

# SLG47105V Evaluation Board Quick Start UM-GP-001

#### **Abstract**

This user manual provides basic guidelines for developers to get familiar with the Evaluation Board for SLG47105V. It consists of the functional descriptions of the board.



#### **Contents**

| Ab  | strac          | t         |                                                         | 1  |  |  |
|-----|----------------|-----------|---------------------------------------------------------|----|--|--|
| Со  | ntent          | s         |                                                         | 2  |  |  |
| Fiç | gures.         |           |                                                         | 2  |  |  |
| Та  | bles           |           |                                                         | 2  |  |  |
| 1   | Term           | ns and D  | efinitions                                              | 3  |  |  |
| 2   | Refe           | rences    |                                                         | 3  |  |  |
| 3   | 3 Introduction |           |                                                         |    |  |  |
| 4   | Fund           | tional D  | escription                                              | 5  |  |  |
|     | 4.1            | Expans    | ion Connectors and Test Points                          | 5  |  |  |
|     |                | 4.1.1     | Expansion Connectors SV1 and SV2                        | 5  |  |  |
|     |                | 4.1.2     | Power Supply and Power Selection Connectors (P1 and P7) | 6  |  |  |
|     |                | 4.1.3     | High-voltage Output Connector (P2)                      | 7  |  |  |
|     |                | 4.1.4     | Current Measurement Shunts P3 and P4                    | 7  |  |  |
|     |                | 4.1.5     | I <sup>2</sup> C Pull-Up Resistors                      | 8  |  |  |
|     |                | 4.1.6     | Protection Digital GND from Power GND                   | 8  |  |  |
| 5   | Con            | clusions  |                                                         | 8  |  |  |
| Αp  | pendi          | ix A Boa  | rd Dimensions                                           | 9  |  |  |
| Αp  | pendi          | іх В Тор  | View                                                    | 10 |  |  |
| Αp  | pendi          | іх С Воа  | rd Schematic                                            | 11 |  |  |
| Аp  | pendi          | ix D BON  | Λ                                                       | 12 |  |  |
| Re  | visior         | n History | ·                                                       | 13 |  |  |
|     |                | •         |                                                         |    |  |  |
| Fi  | gure           | es        |                                                         |    |  |  |
|     |                |           | 05V EVB General View                                    |    |  |  |
|     |                |           | 05V EVB Connected into PDB                              |    |  |  |
|     |                |           | 05V Evaluation Board, Top View                          |    |  |  |
|     |                |           | 05V Evaluation Board Schematic                          |    |  |  |
| Ta  | able           | S         |                                                         |    |  |  |
| Та  | ble 1:         | Male Hea  | aders SV1 and SV2 Functions                             | 5  |  |  |
| Та  | ble 2:         | P1 Conn   | ector Functions                                         | 6  |  |  |
|     |                | •         | P7 Functions                                            |    |  |  |
|     |                |           | ector FunctionsP3 and P4 Functions                      |    |  |  |
|     |                |           |                                                         |    |  |  |

CFR0012



#### 1 Terms and Definitions

ADB Advanced Development Board

EVB Evaluation Board

PDB Pro Development Board

TP Test Point

#### 2 References

- [1] SLG47105V, Datasheet https://www.dialog-semiconductor.com/documents.
- [2] NXP «I2C-bus specification and user manual». User manual. UM10204–Rev.6, 4 April 2014. https://www.nxp.com/docs/en/user-guide/UM10204.pdf



#### 3 Introduction

SLG47105V Evaluation Board (see Figure 1) let's get acquainted with SLG47105's functionality, especially the H-Bridge/Half-Bridge functions, and allows the User to test the power part of the chip.

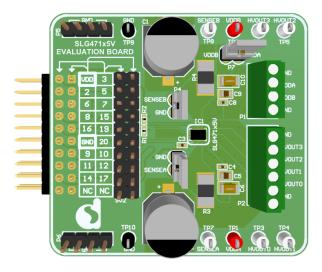



Figure 1: SLG47105V EVB General View

You can emulate/program the SLG47105V chip with the Advanced Development Board (ADB) or Pro Development Board (PDB). Insert EVB expansion connector SV1 into the ADB or PDB socket. In the case with PDB connect EVB expansion connector SV1 into the socket connector. The first pin locates at the right connector side. See Figure 2.

