

Adafruit Adalogger FeatherWing

Created by lady ada

https://learn.adafruit.com/adafruit-adalogger-featherwing

Last updated on 2021-11-15 06:46:56 PM EST

©Adafruit Industries Page 1 of 36

3

5

5

6

7

8

10

10

11

12

12

13

14

15

16

17

17

18

19

20

21

22

22

25

25

28

28

29

29

31

32

34

35

35

36

36

Table of Contents

Overview

Pinouts

• Power Pins

• RTC & I2C Pins

• SD & SPI Pins

Assembly

Using the Real Time Clock

• What is a Real Time Clock?

• Battery Backup

RTC with Arduino

• Wiring

• Talking to the RTC

• First RTC test

• Setting the time

• Reading the time

RTC with CircuitPython

• Wiring

• Adafruit CircuitPython Library Install

• Usage

• Setting the time

Using the SD Card

• Formatting under Windows/Mac

• Basic SD Card Test

• Next steps!

• Example logging sketch

CircuitPython

• Adafruit CircuitPython Module Install

• Usage

• Initialize & Mount SD Card Filesystem

• Reading & Writing Data

• List Files

• Logging Temperature

Downloads

• Datasheets and Files

• Schematic

• Fabrication Print

©Adafruit Industries Page 2 of 36

Overview

A Feather board without ambition is a Feather board without FeatherWings! This is

the Adalogger FeatherWing: it adds both a battery-backed Real Time Clock and micro

SD card storage to any Feather main board. Using our Feather Stacking Headers (htt

p://adafru.it/2830) or Feather Female Headers (http://adafru.it/2886) you can connect

a FeatherWing on top of your Feather board and let the board take flight!

This FeatherWing will make it real easy to add datalogging to any of our existing

Feathers. You get both an I2C real time clock (PCF8523) with 32KHz crystal and

©Adafruit Industries Page 3 of 36

https://www.adafruit.com/products/2830
http://www.adafruit.com/products/2886

battery backup, and a microSD socket that connects to the SPI port pins (+ extra pin

for CS). Tested and works great with any of our Feathers, based on ATmega32u4,

ATmega328P, ATSAMD21, ATSAMD51, nRF52, Teensy, or ESP32/ESP8266.

We recommend the Arduino's default SD library to talk to the microSD card socket. On

ESP8266, the SD CS pin is on GPIO 15, on Atmel M0, M4, 328P or 32u4 it's on GPIO

10. You can cut the trace to the default pin and change this to any pin. To use the RTC,

use our RTClib library (https://adafru.it/c7r). If you need a precision RTC, check out

our DS3231 FeatherWing (http://adafru.it/3028)

©Adafruit Industries Page 4 of 36

https://github.com/adafruit/RTClib
https://www.adafruit.com/products/3028
https://www.adafruit.com/products/3028

Great for any kind of datalogging or even data reading! Some light soldering is

required to attach the headers onto the 'Wing but it's a 10 minute task.

Pinouts

Evern though every pin from the Feather is 'doubled up' with an inner header, not all

of the pins are actually used!

Power Pins

On the bottom row, the 3.3V (second from left) and GND (fourth from left) pin are used

to power the SD card and RTC (to take a load off the coin cell battery when main

power is available)

©Adafruit Industries Page 5 of 36

RTC & I2C Pins

In the top right, SDA (rightmost) and SCL (to the left of SDA) are used to talk to the

RTC chip.

SCL - I2C clock pin, connect to your microcontrollers I2C clock line. This pin has

a 10K pullup resistor to 3.3V

SDA - I2C data pin, connect to your microcontrollers I2C data line. This pin has a

10K pullup resistor to 3.3V

These pins are in the same location on every Feather

There's also a breakout for INT which is the output pin from the RTC. It can be used as

an interrupt output or it could also be used to generate a square wave.

Note that this pin is open drain - you must enable the internal pullup on whatever

digital pin it is connected to!

•

•

©Adafruit Industries Page 6 of 36

SD & SPI Pins

Starting from the left you've got

SPI Clock (SCK) - output from feather to wing

SPI Microcontroller Out Sensor In (MOSI) - output from feather to wing

SPI Microcontroller In Sensor Out (MISO) - input from wing to feather

These pins are in the same location on every Feather. They are used for

communicating with the SD card. When the SD card is not inserted, these pins are

completely free. MISO is tri-stated whenever the SD CS pin is pulled high

The SDCS pin is the chip select line.

