

HIGHLY INTEGRATED POWER AND CLOCK SUPPLY IC FOR NEW GENERATION INTEL[®] ATOM™

PROCESSOR E6XX SERIES PLATFORM

Integrated power management

Dialog Semiconductor's new DA6011 includes low noise supplies to all CPU- and IO-Hub voltage domains and provides current to supply system DDR2 memory as well as the Boot SPI Flash and is sourced by a single input voltage.

The DA6011 integrates 11 high performance low dropout (LDO) voltage regulators using Dialog's patented Smart Mirror™ technology for very low quiescent current and includes 3 pass devices for platform power distribution simplification.

Three DC-DC buck converters with external FETs and three buck converters with integrated FETs provide high current to several low voltage domains of the Intel[®] Atom™processor E6xx series platform.

These 6 high efficient buck converters are supplying the CPU and graphic core according to Intel[®] IMVP-6 specification, providing energy to the system memories the IO-Hub and further high current parts of the platform.

The power domain architecture has been carefully optimized to deliver enhanced power efficiency to the platform at lowest power dissipation, thereby maximizing battery life time and reducing thermal impact. The architecture also takes several IO-Hubs with their different power requirements into account.

System Management Controller

The integrated system management controller takes care of the platform start-up, state-transitioning and power-down procedures. It operates autonomously and reduces the overall system power consumption when going into stand-by or power down mode. The flexible state-machine implementation is designed to control E6xx processor, Intel[®] Platform Controller Hub EG20T, ST Microelectronics[®] ConneXt, OKI Semiconductor[®] IVI (ML7213) as well as MP (ML7223) IO-Hubs.

Clock Supplies

A further feature of the DA6011 is the clock supply for the Atom[™] processor E6xx platform. Four Fractional division featured PLL's two including spread spectrum capability are included, driving with low-power pushpull amplifiers the platform. The PLL's provide the clocks to the E6xx processor as well as to one of the above mentioned IO-Hubs enabling a platform at lowest component count. The reference clock for the PLL's is generated via a 14.31818MHz crystal oscillator.

Auxiliary function

An analog to digital converter (ADC) with 10-bit resolution, combined with an input multiplexer and

track and hold circuitry is implemented. 2 inputs can be used to measure signals manually or automatically.

Operating conditions

The DA6011 is designed for the automotive ambient temperature range of -40 .. +85°C. The die temperature and the output currents of each source will be monitored to ensure proper and safe operation.

Key Features

- Power supplies & Power management for Atom[™] processor E6xx series processor and one of the following ST Microelectronics[®] ConneXt, Intel[®] Platform Controller Hub EG20T, OKI Semiconductor[®] IVI (ML7213) or MP (ML7223) IO-Hubs.
- Programmable Clock supplies
- Automotive temperature range, on the basis of the AEC-Q100

Key functions

- 6 high efficient DC-DC buck converter, two according IMVP-6 specification for the Atom[™] processor E6xx series
- 11 high performance LDOs
- 3 integrated pass devices
- A push-pull reference source/sink for DDR2 RAM termination
- Autonomous, flexible state machine for complete system start-up and shut-down procedure
- 4 fractional divider PLL's including spread spectrum capability according to Intel/IO-Hub supplier specification
- 2 input 10-bit ADC for signal measurements

Applications

- Vehicle Command Systems
- Telematics Devices
- Car Navigation Systems
- Mobile Internet Devices
- UMPCs
- High End PNDs
- Netbooks
- Nettops
- Multimedia phones
- ..

Revision history

Revision	Description	Revision date
0.1	First internal draft datasheet	2009.07.31
0.2	Release for first internal reviews	2009.08.07
0.23	 Version with updated PLL and dedicated current information for each power domain 	2009.09.18
0.30	First customer draft datasheet	2009.11.06
0.31	Updated package drawing, PLL4 removed	2009.11.23
0.5	After Intel review	2010.02.04
	Updated Block diagram	
	LDO_V0P9R included	
	 General purpose ADC section updated 	
	 Updated LDO electrical characteristics 	
	Editorial updates	
	Updated timings	
	Included Registers description	
0.0	Updates pin-list & ball-out	0040.00.04
0.8	Editorial updates	2010.03.31
	 Updated Pin/Bail-out (swap of DOT/DOT_B and SATA/SATA_B as well as DOT_B with DOT) 	
	Update of timing diagrams	
	 S3 -> S0 diagrams extended for internal and external wake up events 	
	Register addresses updated Additional anabla bit for ovternal reference alock in XTALCTRL2 register	
0.81	Additional enable bit for external reference clock in XTALCTRL2 register	2010 04 21
0.01	 Inductance change of Graphic buck converter! Inductance and Capacity change of 1.2V buck converter! 	2010.04.21
	 Inductance and Capacity change of 1.2 v buck converter: Undated digital IO voltage levels 	
	Minor editorial undates	
1.0	First released datasheet revision 1 0	2010.09.22
_	Renamed Tunnel Creek by Atom E6xx processor series	
	 Renamed TopCliff by Intel Platform Controller Hub EG20T 	
	Updates for clarification of the power domains	
	 Timing diagrams and tables reworked and updated 	
	 Naming of 100MHz clock output signals changed, providing most simple 	
	layout option, as all differential 100MHz clock signals are identical	
	 Characteristic of THRMTRIP_B input signal corrected 	
	POWOK toggling function included	0011.01.10
1.1	Updated clock synthesizer/driver layout	2011.01.19
	Editorial correction pin list Added missing stabilization consisters for Buck \/4B05	
	Added missing stabilization capacitors for Buck_VTP05 Internal pull up/ down register information added in Digital IO	
	Internal pull-up/-down resistor information added in Digital IO Characteristics	
	 Maximum voltage for BUCK_CORE and BUCK_GRAPHICS increased to 	
	 Updated parameters for BUCK_CORE, BUCK_GRAPHICS, BUCK_1P05, BUCK_1P2, BUCK_1P8 and BUCK_3P3 	
	 PLL section: output frequency accuracy added 	
	 Register map & register content update due to CA-silicon 	
1.2	 Timing diagrams and tables chapter 7.6 updated 	2011.06.20
	 Debouncing feature added for WAKE_B & RESET_IN_B pin description 	

Data Sheet

Rev. 1.2 — June 20, 2011

Revision	Description	Revision date
	Editorial correction for LDO_0P9R	
	IO_PWROKEN with a new feature waiting for stable ATX power supplies for	
	EG20T and ML7223	
	PWROK toggling feature updated	
	Soldering profile adder	
	Component proposal updated	

3LOCK DIAGRAM			
1. OPERA	TING CONDITIONS	8	
1.1 Abs	solute maximum ratings	8	
1.2 Red	commended Operating Condition	8	
1.3 Dig	ital I/O Characteristics	8	
1.4 Dig	ital IO Pin descriptions	12	
1.4.1	PWRPBTN_B	12	
1.4.2	RESET_B	12	
1.4.3	PWROK	12	
1.4.4	RSMRST_B	12	
1.4.5	WAKE_B	12	
1.4.6	SLPMODE	12	
1.4.7	RSTWARN	12	
1.4.8	SLPRDY_B	12	
1.4.9	RSTRDY_B	12	
1.4.10	SMBDAT	13	
1.4.11	SMBCLK	13	
1.4.12	IRQ_B	13	
1.4.13	PROCHOT_B	13	
1.4.14	PWRMODE[2:0]	13	
1.4.15	VID[6:0]	13	
1.4.16	VIDEN[1:0]	13	
1.4.17	CTRL_V1P8_S	13	
1.4.18	IO_RESET_PLA_B	13	
1.4.19	IO_RESET_PLB_B	14	
1.4.20	IO_RESET_PLC_B	14	
1.4.21	IO_SLP_PLB_B	14	
1.4.22	IO_SLP_PLC_B	14	
1.4.23	IO_PWROK	14	
1.4.24	IO_PWROKEN	14	
1.4.25	RESET_IN_B	14	
1.4.26	THRMTRIP_B	14	
1.4.27	TCK	14	
1.4.28	TDI	14	
1.4.29	TDO	14	
1.4.30	TMS	14	
		15	
2 1000			
2.1 Pov	ver supply module summary	15	
2.2 Pla	tform Power Distribution	16	
2.2.1	Atom™ E6xx processor & Intel's EG20T Platform Controller Hub	17	
2.2.2	Atom™ E6xx processor & ST STA2X11 ConneXt IO-Hub	18	
2.2.3	Atom™ E6xx processor & OKI Semiconductor ML7213 IVI IO-Hub	19	
2.2.4	Atom™ E6xx processor & OKI Semiconductor ML7223 MP IO-Hub	20	
2.3 ELE	ECTRICAL CHARACTERISTICS	21	
2.3.1	BUCK_CORE with DVC	22	
2.3.2	BUCK_GRAPHIC with DVC	24	
2.3.3	BUCK_1P05	26	
2.3.4	BUCK_1P2	27	
2.3.5	BUCK_1P8.	28	
2.3.6	BUCK_3P3	29	
2.3.7	Voltage Regulator LDO_RTC_V3P3	30	
2.3.8	Voltage Regulator LDO_V3P3		
2.3.9	Voltage Regulator LDO_V2P5	31	
2.3.10	Voltage Regulator LDO_V1P5	32	

Rev. 1.2 — June 20 , 2011

 2.3.11 Voltage Regulator LDO_V1P25	32 33 34 35 35 35 36 36 37 37 37 38
3 CLOCK SYNTHESIZER/GENERATOR	
 3.1 Atom[™] E6xx Processor Clock Supplies	
4 GENERALPURPOSE ADC	44
 4.1 ADC overview	
5 INTERNAL TEMPERATURE SUPERVISION	48
6 INTEL® ATOM™ PROCESSOR E6XX PLATFORM STATES	49
 6.1 CPU C-state overview 6.2 System Sleep State Control (S-States)	
7 1 Power-On-Reset generator	
 7.2 RTC Domain 7.3 Power push-button 7.3.1 Push button functionality	
7.5.3 E6xx processor & OKI Semiconductor ML7213 IVI IO-Hub	54
 7.6 DA6011 power states	
7.6.4 Atom [™] E6xx processor & OKI Semiconductor ML7223 MP IO-Hub	91

Data Sheet

Rev. 1.2 — June 20 , 2011

8 DA6011 SMBUS INTERFACE	103
8.1 SMBus AC specification	
8.2 SMBus Start and Stop condition	104
8.3 Data transfer on the SMBus	104
8.4 SMBus Protocol	
8.4.1 Block Write Operation	
8.4.2 Block Read Operation	
8.5 Register Map	107
8.5.1 XTALCTRL2	
8.5.2 PLLSSCTRL	
8.5.3 STATUS	
8.5.4 IRQCLR	109
8.5.5 IRQMASK	
8.5.6 AUTOCTRL	110
8.5.7 MANCTRL	110
8.5.8 ADCIN23DB	
8.5.9 ADCSTAT	
8.5.10 ADCIRQCLR	
8.5.11 ADCIRQMASK	
8.5.12 MANRESLB	
8.5.13 MANRESHB	
8.5.14 VSUPARES	
8.5.15 TJUNCARES	
8.5.16 TJUNCOFFSET	
8.5.17 ADCIN2ARES	113
8.5.18 ADCIN2HTH	
8.5.19 ADCIN2LTH	
8.5.20 ADCIN3ARES	
8.5.21 ADCIN3HTH	
8.5.22 ADCIN3LTH	
8.5.23 CHIPID	
9 JITAG INTERFACE	116
10 DA6011 PACKAGE DETAILS	
10.1 Pin Description Pin out	117
10.1.1 Ball order	
10.1.2 Alphabetic ball name order	121
10.2 DA6011 169 pin BGA package	125
10.3 Component Marking	125
10.4 Package outline	120
10.5 Soldering profile	120
APPENDIX	
DA6011 Component proposal	

1. OPERATING CONDITIONS

All Voltages are referenced to VSS unless otherwise stated. Currents flowing into DA6011 are deemed positive, currents flowing out are deemed negative.

All parameters are valid over the full operating temperature range and power supply range unless otherwise noted. Please note that the power dissipation must be limited to avoid overheating of DA6011. The maximum power dissipation should not be reached with maximum ambient temperature.

1.1 Absolute maximum ratings

Parameter	Conditions	Min	Max	Unit
Storage Temperature	TSTOR	-65	+150	°C
Operating Temperature	ТАМВ	-40	+85	°C
Power Supply Input	VSUP	-0.3	+5.5	V
IO Input	(All unless otherwise stated)	-0.3	VSUP+0.3	V
Maximum power dissipation			1.5	W
Package thermal resistance			30	K/W
ESD CDM	All pins unless otherwise stated.		500	V
(Charge Device Model)				
ESD HBM	All pins unless otherwise stated.		2	kV
(Human Body Model)				

Table 1: DA6011 absolute maximum ratings

1.2 Recommended Operating Condition

Parameter	Conditions	Min	Max	Unit
Operating Temperature	TAMB	-40	+85	С°
Power Supply Input	VSUP	4.5	5.25	V

Table 2: DA6011 recommended operating condition

1.3 Digital I/O Characteristics

The "_B" symbol at the end of a signal name indicates that the active or asserted state occurs when the signal is at a low voltage level (active low). When the "_B" is not present after the signal name the signal is asserted when the signal is at a high voltage level.

Electrical Characteristics (Ta = -40 to +85 $^{\circ}$ C)

PARAMETER	Parameter	MIN	TYP	MAX	UNIT
PWRPBTN_B Input high voltage	VIH	0.8 * VDDIO		VSUP	V
PWRPBTN_B Input low voltage	VIL	0		0.2*VDDIO	V
RESET_B Output high voltage	VOH	0.8 * VDDIO		VDDIO	V
RESET_B Output low voltage	VOL	0		0.2*VDDIO	V
PWROK Output high voltage	VOH	0.8 * VDDIO		VDDIO	V
PWROK Output low voltage	VOL	0		0.2*VDDIO	V

[©] Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

Data Sheet

Rev. 1.2 — June 20, 2011

PARAMETER	Parameter	MIN	TYP	MAX	UNIT
RSMRST_B	VOH			∩וחחע	V
Output high voltage	0011	0.0 70010			v
RSMRST_B	VOL	0		0.2*VDDIO	V
	-	-			
VVAKE_B	VIH	0.8*VDDIO		VSUP	V
Input Low Voltage	VIL	0		0.2*VDDIO	V
WAKE B internal resistor to					
		10	20	30	kΩ
SLPMODE					
Input high voltage	VIH			VDDIO	V
SLPMODE	VII	0			V
Input low voltage	VIL	0		0.2 VDDIO	v
RSTWARN	VOH				V
Output high voltage	VOIT	0.0 10010		VEBIO	v
RSTWARN	VOL	0		0.2*VDDIO	V
Output low voltage					-
SLPRDY_B	VIH	0.8 * VDDIO		VDDIO	V
Input high voltage					
SLPRDY_B	VIL	0		0.2*VDDIO	V
SL DRDV. R internal register					
		10	20	30	kΩ
Input high voltage	VIH	0.8 * VDDIO		VDDIO	V
RSTRDY B		-			
Input low voltage	VIL	0		0.2*VDDIO	V
RSTRDY_B internal resistor		10	20	20	кO
to VDDIO		10	20		K12
SMBUSDATA	VOL		Open	0.4	V
Output Low Voltage	@350µA		drain	0.4	v
SMBUSDATA	VII			0.5	V
Input Low Voltage	***			0.0	•
SMBUSDATA	VIH	1.4		VDDIO	V
Input High Voltage					
SMBUSCLK	VIH	1.4		VDDIO	V
Input Low Voltage	VIL			0.6	V
SMBLISDATA					
Leakage Current		-1		1	μA
SMBUSCLK					
Leakage Current		-1		1	μA
IRQ B	VOL		Open	0.41/	V
Output low voltage	<u>@350</u> µA		drain	0.4V	V
PROCHOT_B	VOL		Open	0 414	V
Output low voltage	@350µA		drain	0.4 v	v
PWRMODE[2:0]	∨∩н	0.8 *\/1P05_S		V1P05 S	V
Input high voltage		0.0 011 00_0		VII 00_0	v
PWRMODE[2:0]	VOL	0		0.2*V1P05 S	V
Input low voltage		-			
	VIH	0.8 * V1P05		V1P05_S	V
input nigh voltage				_	

Data Sheet

I

Rev. 1.2 — June 20, 2011

PARAMETER	Parameter	MIN	ТҮР	MAX	UNIT
VID[6:0]	VII	0		0.2*V1P05_S	V
Input low voltage	VIE	Ũ		0.2 711 00_0	
VIDEN[1:0]	VIH	0.8 * V1P05 S		V1P05 S	V
		—		_	
VIDEN[1:0]	VIL	0		0.2*V1P05_S	V
Output high voltage	VOH	0.8*VDDIO		VDDIO	V
Output low voltage	VOL	0		0.2*VDDIO	V
IO RESET PLA B					<u> </u>
Output high voltage	VOH			VDDIO	V
IO_RESET_PLA_B		0			V
Output low voltage	VOL	0			v
IO_RESET_PLB_B	VOH				V
Output high voltage	1011	0.0 70010			v
IO_RESET_PLB_B	VOL	0		0.2*VDDIO	V
Output low voltage					
IO_RESET_PLC_B	VOH	0.8*VDDIO		VDDIO	V
IU_RESET_PLC_B	VOL	0		0.2*VDDIO	V
Output high voltage	VOH	0.8*VDDIO		VDDIO	V
IO SLP PLB B					
Output low voltage	VOL	0		0.2*VDDIO	V
IO_SLP_PLC_B	МОН				V
Output high voltage	VOH	0.8 VDDIO		VIDUV	V
IO_SLP_PLC_B	VOI	0		0 2*\/חח/	V
Output low voltage	VOL	0		0.2 10010	v
IO_PWROK	VOH	0.8*VDDIO		VDDIO	V
Output high voltage					
	VOL	0		0.2*VDDIO	V
IO_FWROKEN	VIH	0.8*VDDIO		VSUP	V
					+
Input low voltage	VIL	0		0.2*VDDIO	V
RESET IN B					
Input high voltage	VIH			VDDIO	V
RESET_IN_B	VII	0			V
Input low voltage	VIL	0		0.2 00010	v
RESET_IN_B internal		10	20	30	kO
resistor to VDDIO			20		
THRMTRIP_B	VIL	0		0.2*V1P05 S	V
					+
I HRIMI RIP_B	VIH	0.8*V1P05_S		V1P05_S	V
					+
Input high voltage	VIH	0.8*VDDIO		VDDIO	V
TDI		-			
Input low voltage	VIL	0		0.2*VDDIO	V
TDI	Pull-up	10	20	20	k0
Internal resistor to	resistance	10	20	30	K12

Data Sheet

Rev. 1.2 — June 20 , 2011

PARAMETER	Parameter	MIN	ТҮР	MAX	UNIT
TDO Output high voltage	VOH	0.8*VDDIO		VDDIO	V
TDO Output low voltage	VOL	0		0.2*VDDIO	V
TCLK Input high voltage	VIH	0.8*VDDIO		VDDIO	V
TCLK Input low voltage	VIL	0		0.2*VDDIO	V
TMS Input high voltage	VIH	0.8*VDDIO		VDDIO	V
TMS Input low voltage	VIL	0		0.2*VDDIO	V
TMS Internal resistor to VDDIO	Pull-up resistance	10	20	30	kΩ

Table 3: Digital I/O electrical conditions

1.4 Digital IO Pin descriptions

1.4.1 **PWRPBTN_B**

Power Push Button. The PWRPBTN_B pin is implemented with 2 functionalities. DA6011 can be order with power push button or switching functionality. For further details, see chapter 7.3. For power push button variants a pull-up resistor to VDD is requested.

1.4.2 RESET_B

E6xx processor Reset. The RESET_B is an active-low input signal to the processor. When asserted, E6xx processor will initiate a reset sequence and return to its default state.

In designs with the ST IO-Hub the TC_RESET_B signal generation will be triggered by the IO_PWROKEN input signal.

1.4.3 PWROK

E6xx processor Power OK. When asserted, PWROK is an indication to E6XX that the power up sequence is finished and all power supplies are stable. PWROK is de-asserted during S3, S4 and S5 state. PWROK can be driven asynchronously.

In designs with the ST IO-Hub the PWROK signal generation will be triggered by the IO_PWROKEN input signal.

1.4.4 RSMRST_B

Resume domain Reset. The RSMRST_B is an active-low signal from DA6011 to E6XX which indicates the CPU-Hub resetting the resume domain. A minimum delay of 5ms is required to ensure the resume power domains are valid prior to RSMRST_B going high.

1.4.5 WAKE_B

Wakeup event. This signal indicates an external event to wake up the system if it is in S4/5 mode or S3.

This is a single signal that can be driven by any devices on the board to wake up the platform if it is in S4/5 state. It is normally pulled high by the device, but any device that need to wake the DA6011 has to drive the signal for at least 16ms to low (debouncing filter), followed by a low to high transition which generates the internal wake event. The signal will only be active if the system is in S3 or S4/5 mode.

1.4.6 SLPMODE

Sleep mode. SLPMODE determines which sleep state is entered. When SLPMODE is asserted, S3 state will be chosen. Negating of SLPMODE, S4/S5 will be the selected sleep mode.

1.4.7 RSTWARN

Reset Warning. The RSTWARN is an active-high signal from DA6011 to the E6XX CPU Hub. Asserting the RSTWARN signal tells the E6XX to enter a sleep state or begin to power down. The DA6011 will assert this signal after an external event, such as pressing the power button or the occurrence of a thermal event.

1.4.8 SLPRDY_B

Sleep ready. The SLPRDY_B signal is an active-low input to DA6011 that indicates E6XX is awake and able to be placed into the sleep state (S0 -> S3 transition). De-asserting of SLPRDY_B indicates a wake up request from a system device.

1.4.9 RSTRDY_B

Reset ready. The RSTRDY_B signal is an active-low input to DA6011 that indicates to set Atom™E6xx processor platform into low power state (S3, S4/5 mode). The E6XX asserts RSTRDY_B after detecting assertion of the RSTWARN signal from external.

