inside the loop will

repeat indefinitely. Inside the loop, you set led.value = True which powers on the

LED. Then, you use time.sleep(0.5) to tell the code to wait half a second before

moving on to the next line. The next line sets led.value = False which turns the

LED off. Then you use another time.sleep(0.5) to wait half a second before

starting the loop over again.

With only a small update, you can control the blink speed. The blink speed is

controlled by the amount of time you tell the code to wait before moving on using ti

me.sleep() . The example uses 0.5 , which is one half of one second. Try increasing

or decreasing these values to see how the blinking changes.

That's all there is to blinking an LED using CircuitPython!

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino

IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download

https://adafru.it/f1P

The ESP32-S2 Arduino board support package is currently part of the 2.0.0 or later

release. To use the ESP32-S2 with Arduino, you'll need to follow the steps below for

your operating system. You can also check out the Espressif Arduino repository for

the most up to date details on how to install it (https://adafru.it/weF).

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File menu in Windows or Linux, or the Arduino menu on OS X.

©Adafruit Industries Page 107 of 136

http://www.arduino.cc/en/Main/Software
https://github.com/espressif/arduino-esp32#using-through-arduino-ide
https://github.com/espressif/arduino-esp32#using-through-arduino-ide

A dialog will pop up just like the one shown below.

We will be adding a URL to the new Additional Boards Manager URLs option. The list

of URLs is comma separated, and you will only have to add each URL once. New

Adafruit boards and updates to existing boards will automatically be picked up by the

Board Manager each time it is opened. The URLs point to index files that the Board

Manager uses to build the list of available & installed boards.

©Adafruit Industries Page 108 of 136

To find the most up to date list of URLs you can add, you can visit the list of third party

board URLs on the Arduino IDE wiki (https://adafru.it/f7U). We will only need to add

one URL to the IDE in this example, but you can add multiple URLS by separating

them with commas. Copy and paste the link below into the Additional Boards

Manager URLs option in the Arduino IDE preferences.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

If you have multiple boards you want to support, say ESP8266 and Adafruit, have

both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings.

The next step is to actually install the Board Support Package (BSP). Go to the Tools →

Board → Board Manager submenu. A dialog should come up with various BSPs.

Search for esp32.

Click the Install button and wait for it to finish. Once it is finished, you can close the

dialog.

©Adafruit Industries Page 109 of 136

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

In the Tools → Board submenu you should see ESP32 Arduino and in that dropdown it

should contain the ESP32 boards along with all the latest ESP32-S2 boards.

Look for the board called Adafruit Metro ESP32-S2.

Using with Arduino IDE

Blink

Now you can upload your first blink sketch!

Plug in the ESP32-S2 board and wait for it to be recognized by the OS (just takes a

few seconds).

©Adafruit Industries Page 110 of 136

Select ESP32-S2 Board in Arduino IDE

On the Arduino IDE, click:

Tools -> Board -> ESP32 Arduino -> Your

Adafruit ESP32-S2 board

The screenshot shows Metro S2 but you

may have a different board. Make sure

the name matches the exact product you

purchased. If you don't see your board,

make sure you have the latest version of

the ESP32 board support package

Launch ESP32-S2 ROM Bootloader

ESP32-S2 support in Arduino uses native USB which can crash. If you ever

DON'T see a serial/COM port, you can always manually enter bootloading mode.

This bootloader is in ROM, it is 'un-brickable' so you can always use this

technique to get into the bootloader. However, after uploading your Arduino

code you MUST press reset to start the sketch

©Adafruit Industries Page 111 of 136

https://learn.adafruit.com//assets/96985
https://learn.adafruit.com//assets/96985
https://learn.adafruit.com//assets/96986
https://learn.adafruit.com//assets/96986

Before we upload a sketch, place your

ESP32-S2 board into ROM bootloader

mode (https://adafru.it/OsC).

