

User Manual CCE4503 Evaluation Board UM-IO-003

Abstract

The CCE4503 evaluation board is designed to evaluate and demonstrate the CCE4503 IO-Link Device IC.

Contents

Ab	stract			1								
1	Refe	rences		3								
2	Intro	duction.		3								
3	Syste	System Requirements										
4	Feature Overview											
5	Getti	Setting Started										
6	Powe	ower Supply										
7		Sections of the CCE4503 Evaluation Board										
	7.1		Section									
	7.2	Sensor	Section	5								
		7.2.1	Temperature Sensor	5								
		7.2.2	Color Sensor	6								
		7.2.3	Proximity Sensor and Inductive Switch	6								
	7.3	MCU S	ection	6								
8	Schematic and Layout											
	8.1	Connectors										
	8.2	Schema	atic	8								
	8.3	Layout.		10								
9	Bill o	of Materia	als	13								
R۵	vision	History	· · · · · · · · · · · · · · · · · · ·	14								
Fi	gure	es										
			Diagram									
_		_	Marks									
			torstic 1									
			tic 2									
Fig	ure 6:	Layout T	ГОР	1C								
Figure 7: Layout MID 1												
			MID 2 BOTTOM									
			Assembly									

© 2020 Dialog Semiconductor

1 References

- [1] CCE4503, Datasheet, Dialog Semiconductor.
- [2] LPC1347FBD48,151, Datasheet, NXP.
- [3] IO-Link Interface and System Specification V1.1.2, IO-Link Community.

2 Introduction

The board is divided into three sections:

IO-Link Section

The IO-Link section contains all necessary circuitry to use one CCE4503 (with an adjustable current limit and slew rate) for IO-Link communication as well as several connectors.

Sensor Section

The sensor section contains three different sensors to provide a variety of signals and measurement capabilities (temperature sensor, color sensor and proximity switch).

MCU Section

The MCU section contains an LPC1347 32-bit ARM Cortex-M3 microcontroller from NXP to control the CCE4503 Device IC as well as the provided sensors.

For maximum flexibility, the sections can be used separately and independently from each other. This allows to evaluate the CCE4503 Device IC with any suitable sensor application and MCU or both.

The CCE4503 Evaluation Board is delivered with a CCE4503 with 3.3 V LDO.

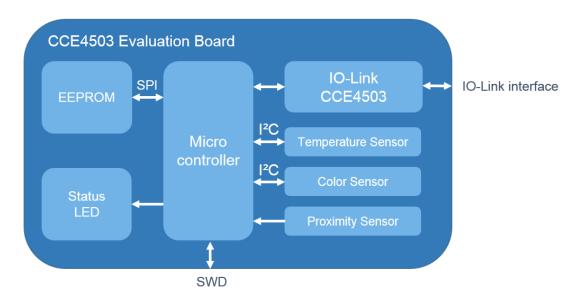


Figure 1: System Diagram

3 System Requirements

The CCE4503 Evaluation Board is ready to use with a preinstalled IO-Link Device Stack.

To get started, the following tools are required:

- Power Supply 24V (IO-Link Master)
- Debug probe (for programming via SWD)

4 Feature Overview

- ARM Cortex-M3 Microcontroller
- Programmable via SWD
- Reset Button
- Status LED indicator
- 8 Kbit EEPROM
- Additional on-board protection circuitry
- All pins accessible via pin-headers
 For microcontroller and IO-Link Device IC

- CCE4503 IO-Link Device IC
- M12 connector + terminal blocks
 - Three on-board sensors
 - □ Temperature sensor
 - □ Color Sensor
 - □ Proximity sensor / switch
- Independent use of sections (IO-Link, Sensor, MCU)

5 Getting Started

Programming via SWD

- 1. Connect debug probe to SWD connector (X1)
- 2. Set R8 to the desired value (current limit)
- 3. Power on the Evaluation Board (IO-Link interface L+ = 24V, L- = GND)
- 4. Start programming with your preferred SDK (Software Development Kit)

6 Power Supply

The Evaluation Board is supplied via the L+ voltage of the IO-Link interface which has to be 24 V. The IO-Link interface comprises L+, L- and CQ, and it can be accessed via an M12 connector or terminal clamps. Three SMAJ33A TVS diodes are used to provide additional protection against high voltage bursts.

At port VDD, a regulated voltage of 3.3 V is generated by a LDO regulator. This regulator supplies the digital I/O pads of the CCE4503, the MCU and the sensors. VDD can supply additional external components, but the overall external load at VDD must not exceed 20 mA. The current consumption of the MCU, the sensors and external components must be below this limit.

7 Sections of the CCE4503 Evaluation Board

All sections can be used separately. The connection between the sections can be disconnected by cutting them open between the cutting marks (see Figure 2). Make sure not to break the evaluation board. To reestablish the connection, a pin header with 2.54 mm pitch can be used.