[©] Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

1.4.10 SMBDAT

System Management Bus Data. The SMBDAT is the power manager SMBus data signal to DA6011. It functions as an open drain signal, requesting a system pull-up resistor so either component can pull it down to a logic low level.

1.4.11 SMBCLK

System Management Bus Clock. The SMBCLK signal is the power manager SMBus clock to DA6011. The serial SMBus should operate at a minimum 10 kHz and maximum 100 kHz clock rate and requests a system pull-up resistor.

1.4.12 IRQ_B

DA6011 Interrupt. The IRQ_B signal (active low with external pull-up resistor) is an open drain output signal that indicates that an interrupt causing event has occurred, and that event status information is available in the status register.

The following interrupts will be provided and set if the according event occurs. These interrupts can be masked via the according bits. Each interrupt can be cleared by writing to the corresponding clear register. For more details see the register definitions in Section 8.5.

- Over temperature event
- Under voltage event
- Over voltage event
- Power-push-button event if push-button functionality is enabled and system is in S0 or S3

1.4.13 PROCHOT_B

Processor Hot. Active low input to E6XX indicates the CPU-Hub to start the thermal control circuit (E6XX). PROCHOT_B is used for thermal protection of the DA6011. PROCHOT_B, pulled up via resistor to V1P05_S power domain, will be asserted when the temperature limit of the DA6011 is reached. By asserting PROCHOT_B (pulled low) and activating the TCC, the DA6011 will cool down as a result of reduced processor power drain. This protects the DA6011 from overheating. The minimum assertion time of PROCHOT_B is specified to be 500µs. The PROCHOT_B threshold should be at 110°C junction temperature of DA6011.

1.4.14 **PWRMODE**[2:0]

Power Mode. DA6011 is generating these signals to sequence the processor through various states such as cold and warm reset.

1.4.15 VID[6:0]

Voltage Identifier. Indicates a desired voltage for either VCC_S or the VNN_S depending on the VIDEN pins. Resolution of 12.5mV according to Intel's IMVP-VI specification.

1.4.16 VIDEN[1:0]

Voltage Identifier Enable. Indicates which voltage domain is being specified on the VID pins

1.4.17 CTRL_V1P8_S

Control suspend 1.8 voltage. This output pin can optionally control an external FET transistor disabling the Atom[™] E6xx processor VCC180 voltage domain during S3, S4 and S5 state.

1.4.18 IO_RESET_PLA_B

IO-Hub reset plane A. DA6011 provides this signal to reset the plane A of the EG20T Platform Controller Hub during the power on sequence towards S4/5 state. For other IO-Hubs this signal will not be used and can be left unconnected.

1.4.19 IO_RESET_PLB_B

IO-Hub reset plane B. DA6011 provides this signal to reset the plane B of the EG20T Platform Controller Hub during the state transition from S4/5 towards S3 state or vice versa. For other IO-Hubs this signal will not be used and can be left unconnected.

1.4.20 IO_RESET_PLC_B

IO-Hub reset plane C. DA6011 provides this signal to reset the plane C of EG20T Platform Controller Hub during the state transition from S3 towards S0 or vice versa. This signal can also be used for other IO-Hubs like the ST ConneXt or the OKI IVI to bring the IO-Hub out or into reset. If not used this pin can be left unconnected.

1.4.21 IO_SLP_PLB_B

IO-Hub Sleep Plane B. DA6011 provides this signal to bring the plane B of EG20T Platform Controller Hub into/out-of sleep mode. Signal is only used for EG20T Platform Controller Hub, for other IO-Hubs it won't be necessary and can be left unconnected.

1.4.22 IO_SLP_PLC_B

IO-Hub Sleep Plane C. DA6011 provides this signal to bring the plane C of EG20T Platform Controller Hub into/out-of sleep mode. Signal is only used for EG20T Platform Controller Hub, for other IO-Hubs it won't be necessary and can be left unconnected.

1.4.23 IO_PWROK

IO-Hub power OK. DA6011 provides this signal to the IO-Hubs, indicating that all necessary IO-Hub power domains are up and stable.

1.4.24 IO_PWROKEN

IO-Hub power OK enable. Multi-functional input signal. STA2x11: DA6011 receives this signal from the ST ConneXt IO-Hub and enables the trigger for E6xx processor activation. EG20T & ML7223: DA6011 provides the function to wait during S3 to S0 transition for a stable ATX switched power supply (details see FAQ document)

1.4.25 RESET_IN_B

Reset in DA6011. This reset is used to initiate an external warm reset to the platform. This signal is enabled only if the platform/DA6011 is in S0 state. The RESET_IN_B pin is internally pulled up and includes a debouncing filter, requesting the RESET_IN_B signal to be pulled low for at least 16ms plus a signal low to high transition before detecting such event.

1.4.26 THRMTRIP_B

Catastrophic Thermal Trip. This pin indicates that Atom ™E6xx processor has reached an operating temperature that may damage the part. DA6011 immediately cuts off the power to the platform

1.4.27 TCK

JTAG Test Clock. TCK is a clock input, used to drive the Test Access Port (TAP).

1.4.28 TDI

JTAG Test Data In. TDI is used for serial input data shift, data and instructions into the TAP.

1.4.29 TDO

JTAG Test Data Out. TDO is used for serial output data shift of the TAP.

1.4.30 TMS

JTAG Test Mode Select. This signal is used to control the status of the TAP controller.

© Dialog Semiconductor 2011. All rights reserved.

All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

2 POWER SUPPLIES

2.1 Power supply module summary

The power supply part of the DA6011 PMIC consists of various power supplies modules. The definition of the PMC Power Supply Modules is based on the data derived from the table of the following paragraphs:

Most of the power supplies are programmable via the serial SMBus.

Power Supply Module	DA6011 Supplied Pins	Supplied Voltage	Supplied Current	Notes
BUCK_CORE DC to DC Buck Converter with DVC With external switching transistor	vcc_s	0.30 – 1.35V ±1.5% accuracy Default: 1.1V ±1.5%	3500 mA	A DC to DC Buck Converter that will supply $0.3V - 1.35V$ at 3500 mA with $\pm 1.5\%$ accuracy. The Converter will operate at a high frequency (1MHz) in order to allow the use of a 1.5μ H inductor
BUCK_GRAPHIC DC to DC Buck Converter with DVC	VNN_S	0.30 – 1.35V ±1.5% accuracy Default: 0,9V ±1.5%	1600 mA	A DC to DC Buck Converter that will supply $0.3V - 1.35V$ at 1600 mA with ±1.5% accuracy. The Converter will operate at a high frequency (1MHz) in order to allow the use of a 1.5μ H inductor.
BUCK_1P05 With external switching transistor	V1P05_S	1.05V ±2% accuracy	3500mA	A DC to DC Buck Converter that will supply 1.05V at 3500mA with ±2% accuracy. The Converter will operate at a high frequency (1MHz) in order to allow the use of a 1.5µH inductor.
BUCK_1P2	V1P2_S STA2X11 ML7213 V1P2_A EG20T ML7223	1.2V ±3% accuracy	1600mA	A DC to DC Buck Converter that will supply 1.2V at 1600mA with $\pm 3\%$ accuracy. The Converter will operate at a high frequency (1MHz) in order to allow the use of a 1.5µH inductor.
BUCK_1P8 With external switching transistor	V1P8	1.8V ±2% accuracy	3200mA	A DC to DC Buck Converter that will supply 1.8V at 3200mA with $\pm 2\%$ accuracy. The Converter will operate at a high frequency (1MHz) in order to allow the use of a 1.5µH inductor.
BUCK_3P3 DC to DC Buck Converter	V3P3_S	3.3V ±3% accuracy	1000mA	A DC to DC Buck Converter that will supply 3.3V at 1000mA with \pm 3% accuracy. The Converter will operate at a high frequency (1MHz) in order to allow the use of a 4.7µH inductor
LDO_RTC_V3P3	V3P3_RTC	3.3V ±3% accuracy	5mA	Supply for the RTC island
LDO_V3P3	V3P3_A	3.3V ±3% accuracy	100mA	A 100mA 3.3V LDO supplied by the input voltage
LDO_V2P5	V2P5_A	2,5V ±3% accuracy	50mA	A 50mA 2.5V LDO supplied by the input voltage
LDO_V1P5	V1P5_S	1.5V ±3% accuracy	150mA	A 150mA LDO supplied from BUCK_V1P8
LDO_V1P25	V1P25_S	1.25V ±2% accuracy	5mA	A 5mA LDO supplied from BUCK_V1P8
LDO_V1P05	V1P05	1.05V ±2% accuracy	100mA	A 100mA LDO supplied from BUCK_V1P8
LDO_V0P9	V0P9_S	0.9V	±375mA	Output is derived from BUCK_V1P8

© Dialog Semiconductor 2011. All rights reserved.

Rev. 1.2 — June 20, 2011

Power Supply Module	DA6011 Supplied Pins	Supplied Voltage	Supplied Current	Notes
		±2% accuracy		and is always half of it. The pass device is supplied by BUCK_V1P2.
LDO_V0P9R	V0P9R	0.9V ±2% accuracy	20mA	A 20mA LDO supplying 0.9V towards the DDR2 memory as a reference
LDO_VUNI	V1P2/V2P5	1.2V/2.5V ±3% accuracy	290/250mA	A LDO supplied either from BUCK_V1P8 (output voltage 1.2V) or BUCK_V3P3 (output voltage 2.5V)
PD_V3P3	V3P3_S	3.3V	250mA	Pass device supplied by BUCK_V3P3
PD_V1P8	V1P8_S	1.8V	250mA	Pass device supplied by BUCK_V1P8
PD_V1P2	V1P2_S	1.2V	150mA	Pass device supplied by BUCK_V1P2
LDO_V2P65	VINT	2.65V	100mA	A 100mA LDO supplied from input voltage
LDO_V2P5	VLP	2.5V	5mA	A 5mA low power LDO for internal purpose

Table 4: DA6011 power domains

2.2 Platform Power Distribution

Below you can find the information which power module supplies the corresponding voltage domain dependant on the IO-Hub (ST ConneXt, OKI Semiconductor IVI and MP as well as Intel's EG20T Platform Controller Hub).

Note:

For power distribution and power dissipation reason, the Atom[™] processor E6xx voltage domain VCC180 (DDR IO) with its max. current consumption of 390mA shall be directly connected to the DA6011 power supply V1P8 or via a switching FET which is controlled by the output pin CTRL_V1P8S.

Rev. 1.2 — June 20, 2011

2.2.1 Atom[™] E6xx processor & Intel's EG20T Platform Controller Hub

Supply Module	Voltage domain	First active state	Sequence	Current [mA]	Current EG20T [mA]
LDO_RTC_V3P3	V3P3_RTC	S4/5	0 (E6XX)	5	0
BUCK_V1P2	V1P2_A	S4/5	1 (PCH)	0	394
LDO_V2P5	V2P5_A	S4/5	2 (PCH)	0	21
LDO_V3P3	V3P3_A	S4/5	3 (PCH)	0	31
PD_V1P2	V1P2	S3	4 (PCH)	0	108
BUCK_V3P3	V3P3	S3	5 (E6XX & PCH)	10	224
BUCK_V1P8	V1P8	S3	6 (E6XX & DDR2)	1415	0
LDO_V0P9R	V0P9	S3	7 (DDR2)	20	0
LDO_V1P05	V1P05	S3	8 (E6XX)	100	0
LDO_VUNI	V1P2_S	S0	9 (PCH)	0	272
PD_V3P3	V3P3_S	S0	10 (E6XX & PCH)	100	26
LDO_V1P5	V1P5_S	S0	11 (E6XX)	120	0
BUCK_V1P05	V1P05_S	S0	12 (E6XX)	3387	0
BUCK_GRAPHIC	VNN_S	S0	13 (E6XX)	1600	0
PD_V1P8	V1P8_S	S0	14 (E6XX)	180+(390)	0
LDO_V0P9	V0P9_S	S0	15 (DDR2)	375	0
LDO_V1P25	V1P25_S	S0	16 (E6XX)	2	0
BUCK_CORE	VCC_S	S0	17 (E6XX)	3500	0

Rev. 1.2 — June 20, 2011

2.2.2 Atom™ E6xx processor & ST STA2X11 ConneXt IO-Hub

Supply Module	Voltage domain	First active state	Sequence	Current E6XX [mA]	Current IO_Hub [mA]
LDO_RTC_V3P3	V3P3_RTC	S4/5	0 (E6XX)	5	0
LDO_V3P3	V3P3	S3	1 (E6XX)	10	0
BUCK_V1P8	V1P8	S3	2 (E6XX & DDR2)	1415	0
LDO_V0P9R	V0P9R	S3	3 (DDR2)	20	0
LDO_V1P05	V1P05	S3	4 (E6XX)	100	0
BUCK_V3P3	V3P3_S	S0	5 (E6XX & ST)	100	200
LDO_V1P5	V1P5_S	S0	6 (E6XX)	120	0
BUCK_V1P05	V1P05_S	S0	7 (E6XX)	3387	0
BUCK_GRAPHIC	VNN_S	S0	8 (E6XX)	1600	0
LDO_VUNI	V2P5_S	S0	9 (ST)	0	250
PD_V1P8	V1P8_S	S0	10 (E6XX & ST)	180+(390)	50
BUCK_V1P2	V1P2_S	S0	11 (ST)	0	1000
LDO_V0P9	V0P9_S	S0	12 (DDR2)	375	0
LDO_V1P25	V1P25_S	S0	13 (E6XX)	2	0
BUCK_CORE	VCC_S	S0	14 (E6XX)	3500	0

Rev. 1.2 — June 20, 2011

2.2.3 Atom[™] E6xx processor & OKI Semiconductor ML7213 IVI IO-Hub

Supply Module	Voltage domain	First active state	Sequence	Current E6XX [mA]	Current IO-Hub [mA]
LDO_RTC_V3P3	V3P3_RTC	S4/5	0 (E6XX)	5	0
LDO_V3P3	V3P3	S3	1 (E6XX)	10	0
BUCK_V1P8	V1P8	S3	2 (E6XX & DDR2)	1415	0
LDO_V0P9R	V0P9R	S3	3 (DDR2)	20	0
LDO_V1P05	V1P05	S3	4 (E6XX)	100	0
BUCK_V3P3	V3P3_S	S0	5 (E6XX & OKI)	100	155
LDO_V1P5	V1P5_S	S0	6 (E6XX)	120	0
BUCK_V1P2	V1P2_S	S0	7 (OKI)	0	888
BUCK_V1P05	V1P05_S	S0	8 (E6XX)	3387	0
BUCK_GRAPHIC	VNN_S	S0	9 (E6XX)	1600	0
PD_V1P8	V1P8_S	S0	10 (E6XX)	180+(390)	0
LDO_V0P9	V0P9_S	S0	11 (DDR2)	375	0
LDO_V1P25	V1P25_S	S0	12 (E6XX)	2	0
BUCK_CORE	VCC_S	S0	13 (E6XX)	3500	0

Rev. 1.2 — June 20, 2011

2.2.4 Atom[™] E6xx processor & OKI Semiconductor ML7223 MP IO-Hub

Supply Module	Voltage domain	First active state	Sequence	Current [mA]	Current IO-Hub [mA]
LDO_RTC_V3P3	V3P3_RTC	S4/5	0 (E6XX)	5	0
BUCK_V1P2	V1P2_A	S4/5	1 (OKI MP)	0	354
LDO_V2P5	V2P5_A	S4/5	2 (OKI MP)	0	21
LDO_V3P3	V3P3_A	S4/5	3 (OKI MP)	0	31
PD_V1P2	V1P2	S3	4 (OKI MP)	0	118
BUCK_V3P3	V3P3	S3	5 (E6XX & OKI)	10	269
BUCK_V1P8	V1P8	S3	6 (E6XX & DDR2)	1415	0
LDO_V0P9R	V0P9R	S3	7 (DDR2)	20	0
LDO_V1P05	V1P05	S3	8 (E6XX)	100	0
LDO_VUNI	V1P2_S	S0	9 (OKI MP)	0	284
PD_V3P3	V3P3_S	S0	10 (E6XX & OKI)	100	17
LDO_V1P5	V1P5_S	S0	11 (E6XX)	120	0
BUCK_V1P05	V1P05_S	S0	12 (E6XX)	3387	0
BUCK_GRAPHIC	VNN_S	S0	13 (E6XX)	1600	0
PD_V1P8	V1P8_S	S0	14 (E6XX)	180+(390)	0
LDO_V0P9	V0P9_S	S0	15 (DDR2)	375	0
LDO_V1P25	V1P25_S	S0	16 (E6XX)	2	0
BUCK_CORE	VCC_S	S0	17 (E6XX)	3500	0

2.3 ELECTRICAL CHARACTERISTICS

The DA6011 PMIC includes six DC-to-DC Buck converters, two with DVC (Dynamic voltage control), and four generating a fixed output voltage.

Phase Shift

A 4 phase clock is used for clocking the buck regulators. The input clock of the phase shifter is the clock output from the spread spectrum clock generator. This is graphically illustrated in Figure 2.

Figure 2: Phase shifting for buck convertors

Since there are in total 6 buck convertors, the phases will be distributed as follows:

- buck_clk_ph0: BUCK_CORE
- buck_clk_ph1: BUCK_GRAPHIC, BUCK_3P3, BUCK_1P2
- buck_clk_ph2: BUCK_1P05
- buck_clk_ph3: BUCK_1P8

Spread Spectrum

All buck regulators should run with a spread spectrum frequency to avoid EMI. The spread is defined to be around \pm 45 kHz.

DA6011 will also include low noise, high performance LDO voltage regulators.

The LDO's will have two modes of operation:

Disabled (OFF mode) Enabled (ON mode) A power saving mode is not required for the LDO's due to the use of dynamic biasing in the LDO internal circuitry

2.3.1 BUCK_CORE with DVC

The BUCK_CORE converter is a high efficiency synchronous step down regulator operating at a high frequency (1 MHz) supplying a voltage (VCC_S) of 0.3 ... 1.35V 3500mA max, with \pm 3% voltage accuracy at 1.1V. As the output current is 3,5A this buck regulator needs external switching devices.

The DVC controller allows the following features:

- 1. The Buck converter output voltage to be programmable over the VID [6:0] interface in the range 0.30V to 1.35V in 12.5mV steps.
- 2. The buck switches automatically from the synchronous mode into pulse skipping mode according the load applied to the output of the buck converter.

The supply current during PWM (synchronous rectification) operation is in the order of 1mA (Quiescent current and charge/discharge current) and drops to $<1\mu$ A in shutdown. Switching frequency is chosen to be high enough to allow the usage of a small 1.5 μ H inductor.

DVC control of the Buck:

The output voltage of the buck regulator is controlled by the VID signal. The DAC of the regulator should be controlled by the VID bits, with VID0 as LSB and VID6 as the MSB. A de-bounce time of 100ns between the steps is required.

PA	ARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
VSUP_C	Input Voltage		4.5		5.25	V	
VCC_S	Output Voltage		0.30	[Note1]	1.35	V	
VCC_S C	Dutput Accuracy						
○ VID >= 0.	.75v	[NOTE2]	-1.5		1.5	%	
○ VID < 0.	.75v		-11.5		+11.5	mV	
 Static loa 	d regulation	lout = 03500mA		-5.9		mV/A	
 IMAX 	Maximum Output		3500			mA	
Current						-	
ILIMIT	Current limitation			5900 <u>+</u>	-20%	mA	
TON	Turn on time				2	ms	
IQ_OFF	Quiescent Current in Off				1	μA	
Mode							
Rpd	Pull down resistor in	Measured @			200	Ω	
power-down		Vout=0.5V					
Normal Mode – Synchronous rectification (PWM)							
F_BUCK	Frequency of operation			1		MHz	
IQ_ON	normal mode static	Internal quiescent		0. 4		mA	
current		current					
VBOOT	Boot up voltage			1.1±1.5%		V	
$dI_{VCC}/dt V_{VCC}$ pow	er supply current slew rate	dl _{OUT} /dt		2.5		A/µs	
Efficiency		[NOTE3]	70	80	85	%	
	Slee	ep Mode – Pulse skippin	g				
The output voltag	e ripple			20		mV	
Efficiency		[NOTE3]		80		%	
Gate Driver							
Minimum pulse w	idth		100			ns	
Non overlapping	time (dead time)		20		100	ns	
High side driver s	ource resistance	$I_{VHS} = 100 \text{mA}$			1.0	Ω	
High side driver s	ink resistance	I _{VHS} = -100mA			0.5	Ω	

Electrical Characteristics (Ta = -40 to +85 °C)

All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

Data Sheet

Rev. 1.2 — June 20, 2011

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Low side driver source resistance	$I_{VLS} = 100 \text{mA}$			1.0	Ω
Low side driver sink resistance	$I_{VLS} = -100 \text{mA}$			0.5	Ω
Sugg	ested External compone	nts			
Cout Output Capacitor					
 o low frequency polymer covered Al SPCap, AO Cap 1 * 220µF o Mid frequency 0603MLCC 1*47µ 	Valid for the Intel E6xx series platform	-20%	1x220	+20%	μF
XR7 ○ High frequency 0402 MLCC 6*1µF		-10%	1x47	+10%	
XR7		-10%	6x1	+10%	
 ESR of output capacitor Low frequency Mid frequency High frequency 	Valid for the Intel E6xx series platform		9 7.7 30		mΩ
ESL of output capacitor o Mid frequency o High frequency			551 400		рН
L_BUCK inductor value		-20%	1.5	+20%	μH
L_ESRinductor resistance			0.050		Ω
R_SENSE current sense resistor			10		mΩ
R_PMOS PMOS on resistance external	SI7540DP μPA1890 μPA2792 FDS8858CZ			0.05	Ω
R_NMOS NMOS on resistance external	SI7540DP μPA1890 μPA2792 FDS8858CZ			0.046	Ω
VCC/VSS_sense [NOTE4]				10	mΩ

Table 5: electrical parameters for BUCK_CORE

[Note 1] Programmable in 12.5mV steps up to 1.35V

[Note 2] The output voltage accuracy is measured from ideal load line, which is defined in load regulation.