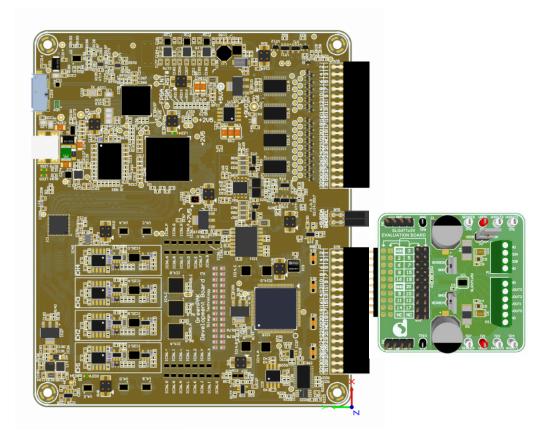



Figure 2: SLG47105V EVB Connected into PDB



## 4 Functional Description

#### 4.1 Expansion Connectors and Test Points

#### 4.1.1 Expansion Connectors SV1 and SV2

There are two male headers SV1 and SV2 placed on the board.

The SV1 male header is used only to connect SLG47105V Evaluation Board to the GreenPAK Advanced Development Platform or the GreenPAK Pro Development Platform. Therefore, SV1 has a connection with Chip Low Voltage IO Pins only. High Voltage Pins 6, 7, 8, 9, 10, and 11 are not connected to SV1 by default.

Only in case  $V_{DD} = V_{DD2}$ , it is possible to connect High Voltage Pins 6, 7, 8, 9, 10, and 11 to SV1 by installing resistors R6-R11 on the board.

The SV2 male header has a connection with all the chip pins and can be used in the debugging process. This allows monitoring the chip functionality by connecting measuring devices (oscilloscope, voltmeter, logic analyzer) to SV2.

Male headers SV1 and SV2 functions can be found in Table 1.

Table 1: Male Headers SV1 and SV2 Functions

| Header | Marked on board | IC Pin        | Function                    | Notes                            |
|--------|-----------------|---------------|-----------------------------|----------------------------------|
| SV1.1  | $V_{DD}$        | Pin 1         | V <sub>DD</sub>             |                                  |
| SV2.1  |                 |               |                             |                                  |
| SV1.2  | 3               | Pin 3         | GPI                         |                                  |
| SV2.2  |                 |               |                             |                                  |
| SV1.3  | 2               | Pin 2         | GPIO 0                      |                                  |
| SV2.3  |                 |               |                             |                                  |
| SV1.4  | 5               | Pin 5         | Sense_A                     | Pin 5 is connected to SV1.4      |
| SV2.4  |                 |               |                             | through R6 resistor by default   |
| SV1.5  | 6               | Pin 6         | V <sub>DD2_A</sub>          | Pin 6 isn't connected to SV1.5.  |
| SV2.5  |                 |               |                             | R6 should be mounted on board    |
| SV1.6  | 7               | Pin 7         | HV_GPO 0                    | Pin 7 isn't connected to SV1.6.  |
| SV2.6  |                 |               |                             | R7 should be mounted on board    |
| SV1.7  | 8               | Pin 8         | HV_GPO 1                    | Pin 8 isn't connected to SV1.7.  |
| SV2.7  |                 |               |                             | R8 should be mounted on board    |
| SV1.8  | 15              | Pin 15        | I <sup>2</sup> C SCL/GPIO 2 |                                  |
| SV2.8  |                 |               |                             |                                  |
| SV1.9  | 16              | Pin 16        | I <sup>2</sup> C SDA/GPIO 3 |                                  |
| SV2.9  |                 |               |                             |                                  |
| SV1.10 | NC              |               |                             |                                  |
| SV2.10 |                 |               |                             |                                  |
| SV1.11 | GND             | Pin 4, 13, 18 |                             |                                  |
| SV2.11 |                 |               |                             |                                  |
| SV1.12 | NC              |               |                             |                                  |
| SV2.12 |                 |               |                             |                                  |
| SV1.13 | 9               | Pin 9         | HV_GPO 2                    | Pin 9 isn't connected to SV1.13. |
| SV2.13 |                 |               |                             | R9 should be mounted on board    |