Look for the Reset button and a second

DFU / BOOT0 button

HOLD down the DFU/Boot0 button while

you click Reset. Then release DFU/Boot0

button

The GIF shows a Metro S2 but your

board may look different. It will still have

BOOT and Reset buttons somewhere

It should appear under Tools -> Port as ESP32-S2 Dev Module.

Load Blink Sketch

Now open up this Blink example in a new sketch window

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize built in LED pin as an output.
 pinMode(LED_BUILTIN, OUTPUT);
 // initialize USB serial converter so we have a port created
 Serial.begin();
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

Do not select any other port than the one that is called "ESP32S2 Dev Module"

©Adafruit Industries Page 112 of 136

https://learn.adafruit.com//assets/96987
https://learn.adafruit.com//assets/96987
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1
https://learn.adafruit.com/adafruit-metro-esp32-s2/rom-bootloader#enter-rom-bootloader-mode-3076820-1

 delay(1000); // wait for a second
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

And click upload! After uploading, you may see something like this:

And click upload! After uploading, you

may see something like this, warning you

that we could not get out of reset.

This is normal! Press the RESET button

on your board to launch the sketch

That's it, you will be able to see the red LED blink. You will also see a new serial port

created.

You may call Serial.begin(); in your sketch to create the serial port so don't

forget it, it is not required for other Arduinos or previous ESP boards!

You can now select the new serial port name which will be different than the

bootloader serial port. Arduino IDE will try to use auto-reset to automatically put the

board into bootloader mode when you ask it to upload new code

If you ever DON'T see a serial port, or something is not working out with upload you

can always manually enter bootloader mode:

Reset board into ROM bootloader with DFU/BOOT0 + Reset buttons

Note that we use LED_BUILTIN not pin 13 for the LED pin. That's because we

don't always use pin 13 for the LED on boards. For example, on the Metro ESP32-

S2 the LED is on pin 42!

•

©Adafruit Industries Page 113 of 136

https://learn.adafruit.com//assets/96990
https://learn.adafruit.com//assets/96990

Select the ESP32S2 Dev Board ROM bootloader serial port in Tools->Port menu

Upload sketch

Click reset button to launch code

WiFi Test

Thanksfully if you have ESP32 sketches, they'll 'just work' with ESP32-S2. You can find

a wide range of examples in the File->Examples->Examples for Adafruit Metro ESP32-

S2 subheading (the name of the board may vary so it could be "Examples for Adafruit

MagTag" etc)

Let's start by scanning the local networks.

Load up the WiFiScan example under Examples->Examples for Adafruit Metro ESP32-

S2->WiFi->WiFiScan

•

•

•

©Adafruit Industries Page 114 of 136

And upload this example to your board. The ESP32-S2 should scan and find WiFi

networks around you.

Don't forget you have to click Reset after uploading through the ROM bootloader.

Then select the new USB Serial port created by the ESP32-S2. It will take a few

seconds for the board to complete the scan.

If you can not scan any networks, check your power supply. You need a solid power

supply in order for the ESP32-S2 to not brown out. A skinny USB cable or drained

battery can cause issues.

WiFi Connection Test

Now that you can scan networks around you, its time to connect to the Internet!

Copy the example below and paste it into the Arduino IDE:

/*
 Web client

 This sketch connects to a website (wifitest.adafruit.com/testwifi/index.html)
 using the WiFi module.

 This example is written for a network using WPA encryption. For
 WEP or WPA, change the Wifi.begin() call accordingly.