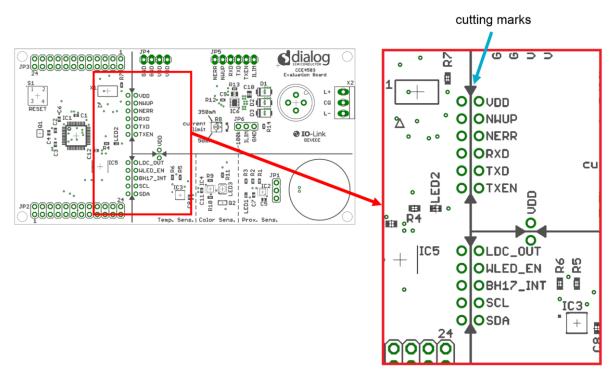


Figure 2: Cutting Marks

7.1 IO-Link Section

The IO-Link section contains the reference design for using the CCE4503. The current limit and the slew rate can be adjusted either by using the potentiometer R8, a fixed resistor R14 (not placed) or by connecting ILIM to GND or VDD. When using R14, please remove jumper on JP6.

A variety of connectors including an M12 a-coded 4-pin connector are placed on the IO-Link section.

7.2 Sensor Section

The sensor section contains three sensors which can be used for demonstration and evaluation of the IO-Link communication.

7.2.1 Temperature Sensor

Features of the temperature sensor:

- SI7055-A20-IM (Silicon Labs)
- I²C interface
- -40 °C to +125 °C (±0.5 °C)

© 2020 Dialog Semiconductor

CCE4503 Evaluation Board

7.2.2 Color Sensor

Features of the color sensor:

- BH1745NUC-E2 (ROHM)
- I²C interface
- 16 bit serial output RGBC

For successful measurements, activate LED3 (white LED) to illuminate the object to be measured. In order to get a better result, keep the object close to the sensor and reduce incident ambient light.

7.2.3 Proximity Sensor / Inductive Switch

Features of the proximity sensor / inductive switch:

- LDC0851HDSGR (Texas Instruments)
- Simple switching output

For successful measurements, the object held over the printed coils should be about the same size as the printed coils (for example a coin). The switching distance is about 5 mm. LED1 (red LED) signals a detected object.

7.3 MCU Section

All usable pins of the LPC1347 can be accessed via the connectors JP2 and JP3.

In case the on-board sensors are not used, the connection between the MCU section and the sensor section can be disconnected and the pins used for the sensor section can be used for any other purpose. Note that the pull-up resistors of the I²C communication are placed on the sensor section.

Connector X1 (JTAG) is used to program the LPC1347.

LED2 (green LED) is used as status LED and can be used for any purpose.

8 Schematic and Layout

8.1 Connectors

Figure 3 shows all connectors of the CCE4503 Evaluation Board. Via the connectors it is possible to access all necessary pins of the MCU and the CCE4503 device IC.