| Header | Marked on board | IC Pin | Function | Notes                            |
|--------|-----------------|--------|----------|----------------------------------|
| SV1.14 | 10              | Pin 10 | HV_GPO 3 | Pin10 isn't connected to SV1.14. |
| SV2.14 |                 |        |          | R10 should be mounted on board   |
| SV1.15 | 11              | Pin 11 | VDD2_B   | Pin11 isn't connected to SV1.15  |
| SV2.15 |                 |        |          | R11 should be mounted on board   |
| SV1.16 | 12              | Pin 12 | SENSE_B  | Pin 12 is connected to SV1.16    |
| SV2.16 |                 |        |          | through R12 resistor by default  |
| SV1.17 | 14              | Pin 14 | GPIO 1   |                                  |
| SV2.17 |                 |        |          |                                  |
| SV1.18 | 17              | Pin 17 | GPIO 4   |                                  |
| SV2.18 |                 |        |          |                                  |
| SV1.19 | 19              | Pin 19 | GPIO 5   |                                  |
| SV2.19 |                 |        |          |                                  |
| SV1.20 | 20              | Pin 20 | GPIO 6   |                                  |
| SV2.20 |                 |        |          |                                  |

#### 4.1.2 Power Supply and Power Selection Connectors (P1 and P7)

 $V_{DD2}$  is supplied from an external power supply through the connector P1. It is possible to apply two separate Power Supplies,  $V_{DD2\_A}$  and  $V_{DD2\_B}$ , for each H-Bridge separately.

For P1 connector pin functions refer to Table 2.

**Table 2: P1 Connector Functions** 

| Header | Marked<br>on board | IC Pin | Function           | Notes |
|--------|--------------------|--------|--------------------|-------|
| P1.1   | GND                |        |                    |       |
| P1.2   | VDDB               | Pin 11 | V <sub>DD2_B</sub> |       |
| P1.3   | VDDA               | Pin 6  | V <sub>DD2_A</sub> |       |
| P1.4   | GND                |        |                    |       |

In case only one Power Supply is used to power both H-Bridges, it is possible to install Jumper P7 to connect  $V_{DD2\_A}$  and  $V_{DD2\_B}$  power lines. This allows applying an external voltage to only one (any) terminal,  $V_{DD2\_A}$ , or  $V_{DD2\_B}$ .

Warning: if the values of VDD2\_A and VDD2\_B are different, Jumper P7 must be removed.

Jumper P7 functions can be found in Table 3.

**Table 3: Jumper P7 Functions** 

| Jumper | Marked on board | IC Pin | Function           | Notes                                                                     |
|--------|-----------------|--------|--------------------|---------------------------------------------------------------------------|
|        | VDDB JDDA       | Pin 6  | V <sub>DD2_A</sub> | OPEN – for powering H-Bridges/Half-<br>Bridges both VDD2_A and VDD2_B are |
| DZ     |                 | Pin 11 | $V_{DD2\_B}$       | used.                                                                     |
| P7     |                 |        |                    | CLOSED – for powering H-Bridges/Half-Bridges one of two,                  |
|        |                 |        |                    | $V_{DD2\_A}$ or $V_{DD2\_B}$ , is used.                                   |



Using test points TP1 ( $V_{DD\_A}$ ) and TP2 ( $V_{DD\_B}$ ) the User can control the voltage on  $V_{DD2\_A}$  and  $V_{DD2\_B}$  rails.

Capacitors C1 and C2 are used to decouple noise on the  $V_{DD\_A}$  and  $V_{DD\_B}$  power lines. They are optional and are not board mounted by default. It is possible to install them by the user independently, for example, when testing a high-power motor close to the chip maximum capabilities.