 This example is written for a network using WPA encryption. For
 WEP or WPA, change the Wifi.begin() call accordingly.

 created 13 July 2010
 by dlf (Metodo2 srl)

©Adafruit Industries Page 115 of 136

 modified 31 May 2012
 by Tom Igoe
 */

#include <WiFi.h>

// Enter your WiFi SSID and password
char ssid[] = "YOUR_SSID"; // your network SSID (name)
char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or
use as key for WEP)
int keyIndex = 0; // your network key Index number (needed
only for WEP)

int status = WL_IDLE_STATUS;
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

char server[] = "wifitest.adafruit.com"; // name address for adafruit test
char path[] = "/testwifi/index.html";

// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 80 is default for HTTP):
WiFiClient client;

void setup() {
 //Initialize serial and wait for port to open:
 Serial.begin(9600);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for native USB port only
 }

 // attempt to connect to Wifi network:
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);

 WiFi.begin(ssid, pass);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }

 Serial.println("");
 Serial.println("Connected to WiFi");
 printWifiStatus();

 Serial.println("\nStarting connection to server...");
 // if you get a connection, report back via serial:
 if (client.connect(server, 80)) {
 Serial.println("connected to server");
 // Make a HTTP request:
 client.print("GET "); client.print(path); client.println(" HTTP/1.1");
 client.print("Host: "); client.println(server);
 client.println("Connection: close");
 client.println();
 }
}

void loop() {
 // if there are incoming bytes available
 // from the server, read them and print them:
 while (client.available()) {
 char c = client.read();
 Serial.write(c);
 }

 // if the server's disconnected, stop the client:
 if (!client.connected()) {

©Adafruit Industries Page 116 of 136

 Serial.println();
 Serial.println("disconnecting from server.");
 client.stop();

 // do nothing forevermore:
 while (true);
 }
}

void printWifiStatus() {
 // print the SSID of the network you're attached to:
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 // print your board's IP address:
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);

 // print the received signal strength:
 long rssi = WiFi.RSSI();
 Serial.print("signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
}

NOTE: You must change the SECRET_SSID and SECRET_PASS in the example code

to your WiFi SSID and password before uploading this to your board.

After you've set it correctly, upload and check the serial monitor. You should see the

following. If not, go back, check wiring, power and your SSID/password

©Adafruit Industries Page 117 of 136

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32-S2

has a great TLS/SSL stack so you can have that all taken care of for you. Here's an

example of a using a secure WiFi connection to connect to the Twitter API.

Copy and paste it into the Arduino IDE:

/*
This example creates a client object that connects and transfers
data using always SSL.

It is compatible with the methods normally related to plain
connections, like client.connect(host, port).

Written by Arturo Guadalupi
last revision November 2015

*/

#include <WiFiClientSecure.h>

// Enter your WiFi SSID and password
char ssid[] = "YOUR_SSID"; // your network SSID (name)
char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or
use as key for WEP)
int keyIndex = 0; // your network key Index number (needed

©Adafruit Industries Page 118 of 136

only for WEP)

int status = WL_IDLE_STATUS;
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

#define SERVER "cdn.syndication.twimg.com"

#define PATH "/widgets/followbutton/info.json?screen_names=adafruit"

// Initialize the SSL client library
// with the IP address and port of the server
// that you want to connect to (port 443 is default for HTTPS):
WiFiClientSecure client;

void setup() {
 //Initialize serial and wait for port to open:
 Serial.begin(9600);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for native USB port only
 }

 // attempt to connect to Wifi network:
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);

 WiFi.begin(ssid, pass);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }

 Serial.println("");
 Serial.println("Connected to WiFi");
 printWifiStatus();

 Serial.println("\nStarting connection to server...");
 // if you get a connection, report back via serial:
 if (client.connect(SERVER, 443)) {
 Serial.println("connected to server");
 // Make a HTTP request:
 client.println("GET " PATH " HTTP/1.1");
 client.println("Host: " SERVER);
 client.println("Connection: close");
 client.println();
 }
}

uint32_t bytes = 0;

void loop() {
 // if there are incoming bytes available
 // from the server, read them and print them:
 while (client.available()) {
 char c = client.read();
 Serial.write(c);
 bytes++;
 }

 // if the server's disconnected, stop the client:
 if (!client.connected()) {
 Serial.println();
 Serial.println("disconnecting from server.");
 client.stop();
 Serial.print("Read "); Serial.print(bytes); Serial.println(" bytes");

 // do nothing forevermore:
 while (true);
 }

©Adafruit Industries Page 119 of 136

}

void printWifiStatus() {
 // print the SSID of the network you're attached to:
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 // print your board's IP address:
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);

 // print the received signal strength:
 long rssi = WiFi.RSSI();
 Serial.print("signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
}

As before, update the ssid and password first, then upload the example to your board.