[Note 3] Typical condition, all suggested external components are used

[Note 4] Impedance of PCB sense trace from CPU power pin to device pad

The buck core is controlled via the VID[6:0] and VIDEN[1:0] pins see chapter 2.3.2.1

2.3.2 BUCK_GRAPHIC with DVC

The BUCK_Graphic converter is a high efficiency synchronous step down regulator operating at a high frequency (1 MHz) supplying a voltage (VNN_S) of 0.3 ... 1.35V 1600mA max, with \pm 3% voltage accuracy at 0.9V. As the output current is 1,6A this buck regulator can run with internal switching devices.

The DVC controller allows the following features:

- 1. The Buck converter output voltage to be programmable over the VID [6:0] interface in the range 0.30V to 1.35V in 12.5mV steps.
- 2. The buck switches automatically from the synchronous mode into pulse skipping mode according the load applied to the output of the buck converter.

The supply current during PWM (synchronous rectification) operation is in the order of 1mA (Quiescent current and charge/discharge current) and drops to $<1\mu$ A in shutdown. Switching frequency is chosen to be high enough to allow the usage of a small 1.5 μ H inductor.

DVC control of the Buck:

The output voltage of the buck regulator is controlled by the VID signal. The DAC of the regulator should be controlled by the VID bits, with VID0 as LSB and VID6 as the MSB. A de-bounce time of 100ns between the steps is required.

Electrical Characteristics (Ta = -40 to +85 °C)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VSUP_G Input Voltage		4.5		5.25	V
Cout					
 Intel Platform Design Guide 					
 low frequency polymer covered Al 	Valid for the Intel E6xx	-20%	1x220	+20%	
SPCap, AO Cap 1 * 220µF	series platform				uЕ
 Mid frequency 0402 MLCC 1*47µ 		-10%	1x47	+10%	μ.
 High frequency 0402 MLCC 4*1µ 		-10%	4x1	+10%	
XR5					
ESP of output capacitor					
\sim Low frequency	Valid for the Intel E6xx			q	
	series platform			77	mΩ
\circ High frequency				30	
ESL of output capacitor					
 Mid frequency 	Valid for the Intel E6xx			551	рH
 High frequency 	series platform			400	·
L_BUCK inductor value		-20%	1.5µ	+20%	μH
L_ESR inductor resistance			0.05		Ω
VNN_S Output Voltage	IOUT= Imax	0.30	[Note1]	1.35	V
VNN_S Output Accuracy	IOUT= Imax				
	VID ≥ 0.75V	-1.5		1.5	%
	VID < 0.75V	-11.5		11.5	mV
F_BUCK Frequency of operation			1		MHz
Ton Turn on time				2	ms
VNN/VSS_sense impedance of sense wire	Kelvin point			57	mO
from Graphic CPU to VR	measurement			0.7	111 32
IQ_OFF Quiescent Current in Off				1	μA
Mode					
Rpd Pull down resistor in	Measured @			200	Ω
power-down	Vout=0.5V				

© Dialog Semiconductor 2011. All rights reserved.

All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

Rev. 1.2 — June 20 , 2011

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
Normal Mode – Synchronous rectification (PWM)								
Maximum Output Current (Imax)		1600			mA			
ILIMIT Current limitation			2000 ±20%		mA			
Boot up voltage for V _{NN_S} V _{BOOT}			0.9		V			
Maximum overshoot voltage	No load			100	mV			
dI _{NN Graphic} /dt V _{NN_Graphic} power supply current				2.5	A/µs			
slew rate								
Static load regulation	lout = 01200mA		-5,9		mV/A			
Efficiency	lout = 600 to 1200mA	70	80	85	%			
	Vbuck=0.9V							
Sleep Mode – Pulse skipping (PSK)								
Output Voltage Ripple			20		mV			
Efficiency		60			%			

Table 6: electrical parameters for BUCK_GRAPHIC

[Note 1] Programmable in 12.5mV steps up to 1.35V

2.3.2.1 VID settings for DC/DC converters with DVC

The core and the graphic buck converter are controlled VID[6:0] setting plus the Voltage ID Enable signals VIDEN[1:0]. The following table shows the digital representation and the corresponding output voltage of the buck regulators including DVC.

PARAMETER	Bus contents	Output voltage	comments
VID<6:0>	0001100	1.350V	Max programmable core & graphic voltage
	0001101	1.3375V	
	0001110	1.325V	
	010 0000	1.100V	Initial core voltage
	010 0001	1.0875V	5
	010 0010	1.075	
	010 1111	0.9125V	
	011 0000	0.900V	Initial graphic voltage
	011 0001	0.8875V	
	1011011	0.3625V	
	1011100	0.350V	
	1100000	0.3V	

Table 7: VID output voltage mapping

The VIDEN[1:0] pins will indicate which voltage is being specified with the VID[6:0] pins. Following table represents the allocation

VIDEN[1:0]	Regulator
00	VID invalid
01	VID = BUCK_CORE
10	VID = BUCK_GRAPHIC
11	VID invalid

If VIDEN is invalid, the output voltage of the CORE and GRAPHIC buck convertors remains at the last valid setting (initial: VCC_S = 1.1V, VNN_ = 0.9V).

[©] Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

2.3.3 BUCK_1P05

The BUCK_V1P05 converter is a high efficiency synchronous step down regulator operating at a frequency (1MHz) supplying a default voltage of 1.05V, 3500mA max, with $\pm 3\%$ voltage accuracy. This regulator is using external switching devices (P/NMOS) as the output current which is too high to be integrated on a quarter micron CMOS process. Current sensing will be done via a sense resistor (10 m Ω) in series to the coil. During abrupt changes in the load current, the bulk and decoupling capacitors must supply current for the brief period before the regulator circuit can respond.

Electrical Characteristics (Ta = -40 to +85 °C)

VSUP 1P05 Input Voltage 4.5 5.25	V
	•
V1P05_S Output Voltage 1.05	V
Output Accuracy [NOTE1] -3 3	%
Static load regulation lout = 03500mA -5.9	mV/A
IMAX Maximum Output 2500	mA
Current	
ILIMIT Current limitation 5900±20%	mA
TON Turn on time 2	ms
IQ_OFF Quiescent Current in Off 1	μA
Mode	
RpdPull down resistor inMeasured @200	Ω
power-down Vout=0.5V	
Normal Mode – Synchronous rectification (PWM)	
F_BUCK Frequency of operation 1	MHz
IQ_ON normal mode static Internal quiescent 0. 4	mA
current current	
Efficiency [NOTE2] 70 80 85	%
Sleep Mode – Pulse skipping	
The output voltage ripple 20	mV
Efficiency [NOTE2] 70 80 85	%
Gate Driver	
Minimum pulse width 100	ns
Non overlapping time (dead time) 20 100	ns
High side driver source resistance $I_{VHS} = 100 \text{mA}$ 1.0	Ω
High side driver sink resistance $I_{VHS} = -100 \text{mA}$ 0.5	Ω
Low side driver source resistance $I_{VLS} = 100 \text{mA}$ 1.0	Ω
Low side driver sink resistance I _{VLS} = -100mA 0.5	Ω
Suggested External components	
Cout -20% 2x22 +20%	μF
Or	
-20% 1x47µ +20%	
 VCCD Valid for the Intel E6xx -10% 10x1 +10% 	
 VCCQ series platform -10% 6x1 +10% 	
• VCCP -10% 6x1 +10%	
• VCCPAOAC -10% 4x1 +10%	
• VCCRTCEXT -10% 0.1 +10%	
• VCCDPL -10% 1 +10%	
○ VCCQHPLL -20% 22 +20%	
-10% 0.1 +10%	
• VCCPDDR -5% 47p 5%	
ESR of output capacitor $F > 100 \text{kHz}$ (all cap's + 10	mΩ
track impedance	
L_BUCK inductor value -20% 1.5 +20%	μH

© Dialog Semiconductor 2011. All rights reserved.

Rev. 1.2 — June 20, 2011

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L_ESR	inductor resistance				0.050	Ω
R_SENSE	current sense resistor			10		mΩ
R_PMOS	PMOS on resistance	SI7540DP				Ω
external		μPA1890			0.05	
		μPA2792				
		FDS8858CZ				
R_NMOS	NMOS on resistance	SI7540DP			0.046	Ω
external		μPA1890				
		μΡΑ2792				
		FDS8858CZ				

Table 8: Electrical parameter for BUCK_1P05

2.3.4 BUCK_1P2

The BUCK_V1P2 converter is a high efficiency synchronous step down regulator operating at a frequency (1MHz) supplying a default voltage of 1.2V, 1600mA max, with ±3% voltage accuracy.

Electrical Characteristics (Ta = -40 to +85 °C)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
VSUP_	1P2 Input Voltage			4.5		5.25	V
Cout							
0	Low frequency polymer covered A	۱L		-20%	220	+20%	μF
	SPCap, AO Cap 1 * 220µF						
0	Mid frequency 0402 MLCC 1 * 47	μF		-10%	47	+10%	μF
		_		4.00/		4.00/	-
0	High frequency 0402 MLCC 4 * 1	μ⊢		-10%	4X1	+10%	μr
ESR of			F > 100 kHz (all can's +		20	50	mO
LOIVOI			track impedance		20	00	11132
L_BUC	K inductor value			-30%	1.5	+30%	μH
L_ESR	inductor resistance				0.03	0.12	Ω
	Output Voltage		IOUT= Imax		1.2 ±3%		V
V1P2_/	A (EG20T/ML7223)						
V1P2_\$	S (STA2X11/ML7213)						
F_BUC	K Frequency of operation	n			1		MHz
Ton	Turn on time					2	ms
IQ_OFI	Quiescent Current in C	Dff				1	μA
Mode							
Rpd	Pull down resistor in					200	Ω
power-	down						
	Normal Mo	ode	 Synchronous rectifica 	tion (PW	′M)		
Maximu	um Output Current (Imax)			1600			mA
ILIMIT	Current limitation				2000 ±20%)	mA
Static lo	bad regulation		lout = 0…lmax		-5.9		mV/A
Efficien	су				80		%
	Sle	ep N	lode – Pulse skipping (F	PSK)			
Output	Voltage Ripple				20		mV
Efficien	су		IOUT	60			%

Table 9: Electrical parameter for BUCK_1P2

2.3.5 BUCK_1P8.

The BUCK_V1P8 converter is a high efficiency synchronous step down regulator operating at a high frequency (1MHz) supplying a default voltage of 1.8V, 3500mA max, with \pm 3% voltage accuracy.

This regulator is using external switching devices (P/NMOS) as the output current is too high to be integrated on a quarter micron CMOS process. The supply current during PWM (synchronous rectification) operation is in the order of 1mA (Quiescent current and charge/discharge current) and drops to <1µA in shutdown.

A power saving sleep mode is entered automatically. In sleep mode, the buck converter switches to a pulseskipping mode that will allow it to operate at high efficiency during very low current operations. Electrical Characteristics (Ta = -40 to +85 $^{\circ}$ C)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT		
VSUP_1P8	Input Voltage		4.5		5.25	V		
V1P8	Output Voltage			1.8		V		
	Output Accuracy	[NOTE1]	-2		2	%		
Static load reg	ulation	lout = 03500mA		-5.9		mV/A		
IMAX	Maximum Output Current		3200			mA		
ILIMIT	Current limitation			5000±20%		mA		
TON	Turn on time				2	ms		
IQ_OFF	Quiescent Current in Off				1	μA		
Mode								
Rpd	Pull down resistor in power-	Measured @			200	Ω		
down		Vout=0.5V						
	Normal Mode	 Synchronous rectifica 	tion (PW	/M)				
F_BUCK	Frequency of operation			1		MHz		
IQ_ON	normal mode static current	Internal quiescent		400		μA		
		current						
Efficiency		[NOTE2]	75	80	85	%		
Sleep Mode – Pulse skipping								
The output vol	tage ripple			20		mV		
Efficiency		[NOTE2]	60			%		
		Gate Driver						
Minimum pulse	e width				100	ns		
Non overlappi	ng time (dead time)			30		ns		
High side drive	er source resistance	I _{VHS} = 100mA		1.0		Ω		
High side drive	er sink resistance	I _{VHS} = -100mA		0.5		Ω		
Low side drive	r source resistance	$I_{VLS} = 100 \text{mA}$		1.0		Ω		
Low side drive	r sink resistance	I _{VLS} = -100mA		0.5		Ω		
	Sugge	ested External compone	nts					
Cout	Output Capacitor		80			μF		
ESR of output	capacitor	F > 100kHz (all cap's +			10	mΩ		
		track impedance						
L_BUCK	inductor value		-20%	1.5	+20%	μH		
L_ESR	inductor resistance				0.050	Ω		
R_SENSE	current sense resistor				10	mΩ		
R_PMOS	PMOS on resistance	SI7540DP			0.05	Ω		
external		μΡΑ1890						
		μPA2792						
		FDS8858CZ						
R_NMOS	NMOS on resistance	SI7540DP			0.046	Ω		
external		μΡΑ1890						
		FDS8858CZ						

Table 10: Electrical parameter for BUCK_1P8

2.3.6 BUCK_3P3

The BUCK_V3P3 Converter is a high efficiency synchronous step down regulator operating at a high frequency (1MHz) supplying a default voltage of 3.3V, 1000mA max, with a $\pm 3\%$ voltage accuracy.

The supply current during PWM (synchronous rectification) operation is in the order of 1.5mA (Quiescent current and charge/discharge current) and drops to $<1\mu$ A in shutdown. Switching frequency is chosen to be high enough to allow the usage of a small 4.7 μ H inductor.

A power saving sleep mode is entered automatically. In sleep mode, the buck converter switches to a pulseskipping mode that will allow it to operate at high efficiency during very low current operations. Characteristics (Ta = -40 to +85 °C)

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VSUP_3P3 Input Voltage		4.5		5.25	V
Cout					
 Low frequency polymer covered AL 		-20%	220	+20%	μF
SPCap, AO Cap 1 * 220µF					_
 Mid frequency 0402 MLCC 1 * 47µF 		-10%	47	+10%	μF
		4.00/	44	. 4 00/	
		-10%	4x1	+10%	μr
FSR of output capacitor					
				g	
\sim Mid frequency				77	mΩ
 High frequency 				30	
ESL of output capacitor					
 Mid frequency 				551	pН
 High frequency 				400	-
L_BUCK inductor value		-30%	4.7	+30%	μH
L_ESR inductor resistance			0.05		Ω
Output Voltage	IOUT= Imax		3.3 ±3%		V
V3P3 EG20T/ML7223					
V3P3_S STA2X11/ML7213					
F_BUCK Frequency of operation			1		MHz
Ton Turn on time				2	ms
IQ_OFF Quiescent Current in Off				1	μA
Mode					_
Rpd Pull down resistor in	Measured @			200	Ω
power-down	Vout=0.5V	(1			
Normal Mod	e – Synchronous rectifica	ation (PV	VIVI)		
		1000	0000 . 000/		mA
Current limitation			2000 ±20%)	mA m)///
			-5.9		111V/A
Епсепсу	1001 = 400 to 1000mA		80		70
Sloor	Mode - Pulse skipping (PSK)			
Output Voltage Ripple			20		m\/
Efficiency	IOUT	60	20		%
Emolority	1001	50			70

Table 11: Electrical Parameter for BUCK_3P3

Rev. 1.2 — June 20, 2011

Voltage Regulator LDO_RTC_V3P3 2.3.7

Electrical Characteristics (Ta = -40 to +85 °C)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VSUP_1	Input Voltage	Depends on output	4.5		5.25	V
VSUP_3		voltage	4.5		5.25	
V3P3_RTC	Output Voltage	IOUT= Imax		3.3		V
	Output Accuracy	IOUT= Imax	-3		+3	%
Cext	Stabilization capacitor	Tolerance of ± 30%		1.0		μF
IMAX	Maximum Output Current		5			mA
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω
ISHORT	Short Circuit Current				100	mA
VSLINE	Static Line Regulation	VSUP=4.5V to 5.25V,		10	30	mV
		IOUT=IMAX				
VSLOAD	Static Load Regulation	VSUP=4.5V to 5.25V,		5	30	mV
		IOUT = 1mA to				
		IOUT=IMAX				
VTRLINE	Line transient response	VSUP=4.5V to 5.25V,		5	10	mV
		IOUT=IMAX				
		tr = tf = 10µs				
VTRLOAD	Load transient response	VSUP=4.5V		15	30	mV
		IOUT = 1mA to				
		IOUT=IMAX				
		tr = tf = 10µs				
PSRR	Power Supply ratio rejection	F=1kHz	50			dB
IQ_ON	Quiescent Current in ON MODE			25uA + 1% of IO	UT	μA
IQ OFF	Quiescent Current in Off				1	uА
	Mode					h
Ton	Turn on time	Max Load			200	µsec
Toff	Turn off time	No Load			1	ms

Table 12: Electrical parameter for LDO_RTC_3V3

2.3.8 Voltage Regulator LDO_V3P3

Electrical Cha	aracteristics (Ta = -40 to +85 °C)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VSUP_1	Input Voltage	Depends on output	4.5		5.25	V
VSUP_3		voltage				
	Output Voltage	IOUT= Imax		3.3		V
V3P3	EG20T/ML7223					
V3P3_A	STA2X11/ML7213					
	Output Accuracy	IOUT= Imax	-3		+3	%
Cext	Stabilization capacitor	Tolerance of ± 30%		1		μF
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω
IMAX	Maximum Output Current		100			mA
ISHORT	Short Circuit Current				300	mA
VSLINE	Static Line Regulation	VSUP=4.5V to 5.25V,		5	20	mV
		IOUT=IMAX				
VSLOAD	Static Load Regulation	VSUP=4.5V to 5.25V		5	20	mV
		IOUT = 1mA to				
		IOUT=IMAX				
VTRLINE	Line transient response	VSUP=4.5V to 5.25V		5	20	mV

Rev. 1.2 — June 20, 2011

		IOUT=IMAX		
		tr = tf = 10µs		
VTRLOAD	Load transient response	VSUP=4.5V	15 50	mV
		IOUT = 1mA to		
		IOUT=IMAX		
		tr = tf = 10µs		
PSRR	Power supply ratio rejection	F =1KHz	50	dB
IQ_ON	Quiescent Current in ON		20µA +1% of IOUT	μA
	MODE			
IQ_OFF	Quiescent Current in Off		1	μA
	Mode			
Ton	Turn on time	Max Load	200	µsec
Toff	Turn off time	No Load	1	ms

Table 13: Electrical parameter for LDO_V3P

2.3.9 Voltage Regulator LDO_V2P5

Electrical Characteristics (Ta = -40 to +85 °C)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VSUP_1	Input Voltage	Depends on output	4.5		5.25	V
VSUP_3		voltage				
	Output Voltage	IOUT= Imax		2.5		V
V2P5_A	EG20T/ML7223					
	Output Accuracy	IOUT= Imax	-3		3	%
Cext	Stabilization capacitor	Tolerance of ± 30%		1		μF
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω
IMAX	Maximum Output Current		50			mA
ISHORT	Short Circuit Current				150	mA
VSLINE	Static Line Regulation	VSUP=4.5V to 5.25V,		5	20	mV
		IOUT=IMAX				
VSLOAD	Static Load Regulation	VSUP=4.5V to 5.25V		5	20	mV
		IOUT = 1mA to				
		IOUT=IMAX				
VTRLINE	Line transient response	VSUP=4.5V to 5.25V		5	20	mV
		IOUT=IMAX				
		tr = tf = 10µs				
VTRLOAD	Load transient response	VSUP=4.5V		15	50	mV
		IOUT = 1mA to				
		IOUT=IMAX				
		tr = tf = 10µs				
PSRR	Power supply ratio rejection	F =1KHz	50			dB
IQ_ON	Quiescent Current in ON			20µA +1% of IO	UT	μA
	MODE					
IQ_OFF	Quiescent Current in Off				1	μA
	Mode					
Ton	Turn on time	Max Load			200	µsec
Toff	Turn off time	No Load			1	ms

Table 14: Electrical parameter for LDO_V2P5

Rev. 1.2 — June 20, 2011

2.3.10 Voltage Regulator LDO_V1P5

Electrical Characteristics (Ta = -40 to +85 °C)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VDD_V1P8	Input Voltage			1.8		V
V1P5_S	Output Voltage	IOUT= Imax		1.5		V
	Output Accuracy	IOUT= Imax	-3		+3	%
Cext	VCCA		-10%	3x1	+10%	μF
			-10%	0.1	+10%	
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω
IMAX	Maximum Output Current		150			mA
ISHORT	Short Circuit Current				450	mA
VSLINE	Static Line Regulation	VDD_V1P8 ±2%,		5	20	mV
		IOUT=IMAX				
VSLOAD	Static Load Regulation	VDD_V1P8 ±2%,		5	20	mV
		IOUT = 1mA to				
		IOUT=IMAX				
VTRLINE	Line transient response	VDD_V1P8 ±2%,		15	50	mV
		IOUT=IMAX				
		tr = tf = 10µs				
VTRLOAD	Load transient response	VDD_V1P8 ±2%,		15	30	mV
		IOUT = 1mA to				
		IOUT=IMAX				
		$tr = tf = 1\mu s$				
PSRR	Power supply ratio rejection	F =1KHz	50			dB
IQ_ON	Quiescent Current in ON MODE		20	20µA +1% of IOUT		
IQ_OFF	Quiescent Current in Off				1	μA
	Mode					-
Ton	Turn on time	Max Load			200	µsec
Toff	Turn off time	No Load			1	ms

Table 15: Electrical parameter for LDO_V1P5

2.3.11 Voltage Regulator LDO_V1P25

Electrical Characteristics (Ta = -40 to +85 °C)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VDD_V1P8	Input Voltage			1.8		V
V1P25_S	Output Voltage	IOUT= Imax		1.25		V
	Output Accuracy	IOUT= Imax	-2		+2	%
Cext	Stabilization capacitor	Tolerance of ± 30%		0.22		μF
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω
IMAX	Maximum Output Current		5			mA
ISHORT	Short Circuit Current				50	mA
VSLINE	Static Line Regulation	VDD_V1P8 ±2%,		5	20	mV
		IOUT=IMAX				
VSLOAD	Static Load Regulation	VDD_V1P8 ±2%,		5	20	mV
		IOUT = 1mA to				
		IOUT=IMAX				
VTRLINE	Line transient response	VDD_V1P8 ±2%,		15	30	mV
		IOUT=IMAX				
		tr = tf = 10µs				

Rev. 1.2 — June 20 , 2011

VTRLOAD	Load transient response	VDD_V1P8 ±2%, IOUT = 1mA to IOUT=IMAX tr = tf = 1µs	15 50	mV
PSRR	Power supply ratio rejection	F =1KHz	50	dB
IQ_ON	Quiescent Current in ON MODE		20µA +1% of IOUT	μA
IQ_OFF	Quiescent Current in Off Mode		1	μA
Ton	Turn on time	Max Load	200	µsec
Toff	Turn off time	No Load	1	ms

Table 16: Electrical parameter for LDO_V1P25

2.3.12 Voltage Regulator LDO_V1P05

Electrical Cha	racteristics (Ta = -40 to +85 $^{\circ}$ C)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VDD_V1P8	Input Voltage			1.8		V
V1P05_S	Output Voltage	IOUT= Imax		1.05		V
	Output Accuracy	IOUT= Imax	-2		+2	%
Cext	Stabilization capacitor	Tolerance of ± 30%		1		μF
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω
IMAX	Maximum Output Current		100			mA
ISHORT	Short Circuit Current				450	mA
VSLINE	Static Line Regulation	VDD_V1P8 ±2%,		5	20	mV
		IOUT=IMAX				
VSLOAD	Static Load Regulation	VDD_V1P8 ±2%,		5	20	mV
		IOUT = 1mA to				
		IOU I =IMAX				
VTRLINE	Line transient response	VDD_V1P8 ±2%,		15	50	mV
		IOUT=IMAX				
		tr = tf = 10µs				
VTRLOAD	Load transient response	VDD_V1P8 ±2%,		15	30	mV
		IOUT = 1mA to				
		IOUT=IMAX				
		tr = tf = 1µs				
PSRR	Power supply ratio rejection	F =1KHz	50			dB
IQ_ON	Quiescent Current in ON MODE		20µ	A +1% of IC	TUC	μA
IQ_OFF	Quiescent Current in Off Mode				1	μA
Ton	Turn on time	Max Load			200	µsec
Toff	Turn off time	No Load			1	ms

Table 17: Electrical parameter for LDO_V1P05

2.3.13 Voltage Regulator LDO_V0P9

The LDO_V0P9 is a bi-directional LDO, designed to meet the JEDEC specifications (JESD79-C2) at S3/S5 sleep state for termination of DDR/DDR2 memory bus. The regulator is a high speed operational amplifier to provide excellent response to load transients.