#### 4.1.3 High-voltage Output Connector (P2)

The connector P2 is used for connecting the electric motor or another high-power load powered by  $V_{DD2}$ . For P2 connector pin functions see Table 4.

**Table 4: P2 Connector Functions** 

| Header | Marked<br>on board | IC Pin | Function | Notes                                    |
|--------|--------------------|--------|----------|------------------------------------------|
| P2.1   | GND                | Pin 1  |          |                                          |
| P2.2   | HVOUT0             | Pin 7  | HV_GPO 0 | Test point TP3 (HVOUT0) mounted on board |
| P2.3   | HVOUT1             | Pin 8  | HV_GPO 1 | Test point TP4 (HVOUT1) mounted on board |
| P2.4   | HVOUT2             | Pin 9  | HV_GPO 2 | Test point TP5 (HVOUT2) mounted on board |
| P2.5   | HVOUT3             | Pin 10 | HV_GPO 3 | Test point TP6 (HVOUT3) mounted on board |
| P2.6   | GND                | Pin 1  |          |                                          |

Test points TP3 (HVOUT0), TP4 (HVOUT1), TP5 (HVOUT2), and TP6 (HVOUT3) make possible controlling the output signals.

#### 4.1.4 Current Measurement Shunts P3 and P4

Resistors R3 and R4 are connected to the inputs SENSE\_A (Pin 5) and SENSE\_B (Pin 12) of the Current Sense Comparator macrocells, which allow controlling the load current of each H-Bridge. This function can be switch on/off with the help of two Jumpers, P3 and P4.

Jumpers P3 and P4 functions can be found in Table 5.

Table 5: Jumpers P3 and P4 Functions

| Jumper | Marked on board   | IC Pin | Function           | Notes                                                                            |
|--------|-------------------|--------|--------------------|----------------------------------------------------------------------------------|
| P3     | GND()<br>SENSEA() | Pin 5  | Connect SENSE_A to | OPEN – Current Sense<br>Comparator0 current control<br>function is turned on.    |
|        |                   |        | GND                | CLOSED – Current Sense<br>Comparator0 current control<br>function is turned off. |
| 5.     | SENSEB (          | B: 40  | Connect SENSE B to | OPEN – Current Sense<br>Comparator1 current control<br>function is turned on.    |
| P4     | END END           | Pin 12 | GND                | CLOSED – Current Sense<br>Comparator1 current control<br>function is turned off. |

It is possible to control voltage on resistors R3 and R4 by connecting measuring devices (voltmeter, oscilloscope) to test points TP7 (SENSE A) and TP8 (SENSE B), installed on the board.

Also, there are two test points TP9 and TP10 (GND) installed on the board. They are connected to Pin 4 (GND\_A) and Pin 13 (GND\_B) and can be used for measurements **only**.



#### 4.1.5 I<sup>2</sup>C Pull-Up Resistors

If the board is not connected to the GreenPAK Advanced Development Platform or the GreenPAK Pro Development Platform and used separately, for example, with a programmed chip for debugging in the final production, two Pull-up resistors, R1 and R2 for SDA and SCL, should be installed on the board. Their resistance should be calculated according to the procedure described in Reference [2] (Section 2).

#### 4.1.6 Protection Digital GND from Power GND

PTC1 is used for protecting digital GND from power GND (HV\_GND). The maximum current that can flow from power GND through PTC1 to digital GND pin is limited to 50 mA.

#### 5 Conclusions

Evaluation Board has been designed as a high power debugging platform for SLG47105V. It is a convenient tool that allows the customer to get acquainted with SLG47105's functionality, especially the H-Bridge functions.



