
 

Adafruit FunHouse

Created by Melissa LeBlanc-Williams

 

https://learn.adafruit.com/adafruit-funhouse

Last updated on 2023-10-04 12:19:22 PM EDT

©Adafruit Industries Page 1 of 200



7

10

19

23

28

31

33

33

35

40

Table of Contents

Overview

Pinouts

• TFT Display and Display Connector

• Power

• ESP32-S2 WiFi Module

• DotStar LEDs and Red LED

• STEMMA QT

• Digital/Analog Connectors

• Speaker and Sensors

• Reset and Boot Buttons

• User Buttons

• Capacitive Touch Pads and Slider

• PIR Sensor Port

CircuitPython

• Set Up CircuitPython

• Option 1 - Load with UF2 Bootloader

• Option 2 - Use Chrome Browser To Upload BIN file

• Option 3 - Use esptool to load BIN file

CircuitPython Internet Test

• The settings.toml File

Getting The Date & Time

• Step 1) Make an Adafruit account

• Step 2) Sign into Adafruit IO

• Step 3) Get your Adafruit IO Key

• Step 4) Upload Test Python Code

FunHouse-Specific CircuitPython Libraries

• Get Latest Adafruit CircuitPython Bundle

• Secrets

Welcome To CircuitPython

• This guide will get you started with CircuitPython!

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

©Adafruit Industries Page 2 of 200



43

46

51

54

65

71

73

79

80

• Setting Permissions on Linux

• Using Something Else?

Interacting with the Serial Console

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

Advanced Serial Console on Windows

• Windows 7 and 8.1

• What's the COM?

• Install Putty

CircuitPython Libraries

• The Adafruit Learn Guide Project Bundle

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

• CircUp CLI Tool

CircuitPython Pins and Modules

• CircuitPython Pins

• import board

• I2C, SPI, and UART

• What Are All the Available Names?

• Microcontroller Pin Names

• CircuitPython Built-In Modules

Advanced Serial Console on Mac

• What's the Port?

• Connect with screen

Frequently Asked Questions

• Using Older Versions

• Python Arithmetic

• Wireless Connectivity

• Asyncio and Interrupts

• Status RGB LED

• Memory Issues

• Unsupported Hardware

ESP32-S2 Bugs & Limitations

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

©Adafruit Industries Page 3 of 200



98

107

107

109

112

117

120

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear or Disappears Quickly

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file 

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem() 

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards 

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

CircuitPython Essentials

Blink

• LED Location

• Blinking an LED

Digital Input

• LED and Button

• Controlling the LED with a Button

Built-In DotStar LEDs

• DotStar Location

• DotStar Color and Brightness

• RGB LED Colors

• DotStar Rainbow

CPU Temperature

• Microcontroller Location

• Reading the Microcontroller Temperature

Arduino IDE Setup

©Adafruit Industries Page 4 of 200



123

125

130

135

140

141

143

149

153

158

Arduino Libraries

• Install Libraries

• Adafruit DotStar

• Adafruit GFX

• Adafruit ST7735 and ST7789

• Adafruit ImageReader

• Adafruit AHTX0

• Adafruit DPS310

Arduino Basics

• Using the Red LED

• Reading the Buttons

• Reading the Capacitive Touch Pads

• Using On-Board DotStars

• Using On-board Humidity and Temperature Sensor

• Using On-board Pressure Sensor

• Using the TFT Display

Arduino Self Test Example

WipperSnapper Setup

• What is WipperSnapper

• Sign up for Adafruit.io

• Add a New Device to Adafruit IO

• Feedback

• Troubleshooting

• "Uninstalling" WipperSnapper 

WipperSnapper Essentials

LED Blink

• Where is the LED on my board?

• Create a LED Component on Adafruit IO

• Usage

DotStar LEDs

• Where are the DotStars on my board?

• Create a DotStar Component

• Set the DotStar's RGB Color

• Set DotStar Brightness

• DotStar FAQ

Read a Push-button

• Button Location

• Create a Push-button Component on Adafruit IO

Analog Input: Light Sensor

• Analog to Digital Converter (ADC)

• Light Sensor

• Where is the Light Sensor on my board?

• Create a Light Sensor Component

• Light Sensor Usage

I2C: On-board Sensors

• Where are the I2C sensors on my board?

©Adafruit Industries Page 5 of 200



165

169

172

184

185

188

• Create AHT20 Sensor Component

• Read I2C Sensor Values

• Create DPS310 Component

I2C: External Sensor

• Parts

• Wiring

• Add an MCP9808 Component

• Read I2C Sensor Values

Piezo Speaker

• Piezo Buzzer Location

• Create a Piezo Buzzer Component

• Modify the Note

Factory Reset

• Factory Reset Firmware UF2

• Factory Reset and Bootloader Repair

• Download .bin and Enter Bootloader

• Step 1. Download the factory-reset-and-bootloader.bin file

• Step 2. Enter ROM bootloader mode

• The WebSerial ESPTool Method

• Connect

• Erase the Contents

• Program the ESP32-S2/S3

• The esptool Method (for advanced users)

• Install ESPTool.py

• Test the Installation

• Connect

• Erase the Flash

• Installing the Bootloader

• Reset the board

• Older Versions of Chrome

• The Flash an Arduino Sketch Method

• Arduino IDE Setup

• Load the Blink Sketch

Install UF2 Bootloader

Downloads

• Files:

• Schematic

• Fab Print

(OLD) WipperSnapper Usage

• Blink a LED

• Read a Push-Button

• Read an I2C Sensor

• Going Further

©Adafruit Industries Page 6 of 200



Overview 

Home is where the heart is...it's also where we keep all our electronic bits. So why not

wire it up with sensors and actuators to turn our house into an electronic wonderland.

Whether it's tracking the environmental temperature and humidity in your laundry

room, or notifying you when someone is detected in the kitchen, to sensing when a

window was left open, or logging when your cat leaves through the pet door, this

board is designed to make it way easy to make WiFi-connected home automation

projects.

 

 

©Adafruit Industries Page 7 of 200



The main processor is the ESP32-S2, which has the advantage of the low cost and

power of the ESP32 with the flexibility of CircuitPython support thanks to native USB

support. There's also Arduino support for this chip, and many existing ESP32 projects

seem to run as-is. Note this chip does not have BLE support, but for WiFi projects its

great. You can use it to connect to IoT services or just the Internet in general, with SSL

support and this module has plenty of PSRAM for any kind of data processing.

The board is designed to make it easy to wire up sensors with little or no soldering.

There are built in sensors for light, pressure, humidity and temperature sensors. Three

JST PH plugs allow for quick connection of STEMMA boards () that use digital or

analog I/O, and there's a STEMMA QT port for any I2C devices. ()

 

 

©Adafruit Industries Page 8 of 200

https://www.adafruit.com/category/1019
https://www.adafruit.com/category/1019
https://www.adafruit.com/category/620


Here's what we included on this development board:

ESP32-S2 240MHz Tensilica processor - the next generation of ESP32, now with

native USB so it can act like a keyboard/mouse, MIDI device, disk drive, etc!

WROVER module has FCC/CE certification and comes with 4 MByte of Flash and

2 MByte of PSRAM - you can have huge data buffers

1.54" Color TFT display with 240x240 pixels (). This petite display is one of our

favorites, with SPI interface and a controllable backlight.

USB C power and data connector

Five mini RGB DotStar LEDs on the top, for animations or easily-visible

notification

Three buttons can be used to wake up the ESP32 from deep-sleep, or select

different modes

DPS310 () barometric pressure and temperature sensor

AHT20 () relative humidity and temperature sensor

Plug in socket for Mini PIR sensor () (not included)

Front facing light sensor 

Speaker/Buzzer can play tones and beeps for audible notification.

STEMMA QT port for attaching all sorts of I2C devices () 

Three STEMMA 3 pin JST connectors for attaching NeoPixels (), speakers (), serv

os () or relays ().

Three capacitive touch pads and one capacitive touch slider with 5 elements.

On/Off switch

Boot and Reset buttons for re-programming

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

 

©Adafruit Industries Page 9 of 200

https://www.adafruit.com/product/4421
https://www.adafruit.com/product/4494
https://www.adafruit.com/product/4566
https://www.adafruit.com/product/4871
https://www.adafruit.com/stemma
https://www.adafruit.com/product/3919
https://www.adafruit.com/product/3885
https://www.adafruit.com/product/4326
https://www.adafruit.com/product/4326
https://www.adafruit.com/product/4409


Pinouts 

The Funhouse has a display and so many great features. It's packed with buttons,

lights, connectors and sensors. Time to take a tour!

 

 

©Adafruit Industries Page 10 of 200



Click here to view a PDF version of the pinout diagram ()

TFT Display and Display Connector

 

 

Front and center is a 1.54" ST7789-based

IPS Wide Angle TFT Display with 240x240

pixels. Each pixel is 16-bit full color.

On the back, the display cable goes

through the board to the display

connector on the back.

 

©Adafruit Industries Page 11 of 200

https://github.com/adafruit/Adafruit-FunHouse-PCB/blob/main/Adafruit%20FunHouse%20ESP32-S2%20pinout.pdf
https://learn.adafruit.com//assets/101487
https://learn.adafruit.com//assets/101487
https://learn.adafruit.com//assets/101488
https://learn.adafruit.com//assets/101488


Power

 

 

USB C port - This is used for both

powering and programming the board. You

can power it with any USB C cable and will

request 5V from a USB C PD.

On/Off switch - This switch controls power

to the board. If you plug in your board and

nothing happens, make sure the switch is

flipped to "ON"!

ESP32-S2 WiFi Module

 

The ESP32-S2 WROVER module.

The ESP32-S2 is a highly-integrated, low-

power, 2.4 GHz Wi-Fi System-on-Chip

(SoC) solution that now has built-in native

USB as well as some other interesting new

technologies like Time of Flight distance

measurements. With its state-of-the-art

power and RF performance, this SoC is an

ideal choice for a wide variety of

application scenarios relating to

the Internet of Things (IoT) (), wearable

electronics (), and smart homes.

©Adafruit Industries Page 12 of 200

https://learn.adafruit.com//assets/101490
https://learn.adafruit.com//assets/101490
https://learn.adafruit.com//assets/101491
https://learn.adafruit.com//assets/101491
https://learn.adafruit.com//assets/101492
https://learn.adafruit.com//assets/101492
https://www.adafruit.com/category/342
https://www.adafruit.com/category/65
https://www.adafruit.com/category/65


Please note, this is a single-core 240 MHz chip, so it won't be as fast as ESP32's with

dual-core. Also, there is no Bluetooth support. However, we are super excited about

the ESP32-S2's native USB which unlocks a lot of capabilities for advanced

interfacing! This WROVER module comes with 4 MB flash and 2 MB PSRAM.

The 4 MB of flash is inside the module and is used for both program firmware and

filesystem storage. For example, in CircuitPython, we have 3 MB set aside for program

firmware (this includes two OTA option spots as well) and a 1MB section for

CircuitPython scripts and files.

DotStar LEDs and Red LED

 

DotStar LEDs and red LED.

On the front of the board, along the top,

are five addressable RGB DotStar LEDs, so

you can light up the display with any color

or pattern. You can use DOTSTAR_CLOCK

or GPIO15  for the Clock pin and 

DOTSTAR_DATA  or GPIO14  for the Data

pin to control the DotStars.

Below the display, and slightly to the right,

is a red LED positioned at the top right of

the FunHouse door. It is user-controllable

for blinky needs. You can blink this at any

time. This LED is attached to LED  or 

GPIO37 .

©Adafruit Industries Page 13 of 200

https://learn.adafruit.com//assets/101498
https://learn.adafruit.com//assets/101498


STEMMA QT

 

STEMMA QT () - This JST SH 4-pin

connector breaks out I2C (SCL, SDA, 3.3V,

GND). It allows you to connect to various

breakouts and sensors with STEMMA

QT connectors () or to other things

using assorted associated accessories ().

In CircuitPython, you can use the STEMMA

connector

with  board.SCL  and  board.SDA ,

or  board.STEMMA_I2C() .

Works great with any STEMMA QT or Qwiic

sensor/device

You can also use it with Grove I2C devices

thanks to this handy cable ()

©Adafruit Industries Page 14 of 200

https://learn.adafruit.com//assets/101497
https://learn.adafruit.com//assets/101497
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/product/4528
https://www.adafruit.com/product/4528


Digital/Analog Connectors

 

On the side are three connectors labeled 

A0, A1, and A2. These are STEMMA 3 pin

JST digital or analog connectors for

attaching NeoPixels (), speakers (), servos () or relays ().

These pins can be analog inputs or digital

I/O. They are connected to GPIO17  for 

A0 , GPIO2  for A1 , and GPIO1  for A2 .

All three connectors have protection 1K

resistors + 3.6V zener diodes so you can

drive an LED directly from the output. The

maximum current from these connectors is

200mA.

All three ports are 'true' analog outputs

and all three can be used for PWM as well

as analog inputs. The maximum input

voltage is 2.6V, after which the zener

diodes will kick in to drain excess voltage.

The power output is 5V by default, but a

jumper can be cut/soldered to change it to

3.3V.

©Adafruit Industries Page 15 of 200

https://learn.adafruit.com//assets/101499
https://learn.adafruit.com//assets/101499
https://www.adafruit.com/product/3919
https://www.adafruit.com/product/3885
https://www.adafruit.com/product/4326
https://www.adafruit.com/product/4409


Speaker and Sensors

 

Towards the middle of the board, at the

bottom right corner of the display, is

a speaker/buzzer labeled with a musical

note. This includes a mini class D amplifier

on DAC output GPIO42  and can play

tones or lo-fi audio clips.

In the bottom right corner of the board, on

the left side of the cutout region, is

a DPS310 pressure sensor, that can be

used to sense the barometric pressure It is

connected to the I2C port and available on

I2C address 0x77 .

Also in the bottom right corner of the

board, on the right side of the cutout

region, is an AHT20 Humidity and

Temperature sensor, that can be used to

sense the humidity and temperature. It is

connected to the I2C port and available on

I2C address 0x38 .

Below the display, and slightly to the left,

is a front-facing light sensor that is

positioned at the top left of the FunHouse

door. This is connected to GPIO18 .

Note: The light sensor is influenced by the display's backlight, use some tape to block

the light if needed. More info, and a great chart here ().

©Adafruit Industries Page 16 of 200

https://learn.adafruit.com//assets/101500
https://learn.adafruit.com//assets/101500
https://forums.adafruit.com/viewtopic.php?f=19&t=179236


Reset and Boot Buttons

 

 

Reset button - The reset button is on the

front below the display and to the right of

the FunHouse Door.

Boot button - The boot button is on the

back and situated between the Digital/

Analog Ports and the ESP32-S2 module.

This is connected to BOOT0 and can be

used to put the board into ROM

bootloader mode. To enter ROM

bootloader mode, hold down DFU button

while clicking reset button mentioned

above. When in the ROM bootloader, you

can upload code and query the chip

using  esptool .

User Buttons

 

On the front of the board, to the left of the

display, there are three user-controllable

buttons labeled arrows for the top and

bottom buttons. The buttons are

on  BUTTON_DOWN  or GPIO3 , 

BUTTON_SELECT  or GPIO4 , and 

BUTTON_UP  or GPIO5 . They can be used

to wake up the ESP32-S2 from deep-sleep,

or however you want to use them.

There are no pull-ups on board, use

internal pulldowns for these pins - when

the buttons are pressed the IO pin labeled

is set to HIGH

©Adafruit Industries Page 17 of 200

https://learn.adafruit.com//assets/101501
https://learn.adafruit.com//assets/101501
https://learn.adafruit.com//assets/101502
https://learn.adafruit.com//assets/101502
https://learn.adafruit.com//assets/101503
https://learn.adafruit.com//assets/101503


Capacitive Touch Pads and Slider

 

On the front of the board, to the left of the

display and along the top, there are three

capacitive touch pads with ravens on top 

labeled CT6, CT7, and CT8. The pads are

on CAP6  or  GPIO6 ,  CAP7  or  GPIO7 ,

and  CAP8  or  GPIO8 . They can be used

like buttons.

On the right side of the board, there is a

capacitive touch slider made up of 5

capacitive touch pads. It has a tree on top. 

The pads are

on CAP9  or  GPIO9 ,  CAP10  or  GPIO10 , 

CAP11  or  GPIO11 , CAP12  or  GPIO12 ,

and  CAP13  or  GPIO13 . They can be used

as separate buttons or a positional slider.

©Adafruit Industries Page 18 of 200

https://learn.adafruit.com//assets/101504
https://learn.adafruit.com//assets/101504


PIR Sensor Port

 

 

On the front of the FunHouse is a location

to add the PIR sensor. It is intended to be

inserted through the front and into the

connector on the back, but it could also

work from the back. When inserting, make

sure the + and - symbols match up with the

PIR sensor's markings or it will short out

the board.

The PIR sensor is connected to 

PIR_SENSE  or GPIO16 .

CircuitPython 

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation

and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and

edit files on the CIRCUITPY drive to iterate.

Set Up CircuitPython

Follow the steps to get CircuitPython installed on your FunHouse.

Download the latest CircuitPython

for your board from

circuitpython.org

©Adafruit Industries Page 19 of 200

https://learn.adafruit.com//assets/101505
https://learn.adafruit.com//assets/101505
https://learn.adafruit.com//assets/101506
https://learn.adafruit.com//assets/101506
https://github.com/adafruit/circuitpython
https://micropython.org/
https://circuitpython.org/board/adafruit_funhouse/


 

Click the link above and download the

latest .BIN and .UF2 file

(depending on how you program the

ESP32S2 board you may need one or the

other, might as well get both)

Download and save it to your desktop (or

wherever is handy).

 

Plug your FunHouse into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Option 1 - Load with UF2 Bootloader

This is by far the easiest way to load CircuitPython. However it requires your board

has the UF2 bootloader installed. Some early boards do not (we hadn't written UF2

yet!) - in which case you can load using the built in ROM bootloader.

Still, try this first!

 

Try Launching UF2 Bootloader

Loading CircuitPython by drag-n-drop UF2

bootloader is the easier way and we

recommend it.

©Adafruit Industries Page 20 of 200

https://learn.adafruit.com//assets/101512
https://learn.adafruit.com//assets/101512
https://learn.adafruit.com//assets/101513
https://learn.adafruit.com//assets/101513
https://learn.adafruit.com//assets/101514
https://learn.adafruit.com//assets/101514


 

Launch UF2 by double-clicking the Reset

button (the one next to the USB C port).

You may have to try a few times to get the

timing right.

About a half second pause between clicks

while the DotStars are purple seems to

work well.

 

If the UF2 bootloader is installed, you will

see a new disk drive appear

called HOUSEBOOT

 

Copy the UF2 file you downloaded at the

first step of this tutorial onto

the HOUSEBOOT drive

If you're using Windows and you get an error at the end of the file copy that says Erro

r from the file copy, Error 0x800701B1: A device which does not exist was specified. Y

ou can ignore this error, the bootloader sometimes disconnects without telling

Windows, the install completed just fine and you can continue. If its really annoying,

you can also upgrade the bootloader (the latest version of the UF2 bootloader fixes

this warning) ()

©Adafruit Industries Page 21 of 200

https://learn.adafruit.com//assets/101519
https://learn.adafruit.com//assets/101519
https://learn.adafruit.com//assets/101521
https://learn.adafruit.com//assets/101521
https://learn.adafruit.com//assets/101522
https://learn.adafruit.com//assets/101522
https://learn.adafruit.com/adafruit-funhouse/install-uf2-bootloader
https://learn.adafruit.com/adafruit-funhouse/install-uf2-bootloader
https://learn.adafruit.com/adafruit-funhouse/install-uf2-bootloader
https://learn.adafruit.com/adafruit-funhouse/install-uf2-bootloader


 

Your board should auto-reset into

CircuitPython, or you may need to press

reset. A CIRCUITPY drive will appear.

You're done! Go to the next pages.