On ESP8266, the SD CS pin is on GPIO 15

On ESP32 it's GPIO 33

On WICED it's GPIO PB5

On the nRF52832 it's GPIO 11

On Atmel M0, M4, 328p or 32u4 it's on GPIO 10

On Teensy 3.x it's on GPIO 10

You can cut the trace to the default pin and change this to any pin by soldering a wire

to any available pad.

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 7 of 36

Assembly

When putting together your Featherwings, think about how you want it to connect,

you can use stacking headers:

Or plain female socket headers:

©Adafruit Industries Page 8 of 36

The most common method of attachment for the featherwing is putting stacking or

female headers on the Feather mainboard and then putting the Wing on top:

But don't forget, you can also put the stacking headers on the wing and stack the

Feather on top of it!

©Adafruit Industries Page 9 of 36

Using the Real Time Clock

What is a Real Time Clock?

When logging data, it's often really really useful to have timestamps! That way you

can take data one minute apart (by checking the clock) or noting at what time of day

the data was logged.

The Arduino IDE does have a built-in timekeeper called millis() and theres also timers

built into the chip that can keep track of longer time periods like minutes or days. So

why would you want to have a separate RTC chip? Well, the biggest reason is that mil

lis() only keeps track of time since the Feather was last powered - that means that

when the power is turned on, the millisecond timer is set back to 0. The Feather

doesnt know its 'Tuesday' or 'March 8th' all it can tell is 'Its been 14,000 milliseconds

since I was last turned on'.

OK so what if you wanted to set the time? You'd have to program in the date and time

and you could have it count from that point on. But if it lost power, you'd have to reset

the time. Much like very cheap alarm clocks: every time they lose power they blink 12:

00

While this sort of basic timekeeping is OK for some projects, a data-logger will need

to have consistent timekeeping that doesnt reset when the power goes out or is

reprogrammed. Thus, we include a separate RTC! The RTC chip is a specialized chip

that just keeps track of time. It can count leap-years and knows how many days are in

a month, but it doesn't take care of Daylight Savings Time (because it changes from

place to place)

©Adafruit Industries Page 10 of 36

This image shows a computer motherboard with a Real Time Clock called the DS1387

(https://adafru.it/aX0). Theres a lithium battery in there which is why it's so big.

The RTC we'll be using is the PCF8523 (https://adafru.it/reb)

Battery Backup

As long as it has a coin cell to run it, the RTC will merrily tick along for a long time,

even when the Feather loses power, or is reprogrammed.

Use any CR1220 3V lithium metal coin cell battery:

CR1220 12mm Diameter - 3V Lithium Coin

Cell Battery

These are the highest quality &

capacity batteries, the same as shipped

with the iCufflinks, iNecklace, Datalogging

and GPS Shields, GPS HAT, etc. One

battery per order...

https://www.adafruit.com/product/380

You MUST have a coin cell installed for the RTC to work, if there is no coin cell, it

will act strangely and possibly hang the Arduino when you try to use it, so

ALWAYS make SURE there's a battery installed, even if it's a dead battery.

©Adafruit Industries Page 11 of 36

http://www.maxim-ic.com/app-notes/index.mvp/id/503
http://www.nxp.com/products/interface-and-connectivity/interface-and-system-management/i2c-bus-portfolio/i2c-real-time-clocks-rtc/real-time-clock-rtc-and-calendar:PCF8523
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380

RTC with Arduino

Wiring

Wiring it up is easy, connect it up as shown below.

GND to GND (black wire on

STEMMA QT version) on your board

VCC (red wire on STEMMA QT

version) to the logic level power of

your board (on classic Arduinos &

Metros use 5V, on 3.3V devices use

3.3V)

SDA to the SDA (blue wire on

STEMMA QT version) i2c data pin

SCL to the SCL (yellow wire on

STEMMA QT version) i2c clock pin

There are internal 10K pull-ups on the

PCF8523 on SDA and SCL to the VCC

voltage

pcfmetro Fritzing

https://adafru.it/A1F

•

•

•

•

©Adafruit Industries Page 12 of 36

https://learn.adafruit.com//assets/103717
https://learn.adafruit.com//assets/103717
https://learn.adafruit.com//assets/103718
https://learn.adafruit.com//assets/103718
https://learn.adafruit.com//assets/103719
https://learn.adafruit.com//assets/103719
https://cdn-learn.adafruit.com/assets/assets/000/047/734/original/pcfmetro.fzz?1509306338

Talking to the RTC

The RTC is an i2c device, which means it uses 2 wires to to communicate. These two

wires are used to set the time and retrieve it.