Note we use WiFiClientSecure client instead of WiFiClient client; to

require a SSL connection! This example will connect to a twitter server to download a

JSON snippet that says how many followers adafruit has

©Adafruit Industries Page 120 of 136

JSON Parsing Demo

This example is a little more advanced - many sites will have API's that give you JSON

data. We will build on the previous SSL example to connect to twitter and get that

JSON data chunk

Then we'll use ArduinoJSON (https://adafru.it/Evn) to convert that to a format we can

use and then display that data on the serial port (which can then be re-directed to a

display of some sort)

First up, use the Library manager to install ArduinoJSON (https://adafru.it/Evo).

Then load the example JSONdemo by copying the code below and pasting it into

your Arduino IDE.

/*
This example creates a client object that connects and transfers
data using always SSL, then shows how to parse a JSON document in an HTTP response.

It is compatible with the methods normally related to plain
connections, like client.connect(host, port).

Written by Arturo Guadalupi + Copyright Benoit Blanchon 2014-2019
last revision November 2015

*/

#include <WiFiClientSecure.h>

#include <ArduinoJson.h>

// uncomment the next line if you have a 128x32 OLED on the I2C pins
//#define USE_OLED

#if defined(USE_OLED)

 #include <Adafruit_SSD1306.h>
 Adafruit_SSD1306 display = Adafruit_SSD1306(128, 32, &Wire);
#endif

// Enter your WiFi SSID and password
char ssid[] = "YOUR_SSID"; // your network SSID (name)
char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or
use as key for WEP)
int keyIndex = 0; // your network key Index number (needed
only for WEP)

int status = WL_IDLE_STATUS;
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

#define SERVER "cdn.syndication.twimg.com"

#define PATH "/widgets/followbutton/info.json?screen_names=adafruit"

// Initialize the SSL client library
// with the IP address and port of the server
// that you want to connect to (port 443 is default for HTTPS):
WiFiClientSecure client;

©Adafruit Industries Page 121 of 136

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

void setup() {
 //Initialize serial and wait for port to open:
 Serial.begin(9600);

 #if defined(USE_OLED)
 if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3C for 128x32
 Serial.println(F("SSD1306 allocation failed"));
 for(;;); // Don't proceed, loop forever
 }
 display.display();
 display.setTextSize(1);
 display.setTextColor(WHITE);
 display.clearDisplay();
 display.setCursor(0,0);
 #else
 // Don't wait for serial if we have an OLED
 while (!Serial) {
 delay(10); // wait for serial port to connect. Needed for native USB port
only
 }
 #endif
 // attempt to connect to Wifi network:
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);
 #if defined(USE_OLED)
 display.clearDisplay(); display.setCursor(0,0);
 display.print("Connecting to SSID\n"); display.println(ssid);
 display.display();
 #endif

 // Connect to WPA/WPA2 network. Change this line if using open or WEP network:
 WiFi.begin(ssid, pass);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }

 Serial.println("");
 Serial.println("Connected to WiFi");

 #if defined(USE_OLED)
 display.print("...OK!");
 display.display();
 #endif

 printWifiStatus();

}

uint32_t bytes = 0;

void loop() {
 Serial.println("\nStarting connection to server...");
 #if defined(USE_OLED)
 display.clearDisplay(); display.setCursor(0,0);
 display.print("Connecting to "); display.print(SERVER);
 display.display();
 #endif