Figure 3: Connectors

8.2 Schematic

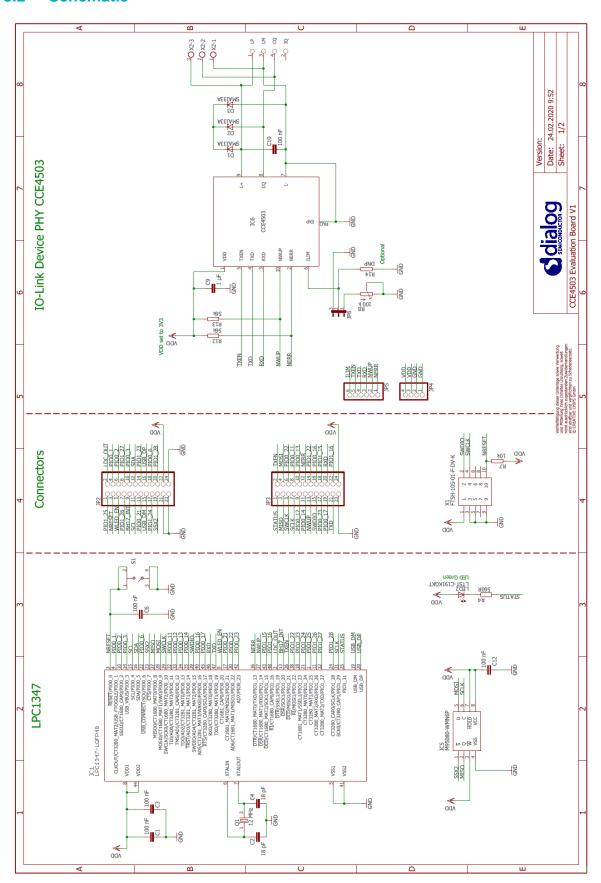


Figure 4: Schematic 1

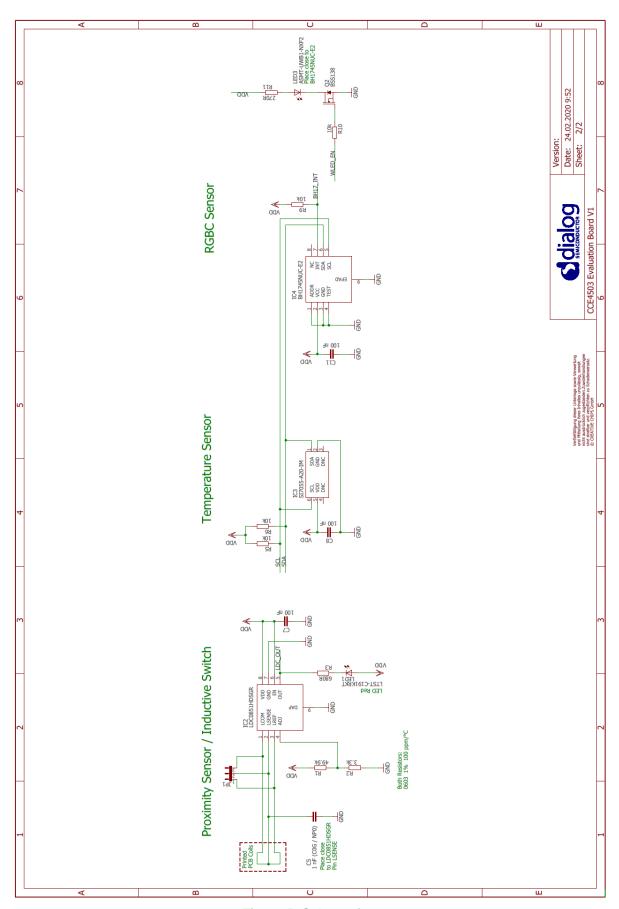


Figure 5: Schematic 2

8.3 Layout

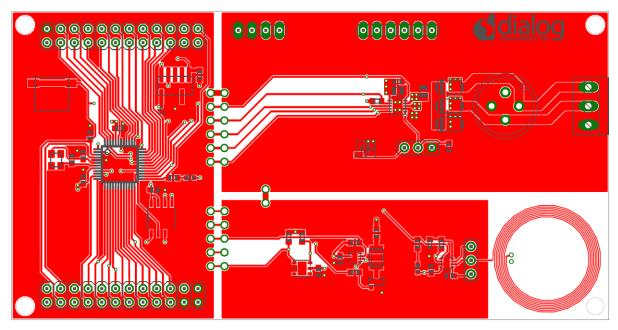


Figure 6: Layout TOP

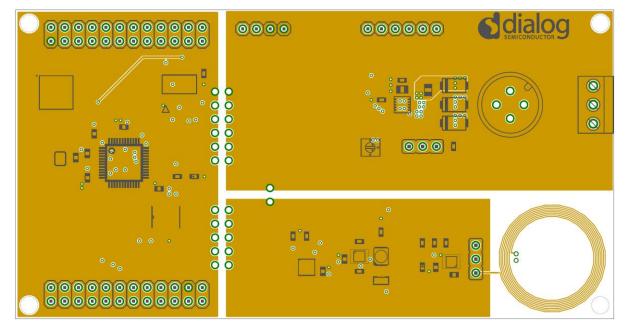


Figure 7: Layout MID 1

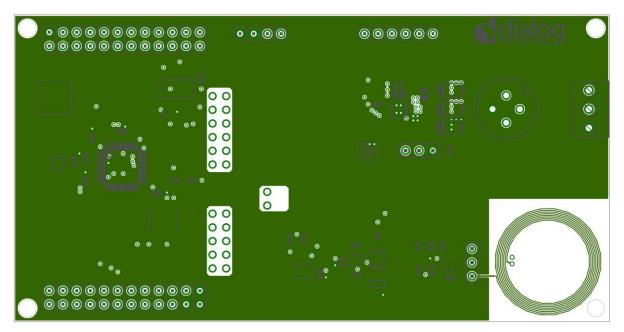


Figure 8: Layout MID 2

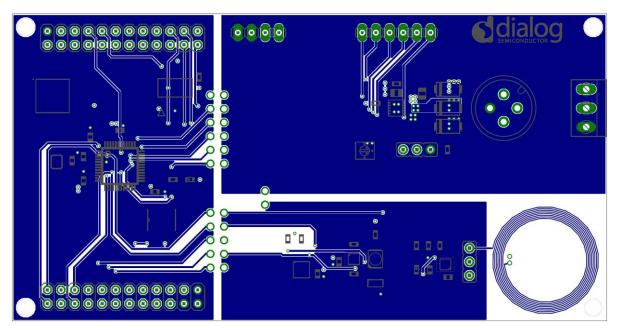


Figure 9: Layout BOTTOM

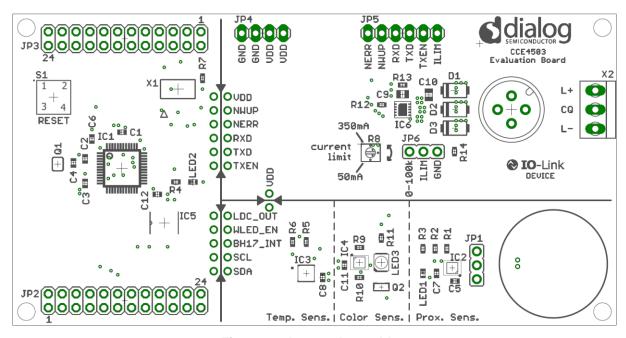


Figure 10: Layout Assembly

9 Bill of Materials

Part	Value / Description	Manufacturer	Manufacturer Part Number
C1,C3,C6,C7,C8, C11,C12	100 nF, 50 V, X7R, 10 %, 0603	Any	Any
C2,C4	18 pF, 50 V, C0G, 5 %, 0603	Any	Any
C5	1 nF, 50 V, C0G, 5 %, 0603	Any	Any
C9	1 μF, 50 V, X7R, 10 %, 0805	Any	Any
C10	100 nF, 50 V, X7R, 10 %, 0805	Any	Any
D1,D2,D3	SMAJ33A	Littelfuse Inc.	SMAJ33A
IC1	LPC1347 Microcontroller	NXP	LPC1347FBD48,151
IC2	Proximity Sensor	Texas Instruments	LDC0851HDSGR
IC3	Temperature Sensor	Silicon Labs	SI7055-A20-IM
IC4	Color Sensor	ROHM	BH1745NUC-E2
IC5	EEPROM 8kbit	STMicroeletronics	M95080-WMN6P
IC6	CCE4503 DFN10	Dialog Semiconductor	CCE4503DR43
JP1,JP6	Pin Header 3-Pin 2.54 mm	Any	Any
JP2,JP3	Pin Header 24-Pin 2.54 mm	Any	Any
JP4	Pin Header 4-Pin 2.54 mm	Any	Any
JP5	Pin Header 6-Pin 2.54 mm	Any	Any
LED1	LED Red	Lite-On Inc.	LTST-C191KRKT
LED2	LED Green	Lite-On Inc.	LTST-C191KGKT
LED3	LED White	Broadcom Limited	ASMT-UWB1-NX3F2
Q1	12 MHz SMD Crystal	ABRACON	ABM8G-106- 12.000MHZ-T
Q2	N-Channel MOSFET	ON SEMICONDUCTOR	BSS138
R1	49.9 k, 50 V, 100 mW, 1 %, 0603	Any	Any
R2	3.3 k, 50 V, 100 mW, 1 %, 0603	Any	Any
R3	680 R, 50 V, 100 mW, 1 %, 0603	Any	Any
R4	560 R, 50 V, 100 mW, 1 %, 0603	Any	Any