Suspend to RAM (STR) is maintained as well. In the STR mode the output of the regulator will tri-state providing a high impedance output while the reference voltage will remain active.

Electrical Characteristics (Ta = -40 to +85 °C)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VSUP1	Input Voltage	Core voltage	4.5		5.25	V
VDD_V0P9		Pass device voltage		1.8		V
V0P9_S	Output Voltage	IOUT= Imax		0.9		V
	Output Accuracy	IOUT= Imax	-2		+2	%
Cext	Stabilization capacitor	Tolerance of ± 30%		10		μF
IMAX	Maximum Output Current		±375			mA
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω
ISHORT	Short Circuit Current				±600	mA
VSLINE	Static Line Regulation	VDD_V1P2 ±2%,		5	30	mV
		IOUT=IMAX				
VSLOAD	Static Load Regulation	VDD_V1P2 ±2%,		5	30	mV
		IOUT = 1mA to				
		IOUT=IMAX				
VTRLINE	Line transient response	VDD_V1P2 ±2%,		5	10	mV
		IOUT=IMAX				
		tr = tf = 10µs				
VTRLOAD	Load transient response	VDD_V1P2 ±2%,		15	30	mV
		IOUT = 1mA to				
		IOUT=IMAX				
		tr = tf = 10µs				
PSRR	Power supply ratio rejection	F =1KHz	50			dB
IQ_ON	Quiescent Current in ON		25	5uA + 1% of I	OUT	μA
	MODE					
IQ_OFF	Quiescent Current in Off				1	μA
	Mode					
Ton	Turn on time	Max Load			200	μs
Toff	Turn off time	No Load			1	ms

Table 18: Electrical parameter for LDO_V0P9

2.3.14 Voltage Regulator LDO_V0P9R

Buffered reference voltage of V1P8/2. In the STR Mode this amplifier remains active. Default at start-up is enabled at V1P8/2

Electrical Characteristics (Ta = -40 to +85 °C)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V1P8	Input Voltage			1.8		V
V0P9R	Output Voltage	IOUT= Imax		0.9		V
	Output Accuracy	IOUT= Imax	-2		+2	%
Cext	Stabilization capacitor	Tolerance of ± 30%		1.0		μF
IMAX	Maximum Output Current		25			mA
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω
ISHORT	Short Circuit Current				60	mA
VSLINE	Static Line Regulation	VDD_V1P2 ±2%, IOUT=IMAX		5	30	mV
VSLOAD	Static Load Regulation	VDD_V1P2 ±2%, IOUT = 1mA to IOUT=IMAX		5	30	mV
VTRLINE	Line transient response	VDD_V1P2 ±2%, IOUT=IMAX tr = tf = 10µs		5	10	mV
VTRLOAD	Load transient response	VDD_V1P2 ±2%, IOUT = 1mA to IOUT=IMAX tr = tf = 10µs		15	30	mV
PSRR	Power supply ratio rejection	F=1kHz	50			dB
IQ_ON	Quiescent Current in ON MODE		25uA + 1% of IOUT			μA
IQ_OFF	Quiescent Current in Off Mode				1	μA
Ton	Turn on time	Max Load			200	μs
Toff	Turn off time	No Load			1	Ms

Table 19: Electrical parameter for LDO_0V9R

2.3.15 Voltage Regulator LDO_VUNI

Default at start-up is 2.5/1.2V depending on the OTP setting and the supply voltage.

Electrical Characteristics (Ta = -40 to +85 °C)							
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
VDD_VUNI	Input Voltage	Depends on output		1.8		V	
		voltage		3.3			
VUNI	Output Voltage	IOUT= Imax				V	
V1P2_S	EG20T/ML7223			1.2			
V2P5_S	STA2X11			2.5			
	Output Accuracy	IOUT= Imax	-2		2	%	
Cext	Stabilization capacitor	Tolerance of ± 30%		2.2		μF	
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω	
IMAX	Maximum Output Current	Vout = $2.5V$	250			mA	
		Vout = $1.2V$	290			mA	
ISHORT	Short Circuit Current				450	mA	
VSLINE	Static Line Regulation	VDD-UNI,		5	20	mV	
	_	IOUT=IMAX					

© Dialog Semiconductor 2011. All rights reserved.

Rev. 1.2 — June 20 , 2011

VSLOAD	Static Load Regulation	VDD_UNI,	5 20	mV
		IOUT = 1mA to		
		IOUT=IMAX		
VTRLINE	Line transient response	VDD_UNI,	15 30	mV
		IOUT=IMAX		
		tr = tf = 10μs		
VTRLOAD	Load transient response	VDD_UNI,	15 50	mV
	-	IOUT = 1mA to		
		IOUT=IMAX		
		tr = tf = 10µs		
PSRR	Power supply ratio rejection	F=1kHz	50	dB
IQ_ON	Quiescent Current in ON		20µA +1% of IOUT	μA
	MODE		-	-
IQ_OFF	Quiescent Current in Off		1	μA
	Mode			-
Ton	Turn on time	Max Load	200	µsec
Toff	Turn off time	No Load	1	ms

Table 20: Electrical parameter for LDO_VUNI

2.3.16 Pass Device PD_V3P3

Electrical Characteristics (Ta = -40 to +85 °C)

	PARAMETER	TEST CONDITIONS	MIN T	YP MAX	UNIT
V3P3_IN	Input Voltage	Depends on output voltage	3	.3	V
V3P3_S	Output Voltage	IOUT= Imax	3	.3	V
	Output Accuracy	IOUT= Imax	-5	+3	%
Cext	Stabilization capacitor VCCP33 VCCP33SUS	Tolerance of ± 10% Tolerance of ± 10%	4 2×	x1 0.1	μF
IMAX	Maximum Output Current		250		mA
VDROPOUT	Dropout Voltage	IOUT= Imax		54	mV

Table 21: Electrical parameter for PD_V3P3

2.3.17 Pass Device PD_V1P8

Electrical Characteristics (Ta = -40 to +85 °C)

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
V1P8_IN	Input Voltage	Depends on output	1.8V	V
		voltage		
V1P8_S	Output Voltage	IOUT= Imax	1.8V	V
	Output Accuracy	IOUT= Imax	-5	%
Cext	Stabilization capacitor			μF
	VCCD180	Tolerance of ± 10%	2x1	
	VCCA180	Tolerance of ± 20%	10	
	VCCSFRDPLL	Tolerance of ± 10%	0.1	
	VCCSFR_EXP	Tolerance of ± 10%	0.1	
	VCCSDFRHPLL	Tolerance of ± 10%	1	
		Tolerance of ± 20%	22	
IMAX	Maximum Output Current		250	mA

VDROPOUT	Dropout Voltage	IOUT= Imax	54	mV
IQOFF	Quiescent Current in Off Mode		1	μA

Table 22: Electrical parameter for PD_V1P8

2.3.18 Pass Device PD_V1P2

Electrical Characteristics (Ta = -40 to +85 °C)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V1P2_IN	Input Voltage			1.2		V
V1P2	Output Voltage	IOUT= Imax		1.2		V
	Output Accuracy	IOUT= Imax	-5			%
Cext	Stabilization capacitor	Tolerance of ± 30%		4.7		μF
IMAX	Maximum Output Current		150			mA
VDROPOUT	Dropout Voltage	IOUT= Imax			24	mV
IQOFF	Quiescent Current in Off				1	μA
	Mode					

Table 23: Electrical parameter for PD_V1P2_S

2.3.19 Low Noise Voltage Regulator LDO_VINT

The regulator LDO_VINT is always switched on. Default at start-up is 2.65V, enabled. OTP trimmed to achieve the 1% accuracy. Electrical Characteristics (Ta = -40 to +85 $^{\circ}$ C)

PAR	AMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VSUP_1	Input Voltage		4.5		5.25	V
VSUP_2						
VINT	Output Voltage	IOUT= Imax		2.65		V
	Output Accuracy	IOUT= Imax	-1		1	%
Cext	Stabilization capacitor	Tolerance of ± 30%		1.0		μF
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω
IMAX	Maximum Output Current		100			mA
ISHORT	Short Circuit Current				450	mA
VSLINE	Static Line Regulation	VSUP=4.5V to 5.25V,		5	20	mV
		IOUT=IMAX				
VSLOAD	Static Load Regulation	VSUP=4.5V to 5.25V,		5	20	mV
		IOUT = 1mA to IMAX				
VTRLINE	Line transient response	VSUP=4.5V to 5.25V,		15	30	mV
		IOUT=IMAX				
		tr = tf = 10µs				
VTRLOAD	Load transient response	VSUP=4.5V to 5.25V,		15	50	mV
		IOUT = 1mA to IMAX				
		tr = tf = 10µs				
PSRR	Power supply ratio rejection	F =1kHz	50			dB
IQ_ON	Quiescent Current in ON		2	0µA +1% of IC	DUT	μA
IQ_OFF	Quiescent Current in Off				1	μA
	Mode					-
Ton	Turn on time	Max Load			200	μs
Toff	Turn off time	No Load			1	ms

Table 24: Electrical parameter for LDO_VINT

2.3.20 LDO_LP LOW POWER REGULATOR

The LDO_LP will be used for running the internal sequencer. It is supplied by the system supply voltage VSUP. This allows a power up prior the system power domains. This LDO acts as the supply for the bias, reference, OTP and the SMBus registers.

Electrical Characteristics (Ta = -40 to +85 °C) VSUP = 4.5 to 5.25V

PAR	AMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VSUP_1	Input Voltage		4.5		5.25	V
VSUP_2						
VLP	Output Voltage	IOUT= Imax	2.45	2.5	2.55	V
Cext	Stabilization capacitor	Tolerance of ± 35%		220		nF
Cesr	ESR of capacitor	F > 1MHz			0.1	Ω
IMAX	Maximum Output Current		5			mA
ISHORT	Short Circuit Current				50	mA
IQ_ON	Quiescent Current in ON		20	µA +1% of I	OUT	μA
	MODE					
IQ_OFF	Quiescent Current in Off				1	μA
	Mode					
Ton	Turn on time	Max Load			200	μs
Toff	Turn off time	No Load			1	ms

Table 25: Electrical parameter for LDO_LP

3 Clock Synthesizer/Generator

3.1 Atom[™] E6xx Processor Clock Supplies

E6xx processor has to be supplied by several clock frequencies to support its various interfaces. The table below shows the DA6011 clocks which will be provided to the Atom™ processor

Clock Domain	E6xx processor Signal Name	Frequency	Signal type	Usage	Active
CPU	BCLKP/BCLKN	100MHz	differential	Processor reference clock	S0
Overlay	HPLL_REFCLK_P HPLL_REFCLK_N	100MHz	differential	Processor overlay reference clock	S0
ITP	XDP_BCLKP XDP_BCLKN	100MHz	differential	eXtended Debug Port	S0
PCI Express	PCIe_CLKINP PCIe_CLKINN	100MHz	differential	PCIe port	S0
Display reference clock	SDVO_REFCLKP SVDO_REFCLKN	96MHz	differential	Primary clock source for display clocks and HD audio	S0
CLK14	CLK14	14.31818MHz	Unbalanced (3.3V)	Used by the 8254 timers. Clock stops at S4/5 state	S3

3.2 IO-Hub Clock Supplies

3.2.1 EG20T Platform Controller Hub Clock Supplies

EG20T Platform Controller Hub will be supplied by several clocks from DA6011. The table below shows the DA6011 clocks which will be provided to EG20T.

Clock Domain	EG20T Signal Name	Frequency	Signal type	Usage	Active
PCI Express	PCIE_CLKP PCIE_CLKN	100MHz	differential	PCIe port	S0
SATA connection	SATA_CLKP SATA_CLKN	75MHz	differential	SATA reference clock	S0
USB	USB_48MHz	48MHz	Unbalanced (3.3V)	USB reference clock	S0/3
Main Clock	SYS_25MHz	25MHz	Unbalanced (3.3V)	EG20T main Clock supply	S0/3/4/5
UART	MCLK	50MHz	Unbalanced (3.3V)	Audio reference clock	S0

3.2.2 ST ConneXt STA2X11 IO-Hub Clock Supplies

ConneXt IO-Hub will be supplied by several clocks from DA6011. The table below shows the DA6011 clocks which will be provided to ConneXt

Clock Domain	ConneXt Signal Name	Frequency	Signal type	Usage	Active
PCI Express	PCIE_CLK_P PCIE_CLK_N	100MHz	differential	PCIe port	S0
SATA connection	SATA_CLK_P SATA_CLK_N	100MHz	differential	SATA reference clock	S0
Ethernet (optional*)		50MHz	Unbalanced (3.3V)	Ethernet	S0
Main Clock	SXTALI	24MHz	Unbalanced	ConneXt main	S0

*) crystal frequency accuracy must be adapted to requested Ethernet frequency accuracy

3.2.3 OKI Semiconductor ML7213 IVI IO-Hub Clock Supplies

OKI IVI IO-Hub will be supplied by several clocks from DA6011. The table below shows the DA6011 clocks which will be provided to OKI IVI Hub

Clock Domain	ML7213 Signal Name	Frequency	Signal type	Usage	Active
PCI Express	PCIE_CLKP PCIE_CLKN	100MHz	differential	PCIe port	S0
SATA connection	SATA_CLKP SATA_CLKN	75MHz	Differential (LVDS)	SATA reference clock	S0
USB_48MHz	USB_48MHz	48MHz	Unbalanced (3.3V)	USB reference clock	S0
Main Clock	SYS_25MHz	25MHz	Unbalanced (3.3V)	Main Clock supply	S0
Audio	MCLK	12.288MHz	Unbalanced (3.3V)	Audio reference clock	S0

3.2.4 OKI Semiconductor ML7223 MP IO-Hub Clock Supplies

OKI Semiconductor MP IO-Hub will be supplied by several clocks from DA6011. The table below shows the DA6011 clocks which will be provided to OKI Semiconductor MP IO-Hub.

Clock Domain	ML7223 Signal Name	Frequency	Signal type	Usage	Active
PCI Express	PCIE_CLKP PCIE_CLKN	100MHz	differential	PCIe port	S0
SATA connection	SATA_CLKP SATA_CLKN	75MHz	Differential (LVDS)	SATA reference clock	S0
USB	USB_48MHz	48MHz	Unbalanced (3.3V)	USB reference clock	S0/3
Main Clock	SYS_25MHz	25MHz	Unbalanced (3.3V)	OKI MP main Clock supply	S0/3/4/5
Audio	MCLK	12.288MHz	Unbalanced (3.3V)	Audio reference clock	S0

3.3 PLL Clock generation

DA6011 will incorporate 4 fractional/spread spectrums PLL's to provide clock signals to the E6xx processor, an IO-Hub as well as to one additional PCIe device. All output clocks of the PLL are designed to be low power differential push-pull pairs or unbalanced clock signal. Noise shaping fractional divider are used for minimum spurious in the spectrum. The reference clock for the PLL's are generated via the 14.31818MHz crystal oscillator. It is assumed that the reference clock has frequency accuracy better than ±100ppm to source the E6xx processor platform with the appropriate frequencies at the requested accuracy.

3.3.1 Clock generator

Electrical Characteristics (Ta = -40 to +85 °C)

PAF	RAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VCC_PLL1 Sup VCC_PLL2 VCC_PLL3 VCC_PLL5	ply Voltage			2.65±1%		V
VCCIO_REF 3V3	reference clock supply			3.3±5%		V
VCCIO_PLL1 diff. VCCIO_PLL23	push pull pair supply			1.2±5% or 1.8±5%		V
VCCIO_SYS IO-I	Hub clock supply			3.3±5% 2.5±5%		V
I_ON Ope	erating supply current			70		mA
I_OFF Qui Mode	escent Current in Off			1		μA
Output frequency	PLL1 incl. Spread spectrum			100		MHz
		f _{xo} =14.31818		06/49/24		
	PLL2	IVIHZ		90/40/24		
	PLL3			100/75/25		
	FLLD			12.200/50		
Output frequency accuracy	PLL1 incl. Spread spectrum			±100		ppm
	PLL2			±100		ppm
	PLL3			±300		ppm
	PLL5			±100		ppm
f _{SSMOD} Spread spect frequency	rum modulation	Triangular modulation	30		33	kHz
C _{OUT}				5		pF
Ton Tur	n on time				1.8	ms
PLL1 _{C2C} PLL Cycle 2 Cycle	.1 Jitter				85	ps
PLL2 _{C2C} PLL Cycle 2 Cycle	2 Jitter	Differential			250	ps
PLL3 _{C2C} PLL Cvcle 2 Cvcle	.3 Jitter	measured			125	ps
14.σ PLL3 Random Transfer Function fil	Jitter contribution, Jitter tered for STA2X11			3.18		ps

Rev. 1.2 — June 20, 2011

PLL5 _{C2C} PLL5 Ji Cycle 2 Cycle	tter		250	ps					
Differential outputs									
Rising edge slew rate		2.5	8.0	V/ns					
Falling edge slew rate		2.5	8.0	V/ns					
Rise/Fall Time Variation	Single ended		20	%					
Maximum output voltage differential	Overshoot included		1150	mV					
Minimum output voltage differential	Undershoot included	-300		mV					
Duty cycle	Differential measured	45	55	%					
Differential voltage swing		300		mV					
Crossing Point Variation	Single ended		140	mV					
Cross Point Voltage	Single ended	300	550	mV					
S	ingle Ended CLK14,U	SB output							
Rising slew rate	Measured from 0.8V to 2.0V	1	2	V/ns					
Falling slew rate	Measured from 2.0V to 0.8V	1	2	V/ns					
Duty cycle		45	55	%					
Maximum output voltage		2.4		V					
Minimum output voltage			0.4	V					

Table 26: Electrical characteristic of the PLL

3.4 Clock Synthesizer/driver overview

The figure below shows the layout of the clock synthesizer/driver

3.5 Reference frequency REF 14.318MHz

A crystal with a frequency accuracy of ±100ppm is required to source the Atom[™] E6xx processor platform with the appropriate frequencies at the requested accuracy.

Electrical Characteristics (Ta = -40 to +85 °C)

PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
Clock period		69.8203		69.8622	ns
Output high Voltage		2.4			V
Output low Voltage				0.4	V
Output high current			33		mA
Output low current		30		38	mA
Rising edge slew rata		1		4	V/ns
Falling edge slew rate		1		4	V/ns
Duty cycle		45		55	%
Jitter Cycle 2 Cycle				1000	ps

Table 27: Electrical characteristic REF clock

DA6011

Rev. 1.2 — June 20, 2011

Data Sheet

4 GENERALPURPOSE ADC

4.1 ADC overview

DA6011 provides a 10-bit GPADC combined with an analog input-multiplexer and track-and-hold circuitry. The analog input-multiplexer will allow conversion of 4 different inputs. The track and hold circuit ensures stable input voltages at the input of the ADC during the conversion.

The ADC is used to measure the following inputs either manually or automatically (or both):

- main supply voltage (VSUP): ADC_IN0 is internally configured to measure the supply voltage by subtracting the ADC reference voltage from the supply voltage before applying the signal to the ADC input
- junction temperature: ADC_IN1 is internally configured to measure the T_{junc} of DA6011.
- user channel A: ADC_IN2 is provided as a channel for measuring external values. For this channel an
 optional 15µA current source is provided
- user channel B: ADC_IN3 is provided as a channel for measuring external values.

Figure 4 shows the overall block of the GPADC including the registers containing the conversion results of the four channels.