 // if you get a connection, report back via serial:
 if (client.connect(SERVER, 443)) {
 Serial.println("connected to server");
 // Make a HTTP request:
 client.println("GET " PATH " HTTP/1.1");
 client.println("Host: " SERVER);
 client.println("Connection: close");
 client.println();
 }

©Adafruit Industries Page 122 of 136

 // Check HTTP status
 char status[32] = {0};
 client.readBytesUntil('\r', status, sizeof(status));
 if (strcmp(status, "HTTP/1.1 200 OK") != 0) {
 Serial.print(F("Unexpected response: "));
 Serial.println(status);
 #if defined(USE_OLED)
 display.print("Connection failed, code: "); display.println(status);
 display.display();
 #endif

 return;
 }

 // wait until we get a double blank line
 client.find("\r\n\r\n", 4);

 // Allocate the JSON document
 // Use arduinojson.org/v6/assistant to compute the capacity.
 const size_t capacity = JSON_ARRAY_SIZE(1) + JSON_OBJECT_SIZE(8) + 200;
 DynamicJsonDocument doc(capacity);

 // Parse JSON object
 DeserializationError error = deserializeJson(doc, client);
 if (error) {
 Serial.print(F("deserializeJson() failed: "));
 Serial.println(error.c_str());
 return;
 }

 // Extract values
 JsonObject root_0 = doc[0];
 Serial.println(F("Response:"));
 const char* root_0_screen_name = root_0["screen_name"];
 long root_0_followers_count = root_0["followers_count"];

 Serial.print("Twitter username: "); Serial.println(root_0_screen_name);
 Serial.print("Twitter followers: "); Serial.println(root_0_followers_count);
 #if defined(USE_OLED)
 display.clearDisplay(); display.setCursor(0,0);
 display.setTextSize(2);
 display.println(root_0_screen_name);
 display.println(root_0_followers_count);
 display.display();
 display.setTextSize(1);
 #endif

 // Disconnect
 client.stop();

 delay(10000);
}

void printWifiStatus() {
 // print the SSID of the network you're attached to:
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 // print your board's IP address:
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);

 // print the received signal strength:
 long rssi = WiFi.RSSI();
 Serial.print("signal strength (RSSI):");

©Adafruit Industries Page 123 of 136

 Serial.print(rssi);
 Serial.println(" dBm");
}

By default it will connect to to the Twitter banner image API, parse the username and

followers, and display them.

Usage with Adafruit IO

The ESP32-S2 is an affordable, all-in-one, option for connecting your projects to the

internet using our IoT platform, Adafruit IO (https://adafru.it/Eg2).

For more information and guides about Adafruit IO, check out the Adafruit IO

Basics Series. (https://adafru.it/iDX)

Install Libraries

In the Arduino IDE, navigate to Sketch -> Include Library->Manage Libraries...

•

©Adafruit Industries Page 124 of 136

https://io.adafruit.com/welcome
https://learn.adafruit.com/series/adafruit-io-basics
https://learn.adafruit.com/series/adafruit-io-basics

Enter Adafruit IO Arduino into the search box, and click Install on the Adafruit IO

Arduino library option to install version 4.0.0 or higher.

When asked to install dependencies, click Install all.

Adafruit IO Setup

If you do not already have an Adafruit IO account, create one now (https://adafru.it/

fH9). Next, navigate to the Adafruit IO Dashboards page.

We'll create a dashboard to visualize and interact with the data being sent between

your ESP32-S2 board and Adafruit IO.

©Adafruit Industries Page 125 of 136

http://io.adafruit.com/

Click the New Dashboard button.

Name your dashboard My ESP32-

S2.

Your new dashboard should appear

in the list.

Click the link to be brought to your

new dashboard.

We'll want to turn the board's LED on or off from Adafruit IO. To do this, we'll need to

add a toggle button to our dashboard.