Option 2 - Use Chrome Browser To Upload BIN file

The next best option is to try using the Chrome-browser version of esptool we have

written. This is handy if you don't have Python on your computer, or something is

really weird with your setup that makes esptool not run (which happens sometimes

and isn't worth debugging!) You can follow along on the Install UF2 Bootloader () page

and either load the UF2 bootloader and then come back to Option 1 on this page, or

you can download the CircuitPython BIN file directly using the tool in the same

manner as the bootloader.

Option 3 - Use esptool to load BIN file

For more advanced users, you can upload with esptool to the ROM (hardware)

bootloader instead!

You will need to do a full erase prior to uploading new firmware. 

©Adafruit Industries Page 22 of 200

https://learn.adafruit.com//assets/101523
https://learn.adafruit.com//assets/101523
https://learn.adafruit.com/adafruit-funhouse/install-uf2-bootloader


 

Follow the initial steps found in the Run

esptool and check connection section of

the Install UF2 Bootloader page () to verify

your environment is set up, your board is

successfully connected, and which port it's

using.

In the final command to write a binary file

to the board, replace the port with your

port, and replace "firmware.bin" with the

the file you downloaded above.

The output should look something like the

output in the image.

 

Press reset to exit the bootloader.

Your CIRCUITPY drive should appear!

You're all set! Go to the next pages.

CircuitPython Internet Test 

One of the great things about the ESP32 is the built-in WiFi capabilities. This page

covers the basics of getting connected using CircuitPython.

The first thing you need to do is update your code.py to the following. Click the Downl

oad Project Bundle button below to download the necessary libraries and the code.py

file in a zip file. Extract the contents of the zip file, and copy the entire lib folder and

the code.py file to your CIRCUITPY drive.

# SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries

#

# SPDX-License-Identifier: MIT

import os

import ipaddress

import ssl

import wifi

import socketpool

©Adafruit Industries Page 23 of 200

https://learn.adafruit.com//assets/101524
https://learn.adafruit.com//assets/101524
https://learn.adafruit.com/adafruit-funhouse/install-uf2-bootloader
https://learn.adafruit.com/adafruit-funhouse/install-uf2-bootloader
https://learn.adafruit.com/adafruit-funhouse/install-uf2-bootloader
https://learn.adafruit.com//assets/101525
https://learn.adafruit.com//assets/101525


import adafruit_requests

# URLs to fetch from

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_QUOTES_URL = "https://www.adafruit.com/api/quotes.php"

JSON_STARS_URL = "https://api.github.com/repos/adafruit/circuitpython"

print("ESP32-S2 WebClient Test")

print(f"My MAC address: {[hex(i) for i in wifi.radio.mac_address]}")

print("Available WiFi networks:")

for network in wifi.radio.start_scanning_networks():

    print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

                                             network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

print(f"Connecting to {os.getenv('CIRCUITPY_WIFI_SSID')}")

wifi.radio.connect(os.getenv("CIRCUITPY_WIFI_SSID"), 

os.getenv("CIRCUITPY_WIFI_PASSWORD"))

print(f"Connected to {os.getenv('CIRCUITPY_WIFI_SSID')}")

print(f"My IP address: {wifi.radio.ipv4_address}")

ping_ip = ipaddress.IPv4Address("8.8.8.8")

ping = wifi.radio.ping(ip=ping_ip)

# retry once if timed out

if ping is None:

    ping = wifi.radio.ping(ip=ping_ip)

if ping is None:

    print("Couldn't ping 'google.com' successfully")

else:

    # convert s to ms

    print(f"Pinging 'google.com' took: {ping * 1000} ms")

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

print(f"Fetching text from {TEXT_URL}")

response = requests.get(TEXT_URL)

print("-" * 40)

print(response.text)

print("-" * 40)

print(f"Fetching json from {JSON_QUOTES_URL}")

response = requests.get(JSON_QUOTES_URL)

print("-" * 40)

print(response.json())

print("-" * 40)

print()

print(f"Fetching and parsing json from {JSON_STARS_URL}")

response = requests.get(JSON_STARS_URL)

print("-" * 40)

print(f"CircuitPython GitHub Stars: {response.json()['stargazers_count']}")

print("-" * 40)

print("Done")

Your CIRCUITPY drive should resemble the following.

©Adafruit Industries Page 24 of 200



To get connected, the next thing you need to do is update the settings.toml file.

The settings.toml File

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a settings.toml file, that

is on your CIRCUITPY drive, to hold secret/private/custom data. That way you can

share your main project without worrying about accidentally sharing private stuff.

If you have a fresh install of CircuitPython on your board, the initial settings.toml file

on your CIRCUITPY drive is empty.

To get started, you can update the settings.toml on your CIRCUITPY drive to contain

the following code.

# SPDX-FileCopyrightText: 2023 Adafruit Industries

#

# SPDX-License-Identifier: MIT

# This is where you store the credentials necessary for your code.

# The associated demo only requires WiFi, but you can include any

# credentials here, such as Adafruit IO username and key, etc.

CIRCUITPY_WIFI_SSID = "your-wifi-ssid"

CIRCUITPY_WIFI_PASSWORD = "your-wifi-password"

This file should contain a series of Python variables, each assigned to a string. Each

variable should describe what it represents (say  wifi_ssid ), followed by an = (equal

s sign), followed by the data in the form of a Python string (such as "my-wifi-

password"  including the quote marks).

At a minimum you'll need to add/update your WiFi SSID and WiFi password, so do that

now!

 

©Adafruit Industries Page 25 of 200



As you make projects you may need more tokens and keys, just add them one line at

a time. See for example other tokens such as one for accessing GitHub or the

Hackaday API. Other non-secret data like your timezone can also go here.

For the correct time zone string, look at http://worldtimeapi.org/timezones () and

remember that if your city is not listed, look for a city in the same time zone, for

example Boston, New York, Philadelphia, Washington DC, and Miami are all on the

same time as New York.

Of course, don't share your settings.toml - keep that out of GitHub, Discord or other

project-sharing sites.

If you connect to the serial console, you should see something like the following:

In order, the example code...

Checks the ESP32's MAC address.

print(f"My MAC address: {[hex(i) for i in wifi.radio.mac_address]}")

Don't share your settings.toml file! It has your passwords and API keys in it! 

 

©Adafruit Industries Page 26 of 200

http://worldtimeapi.org/timezones


Performs a scan of all access points and prints out the access point's name (SSID),

signal strength (RSSI), and channel.

print("Available WiFi networks:")

for network in wifi.radio.start_scanning_networks():

    print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

                                             network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

Connects to the access point you defined in the settings.toml file, and prints out its

local IP address.

print(f"Connecting to {os.getenv('WIFI_SSID')}")

wifi.radio.connect(os.getenv("WIFI_SSID"), os.getenv("WIFI_PASSWORD"))

print(f"Connected to {os.getenv('WIFI_SSID')}")

print(f"My IP address: {wifi.radio.ipv4_address}")

Attempts to ping a Google DNS server to test connectivity. If a ping fails, it returns 

None . Initial pings can sometimes fail for various reasons. So, if the initial ping is

successful ( is not None ), it will print the echo speed in ms. If the initial ping fails, it

will try one more time to ping, and then print the returned value. If the second ping

fails, it will result in "Ping google.com: None ms"  being printed to the serial

console. Failure to ping does not always indicate a lack of connectivity, so the code

will continue to run.

ping_ip = ipaddress.IPv4Address("8.8.8.8")

ping = wifi.radio.ping(ip=ping_ip) * 1000

if ping is not None:

    print(f"Ping google.com: {ping} ms")

else:

    ping = wifi.radio.ping(ip=ping_ip)

    print(f"Ping google.com: {ping} ms")

The code creates a socketpool using the wifi radio's available sockets. This is

performed so we don't need to re-use sockets. Then, it initializes a a new instance of

the requests () interface - which makes getting data from the internet really really

easy.

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

To read in plain-text from a web URL, call requests.get  - you may pass in either a

http, or a https url for SSL connectivity. 

print(f"Fetching text from {TEXT_URL}")

response = requests.get(TEXT_URL)

print("-" * 40)

print(response.text)

print("-" * 40)

©Adafruit Industries Page 27 of 200

http://docs.python-requests.org/en/master/


Requests can also display a JSON-formatted response from a web URL using a call to 

requests.get . 

print(f"Fetching json from {JSON_QUOTES_URL}")

response = requests.get(JSON_QUOTES_URL)

print("-" * 40)

print(response.json())

print("-" * 40)

Finally, you can fetch and parse a JSON URL using requests.get . This code snippet

obtains the stargazers_count  field from a call to the GitHub API.

print(f"Fetching and parsing json from {JSON_STARS_URL}")

response = requests.get(JSON_STARS_URL)

print("-" * 40)

print(f"CircuitPython GitHub Stars: {response.json()['stargazers_count']}")

print("-" * 40)

OK you now have your ESP32 board set up with a proper settings.toml file and can

connect over the Internet. If not, check that your settings.toml file has the right SSID

and password and retrace your steps until you get the Internet connectivity working!

Getting The Date & Time 

A very common need for projects is to know the current date and time. Especially

when you want to deep sleep until an event, or you want to change your display

based on what day, time, date, etc. it is

Determining the correct local time is really really hard. There are various time zones,

Daylight Savings dates, leap seconds, etc. Trying to get NTP time and then back-

calculating what the local time is, is extraordinarily hard on a microcontroller just isn't

worth the effort and it will get out of sync as laws change anyways.

For that reason, we have the free adafruit.io time service. Free for anyone with a free

adafruit.io account. You do need an account because we have to keep accidentally

mis-programmed-board from overwhelming adafruit.io and lock them out temporarily.

Again, it's free!

There are other services like WorldTimeAPI, but we don't use those for our 

guides because they are nice people and we don't want to accidentally overload 

their site. Also, there's a chance it may eventually go down or also require an 

account. 

©Adafruit Industries Page 28 of 200



Step 1) Make an Adafruit account

It's free! Visit https://accounts.adafruit.com/ () to register and make an account if you

do not already have one

Step 2) Sign into Adafruit IO

Head over to io.adafruit.com () and click Sign In to log into IO using your Adafruit

account. It's free and fast to join.

Step 3) Get your Adafruit IO Key

Click on My Key in the top bar

You will get a popup with your Username and Key (In this screenshot, we've covered it

with red blocks)

Go to your secrets.py file on your CIRCUITPY drive and add three lines for 

aio_username , aio_key  and timezone  so you get something like the following:

# This file is where you keep secret settings, passwords, and tokens!

# If you put them in the code you risk committing that info or sharing it

secrets = {

    'ssid' : 'home_wifi_network',

    'password' : 'wifi_password',

    'aio_username' : 'my_adafruit_io_username',

    'aio_key' : 'my_adafruit_io_key',

    'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

    }

 

 

©Adafruit Industries Page 29 of 200

https://accounts.adafruit.com/
https://io.adafruit.com/


The timezone is optional, if you don't have that entry, adafruit.io will guess your

timezone based on geographic IP address lookup. You can visit http://

worldtimeapi.org/timezones () to see all the time zones available (even though we do

not use Worldtime for time-keeping, we do use the same time zone table).

Step 4) Upload Test Python Code

This code is like the Internet Test code from before, but this time it will connect to

adafruit.io and get the local time

import ipaddress

import ssl

import wifi

import socketpool

import adafruit_requests

import secrets

# Get wifi details and more from a secrets.py file

try:

    from secrets import secrets

except ImportError:

    print("WiFi secrets are kept in secrets.py, please add them there!")

    raise

# Get our username, key and desired timezone

aio_username = secrets["aio_username"]

aio_key = secrets["aio_key"]

location = secrets.get("timezone", None)

TIME_URL = "https://io.adafruit.com/api/v2/%s/integrations/time/strftime?x-aio-

key=%s&amp;tz=%s" % (aio_username, aio_key, location)

TIME_URL += "&amp;fmt=%25Y-%25m-%25d+%25H%3A%25M%3A%25S.%25L+%25j+%25u+%25z+%25Z"

print("ESP32-S2 Adafruit IO Time test")

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

print("Available WiFi networks:")

for network in wifi.radio.start_scanning_networks():

    print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

            network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

print("Connecting to %s"%secrets["ssid"])

wifi.radio.connect(secrets["ssid"], secrets["password"])

print("Connected to %s!"%secrets["ssid"])

print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")

print("Ping google.com: %f ms" % wifi.radio.ping(ipv4))

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

print("Fetching text from", TIME_URL)

response = requests.get(TIME_URL)

print("-" * 40)

print(response.text)

print("-" * 40)

©Adafruit Industries Page 30 of 200

http://worldtimeapi.org/timezones
http://worldtimeapi.org/timezones


After running this, you will see something like the below text. We have blocked out

the part with the secret username and key data!

Note at the end you will get the date, time, and your timezone! If so, you have

correctly configured your secrets.py and can continue to the next steps!

FunHouse-Specific CircuitPython Libraries 

To use all the amazing features of your FunHouse with CircuitPython, you must first

install a number of libraries. This page covers that process.

Get Latest Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

Download the latest Library Bundle

from circuitpython.org

Download the adafruit-circuitpython-bundle-version-mpy-*.zip bundle zip file, and

unzip a folder of the same name. Inside you'll find a lib folder. The entire collection of

libraries is too large to fit on the CIRCUITPY drive. Therefore, you'll need to copy the

necessary libraries to your board individually.

At a minimum, the following libraries are required. Copy the following folders or .mpy

files to the lib folder on your CIRCUITPY drive. If the library is a folder, copy the entire

folder to the lib folder on your board.

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

Library folders (copy the whole folder over to lib):

adafruit_funhouse - This is a helper library designed for using all of the features

of the FunHouse, including networking, buttons, DotStars, etc.

 

• 

©Adafruit Industries Page 31 of 200

https://circuitpython.org/libraries


adafruit_portalbase - This library is the base library that adafruit_funhouse is

built on top of.

adafruit_bitmap_font - There is fancy font support, and it's easy to make new

fonts. This library reads and parses font files.

adafruit_display_text - This library displays text on the screen.

adafruit_io - This library helps connect the FunHouse to our free data logging

and viewing service

adafruit_minimqtt - MQTT library required for communicating with the MQTT

Server

Library files:

adafruit_requests.mpy - This library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

adafruit_fakerequests.mpy  - This library allows you to create fake HTTP

requests by using local files.

adafruit_miniqr.mpy  - QR creation library lets us add easy-to-scan 2D barcodes

to the E-Ink display

adafruit_dotstar.mpy - This library is used to control the onboard DotStars.

simpleio.mpy - This library is used for tone generation.

adafruit_ahtx0.mpy - This is used for the Humidity and Temperature Sensor

adafruit_dps310.mpy- This is used for the Barometric Pressure Sensor

Secrets

Even if you aren't planning to go online with your FunHouse, you'll need to have a sec

rets.py file in the root directory (top level) of your CIRCUITPY drive. If you do not

intend to connect to wireless, it does not need to have valid data in it. Here's more

info on the secrets.py file ().

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 32 of 200

https://learn.adafruit.com/adafruit-magtag/internet-connect
https://learn.adafruit.com/adafruit-magtag/internet-connect


Welcome To CircuitPython 

So, you've got a new CircuitPython compatible board. You plugged it in. Maybe it

showed up as a disk drive called CIRCUITPY. Maybe it didn't! Either way, you need to

know where to go from here. Well, this guide has you covered!

This guide will get you started with CircuitPython!

There are many amazing things about your new board. One of them is the ability to

run CircuitPython. You may have seen that name on the Adafruit site () somewhere.

Not sure what it is? This guide can help!

"But I've never coded in my life. There's no way I do it!" You absolutely can!

CircuitPython is designed to help you learn from the ground up. If you're new to

everything, this is the place to start!

This guide will walk you through how to get started with CircuitPython. You'll learn

how to install CircuitPython, get updated to the newest version of CircuitPython,

setup a serial connection, and edit your code. You'll learn some basics of how

CircuitPython works, and about the CircuitPython libraries. You'll also find a list of

frequently asked questions, and a series of troubleshooting steps if you run into any

issues.

Welcome to CircuitPython!

Installing the Mu Editor 

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

 

©Adafruit Industries Page 33 of 200

https://www.adafruit.com/


console is built right in so you get immediate feedback from your board's serial

output!

Download and Install Mu

 

Download Mu from https://codewith.mu ().

Click the Download link for downloads and

installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

 

Starting Up Mu

 

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the lower

right corner of the window, next to the

"gear" icon. If the mode says "Microbit" or

something else, click the Mode button in

the upper left, and then choose

"CircuitPython" in the dialog box that

appears.

Mu is our recommended editor - please use it (unless you are an experienced 

coder with a favorite editor already!). 

Windows users: due to the nature of MSI installers, please remove old versions of 

Mu before installing the latest version. 

©Adafruit Industries Page 34 of 200

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681


 

Mu attempts to auto-detect your board on

startup, so if you do not have a

CircuitPython board plugged in with a 

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board and

ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

Creating and Editing Code 

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

 

©Adafruit Industries Page 35 of 200

https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679


If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page () has more details. Otherwise, make sure you do

"Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you

aren't using Mu. (This is not a problem on MacOS.)

Creating Code

 

Installing CircuitPython generates a 

code.py file on your CIRCUITPY drive. To

begin your own program, open your editor,

and load the code.py file from the 

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the 

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

    led.value = True

    time.sleep(0.5)

    led.value = False

    time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example ().

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is 

an addressable RGB NeoPixel LED. The above example will NOT work on the 

KB2040, QT Py or the Trinkeys! 

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the 

same. You can use the linked NeoPixel Blink example to follow along with this 

guide page. 

©Adafruit Industries Page 36 of 200

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py


 

It will look like this. Note that under the 

while True:  line, the next four lines

begin with four spaces to indent them, and

they're indented exactly the same amount.

All the lines before that have no spaces

before the text.

 

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB 

NeoPixel LED. 

©Adafruit Industries Page 37 of 200

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705


Editing Code

 

To edit code, open the code.py file on your

CIRCUITPY drive into your editor.

 

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page () for details on different editing options.

Don't click reset or unplug your board! 

If you are dragging a file from your host computer onto the CIRCUITPY drive, you 

still need to do step 2. Eject or Sync (below) to make sure the file is completely 

written. 

©Adafruit Industries Page 38 of 200

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors


2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the 

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY

Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting () page of every board

guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5  to 0.1 . The code

should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

    led.value = True

    time.sleep(0.1)

    led.value = False

    time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5  to 0.1  so it

looks like this:

while True:

    led.value = True

©Adafruit Industries Page 39 of 200

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting


    time.sleep(0.1)

    led.value = False

    time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1  to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.tx

t, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Connecting to the Serial Console 

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

©Adafruit Industries Page 40 of 200



troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

 

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen here,

letting you know no CircuitPython board

was found and indicating where your code

will be stored until you plug in a board.

If you are using Windows 7, make sure you

installed the drivers ().

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

 

 

©Adafruit Industries Page 41 of 200

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers


Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the 

modemmanager  service might be interfering. Just remove it; it doesn't have much use

unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

Serial Console on Linux () for details on how to add yourself to the right group.

If nothing appears in the serial console, it may mean your code is done running 

or has no print statements in it. Click into the serial console part of Mu, and press 

CTRL+D to reload. 

 

©Adafruit Industries Page 42 of 200

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux


Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. ()

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. ()

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. ()

Once connected, you'll see something like the following.

Interacting with the Serial Console 

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print  statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

    print("Hello, CircuitPython!")

    led.value = True

    time.sleep(1)

 

©Adafruit Industries Page 43 of 200

file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux


    led.value = False

    time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

    print("Hello back to you!")

    led.value = True

    time.sleep(1)

    led.value = False

    time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last):  is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

 

 

©Adafruit Industries Page 44 of 200



Delete the e  at the end of True  from the line led.value = True  so that it says le

d.value = Tru

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

    print("Hello back to you!")

    led.value = Tru

    time.sleep(1)

    led.value = False

    time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last):  is telling you that the last thing it was

able to run was line 10  in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

 

©Adafruit Industries Page 45 of 200



Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL 

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload.  Follow those

instructions, and press any key on your keyboard.

 

©Adafruit Industries Page 46 of 200



The Traceback (most recent call last):  is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

Regardless, once you press a key you'll see a >>>  prompt welcoming you to the

REPL!