Figure 4: GPADC overall structure

GPADC Electrical Characteristics (Ta = -40 to +85 °C)

PARAMETER	CONDITIONS	MIN TYP	MAX	UNIT
Internal reference voltage	Derived from VLP	2.5		V
Off current			1	μA
ADC operating current	VREF=2.5V	100		μA
ADC resolution		10		Bit
ADC integral non linearity	VREF=2.5V	+/-2.0		LSB
ADC differential non linearity	VREF=2.5V	+/-0.8		LSB
ADC absolute accuracy	VREF=2.5V	12	15	mV
ADC conversion clock		1.0		MHz
Auto-zero time	For VSUP measurements	5		μs
Conversion time		29		μs
Total ADC conversion Time		34		μs
Rint internal MUX-resistance		5		kΩ
Maximum source impedance	Rsource (Note 1)	100		kΩ
Internal sampling capacitor.	Carray	10		рF

 $[\]textcircled{\sc c}$ Dialog Semiconductor 2011. All rights reserved.

All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

Rev. 1.2 — June 20, 2011

DADAMETED	CONDITIONS	MIN	ТУР	MAY	
PARAMETER	CONDITIONS	IVITIN	ITP	IVIAA	UNIT
Acquisition time	~7*τ=~7*(Rint+Rsource) *Cint	10	12	14	μs
Input Capacitance (Cint)	Total input capacitance		10		pF
ADC_IN0 voltage range VSUP (internal)	VSUP is measured by subtracting 2.5V	2.5		5.3	V
ADC_IN1 voltage range	Junction temperature of DA6011	0		2.5	V
ADC_IN2 voltage range Tsystem pin	Voltage across a NTC resistor, 15µA biasing	0		2.5	V
ADC_IN3 voltage range	High impedance input	0		2.5	V
MUX cross talk isolation			60		dB

Table 28: GPADC electrical characteristics

Note [1]. R_{source} is the impedance of the external source the ADC is sampling. The minimum acquisition time depends on this impedance.

In order to provide both automatic and manual conversion for all channels a total of 5 slots will be provided. Each slot has assigned a measurement period of 128us. The entire sequence will be repeated cyclically as shown in the following figure:

Figure 5: GPADC measurement slots

The automatic conversion of the junction temperature (slot A1) will always be performed, whereby the other conversions need to be enabled by setting the according enable bits in AUTOCTRL register 0xE1:

- AUTOCTRL.VSUPEN
- AUTOCTRL.AD2EN
- AUTOCTRL.AD3EN

4.2 Automatic measurements control

Each channel provides automatic measurements.

In automatic mode, only the 8 MSBs are stored to the corresponding conversion-result registers. For the automatic measurements it is possible to define threshold values which can be used to generate interrupts if the current conversion result is below or beyond this threshold. More details will be given in the next sections.

4.2.1 Automatic measurement of the supply voltage (ADC_IN0)

VSUP is measured and the conversion result compared with the value stored in an internal threshold register. If the conversation result is less than this threshold for 3 consecutive measurements, the bit VSUPUNDER is asserted in ADCSTAT status register 0xE4. In this case the automatic measurements of ADC_IN0 are paused until ADCSTAT.VSUPUNDER gets cleared by a write to register 0xE5 ADCIRQCLR.VSUPUNDER. If the interrupt is not masked, i.e. ADCIRQMASK.VSUPUNDER is not set, a hardware interrupt will be issued.

The 8-bit result of the ADC_IN0 automatic measurement is stored in register VSUPARES, with the following formula to calculate the the supply voltage:

 $Vsup = 5.5V- ((VSUPARES + 3/65^{(temp-25)})^{(5.5V-2.65V)/256})$ whereas temp is the actual junction temperature.

It is of interest to monitor the DA6011 supply voltage and issue an interrupt if the voltage is below this threshold as the bucks might not work properly on low input voltage

4.2.2 Automatic measurement of the junction temperature (ADC_IN1)

This channel measures the output of the on-chip temperature sensor with a gain of 3 and the conversion result is stored in register TJUNCARES. If the conversion result is greater than the value store in TJUNTH for 3 consecutive measurements the status bit TJUNCOVER of the ADCSTAT register 0xE4 is asserted. In this case the automatic measurements of ADC_IN1 are paused until the TJUNCOVER bit gets cleared by writing a 1 to TJUNCOVER of the ADCIRQCLR register 0xE5. If the interrupt is not masked, ADCIRQMASK.TJUNCOVER is not set, a hardware interrupt will be issued.

The register TJUNCOFFSET 0xEB will be used for one-point calibration of the temperature sensor. This register will be programmed individually during ATE testing for each single DA6011. This value can be read by the user in order to determine the junction temperature accurately based on the following formula:

Junc. Temp[°C] = (TJUNCARES - TJUNCOFFSET - 0x4D)/0.6+25. The TJUNCOFFSET is the temperature correction value during ATE testing and is stored in the corresponding register. TJUNCARES is the 8bit conversion result.

4.2.3 Automatic measurement of user channels (ADC_IN2 and ADC_IN3)

The results of the ADC_IN2 and ADC_IN3 automatic conversion are stored in register ADCIN2ARES 0xEC and ADCIN3ARES 0xEF, respectively. For both channels the user can set low and high threshold values. If the conversion-result is less than the low-threshold or greater than the high-threshold the according status register is set and if the interrupt is not masked, IRQ_N gets asserted:

end

[©] Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

Note that it is up to the user to program the correct threshold settings.

As for the other automatic measurements, the automatic conversion is paused if the status bit is asserted. Only once the status bit is cleared the automatic conversion continues (if still enabled).

For each channel, the user has the possibility to enable a de-bouncing feature. If de-bouncing is enabled (register 0xE3 ADCIN23DB.IN2DB or ADCIN23DB.IN3DB set) 3 consecutive conversion results need to exceed the thresholds in order to set the status flag.

As above-mentioned, ADC_IN2 can be used with a 15uA current source that allows automatic measurements of a resistor value. This current source can be controlled via bit ADC2SRCEN of register AUTOCTRL 0xE1. During automatic measurements the enabled current source is dynamically switched-off at the end of the conversion and switched-on one slot prior to the next ADC_IN2 measurement, i.e. the source is switched on in the slot where ADC_IN1 measurements are performed. In order to not impact the measurement of ADC_IN1 the current source is getting enabled after ADC_IN1 measurement is done. If ADC_IN1 measurement is not enabled, the current source is enabled immediately.

4.3 Manual measurement control

Each channel can also undergo a manual conversion. As opposed to the automatic measurement mode, manual mode will store the entire 10-bit conversation result in the registers MANRESHB 0xE8 and MANRESLB 0xE7.

A manual conversion is initiated by setting the bit MANRUN of register MANCTRL 0xE2. In this case a manual measurement is done in slot 5 (see figure 5). The manual measurement channel can be selected via the CHSEL bits of such register. Once the manual conversion is finished, the status bit MANEOC of register ADCSTAT 0xE4 is set and the 10-bit result is stored in registers MANRESHB and MANRESLB. If the MANEOC bit of ADCIRQMASK register 0xE6 is not masked a hardware interrupt is generated. In order to start a new manual conversion the MANEOC bit of register 0xE5 ADCIRQCLR needs to be cleared first, followed by a new setting of the MANRUN bit of register MANCTRL 0xE2.

5 INTERNAL TEMPERATURE SUPERVISION

To protect DA6011 from damage due to excessive power dissipation, an internal temperature measurement will be executed every 1ms. Only after three consecutive temperature measurements indicate a thermal overload $(T_{OVER}=130^{\circ}C)$ a fault condition (OVERTEMP) will be generated.

If an OVERTEMP is detected, DA6011 will then shut down to shut down mode and record the fault by asserting TEMP_OVER in the FAULT_LOG register. The fault condition will remain as long as the internal temperature will be higher than T_{OVER} minus 10°C.

The internal temperature sensor can also be read out by the GPADC. An 8-bit OTP register is used to store its offset at a known temperature (e.g. 27° C). When subsequently read by software, this will improve the absolute accuracy, which should be $\pm 7^{\circ}$ C of the measured die junction temperature. This TJUNCOFFSET can be used by AtomTM E6xx processor to calculate the absolute die temperature, and can only be used in conjunction with the channel it was measured with.

To inform processor that DA6011 is getting hot, the PROTCHOT signal will be asserted. The trigger point is set to a die temperature of 110°C. After the assertion of PROCHOT E6xx processor shall start the temperature throttling. The minimum assertion time of PROCHOT is specified to be >500µs.

The absolute die junction temperature can be calculated by the host using the result from the ADC channel 1 measurement result (gain=3) and the TJUNCOFFSET trim values.

Junc. Temp[°C] = (TJUNCARES - TJUNCOFFSET - 0x4D)/0.6+25°C. The TJUNCOFFSET is the temperature correction during ATE testing.

Electrical Characteristics (Ta = -40 to +85 °C)

PARAMETER	MIN	ТҮР	MAX	UNIT
Thermal Shutdown	130	140	150	°C
Hysteresis		10		°C
PROCHOT		110		°C
PROCHOT assertion time	500			μs

Table 29: Electrical characteristic internal temperature sensor

PROCHOT_B will be asserted at a junction temperature of 110°C to inform the CPU on Intel processor platform to start the temperature throttling.

6 Intel® Atom[™] processor E6xx platform states

6.1 CPU C-state overview

The Atom[™] E6xx processor provides support for C1, C2, C4 and C6 state. As added features, E6xx will also support three extended C-States and the ability to enable C4 in the presence of high bandwidth bus mastering devices using popup feature.

DA6011 primary controls the dynamic changing of E6xx processor C-States. The dynamic C-State control is handled internally by the processor.

6.2 System Sleep State Control (S-States)

The E6xx processor supports S3, S4 and S5 sleep states. S4 and S5 states are identical from hardware perspective.

The DA6011 provides the flows of the different states and the state transitions to the E6xx processor platform.

The E6xx processor platform returns to S0 state from S3/4/5 by wake –up events. These wake-up events can be initiated by:

- internal and external events to the E6xx processor, therefore E6xx requires the suspend well power domains on, when it is in S3 state
- DA6011 when the platform is in S4/5 state. Here external events can be detected while the RTC and an internal DA6011 supply are active.

6.2.1 S-State definitions

6.2.1.1 S0 State: Full on

This is the normal operating state of the Atom™E6xx processor. In S0 the core processor will transition in and out of the various processor C-States and P-States.

6.2.1.2 S3 State: Suspend to RAM (STR, Standby)

S3 is a suspend state where the core power planes of the E6xx processor are turned off and the suspend wells remain powered.

- All power wells are disabled, except for the suspend and RTC domains.
- The core processors macro-state is saved in memory
- Memory is held in self-refresh and the memory interface is disabled. Memories power domains are supplied from the VCC180SR voltage well. CKE is driven low.

6.2.1.3 S4 State: Suspend to disk (STD, Hibernate)

S4 is a suspend state where all power domains of the E6xx processor are turned off, except the RTC domain. In this ACPI state the system context is saved to the hard disk.

- No activity allowed
- All power domains are disabled, except the RTC domain
- A full system reset is required to resume from S4

6.2.1.4 S5 State: Soft off

From a hardware perspective the S5 state is identical to the S4 state. The difference is purely software, in that, the software does not write the system context to hard disk when entering S5.

7 DA6011 Operating modes

DA6011 supports the Intel[®] Atom[™]E6xx processor specific power states S4/5, S3, and S0. Furthermore there will be a system power down state. This power down state is needed for fault events such as a catastrophic shutdown or a failure event of DA6011 itself since in this case "always-on" supplies of the IOHs shall be disabled which is not the case in normal S4/5. With respect to E6xx processor the power down state SPD and the S4/5 state are the same. For the initial power up sequence, SPD is directly followed by the S4/5 state. During normal operation the lowest power state will always be S4/5 and all defined wake events do apply. After a failure of the system (monitored by either DA6011 directly or any other component communicating failure power-down events) DA6011 will remain in PD and only a power-push-button event (if the failure source has disappeared) can bring DA6011 back into S0 via a transition to S4/5 and S3. In case there is no power button available an external power cycling needs to be done.

7.1 Power-On-Reset generator

To guarantee the correct start-up of the DA6011, an analog power-on-reset APRST_B signal is generated internally for the first time the supply voltage is connected.

When the DA6011 supply voltage rises above the UVUT threshold voltage, the internal APRST_B is negated and DA6011 will start up the bandgap reference circuit and its internal oscillator in order to read the content of the OTP settings and further internal adjustments.

The internal APRST_B will be asserted if the power supply voltage falls below the UVLT threshold. De-assertion of APRST should startup the LDO_VLP.

PARAMETER	Parameter Name	MIN	ТҮР	MAX	UNIT
Under Voltage Lower Threshold	UVLT	3.6			V
Under Voltage Upper Threshold	UVUT		UVLT+ 0.5		V

7.2 RTC Domain

Generally there are two systems configurations: platforms with RTC battery (coin cell) available and platforms without RTC battery. The RTC domain consists of the RTC supply, the RTC clock and the reset signal RTCRST_B.

DA6011 will provide the RTC supply (LDO_RTC_3P3) only; the RTC clock (crystal) and the RTCRST_B signal need to be generated externally. As an example how the RTC domain can be implemented we refer to a solution suggested by Intel in [¹].

¹ Intel ICH Family, Real Time Clock (RTC). Accuracy and Considerations under Test Conditions, October 2007. Application Note – AP-728

© Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

7.3 Power push-button

DA6011 will support an external power push-button for powering up/down the single components. The push button will include the following functionality:

- Short pulse detection (debounce time t_{db} >= 16ms)
- Long pulse detection (debounce time t_{db} > 4sec)
- Switching behavior (debounce time $t_{db} >= 16ms$; assertion triggers power up, de-assertion triggers power down)

Pulse detection is active low while switching behavior is active high.

7.3.1 Push button functionality

DA6011 can be ordered with push button functionality. In the case of a short pulse the action taken depends on the current state of DA6011 and the Atom[™] processor.

- Long pulse (4sec) in S0, S3, or S4/5 will bring DA6011 into SPD without any handshaking.
- System in SPD: short pulse on PWRPBT_B will bring DA6011 into S0 state.
- System in S4/5: short pulse will bring DA6011 into S0
- System in S3: short pulse will bring DA6011 into S0
- System in S0: short pulse will generate IRQ_B event and provides status bit that can be accessed by software via SMBus. This interrupt bit will be cleared by DA6011 if leaving S0 state.

Providing the interrupt triggered by a short pulse event in S0, allows a software controlled action such as "standby", "hibernate", "shutdown", or "do nothing".

• If a long pulse gets detected by DA6011 then the entire system will be brought into SPD in the same way as it is done if THRMTRIP_B signal gets asserted by the E6xx processor.

7.3.2 Switching functionality

For the IVI hubs, the push-button functionality as described in Section 7.3.1 is not required. For these applications a switching behavior is requested. In this case, asserting PWRPBT_B will power-up the system. De-asserting PWRPBT_B will power down the system (if in S0, S3 or S4/5). If the system reaches SPD after a failure event toggling the power button is required in order to leave SPD.

If there is no power push button or power switch available, the input PWRPBT_B needs to be tied to a high level.

7.4 PWROK signal

For proper system power up feature Intel Atom processor E6xx series B0 silicon requests a dedicated PWROK signal cycling as described below. Intel's B1 silicon won't need such kind of procedure, according to Intel PWROK toggling will not disturb B1 silicon.

DA6011 includes the PWROK toggling feature as described below. On request DA6011 can be delivered with disabled PWROK toggling feature.

7.4.1 PWROK toggling

Based on Intel's description E6xx B0-silicon requests a PWROK toggling sequence of 10 pulses decreasing the start-up failure rate. DA6011 includes such kind of PWROK toggling feature with 15 pulse, furthermore decreasing the probability of the start-up issue:

The PWROK toggling feature will always be performed when the system moves from S3 to S0, except for warm reset (both internal and external). Here the PWROK toggling feature is not executed.

7.4.2 PWROK blanking period

In case the PWROK toggling was not successful, Intel Atom E6xx will issue a cold reset in order to repeat the power up sequence. Once the system is in S0, a so-called "blanking period" will start. The duration of this blanking period is defined to be 1280ms. If during this phase the processor issues a cold reset, DA6011 will perform a cold reset without disabling the supplies and clocks. After the "special" cold reset has been completed and the system is in S0 the blanking period starts from scratch. If other handshaking commands are being received during the blanking period the blanking period stops and the received command is being executed.

Note that the blanking period will always be active if the system moves from S3 towards S0. Only during a warm reset (both internal and external) no blanking period will be initiated.

Theoretically it can occur that there is an endless loop of toggling and a reset in the blanking period. Such failure situation can be solved via a long pulse of PWRBTN_B, generating a catastrophic shut-down event and bringing down the system into SPD. Similar if the PWRBTN_B is configured as a power switch, here de-asserting PWRBTN_B will power down the system.

7.5 S-state corresponding power domains

The following tables give an overview about the active power domains during different S-states of the Intel platform.

7.5.1 E6xx processor & Platform Controller Hub EG20T

Voltage Regulator	Power domain	S 0	S 3	S4/5
LDO_RTC_V3P3	V3P3_RTC	Х	Х	Х
LDO_LP	VLP	Х	Х	Х
LDO_VINT	VINT	Х	Х	Х
BUCK_1P2	V1P2_A	Х	Х	Х
LDO_V2P5	V2P5_A	Х	Х	Х
LDO_V3P3	V3P3_A	Х	Х	Х
PD_V1P2	V1P2	Х	Х	
BUCK_V3P3	V3P3	Х	Х	
BUCK_V1P8	V1P8	Х	Х	
LDO_V0P9R	V0P9R	Х	Х	
LDO_V1P05	V1P05	Х	Х	
LDO_VUNI	V1P2_S	Х		
PD_V3P3	V3P3_S	Х		
LDO_V1P5	V1P5_S	Х		
BUCK_V1P05	V1P05_S	Х		
BUCK_GRAPHIC	VNN_S	Х		
PD_V1P8	V1P8_S	Х		
LDO_V0P9	V0P9_S	Х		
LDO_V1P25	V1P25_S	Х		
BUCK_CORE	VCC_S	Х		

Table 30: Power domains in S-states for Intel Platform Controller Hub EG20T application

7.5.2 E6xx processor & ST ConneXt STA2X11 IO-Hub

Voltage Regulator	Power domain	S 0	S 3	S4/5
LDO_RTC_3P3	V3P3_RTC	Х	Х	Х
LDO_VLP	VLP	Х	Х	Х
LDO_VINT	VINT	Х	Х	
LDO_V3P3	V3P3	Х	Х	
BUCK_V1P8	V1P8	Х	Х	
LDO_V0P9R	V0P9R	Х	Х	
LDO_V1P05	V1P05	Х	Х	
BUCK_V3P3	V3P3_S	Х		
LDO_V1P5	V1P5_S	Х		
BUCK_V1P2	V1P2_S	Х		
BUCK_V1P05	V1P05_S	Х		
BUCK_GRAPHIC	VNN_S	Х		
LDO_VUNI	V2P5_S	Х		
PD_V1P8	V1P8_S	Х		
LDO_V0P9	V0P9_S	Х		
LDO_V1P25	V1P25_S	Х		
BUCK_CORE	VCC_S	Х		

Table 31: Power domains in S-states for ST ConneXt IO-Hub application

Voltage Regulator	Power domain	S 0	S 3	S4/5
LDO_RTC_3P3	V3P3_RTC	Х	Х	Х
LDO_LP	VLP	Х	Х	Х
LDO_VINT	VINT	Х	Х	
LDO_V3P3	V3P3	Х	Х	
BUCK_V1P8	V1P8	Х	Х	
LDO_V0P9R	V0P9R	Х	Х	
LDO_V1P05	V1P05	Х	Х	
BUCK_V3P3	V3P3_S	Х		
LDO_V1P5	V1P5_S	Х		
BUCK_V1P2	V1P2_S	Х		
BUCK_V1P05	V1P05_S	Х		
BUCK_GRAPHIC	VNN_S	Х		
PD_V1P8	V1P8_S	Х		
LDO_V0P9	V0P9_S	Х		
LDO_V1P25	V1P25_S	Х		
BUCK_CORE	VCC_S	Х		

7.5.3 E6xx processor & OKI Semiconductor ML7213 IVI IO-Hub

Table 32: Power domains in S-states for OKI Semiconductor IVI IO-Hub application

7.5.4 E6xx processor & OKI Semiconductor ML7223 MP IO-Hub

Voltage Regulator	Power domain	S 0	S3	S4/5
LDO_RTC_3P3	V3P3_RTC	Х	Х	Х
LDO_LP	VLP	Х	Х	Х
LDO_VINT	VINT	Х	Х	Х
BUCK_V1P2	V1P2_A	Х	Х	Х
LDO_V2P5	V2P5_A	Х	Х	Х
LDO_V3P3	V3P3_A	Х	Х	Х
PD_V1P2	V1P2	Х	Х	
BUCK_V3P3	V3P3	Х	Х	
BUCK_V1P8	V1P8	Х	Х	
LDO_V0P9R	V0P9R	Х	Х	
LDO_V1P05	V1P05	Х	Х	
LDO_VUNI	V1P2_S	Х		
PD_V3P3	V3P3_S	Х		
LDO_V1P5	V1P5_S	Х		
BUCK_V1P05	V1P05_S	Х		
BUCK_GRAPHIC	VNN_S	Х		
PD_V1P8	V1P8_S	Х		
LDO_V0P9	V0P9_S	Х		
LDO_V1P25	V1P25_S	Х		
BUCK_CORE	VCC_S	Х		

Table 33: Power domains in S-states for OKI Semiconductor MP IO-Hub application

7.6 DA6011 power states

7.6.1 Atom[™] E6xx processor & Intel Platform Controller Hub EG20T

7.6.1.1 Supplies

The following table lists the supplies for Platform Controller Hub EG20T. This sequence will be used for the S-state transitions from S4/5 to S3 to S0 and vice versa.