•

•

•

•

©Adafruit Industries Page 126 of 136

https://learn.adafruit.com//assets/97031
https://learn.adafruit.com//assets/97031
https://learn.adafruit.com//assets/97032
https://learn.adafruit.com//assets/97032
https://learn.adafruit.com//assets/97033
https://learn.adafruit.com//assets/97033

Click the cog at the top right hand

corner of your dashboard.

In the dashboard settings

dropdown, click Create New Block.

Select the toggle block.

Under My Feeds, enter led as a

feed name. Click Create.

Choose the led feed to connect it to

the toggle block. Click Next step.

•

•

•

•

•

©Adafruit Industries Page 127 of 136

https://learn.adafruit.com//assets/97038
https://learn.adafruit.com//assets/97038
https://learn.adafruit.com//assets/97039
https://learn.adafruit.com//assets/97039
https://learn.adafruit.com//assets/97040
https://learn.adafruit.com//assets/97040
https://learn.adafruit.com//assets/97041
https://learn.adafruit.com//assets/97041

Under Block Settings,

Change Button On Text to 1

Change Button Off Text to 0

Click Create block

Next up, we'll want to display button press data from your board on Adafruit IO. To do

this, we'll add a gauge block to the Adafruit IO dashboard. A gauge is a read only

block type that shows a fixed range of values.

•

•

•

©Adafruit Industries Page 128 of 136

https://learn.adafruit.com//assets/97044
https://learn.adafruit.com//assets/97044

Click the cog at the top right hand

corner of your dashboard.

In the dashboard settings

dropdown, click Create New Block.

Select the gauge block.

Under My Feeds, enter button as a

feed name.

Click Create.

Choose the button feed to connect

it to the toggle block.

Click Next step.

Under block settings,

Change Block Title to Button Value

Change Gauge Min Value to 0, the

button's state when it's off

Change Gauge Max Value to 1, the

button's state when it's on

Click Create block

•

•

•

•

◦

•

◦

•

•

•

•

©Adafruit Industries Page 129 of 136

https://learn.adafruit.com//assets/97046
https://learn.adafruit.com//assets/97046
https://learn.adafruit.com//assets/97047
https://learn.adafruit.com//assets/97047
https://learn.adafruit.com//assets/97048
https://learn.adafruit.com//assets/97048
https://learn.adafruit.com//assets/97049
https://learn.adafruit.com//assets/97049

Your dashboard should look like the following:

Code Usage

For this example, you will need to open the adafruitio_26_led_btn example included

with the Adafruit IO Arduino library. In the Arduino IDE, navigate to File -> Examples ->

Adafruit IO Arduino -> adafruitio_26_led_btn.

Before uploading this code to the ESP32-S2, you'll need to add your network and

Adafruit IO credentials. Click on the config.h tab in the sketch.

Obtain your Adafruit IO Credentials from navigating to io.adafruit.com and clicking My

Key (https://adafru.it/fsU). Copy and paste these credentials next to IO_USERNAME

and IO_KEY .

Enter your network credentials next to WIFI_SSID and WIFI_PASS .

©Adafruit Industries Page 130 of 136

https://io.adafruit.com/
https://io.adafruit.com/

Click the Upload button to upload your sketch to the ESP32-S2. After uploading, pres

s the RESET button on your board to launch the sketch.

Open the Arduino Serial monitor and navigate to the Adafruit IO dashboard you

created. You should see the gauge response to button press and the board's LED

light up in response to the Toggle Switch block.