For the RTC library, we'll be using a fork of JeeLab's excellent RTC library, which is

available on GitHub (https://adafru.it/c7r). You can do that by visiting the github repo

and manually downloading or, easier go to the Arduino Library Manager

Type in RTClib - and find the one that is by Adafruit and click Install

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

There are a few different 'forks' of RTClib, make sure you are using the

ADAFRUIT one!

©Adafruit Industries Page 13 of 36

https://github.com/adafruit/RTClib
https://github.com/adafruit/RTClib

Once done, restart the IDE

First RTC test

The first thing we'll demonstrate is a test sketch that will read the time from the RTC

once a second. We'll also show what happens if you remove the battery and replace it

since that causes the RTC to halt. So to start, remove the battery from the holder

while the Feather is not powered or plugged into USB. Wait 3 seconds and then

replace the battery. This resets the RTC chip. Now load up the matching sketch for

your RTC

Open up Examples->RTClib->pcf8523

Upload it to your board with the PCF8523 breakout board or FeatherWing connected

Now open up the Serial Console and make sure the baud rate is set correctly at

57600 baud you should see the following:

©Adafruit Industries Page 14 of 36

Whenever the RTC chip loses all power (including the backup battery) it will reset to

an earlier date and report the time as 0:0:0 or similar. Whenever you set the time, this

will kickstart the clock ticking.

So, basically, the upshot here is that you should never ever remove the battery once

you've set the time. You shouldn't have to and the battery holder is very snug so

unless the board is crushed, the battery won't 'fall out'

Setting the time

With the same sketch loaded, uncomment the line that starts with RTC.adjust like so:

 if (! rtc.initialized()) {

 Serial.println("RTC is NOT running!");

 // following line sets the RTC to the date & time this sketch was compiled

 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

This line is very cute, what it does is take the Date and Time according the computer

you're using (right when you compile the code) and uses that to program the RTC. If

your computer time is not set right you should fix that first. Then you must press the U

pload button to compile and then immediately upload. If you compile and then upload

later, the clock will be off by that amount of time.

Then open up the Serial monitor window to show that the time has been set

©Adafruit Industries Page 15 of 36

From now on, you won't have to ever set the time again: the battery will last 5 or more

years

Reading the time

Now that the RTC is merrily ticking away, we'll want to query it for the time. Let's look

at the sketch again to see how this is done

void loop () {

 DateTime now = rtc.now();

 Serial.print(now.year(), DEC);

 Serial.print('/');

 Serial.print(now.month(), DEC);

 Serial.print('/');

 Serial.print(now.day(), DEC);

 Serial.print(" (");

 Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);

 Serial.print(") ");

 Serial.print(now.hour(), DEC);

 Serial.print(':');

 Serial.print(now.minute(), DEC);

 Serial.print(':');

 Serial.print(now.second(), DEC);

 Serial.println();

©Adafruit Industries Page 16 of 36

There's pretty much only one way to get the time using the RTClib, which is to call no

w(), a function that returns a DateTime object that describes the year, month, day,

hour, minute and second when you called now().

There are some RTC libraries that instead have you call something like RTC.year() and

RTC.hour() to get the current year and hour. However, there's one problem where if

you happen to ask for the minute right at 3:14:59 just before the next minute rolls

over, and then the second right after the minute rolls over (so at 3:15:00) you'll see the

time as 3:14:00 which is a minute off. If you did it the other way around you could get

3:15:59 - so one minute off in the other direction.

Because this is not an especially unlikely occurance - particularly if you're querying

the time pretty often - we take a 'snapshot' of the time from the RTC all at once and

then we can pull it apart into day() or second() as seen above. It's a tiny bit more effort

but we think its worth it to avoid mistakes!

We can also get a 'timestamp' out of the DateTime object by calling unixtime which

counts the number of seconds (not counting leapseconds) since midnight, January 1st

1970

 Serial.print(" since 2000 = ");

 Serial.print(now.unixtime());

 Serial.print("s = ");

 Serial.print(now.unixtime() / 86400L);

 Serial.println("d");

Since there are 60*60*24 = 86400 seconds in a day, we can easily count days since

then as well. This might be useful when you want to keep track of how much time has

passed since the last query, making some math a lot easier (like checking if it's been

5 minutes later, just see if unixtime() has increased by 300, you dont have to worry

about hour changes)

RTC with CircuitPython

Wiring

Wiring it up is easy, connect it up as shown below.