If you have trouble getting to the >>>  prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

 

 

 

 

©Adafruit Industries Page 47 of 200



This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help()  next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`.  Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules")  into the REPL next to the prompt, and press enter.

 

 

 

 

©Adafruit Industries Page 48 of 200



This is a list of all the core modules built into CircuitPython, including board .

Remember, board  contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board  into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board)  into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

 

 

 

©Adafruit Industries Page 49 of 200



That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

 

Everything typed into the REPL is ephemeral. Once you reload the REPL or return 

to the serial console, nothing you typed will be retained in any memory space. So 

be sure to save any desired code you wrote somewhere else, or you'll lose it 

when you leave the current REPL instance! 

 

©Adafruit Industries Page 50 of 200



Advanced Serial Console on Windows 

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7

and 8.1 Drivers page () for details. You will not need to install drivers on Mac, Linux or

Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows

7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives

security updates. A free upgrade to Windows 10 is still available ().

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The

easiest way to determine which port the board is using is to first check without the

board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find

something already in that list with (COM#) after it where # is a number.

 

©Adafruit Industries Page 51 of 200

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/


Now plug in your board. The Device Manager list will refresh and a new item will

appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the

list.

Sometimes the item will refer to the name of the board. Other times it may be called

something like USB Serial Device, as seen in the image above. Either way, there is a

new (COM#) following the name. This is the port your board is using.

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to

use PuTTY.

The first thing to do is download the latest version of PuTTY (). You'll want to

download the Windows installer file. It is most likely that you'll need the 64-bit version.

Download the file and install the program on your machine. If you run into issues, you

can try downloading the 32-bit version instead. However, the 64-bit version will work

on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.

In the box under Serial line, enter the serial port you found that your board is

using.

In the box under Speed, enter 115200. This called the baud rate, which is the

speed in bits per second that data is sent over the serial connection. For boards

 

• 

• 

• 

©Adafruit Industries Page 52 of 200

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html


with built in USB it doesn't matter so much but for ESP8266 and other board

with a separate chip, the speed required by the board is 115200 bits per second.

So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete

a stored session. Enter a name in the box under Saved Sessions, and click the Save

button on the right.

Once your settings are entered, you're ready to connect to the serial console. Click

"Open" at the bottom of the window. A new window will open.

 

©Adafruit Industries Page 53 of 200



If no code is running, the window will either be blank or will look like the window

above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

CircuitPython Libraries 

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

 

As CircuitPython development continues and there are new releases, Adafruit 

will stop supporting older releases. Visit https://circuitpython.org/downloads to 

download the latest version of CircuitPython for your board. You must download 

the CircuitPython Library Bundle that matches your version of CircuitPython. 

Please update CircuitPython and then visit https://circuitpython.org/libraries to 

download the latest Library Bundle. 

©Adafruit Industries Page 54 of 200

https://circuitpython.org/downloads
https://circuitpython.org/libraries


CircuitPython libraries work in the same way as regular Python modules so the Python

docs () are an excellent reference for how it all should work. In Python terms, you can

place our library files in the lib directory because it's part of the Python path by

default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit Learn Guide Project Bundle

The quickest and easiest way to get going with a project from the Adafruit Learn

System is by utilising the Project Bundle. Most guides now have a Download Project

Bundle button available at the top of the full code example embed. This button

downloads all the necessary files, including images, etc., to get the guide project up

and running. Simply click, open the resulting zip, copy over the right files, and you're

good to go!

The first step is to find the Download Project Bundle button in the guide you're

working on.

 

©Adafruit Industries Page 55 of 200

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html


The Download Project Bundle button downloads a zip file. This zip contains a series

of directories, nested within which is the code.py, any applicable assets like images or

audio, and the lib/ folder containing all the necessary libraries. The following zip was

downloaded from the Piano in the Key of Lime guide.

The Download Project Bundle button is only available on full demo code 

embedded from GitHub in a Learn guide. Code snippets will NOT have the 

button available. 

 

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it 

will replace all the existing content! If you don't want to lose anything, ensure you 

copy your current code to your computer before you copy over the new Project 

Bundle content! 

 

The Piano in the Key of Lime guide was chosen as an example. That guide is 

specific to Circuit Playground Express, and cannot be used on all boards. Do not 

©Adafruit Industries Page 56 of 200



When you open the zip, you'll find some nested directories. Navigate through them

until you find what you need. You'll eventually find a directory for your CircuitPython

version (in this case, 7.x). In the version directory, you'll find the file and directory you

need: code.py and lib/. Once you find the content you need, you can copy it all over

to your CIRCUITPY drive, replacing any files already on the drive with the files from

the freshly downloaded zip.

Once you copy over all the relevant files, the project should begin running! If you find

that the project is not running as expected, make sure you've copied ALL of the

project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle. 

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

expect to download that exact bundle and have it work on your non-CPX 

microcontroller. 

In some cases, there will be other files such as audio or images in the same 

directory as code.py and lib/. Make sure you include all the files when you copy 

things over! 

©Adafruit Industries Page 57 of 200



Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library

Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

bundle version that matches your CircuitPython firmware version. If you don't know

©Adafruit Industries Page 58 of 200

https://circuitpython.org/libraries
https://github.com/adafruit/CircuitPython_Community_Bundle/releases


the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

 

 

 

• 

©Adafruit Industries Page 59 of 200



Provide an example base of code, that is easily built upon for individualized

purposes.

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import  statements. These typically look like the following:

import library_or_module

• 

 

If a library has multiple .mpy files contained in a folder, be sure to copy the entire 

folder to CIRCUITPY/lib. 

• 

©Adafruit Industries Page 60 of 200



However, import  statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try  / except

block, etc.

The important thing to know is that an import  statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import  statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

In the Interacting with the REPL section () on The REPL page () in this guide, the 

help("modules")  command is discussed. This command provides a list of all of the

built-in modules available in CircuitPython for your board. So, if you connect to the

serial console on your board, and enter the REPL, you can run help("modules")  to

see what modules are available for your board. Then, as you read through the impor

t  statements, you can, for the purposes of figuring out which libraries to load, ignore

the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

• 

• 

• 

©Adafruit Industries Page 61 of 200

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl


Now that you know what you're looking for, it's time to read through the import

statements. The first two, time  and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import  statements are

formatted like this, the first thing after the from  is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

 

©Adafruit Industries Page 62 of 200



There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError  printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError  Due to Missing

Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded.  This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

    led.value = True

    time.sleep(0.5)

    led.value = False

    time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

 

©Adafruit Industries Page 63 of 200



You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportEr

ror  if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

to resolve this issue. You'll find suggestions on the Troubleshooting page ().

Updating CircuitPython Libraries and

Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

 

©Adafruit Industries Page 64 of 200

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting


A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp () that can be used to

easily install and update libraries on your device. Follow the directions on the install

page within the CircUp learn guide (). Once you've got it installed you run the

command circup update  in a terminal to interactively update all libraries on the

connected CircuitPython device. See the usage page in the CircUp guide () for a full

list of functionality

CircuitPython Pins and Modules 

CircuitPython is designed to run on microcontrollers and allows you to interface with

all kinds of sensors, inputs and other hardware peripherals. There are tons of guides

showing how to wire up a circuit, and use CircuitPython to, for example, read data

from a sensor, or detect a button press. Most CircuitPython code includes hardware

setup which requires various modules, such as board  or digitalio . You import

these modules and then use them in your code. How does CircuitPython know to look

for hardware in the specific place you connected it, and where do these modules

come from?

This page explains both. You'll learn how CircuitPython finds the pins on your

microcontroller board, including how to find the available pins for your board and

what each pin is named. You'll also learn about the modules built into CircuitPython,

including how to find all the modules available for your board.

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,

you'll almost certainly be utilising pins. This section will cover how to access your

board's pins using CircuitPython, how to discover what pins and board-specific

objects are available in CircuitPython for your board, how to use the board-specific

objects, and how to determine all available pin names for a given pin on your board.

©Adafruit Industries Page 65 of 200

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage


import board  

When you're using any kind of hardware peripherals wired up to your microcontroller

board, the import list in your code will include import board . The board  module is

built into CircuitPython, and is used to provide access to a series of board-specific

objects, including pins. Take a look at your microcontroller board. You'll notice that

next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL

( >>> ) and run the following commands:

import board

dir(board)

Here is the output for the QT Py SAMD21. You may have a different board, and this list

will vary, based on the board.

The following pins have labels on the physical QT Py SAMD21 board: A0, A1, A2, A3,

SDA, SCL, TX, RX, SCK, MISO, and MOSI. You see that there are many more entries

available in board  than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to

be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button

or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py

SAMD21, pin A0 is labeled on the physical board silkscreen, but it is available in

CircuitPython as both A0  and D0 . For more information on finding all the names for a

given pin, see the What Are All the Available Pin Names? () section below.

The results of dir(board)  for CircuitPython compatible boards will look similar to

the results for the QT Py SAMD21 in terms of the pin names, e.g. A0, D0, etc.

However, some boards, for example, the Metro ESP32-S2, have different styled pin

names. Here is the output for the Metro ESP32-S2.

 

©Adafruit Industries Page 66 of 200

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14


Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins

on the physical board are labeled only with a number, so an easy way to know how to

access them in CircuitPython, is to run those commands in the REPL and find the pin

naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects

included: I2C , SPI , and UART  - each one is for the default pin-set used for each of

the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating

('creating') it. Instantiating an object means you are creating an instance of the object

with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio  module, it expects

two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,

if you were using the TSL2591 light sensor and its CircuitPython library, the next line

of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C  singleton in the boa

rd  module. Instead of the two lines of code above, you simply provide the singleton

as the I2C object. So if you were using the TSL2591 and its CircuitPython library, the

two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

 

If your code is failing to run because it can't find a pin name you provided, verify 

that you have the proper pin name by running these commands in the REPL. 

©Adafruit Industries Page 67 of 200



This eliminates the need for the busio  module, and simplifies the code. Behind the

scenes, the board.I2C()   object is instantiated when you call it, but not before, and

on subsequent calls, it returns the same object. Basically, it does not create an object

until you need it, and provides the same object every time you need it. You can call 

board.I2C()  as many times as you like, and it will always return the same object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,

however, typically, there's only one name labeled on the physical board. So how do

you find out what the other available pin names are? Simple, with the following script!

Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, first, connect to the serial console.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/Pin_Map_Script/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

# SPDX-FileCopyrightText: 2020 anecdata for Adafruit Industries

# SPDX-FileCopyrightText: 2021 Neradoc for Adafruit Industries

# SPDX-FileCopyrightText: 2021-2023 Kattni Rembor for Adafruit Industries

The board.I2C(), board.SPI(), and board.UART() singletons do not exist on all 

boards. They exist if there are board markings for the default pins for those 

devices. 

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often 

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your 

board documentation/pinout for the default busses. 

 

©Adafruit Industries Page 68 of 200



# SPDX-FileCopyrightText: 2023 Dan Halbert for Adafruit Industries

#

# SPDX-License-Identifier: MIT

"""CircuitPython Essentials Pin Map Script"""

import microcontroller

import board

try:

    import cyw43  # raspberrypi

except ImportError:

    cyw43 = None

board_pins = []

for pin in dir(microcontroller.pin):

    if (isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin) or

        (cyw43 and isinstance(getattr(microcontroller.pin, pin), cyw43.CywPin))):

        pins = []

        for alias in dir(board):

            if getattr(board, alias) is getattr(microcontroller.pin, pin):

                pins.append(f"board.{alias}")

        # Add the original GPIO name, in parentheses.

        if pins:

            # Only include pins that are in board.

            pins.append(f"({str(pin)})")

            board_pins.append(" ".join(pins))

for pins in sorted(board_pins):

    print(pins)

Here is the result when this script is run on QT Py SAMD21:

Each line represents a single pin. Find the line containing the pin name that's labeled

on the physical board, and you'll find the other names available for that pin. For

example, the first pin on the board is labeled A0. The first line in the output is board.

A0 board.D0 (PA02) . This means that you can access pin A0 in CircuitPython using

both board.A0  and board.D0 . 

The pins in parentheses are the microcontroller pin names. See the next section for

more info on those.

You'll notice there are two "pins" that aren't labeled on the board but appear in the

list: board.NEOPIXEL  and board.NEOPIXEL_POWER . Many boards have several of

these special pins that give you access to built-in board hardware, such as an LED or

an on-board sensor. The QT Py SAMD21 only has one on-board extra piece of

hardware, a NeoPixel LED, so there's only the one available in the list. But you can

 

©Adafruit Industries Page 69 of 200



also control whether or not power is applied to the NeoPixel, so there's a separate pin

for that.

That's all there is to figuring out the available names for a pin on a compatible

microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board  module are not the same

as the names of the pins on the microcontroller itself. The board pin names are

aliases to the microcontroller pin names. If you look at the datasheet for your

microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or

"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,

you'll need the microcontroller.pin  module. As with board , you can run dir(mi

crocontroller.pin)  in the REPL to receive a list of the microcontroller pin names.

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these

modules is always used in projects involving hardware. Often hardware requires

installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to

find board  or digitalio  in the same bundle, you'll come up lacking. So, where do

these modules come from? They're built into CircuitPython! You can find an

comprehensive list of built-in CircuitPython modules and the technical details of their

functionality from CircuitPython here () and the Python-like modules included here ().

However, not every module is available for every board due to size constraints or

hardware limitations. How do you find out what modules are available for your board?

There are two options for this. You can check the support matrix (), and search for

your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the

following command.

help("modules")

 

©Adafruit Industries Page 70 of 200

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#


That's it! You now know two ways to find all of the modules built into CircuitPython for

your compatible microcontroller board.

Advanced Serial Console on Mac 

Connecting to the serial console on Mac does not require installing any drivers or

extra software. You'll use a terminal program to find your board, and screen  to

connect to it. Terminal and screen  both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/  directory. It has a name that starts with

tty. . The command ls  shows you a list of items in a directory. You can use *  as a

wildcard, to search for files that start with the same letters but end in something

different. In this case, you're asking to see all of the listings in /dev/  that start with t

ty.  and end in anything. This will show us the current serial connections.

 

©Adafruit Industries Page 71 of 200



Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

A new listing has appeared called /dev/tty.usbmodem141441 . The  tty.usbmodem1

41441  part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0  part of

this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You're going to use a command called screen . The screen  command is

included with MacOS. To connect to the serial console, use Terminal. Type the

 

 

©Adafruit Industries Page 72 of 200



following command, replacing board_name  with the name you found your board is

using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen  command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Frequently Asked Questions 

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython ()

CPC = Circuit Playground Classic () (does not run CircuitPython)

CPX = Circuit Playground Express ()

CPB = Circuit Playground Bluefruit ()

 

©Adafruit Industries Page 73 of 200

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333


Using Older Versions

I have to continue using CircuitPython 7.x or earlier.

Where can I find compatible libraries? 

We are no longer building or supporting the CircuitPython 7.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest version ()

and use the current version of the libraries (). However, if for some reason you

cannot update, here are the last available library bundles for older versions:

2.x bundle () 

3.x bundle () 

4.x bundle () 

5.x bundle () 

6.x bundle () 

7.x bundle () 

Python Arithmetic

Does CircuitPython support floating-point numbers?

All CircuitPython boards support floating point arithmetic, even if the

microcontroller chip does not support floating point in hardware. Floating point

numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note

that this is two bits less than standard 32-bit single-precision floats. You will get

about 5-1/2 digits of decimal precision. 

(The broadcom port may provide 64-bit floats in some cases.)

As CircuitPython development continues and there are new releases, Adafruit 

will stop supporting older releases. Visit https://circuitpython.org/downloads to 

download the latest version of CircuitPython for your board. You must download 

the CircuitPython Library Bundle that matches your version of CircuitPython. 

Please update CircuitPython and then visit https://circuitpython.org/libraries to 

download the latest Library Bundle. 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 74 of 200

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20231003/adafruit-circuitpython-bundle-7.x-mpy-20231003.zip


Does CircuitPython support long integers, like regular

Python? 

Python long integers (integers of arbitrary size) are available on most builds, except

those on boards with the smallest available firmware size. On these boards,

integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards without an

external flash chip, such as the Adafruit Gemma M0, Trinket M0, QT Py M0, and the

Trinkey series. There are also a number of third-party boards in this category.

There are also a few small STM third-party boards without long integer support.

time.localtime() , time.mktime() , time.time() , and 

time.monotonic_ns()  are available only on builds with long integers.

Wireless Connectivity

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in  your project, your best bet is to use a board that is

running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can

check out this guide () on using AirLift with CircuitPython - extra wiring is required

and some boards like the MacroPad or NeoTrellis do not have enough available

pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,

check out the Adafruit Learn System ().

How do I do BLE (Bluetooth Low Energy) with

CircuitPython? 

The nRF52840 and nRF52833 boards have the most complete BLE

implementation. Your program can act as both a BLE central and peripheral. As a

central, you can scan for advertisements, and connect to an advertising board. As a

peripheral, you can advertise, and you can create services available to a central.

Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete () BLE

implementation. Your program can act as a central, and connect to a peripheral.

©Adafruit Industries Page 75 of 200

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926


You can advertise, but you cannot create services. You cannot advertise

anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note

that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with

AirLift () or other NINA-FW-based co-processors. Some boards have this

coprocessor on board, such as the PyPortal (). Currently, this implementation only

supports acting as a BLE peripheral. Scanning and connecting as a central are not

yet implemented. Bonding and pairing are not supported.

Are there other ways to communicate by radio with

CircuitPython? 

Check out Adafruit's RFM boards  ()for simple radio communication supported by

CircuitPython, which can be used over distances of 100m to over a km, depending

on the version. The RFM SAMD21 M0 boards can be used, but they were not

designed for CircuitPython, and have limited RAM and flash space; using the RFM

breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards except

the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in

CircuitPython () Guide.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio for

multitasking / 'threaded' control of your code

Status RGB LED

©Adafruit Industries Page 76 of 200

https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble
https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython


My RGB NeoPixel/DotStar LED is blinking funny colors -

what does it mean? 

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! ()

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import  too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a 

MemoryError  in the serial console.

What do I do when I encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle () for your version of

CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import  that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import  statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

©Adafruit Industries Page 77 of 200

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases


How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross  for your operating system from here (). Builds are

available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the

latest mpy-cross  whose version matches the version of CircuitPython you are

using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py  to create a 

yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why

not? 

We dropped ESP8266 support as of 4.x - For more information please read about it

here ()!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have

added a WiFi workflow for wireless coding! ()

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run

CircuitPython? 

No.

©Adafruit Industries Page 78 of 200

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start


ESP32-S2 Bugs & Limitations 

Nobody likes bugs, but all nontrivial software and hardware has some. The master list

of problems is the Issues list on github ().

I2C at 100 kHz bus frequency runs slowly

The default I2C bus clock speed is 100 kHz (100000) . At that rate, the ESP32-S2 

will leave 10ms () gaps between I2C transactions. This can slow down your I2C

interactions considerably, such as when you are controlling a stepper motor with a

PCA9685 controller.

Raising the I2C bus frequency to 125 kHz (125000) or higher fixes this problem. If

your I2C peripheral can handle higher frequencies, you can use 400 kHz (400000)

or even in some cases 1 MHz (1000000).

Note that board.I2C()  creates an I2C bus that runs at 100 kHz. The bus

frequency cannot be changed.. To create an I2C bus on the default I2C pins that

runs at a different frequency, you must use busio.I2C(board.SCL, board.SDA,

frequency=) .

No DAC-based audio output

Current versions of the ESP-IDF SDK do not have the required APIs for DAC-based

audio output.  Once a future version of ESP-IDF that adds it, it will be possible to

implement DAC-based AudioOut in CircuitPython.

Workaround: PWMOut can create tones and buzzes.

Workaround: I2SOut audio is currently being developed and will work with boards

such as the I2S 3W Class D Amplifier Breakout - MAX98357A ().

Deep Sleep & Wake-up sources

ESP32-S2 has hardware limitations on what kind of "pin alarms" can wake it. The

following combinations are possible:

EITHER one or two pins that wake from deep sleep when they are pulled

LOW

Adafruit considers CircuitPython for the ESP32-S2 to be beta quality software. 