# **Appendix A Board Dimensions**

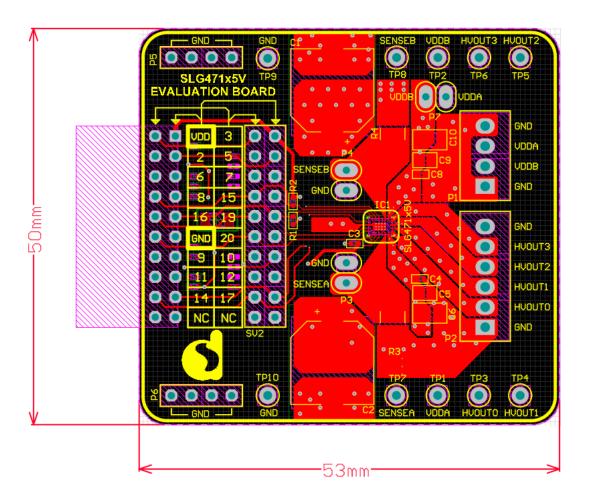



Figure 3: SLG47105V Evaluation Board Dimensions



## **Appendix B Top View**

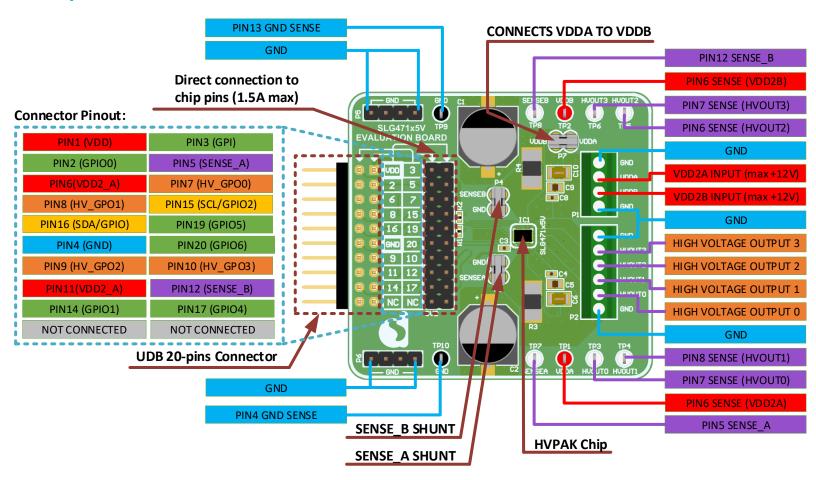



Figure 4: SLG47105V Evaluation Board, Top View

User Manual Revision 1.2 13-May-2020



## **Appendix C Board Schematic**

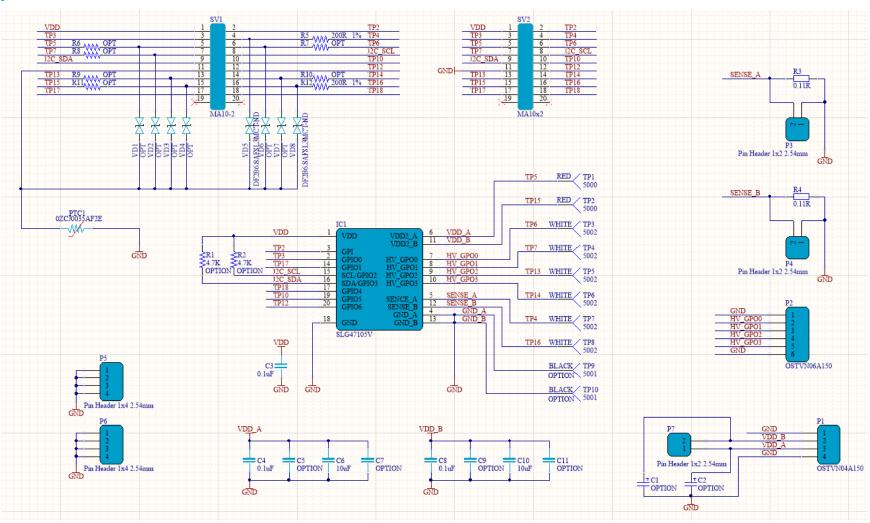



Figure 5: SLG47105V Evaluation Board Schematic

User Manual Revision 1.2 13-May-2020



# **Appendix D BOM**

| #  | Designator                             | Description                                              | Footprint                          | Quantity |
|----|----------------------------------------|----------------------------------------------------------|------------------------------------|----------|
| 1  | C1, C2                                 | OPTION                                                   | Size code: G                       | 2        |
| 2  | C3, C4, C8                             | CAP CER 0.1UF 50V X7R 0402                               | 0402 (1005 Metric)                 | 3        |
| 3  | C5, C9                                 | OPTION                                                   | 0805 (2012 Metric)                 | 2        |
| 4  | C6, C10                                | CAP CER 10UF 50V X5R 1206                                | 1206 (3216 Metric)                 | 2        |
| 5  | C7, C11                                | OPTION                                                   | 1207 (3216 Metric)                 | 2        |
| 6  | IC1                                    | PROGRAMMABLE MIXED-SIGNAL MATRIX WITH H-BRIDGE FUNCTIONS | STQFN-20L                          | 1        |
| 7  | J1, J2, J3                             | CONN JUMPER SHORTING .100" GOLD                          |                                    | 3        |
| 8  | P1                                     | TERM BLK 4P SIDE ENT 2.54MM PCB                          | 4 POSITION TERMINAL BLOCK (2.54MM) | 1        |
| 9  | P2                                     | TERM BLK 6P SIDE ENT 2.54MM PCB                          | 6 POSITION TERMINAL BLOCK (2.54MM) | 1        |
| 10 | P3, P4, P7                             | CONN HEADER VERT 2POS                                    | 2 POSITION PIN HEADER (2.54MM)     | 3        |
| 11 | P5, P6                                 | CONN HEADER VERT 4POS                                    | 4 POSITION PIN HEADER (2.54MM)     | 2        |
| 12 | PTC1                                   | PTC RESET FUSE 60V 50MA 1206                             | 1206 (3216 Metric)                 | 1        |
| 13 | R3, R4                                 | RES 0.11 OHM 1% 1/2W 2010                                | 2010 (5025 Metric)                 | 2        |