©Adafruit Industries Page 17 of 36

GND to GND on your board

VCC to the logic level power of

your board - every CircuitPython

board uses 3.3V

SDA to the SDA i2c data pin

SCL to the SCL i2c clock pin

There are internal 10K pull-ups on the

PCF8523 on SDA and SCL to the VCC

voltage

Adafruit CircuitPython Library Install

To use the RTC sensor with your Adafruit CircuitPython (https://adafru.it/AlP) board

you'll need to install the Adafruit_CircuitPython_PCF8523 (https://adafru.it/Bvh)

module on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

•

•

•

•

©Adafruit Industries Page 18 of 36

https://learn.adafruit.com//assets/103720
https://learn.adafruit.com//assets/103720
https://learn.adafruit.com//assets/103721
https://learn.adafruit.com//assets/103721
https://learn.adafruit.com//assets/103722
https://learn.adafruit.com//assets/103722
file:///home/welcome-to-circuitpython/
https://github.com/adafruit/Adafruit_CircuitPython_PCF8523
file:///home/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the

necessary libraries from the bundle:

adafruit_bus_device folder

adafruit_register folder

adafruit_pcf8523.mpy

Before continuing make sure your board's lib folder or root filesystem has the adafrui

t_pcf8523.mpy module, the adafruit_register folder, and the adafruit_bus_device

folder copied over.

Usage

To demonstrate the usage of the PCF8523 module you can connect to your board's

serial REPL to see the output while saving our example sketch to main.py

Next connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Then save this script to main.py (back up or remove whatever was there before)

import busio

import adafruit_pcf8523

import time

import board

myI2C = busio.I2C(board.SCL, board.SDA)

rtc = adafruit_pcf8523.PCF8523(myI2C)

days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

•

•

•

©Adafruit Industries Page 19 of 36

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/the-repl

"Saturday")

if False: # change to True if you want to write the time!

 # year, mon, date, hour, min, sec, wday, yday, isdst

 t = time.struct_time((2017, 10, 29, 15, 14, 15, 0, -1, -1))

 # you must set year, mon, date, hour, min, sec and weekday

 # yearday is not supported, isdst can be set but we don't do anything with it

at this time

 print("Setting time to:", t) # uncomment for debugging

 rtc.datetime = t

 print()

while True:

 t = rtc.datetime

 #print(t) # uncomment for debugging

 print("The date is %s %d/%d/%d" % (days[t.tm_wday], t.tm_mday, t.tm_mon,

t.tm_year))

 print("The time is %d:%02d:%02d" % (t.tm_hour, t.tm_min, t.tm_sec))

 time.sleep(1) # wait a second

Setting the time

The first time you run the program, you'll need to set the time

find these lines:

if False: # change to True if you want to write the time!

 # year, mon, date, hour, min, sec, wday, yday, isdst

 t = time.struct_time((2017, 10, 29, 15, 14, 15, 0, -1, -1))

 # you must set year, mon, date, hour, min, sec and weekday

 # yearday is not supported, isdst can be set but we don't do anything with it

at this time

Change the False to True in the first line, and update the time.struct_time to have

the current time starting from year to weekday . The last two entries can stay at -1

Re-run the sketch by saving and you'll see this out of the REPL:

Note the part where the program says it is Setting time to:

©Adafruit Industries Page 20 of 36

Now you can go back and change the if True to if False and save, so you don't re-set

the RTC again.

The script will now output the time and date

Using the SD Card

The other half of the adalogger FeatherWing is the SD card. The SD card is how we

store long term data. While the Feather may have a permanent EEPROM storage, its

only a couple hundred bytes - tiny compared to a 2 gig SD card. SD cards are so

cheap and easy to get, its an obvious choice for long term storage so we use them for

the 'Wing!

The FeatherWing kit doesn't come with an SD card but we carry one in the shop that

is guaranteed to work (https://adafru.it/aIH). Pretty much any SD card should work but

be aware that some cheap cards are 'fakes' and can cause headaches.

4GB Blank SD/MicroSD Memory Card

Add mega-storage in a jiffy using this

4 GB micro-SD card. It comes with a SD

adapter so you can use it with any of our

shields or adapters! Preformatted to FAT

so it works out of...

https://www.adafruit.com/product/102

You'll also need a way to read and write from the SD card. Sometimes you can use

your camera and MP3 player - when its plugged in you will be able to see it as a disk.

Or you may need an SD card reader (http://adafru.it/939). The Wing doesnt have the

ability to display the SD card as a 'hard disk' like some MP3 players or games, the

Feather does not have the hardware for that, so you will need an external reader!