Supply Module	Voltage domain E6XX & EG20T	First active state	Sequence
LDO_RTC_3P3	V3P3_RTC	S4/5	0 (E6xx)
BUCK_V1P2	V1P2_A	S4/5	1 (EG20T)
LDO_V2P5	V2P5_A	S4/5	2 (EG20T)
LDO_V3P3	V3P3_A	S4/5	3 (EG20T)
PD_V1P2	V1P2	S3	4 (EG20T)
BUCK_V3P3	V3P3	S3	5 (E6xx & EG20T)
BUCK_V1P8	V1P8	S3	6 (E6xx & DDR2)
LDO_V0P9R	V0P9R	S3	7 (DDR2)
LDO_V1P05	V1P05	S3	8 (E6xx)
LDO_VUNI	V1P2_S	S0	9 (EG20T)
PD_V3P3	V3P3_S	S0	10 (E6xx & EG20T)
LDO_V1P5	V1P5_S	S0	11 (E6XX)
BUCK_V1P05	V1P05_S	S0	12 (E6XX)
BUCK_GRAPHIC	VNN_S	S0	13 (E6XX)
PD_V1P8	V1P8_S	S0	14 (E6XX)
LDO_V0P9	V0P9_S	S0	15 (DDR2)
LDO_V1P25	V1P25_S	S0	16 (E6XX)
BUCK_CORE	VCC_S	S0	17 (E6XX)

7.6.1.2 PLLs

The following clocks will be provided for the IO hub and E6xx processor. The group label corresponds to the signal name in the timing diagrams.

Source	Clock	First active state	Group
PLL3	SYS_25MHz	S4/5	IO_OBE_SYS
PLL2	USB_48MHz	S3	IO_OBE_USB
PLL3	SATA_CLK	S0	IO_OBE_S0
PLL1	PCIE_CLK	S0	IO_OBE_S0
PLL5	MCLK	S0	IO_OBE_S0
E6xx processor Input	clocks	S0	IO_OBE_S0

Rev. 1.2 — June 20, 2011

7.6.1.3 Intel EG20T Platform Controller Hub SPD to S0 timing

Label	Description	Min	Max	Unit	Implementation
t ₁	enabling of V3P3_RTC to enabling of V1P2_A	0	-	us	Variant
					dependent
t ₂	enabling of V1P2_A to enabling of V2P5_A	0	-	us	2000
t ₃	enabling of V2P5_A to enabling of V3P3_A	0	-	us	2000
t _{3a}	enable PLLs and enable output buffer IO OBE SYS			us	26500
t ₄	S45 clocks stable to de-assertion of	10	-	us	15
t ₅	de-assertion of IO_RST_PLA_B to de-assertion of	200	-	us	250
te	de-assertion of IO_SLP_PLB_B to enabling of V1P2	0	-	us	250
t ₇	enabling of V1P2 to enabling of V3P3	0	-	US	1000
t ₈	enable PLLs and enable output buffer		-	us	2500
ta	S3 clocks stable to de-assertion of IO RST PLB B	10	-	us	15
t ₁₀	enabling of PLL output buffer to enabling V0P9R and V1P8	0	-	us	1000
t ₁₁	enabling of V0P9R and V1P8 to enabling of V1P05	0	-	us	2000
t ₁₂	enabling of V1P05 to de-assertion of RSMRST_B	5000	-	us	6000
t ₁₃	de-assertion of RSMRST_B to assertion of IO SLP PLC B	0	-	us	100
t ₁₄	de-assertion of IO_SLP_PLC_B to enabling of V1P2_S	0	-	us	50
t _{14a}	enabling of V1P2_S to enabling of V3P3_S	0	-	us	1000
t ₁₅	enabling of V3P3_S to enable PLLs and IO OBE S0	0	-	us	8000
t ₁₆	enabling of V3P3_S to assertion of IO_PWROK	20	-	us	2000
t ₁₈	enabling of V3P3_S to enabling of V1P5_S	0	-	us	1000
t ₁₉	enabling of V1P5_S to enabling of V1P05_S	0	-	us	1000
t ₂₀	enabling of V1P05_S to enabling of VNN_S	0	-	us	500
t ₂₁	enabling of VNN_S to enabling of V1P8_S	0	-	us	2000
t ₂₂	enabling o f V1P8_S to de-activating V0P9_S(STR)	0	-	us	1000
t _{22a}	de-activating V0P9_S(STR) to enabling of V0P9_S	0	-	us	500
t ₂₄	enabling of V0P9_S to enabling of V1P25_S	0	-	us	1000
t ₂₅	enabling of V1P25_S to enabling of VCC_S	0	-	us	2500
t ₂₆	VCC_S stable to PWRMODE=M2	25	-	us	2000
t ₂₇	time in M2	10	20	us	15
t ₂₈	timing determined by TC				
t ₂₉	VID/VIDen out to new VNN stable delay	45	100	us	100
t ₃₀	Required time in M3 (t31+t36+t34)	2500	-	us	6000
t ₃₁	Entry to M3 assertion of PWROK			us	500
t ₃₄	de-assertion of IO_RST_PLC_B to de-assertion of RESET_B	0	1	us	0.5
t ₃₆	PWROK toggling to de-assertion of IO_RSTPLC_B (and 0.5us later RESETB)	250		us	5500
t ₃₇	de-assertion of RESET_B to PWRMODE change to M1	5		us	10
t ₄₂	time in M1 (includes ramping VCC_S to new target voltage after VIDEN = VCC)			us	200

Table 34: Delays for EG20T Platform Controller Hub

DA6011

Rev. 1.2 — June 20 , 2011

Figure 6 : SPD to S0 timing EG20T Platform Controller Hub

7.6.1.4 Intel EG20T Platform Controller Hub timing for S0 to SPD

Label	Description	Min	Max	Unit	Implementation
t ₀	Intel TC timing – not relevant for DA6011				
t ₁	SLPRDY_B assertion to assertion of RSTWARN	0		us	10
t ₂	Intel TC timing – not relevant for DA6011				
t ₃	RSTRDY_B assertion to assertion of RESET_B and	0		us	10
	IO_RST_PLC_B (directly 0.5us after assertion of				
	RESET_B)				
t ₄	RESET_B assertion to PWROK de-assertion	0		us	20
t ₅	RESET_B assertion to M5->M1 transition	0		us	10
t ₆	PWROK de-assertion to M1->M0 transition	0		us	10
t ₇	PWROK de-assertion to disabling of VCC_S	0		us	20
t ₈	disabling of VCC_S to disabling of V1P25_S			us	3000
t ₉	disabling of V1P25_S to disabling of V0P9_S			us	1000
t ₁₀	disabling of V0P9_S to enabling of V0P9_S (STR)			us	1000
t ₁₁	enabling of V0P9_S (STR) to disabling of V1P8_S			us	2000
t ₁₂	disabling of V1P8_S to disabling of VNN_S			us	1000
t ₁₃	disabling of VNN_S to disabling of V1P05_S			us	1000
t _{13 a}	disabling of V1P05_S to disabling of V1P5_S	0	-	us	1000
t _{13 b}	disabling of VCC_S to disabling of S0 clocks	0	-	us	1000
t ₁₅	disabling of V1P05_S to de-assertion of IO_PWROK	0	-	us	1000
t ₁₆	Tpwd1; IO_PWROK de-assertion to	0	-	us	10
	IO_SLP_PLC_B assertion				
t ₁₇	Disabling of V1P05_S to disabling of V3P3_S	-	-	us	1000
t ₁₈	Tpwd3_2; disabling of V3P3_S to disabling of	0	-	us	1000
	V1P2_S				
t ₁₉	disabling of V1P2_S to assertion of RSMRST_B (in	0	-	us	1000
	case of direct transition) plus delay				
t ₂₀	RSMRST_B assertion to disabling of V1P05	0	-	us	10
t ₂₁	disabling V1P05 to disabling of V0P9R and V1P8	0	-	us	1000
t _{22_a}	disabling of V0P9R and V1P8 to disabling of S3	0	-	us	1000
	clocks				
t ₂₂	disabling of V0P9R and V1P8 to assertion of	0	-	us	10
	IO_RST_PLB_B				
t ₂₃	Tpwd4; assertion of IO_RST_PLB_B to assertion of	0	-	us	10
	IO_SLP_PLB_B				
t ₂₄	S3 clocks disabled to disabling of V3P3	0	-	us	2000
t ₂₅	Tpwd4_2; disabling of V3P3 to disabling of V1P2	0	-	us	1000
t ₂₆	disabling of V1P2 to assertion of IO_RST_PLA_B (in	0	-	us	1010
	case of direct transition) plus delay				
t ₂₇	assertion of IO_RST_PLA_B to disabling of S45	0	-	us	1000
	clocks				
t ₂₈	S45 clocks disabled to disabling of V3P3_A	0	-	us	15000
t ₂₉	disabling of V3P3_A to disabling of V2P5_A	0	-	us	1000
t ₃₀	disabling o f V2P5_A to disabling of V1P2_A	0	-	US	1000

Table 35: Delays for EG20T Platform Controller Hub for S0 to S4/5 transition

8 t₂₉ t₂₈ t_{27}

SPD

DA6011

Figure 7 : S0 to SPD timing EG20T Platform Controller Hub

7.6.1.5 Intel EG20T Platform Controller Hub timing for S3 to S0 Sequence

From the sequence described in chapter 7.6.4.4 the S3 to S0 sequence can be derived by including the handshaking signals of Atom[™] processor. The timings will be the same as provided for the S4/5 to S0 sequence. The S3 to S0 sequence is given in the following figures, whereas the wake-up event can be a software or an external event if WAKE_B gets asserted. Note that the external wake event will wake-up the system if it is in S3 or in S4/5 state.

Figure 8 : S3 to S0 timing EG20T Platform Controller Hub Software event

DA6011

Data Sheet

Rev. 1.2 — June 20 , 2011

Figure 9 : S3 to S0 timing EG20T Platform Controller Hub external wake event

7.6.1.6 Cold Reset Intel EG20T Platform Controller Hub

During a cold reset Atom™ E6xx processor and the IOH will undergo a power cycling. The timings for the S0 to S4/5 sequence are basically the same as for the sequence described in chapter 7.6.1.4. Once in S4/5 the cold reset period will be 4 seconds before the S4/5 to S0 sequence starts in the same way as defined in chapter 7.6.4.3

Figure 10 : Cold reset EG20T Platform Controller Hub

Rev. 1.2 — June 20, 2011

7.6.1.7 Warm Reset Intel EG20T Platform Controller Hub (internal & external)

During a warm reset issued by E6xx processor the reset signals of the Platform Controller Hub also get asserted for resetting the internal IO-Hub logic. The following diagram shows the warm reset sequence for EG20T Platform Controller Hub and E6xx processor. The external warm reset is triggered by the assertion of RESET_IN_B instead of the processor handshake signals. In case of the RESET_IN_B assertion DA6011 will assert RSTWARN and after the assertion of RSTRDY_B it continues in the same way as an internal warm reset.

Figure 11 : Warm Reset EG20T Platform Controller Hub internal

Rev. 1.2 — June 20 , 2011

DA6011

Figure 12 : Warm Reset EG20T Platform Controller Hub external

The delays for the warm reset sequence are given in chapter 7.6.4.7. Note: Intel to provide validated numbers. Therefore, the given timings of the IOH are subject to change. In any case, the reset assertion de-assertion of the EG20T Platform Controller Hub will always be done prior to the release of the RESET_B of E6xx processor.

Rev. 1.2 — June 20, 2011

Label	Description	Min	Max	Unit	Implementation
t ₀	RSTRDY_B assertion to RSTWARN assertion	0	>0	us	1
t ₁	RSTWARN assertion to RESET_B assertion	-	>0	us	10
t ₂	RESET_B assertion to M1 entry	0	-	us	0
t ₃	RESET_B assertion period	1000	-	us	1654
t ₄	de-assertion of IO_RST_PLC_B to de-assertion of			us	0.5
	RESET_B				
t ₅	RESET_B de-assertion to M5 entry	50	-	us	100
t ₆	RSTWARN de-assertion to SLPMODE de-assertion	-	100	us	
t ₇	RSTWARN de-assertion to RSTRDY_B de-assertion	-	100	us	
t ₈	RESET_B assertion to IO_RST_PLC_B assertion			us	100
	IO_RST_PLC_B assertion to IO_RST_PLB_B assertion				
	IO_RST_PLB_B assertion to IO_RST_PLA_B assertion				
t ₉	IO_RST_PLA_B assertion period			us	1000
t ₁₀	IO_RST_PLA_B de-assertion to IO_RST_PLB_B de-			us	100
	assertion				
	IO_RST_PLB_B de-assertion to RSTWARN de-				
	assertion				
t ₁₁	de-assertion of RSTWARN to de-assertion of			us	150
	IO_RST_PLC_B. Since t4 is only 0.5 us t11 is set in				
	such a way that the minimum Intel timing of 150us in				
	between the assertion of RSTWARN and the de-				
	assertion of RESET_B is fulfilled.				

Table 36: Warm reset delays

Rev. 1.2 — June 20, 2011

7.6.1.8 Catastrophic Shutdown Intel EG20T Platform Controller Hub

A catastrophic shutdown can be issued by Atom™E6xx processor at any time, asynchronously to all other events occurring on the system. In this case all supplies except the RTC supply (V3P3_RTC) will be disabled. All timings will be set to their minimum value. Note that currently Intel did not specify the timings for the catastrophic shutdown completely.

Figure 13 : Catastrophic shut down EG20T Platform Controller Hub

7.6.2 Atom™ E6xx processor & ST ConneXt STA2X11 IO-Hub

DA6011 IO_RST_PLC_B is the connection to STA2X11 RESETn signal!

7.6.2.1 Power Supplies

Supply Module	Voltage domain TC & ST IO-Hub	First active state	Sequence
LDO_RTC_3P3	V3P3_RTC	S4/5	0 (E6XX)
LDO_V3P3	V3P3	S3	1 (E6XX)
BUCK_V1P8	V1P8	S3	2 (E6XX & DDR2)
LDO_V0P9R	V0P9R	S3	3 (DDR2)
LDO_V1P05	V1P05	S3	4 (E6XX)
BUCK_V3P3	V3P3_S	S0	5 (E6XX & ST)
LDO_V1P5	V1P5_S	S0	6 (E6XX)
BUCK_V1P05	V1P05_S	S0	7 (E6XX)
BUCK_GRAPHIC	VNN_S	S0	8 (E6XX)
LDO_VUNI	V2P5_S	S0	9 (ST)
PD_V1P8	V1P8_S	S0	10 (E6XX & ST)
BUCK_V1P2	V1P2_S	S0	11 (ST)
LDO_V0P9	V0P9_S	S0	12 (DDR2)
LDO_V1P25	V1P25_S	S0	13 (E6XX)
BUCK_CORE	VCC_S	S0	14 (E6XX)

7.6.2.2 PLLs

The following clocks will be provided for the IO-Hub and E6xx processor. The group label corresponds to the signal name in the timing diagrams.

Source	Clock	First active state	Group
PLL2	SYS_24MHz	S0	IO_OBE_S0
PLL5	ETH_50MHz	S0	IO_OBE_S0
PLL3	SATA_CLK	S0	IO_OBE_S0
PLL1	PCIE_CLK	S0	IO_OBE_S0
E6xx processor Input	clocks	S0	IO_OBE_S0

7.6.2.3 ST ConneXt IO-Hub timing for SPD to S0

Label	Description	Min	Max	Unit	Implementation
t ₆	enabling of V3P3_RTC to enabling of V3P3	0		us	Variant
					dependent
t ₁₀	enabling of V3P3 to enabling of V0P9R and V1P8	0			18000
t ₁₁	enabling of V0P9R and V1P8 to enabling of V1P05	0		us	2000
t ₁₂	enabling of V1P05 to de-assertion of RSMRST_B	5000		us	6000
t ₁₃	de-assertion of RSMRST_B to enabling of V3P3_S			us	2
t ₁₅	enabling of V3P3_S stable to S0 clocks stable			us	14500
t ₁₆	enabling V3P3_S to enabling of V1P5_S	0		us	3500
t ₁₉	enabling of V1P5_S to enabling of V1P05_S	0		us	1000
t ₂₀	enabling of V1P05_S to enabling of VNN_S	0		us	500
t ₂₁	enabling of VNN_S to enabling of V2P5_S	0		us	2000
t _{21_a}	enabling of V2P5_s to enabling of V1P8_S	0		us	1000

 $\ensuremath{\textcircled{\text{\scriptsize C}}}$ Dialog Semiconductor 2011. All rights reserved.

All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

Rev. 1.2 — June 20 , 2011

Label	Description	Min	Max	Unit	Implementation
t ₂₂	enabling of V1P8_S to enabling of V1P2_S	0		us	1000
t _{22a}	enabling of V1P2_S to disabling V0P9R (STR)	0		us	2000
t ₂₃	disabling of V0P9R (STR) to enabling of V0P9_S	0		us	500
t ₂₄	enabling of V0P9_S to enabling of V1P25_S	0		us	1000
t ₂₅	enabling of V1P25_S to enabling of VCC_S	0		us	2500
t ₂₆	VCC_S stable to PWRMODE=M2	25	-	us	2050
t ₂₇	time in M2	10	20	us	15
t ₂₈	timing determined by TC				
t ₂₉	VID/VIDen out to new VNN stable delay	45	100	us	100
t ₃₀	Required time in M3(t31+t36+t34)	2500	-	us	4860.5
t ₃₁	Entry to M3 assertion of PWROK			us	500
t ₃₄	de-assertion of RESETn to de-assertion of RESET_B (min, timing, max until IO_PWROK_EN=1)	0		us	0.5
t ₃₆	PWROK toggling to de-assertion of RESETn (and 0.5us later RESET_B if IO_PWROKEN=1)	250		us	4361
t ₃₇	de-assertion of RESET_B to PWRMODE change to M1	5		us	10
t ₄₂	time in M1 (includes ramping VCC_S to new target voltage after VIDEN = VCC)			us	200

Table 37: E6XX & ST IO-Hub SPD to S0 timing

Rev. 1.2 — June 20 , 2011

DA6011

Rev. 1.2 — June 20, 2011

Figure 14 : E6xx & ST IO-Hub SPD to S0 timing

7.6.2.4 ST ConneXt IO-Hub timing for S0 to SPD

Label	Description	Min	Max	Unit	Implementation
t _o	Intel E6xx timing – not relevant for DA6011				
t ₁	SLPRDY_B assertion to assertion of RSTWARN	0		us	10
t ₂	Intel TC timing – not relevant for DA6011				
t ₃	RSTRDY_B assertion to assertion of RESET_B and	0		us	10
	RESETn (directly 0.5us after assertion of RESET_B)				
t ₄	RESET_B assertion to PWROK de-assertion	0		us	20
t ₅	RESET_B assertion to M5->M1 transition	0		us	10
t ₆	PWROK de-assertion to M1->M0 transition	0		us	10
t ₇	PWROK de-assertion to disabling of VCC_S	0		us	20
t ₈	disabling of VCC_S to disabling of V1P25_S			us	3000
t ₁₀	disabling of V1P25_S to disabling of V0P9_S	0		us	1000
t ₁₂	disabling of V0P9_S to enabling of V0P9_S (STR)	0		us	1000
t ₁₃	enabling of V0P9_S (STR) to disabling of V1P2_S	0		us	2000
t ₁₄	disabling of V1P2_S to disabling of V1P8_S	0		us	1000
t ₁₅	disabling of V1P8_S to disabling V2P5_S	0		us	1000
t ₁₆	disabling of V2P5_S to disabling of VNN_S	0		us	1000
t ₁₇	disabling of VNN_S to disabling of V1P05_S	0		us	1000
t _{17a}	disabling of V1P05_S to disabling of V1P5_S	0		us	1000
t ₁₈	disabling of VCC_S to disabling of S0 clocks	0		us	1000
t _{18a}	disabling of V1P5_S to disabling of V3P3_S	0		us	3000
t ₁₉	disabling of V3P3_S to assertion of RSMRST_B (in	0	-	us	1010
	case of direct transition) plus delay				
t ₂₀	assertion of RSMRST_B to disabling of V1P05	0		us	10
t ₂₁	disabling of V1P05 to disabling of V0P9R and V1P8	0		us	1000
t ₂₂	disabling of V0P9R and V1P8 to disabling of V3P3	0		us	9000
$t_{25,} t_{26,}$	determined by Atom E6xx				
t ₂₇					

Table 38: S0 to SPD timings for ST IOH

DA6011

Data Sheet

Figure 15 : S0 to SPD timings for ST IOH

DA6011

Data Sheet

Rev. 1.2 — June 20, 2011

Figure 16 : S3 to S0 delays for ST IOH internal event

Data Sheet

Rev. 1.2 — June 20, 2011

Figure 17 : S3 to S0 delays for ST IOH external event

7.6.2.6 Cold Reset ST IO hub

During a cold reset E6xx processor and the IO hub will undergo a power cycling. The timings for the S0 to S4/5 sequence are basically the same as for the sequence described in Section 7.6.2.4. Once in S4/5 the cold reset period will be 4 seconds. After this delay the S4/5 to S0 sequence starts in the same way as defined in Section 7.6.2.3.

DA6011

Figure 18 : Cold reset ST IOH

Rev. 1.2 — June 20, 2011

7.6.2.7 Warm Reset ST IOH (internal & external)

During a warm reset issued by Atom[™]E6xx processor the reset signal of the ST IOH also gets asserted for resetting the internal IOH logic. The following diagram shows the warm reset sequence for both ST IOH and E6xx processor. The supplies and PLLs remain fully enable. The external warm reset is triggered by the assertion of RESET_IN_B instead of the processor handshake signals.

Figure 19 : Warm reset ST IOH internal triggered

Data Sheet

Rev. 1.2 — June 20, 2011

Figure 20 : Warm reset ST IOH external triggered

The delays for the warm reset sequence are given in Table 39: Warm reset timings. Note that most of the delays have not yet been specified properly by Intel. Therefore, the given timings of the IOH are subject to change. In any case, the reset assertion/de-assertion of the ST IOH will always be done prior to the release of the RESET_B of E6xx processor.

Label	Description	Min	Max	Unit	Implementation
t ₀	RSTRDY_B assertion to RSTWARN assertion	0	>0	us	2
t ₁	RSTWARN assertion to RESET_B assertion	0	>0	us	10
t ₂	RESET_B assertion to M1 entry	0	-	us	0
t ₃	RESET_B assertion period	1000	-	us	1654
t ₄	Assertion of IO_PWROKEN to de-assertion to			us	0.5

© Dialog Semiconductor 2011. All rights reserved.