• 

©Adafruit Industries Page 79 of 200

https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3Aesp32s2++label%3Abug
https://github.com/adafruit/circuitpython/issues/6263
https://www.adafruit.com/product/3006


OR an arbitrary number of pins that wake from deep sleep when they are

pulled HIGH, and optionally one pin that wakes from deep sleep when pulled

LOW

This means that "wake" buttons should be wired so that pressing them pulls HIGH

and a pull DOWN resistor is used with the pin. However, in some hardware designs

including the original MagTag, the integrated buttons are pulled LOW when

pressed and so only 1 or 2 buttons can be selected to wake the MagTag.

Troubleshooting 

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

Always Run the Latest Version of

CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. ().

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle ().

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross  from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

• 

As CircuitPython development continues and there are new releases, Adafruit 

will stop supporting older releases. Visit https://circuitpython.org/downloads to 

download the latest version of CircuitPython for your board. You must download 

the CircuitPython Library Bundle that matches your version of CircuitPython. 

Please update CircuitPython and then visit https://circuitpython.org/libraries to 

download the latest Library Bundle. 

©Adafruit Industries Page 80 of 200

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries


I have to continue using CircuitPython 5.x or earlier.

Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version () and

use the current version of the libraries (). However, if for some reason you cannot

update, links to the previous bundles are available in the FAQ ().

Bootloader (boardnameBOOT) Drive Not

Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader  ()installed. The Feather M0 Basic, Feather M0 Adalogger, and similar

boards use a regular Arduino-compatible bootloader, which does not show a boardna

meBOOT drive.

MakeCode

If you are running a MakeCode () program on Circuit Playground Express, press the

reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will

not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post () for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

©Adafruit Industries Page 81 of 200

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215


Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here ().

It is recommended () that you upgrade to Windows 10 if possible; an upgrade is

probably still free for you. Check here ().

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums () or on the Adafruit Discord () if this does

not work for you!

Windows Explorer Locks Up When

Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) . 

Windows 7 drivers for CircuitPython boards released since then, including 

RP2040 boards, are not yet available. The boards work fine on Windows 10. A 

new release of the drivers is in process. 

• 

• 

• 

• 

©Adafruit Industries Page 82 of 200

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord


Copying UF2 to boardnameBOOT Drive

Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

CIRCUITPY Drive Does Not Appear or

Disappears Quickly

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear () and the

BOOT drive to reappear. It is not clear what causes this behavior.

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended () that you upgrade to Windows 10 if

possible; an upgrade is probably still free for you: see this link ().

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool () (on

that page, scroll down to "Device Cleanup Tool"). Download and unzip the tool.

Unplug all the boards and other USB devices you want to clean up. Run the tool as

Administrator. You will see a listing like this, probably with many more devices. It is

listing all the USB devices that are not currently attached.

©Adafruit Industries Page 83 of 200

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html


Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying

Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

  File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

 

More complex errors take even more lines!

 

©Adafruit Industries Page 84 of 200



Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " ()Acronis Managed

Machine Service Mini" ().

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.runtime.autoreload = False

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

 

©Adafruit Industries Page 85 of 200

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder


Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later 

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the

RESET button (or on Espressif, the BOOT button) during this time will restart the board

and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there

will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear

Bluetooth information and start the device in discoverable mode, so it can be used

with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

• 

• 

• 

©Adafruit Industries Page 86 of 200



CircuitPython 6.3.0 and earlier 

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 87 of 200



and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

Serial console showing ValueError:

Incompatible .mpy file  

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle ().

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

 

©Adafruit Industries Page 88 of 200

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest


Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the 

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

©Adafruit Industries Page 89 of 200



Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot. 

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If 

possible, make a copy of your code before continuing. 

©Adafruit Industries Page 90 of 200



To erase CIRCUITPY: storage.erase_filesystem()  

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version () to do this.

Connect to the CircuitPython REPL () using Mu or a terminal program.

Type the following into the REPL:

&gt;&gt;&gt; import storage

&gt;&gt;&gt; storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

       1.  Download the correct erase file:

Circuit Playground Express

Feather M0 Express

Feather M4 Express

1. 

2. 

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY 

drive. The REPL method is explained above. 

©Adafruit Industries Page 91 of 200

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2


Metro M0 Express

Metro M4 Express QSPI Eraser

Trellis M4 Express (QSPI)

Grand Central M4 Express (QSPI)

PyPortal M4 Express (QSPI)

Circuit Playground Bluefruit (QSPI)

Monster M4SK (QSPI)

PyBadge/PyGamer QSPI Eraser.UF2

CLUE_Flash_Erase.UF2

Matrix_Portal_M4_(QSPI).UF2

RP2040 boards (flash_nuke.uf2)

       2.  Double-click the reset button on the board to bring up the boardnameBOOT

drive.

       3.  Drag the erase .uf2 file to the boardnameBOOT drive.

       4.  The status LED will turn yellow or blue, indicating the erase has started.

       5.  After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

       6.  Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

       7.  Drag the appropriate latest release of CircuitPython () .uf2 file to the boardnam

eBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

©Adafruit Industries Page 92 of 200

https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2
https://circuitpython.org/downloads


If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (). You'll also need to load your code and reinstall your

libraries!

For SAMD21 non-Express boards that have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

       1.  Download the erase file:

SAMD21 non-Express Boards

       2.  Double-click the reset button on the board to bring up the boardnameBOOT

drive.

       3.  Drag the erase .uf2 file to the boardnameBOOT drive.

       4.  The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

       5.  Drag the appropriate latest release CircuitPython () .uf2 file to the 

boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page () YYou'll also need to load your code and reinstall

your libraries!

©Adafruit Industries Page 93 of 200

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython


For SAMD21 non-Express boards that do not have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac  (), which will erase and

re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-

Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

 

©Adafruit Industries Page 94 of 200

file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation


Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board.  With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython).  The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question () to run these terminal commands that stop

hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different.  At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

©Adafruit Industries Page 95 of 200

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135


>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS.  In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file.  Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file.  See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created.  Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal.  For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

# if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

# This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

©Adafruit Industries Page 96 of 200



That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls  command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm  command. You can

remove them all once by running rm CIRCUITPY/._* . The *  acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df  again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

 

 

 

 

©Adafruit Industries Page 97 of 200



scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

Welcome to the Community! 

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

 

©Adafruit Industries Page 98 of 200



the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

 

©Adafruit Industries Page 99 of 200



The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

Visit https://adafru.it/discord  ()to sign up for Discord. Everyone is looking forward to

meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (). Everything you need to get

started with your new microcontroller and beyond is available. You can do things like 

download CircuitPython for your microcontroller () or download the latest

CircuitPython Library bundle (), or check out which single board computers support

Blinka (). You can also get to various other CircuitPython related things like Awesome

CircuitPython or the Python for Microcontrollers newsletter. This is all incredibly

useful, but it isn't necessarily community related. So why is it included here? The Cont

ributing page ().

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (). You'll find

information pertaining to every Adafruit CircuitPython library GitHub repository, giving

you the opportunity to join the community by finding a contributing option that works

for you.

 

 

©Adafruit Industries Page 100 of 200

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing
https://circuitpython.org/contributing


Note the date on the page next to Current Status for:

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

 

 

©Adafruit Industries Page 101 of 200



GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

 

 

©Adafruit Industries Page 102 of 200



Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide ()

to walk you through the entire process. As well, there are always folks available on Di

scord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

incredibly important to provide the best experience possible for all users.

 

 

©Adafruit Industries Page 103 of 200

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord
https:adafru.it/discord


CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page () is an excellent

place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (), and the CircuitPython

libraries (). If you need an account, visit https://github.com/ () and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues ()", and you'll find a list that includes issues labeled "good first issue ()"

. For the libraries, head over to the Contributing page Issues list (), and use the drop

down menu to search for "good first issue ()". These issues are things that have been

identified as something that someone with any level of experience can help with.

These issues include options like updating documentation, providing feedback, and

fixing simple bugs. If you need help getting started with GitHub, there is an excellent

guide on Contributing to CircuitPython with Git and GitHub ().

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

 

 

©Adafruit Industries Page 104 of 200

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github


When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (). For the libraries, file an issue on the specific

library repository on GitHub. Be sure to include the steps to replicate the issue as well

as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums () are the perfect place for support. Adafruit has wonderful paid

support folks to answer any questions you may have. Whether your hardware is giving

you issues or your code doesn't seem to be working, the forums are always there for

you to ask. You need an Adafruit account to post to the forums. You can use the same

account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython () category under "Supported Products & Projects"

is the best place to post your CircuitPython questions.

 

©Adafruit Industries Page 105 of 200

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60


Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs () is a an excellent resource for a more detailed look at the

CircuitPython core and the CircuitPython libraries. This is where you'll find things like

API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation () page!

 

 

©Adafruit Industries Page 106 of 200

https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation


CircuitPython Essentials 

You've been introduced to CircuitPython, and worked through getting everything set

up. What's next? CircuitPython Essentials!

There are a number of core modules built into CircuitPython, which can be used along

side the many CircuitPython libraries available. The following pages demonstrate

some of these modules. Each page presents a different concept including a code

example with an explanation. All of the examples are designed to work with your

microcontroller board.

Time to get started learning the CircuitPython essentials!

Blink 

In learning any programming language, you often begin with some sort of Hello,

World!  program. In CircuitPython, Hello, World! is blinking an LED. Blink is one of the

simplest programs in CircuitPython. It involves three built-in modules, two lines of set

up, and a short loop. Despite its simplicity, it shows you many of the basic concepts

needed for most CircuitPython programs, and provides a solid basis for more complex

projects. Time to get blinky!

 

 

©Adafruit Industries Page 107 of 200



LED Location

 

The build-in red LED (indicated in red in

the image) is located in the upper right of

the FunHouse door, towards the center of

the board on the front.

Blinking an LED

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/blink/ and then click on the directory

that matches the version of CircuitPython you're using and copy the contents of that

directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

# SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

# SPDX-License-Identifier: MIT

"""CircuitPython Blink Example - the CircuitPython 'Hello, World!'"""

import time

import board

import digitalio

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

    led.value = True

    time.sleep(0.5)

    led.value = False

    time.sleep(0.5)

 

©Adafruit Industries Page 108 of 200

https://learn.adafruit.com//assets/101856
https://learn.adafruit.com//assets/101856


The built-in LED begins blinking!

Note that the code is a little less "Pythonic" than it could be. It could also be written as

led.value = not led.value  with a single time.sleep(0.5) . That way is more

difficult to understand if you're new to programming, so the example is a bit longer

than it needed to be to make it easier to read.

It's important to understand what is going on in this program.

First you import  three modules: time , board  and digitalio . This makes these

modules available for use in your code. All three are built-in to CircuitPython, so you

don't need to download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must

let the board know where to look for the hardware and what to do with it. So, you

create a digitalio.DigitalInOut()  object, provide it the LED pin using the boar

d  module, and save it to the variable led . Then, you tell the pin to act as an 

OUTPUT .

Finally, you create a while True:  loop. This means all the code inside the loop will

repeat indefinitely. Inside the loop, you set led.value = True  which powers on the

LED. Then, you use time.sleep(0.5)  to tell the code to wait half a second before

moving on to the next line. The next line sets led.value = False  which turns the

LED off. Then you use another time.sleep(0.5)  to wait half a second before

starting the loop over again.

With only a small update, you can control the blink speed. The blink speed is

controlled by the amount of time you tell the code to wait before moving on using 

time.sleep() . The example uses 0.5 , which is one half of one second. Try

increasing or decreasing these values to see how the blinking changes.

That's all there is to blinking an LED using CircuitPython!

Digital Input 

The CircuitPython digitalio  module has many applications. The basic Blink

program sets up the LED as a digital output. You can just as easily set up a digital

input such as a button to control the LED. This example builds on the basic Blink

example, but now includes setup for a button switch. Instead of using the time

module to blink the LED, it uses the status of the button switch to control whether the

LED is turned on or off.

©Adafruit Industries Page 109 of 200



LED and Button

 

The red led (indicated by the red box in

the image) is located in the upper right of

the FunHouse door, towards the center of

the board on the front.

The top button (indicated by the green box

in the image) is located near the upper left

corner of the display below the up arrow

on the board silk.

Controlling the LED with a Button

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory Adafruit_FunHouse/digital_input_led/ and then click on the

directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

# SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

#

# SPDX-License-Identifier: MIT

#

"""CircuitPython Digital Input Example for FunHouse"""

import board

import digitalio

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.BUTTON_UP)

button.switch_to_input(pull=digitalio.Pull.DOWN)

while True:

    if not button.value:

        led.value = False

 

©Adafruit Industries Page 110 of 200

https://learn.adafruit.com//assets/101866
https://learn.adafruit.com//assets/101866


    else:

        led.value = True

Now, press the button. The LED lights up! Let go of the button and the LED turns off.

Note that the code is a little less "Pythonic" than it could be. It could also be written as

led.value = not button.value . That way is more difficult to understand if you're

new to programming, so the example is a bit longer than it needed to be to make it

easier to read.

First you import  two modules: board  and digitalio . This makes these modules

available for use in your code. Both are built-in to CircuitPython, so you don't need to

download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must

let the board know where to look for the hardware and what to do with it. So, you

create a digitalio.DigitalInOut()  object, provide it the LED pin using the boar

d  module, and save it to the variable led . Then, you tell the pin to act as an 

OUTPUT .

You include setup for the button as well. It is similar to the LED setup, except the

button is an INPUT , and requires a pull up.

Inside the loop, you check to see if the button is pressed, and if so, turn on the LED.

Otherwise the LED is off.

That's all there is to controlling an LED with a button switch!

 

©Adafruit Industries Page 111 of 200



Built-In DotStar LEDs 

Your board has multiple built-in RGB DotStar LEDs. You can use CircuitPython code to

control the color and brightness of these LEDs. They are also used to indicate the

bootloader status.

A DotStar refers to any 2-wire serial LED, typically APA102, but also possibly SK9822.

Along side a driver chip, DotStars have have three LEDs: RGB DotStars have a red

LED, a blue LED and a green LED, and white DotStars have three white LEDs. The

LEDs on your microcontroller are RGB DotStars! DotStars operate over a generic 2-

wire SPI bus, which means they aren't as strict about timing. They allow for extremely

fast data and PWM rates so they're suitable for POV displays. They can be used

individually (as in the built-in LED on your board), or chained together in strips or

other creative form factors. DotStars do not light up on their own; they must be

connected to a microcontroller. They require two pins, data and clock, to operate. The

response time is faster when connected to a hardware SPI pair of pins, but will work

connected to any two digital pins. You do not need to worry about connecting the

DotStars because they're built into your microcontroller!

This page will cover using CircuitPython to control the RGB DotStars built into your

microcontroller. You'll learn how to change the color and brightness, and how to make

a rainbow. Time to get started!

DotStar Location

 

On the FunHouse, the DotStar LEDs

(indicated by red boxes in the image) are

spread out evenly along the top edges of

the board, beginning at the top center, and

then along the two edges to the mounting

holes.

DotStar Color and Brightness

To use the built-in DotStars on your board, you need to first install the DotStar library

into the lib folder on your CIRCUITPY drive.

©Adafruit Industries Page 112 of 200

https://learn.adafruit.com//assets/101888
https://learn.adafruit.com//assets/101888


Then you need to update code.py.

Click the Download Project Bundle button below to download the necessary libraries

and the code.py file in a zip file. Extract the contents of the zip file, and copy the entir

e lib folder and the code.py file to your CIRCUITPY drive.

# SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

#

# SPDX-License-Identifier: MIT

#

"""CircuitPython DotStar red, green, blue example for FunHouse"""

import time

import board

import adafruit_dotstar

dots = adafruit_dotstar.DotStar(board.DOTSTAR_CLOCK, board.DOTSTAR_DATA, 5)

dots.brightness = 0.3

while True:

    dots.fill((255, 0, 0))

    time.sleep(0.5)

    dots.fill((0, 255, 0))

    time.sleep(0.5)

    dots.fill((0, 0, 255))

    time.sleep(0.5)

Your CIRCUITPY drive contents should resemble the image below.

You should have in / of the CIRCUITPY drive:

code.py

And in the lib folder on your CIRCUITPY drive:

adafruit_bus_device/

adafruit_dotstar.mpy

adafruit_pixelbuf.mpy

The DotStar LEDs being flashing red, green and blue!

• 

• 

• 

• 

 

©Adafruit Industries Page 113 of 200



First you import the necessary modules, time  and board , and the necessary library,

adafruit_dotstar . This makes these modules and libraries available for use in your

code. The first two are modules built-in to CircuitPython, so you don't need to

download anything to use those. The adafruit_dotstar  library is separate, which

is why you needed to install it before getting started.

Next, you set up the Dotstar LEDs. To interact with hardware in CircuitPython, your

code must let the board know where to look for the hardware and what to do with it.

So, you create a adafruit_dotstar.DotStar()  object, provide it the DotStar LED

pins using the board  module, and tell it the number of LEDs. You save this object to

the variable pixels .

Then, you set the DotStar brightness using the brightness  attribute. brightness

expects float between 0  and 1.0 . A float is essentially a number with a decimal in it.

The brightness value represents a percentage of maximum brightness; 0  is 0% and 

1.0  is 100%. Therefore, setting pixel.brightness = 0.3  sets the brightness to

30%. The default brightness, which is to say the brightness if you don't explicitly set it,

is 1.0 . The default is really bright! That is why there is an option available to easily

change the brightness.

Inside the loop, you turn the DotStars red for 0.5 seconds, green for 0.5 seconds, and

blue for 0.5 seconds.

To turn the DotStars red, you "fill" them with an RGB value. Check out the section

below for details on RGB colors. The RGB value for red is (255, 0, 0) . Note that

the RGB value includes the parentheses. The fill()  attribute expects the full RGB

 

If your DotStars do not start flashing red, green and blue, make sure you've 

copied all the necessary files and folders to the CIRCUITPY drive! 

©Adafruit Industries Page 114 of 200



value including those parentheses. That is why there are two pairs of parentheses in

the code.

You can change the RGB values to change the colors that the DotStars cycle through.

Check out the list below for some examples. You can make any color of the rainbow

with the right RGB value combination!

That's all there is to changing the color and setting the brightness of the built-in

DotStar LEDs!

RGB LED Colors

RGB LED colors are set using a combination of red, green, and blue, in the form of an

(R, G, B) tuple. Each member of the tuple is set to a number between 0 and 255 that

determines the amount of each color present. Red, green and blue in different

combinations can create all the colors in the rainbow! So, for example, to set an LED

to red, the tuple would be (255, 0, 0) , which has the maximum level of red, and

no green or blue. Green would be (0, 255, 0) , etc. For the colors between, you

set a combination, such as cyan which is (0, 255, 255) , with equal amounts of

green and blue. If you increase all values to the same level, you get white! If you

decrease all the values to 0, you turn the LED off.

Common colors include:

red: (255, 0, 0)  

green: (0, 255, 0)  

blue: (0, 0, 255)  

cyan: (0, 255, 255)  

purple: (255, 0, 255)  

yellow: (255, 255, 0)  

white: (255, 255, 255)  

black (off): (0, 0, 0)  

DotStar Rainbow

You should have already installed the library necessary to use the built-in DotStar

LEDs. If not, follow the steps at the beginning of the DotStar Color and Brightness

section to install it.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 115 of 200



file, open the directory Adafruit_FunHouse/dotstar_rainbow/ and then click on the

directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

# SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

#

# SPDX-License-Identifier: MIT

#

"""CircuitPython DotStar rainbow example for FunHouse"""

import time

import board

import adafruit_dotstar

from rainbowio import colorwheel

dots = adafruit_dotstar.DotStar(board.DOTSTAR_CLOCK, board.DOTSTAR_DATA, 5, 

auto_write=False)

dots.brightness = 0.3

def rainbow(delay):

    for color_value in range(255):

        for led in range(5):

            pixel_index = (led * 256 // 5) + color_value

            dots[led] = colorwheel(pixel_index & 255)

        dots.show()

        time.sleep(delay)

while True:

    rainbow(0.01)

The DotStars display a rainbow cycle!