©Adafruit Industries Page 21 of 36

http://www.adafruit.com/index.php?main_page=product_info&cPath=18&products_id=102
http://www.adafruit.com/index.php?main_page=product_info&cPath=18&products_id=102
https://www.adafruit.com/product/102
https://www.adafruit.com/product/102
http://www.adafruit.com/products/939

USB MicroSD Card Reader/Writer -

microSD / microSDHC / microSDXC

This is the cutest little microSD card

reader/writer - but don't be fooled by its

adorableness! It's wicked fast and

supports up to 64 GB SDXC cards! Simply

slide the card into...

https://www.adafruit.com/product/939

Formatting under Windows/Mac

If you bought an SD card, chances are it's already pre-formatted with a FAT filesystem.

However you may have problems with how the factory formats the card, or if it's an

old card it needs to be reformatted. The Arduino SD library we use supports both FA

T16 and FAT32 filesystems. If you have a very small SD card, say 8-32 Megabytes you

might find it is formatted FAT12 which isnt supported. You'll have to reformat these

card. Either way, its always good idea to format the card before using, even if its new!

Note that formatting will erase the card so save anything you want first

The official SD formatter is available from https://www.sdcard.org/downloads/

formatter_4/ (https://adafru.it/cfL)

Download it and run it on your computer, there's also a manual linked from that page

for use

Download the official SD Formatter

software for Windows

https://adafru.it/cfL

Basic SD Card Test

The Arduino SD Card library has a built in example that will help you test the Wing

and your connections

We strongly recommend you use the official SD card formatter utility - written by

the SD association it solves many problems that come with bad formatting!

©Adafruit Industries Page 22 of 36

https://www.adafruit.com/product/939
https://www.adafruit.com/product/939
https://www.adafruit.com/product/939
https://www.sdcard.org/downloads/formatter_4/
https://www.sdcard.org/downloads/formatter_4/
https://www.sdcard.org/downloads/formatter_4/

Open the file listfiles example sketch in the SD library:

This sketch will not write any data to the card, just list the contents. This can be very

useful when trying to figure out whether an SD card is supported. Before trying out a

new card, please try out this sketch!

Scroll to the line where you see SD.begin() and change the value in the

parentheses to match the chip select (CS) pin for your board.

On ESP8266, the SD CS pin is on GPIO 15

On Atmel M0, M4, 328p or 32u4 it's on GPIO 10

On Teensy 3.x it's on GPIO 10

On STM32F2/WICED, its on PB5

On ESP32, it's on GPIO 33

On nRF52832, it's on GPIO 11

On nRF52840, it's on GPIO 10

•

•

•

•

•

•

•

©Adafruit Industries Page 23 of 36

OK, now insert the micro SD card into the FeatherWing and upload the sketch.

©Adafruit Industries Page 24 of 36

Open up the Serial Monitor and you should see a listing of the files and folder layout.

The specifics will depend on the card contents, but should look something like:

If you have a bad card, or some other formatting issue, you'll probably see:

It couldn't even initialize the SD card. This can also happen if there's a soldering error

or if the card is really damaged

If you're having SD card problems, we suggest using the SD formatter mentioned

above first to make sure the card is clean and ready to use!

Next steps!

Once you know the SD card works, check out the SD card library (https://adafru.it/ucu)

examples, SD library documentation (https://adafru.it/ucu) and Notes (https://adafru.it/

ucv)!

Example logging sketch

If you want to try saving data to the SD card in the simplest sketch, try this example.

You can adjust the delay() to set how often analog data is read from pin A0 and saved

©Adafruit Industries Page 25 of 36

https://www.arduino.cc/en/reference/SD
https://www.arduino.cc/en/reference/SD
https://www.arduino.cc/en/Reference/SDCardNotes

to the SD card. The red LED will blink if there's an error, and the green LED will blink

when data is written to the SD card.

You will need to change the sketch's SD_CS pin to match the SD card's Chip

Select pin on your Feather!

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

#include <SPI.h>

#include <SD.h>

// Set the pins used

#define cardSelect 4

File logfile;

// blink out an error code

void error(uint8_t errno) {

 while(1) {

 uint8_t i;

 for (i=0; i<errno; i++) {

 digitalWrite(13, HIGH);

 delay(100);

 digitalWrite(13, LOW);

 delay(100);

 }

 for (i=errno; i<10; i++) {

 delay(200);

 }

 }

}

// This line is not needed if you have Adafruit SAMD board package 1.6.2+

// #define Serial SerialUSB

void setup() {

 // connect at 115200 so we can read the GPS fast enough and echo without dropping chars

 // also spit it out

 Serial.begin(115200);

 Serial.println("\r\nAnalog logger test");

 pinMode(13, OUTPUT);

 // see if the card is present and can be initialized:

 if (!SD.begin(cardSelect)) {

 Serial.println("Card init. failed!");

 error(2);