| 14 | R5, R6, R7, R8, R9, R10, R11, R12      | RES SMD 200 OHM 5% 1/16W 0402                            | 0402 (1005 Metric)                 | 8        |
| 15 | SV1                                    | CONN HEADER R/A 20POS 2.54MM                             | 20 POSITION RIGHT ANGLE (2.54mm)   | 1        |
| 16 | SV2                                    | CONN HEADER VERT 20POS 2.54MM                            | 20 POSITION VERTICAL (2.54mm)      | 1        |
| 17 | TP1, TP2                               | TEST POINT MINIATURE RED                                 | Hole Diameter(1.02mm)              | 2        |
| 18 | TP3, TP4, TP5, TP6, TP7, TP8           | TEST POINT MINIATURE WHITE                               | Hole Diameter(1.02mm)              | 6        |
| 19 | TP9, TP10                              | OPTION                                                   | Hole Diameter(1.02mm)              | 2        |
| 20 | VD1, VD2, VD3, VD4, VD5, VD6, VD7, VD8 | TVS DIODE 5V 7V FSC                                      | SOD-923                            | 8        |



# **Revision History**

| Revision | Date        | Description     |
|----------|-------------|-----------------|
| 1.2      | 13-May-2020 | Updated Figures |
| 1.1      | 24-Apr-2020 | Fixed typos     |
| 1.0      | 4-Feb-2020  | Initial version |



#### **Status Definitions**

| Status               | Definition                                                                                                                   |
|----------------------|------------------------------------------------------------------------------------------------------------------------------|
| DRAFT                | The content of this document is under review and subject to formal approval, which may result in modifications or additions. |
| APPROVED or unmarked | The content of this document has been approved for publication.                                                              |

#### **Disclaimer**

Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are the property of their respective owners.

© 2020 Dialog Semiconductor. All rights reserved.

#### **RoHS Compliance**

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

# **Contacting Dialog Semiconductor**

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email

enquiry@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan

Phone: +886 281 786 222

Web site:

www.dialog-semiconductor.com

Hong Kong

Dialog Semiconductor Hong Kong Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea Phone: +82 2 3469 8200 China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China Phone: +86 21 5424 9058

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Dialog Semiconductor: SLG47105V-EVB