R5,R6,R7,R9,R10	10 k, 50 V, 100 mW, 1 %, 0603	Any	Any
R8	Pot.100 k, 125 mW, 20 %	TT Electronics	22AR100KLFTR
R11	270 R, 50 V, 100 mW, 1 %, 0603	Any	Any
R12,R13	56 k, 50V, 100 mW, 1 %, 0603	Any	Any
R14	0603	DNP	DNP
S1	SMD Switch	Wurth Electronics Inc.	430481035816
X1	SMT Micro Header	SAMTEC	FTSH-105-01-F-DV-K
X2	Wire-to-Board Connector	METZ CONNECT	31059103
Х3	M12 Connector	binder	09-0431-212-04
	i .	t .	t .

Revision History

Revision	Date	Description
1	13-Mar-2020	Initial version.

Status Definitions

Status	Definition
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.
APPROVED or unmarked	The content of this document has been approved for publication.

Disclaimer

Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor

All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor's Standard litions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated

Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are the property of their respective owners.

© 2020 Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Dialog Semiconductor Bingen

Phone: +49 6721 987 22-0

The Netherlands Dialog Semiconductor B.V.

Phone: +31 73 640 8822

Email:

enquiry@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Dialog Semiconductor K. K. Phone: +81 3 5769 5100

Dialog Semiconductor Taiwan Phone: +886 281 786 222

Web site:

www.dialog-semiconductor.com

China (Shenzhen)

Dialog Semiconductor Hong Kong Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China Phone: +86 21 5424 9058

User Manual Revision 1 13-Mar-2020

Hong Kong

Phone: +852 2607 4271

Phone: +82 2 3469 8200

Dialog Semiconductor Korea

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Dialog Semiconductor:

CCE4503-EVAL-V1