 }

 char filename[15];

 strcpy(filename, "/ANALOG00.TXT");

©Adafruit Industries Page 26 of 36

If you really want to make sure you save every data point, put a

logfile.flush();

right after the logfile.print's however this will cause the adalogger to draw a lot more

power, maybe about 3x as much on average (30mA avg rather than about 10mA)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

 for (uint8_t i = 0; i < 100; i++) {

 filename[7] = '0' + i/10;

 filename[8] = '0' + i%10;

 // create if does not exist, do not open existing, write, sync after write

 if (! SD.exists(filename)) {

 break;

 }

 }

 logfile = SD.open(filename, FILE_WRITE);

 if(! logfile) {

 Serial.print("Couldnt create ");

 Serial.println(filename);

 error(3);

 }

 Serial.print("Writing to ");

 Serial.println(filename);

 pinMode(13, OUTPUT);

 pinMode(8, OUTPUT);

 Serial.println("Ready!");

}

uint8_t i=0;

void loop() {

 digitalWrite(8, HIGH);

 logfile.print("A0 = "); logfile.println(analogRead(0));

 Serial.print("A0 = "); Serial.println(analogRead(0));

 digitalWrite(8, LOW);

 delay(100);

}

view rawadalogger.ino hosted with ❤ by GitHub

©Adafruit Industries Page 27 of 36

https://gist.github.com/ladyada/13efab4022b7358033c7/raw/379ab2a3e7c73f70f0ba8d0a34b1d8975e1d701b/adalogger.ino
https://gist.github.com/ladyada/13efab4022b7358033c7#file-adalogger-ino
https://github.com

CircuitPython

Adafruit CircuitPython Module Install

To use a microSD card with your Adafruit CircuitPython board you'll need to install

the Adafruit_CircuitPython_SD (https://adafru.it/zwC) module on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU) for both express and non-express boards. Be

sure to use the latest CircuitPython Bundle as it includes an updated version of the

SD card module with a few necessary fixes!

Remember for non-express boards like the, you'll need to manually install the

necessary libraries from the bundle:

adafruit_sdcard.mpy

adafruit_bus_device

If your board doesn't support USB mass storage, like the ESP8266, then use a tool

like ampy to copy the file to the board (https://adafru.it/s1f). You can use the latest

version of ampy and its new directory copy command (https://adafru.it/q2A) to easily

move module directories to the board.

Before continuing make sure your board's lib folder or root filesystem has the adafrui

t_sdcard.mpy and adafruit_bus_device modules copied over.

•

•

©Adafruit Industries Page 28 of 36

https://github.com/adafruit/Adafruit_CircuitPython_SD
file:///home/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/micropython-basics-load-files-and-run-code
file:///home/micropython-basics-load-files-and-run-code
file:///home/micropython-basics-load-files-and-run-code/file-operations#copy-directories-to-board

Usage

The following section will show how to initialize the SD card and read & write data to

it from the board's Python prompt / REPL.

Next connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Initialize & Mount SD Card Filesystem

Before you can use the microSD card you need to initialize its SPI connection and

mount its filesystem. First import the necessary modules to initialize the SPI and CS

line physical connections:

import board

import busio

import digitalio

Next create the SPI bus and a digital output for the microSD card's chip select line (be

sure to select the right pin name or number for your wiring):

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Use board.SD_CS for Feather M0 Adalogger

cs = digitalio.DigitalInOut(board.SD_CS)

Or use a digitalio pin like 5 for breakout wiring:

#cs = digitalio.DigitalInOut(board.D5)

Now import modules to access the SD card and filesystem:

©Adafruit Industries Page 29 of 36

file:///home/welcome-to-circuitpython/the-repl

import adafruit_sdcard

import storage

At this point you're ready to create the microSD card object and the filesystem object:

sdcard = adafruit_sdcard.SDCard(spi, cs)

vfs = storage.VfsFat(sdcard)

Notice the adafruit_sdcard module has a SDCard class which contains all the logic for

talking to the microSD card at a low level. This class needs to be told the SPI bus and

chip select digital IO pin in its initializer.

After a SDCard class is created it can be passed to the storage module's VfsFat class.

 This class has all the logic for translating CircuitPython filesystem calls into low level

microSD card access. Both the SDCard and VfsFat class instances are required to

mount the card as a new filesystem.

Finally you can mount the microSD card's filesystem into the CircuitPython filesystem.