You should also see the ESP32-S2's LED turning on and off when the LED is toggled:

©Adafruit Industries Page 131 of 136

Debugging with OpenOCD

It is possible to use a true step-and-

memory debugger using OpenOCD - you

will need an external debugger like a

JLink or FT2232 JTAG adapter

You can use an OpenOCD compatible debugging probe such as J-Link for source

level debugging of C and C++ code on the Adafruit Metro ESP32-S2. (However, I had

more luck with a J-link BASE than a J-Link EDU Mini and more consistent behavior

with the built in debugger of the Kaluga devkit than either)

SEGGER J-Link EDU Mini - JTAG/SWD

Debugger

Doing some serious development on any

ARM-based platform, and tired of 'printf'

plus an LED to debug? A proper JTAG/

SWD HW debugger can make debugging

more of a pleasure and...

https://www.adafruit.com/product/3571

Metro ESP32S2

First you'll need to solder on an SWD connector at the indicated location on the Metro

ESP32-S2 PCB. Note that the "key" of the box header must be on the same side as

the "pin 1" arrow. These are very fine pitch headers and can be difficult to solder. Any

solder bridges between the pins will prevent the connection from working.

©Adafruit Industries Page 132 of 136

https://learn.adafruit.com//assets/96952
https://learn.adafruit.com//assets/96952
https://www.adafruit.com/product/3571
https://www.adafruit.com/product/3571
https://www.adafruit.com/product/3571

SWD 0.05" Pitch Connector - 10 Pin SMT

Box Header

This 1.27mm pitch, 2x5 male SMT Box

Header is the same one used on our SWD

Cable Breakout Board. The header...

https://www.adafruit.com/product/752

Mini SWD 0.05" Pitch Connector - 10 Pin

SMT Box Header

We've carrying a new 1.27mm pitch

2x5 Mini SWD 0.05" Pitch Connector. It's a

tinier, bite-sized version of the

https://www.adafruit.com/product/4048

OpenOCD Setup

Next, you'll need the version of the Open On-Chip Debugger (OpenOCD) updated

with ESP32-S2 support by Espressif. If you have a CircuitPython build environment

available, just use the export.sh from your CircuitPython source directory. Otherwise,

you'll want to follow the official installation instructions (https://adafru.it/OBa) from

Espressif.

Verify that you have Espressif's version of OpenOCD--just look for "esp32" in the

version number, and make sure the date is at least as new as this one:

$ openocd --version

Open On-Chip Debugger v0.10.0-esp32-20200709 (2020-07-09-08:54)

You also need the correct debugger program, xtensa-esp32s2-elf-gdb , this

version or newer:

$ xtensa-esp32s2-elf-gdb --version

GNU gdb (crosstool-NG esp-2020r3) 8.1.0.20180627-git

©Adafruit Industries Page 133 of 136

https://www.adafruit.com/product/752
https://www.adafruit.com/product/752
https://www.adafruit.com/product/752
https://www.adafruit.com/product/4048
https://www.adafruit.com/product/4048
https://www.adafruit.com/product/4048
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html#setting-up-development-environment

In one terminal, start OpenOCD:

openocd -f 'interface/jlink.cfg' -f 'target/esp32s2.cfg' -c

'adapter_khz 2000'

In another terminal, start gdb and connect to OpenOCD:

$ xtensa-esp32s2-elf-gdb build-adafruit_metro_esp32s2/firmware.elf

(gdb) target remote :3333

Remote debugging using :3333

0x4001b800 in ?? ()

I have not had success programming the chip using gdb commands like load or

OpenOCD commands like program_esp . It's inconvenient but I still use esptool

when reprogramming the chip.

©Adafruit Industries Page 134 of 136

Downloads

Files:

ESP32-S2 product page with resources (https://adafru.it/OpE)

ESP32-S2 datasheet (https://adafru.it/OpF)

ESP32-S2 WROVER datasheet (https://adafru.it/Oqa)

ESP32-S2 Technical Reference (https://adafru.it/Oqb)

EagleCAD files on GitHub (https://adafru.it/Oqc)

3D Models on GitHub (https://adafru.it/OYA)

Fritzing object in the Adafruit Fritzing Library (https://adafru.it/Oqd)