All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

Data Sheet

Rev. 1.2 — June 20 , 2011

Label	Description	Min	Max	Unit	Implementation
Laber	Description		IVICIA	Onit	Implementation
	RESEI_B				
t ₅	RESET_B de-assertion to M5 entry	50	-	us	100
t ₆	RSTWARN de-assertion to SLPMODE assertion	-	100	us	
t ₇	RSTWARN de-assertion to RSTRDY_B de-	-	100	us	
	assertion				
t ₈	RESET_B assertion to RESETn assertion			us	100
t ₉	RESETn assertion period			us	1553
t ₁₀	de-assertion of RSTWARN to de-assertion of			us	150
	RESETn. Since t4 is only 0.5us, t10 is set in such a				
	way that the minimum Intel timing of 150us in				
	between the assertion of RSTWARN and the de-				
	assertion of RESET_B is fulfilled.				

Table 39: Warm reset timings

7.6.2.8 ST ConneXt IO-Hub timing for the catastrophic shutdown

A catastrophic shutdown can be issued by the E6xx processor at any time, asynchronously to all other events occurring on the system. In this case all supplies except the RTC supply (V3P3_RTC) are being disabled. All timings will be set to their minimum value. The maximum power down sequence shall not exceed 500ms.

7.6.3 Atom[™] E6xx processor & OKI Semiconductor ML7213 IVI IO-Hub

7.6.3.1 Power Supplies

The following table lists the supplies for both E6xx processor and OKI Semiconductor IVI IOH. The red rows denote supplies provided to the IOH. This sequence will be used for the S-state transitions from S4/5 to S3 to S0 and vice versa.

Supply Module	Voltage domain E6XX & OKI IVI	First active state	Sequence
LDO_RTC_3P3	V3P3_RTC	S4/5	0 (E6XX)
LDO_V3P3	V3P3	S3	1 (E6XX)
BUCK_V1P8	V1P8	S3	2 (E6XX & DDR2)
LDO_V0P9R	V0P9R	S3	3 (DDR2)
LDO_V1P05	V1P05	S3	4 (E6XX)
BUCK_V1P2	V1P2_S	S0	5 (IVI_IOH)
BUCK_V3P3	V3P3_S	S0	6 (E6XX & IVI_IOH)
LDO_V1P5	V1P5_S	S0	7 (E6XX)
BUCK_V1P05	V1P05_S	S0	8 (E6XX)
BUCK_GRAPHIC	VNN_S	S0	9 (E6XX)
PD_V1P8	V1P8_S	S0	10 (E6XX)
LDO_V0P9	V0P9_S	S0	11 (DDR2)
LDO_V1P25	V1P25_S	S0	12 (E6XX)
BUCK_CORE	VCC_S	S0	13 (E6XX)

7.6.3.2 PLLs

The following clocks will be provided for the IO-Hub and the processor. The group label corresponds to the signal name in the timing diagrams.

Source	Clock	First active state	Group
PLL3	SYS_25MHz	S0	IO_OBE_S0
PLL2	USB_48MHz	S0	IO_OBE_S0
PLL3	SATA_CLK	S0	IO_OBE_S0
PLL1	PCIE_CLK	S0	IO_OBE_S0
PLL5	MCLK	S0	IO_OBE_S0
E6xx processor Input clocks		S0	IO_OBE_S0

7.6.3.3 OKI Semiconductor IVI IO-Hub timing for SPD to S0

Label	Description	Min	Max	Unit	Implementation
t ₁₀	enabling of V3P3_RTC to enabling of V3P3		-	us	1000
t _{10a}	enabling of V3P3 to enabling of V0P9R and V1P8			us	1000
t ₁₁	enabling of V0P9R and V1P8 to enabling of V1P05		-	us	2000
t ₁₂	enabling of V1P05 to de-assertion of RSMRST_B	5000	-	us	6000
t ₁₃	de-assertion of RSMRST_B to S3 and S0 clocks			us	11000
	stable				
t _{13a}	S3 and S0 clocks stable to enabling of V1P2_S			us	1000
t ₁₄	enabling of V1P2_S to enabling of V3P3_S			us	1000
t ₁₅	enabling of V3P3_S to enabling of V1P5_S			us	1000
t ₁₉	enabling of V1P5_S to enabling of V1P05_S			us	1000

[©] Dialog Semiconductor 2011. All rights reserved.

All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

Rev. 1.2 — June 20 , 2011

			1	1	
Label	Description	Min	Max	Unit	Implementation
t ₂₀	enabling of V1P05_S to enabling of VNN_S			us	500
t ₂₁	enabling of VNN_S to enabling of V1P8_S			us	1000
t _{21a}	enabling of V1P8_S to de-activating V0P9_S (STR)			us	1000
t ₂₂	de-activating V0P9_S (STR) to enabling of V0P9_S			us	1000
t ₂₄	enabling of V0P9_S to enabling of V1P25_S			us	1000
t ₂₅	enabling of V1P25_S to enabling of VCC_S			us	1000
t ₂₆	VCC_S stable to PWRMODE=M2	25	-	us	2050
t ₂₇	time in M2	10	20	us	15
t ₂₈	timing determined by TC				
t ₂₉	VID/VIDen out to new VNN stable delay	45	100	us	100
t ₃₀	Required time in M3 (t31+t36+t34)	2500	-	us	4860.5
t ₃₁	Entry to M3 assertion of PWROK			us	500
t ₃₄	de-assertion of IO_RESET_B to de-assertion of	0	1	us	0.5
	RESET_B				
t ₃₆	PWROK toggling to de-assertion of IO_RESET_B	250		us	4360.5
	(and 0.5us later RESET_B)				
t ₃₇	de-assertion of RESET_B to PWRMODE change to	5		us	10
	M1				
t ₄₂	time in M1 (includes ramping VCC_S to new target			us	200
	voltage after VIDEN = VCC)				

Table 40: Timings for OKI Semiconductor IVI IOH

DA6011

Rev. 1.2 — June 20, 2011

Figure 22 : SPD to S0 timing E6XX & OKI IVI IO-Hub

Rev. 1.2 — June 20, 2011

7.6.3.4 OKI Semiconductor IVI IO-Hub timing for S0 to SPD

Label	Description	Min	Max	Unit	Implementation
t ₀	Intel TC timing – not relevant for DA6011				
t ₁	SLPRDY_B assertion to assertion of RSTWARN	0		us	10
t ₂	Intel TC timing – not relevant for DA6011				
t ₃	RSTRDY_B assertion to assertion of RESET_B and	0		us	10
	IO_RESET_B (directly 0.5us after assertion of				
	RESET_B)				
t ₄	RESET_B assertion to PWROK de-assertion	0		us	20
t ₅	RESET_B assertion to M5->M1 transition	0		us	10
t ₆	PWROK de-assertion to M1->M0 transition	0		us	10
t ₇	PWROK de-assertion to disabling of VCC_S	0		us	20
t ₈	disabling of VCC_S to disabling of V1P25_S			us	1000
t ₁₀	disabling of V1P25_S to disabling of V0P9_S			us	1000
t _{10a}	disabling of V0P9_S to enabling V0P9_S (STR)			us	1000
t ₁₁	enabling of V0P9_S (STR) to disabling of V1P8_S			us	1000
t ₁₂	disabling of V1P8_S to disabling of VNN_S			us	1000
t ₁₃	disabling of VNN_S to disabling of V1P05_S			us	1000
t _{13a}	disabling of V1P05_S to disabling of V1P5_S			us	1000
t ₁₆	disabling of V1P5_S to disabling of V3P3_S			us	1000
t ₁₇	disabling of V3P3_S to disabling of V1P2_S	0	-	us	1000
t ₁₈	disabling of V1P2_S to disabling of S0 clocks			us	10000
t ₁₉	disabling of S0 clocks to assertion of RSMRST_B (in	0	-	us	1010
	case of direct transition) plus delay				
t ₂₀	assertion of RSMRST_B to disabling of V1P05	0	-	us	10
t ₂₁	disabling of V1P05 to disabling of V0P9R and V1P8	0	-	us	1000
t ₂₂	disabling of V0P9R and V1P8 to disabling of V3P3	0	-	us	1000
t ₂₆	determined by Atom E6xx				
t ₂₇	determined by Atom E6xx				
t ₂₈	determined by Atom E6xx				

Table 41: Timings for OKI Semiconductor IVI IOH for S0 to SPD transition

DA6011

Rev. 1.2 — June 20 , 2011

Rev. 1.2 — June 20, 2011

7.6.3.5 OKI Semiconductor IVI IO-Hub timing for S3 to S0 Sequence (internal & external)

From the sequence described in Chapter OKI Semiconductor MP IO-Hub timing for SPD to S0, the S3 to S0 sequence can be derived by including the handshaking signals of the E6xx processor. The timings will be the same as provided for the S4/5 to S0 sequence. The S3 to S0 sequence is given in the following figure.

Figure 24 : S3 to S0 timing OKI IVI IOH internal

Data Sheet

Rev. 1.2 — June 20, 2011

Figure 25 : S3 to S0 timing OKI IVI IOH external

7.6.3.6 OKI Semiconductor IVI IO-Hub timing for Cold Reset

During a cold reset E6xx processor and the IOH will undergo a power cycling. The timings for the S0 to S4/5 sequence are basically the same as for the sequence described in chapter 7.6.4.4. Once in S4/5 the cold reset period will be 4 seconds before the S4/5 to S0 sequence starts in the same way as defined in chapter 7.6.4.3.

Label	Description	Min	Max	Unit	Implementation
t ₂	RSTRDY_B assertion to RSTWARN assertion	0		μs	10
t ₃	RSTWARN assertion to RESET_B assertion	-		μs	10
t ₃₀	Cold reset period			ms	4000

7.6.3.7 OKI Semiconductor IVI IO-Hub timing for Warm Reset (internal & external)

During a warm reset issued by Atom[™] E6xx processor the reset signal of the OKI Semiconductor IVI IOH also gets asserted for resetting the internal IOH logic. The following diagram shows the warm reset sequence for OKI Semiconductor IVI IOH and E6xx processor. The external warm reset is triggered by the assertion of RESET_IN_B instead of the processor handshake signals. After such assertion of RESET_IN_B DA6011 asserts RSTWARN and after the assertion of RSTRDY_B it continues in the same way as during an internal warm reset.

Figure 27: Warm reset OKI IVI IOH internal

Data Sheet

Rev. 1.2 — June 20 , 2011

Figure 28: Warm reset OKI IVI IOH external

The delays for the warm reset sequence are given in chapter 7.6.4.4. Note: Intel to provide validated results. Therefore, the given timings of the IOH are subject to change. In any case, the reset assertion de-assertion of the OKI Semiconductor IVI IOH will always be done prior to the release of the RESET_B of E6xx processor E6XX.

Label	Description	Min	Max	Unit	Implementation
t ₀	RSTRDY_B assertion to RSTWARN assertion	0	>0	us	>0
t ₁	RSTWARN assertion to RESET_B assertion	0	>0	us	10
t ₂	RESET_B assertion to M1 entry	0	-	us	0
t ₃	RESET_B assertion period	1000	-	us	1654
t ₄	de-assertion of IO_RESET_B to de-assertion of			us	0.5
	RESET_B				

© Dialog Semiconductor 2011. All rights reserved.

All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

Data Sheet

Rev. 1.2 — June 20, 2011

Label	Description	Min	Max	Unit	Implementation
t ₅	RESET_B de-assertion to M5 entry	50	-	us	100
t ₆	RSTWARN de-assertion to SLPMODE assertion		100	us	
t ₇	RSTWARN de-assertion to RSTRDY_B de-assertion		100	us	
t ₈	RESET_B assertion to IO_RESET_B assertion			us	100
t ₉	IO_RESET_B assertion period			us	1553
t ₁₀	de-assertion of RSTWARN to de-assertion of			us	150
	IO_RESET_B. Since t4 is only 0.5 us, t10 is set in				
	such a way that the minimum Intel timing of 150us in				
	between the assertion of RSTWARN and the de-				
	assertion of RESET_B is fulfilled.				

Table 42: Warm reset delays E6XX & OKI IVI IOH

Rev. 1.2 — June 20, 2011

7.6.3.8 OKI Semiconductor IVI IO-Hub Catastrophic Shutdown

A catastrophic shutdown can be issued by E6xx processor at any time, asynchronously to all other events occurring on the system. In this case all supplies except the RTC supply (V3P3_RTC) are being disabled. All timings will be set to their minimum value. The power down sequence will not exceed 500ms.

Figure 29 : Catastrophic shutdown OKI IVI IOH

7.6.4 Atom[™] E6xx processor & OKI Semiconductor ML7223 MP IO-Hub

7.6.4.1 Supplies

The following table lists the supplies for OKI Semiconductor MP IO-Hub. This sequence will be used for the S-state transitions from S4/5 to S3 to S0 and vice versa.

Supply Module	Voltage domain TC & OKI MP	First active state	Sequence
LDO_RTC_3P3	V3P3_RTC	S4/5	0 (E6XX)
BUCK_V1P2	V1P2_A	S4/5	1 (OKI MP)
LDO_V2P5	V2P5_A	S4/5	2 (OKI MP)
LDO_V3P3	V3P3_A	S4/5	3 (OKI MP)
PD_V1P2	V1P2	S3	4 (OKI MP)
BUCK_V3P3	V3P3	S3	5 (E6XX & OKI MP)
BUCK_1P8	V1P8	S3	6 (E6XX & DDR2)
LDO_0P9R	V0P9R	S3	7 (DDR2)
LDO_V1P05	V1P05	S3	8 (E6XX)
LDO_VUNI	V1P2_S	S0	9 (OKI MP)
PD_V3P3	V3P3_S	S0	10 (E6XX & OKI MP)
LDO_V1P5	V1P5_S	S0	11 (E6XX)
BUCK_V1P05	V1P05_S	S0	12 (E6XX)
BUCK_GRAPHIC	VNN_S	S0	13 (E6XX)
PD_V1P8	V1P8_S	S0	14 (E6XX)
LDO_V0P9	V0P9_S	S0	15 (DDR2)
LDO_V1P25	V1P25_S	S0	16 (E6XX)
BUCK_CORE	VCC_S	S0	17 (E6XX)

7.6.4.2 PLLs

The following clocks will be provided for the IO hub and processor. The group label corresponds to the signal name in the timing diagrams.

Source	Clock	First active state	Group
PLL3	SYS_25MHz	S4/5	IO_OBE_SYS
PLL2	USB_48MHz	S3	IO_OBE_USB
PLL3	SATA_CLK	S0	IO_OBE_S0
PLL1	PCIE_CLK	S0	IO_OBE_S0
PLL5	MCLK	S0	IO_OBE_S0
E6xx processor Input clocks		S0	IO_OBE_S0

7.6.4.3 OKI Semiconductor MP IO-Hub timing for SPD to S0

Label	Description	Min	Max	Unit	Implementation
t ₁	enabling of V3P3_RTC to enabling of V1P2_A	0	-	us	variant
					dependent
t ₂	enabling of V1P2_A to enabling of V2P5_A	0	-	us	2000
t ₃	enabling of V2P5_A to enabling of V3P3_A	0	-	us	2000
t _{3a}	enable PLLs and enable output buffer			us	26500
	IO_OBE_SYS				
t ₄	S45 clocks stable to de-assertion of	10	-	us	15
	IO_RST_PLA_B				
t ₅	de-assertion of IO_RST_PLA_B to de-assertion of	200	-	us	250
	IO_SLP_PLB_B				
t ₆	de-assertion of IO_SLP_PLB_B to enabling of V1P2	0	-	us	250
t ₇	enabling of V1P2 to enabling of V3P3	0	-	us	1000
t ₈	enable PLLs and enable output buffer		-	us	2500
	IO_OBE_USB				
t ₉	S3 clocks stable to de-assertion of IO_RST_PLB_B	10	-	us	15
t ₁₀	enabling of PLL output buffer to enabling V0P9R	0	-	us	1000
	and V1P8				
t ₁₁	enabling of V0P9R and V1P8 to enabling of V1P05	0	-	us	2000
t ₁₂	enabling of V1P05 to de-assertion of RSMRST_B	5000	-	us	6000
t ₁₃	de-assertion of RSMRST_B to assertion of	0	-	us	100
	IO_SLP_PLC_B				50
t ₁₄	de-assertion of IO_SLP_PLC_B to enabling of	0	-	us	50
	V1P2_S	0			1000
t _{14a}	enabling of V1P2_S to enabling of V3P3_S	0	-	us	1000
t ₁₅	enabling of V3P3_S to enable PLLs and	0	-	us	8000
1	IU_UBE_50	20			2000
ι ₁₆	enabling of V3P3_S to assertion of IO_PWROK	20	-	us	2000
ι ₁₈	enabling of V3P3_S to enabling of V1P5_S	0	-	us	1000
ι ₁₉	enabling of V1P5_S to enabling of V1P05_S	0	-	us	500
t ₂₀	enabling of V1P05_S to enabling of VININ_S	0	-	us	500
t ₂₁	enabling of VINI_S to enabling of V1P8_S	0	-	us	2000
t ₂₂	enabling of V1P8_5 to de-activating V0P9_5(51R)	0	-	us	1000
t _{22a}	de-activating VOP9_5(STR) to enabling of VOP9_5	0	-	us	500
t ₂₄	enabling of V0P9_S to enabling of V1P25_S	0	-	us	1000
t ₂₅	enabling of V1P25_S to enabling of VCC_S	0	-	us	2500
t ₂₆		25	-	us	2000
t ₂₇	time in M2	10	20	us	15
t ₂₈	timing determined by IC	45	100		100
ι ₂₉	VID/VIDen out to new VINN stable delay	45	100	us	100
t ₃₀	Required time in M3 (t31+t30+t34)	2500	-	us	6000
t ₃₁	Entry to IVI3 assertion of PWROK	0	4	us	500
t ₃₄	RESET_B	0	1	us	0.5
t ₃₆	PWROK toggling to de-assertion of IO_RSTPLC_B (and 0.5us later RESETB)	250		us	5500
t ₃₇	de-assertion of RESET_B to PWRMODE change to	5		us	10
. .					
t ₄₂	time in M1 (includes ramping VCC_S to new target			us	200
	voltage after VIDEN = VCC)				

Table 43: Timings for OKI Semiconductor MP IO-Hub

DA6011

Rev. 1.2 — June 20, 2011

Figure 30: SPD to S0 timing for E6XX & OKI MP IOH

Rev. 1.2 — June 20, 2011

7.6.4.4 OKI Semiconductor MP IO-Hub timing for S0 to SPD

Label	Description	Min	Max	Unit	Implementation
t _o	Intel TC timing – not relevant for DA6011				
t ₁	SLPRDY B assertion to assertion of RSTWARN	0		us	10
t ₂	Intel TC timing – not relevant for DA6011				
t ₃	RSTRDY_B assertion to assertion of RESET_B and	0		us	10
0	IO_RST_PLC_B (directly 0.5us after assertion of				
	RESET_B)				
t ₄	RESET_B assertion to PWROK de-assertion	0		us	20
t ₅	RESET_B assertion to M5->M1 transition	0		us	10
t ₆	PWROK de-assertion to M1->M0 transition	0		us	10
t ₇	PWROK de-assertion to disabling of VCC_S	0		us	20
t ₈	disabling of VCC_S to disabling of V1P25_S			us	3000
t ₉	disabling of V1P25_S to disabling of V0P9_S			us	1000
t ₁₀	disabling of V0P9_S to enabling of V0P9_S (STR)			us	1000
t ₁₁	enabling of V0P9_S (STR) to disabling of V1P8_S			us	2000
t ₁₂	disabling of V1P8_S to disabling of VNN_S			us	1000
t ₁₃	disabling of VNN S to disabling of V1P05 S			us	1000
t _{13 a}	disabling of V1P05 S to disabling of V1P5 S	0	-	us	1000
t _{13 b}	disabling of VCC S to disabling of S0 clocks	0	-	us	1000
t ₁₅	disabling of V1P05 S to de-assertion of IO PWROK	0	-	us	1000
t ₁₆	Tpwd1; IO PWROK de-assertion to	0	-	us	10
10	IO_SLP_PLC_B assertion				
t ₁₇	Disabling of V1P05_S to disabling of V3P3_S	-	-	us	1000
t ₁₈	Tpwd3_2; disabling of V3P3_S to disabling of	0	-	us	1000
	V1P2_S				
t ₁₉	disabling of V1P2_S to assertion of RSMRST_B (in	0	-	us	1000
	case of direct transition) plus delay				
t ₂₀	RSMRST_B assertion to disabling of V1P05	0	-	us	10
t ₂₁	disabling V1P05 to disabling of V0P9R and V1P8	0	-	us	1000
t _{22 a}	disabling of V0P9R and V1P8 to disabling of S3	0	-	us	1000
	clocks				
t ₂₂	disabling of V0P9R and V1P8 to assertion of	0	-	us	10
	IO_RST_PLB_B				
t ₂₃	Tpwd4; assertion of IO_RST_PLB_B to assertion of	0	-	us	10
-	IO_SLP_PLB_B				
t ₂₄	S3 clocks disabled to disabling of V3P3	0	-	us	2000
t ₂₅	Tpwd4_2; disabling of V3P3 to disabling of V1P2	0	-	us	1000
t ₂₆	disabling of V1P2 to assertion of IO_RST_PLA_B (in	0	-	us	1010
	case of direct transition) plus delay				
t ₂₇	assertion of IO_RST_PLA_B to disabling of S45	0	-	us	1000
	clocks				
t ₂₈	S45 clocks disabled to disabling of V3P3_A	0	-	us	15000
t ₂₉	disabling of V3P3_A to disabling of V2P5_A	0	-	us	1000
t ₃₀	disabling o f V2P5_A to disabling of V1P2_A	0	-	us	1000

Table 44: Timings for OKI Semiconductor MP IO-Hub for S0 to SPD transition

SPD

S45

SS

S

V3P3_RTC V1P2_A V2P5_A V3P3_A

DA6011

e e

V1P25_S VCC_S PWRMODE[2:0]

IO_RST_PLC_B

IO_PWROK

V0P9_S (STR)

V1P8_S

¹

ts

Ρ

VID[6:0]

VIDEN[1:0]

r T

ocks valid

TC input clocks PWROK

RSTWARN

RESET_B

1

₽ ₽

SLPRDY_B SLPMODE

Figure 31 : S0 to SPD timing OKI MP IOH

V1P05

RSMRST_B

V3P3_S

IO_OBE_S0

V1P2_S

_SLP_PLC_B

0

V1P5_S

V1P05_S

VNN_S

V3P3 IO_OBE_USB

IO_RST_PLB_B

/0P9R and V1P8

IO_SLP_PLB_B V1P2

IO_RST_PLA_B

IO_OBE_SYS

£

RSTRDY_B

7.6.4.5 OKI Semiconductor MP IO-Hub timing for S3 to S0 Sequence (internal & external)

From the sequence described in chapter 7.6.4.3 the S3 to S0 sequence can be derived by including the handshaking signals of E6xx processor. The timings will be the same as provided for the S4/5 to S0 sequence. The S3 to S0 sequence is given in the following figure.