 

©Adafruit Industries Page 116 of 200



This example builds on the previous example.

First, you import the same three modules and libraries. In addition to those, you

import colorwheel .

The DotStar hardware setup is similar, but you now also set auto_write  to False .

This means that now the DotStar won't change unless you explicitly tell it to by calling 

show() . This is necessary for this example to speed up the rainbow animation.

Brightness setting is the same.

Next, you have the rainbow()  helper function. This helper displays the rainbow

cycle. It expects a delay  in seconds. The higher the number of seconds provided for

delay , the slower the rainbow will cycle. The helper cycles through the values of the

color wheel to create a rainbow of colors.

Inside the loop, you call the rainbow helper with a 0.01 second delay, by including 

rainbow(0.01) .

That's all there is to making rainbows using the built-in DotStar LEDs!

CPU Temperature 

There is a temperature sensor built into the CPU on your microcontroller board. It

reads the internal CPU temperature, which varies depending on how long the board

has been running or how intense your code is.

CircuitPython makes it really simple to read this data from the temperature sensor

built into the microcontroller. Using the built-in microcontroller  module, you can

easily read the temperature.

 

©Adafruit Industries Page 117 of 200



Microcontroller Location

 

The microcontroller on the FunHouse is

located on the bottom of the back of the

board, towards the center.

Reading the Microcontroller Temperature

The data is read using two lines of code. All necessary modules are built into

CircuitPython, so you don't need to download any extra files to get started.

Connect to the serial console (), and then update your code.py to the following.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/cpu_temperature/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

# SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

# SPDX-License-Identifier: MIT

"""CircuitPython CPU temperature example in Celsius"""

import time

import microcontroller

while True:

    print(microcontroller.cpu.temperature)

    time.sleep(0.15)

 

©Adafruit Industries Page 118 of 200

https://learn.adafruit.com//assets/102007
https://learn.adafruit.com//assets/102007
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console


The CPU temperature in Celsius is printed out to the serial console!

Try putting your finger on the microcontroller to see the temperature change.

The code is simple. First you import two modules: time  and microcontroller .

Then, inside the loop, you print the microcontroller CPU temperature, and the time.s

leep()  slows down the print enough to be readable. That's it!

You can easily print out the temperature in Fahrenheit by adding a little math to your

code, using this simple formula: Celsius * (9/5) + 32.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/cpu_temperature_f/ and then click

on the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

# SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

# SPDX-License-Identifier: MIT

"""CircuitPython CPU temperature example in Fahrenheit"""

import time

import microcontroller

while True:

    print(microcontroller.cpu.temperature * (9 / 5) + 32)

    time.sleep(0.15)

 

 

©Adafruit Industries Page 119 of 200



The CPU temperature in Fahrenheit is printed out to the serial console!

That's all there is to reading the CPU temperature using CircuitPython!

Arduino IDE Setup 

The first thing you will need to do is to download the latest release of the Arduino

IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download

To use the ESP32-S2/S3 with Arduino, you'll need to follow the steps below for your

operating system. You can also check out the Espressif Arduino repository for the

most up to date details on how to install it ().

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File menu in Windows or Linux, or the Arduino menu on OS X.

 

The ESP32-S2/S3 bootloader does not have USB serial support for Windows 7 or 

8. (See https://github.com/espressif/arduino-esp32/issues/5994) please update 

to version 10 which is supported by espressif! Alternatively you can try this 

community-crafted Windows 7 driver (https://github.com/kutukvpavel/Esp32-Win7-

VCP-drivers) 

©Adafruit Industries Page 120 of 200

https://github.com/espressif/arduino-esp32/issues/5994
https://github.com/kutukvpavel/Esp32-Win7-VCP-drivers
https://github.com/kutukvpavel/Esp32-Win7-VCP-drivers
http://www.arduino.cc/en/Main/Software
https://github.com/espressif/arduino-esp32#using-through-arduino-ide
https://github.com/espressif/arduino-esp32#using-through-arduino-ide


A dialog will pop up just like the one shown below.

We will be adding a URL to the new Additional Boards Manager URLs option. The list

of URLs is comma separated, and you will only have to add each URL once. New

Adafruit boards and updates to existing boards will automatically be picked up by the

Board Manager each time it is opened. The URLs point to index files that the Board

Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party

board URLs on the Arduino IDE wiki (). We will only need to add one URL to the IDE in

 

 

©Adafruit Industries Page 121 of 200

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls


this example, but you can add multiple URLS by separating them with commas. Copy

and paste the link below into the Additional Boards Manager URLs option in the

Arduino IDE preferences.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

If you have multiple boards you want to support, say ESP8266 and Adafruit, have

both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings.

The next step is to actually install the Board Support Package (BSP). Go to the Tools →

Board → Board Manager submenu. A dialog should come up with various BSPs.

Search for esp32.

Click the Install button and wait for it to finish. Once it is finished, you can close the

dialog.

In the Tools → Board submenu you should see ESP32 Arduino and in that dropdown it

should contain the ESP32 boards along with all the latest ESP32-S2/S3 boards.

Look for the board called Adafruit FunHouse.

 

 

©Adafruit Industries Page 122 of 200



Arduino Libraries 

OK now that you have Arduino IDE set up, drivers installed if necessary and you've

practiced uploading code, you can start installing all the Libraries we'll be using to

program it.

There's a lot of libraries!

Install Libraries

Open up the library manager...

And install the following libraries:

Adafruit DotStar

This will let you light up the status LEDs on the front

 

 

 

©Adafruit Industries Page 123 of 200



Adafruit GFX

This is the graphics library used to draw to the screen

If using an older (pre-1.8.10) Arduino IDE, locate and install Adafruit_BusIO (newer

versions do this automatically when installing Adafruit_GFX).

Adafruit ST7735 and ST7789

For using the display.

Adafruit ImageReader

For reading bitmaps from SD and displaying

Adafruit AHTX0

For using the Humidity and Temperature Sensor.

 

 

 

Make sure to type the number Zero and not the Letter O when searching. 

 

©Adafruit Industries Page 124 of 200



Adafruit DPS310

For using the Pressure Sensor

Arduino Basics 

Once you have Arduino installed and set up and you can upload simple blink

sketches, you can move on to using each element of the FunHouse board.

Using the Red LED

It's always good to blink the LED when you want to verify if something is happening

on your board. The LED is on IO #13, but we recommend you use the 

LED_BUILTIN  macro and you can use this simple sketch example to blink the LED:

void setup() {

  // initialize built in LED pin as an output.

  pinMode(LED_BUILTIN, OUTPUT);

  // initialize USB serial converter so we have a port created

  Serial.begin();

}

// the loop function runs over and over again forever

void loop() {

  digitalWrite(LED_BUILTIN, HIGH);   // turn the LED on (HIGH is the voltage level)

  delay(1000);              // wait for a second

  digitalWrite(LED_BUILTIN, LOW);    // turn the LED off by making the voltage LOW

  delay(1000);              // wait for a second

}

Reading the Buttons

There are three buttons on the front of the FunHouse - they're connected to digital

pins IO 3, 4, and 5. However, we recommend you use the constants BUTTON_DOWN , B

UTTON_SELECT , BUTTON_UP .

 

Arduino support for the ESP32-S2 is relatively new right now, so we recommend 

using CircuitPython! 

©Adafruit Industries Page 125 of 200



void setup() {

  Serial.begin(115200);

  

  pinMode(BUTTON_DOWN, INPUT_PULLDOWN);

  pinMode(BUTTON_SELECT, INPUT_PULLDOWN);

  pinMode(BUTTON_UP, INPUT_PULLDOWN);

}

void loop() {

  if (digitalRead(BUTTON_DOWN)) {

    Serial.println("Down Button pressed");

  }

  if (digitalRead(BUTTON_SELECT)) {

    Serial.println("Select Button pressed"); 

  }

  if (digitalRead(BUTTON_UP)) {

    Serial.println("Up Button pressed");  

  }

  // small debugging delay

  delay(10);

}

Open the serial console and press buttons to see the serial output printed!

Reading the Capacitive Touch Pads

To read the value of the capacitive touch pads, you can use the touchRead()

function, which is part of the ESP32 package. To use it, you only need to provide the

GPIO pin number. The FunHouse uses IO #6, #7, and #8 for the button style touch

pads and #9 through #13 along the slider.

So to get the value of IO #7, you would use the following code:

uint16_t touchread;

touchread = touchRead(7);

if (touchread &gt; 20000 ) {

 

©Adafruit Industries Page 126 of 200



  // Do Something

}

You may want to try adjusting the threshold for your needs. A more complete example

can be found on the Arduino Self Test Example page.

Using On-Board DotStars

There are 4 DotStar LEDs on pin IO #14 and #15 (we recommend using the macro PIN

_DOTSTAR_DATA  and PIN_DOTSTAR_CLOCK ). 

Here's an example sketch that initializes the DotStar LEDs and color cycles them

through a rainbow of different colors.

// SPDX-FileCopyrightText: 2021 Melissa LeBlanc-Williams for Adafruit Industries

//

// SPDX-License-Identifier: MIT

#include <Adafruit_DotStar.h>

#define NUM_DOTSTAR 5

// LEDs!

Adafruit_DotStar pixels(NUM_DOTSTAR, PIN_DOTSTAR_DATA, PIN_DOTSTAR_CLOCK, 

DOTSTAR_BRG);

uint16_t firstPixelHue = 0;

uint8_t LED_dutycycle = 0;

void setup() {

  Serial.begin(115200);

  

  pinMode(LED_BUILTIN, OUTPUT);

  

  ledcSetup(0, 5000, 8);

  ledcAttachPin(LED_BUILTIN, 0);

  

  pixels.begin(); // Initialize pins for output

  pixels.show();  // Turn all LEDs off ASAP

  pixels.setBrightness(20);

}

void loop() {

  Serial.println("Hello!");

  // pulse red LED

  ledcWrite(0, LED_dutycycle++);

  // rainbow dotstars

  for (int i=0; i<pixels.numPixels(); i++) { // For each pixel in strip...

      int pixelHue = firstPixelHue + (i * 65536L / pixels.numPixels());

      pixels.setPixelColor(i, pixels.gamma32(pixels.ColorHSV(pixelHue)));

  }

  pixels.show(); // Update strip with new contents

  firstPixelHue += 256;

  delay(15);

}

©Adafruit Industries Page 127 of 200



void rainbow(int wait) {

  for(long firstPixelHue = 0; firstPixelHue < 5*65536; firstPixelHue += 256) {

    for(int i=0; i<pixels.numPixels(); i++) { // For each pixel in strip...

      int pixelHue = firstPixelHue + (i * 65536L / pixels.numPixels());

      pixels.setPixelColor(i, pixels.gamma32(pixels.ColorHSV(pixelHue)));

    }

    pixels.show(); // Update strip with new contents

    delay(wait);  // Pause for a moment

  }

}

Using On-board Humidity and Temperature Sensor

There's a pre-soldered humidity and temperature sensor that you can use.

You can test the AHTX0 by loading the included adafruit_aht_test in the Arduino

library

Now you can upload, reset, and check the serial port for temperature and humidity

data!

Using On-board Pressure Sensor

There's a pre-soldered pressure sensor that you can use.

 

 

©Adafruit Industries Page 128 of 200



You can test the DPS310 by loading the included adafruit_sensor_test in the Arduino

library

Now you can upload, reset, and check the serial port for ambient temperature and

pressure data!

Using the TFT Display

You've been so patient, it's time to draw to the display!

We'll be using a demo that was written for the HalloWing M4, which has the same

display, so only a couple of minor changes are needed.

From the Adafruit ST7735 and ST7789 Library folder, open the graphicstest_hallowing

_m4 example

 

 

©Adafruit Industries Page 129 of 200



Remove the pin definitions near the top since they are now part of the FunHouse

Board Support Package.

#define TFT_CS        44 // PyBadge/PyGamer display control pins: chip select

#define TFT_RST       46 // Display reset

#define TFT_DC        45 // Display data/command select

#define TFT_BACKLIGHT 47 // Display backlight pin

Change the initialization line to the following:

Adafruit_ST7789 tft = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_RESET);

You can now upload the example to your FunHouse to see it display various graphics

and text tests.

For more information on how to display graphics, and text, check out the Adafruit GFX

guide ()

Arduino Self Test Example 

The selftest.ino sketch will initialize all the sensors and respond to the buttons and

capacitive touch pads. Go ahead and upload it to your FunHouse and start pressing

buttons. This will also slowly color-cycle the DotStar LEDs and blink the red LED.

FunHouse_SelfTest.UF2

// SPDX-FileCopyrightText: 2021 Melissa LeBlanc-Williams for Adafruit Industries

//

// SPDX-License-Identifier: MIT

#include <Adafruit_DotStar.h>

 

©Adafruit Industries Page 130 of 200

https://learn.adafruit.com/adafruit-gfx-graphics-library
https://learn.adafruit.com/adafruit-gfx-graphics-library
https://cdn-learn.adafruit.com/assets/assets/000/101/840/original/FunHouse_SelfTest.UF2?1619456532


#include <Adafruit_GFX.h>    // Core graphics library

#include <Adafruit_ST7789.h> // Hardware-specific library for ST7789

#include <Adafruit_DPS310.h>

#include <Adafruit_AHTX0.h>

#define NUM_DOTSTAR 5

#define BG_COLOR ST77XX_BLACK

#define ST77XX_GREY 0x8410   // Colors are in RGB565 format

// display!

Adafruit_ST7789 tft = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_RESET);

// LEDs!

Adafruit_DotStar pixels(NUM_DOTSTAR, PIN_DOTSTAR_DATA, PIN_DOTSTAR_CLOCK, 

DOTSTAR_BRG);

// sensors!

Adafruit_DPS310 dps;

Adafruit_AHTX0 aht;

uint8_t LED_dutycycle = 0;

uint16_t firstPixelHue = 0;

void setup() {

  //while (!Serial);

  Serial.begin(115200);

  delay(100);

  

  pixels.begin(); // Initialize pins for output

  pixels.show();  // Turn all LEDs off ASAP

  pixels.setBrightness(20);

  pinMode(BUTTON_DOWN, INPUT_PULLDOWN);

  pinMode(BUTTON_SELECT, INPUT_PULLDOWN);

  pinMode(BUTTON_UP, INPUT_PULLDOWN);

  //analogReadResolution(13);

  

  tft.init(240, 240);                // Initialize ST7789 screen

  pinMode(TFT_BACKLIGHT, OUTPUT);

  digitalWrite(TFT_BACKLIGHT, HIGH); // Backlight on

  tft.fillScreen(BG_COLOR);

  tft.setTextSize(2);

  tft.setTextColor(ST77XX_YELLOW);

  tft.setTextWrap(false);

  // check DPS!

  tft.setCursor(0, 0);

  tft.setTextColor(ST77XX_YELLOW);

  tft.print("DP310? ");

  

  if (! dps.begin_I2C()) {  

    tft.setTextColor(ST77XX_RED);

    tft.println("FAIL!");

    while (1) delay(100);

  }

  tft.setTextColor(ST77XX_GREEN);

  tft.println("OK!");

  dps.configurePressure(DPS310_64HZ, DPS310_64SAMPLES);

  dps.configureTemperature(DPS310_64HZ, DPS310_64SAMPLES);

  // check AHT!

  tft.setCursor(0, 20);

  tft.setTextColor(ST77XX_YELLOW);

  tft.print("AHT20? ");

  

  if (! aht.begin()) {  

    tft.setTextColor(ST77XX_RED);

    tft.println("FAIL!");

©Adafruit Industries Page 131 of 200



    while (1) delay(100);

  }

  tft.setTextColor(ST77XX_GREEN);

  tft.println("OK!");

  pinMode(LED_BUILTIN, OUTPUT);

  pinMode(SPEAKER, OUTPUT);

  ledcSetup(0, 2000, 8);

  ledcAttachPin(LED_BUILTIN, 0);

  ledcSetup(1, 2000, 8);

  ledcAttachPin(SPEAKER, 1);

  ledcWrite(1, 0);

}

void loop() {

  /********************* sensors    */

  sensors_event_t humidity, temp, pressure;

  

  tft.setCursor(0, 0);

  tft.setTextColor(ST77XX_YELLOW, BG_COLOR);

  dps.getEvents(&temp, &pressure);

  

  tft.print("DP310: ");

  tft.print(temp.temperature, 0);

  tft.print(" C ");

  tft.print(pressure.pressure, 0);

  tft.print(" hPa");

  tft.println("              ");

  Serial.printf("DPS310: %0.1f *C  %0.2f hPa\n", temp.temperature, 

pressure.pressure);

  tft.setCursor(0, 20);

  tft.setTextColor(ST77XX_YELLOW, BG_COLOR);

  aht.getEvent(&humidity, &temp);

  tft.print("AHT20: ");

  tft.print(temp.temperature, 0);

  tft.print(" C ");

  tft.print(humidity.relative_humidity, 0);

  tft.print(" %");

  tft.println("              ");

  Serial.printf("AHT20: %0.1f *C  %0.2f rH\n", temp.temperature, 

humidity.relative_humidity);

  /****************** BUTTONS */

  tft.setCursor(0, 40);

  tft.setTextColor(ST77XX_YELLOW);

  tft.print("Buttons: ");

  if (! digitalRead(BUTTON_DOWN)) {  

    tft.setTextColor(ST77XX_GREY);

  } else {

    Serial.println("DOWN pressed");

    tft.setTextColor(ST77XX_WHITE);

  }

  tft.print("DOWN ");

  if (! digitalRead(BUTTON_SELECT)) {  

    tft.setTextColor(ST77XX_GREY);

  } else {

    Serial.println("SELECT pressed");

    tft.setTextColor(ST77XX_WHITE);

©Adafruit Industries Page 132 of 200



  }

  tft.print("SEL ");

  

  if (! digitalRead(BUTTON_UP)) {  

    tft.setTextColor(ST77XX_GREY);

  } else {

    Serial.println("UP pressed");

    tft.setTextColor(ST77XX_WHITE);

  }

  tft.println("UP");

  /************************** CAPACITIVE */

  uint16_t touchread;

  

  tft.setCursor(0, 60);

  tft.setTextColor(ST77XX_YELLOW, BG_COLOR);

  tft.print("Captouch 6: ");

  touchread = touchRead(6);

  if (touchread < 10000 ) {  

    tft.setTextColor(ST77XX_GREY, BG_COLOR);

  } else {

    tft.setTextColor(ST77XX_WHITE, BG_COLOR);

  }

  tft.print(touchread);

  tft.println("          ");

  Serial.printf("Captouch #6 reading: %d\n", touchread);

  

  tft.setCursor(0, 80);

  tft.setTextColor(ST77XX_YELLOW, BG_COLOR);

  tft.print("Captouch 7: ");

  touchread = touchRead(7);

  if (touchread < 20000 ) {  

    tft.setTextColor(ST77XX_GREY, BG_COLOR);

  } else {

    tft.setTextColor(ST77XX_WHITE, BG_COLOR);

  }

  tft.print(touchread);

  tft.println("          ");

  Serial.printf("Captouch #7 reading: %d\n", touchread);

  tft.setCursor(0, 100);

  tft.setTextColor(ST77XX_YELLOW, BG_COLOR);

  tft.print("Captouch 8: ");

  touchread = touchRead(8);

  if (touchread < 20000 ) {  

    tft.setTextColor(ST77XX_GREY, BG_COLOR);

  } else {

    tft.setTextColor(ST77XX_WHITE, BG_COLOR);

  }

  tft.print(touchread);

  tft.println("          ");

  Serial.printf("Captouch #8 reading: %d\n", touchread);

  /************************** ANALOG READ */

  uint16_t analogread;

  tft.setCursor(0, 120);

  tft.setTextColor(ST77XX_YELLOW, BG_COLOR);

  tft.print("Analog 0: ");

  analogread = analogRead(A0);

  if (analogread < 8000 ) {  

    tft.setTextColor(ST77XX_WHITE, BG_COLOR);

  } else {

    tft.setTextColor(ST77XX_RED, BG_COLOR);

  }

  tft.print(analogread);

  tft.println("    ");

©Adafruit Industries Page 133 of 200



  Serial.printf("Analog A0 reading: %d\n", analogread);

  tft.setCursor(0, 140);

  tft.setTextColor(ST77XX_YELLOW, BG_COLOR);

  tft.print("Analog 1: ");

  analogread = analogRead(A1);

  if (analogread < 8000 ) {  

    tft.setTextColor(ST77XX_WHITE, BG_COLOR);

  } else {

    tft.setTextColor(ST77XX_RED, BG_COLOR);

  }

  tft.print(analogread);

  tft.println("    ");

  Serial.printf("Analog A1 reading: %d\n", analogread);

  

  tft.setCursor(0, 160);

  tft.setTextColor(ST77XX_YELLOW, BG_COLOR);

  tft.print("Analog 2: ");

  analogread = analogRead(A2);

  if (analogread < 8000 ) {  

    tft.setTextColor(ST77XX_WHITE, BG_COLOR);

  } else {

    tft.setTextColor(ST77XX_RED, BG_COLOR);

  }

  tft.print(analogread);

  tft.println("    ");

  Serial.printf("Analog A2 reading: %d\n", analogread);

  tft.setCursor(0, 180);

  tft.setTextColor(ST77XX_YELLOW, BG_COLOR);

  tft.print("Light: ");

  analogread = analogRead(A3);

  tft.setTextColor(ST77XX_WHITE, BG_COLOR);

  tft.print(analogread);

  tft.println("    ");

  Serial.printf("Light sensor reading: %d\n", analogread);

  

  /************************** Beep! */

  if (digitalRead(BUTTON_SELECT)) {  

     Serial.println("** Beep! ***");

     fhtone(SPEAKER, 988.0, 100.0);  // tone1 - B5

     fhtone(SPEAKER, 1319.0, 200.0); // tone2 - E6

     delay(100);

     //fhtone(SPEAKER, 2000.0, 100.0);

  }

  

  /************************** LEDs */

  // pulse red LED

  ledcWrite(0, LED_dutycycle);

  LED_dutycycle += 32;

  

  // rainbow dotstars

  for (int i=0; i<pixels.numPixels(); i++) { // For each pixel in strip...

      int pixelHue = firstPixelHue + (i * 65536L / pixels.numPixels());

      pixels.setPixelColor(i, pixels.gamma32(pixels.ColorHSV(pixelHue)));

  }

  pixels.show(); // Update strip with new contents

  firstPixelHue += 256;

}

void fhtone(uint8_t pin, float frequency, float duration) {

  ledcSetup(1, frequency, 8);

  ledcAttachPin(pin, 1);

  ledcWrite(1, 128);

  delay(duration);

©Adafruit Industries Page 134 of 200



  ledcWrite(1, 0);

}

WipperSnapper Setup 

What is WipperSnapper

WipperSnapper is a firmware designed to turn any WiFi-capable board into an

Internet-of-Things device without programming a single line of code. WipperSnapper

connects to Adafruit IO (), a web platform designed (by Adafruit! ())

to display, respond, and interact with your project's data.