Schematic and Fab Print

•

•

•

•

•

•

•

©Adafruit Industries Page 135 of 136

https://www.espressif.com/en/products/socs/esp32-s2
https://cdn-learn.adafruit.com/assets/assets/000/096/705/original/esp32-s2_datasheet_en.pdf?1604350607
https://cdn-learn.adafruit.com/assets/assets/000/096/706/original/esp32-s2_technical_reference_manual_en.pdf?1604350614
https://cdn-learn.adafruit.com/assets/assets/000/096/707/original/esp32-s2-wrover_esp32-s2-wrover-i_datasheet_en.pdf?1604350618
https://github.com/adafruit/Adafruit-Metro-ESP32-S2-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4775%20Metro%20ESP32-S2
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Metro%20ESP32-S2.fzpz

©Adafruit Industries Page 136 of 136

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Adafruit:

 4775

https://www.mouser.com/adafruit
https://www.mouser.com/access/?pn=4775

	Adafruit Metro ESP32-S2
	Table of Contents
	Overview
	Pinouts
	ROM Bootloader
	Web Serial ESPTool
	Install UF2 Bootloader
	Welcome To CircuitPython
	Installing the Mu Editor
	Creating and Editing Code
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Frequently Asked Questions
	ESP32-S2 Bugs & Limitations
	Troubleshooting
	Welcome to the Community!
	Install CircuitPython
	CircuitPython Pin Names
	CircuitPython Internet Libraries
	CircuitPython Internet Test
	Getting The Date & Time
	CircuitPython Essentials
	Blink
	Arduino IDE Setup
	Using with Arduino IDE
	WiFi Test
	Usage with Adafruit IO
	Debugging with OpenOCD
	Downloads

	Overview
	Pinouts
	Power
	Power Inputs
	Power Control
	Power Outputs
	ESP32-S2 WiFi Module
	Logic Pins
	LEDs and NeoPixel
	STEMMA QT
	UART Debug
	Reset and DFU
	JTAG Debug
	ROM Bootloader
	Enter ROM Bootloader Mode

	Run esptool and check connection
	Web Serial ESPTool
	Enabling Web Serial
	Connecting
	Erasing the Contents
	Programming the Microcontroller

	Install UF2 Bootloader
	Step 1. Get into the ROM bootloader and install esptool.py
	Step 2. Download the TinyUF2 release for your board
	Step 3. Extract the combined.bin file from TinyUF2 release
	Step 4. Option A) Use esptool.py to upload
	Step 4 Option B) Use the Web Serial ESPTool to upload

	Welcome To CircuitPython
	This guide will get you started with CircuitPython!

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle
	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle
	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board
	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Frequently Asked Questions
	I have to continue using CircuitPython 6.x or earlier. Where can I find compatible libraries?
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	How do I connect to the Internet with CircuitPython?
	Is there asyncio support in CircuitPython?
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Does CircuitPython support interrupts?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?
	Commonly Used Acronyms

	ESP32-S2 Bugs & Limitations
	Cannot reinitialize certain peripherals (especially busio.I2C)
	No DAC-based audio output
	Deep Sleep & Wake-up sources

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	Install CircuitPython
	Set Up CircuitPython

	CircuitPython Pin Names
	Pin Name Diagram
	CircuitPython Internet Libraries
	Adafruit CircuitPython Library Bundle

	CircuitPython Internet Test
	Secrets File
	Connect to WiFi

	Getting The Date & Time
	Step 1) Make an Adafruit account
	Step 2) Sign into Adafruit IO
	Step 3) Get your Adafruit IO Key
	Step 4) Upload Test Python Code

	CircuitPython Essentials
	Blink
	LED Location
	Blinking an LED

	Arduino IDE Setup
	Using with Arduino IDE
	Blink
	Select ESP32-S2 Board in Arduino IDE
	Launch ESP32-S2 ROM Bootloader
	Load Blink Sketch

	WiFi Test
	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Demo

	Usage with Adafruit IO
	Install Libraries
	Adafruit IO Setup
	Code Usage

	Debugging with OpenOCD
	Metro ESP32S2

	OpenOCD Setup
	Downloads
	Schematic and Fab Print