 For example to make the path /sd on the CircuitPython filesystem read and write from

the card run this command:

storage.mount(vfs, "/sd")

The first parameter to the storage.mount command is the VfsFat class instance that

was created above, and the second parameter is the location within the CircuitPython

filesystem that you'd like to 'place' the microSD card. Remember the mount location

as you'll need it to read and write files on the card!

If the same SPI bus is shared with other peripherals, it is important that the SD

card be initialized before accessing any other peripheral on the bus. Failure to

do so can prevent the SD card from being recognized until it is powered off or re-

inserted.

©Adafruit Industries Page 30 of 36

Reading & Writing Data

Once the microSD card is mounted inside CircuitPython's filesystem you're ready to

read and write data from it. Reading and writing data is simple using Python's file

operations like open (https://adafru.it/reL), close (https://adafru.it/ryE), read (https://

adafru.it/ryE), and write (https://adafru.it/ryE). The beauty of CircuitPython and

MicroPython is that they try to be as similar to desktop Python as possible, including

access to files.

For example to create a file and write a line of text to it you can run:

with open("/sd/test.txt", "w") as f:

 f.write("Hello world!\r\n")

Notice the with statement is used to create a context manager that opens and

automatically closes the file. This is handy because with file access you Python you m

ust close the file when you're done or else all the data you thought was written might

be lost!

The open function is used to open the file by telling it the path to it, and the mode (w

for writing). Notice the path is under /sd, /sd/test.txt. This means the file will be

created on the microSD card that was mounted as that path.

Inside the context manager you can access the f variable to operate on the file while

it's open. The write function is called to write a line of text to the file. Notice that

unlike a print statement you need to end the string passed to write with explicit

carriage returns and new lines.

You can also open a file and read a line from it with similar code:

with open("/sd/test.txt", "r") as f:

 print("Read line from file:")

 print(f.readline())

If you wanted to read and print all of the lines from a file you could call readline in a

loop. Once readline reaches the end of the file it will return an empty string so you

know when to stop:

©Adafruit Industries Page 31 of 36

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/io.html#io.IOBase.close
https://docs.python.org/3/library/io.html#io.RawIOBase.read
https://docs.python.org/3/library/io.html#io.RawIOBase.write

with open("/sd/test.txt", "r") as f:

 print("Printing lines in file:")

 line = f.readline()

 while line != '':

 print(line)

 line = f.readline()

There's even a readlines function that will read all of the lines in the file and return

them in an array of lines. Be careful though as this means the entire file must be

loaded into memory, so if the file is very large you might run out of memory. If you

know your file is very small you can use it though:

with open("/sd/test.txt", "r") as f:

 lines = f.readlines()

 print("Printing lines in file:")

 for line in lines:

 print(line)

Finally one other very common file scenario is opening a file to add new data at the

end, or append data. This works exactly the same as in Python and the open function

can be told you'd like to append instead of erase and write new data (what normally

happens with the w option for open). For example to add a line to the file:

with open("/sd/test.txt", "a") as f:

 f.write("This is another line!\r\n")

Notice the a option in the open function--this tells Python to add data at the end of

the file instead of erasing it and starting over at the top. Try reading the file with the

code above to see the new line that was added!

That's all there is to manipulating files on microSD cards with CircuitPython!

Here are a few more complete examples of using a SD card from the Trinket M0

CircuitPython guides (https://adafru.it/Bvi). These are great as a reference for more

SD card usage.

List Files

Load this into main.py:

import os

import adafruit_sdcard

import board

import busio

import digitalio

©Adafruit Industries Page 32 of 36

file:///home/adafruit-trinket-m0-circuitpython-arduino/circuitpython-spi-sd-card
file:///home/adafruit-trinket-m0-circuitpython-arduino/circuitpython-spi-sd-card

import storage

Use any pin that is not taken by SPI

SD_CS = board.D0

Connect to the card and mount the filesystem.

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

cs = digitalio.DigitalInOut(SD_CS)

sdcard = adafruit_sdcard.SDCard(spi, cs)

vfs = storage.VfsFat(sdcard)

storage.mount(vfs, "/sd")

Use the filesystem as normal! Our files are under /sd

This helper function will print the contents of the SD

def print_directory(path, tabs=0):

 for file in os.listdir(path):

 stats = os.stat(path + "/" + file)

 filesize = stats[6]

 isdir = stats[0] & 0x4000

 if filesize < 1000:

 sizestr = str(filesize) + " by"

 elif filesize < 1000000:

 sizestr = "%0.1f KB" % (filesize / 1000)

 else:

 sizestr = "%0.1f MB" % (filesize / 1000000)

 prettyprintname = ""

 for _ in range(tabs):

 prettyprintname += " "

 prettyprintname += file

 if isdir:

 prettyprintname += "/"

 print('{0:<40} Size: {1:>10}'.format(prettyprintname, sizestr))

 # recursively print directory contents

 if isdir:

 print_directory(path + "/" + file, tabs + 1)

print("Files on filesystem:")

print("====================")

print_directory("/sd")

Once it's loaded up, open up the REPL (and restart it with ^D if necessary) to get a

printout of all the files included. We recursively print out all files and also the filesize.