Simply load the WipperSnapper firmware onto your board, add credentials, and plug it

into power. Your board will automatically register itself with your Adafruit IO account.

From there, you can add components to your board such as buttons, switches,

potentiometers, sensors, and more! Components are dynamically added to hardware,

so you can immediately start interacting, logging, and streaming the data your

projects produce without writing code.

Sign up for Adafruit.io

You will need an Adafruit IO account to use WipperSnapper on your board. If you do

not already have one, head over to io.adafruit.com () to create a free account.

Add a New Device to Adafruit IO

Log into your Adafruit IO () account. Click the New Device button at the top of the

page.

The WipperSnapper firmware and ecosystem are in BETA and are actively being 

developed to add functionality, more boards, more sensors, and fix bugs. We 

encourage you to try out WipperSnapper with the understanding that it is not 

final release software and is still in development.

If you encounter any bugs, glitches, or difficulties during the beta period, or with 

this guide, please contact us via http://io.adafruit.com/support 

©Adafruit Industries Page 135 of 200

http://io.adafruit.com/support
https://io.adafruit.com/
https://www.adafruit.com/about
https://io.adafruit.com/
https://io.adafruit.com/


After clicking New Device, you should be on the board selector page. This page

displays every board that is compatible with the WipperSnapper firmware.

In the board selector page's search bar, search for the FunHouse. Once you've

located the board you'd like to install WipperSnapper on, click the Choose Board butt

on to bring you to the self-guided installation wizard.

Follow the step-by-step instructions on the page to install Wippersnapper on your

device and connect it to Adafruit IO.

 

 

 

©Adafruit Industries Page 136 of 200



If the installation was successful, a popover should appear displaying that your board

has successfully been detected by Adafruit IO.

Give your board a name and click "Continue to Device Page".

You should be brought to your board's device page.

Next, Visit this guide's WipperSnapper Essentials pages to learn how to interact with

your board using Adafruit IO.

 

 

©Adafruit Industries Page 137 of 200



Feedback

Adafruit.io WipperSnapper is in beta and you can help improve it!

If you have  suggestions or general feedback about the installation process - visit http

s://io.adafruit.com/support (), click "Contact Adafruit IO Support" and select "I have

feedback or suggestions for the WipperSnapper Beta".

Troubleshooting

If you encountered an issue during installation, please try the steps below first.

If you're still unable to resolve the issue, or if your issue is not listed below, get in

touch with us directly at https://io.adafruit.com/support (). Make sure to click  "Contact

Adafruit IO Support" and select "There is an issue with WipperSnapper. Something is

broken!"

I don't see my board on Adafruit IO, it is stuck connecting

to WiFi 

First, make sure that you selected the correct board on the board selector.

Next, please make sure that you entered your WiFi credentials properly, there are

no spaces/special characters in either your network name (SSID) or password, and

that you are connected to a 2.4GHz wireless network.

If you're still unable to connect your board to WiFi, please make a new post on the

WipperSnapper technical support forum with the error you're experiencing, the

LED colors which are blinking, and the board you're using. ()

 

©Adafruit Industries Page 138 of 200

https://io.adafruit.com/support
https://io.adafruit.com/support
https://io.adafruit.com/support
https://forums.adafruit.com/viewforum.php?f=66
https://forums.adafruit.com/viewforum.php?f=66
https://forums.adafruit.com/viewforum.php?f=66


I don't see my board on Adafruit IO, it is stuck "Registering

with Adafruit IO" 

Try hard-resetting your board by unplugging it from USB power and plugging it

back in.

If the error is still occurring, please make a new post on the WipperSnapper

technical support forum with information about what you're experiencing, the LED

colors which are blinking (if applicable), and the board you're using. ()

"Uninstalling" WipperSnapper 

WipperSnapper firmware is an application that is loaded onto your board. There is

nothing to "uninstall". However, you may want to "move" your board from running

WipperSnapper to running Arduino or CircuitPython. You also may need to restore

your board to the state it was shipped to you from the Adafruit factory. 

Moving from WipperSnapper to CircuitPython

Follow the steps on the Installing CircuitPython page () to install CircuitPython on your

board running WipperSnapper.

If you are unable to double-tap the RST button to enter the UF2 bootloader,

follow the "Factory Resetting a WipperSnapper Board" instructions below.

Uploading this sketch will overwrite WipperSnapper. If you want to re-install

WipperSnapper, follow the instructions at the top of this page.

Moving from WipperSnapper to Arduino

If you want to use your board with Arduino, you will use the Arduino IDE to load any

sketch onto your board.

First, follow the page below to set up your Arduino IDE environment for use with your

board.

Setup Arduino IDE

Then, follow the page below to upload the "Arduino Blink" sketch to your board.

• 

©Adafruit Industries Page 139 of 200

https://forums.adafruit.com/viewforum.php?f=66
https://forums.adafruit.com/viewforum.php?f=66
https://forums.adafruit.com/viewforum.php?f=66
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/adafruit-funhouse/arduino-ide-setup


Upload Arduino Blink/Self Test

Sketch

Uploading this sketch will overwrite WipperSnapper. If you want to re-install

WipperSnapper, follow the instructions at the top of this page.

Factory Resetting a WipperSnapper Board

Sometimes, hardware gets into a state that requires it to be "restored" to the original

state it shipped in. If you'd like to get your board back to its original factory state,

follow the guide below.

Factory Reset Adafruit FunHouse

WipperSnapper Essentials 

You've installed WipperSnapper firmware on your board and connected it to Adafruit

IO. Next, to learn how to use Adafruit IO!

The Adafruit IO supports a large number of components. Components are physical

parts such as buttons, switches, sensors, servos, LEDs, RGB LEDs, and more. 

The following pages will get you up and running with WipperSnapper as you interact

with your board's LED, read the value of a push button, send the value of an I2C

sensor to the internet, and wirelessly control colorful LEDs.

 

©Adafruit Industries Page 140 of 200

https://learn.adafruit.com/adafruit-funhouse/arduino-self-test-example
https://learn.adafruit.com/adafruit-funhouse/factory-reset


LED Blink 

One of the first programs you typically write to get used to embedded programming is

a sketch that repeatably blinks an LED. IoT projects are wireless, so after completing

this section, you'll be able to turn on (or off) the LED built into your board from

anywhere in the world.

Where is the LED on my board?

 

Below the display, and slightly to the right,

is a red LED (highlighted in red) positioned

at the top right of the FunHouse door. 

Create a LED Component on Adafruit IO

On the device page, click the New Component (or "+") button to open the component

picker.

From the component picker, select the LED.

In this demo, we show controlling an LED from Adafruit IO. But the same kind of 

control can be used for relays, lights, motors, or solenoids. 

 

©Adafruit Industries Page 141 of 200

https://learn.adafruit.com//assets/117709
https://learn.adafruit.com//assets/117709


On the Create LED Component form, the board's LED pin is pre-selected. 

Click Create Component.

Behind the scenes, Adafruit IO sends send a command to your board running

WipperSnapper telling it to configure "LED Pin" as a digital output.

Your board's page on Adafruit IO shows a new LED component.

 

 

©Adafruit Industries Page 142 of 200



Usage

On the board page, toggle the LED component by clicking the toggle switch. This

should turn your board's built-in LED on or off.

DotStar LEDs 

Your board has multiple APA102 (DotStar, in Adafruit jargon) RGB LEDs built in. Boards

running the WipperSnapper firmware can be wirelessly controlled by Adafruit IO to

interact with Dotstars.

On this page, you'll learn how to change the color and brightness of the DotStars built

into your board from Adafruit IO.

 

 

©Adafruit Industries Page 143 of 200



Where are the DotStars on my board?

 

The FunHouse has 5 DotStar RGB LEDs

(highlighted in red) located at the top of

the board.

Create a DotStar Component

On the device page, click the New Component (or `+`) button to open the component

picker.

Under the Pixel Components header on the component picker, click DotStar.

 

©Adafruit Industries Page 144 of 200

https://learn.adafruit.com//assets/117680
https://learn.adafruit.com//assets/117680


The board's DotStar data and clock pins are automatically found and selected.

The FunHouse contains five DotStar pixels. Set the Number of Pixels to 5.

The color order used by the FunHouse's DotStar strand is not the default BRG

ordering. Set the Color Order to BGR .

Click Create Component

Behind the scenes, Adafruit IO sends a command to your board running

WipperSnapper firmware telling it to initialize a new DotStar strand with the settings

from the form.

The Device page shows the DotStar component.

 

 

©Adafruit Industries Page 145 of 200



Set the DotStar's RGB Color

Since no colors have been set yet, the color picker's default value is #000000  (black

in hex color code) and appears "off". Let's change that to make the DotStars shine

brightly!

On the device page, click the "No Color Set" box on the DotStar component.

The Dotstar component should expand, revealing its color picker.

Hex Colors 101

The color picker on Adafruit IO uses hex color codes to represent Red, Green, and

Blue values. For example, #FF0000  is the hex color code for the color red. The colors

( #FF0000 ) red component is FF  (255 translated to decimal), the green component is

00  and the blue component is 00 . Translated to RGB format, the color is RGB (255,

0, 0) . 

 

 

 

©Adafruit Industries Page 146 of 200



Using the color picker, or by manually entering a hex color code, select a color.

When you're ready to set the color of your device's DotStars, click FILL WITH COLOR.

The DotStars on your board will glow with the color you selected!

Set DotStar Brightness

If the DotStar strand is too bright (or too dim), you can change its brightness. Click the

gear/cog icon on the DotStar component to open its settings.

On the DotStar component form, set Brightness to a value between 0 (fully off) and

255 (full brightness).

Click the Update Component button to send the updated configuration to your

device. 

 

 

 

©Adafruit Industries Page 147 of 200



DotStar FAQ

I'm getting the wrong colors. Red and blue are swapped!

Different versions of DotStar LEDs expect to receive color data in a different order…

and occasionally it may change if it improves production efficiency or yield.

If you are having this issue - Try changing the Color Order setting (within the

DotStar component's settings) until you find one that works with your hardware.

Why does the color on my DotStar not look exactly like it

does on the color picker? 

WipperSnapper firmware automatically performs gamma correction using the 

gamma32  function in the Adafruit_DotStar library (). However, it may not be

completely identical to the gamma correction used by your operating system or

monitor.

For more information about Gamma Correction, visit this guide... () 

 

• 

©Adafruit Industries Page 148 of 200

https://learn.adafruit.com/adafruit-dotstar-leds/arduino-library-use#dot-dot-dot-and-gamma-correction-3024526
https://learn.adafruit.com/adafruit-dotstar-leds/arduino-library-use#dot-dot-dot-and-gamma-correction-3024526
https://learn.adafruit.com/led-tricks-gamma-correction


I want to set the colors of individual pixels on my DotStar

strand 

There are future plans for setting the colors of individual pixels, but at this time

DotStar support on WipperSnapper currently only supports filling an entire strand

of pixels with one color.

Does this support DotStar Matrixes?

WipperSnapper does not currently support NxN matrices of DotStars at this time.

Read a Push-button 

You can configure a board running WipperSnapper to read data from standard input

buttons, switches, or digital sensors, and send the value to Adafruit IO.

From Adafruit IO, you will configure one of the pushbuttons on your board as a push

button component. Then, when the button is pressed (or released), a value will be

published to Adafruit IO.

Button Location

This example uses the board's built-in push-button and internal pull-up resistor

instead of wiring a push-button up.

 

On the front of the board, to the left of the

display, there are three user-controllable

buttons labeled arrows for the top and

bottom buttons. In the example on this

page, we're going to use the top button

(pointed to by the red arrow).

In this demo, we show reading the state of a push-button from WipperSnapper. 

But the same kind of control can be used for reading switches, break beam 

sensors, and other digital sensors. 

©Adafruit Industries Page 149 of 200

https://learn.adafruit.com//assets/117720
https://learn.adafruit.com//assets/117720


Create a Push-button Component on Adafruit IO

On the device page, click the New Component (or "+") button to open the component

picker.

From the component picker, select the Push Button.

The "Create Push Button Component" form presents you with options for configuring

the push button.

Start by selecting the board's pin connected to the push button.

 

 

©Adafruit Industries Page 150 of 200



The Return Interval dictates how frequently the value of the push-button will be sent

from the board to Adafruit IO.

For this example, you will configure the push button's value to be only sent when the

value changes (i.e. when it's either pressed or depressed).

Finally, check the Specify Pin Pull Direction checkbox and select the pull direction.

Make sure the form's settings look like the following screenshot. Then, click Create

Component.

 

 

 

©Adafruit Industries Page 151 of 200



Adafruit IO sends a command to your WipperSnapper board, telling it to configure the

GPIO pin you selected to behave as a digital input pin and to enable it to pull up the

internal resistor.

Your board's page should also show the new push-button component.

Push the button on your board to change the value of the push-button component on

Adafruit IO.

 

 

 

©Adafruit Industries Page 152 of 200



Analog Input: Light Sensor 

Your microcontroller board has both digital and analog signal capabilities. Some pins

are analog, some are digital, and some are capable of both. Check the Pinouts page

in this guide for details about your board.

Analog signals are different from digital signals in that they can be any voltage and

can vary continuously and smoothly between voltages. An analog signal is like a

dimmer switch on a light, whereas a digital signal is like a simple on/off switch. 

Digital signals only can ever have two states, they are either are on (high logic level

voltage like 3.3V) or off (low logic level voltage like 0V / ground).

By contrast, analog signals can be any voltage in-between on and off, such as 1.8V or

0.001V or 2.98V and so on.

Analog signals are continuous values which means they can be an infinite number of

different voltages. Think of analog signals like a floating point or fractional number,

they can smoothly transiting to any in-between value like 1.8V, 1.81V, 1.801V, 1.8001V,

1.80001V and so forth to infinity.

Many devices use analog signals, in particular sensors typically output an analog

signal or voltage that varies based on something being sensed like light, heat,

humidity, etc.

This page demonstrates using a light sensor as an analog input. However, the 

same process can be used for other analog input components on Adafruit IO 

such as the potentiometer. 

 

©Adafruit Industries Page 153 of 200



Analog to Digital Converter (ADC)

An analog-to-digital-converter, or ADC, is the key to reading analog signals and

voltages with a microcontroller. An ADC is a device that reads the voltage of an

analog signal and converts it into a digital, or numeric, value. The microcontroller

can’t read analog signals directly, so the analog signal is first converted into a

numeric value by the ADC. 

The black line below shows a digital signal over time, and the red line shows the

converted analog signal over the same amount of time.

Once that analog signal has been converted by the ADC, the microcontroller can use

those digital values any way you like!

Light Sensor

A light sensor (also known as a CdS cell, light-dependent resistor, or photoresistor)

detects light. They change their resistive value (in ohms, Ω) depending on how much

light shines into the photocell. 

When a light sensor is exposed to more light, the resistance decreases. When it is

exposed to less light, the resistance increases. 

By using a light sensor wired in a specific way (as a voltage divider), we can turn

resistance into voltage. That change is then read by your board's Analog-to-Digital

converter and sent to Adafruit IO.

 

©Adafruit Industries Page 154 of 200



Where is the Light Sensor on my board?

 

Below the display, and slightly to the left,

is a front-facing light sensor that is

positioned at the top left of the FunHouse

door.

Create a Light Sensor Component

On the device page, click the New Component (or "+") button to open the component

picker.

Under Pin Components, select the Light Sensor.

Note: The light sensor on the FunHouse is influenced by the display's backlight, 

use some tape to block the light if needed. More info, and a great chart here: 

https://forums.adafruit.com/viewtopic.php?f=19&t=179236 

 

©Adafruit Industries Page 155 of 200

https://learn.adafruit.com//assets/117975
https://learn.adafruit.com//assets/117975
https://forums.adafruit.com/viewtopic.php?f=19&t=179236


The name and pin for the light sensor on your board are automatically selected. The P

eriod determines how frequently the light sensor's value will be checked and sent to

Adafruit IO. Set it to check the light sensor value every 30 seconds.

Click Create Component.

The device page shows a new light sensor component. The value of this component

will change every 30 seconds.

 

 

©Adafruit Industries Page 156 of 200



Light Sensor Usage

To test the light sensor, try covering the light sensor with a piece of paper. Navigate to

the feed page by clicking the graph icon on the top right corner of the light sensor

component.

On the light sensor feed page, you'll be able to observe a graph of the light sensor

values as they change over time.

 

 

 

©Adafruit Industries Page 157 of 200



I2C: On-board Sensors 

Inter-Integrated Circuit, aka I2C, is a two-wire protocol for connecting sensors and

"devices" to a microcontroller. A large number of sensors, including the ones sold by

Adafruit, use I2C to communicate. 

Typically, using I2C with a microcontroller involves programming. Adafruit IO and

WipperSnapper let you configure a microcontroller to read data from an I2C sensor

and publish that data to the internet without writing code.

The WipperSnapper firmware supports a number of I2C sensors, viewable in list

format here ().

If you do not see the I2C sensor you're attempting to use with WipperSnapper, w

e have a guide on adding a component to Adafruit IO WipperSnapper here (). 

The process for adding an I2C component to your board running WipperSnapper is

similar for most sensors. 

On this page, you'll learn how to configure an I2C sensor built into a development

board to send data to Adafruit IO. Then you'll learn how to locate, interpret, and

download the data produced by your sensors.