This is a good demo to start with because you can at least tell if your files exist!

©Adafruit Industries Page 33 of 36

Logging Temperature

But you probably want to do a little more, lets log the temperature from the chip to a

file.

Here's the new script

import time

import adafruit_sdcard

import board

import busio

import digitalio

import microcontroller

import storage

Use any pin that is not taken by SPI

SD_CS = board.D0

led = digitalio.DigitalInOut(board.D13)

led.direction = digitalio.Direction.OUTPUT

Connect to the card and mount the filesystem.

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

cs = digitalio.DigitalInOut(SD_CS)

sdcard = adafruit_sdcard.SDCard(spi, cs)

vfs = storage.VfsFat(sdcard)

storage.mount(vfs, "/sd")

Use the filesystem as normal! Our files are under /sd

print("Logging temperature to filesystem")

append to the file!

while True:

 # open file for append

 with open("/sd/temperature.txt", "a") as f:

 led.value = True # turn on LED to indicate we're writing to the file

 t = microcontroller.cpu.temperature

 print("Temperature = %0.1f" % t)

 f.write("%0.1f\n" % t)

 led.value = False # turn off LED to indicate we're done

 # file is saved

 time.sleep(1)

When saved, the Trinket will start saving the temperature once per second to the SD

card under the file temperature.txt

©Adafruit Industries Page 34 of 36

The key part of this demo is in these lines:

print("Logging temperature to filesystem")

append to the file!

while True:

 # open file for append

 with open("/sd/temperature.txt", "a") as f:

 led.value = True # turn on LED to indicate we're writing to the file

 t = microcontroller.cpu.temperature

 print("Temperature = %0.1f" % t)

 f.write("%0.1f\n" % t)

 led.value = False # turn off LED to indicate we're done

 # file is saved

 time.sleep(1)

This is a slightly complex demo but it's for a good reason. We use with (a 'context') to

open the file for appending, that way the file is only opened for the very short time its

written to. This is safer because then if the SD card is removed or the board turned

off, all the data will be safe(r).

We use the LED to let the person using this know that the temperature is being

written, it turns on just before the write and then off right after.

After the LED is turned off the with ends and the context closes, the file is safely

stored.

Downloads

Datasheets and Files

EagleCAD PCB files on GitHub (https://adafru.it/rek)

Fritzing object in Adafruit Fritzing library (https://adafru.it/c7M)

PCF8523 product page (https://adafru.it/reb)

•

•

•

©Adafruit Industries Page 35 of 36

https://github.com/adafruit/Adafruit-Adalogger-FeatherWing-PCB
https://github.com/adafruit/Fritzing-Library/
http://www.nxp.com/products/interface-and-connectivity/interface-and-system-management/i2c-bus-portfolio/i2c-real-time-clocks-rtc/real-time-clock-rtc-and-calendar:PCF8523

Schematic

Fabrication Print

©Adafruit Industries Page 36 of 36

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Adafruit:

 2922

https://www.mouser.com/adafruit
https://www.mouser.com/access/?pn=2922

	Adafruit Adalogger FeatherWing
	Table of Contents
	Overview
	Pinouts
	Assembly
	Using the Real Time Clock
	RTC with Arduino
	RTC with CircuitPython
	Using the SD Card
	CircuitPython
	Downloads

	Overview
	Pinouts
	Power Pins
	RTC & I2C Pins
	SD & SPI Pins
	Assembly
	Using the Real Time Clock
	What is a Real Time Clock?

	Battery Backup
	RTC with Arduino
	Wiring
	Talking to the RTC
	First RTC test
	Setting the time
	Reading the time
	RTC with CircuitPython
	Wiring
	Adafruit CircuitPython Library Install
	Usage
	Setting the time
	Using the SD Card
	Formatting under Windows/Mac

	Basic SD Card Test
	Next steps!
	Example logging sketch
	CircuitPython
	Adafruit CircuitPython Module Install
	Usage
	Initialize & Mount SD Card Filesystem
	Reading & Writing Data

	List Files
	Logging Temperature
	Downloads
	Datasheets and Files
	Schematic
	Fabrication Print