Where are the I2C sensors on my board?

Your board has multiple I2C sensors built-in meaning that there's no wiring required! 

In the bottom right corner of the board, on

the left side of the cutout region

(highlighted in yellow), is a DPS310

pressure sensor, that can be used to

sense the barometric pressure. It is

connected to the I2C port and available on

I2C address  0x77 .

Also in the bottom right corner of the

board, on the right side of the cutout

region (highlighted in red), is an AHT20

Humidity and Temperature sensor, that can

be used to sense the humidity and

temperature. It is connected to the I2C

port and available on I2C address  0x38 .

• 

©Adafruit Industries Page 158 of 200

https://github.com/adafruit/Wippersnapper_Components/tree/main/components/i2c
https://github.com/adafruit/Wippersnapper_Components/tree/main/components/i2c
https://learn.adafruit.com/how-to-add-a-new-component-to-adafruit-io-wippersnapper
https://learn.adafruit.com/how-to-add-a-new-component-to-adafruit-io-wippersnapper


Create AHT20 Sensor Component

On the device page, click the New Component (or "+") button to open the component

picker.

Under the I2C Components header, click AHT20.

On the component configuration page, the AHT20's I2C sensor address should be

listed along with the sensor's settings.

 

 

©Adafruit Industries Page 159 of 200



The AHT20 sensor can measure ambient temperature and relative humidity. This

page has individual options for reading the ambient temperature, in either Celsius or

Fahrenheit, and the relative humidity. You may select the readings which are

appropriate to your application and region.

The Send Every option is specific to each sensor measurement. This option will tell

the Feather how often it should read from the AHT20 sensor and send the data to

Adafruit IO. Measurements can range from every 30 seconds to every 24 hours.

For this example, set the Send Every interval for both seconds to Every 30 seconds. C

lick Create Component.

 

©Adafruit Industries Page 160 of 200



The board page should now show the AHT20 component you created. After the

interval you configured elapses, the WipperSnapper firmware running on your board

automatically reads values from the sensor and sends them to Adafruit IO.

Read I2C Sensor Values

Now to take a look behind the scenes at a powerful element of using Adafruit IO and

WipperSnapper. When a new component is created on Adafruit IO, an Adafruit IO

Feed () is also created. This Feed holds your sensor component's values for long-term

storage (30 days of storage for Adafruit IO Free and 60 days for Adafruit IO Plus

plans).

 

 

©Adafruit Industries Page 161 of 200

https://learn.adafruit.com/adafruit-io-basics-feeds
https://learn.adafruit.com/adafruit-io-basics-feeds


Aside from holding the values read by a sensor, the component feed also holds meta

data about the data pushed to Adafruit IO. This includes settings for whether the data

is public or private, what license the stored sensor data falls under, and a general

description of the data.

Now look at the AHT20's temperature sensor feed. To navigate to a component's

feed, click on the chart icon in the upper-right-hand corner of the component.

On the component's feed page, you'll each data point read by your sensor and when

they were reported to Adafruit IO.

Doing more with your sensor's Adafruit IO Feed

We've only scratched the surface of what Adafruit IO Feeds can accomplish for your

IoT projects. For a complete overview of Adafruit IO Feeds, including tasks like

 

 

©Adafruit Industries Page 162 of 200



downloading feed data, sharing a feed, removing erroneous data points from a feed,

and more, head over to the "Adafruit IO Basics: Feed" learning guide ().

Create DPS310 Component

The process of creating an Adafruit IO component for the FunHouse's DPS310 sensor

is similar to the process we followed above for the AHT20.

On the device page, click the New Component (or "+") button to open the component

picker.

Under the I2C Components header, click DPS310.

The DPS310 sensor can measure barometric pressure and/or temperature. Select the

sensor readings which are appropriate to your application and region.

Since we previously set up the DPS310 to measure ambient temperature, we're only

selecting the barometric pressure option.

 

 

©Adafruit Industries Page 163 of 200

https://learn.adafruit.com/adafruit-io-basics-feeds


The Send Every option is specific to each sensor measurement. This option will tell

the Feather how often it should read from the DPS310 sensor and send the data to

Adafruit IO. Measurements can range from every 30 seconds to every 24 hours.

For this example, set the Send Every interval for both seconds to Every 30 seconds. C

lick Create Component.

The board page should now show the DPS310 component you created. After the

interval you configured elapses, the WipperSnapper firmware running on your board

automatically reads values from the sensor and sends them to Adafruit IO.

 

 

©Adafruit Industries Page 164 of 200



I2C: External Sensor 

Inter-Integrated Circuit, aka I2C, is a two-wire protocol for connecting sensors and

"devices" to a microcontroller. A large number of sensors, including the ones sold by

Adafruit, use I2C to communicate. 

Typically, using I2C with a microcontroller involves programming. Adafruit IO and

WipperSnapper let you configure a microcontroller to read data from an I2C sensor

and publish that data to the internet without writing code.

The WipperSnapper firmware supports a number of I2C sensors, viewable in list

format here ().

If you do not see the I2C sensor you're attempting to use with WipperSnapper, A

dafruit has a guide on adding a component to Adafruit IO WipperSnapper

here (). 

On this page, you'll learn how to wire up an I2C sensor to your board. Then, you'll

create a new component on Adafruit IO for your I2C sensor and send the sensor

values to Adafruit IO. Finally, you'll learn how to locate, interpret, and download the

data produced by your sensors.

Parts

You will need the following parts to complete this page:

Adafruit MCP9808 High Accuracy I2C

Temperature Sensor Breakout 

The MCP9808 digital temperature sensor

is one of the more accurate/precise we've

ever seen, with a typical accuracy of

±0.25°C over the sensor's -40°C to...

https://www.adafruit.com/product/5027 

While this page uses the "MCP9808 High Accuracy I2C Temperature Sensor 

Breakout", the process for adding an I2C sensor to your board running 

WipperSnapper is similar for all I2C sensors. 

• 

©Adafruit Industries Page 165 of 200

https://github.com/adafruit/Wippersnapper_Components/tree/main/components/i2c
https://github.com/adafruit/Wippersnapper_Components/tree/main/components/i2c
https://learn.adafruit.com/how-to-add-a-new-component-to-adafruit-io-wippersnapper
https://learn.adafruit.com/how-to-add-a-new-component-to-adafruit-io-wippersnapper
https://learn.adafruit.com/how-to-add-a-new-component-to-adafruit-io-wippersnapper
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027


STEMMA QT / Qwiic JST SH 4-Pin Cable -

50mm Long 

This 4-wire cable is 50mm / 1.9" long and

fitted with JST SH female 4-pin

connectors on both ends. Compared with

the chunkier JST PH these are 1mm pitch

instead of 2mm, but...

https://www.adafruit.com/product/4399 

Wiring

 

If you're using a STEMMA QT to STEMMA

QT cable:

Board STEMMA QT Port to MCP9808's

STEMMA QT Port 

If you're using a breadboard:

Board power to MCP9808 VIN 

Board ground to MCP9808 GND 

Board SCL to MCP9808 SCL 

Board SDA to MCP9808 SDA 

Add an MCP9808 Component

On the device page, click the New Component (or "+") button to open the component

picker.

Under the I2C Components header, click MCP9808.

 

©Adafruit Industries Page 166 of 200

https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://learn.adafruit.com//assets/117978
https://learn.adafruit.com//assets/117978


On the component configuration page, the MCP9808's I2C sensor address should be

listed along with the sensor's settings.

The MCP9808 sensor can measure ambient temperature. This page has individual

options for reading the ambient temperature, in either Celsius or Fahrenheit. You may

select the readings which are appropriate to your application and region.

The Send Every option is specific to each sensor measurement. This option will tell

the board how often it should read from the sensor and send the data to Adafruit IO.

Measurements can range from every 30 seconds to every 24 hours.

For this example, set the Send Every interval for both seconds to Every 30 seconds. C

lick Create Component.

 

 

©Adafruit Industries Page 167 of 200



The board page should now show the MCP9808 component you created. After the

interval you configured elapses, the WipperSnapper firmware running on your board

automatically reads values from the sensor and sends them to Adafruit IO.

Read I2C Sensor Values

Now to look behind the scenes at a powerful element of using Adafruit IO and

WipperSnapper. When a new component is created on Adafruit IO, an Adafruit IO

Feed () is also created. This Feed holds your sensor component values for long-term

storage (30 days of storage for Adafruit IO Free and 60 days for Adafruit IO Plus

plans).

Aside from holding the values read by a sensor, the component's feed also holds met

adata about the data pushed to Adafruit IO. This includes settings for whether the

data is public or private, what license the stored sensor data falls under, and a

general description of the data.

 

 

©Adafruit Industries Page 168 of 200

https://learn.adafruit.com/adafruit-io-basics-feeds
https://learn.adafruit.com/adafruit-io-basics-feeds


Next, to look at the sensor temperature feed. To navigate to a component's feed, click

on the chart icon in the upper-right-hand corner of the component.

On the component's feed page, you'll each data point read by your sensor and when

they were reported to Adafruit IO.

Doing more with your sensor's Adafruit IO Feed

This only scratches the surface of what Adafruit IO Feeds can accomplish for your IoT

projects. For a complete overview of Adafruit IO Feeds, including tasks like

downloading feed data, sharing a feed, removing erroneous data points from a feed,

and more, head over to the "Adafruit IO Basics: Feed" learning guide ().

Piezo Speaker 

Piezo buzzers are simple devices that can generate basic beeps and tones. They

work by using a piezo crystal, a special material that changes shape when voltage is

applied to it. If the crystal pushes against a diaphragm, like a tiny speaker cone, it can

generate a pressure wave that the human ear picks up as sound. Simply change the

frequency of the voltage sent to the piezo and it will start generating sounds by

changing shape very quickly!

 

 

©Adafruit Industries Page 169 of 200

https://learn.adafruit.com/adafruit-io-basics-feeds


This page will explain configuring a piezo buzzer using Adafruit IO and

WipperSnapper, making the piezo "buzz", and changing its sound.

Piezo Buzzer Location

 

The Piezo buzzer is located on the right

side of the FunHouse, highlighted in pink.

Create a Piezo Buzzer Component

On the device page, click the New Component (or "+") button to open the component

picker.

Under PWM Components, select the Piezo Buzzer.

 

©Adafruit Industries Page 170 of 200

https://learn.adafruit.com//assets/118473
https://learn.adafruit.com//assets/118473


On the Create Piezo Buzzer form, under the Piezo Buzzer pin, select "Speaker/Piezo".

WipperSnapper matches musical notes to frequencies, in Hertz (there's a handy hertz-

to-note table on this website ()). 

Select a musical note you'd like the Piezo to play when it's activated. Then, click

Create Component.

The device page displays a new piezo buzzer component. Toggling the piezo buzzer

component's switch "on" causes the Piezo buzzer to play the selected note. Toggling

the switch "off" stops the Piezo buzzer.

 

 

 

©Adafruit Industries Page 171 of 200

https://pages.mtu.edu/~suits/notefreqs.html
https://pages.mtu.edu/~suits/notefreqs.html


Modify the Note

Is your buzzer's tone too high-pitched or too quiet? To modify the note played by the

buzzer, click the cog on the top-right of the Wippersnapper piezo component.  Select

a new tone from the dropdown labeled Note.

Factory Reset 

The FunHouse microcontroller ships running a full sensor test and DotStar swirl. The

sensor data is shown on the display. It's lovely, but you probably had other plans for

the board. As you start working with your board, you may want to return to the

original code to begin again, or you may find your board gets into a bad state. Either

way, this page has you covered.

 

 

©Adafruit Industries Page 172 of 200



You're probably used to seeing the HOUSEBOOT drive when loading CircuitPython or

Arduino. The HOUSEBOOT drive is part of the UF2 bootloader, and allows you to drag

and drop files, such as CircuitPython. However, on the ESP32-S2 the UF2 bootloader

can become damaged.

Factory Reset Firmware UF2

If you have a bootloader still installed - which means you can double-click to get the 

HOUSEBOOT drive to appear, then you can simply drag this UF2 file over to the BOO

T drive.

To enter bootloader mode, plug in the board into a USB cable with data/sync

capability. Press the reset button once, wait till the RGB LED turns purple, then press

the reset button again. Then drag this file over:

Click to download the FunHouse

Factory Reset UF2

Your board is now back to its factory-shipped state! You can now begin again with

your plans for your board.

Factory Reset and Bootloader Repair

What if you tried double-tapping the reset button, and you still can't get into the UF2

bootloader? Whether your board shipped without the UF2 bootloader, or something

damaged it, this section has you covered.

It turns out, however, the ESP32-S2/S3 comes with a second bootloader: the ROM

bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging

the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its

always there if you need it! You can simply re-load the UF2 bootloader from the ROM

bootloader.

There is no bootloader protection for the UF2 bootloader. That means it is 

possible to erase or damage the UF2 bootloader, especially if you upload an 

Arduino sketch to an ESP32-S2/S3 board that doesn't "know" there's a 

bootloader it should not overwrite! 

Completing a factory reset will erase your board's firmware which is also used for 

storing CircuitPython/Arduino/Files! Be sure to back up your data first. 

©Adafruit Industries Page 173 of 200

https://github.com/adafruit/Adafruit-FunHouse-PCB/raw/main/factory-reset/adafruit-funhouse-factory-reset.UF2


There are two ways to do a factory reset and bootloader repair. The first is using

WebSerial through a Chromium-based browser, and the second is using esptool  via

command line. We highly recommend using WebSerial through Chrome/Chromium.

The next section walks you through the prerequisite steps needed for both methods.

Download .bin and Enter Bootloader

Step 1. Download the factory-reset-and-bootloader.bin file

Save the following file wherever is convenient for you. You will need to access it from

the WebSerial ESPTool.

Click to download funhouse-factory-

reset-and-bootloader.bin

Step 2. Enter ROM bootloader mode

Entering the ROM bootloader is easy. Complete the following steps.

Before you start, make sure your ESP32-S2/S3 is plugged into USB port to your

computer using a data/sync cable. Charge-only cables will not work!

Turn on the On/Off switch - check that you see the OK light on so you know the board

is powered, a prerequisite!

To enter the bootloader:

Press and hold the BOOT/DFU button down. Don't let go of it yet!

Press and release the Reset button. You should still have the BOOT/DFU button

pressed while you do this.

Now you can release the BOOT/DFU button.

Note that this file is approximately 3MB. This is not because the bootloader is 

3MB, it is because the bootloader is near the end of the available flash. Most of 

the file is empty but its easier to program if you use a combined file. 

1. 

2. 

3. 

©Adafruit Industries Page 174 of 200

https://github.com/adafruit/Adafruit-FunHouse-PCB/raw/main/factory-reset/adafruit-funhouse-factory-reset-and-bootloader.bin


No USB drive will appear when you've entered the ROM bootloader. This is normal!

Now that you've downloaded the .bin file and entered the bootloader, you're ready to

continue with the factory reset and bootloader repair process. The next two sections

walk you through using WebSerial and esptool .

The WebSerial ESPTool Method

This method uses the WebSerial ESPTool through Chrome or a Chromium-based

browser. The WebSerial ESPTool was designed to be a web-capable option for

programming ESP32-S2/S3 boards. It allows you to erase the contents of the

microcontroller and program up to four files at different offsets.

You will have to use a Chromium browser (like Chrome, Opera, Edge...) for this to

work, Safari and Firefox, etc. are not supported because we need Web Serial and only

Chromium is supporting it to the level needed.

Follow the steps to complete the factory reset.

 

We highly recommend using WebSerial ESPTool method to perform a factory 

reset and bootloader repair. However, if you'd rather use esptool via command 

line, you can skip this section. 

If you're using Chrome 88 or older, see the Older Versions of Chrome section at 

the end of this page for instructions on enabling Web Serial. 

©Adafruit Industries Page 175 of 200



Connect

You should have plugged in only the ESP32-S2/S3 that you intend to flash. That way

there's no confusion in picking the proper port when it's time!

 

In the Chrome browser visit https://

adafruit.github.io/

Adafruit_WebSerial_ESPTool/ (). You

should see something like the image

shown.

 

Press the Connect button in the top right

of the web browser. You will get a pop up

asking you to select the COM or Serial

port. 

Remember, you should remove all other

USB devices so only the ESP32-S2/S3

board is attached, that way there's no

confusion over multiple ports!

On some systems, such as MacOS, there

may be additional system ports that

appear in the list.

 

The JavaScript code will now try to

connect to the ROM bootloader. It may

timeout for a bit until it succeeds. On

success, you will see that it is Connected

and will print out a unique MAC address

identifying the board along with other

information that was detected.

©Adafruit Industries Page 176 of 200

https://learn.adafruit.com//assets/116445
https://learn.adafruit.com//assets/116445
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://learn.adafruit.com//assets/116446
https://learn.adafruit.com//assets/116446
https://learn.adafruit.com//assets/110503
https://learn.adafruit.com//assets/110503


 

 

 

Once you have successfully connected,

the command toolbar will appear.

Erase the Contents

 

To erase the contents, click the Erase

button. You will be prompted whether you

want to continue. Click OK to continue or if

you changed your mind, just click cancel.

 

 

You'll see "Erasing flash memory. Please

wait..." This will eventually be followed by

"Finished." and the amount of time it took

to erase.

Do not disconnect! Immediately continue

on to programming the ESP32-S2/S3.

This will erase everything on your board! If you have access, and wish to keep 

any code, now is the time to ensure you've backed up everything. 

Do not disconnect after erasing! Immediately continue on to the next step! 

©Adafruit Industries Page 177 of 200

https://learn.adafruit.com//assets/116447
https://learn.adafruit.com//assets/116447
https://learn.adafruit.com//assets/116448
https://learn.adafruit.com//assets/116448
https://learn.adafruit.com//assets/106947
https://learn.adafruit.com//assets/106947


Program the ESP32-S2/S3

Programming the microcontroller can be done with up to four files at different

locations, but with the board-specific factory-reset.bin file, which you should have

downloaded under Step 1 on this page, you only need to use one file.

 

Click on the first Choose a file.... (The tool

will only attempt to program buttons with a

file and a unique location.) Then, select the

*-factory-reset.bin file you downloaded in

Step 1 that matches your board.

Verify that the Offset box next to the file

location you used is (0x) 0.

 

Once you choose a file, the button text will

change to match your filename. You can

then select the Program button to begin

flashing.

 

A progress bar will appear and after a

minute or two, you will have written the

firmware.

Once completed, you can skip down to the section titled Reset the Board.

©Adafruit Industries Page 178 of 200

https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/116449
https://learn.adafruit.com//assets/116449
https://learn.adafruit.com//assets/116450
https://learn.adafruit.com//assets/116450


The esptool  Method (for advanced users)

Once you have entered ROM bootloader mode, you can then use Espressif's esptool

program () to communicate with the chip!  esptool  is the 'official' programming tool

and is the most common/complete way to program an ESP chip.

Install ESPTool.py

You will need to use the command line / Terminal to install and run  esptool .

You will also need to have pip and Python installed (any version!).

Install the latest version using pip (you may be able to run  pip  without the  3  depen

ding on your setup):

pip3 install --upgrade esptool

Then, you can run:

esptool.py

Test the Installation

Run  esptool.py  in a new terminal/command line and verify you get something like

the below:

If you used WebSerial ESPTool, you do not need to complete the steps in this 

section! 

Make sure you are running esptool v3.0 or higher, which adds ESP32-S2/S3 

support. 

 

©Adafruit Industries Page 179 of 200

https://github.com/espressif/esptool
https://github.com/espressif/esptool


Connect

Run the following command, replacing the identifier after  --port  with the  COMxx ,  /

dev/cu.usbmodemxx  or  /dev/ttySxx  you found above.

esptool.py --port COM88 chip_id

You should get a notice that it connected over that port and found an ESP32-S2/S3.

Erase the Flash

Before programming the board, it is a good idea to erase the flash. Run the following

command.

esptool.py erase_flash

You must be connected (by running the command in the previous section) for this

command to work as shown.

Installing the Bootloader

Run this command and replace the serial port name with your matching port and the

file you just downloaded

 

 

©Adafruit Industries Page 180 of 200



esptool.py --port COM88 write_flash 0x0 tinyuf2_combo.bin

Don't forget to change the --port  name to match.

There might be a bit of a 'wait' when programming, where it doesn't seem like it's

working. Give it a minute, it has to erase the old flash code which can cause it to

seem like it's not running.

You'll finally get an output like this:

Once completed, you can continue to the next section.

Reset the board

Now that you've reprogrammed the board, you need to reset it to continue. Click the

reset button to launch the new firmware.

The display will show the FunHouse sensor data, and the DotStar LEDs will light up in

a rainbow swirl.

You've successfully returned your board to a factory reset state!

Older Versions of Chrome

We suggest updating to Chrome 89 or newer, as Web Serial is enabled by default.

If you must continue using an older version of Chrome, follow these steps to enable

Web Serial.

 

As of chrome 89, Web Serial is already enabled, so this step is only necessary on 

older browsers. 

©Adafruit Industries Page 181 of 200



 

If you receive an error like the one shown

when you visit the WebSerial ESPTool site,

you're likely running an older version of

Chrome.

You must be using Chrome 78 or later to

use Web Serial.

 

To enable Web Serial in Chrome versions

78 through 88:

Visit chrome://flags from within Chrome.

Find and enable the Experimental Web

Platform features 

Restart Chrome

The Flash an Arduino Sketch Method

This section outlines flashing an Arduino sketch onto your ESP32-S2/S3 board, which

automatically installs the UF2 bootloader as well.

Arduino IDE Setup

If you don't already have the Arduino IDE installed, the first thing you will need to do

is to download the latest release of the Arduino IDE. ESP32-S2/S3 requires version

1.8 or higher. Click the link to download the latest.

Arduino IDE Download

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File > Preferences menu in Windows or Linux, or the Arduino > Preferences menu

on OS X.

©Adafruit Industries Page 182 of 200

https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/101562
https://www.arduino.cc/en/software


The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new URL. The list of

URLs is comma separated, and you will only have to add each URL once. The URLs

point to index files that the Board Manager uses to build the list of available &

installed boards.

Copy the following URL.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

Add the URL to the the Additional Boards Manager URLs field (highlighted in red

below).

Click OK to save and close Preferences.

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded

menu, it should contain the ESP32 boards along with all the latest ESP32-S2 boards.

Now that your IDE is setup, you can continue on to loading the sketch.

Load the Blink Sketch

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the expanded

menu, look for the menu option for the Adafruit FunHouse, and click on it to choose it.

Open the Blink sketch by clicking through File > Examples > 01.Basics > Blink.

 

©Adafruit Industries Page 183 of 200



Once open, click Upload from the sketch window.

Once successfully uploaded, the little red LED will begin blinking once every second.

At that point, you can now enter the bootloader.

Install UF2 Bootloader 

The Adafruit FunHouse ships with a UF2 bootloader which allows the board to show

up as HOUSEBOOT when you double-tap the reset button, and enables you to drag

and drop UF2 files to update the firmware.

On ESP32-S2/S3, there is no bootloader protection for the UF2 bootloader. That

means it is possible to erase or damage the UF2 bootloader, especially if you upload

an Arduino sketch to an ESP32-S2/S3 board that doesn't "know" there's a bootloader

it should not overwrite!

It turns out, however, the ESP32-S2/S3 comes with a second bootloader: the ROM

bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging

 

 

If your board has a UF2 bootloader, you do not need to follow the steps on this 

page. Try to enter the UF2 bootloader before continuing! Double-tap the reset 

button to do so. 

©Adafruit Industries Page 184 of 200



the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its

always there if you need it! You can simply re-load the UF2 bootloader from the ROM

bootloader.

If your UF2 bootloader ends up damaged or overwritten, you can follow the steps

found in the Factory Reset and Bootloader Repair () section of the Factory Reset page

in this guide.

Once completed, you'll return to where the board was when you opened the

package. Then you'll be back in business, and able to continue with your existing

plans!

Downloads 

Files:

ESP32-S2 product page with resources () 

ESP32-S2 datasheet () 

ESP32-S2 WROVER datasheet () 

ESP32-S2 Technical Reference () 

DPS310 datasheet () 

AHT20 datasheet () 

EagleCAD PCB files on GitHub () 

3D Models on GitHub () 

Fritzing object in the Adafruit Fritzing Library () 

PDF for FunHouse pinout diagram () 

SVG for FunHouse pinout diagram

Schematic

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

The schematic shows a BMP280, but the FunHouse has a DPS310, which is pin-

compatible. 

©Adafruit Industries Page 185 of 200

https://learn.adafruit.com/adafruit-funhouse/factory-reset#factory-reset-and-bootloader-repair-3107941-7
https://www.espressif.com/en/products/socs/esp32-s2
https://cdn-learn.adafruit.com/assets/assets/000/096/705/original/esp32-s2_datasheet_en.pdf?1604350607
https://cdn-learn.adafruit.com/assets/assets/000/096/706/original/esp32-s2_technical_reference_manual_en.pdf?1604350614
https://cdn-learn.adafruit.com/assets/assets/000/096/707/original/esp32-s2-wrover_esp32-s2-wrover-i_datasheet_en.pdf?1604350618
https://cdn-learn.adafruit.com/assets/assets/000/101/457/original/Infineon-DPS310-DataSheet-v01_02-EN.pdf?1618437956
https://cdn-learn.adafruit.com/assets/assets/000/091/676/original/AHT20-datasheet-2020-4-16.pdf?1591047915
https://github.com/adafruit/Adafruit-FunHouse-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4985%20Funhouse
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20FunHouse.fzpz
https://github.com/adafruit/Adafruit-FunHouse-PCB/blob/main/Adafruit%20FunHouse%20ESP32-S2%20pinout.pdf
https://cdn-learn.adafruit.com/assets/assets/000/110/590/original/Adafruit_FunHouse_ESP32-S2_pinout.svg?1649262881


 

©Adafruit Industries Page 186 of 200



Fab Print

Here's a design file for a mounting bracket -- you can use it as a template for cutting

your own by hand, with a laser cutter or mill, or as a jumping off point for modeling

one for 3D printing.

FunHouse-wall-mount.svg

 

©Adafruit Industries Page 187 of 200

https://cdn-learn.adafruit.com/assets/assets/000/102/186/original/FunHouse-wall-mount.svg?1621261927


(OLD) WipperSnapper Usage 

Blink a LED

One of the first programs you typically write to get used to embedded programming is

a sketch that repeatably blinks an LED. IoT projects are wireless so after completing

this section, you'll be able to turn on (or off) the LED built into your board from

anywhere in the world.

Navigate to io.adafruit.com/wippersnapper (). You should see the board you just

connected to Adafruit IO listed on this page.

If you do not see your board - go back to the previous setup page and ensure

you have registered it with Adafruit IO

This page assumes that you have installed WipperSnapper on your board and 

registered it with the Adafruit.io website. If you have not done this yet, please go 

back to the previous page in this guide and connect your board. 

In this demo, we show controlling an LED from Adafruit IO. But the same kind of 

control can be used for relays, lights, motors, or solenoids. 

• 

 

©Adafruit Industries Page 188 of 200

https://io.adafruit.com/wippersnapper


Make sure the board's tile says Online in green text, indicating that it's online and

communicating with Adafruit IO.

If the board appears offline on the website but was previously connected, press

the Reset (RST) button (or unplug the USB, and plug it back in) to force the

board to reboot.

Click the board to navigate to its page.

From the device page, click the + New Component (or +) button.

• 

 

 

©Adafruit Industries Page 189 of 200



The Component Picker lists all the sensors and actuators which can be used with the

WipperSnapper firmware. 

Click the LED icon. 

Microcontroller boards contain GPIO pins that can be configured either as an input or

an output. The "Create LED Component" screen tells WipperSnapper to configure a

general-purpose output pin connected to the LED on your board as a digital output so

you can turn the LED on or off.

The FunHouse has a built-in LED located at GPIO #37 (Built-in LED). Select this pin as

the LED Pin and click Create Component

 

 

 

©Adafruit Industries Page 190 of 200



Behind the scenes, Adafruit IO sends send a command to your board running

WipperSnapper telling it to configure the GPIO pin as a digital output.

Your board's page on Adafruit IO shows a new LED component.

On the board page, toggle the LED component by clicking the toggle switch. This

should turn your board's built-in LED on or off.

Read a Push-Button

You can also configure a board running WipperSnapper to read data from standard

input buttons, switches, or digital sensors, and send the value to Adafruit IO.

Let's wire up a push button to your board and configure it to publish a value to

Adafruit IO when the button has been pressed or released. 

 

 

In this demo, we show reading the state of a push-button from WipperSnapper. 

But the same kind of control can be used for reading switches, break beam 

sensors, and other digital sensors. 

©Adafruit Industries Page 191 of 200



Wiring

We'll be using the board's internal pull-up resistors instead of a physical resistor. 

 

The up button is located on the FunHouse

near the top left corner of the built-in

display, next to the CT6 bird on the board

silk.

Usage

On the device page, click + New Component.

From the component picker, select the Push Button.

 

©Adafruit Industries Page 192 of 200

https://learn.adafruit.com//assets/113165
https://learn.adafruit.com//assets/113165


The next screen presents you with options for configuring the push button. Start by

selecting the board's pin you connected to the push button.

The Return Interval dictates how frequently the value of the push-button will be sent

from the board to Adafruit IO.

For this example, you will configure the push button's value to be only sent when the

value changes (i.e: when it's either pressed or depressed).

Select On Change 

 

 

©Adafruit Industries Page 193 of 200



Finally, check the Specify Pin Pull Direction checkbox and select Pull Down to turn on

the board's internal pulldown resistor.

Make sure the form's settings look like the following screenshot. Then, click Create

Component.

 

 

©Adafruit Industries Page 194 of 200



Adafruit IO sends a command to your WipperSnapper board, telling it to configure the

GPIO pin you selected to behave as a digital input pin and to enable it to pull up the

internal resistor. Your board's page should also show the new push-button

component.

Push the button to change the value of the component on Adafruit IO.

 

 

©Adafruit Industries Page 195 of 200



Read an I2C Sensor

Inter-Integrate Circuit, aka I2C, is a two-wire protocol for connecting sensors and

"devices" to a microcontroller. A large number of sensors, including the ones sold by

Adafruit, use I2C to communicate. 

Typically, using I2C with a microcontroller involves programming. Adafruit IO  and

WipperSnapper let you configure a microcontroller to read data from an I2C sensor

and publish that data to the internet without writing code.

The WipperSnapper firmware supports a number of I2C sensors, viewable in list

format here (). If you do not see the I2C sensor you're attempting to use with

WipperSnapper - we have a guide on adding a component to Adafruit IO

WipperSnapper here (). 

The process for adding an I2C component to your board running WipperSnapper is

similar for most sensors. For this section, we're using the Adafruit AHT20 (), an

inexpensive sensor that can read ambient temperature and humidity.

Wiring

First, wire up an AHT20 sensor to your board exactly as follows. Here is an example

of the AHT20 wired using I2C with a STEMMA QT cable (no soldering required) ().

 

©Adafruit Industries Page 196 of 200

https://github.com/adafruit/Wippersnapper_Components/tree/main/components/i2c
https://github.com/adafruit/Wippersnapper_Components/tree/main/components/i2c
https://learn.adafruit.com/how-to-add-a-new-component-to-adafruit-io-wippersnapper
https://learn.adafruit.com/how-to-add-a-new-component-to-adafruit-io-wippersnapper
https://www.adafruit.com/product/4566
https://www.adafruit.com/product/4209


 

Simply connect a STEMMA QT to STEMMA

QT cable from the STEMMA QT port on

your board to a STEMMA QT port on your

sensor.

Scan I2C Bus

First, ensure that you've correctly wired the AHT20 sensor to your board by

performing an I2C scan to detect the I2C device on the bus.

On the board page, click Start I2C Scan.

If you do not see this button, double-check that your board shows as Online.

You should see a new pop-up showing a list of the I2C addresses detected by an I2C

scan. If wired correctly, the AHT20's default I2C address of 0x38  appear in the I2C

scan list.

• 

 

©Adafruit Industries Page 197 of 200

https://learn.adafruit.com//assets/113155
https://learn.adafruit.com//assets/113155


I don't see the I2C sensor's address in the list

First, double-check the connection and/or wiring between the sensor and the

board.

Then, reset the board and let it re-connect to Adafruit IO WipperSnapper.

Create the Sensor Component

Now that you know the sensor can be detected by the board, it's time to configure

and create the sensor on Adafruit IO.

On the board page, add a new component to your board by clicking the + button or

the + New Component button.

The Component Picker lists all the available components, sensors, and parts that can

be used with WipperSnapper. 

Under the I2C Components header, click AHT20.

 

 

©Adafruit Industries Page 198 of 200



On the component configuration page, the AHT20's I2C sensor address should be

listed along with the sensor's settings.

The AHT20 sensor can measure ambient temperature and relative humidity. This

page has individual options for reading the ambient temperature, in either degree

Celsius or degree Fahrenheit, and the relative humidity. You may select the readings

which are appropriate to your application and region.

The Send Every option is specific to each sensor measurement. This option will tell

the Feather how often it should read from the AHT20 sensor and send the data to

Adafruit IO. Measurements can range from every 30 seconds to every 24 hours.

For this example, set the Send Every interval for both seconds to Every 30 seconds

and click Create Component.

 

©Adafruit Industries Page 199 of 200



The board page should now show the AHT20 component you created.

After the interval you configured elapses, WipperSnapper automatically reads values

from the sensor and sends them to Adafruit IO.

Going Further

Want to learn more about Adafruit IO WipperSnapper? We have more complex

projects on the Adafruit Learning System ().

 

 

©Adafruit Industries Page 200 of 200

https://learn.adafruit.com/search?q=wippersnapper
https://learn.adafruit.com/search?q=wippersnapper


Mouser Electronics
  

Authorized Distributor
 
  

Click to View Pricing, Inventory, Delivery & Lifecycle Information:
 
 
 
 Adafruit:   

  4985

https://www.mouser.com/adafruit
https://www.mouser.com/access/?pn=4985

	Adafruit FunHouse
	Table of Contents
	Overview
	Pinouts
	CircuitPython
	CircuitPython Internet Test
	Getting The Date & Time
	FunHouse-Specific CircuitPython Libraries
	Welcome To CircuitPython
	Installing the Mu Editor
	Creating and Editing Code
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	Advanced Serial Console on Windows
	CircuitPython Libraries
	CircuitPython Pins and Modules
	Advanced Serial Console on Mac
	Frequently Asked Questions
	ESP32-S2 Bugs & Limitations
	Troubleshooting
	Welcome to the Community!
	CircuitPython Essentials
	Blink
	Digital Input
	Built-In DotStar LEDs
	CPU Temperature
	Arduino IDE Setup
	Arduino Libraries
	Arduino Basics
	Arduino Self Test Example
	WipperSnapper Setup
	WipperSnapper Essentials
	LED Blink
	DotStar LEDs
	Read a Push-button
	Analog Input: Light Sensor
	I2C: On-board Sensors
	I2C: External Sensor
	Piezo Speaker
	Factory Reset
	Install UF2 Bootloader
	Downloads
	(OLD) WipperSnapper Usage


	Overview
	Pinouts
	TFT Display and Display Connector
	Power
	ESP32-S2 WiFi Module
	DotStar LEDs and Red LED
	STEMMA QT
	Digital/Analog Connectors
	Speaker and Sensors
	Reset and Boot Buttons
	User Buttons
	Capacitive Touch Pads and Slider
	PIR Sensor Port

	CircuitPython
	Set Up CircuitPython
	Option 1 - Load with UF2 Bootloader
	Try Launching UF2 Bootloader

	Option 2 - Use Chrome Browser To Upload BIN file
	Option 3 - Use esptool to load BIN file

	CircuitPython Internet Test
	The settings.toml File

	Getting The Date & Time
	Step 1) Make an Adafruit account
	Step 2) Sign into Adafruit IO
	Step 3) Get your Adafruit IO Key
	Step 4) Upload Test Python Code

	FunHouse-Specific CircuitPython Libraries
	Get Latest Adafruit CircuitPython Bundle
	Secrets

	Welcome To CircuitPython
	This guide will get you started with CircuitPython!

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	ESP32-S2 Bugs & Limitations
	I2C at 100 kHz bus frequency runs slowly
	No DAC-based audio output
	Deep Sleep & Wake-up sources

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	CircuitPython Essentials
	Blink
	LED Location
	Blinking an LED

	Digital Input
	LED and Button
	Controlling the LED with a Button

	Built-In DotStar LEDs
	DotStar Location
	DotStar Color and Brightness
	RGB LED Colors
	DotStar Rainbow

	CPU Temperature
	Microcontroller Location
	Reading the Microcontroller Temperature

	Arduino IDE Setup
	Arduino Libraries
	Install Libraries
	Adafruit DotStar
	Adafruit GFX
	Adafruit ST7735 and ST7789
	Adafruit ImageReader
	Adafruit AHTX0
	Adafruit DPS310

	Arduino Basics
	Using the Red LED
	Reading the Buttons
	Reading the Capacitive Touch Pads
	Using On-Board DotStars
	Using On-board Humidity and Temperature Sensor
	Using On-board Pressure Sensor
	Using the TFT Display

	Arduino Self Test Example
	WipperSnapper Setup
	What is WipperSnapper
	Sign up for Adafruit.io
	Add a New Device to Adafruit IO
	Feedback
	Troubleshooting
	I don't see my board on Adafruit IO, it is stuck connecting to WiFi
	I don't see my board on Adafruit IO, it is stuck "Registering with Adafruit IO"
	"Uninstalling" WipperSnapper
	Moving from WipperSnapper to CircuitPython
	Moving from WipperSnapper to Arduino
	Factory Resetting a WipperSnapper Board


	WipperSnapper Essentials
	LED Blink
	Where is the LED on my board?
	Create a LED Component on Adafruit IO
	Usage

	DotStar LEDs
	Where are the DotStars on my board?
	Create a DotStar Component
	Set the DotStar's RGB Color
	Hex Colors 101

	Set DotStar Brightness
	DotStar FAQ
	I'm getting the wrong colors. Red and blue are swapped!
	Why does the color on my DotStar not look exactly like it does on the color picker?
	I want to set the colors of individual pixels on my DotStar strand
	Does this support DotStar Matrixes?

	Read a Push-button
	Button Location
	Create a Push-button Component on Adafruit IO

	Analog Input: Light Sensor
	Analog to Digital Converter (ADC)
	Light Sensor
	Where is the Light Sensor on my board?
	Create a Light Sensor Component
	Light Sensor Usage

	I2C: On-board Sensors
	Where are the I2C sensors on my board?
	Create AHT20 Sensor Component
	Read I2C Sensor Values
	Doing more with your sensor's Adafruit IO Feed

	Create DPS310 Component

	I2C: External Sensor
	Parts
	Wiring
	Add an MCP9808 Component
	Read I2C Sensor Values
	Doing more with your sensor's Adafruit IO Feed


	Piezo Speaker
	Piezo Buzzer Location
	Create a Piezo Buzzer Component
	Modify the Note

	Factory Reset
	Factory Reset Firmware UF2
	Factory Reset and Bootloader Repair
	Download .bin and Enter Bootloader
	Step 1. Download the factory-reset-and-bootloader.bin file
	Step 2. Enter ROM bootloader mode

	The WebSerial ESPTool Method
	Connect
	Erase the Contents
	Program the ESP32-S2/S3

	The esptool Method (for advanced users)
	Install ESPTool.py
	Test the Installation
	Connect
	Erase the Flash
	Installing the Bootloader

	Reset the board
	Older Versions of Chrome
	The Flash an Arduino Sketch Method
	Arduino IDE Setup
	Load the Blink Sketch

	Install UF2 Bootloader
	Downloads
	Files:

	Schematic
	Fab Print
	(OLD) WipperSnapper Usage
	Blink a LED
	Read a Push-Button
	Wiring
	Usage

	Read an I2C Sensor
	Wiring
	Scan I2C Bus


	I don't see the I2C sensor's address in the list
	Create the Sensor Component

	Going Further