Figure 32 : S3 to S0 timing OKI MP IOH internal

Data Sheet

Rev. 1.2 — June 20 , 2011

Figure 33 : S3 to S0 timing OKI MP IOH external

7.6.4.6 Cold Reset OKI Semiconductor MP IO-Hub

During a cold reset Atom[™] E6xx processor and the IO-Hub will undergo a power cycling. The timings for the S0 to S4/5 sequence are basically the same as for the sequence described in Section chapter 7.6.4.3. Once in S4/5 the cold reset period will be 4 seconds before the S4/5 to S0 sequence starts in the same way as defined in Chapter 7.6.3.3.

Figure 34 : Cold reset OKI MP IOH

Rev. 1.2 — June 20, 2011

7.6.4.7 Warm Reset OKI Semiconductor MP IO-Hub (external & internal)

During a warm reset issued by E6xx processor the reset signals of the OKI Semiconductor MP IO-Hub also get asserted for resetting the internal IO-Hub logic. The following diagram shows the warm reset sequence for OKI Semiconductor MP IO-Hub and E6xx processor. The external warm reset is triggered by the assertion of RESET_IN_B instead of the processor handshake signals. If such RESET_IN_B signal is asserted DA6011 will assert RSTWARN and after the assertion of RSTRDY_B it continues in the same way as during internal warm reset.

Rev. 1.2 — June 20 , 2011

DA6011

Figure 36 : Warm reset OKI MP IOH external

The delays for the warm reset sequence are given in the table below. Note: Intel to provide validated numbers. Therefore, the given timings of the IO-Hub are subject to change. In any case, the reset assertion de-assertion of the OKI Semiconductor MP IO-Hub will always be done prior to the release of the RESET_B of E6xx processor.

Rev. 1.2 — June 20, 2011

Label	Description	Min	Max	Unit	Implementation
t ₀	RSTRDY_B assertion to RSTWARN assertion	0	>0	us	1
t ₁	RSTWARN assertion to RESET_B assertion	-	>0	us	10
t ₂	RESET_B assertion to M1 entry	0	-	us	0
t ₃	RESET_B assertion period	1000	-	us	1654
t ₄	de-assertion of IO_RST_PLC_B to de-assertion of			us	0.5
	RESET_B				
t ₅	RESET_B de-assertion to M5 entry	50	-	us	100
t ₆	RSTWARN de-assertion to SLPMODE de-assertion	-	100	us	
t ₇	RSTWARN de-assertion to RSTRDY_B de-assertion	-	100	us	
t ₈	RESET_B assertion to IO_RST_PLC_B assertion			us	100
	IO_RST_PLC_B assertion to IO_RST_PLB_B assertion				
	IO_RST_PLB_B assertion to IO_RST_PLA_B assertion				
t ₉	IO_RST_PLA_B assertion period			us	1000
t ₁₀	IO_RST_PLA_B de-assertion to IO_RST_PLB_B de-			us	100
	assertion				
	IO_RST_PLB_B de-assertion to RSTWARN de-				
	assertion				
t ₁₁	de-assertion of RSTWARN to de-assertion of			us	150
	IO_RST_PLC_B. Since t4 is only 0.5 us t11 is set in				
	such a way that the minimum Intel timing of 150us in				
	between the assertion of RSTWARN and the de-				
	assertion of RESET_B is fulfilled.				

Table 45: Warm reset delays

Rev. 1.2 — June 20 , 2011

7.6.4.8 Catastrophic Shutdown OKI Semiconductor MP IO-Hub

A catastrophic shutdown can be issued by E6xx processor at any time, asynchronously to all other events occurring on the system. In this case all supplies except the RTC supply (V3P3_RTC) are being disabled. All timings will be set to their minimum value. The maximum time for the catastrophic shut down sequence will not exceed 500ms.

© Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

8 DA6011 SMBus INTERFACE

DA6011 features a SMBus v1.0-compliant² interface which can be used by external devices to access selected registers in the register bank. The SMBus acts as slave only and hence gets its clock from the external master module. The following signals are defined:

- SMBCLK: clock provided by master device
- SMBDAT: serial data

The frequency of the SMBus is defined to be between 10 kHz and 100 kHz. The SMBus will operate at V3P3_RTC voltage levels. The 7-bit slave address is 0x69, resulting in the 8-bit write-address 0xD2 and the read address 0xD3. DA6011 will return the all-zero byte if the provided address points to an unspecified SMBus address.

The SMBus slave features configuration of the DA6011 system parameters. Furthermore, it can be used for reading out status information.

The SMBus implementation of DA6011 does not implement clock stretching on the slave side and therefore, SMBCLK is provided as an input only. The SMBus slave will implement the low-clock period monitoring of the master clock. If the low-clock period of the master (or host) exceeds 25ms (see $T_{TIMEOUT,min}$), the SMBus slave stops driving SMBDAT and releases the data signal SMBDAT. After this the slave must be able to react on the next start condition at the latest after 35ms (see $T_{TIMEOUT,max}$).

8.1 SMBus AC specification

The figure below defines the AC characteristics of the SMBus interface; timing requirements can be found in the following table.

Figure 38: Timing definitions for SMBus

PARAMETER	MIN	MAX	UNIT
SMBCLK clock frequency	10	100	kHz
Data hold time T _{HD:DAT}	300		ns
Data setup time T _{SU:DAT}	250		ns
Bus free time between STOP and	4.7		μs
START condition T _{BUF}			

² Note that error correction features (PEC) and address resolution mechanisms have been specified only in version 2.0 of the SMBus. Therefore, these features will not be implemented on DA6011.

[©] Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

Rev. 1.2 — June 20 , 2011

DA6011

PARAMETER	MIN	MAX	UNIT
Start condition set-up time T _{SU:STA}	4.7		μs
Start condition hold time T _{HD:STA}	4.0		μs
Stop condition setup time T _{SU:STO}	4.0		μs
Clock low time T _{LOW}	4.7		μs
Clock high time T _{HIGH}	4.0	50	μs
Clock and DATA rise time T _F		1000	ns
Clock and DATA fall time T_R		300	ns
Timeout	25	35	ms
Cumulative clock low extend (slave device) $T_{LOW:SEXT}$		25	ms
Cumulative clock low extend (master device) T _{LOW.MEXT}		10	ms

Table 8-1: SMBus timings

In Table 8-1Table 8-1 the last three rows define timeouts for the SMBus, whereby the last two are timing constraints for clock stretching and hence not relevant for DA6011.

8.2 SMBus Start and Stop condition

A START condition is initiated by a high-to-low transition on the SMBDAT line while the SMBCLK is high. A STOP condition is indicated by a low-to-high transition on the SMBDAT line while the SMBCLK is in the high state; see diagram below.

START and STOP conditions are always generated by the bus master. After a START condition the bus is considered to be busy. The bus becomes idle again after certain time following a STOP condition or after both SMBCLK and SMBDAT lines remain high for more than 50µs. This timing does not have any impact on the slave.

8.3 Data transfer on the SMBus

Every byte consists of 8 bits. Each byte transferred on the bus must be followed by an acknowledge bit. Bytes are transferred with the most significant bit (MSB) first. If a new START or STOP condition occurs within a message the bus will return to IDLE-mode.

Rev. 1.2 — June 20, 2011

The following diagram illustrates the acknowledge (ACK) and not acknowledge (NACK) pulses relative to the data and clock signals.

The acknowledge-related clock pulse is generated by the master. The transmitter releases the SMBDAT line during the acknowledge clock cycle. In order to acknowledge a byte, DA6011 pulls SMBDAT low during the high period of the clock pulse according to the SMBus timing information. For reading data (see Section 8.4.2) DA6011 needs to issue a not acknowledge (NACK), meaning that DA6011 does not pull SMBDAT low.

8.4 SMBus Protocol

The SMBus protocols supported by DA6011 are "Block Read" and "Block Write". No other protocols are supported.

8.4.1 Block Write Operation

When data is written to a register in DA6011 the following sequence (see Figure 39) shall occur, where shaded fields are bits driven by the slave and white fields driven by the master.

Figure 39: Block write operation

Note that Command Code refers to the address in which the data will be stored. Byte Count will be the number of bytes to be stored in the DA6011 registers; Byte count is constrained by $1 \le N \le 32$. DA6011 will perform an auto-increment for the address, i.e. Command Code, after receiving each byte until the last byte has been received. This allows writing several bytes without resending the address.

8.4.2 Block Read Operation

When data is read from a register in DA6011 the following sequence (see) shall occur, where shaded fields are bits driven by the slave and white fields driven by the master. Furthermore, the "1" beneath the last acknowledge of the master (A) stands for a not acknowledge.

Figure 40: Block read operation

Data Sheet

Rev. 1.2 — June 20 , 2011

8.5 Register Map

Addr	Function	7	6	5	4	3	2	1	0			
				PL	Ĺ			1				
0xBC	XTALCTRL2				Reserved				BYPASSE N			
0xBE	PLLSSCTRL		Reserved SPREAD1[2:0]						PLL1SSE N			
System												
0xD6	STATUS	IRQ Reserved			PWRBTE VTS0	PWRBTE VTS3	OVERTE MP	VBATOVE R	VBATUND ER			
0xD7	IRQCLR	Reserved			PWRBTE VTS0	PWRBTE VTS3	OVERTE MP	VBATOVE R	VBATUND ER			
0xD8	IRQMASK	Reserved			PWRBTE VTS0	PWRBTE VTS3	OVERTE MP	VBATOVE R	VBATUND ER			
	GPADC											
0xE1	AUTOCTRL	Reserved AD2ISR			REN[1:0]	Reserved	AD3EN	AD2EN	VSUPEN			
0xE2	MANCTRL	CHSEL[1:0] Reserved			MANRUN		Reserved					
0xE3	ADCIN23DB	Reserved			1		AD3DBEN	AD2DBEN	Reserved			
0xE4	ADCSTAT	Reserved			MANEOC	ADCIN3T H	ADCIN2T H	TJUNCOV ER	VSUPUND ER			
0xE5	ADCIRQCLR		Reserved		MANEOC	ADCIN3T H	ADCIN2T H	TJUNCOV ER	VSUPUND ER			
0xE6	ADCIRQMASK		Reserved		MANEOC	ADCIN3T H	ADCIN2T H	TJUNCOV ER	VSUPUND ER			
0xE7	MANRESLB				MANRE	SLB[7:0]		1				
0xE8	MANRESHB			Rese	erved			MANRE	SHB[1:0]			
0xE9	VSUPARES				VSUPA	RES[7:0]		1				
0xEA	TJUNCARES		TJUNCARES[7:0]									
0xEB	TJUNCOFFSET		TJUNCOFFSET[7:0]									
0xEC	ADCIN2ARES		ADCIN2ARES[7:0]									
0xED	ADCIN2HTH				ADCIN2	HTH[7:0]						
0xEE	ADCIN2LTH				ADCIN2	LTH[7:0]						
0xEF	ADCIN3ARES				ADCIN3A	ARES[7:0]						

Data Sheet

Rev. 1.2 — June 20, 2011

Addr	Function	7	6	5	4	3	2	1	0	
0xF0 ADCIN3HTH ADCIN3HTH[7:0]										
0xF1	ADCIN3LTH		ADCIN3LTH[7:0]							
Version										
0xF2	CHIPID	NRC[3:0]					MRC	C[3:0]		

Table 2: DA6011 register map

8.5.1 XTALCTRL2

Register Name XTA		LCTRL2		Address	0xBC	Read/Write	
				Reset Value	0x00		
MSB							LSB
R/W	R	R	R	R	R	R/W	R/W
			Reserved				BYPASSEN
EXTREFEN		0 1	Enable exte	ernal referenc	e. External clo	ock can be pro	ovided via X2

8.5.2 PLLSSCTRL

Register Name PLL		SSCTRL		Address	0xBE	Read/Write			
				Reset Value	0x00				
MSB							LSB		
R/W	R	R	R	R	R	R/W	R/W		
	Reserved			SPREAD1[2:0] Reserved					
PLL1SSEN 0 1			Enables spread spectrum feature of PLL1						
SPREAD1[2:0]	000 001 010 011 100 101 110 111	Down sprea Down sprea Down sprea Down sprea Centre sprea Centre sprea Centre sprea	ad 0.3% ad 1% ad 1.5% ad 2% ead 0.3% ead 1% ead 1.5% ead 2%					

Rev. 1.2 — June 20 , 2011

8.5.3 STATUS

Register Nam	ie STA	TUS		Address	0xD6	Read			
				Reset	0x00				
				Value					
MSB							LSB		
R	R	R	R	R	R	R	R		
IRQ	res	erved	PWRPBT	PWRPBT	OVER	VBAT	VBAT		
			EVTS0	EVTS3	TEMP	OVER	UNDER		
VBATUNDER	2	0							
1			Supply voltage drops below 4V						
VBATOVER		0							
		1	Supply voltage above 5.5V						
OVERTEMP		0							
		1	Over temperature has been detected						
PWRPBTEVT	S3	0							
		1	Power Button short pulse has been detected in S3 state						
PWRPBTEVT	S0	0							
	1 Power Button short pulse has been detected in S0 state						tate		
IRQ		0							
		1	System or 0	GPADC interr	upt is asserted	d			

8.5.4 IRQCLR

Register Nam	e IRQ	CLR		Address	0xD7	Read/Write			
				Reset	0x00				
				Value					
MSB							LSB		
R/W	R	R	R	R/W	R/W	R/W	R/W		
	reserved		PWRBPT	PWRBPT	OVER	VBAT	VBAT		
			EVTS0	EVTS3	TEMP	OVER	UNDER		
VBATUNDER	2	0							
1			Write clears	s this bit and o	de-asserts it b	y hardware			
VBATOVER		0							
		1	Write clears this bit and de-asserts it by hardware						
OVERTEMP		0							
		1	Write clears this bit and de-asserts it by hardware						
PWRBPTEVT	S3	0							
1			Write clears this bit and de-asserts it by hardware						
PWRBPTEVT	S0	0							
		1	Write clears	s this bit and c	de-asserts it b	y hardware			

8.5.5 IRQMASK

Register Name IRQMASK				Address	0xD8	Read/Write		
				Reset	0x00			
				Value				
MSB							LSB	
R/W	R	R	R	R/W	R/W	R/W	R/W	
	reserved		PWRBPT	PWRBPT	OVER	VBAT	VBAT	
			EVTS0	EVTS3	TEMP	OVER	UNDER	
VBATUNDER 0			VBATUNDER IRQ is unmasked					
1 VBATUI				UNDER IRQ is masked				

© Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

VBATOVER	0	VBATOVER IRQ is unmasked
	1	VBATOVER IRQ is masked
OVERTEMP	0	OVERTEMP IRQ is unmasked
	1	OVERTEMP IRQ is masked
PWRBPTEVTS3	0	PWRBPTEVT IRQ is unmasked
	1	PWRBPTEVT IRQ is masked
PWRBPTEVTS0	0	PWRBPTEVT IRQ is unmasked
	1	PWRBPTEVT IRQ is masked

8.5.6 AUTOCTRL

Register Nam	e AUT	OCTRL		Address	0xE1	Read/Write	
				Reset Value	0x00		
MSB							LSB
R	R	R	R	R/W	R/W	R/W	R/W
reserv	ved	AD2ISR0	CEN[1:0]	reserved	AD3EN	AD2EN	VSUPEN
VSUPEN		0 1	Enable automatic measurement of VSUP				
AD2EN		0 1	Enable auto	omatic measu	rement of AD	2	
AD3EN		0 1	Enable auto	omatic measu	rement of AD	3	
AD2ISRCEN[1:0]	00 01 10 11	Current source is disabled Current source is permanently enabled Current source is only enabled while AD2 is measured Current source is disabled				

8.5.7 MANCTRL

Register Nam	e MAN	ICTRL		Address	0xE2	Read/Write		
				Reset Value	0x00			
MSB							LSB	
R/W	R/W	R	R/W	R	R	R	R	
CHS	EL	reserved	MANRUN	N reserved				
MANRUN		0 1	Starts manual conversion. Bit is cleared when conversion is completed					
CHSEL		00 01 10 11	VSUP channel TJUNC ADC_IN2 channel ADC_IN3 channel					

Rev. 1.2 — June 20, 2011

8.5.8 ADCIN23DB

Register Nam	ne ADC	IN23DB		Address	0xE3	Read/Write		
				Reset Value	0x00			
MSB							LSB	
R	R	R	R	R	R/W	R/W	R/W	
		reserved			AD3DBEN	AD2DBEN	Reserved	
AD2DBEN		0	No debound	ce on ADC_IN	l channel 2			
		1	Result need to exceed threshold 3 times					
AD3DBEN		0 No debounce on ADC_IN channel 3						
		1	Result need to exceed threshold 3 times					

8.5.9 ADCSTAT

Register Nam	ne ADC	STAT		Address	0xE4	Read/Write		
				Reset Value	0x00			
MSB							LSB	
R	R	R	R/W	R/W	R/W	R/W	R/W	
	reserved		MANEOC	ADCIN3TH	ADCIN2TH	TJUNC	VSUP	
						OVER	UNDER	
VSUPUNDEF	2	0						
1			VSUP mea	surements be	low threshold	during 3 cons	ecutive	
measurements. Auto measurement stops, b					ps, bit needs	to be cleared		
TJUNCOVER	2	0						
		1	TJUNC measurement above threshold during 3 consecutive					
			measureme	ents. Auto me	asurement sto	ps, bit needs	to be cleared	
ADCIN2TH		0						
		1	ADC_IN channel 2 measurement over or under thresholds. Auto					
			measureme	ent stops, bit r	needs to be cl	eared		
ADCIN3TH		0						
		1	ADC_IN channel 3 measurement over or under thresholds. Auto					
			measurement stops, bit needs to be cleared					
MANEOC		0						
1 Endo of A			Endo of AD	of ADC conversion for manual measurement reached. Bit				
			needs to be	e cleared to st	art new conve	ersion		

DA6011

Rev. 1.2 — June 20 , 2011

8.5.10 ADCIRQCLR

Register Nam	e ADC			Address	0xE5	Read/Write	
				Reset Value	0x00		
MSB				•	•		LSB
R	R	R	R/W	R/W	R/W	R/W	R/W
reserved			MANEOC	ADCIN3TH	ADCIN2TH	TJUNC OVER	VSUP UNDER
VSUPUNDER 0 1 Write "1" to clear IRQ bit of ADCSTAT register							
TJUNCOVER		0 1	Write "1" to	clear IRQ bit	of ADCSTAT	register	
ADCIN2TH		0 1	Write "1" to	clear IRQ bit	of ADCSTAT	register	
ADCIN3TH		0 1	Write "1" to clear IRQ bit of ADCSTAT register				
MANEOC		0 1	Write "1" to clear IRQ bit of ADCSTAT register				

8.5.11 ADCIRQMASK

Register Nam	e ADC			Address	0xE6	Read/Write		
				Reset Value	0x00			
MSB							LSB	
R	R	R	R/W	R/W	R/W	R/W	R/W	
reserved			MANEOC	ADCIN3TH	ADCIN2TH	TJUNC OVER	VSUP UNDER	
VSUPUNDER 0 1			Mask VSUPUNDER IRQ					
TJUNCOVER		0 1	Mask TJUNCOVER IRQ					
ADCIN2TH		0 1	Mask ADCI	N2TH IRQ				
ADCIN3TH		0 1	Mask ADCIN3TH IRQ					
MANEOC		0 1	Mask MAN	EOC IRQ				

8.5.12 MANRESLB

Register Nam	ne MAN	NRESLB		Address	0xE7	Read			
				Reset Value	0x00				
MSB							LSB		
R	R	R	R	R	R	R	R		
MANRESLB[7:0]									
MANRESLB[7:0] 0255 Low part of the 10-bit manual conversion result									

DA6011

Rev. 1.2 — June 20 , 2011

8.5.13 MANRESHB

Register Nam	ne MAN	NRESHB		Address	0xE8	Read		
				Reset Value	0x00			
MSB		· · · ·						
R	R	R	R	R	R	R	R	
	Reserved MANRESHB[1:0]							
MANRESHB[7:0]	03	High part of the 10-bit manual conversion result					

8.5.14 VSUPARES

Register Nam	ie VSL	JPARES		Address	0xE9	Read		
				Reset Value	0x00			
MSB	-						LSB	
R	R	R	R	R	R	R	R	
VSUPARES[7:0]								
VSUPARES[7	ES[7:0] 0255 Result of the automatic VS					sion		

8.5.15 TJUNCARES

Register Nam	ne TJUNCARES			Address	0xEA	Read		
				Reset Value	0x00			
				value				
MSB							LSB	
R	R	R	R	R	R	R	R	
TJUNCARES[7:0]								
TJUNCARES	[7:0]	0255	Result of the automatic junction temperature measurement					

8.5.16 TJUNCOFFSET

Register Nam	me TJUNCOFFSET			Address	0xEB	Read		
				Reset Value	0x00			
MSB							LSB	
R	R	R	R	R	R	R	R	
TJUNCOFFSET[7:0]								
TJUNCOFFS	ET[7:0]	0255	TJUNC cal	ibration offset				

8.5.17 ADCIN2ARES

Register Nam	ne ADC	CIN2ARES		Address	0xEC	Read		
				Reset Value	0x00			
MSB							LSB	
R	R	R	R	R	R	R	R	
ADCIN2ARES[7:0]								
ADCIN2ARE	ADCIN2ARES[7:0] 0255 Result of th				ADCIN2 meas	urement		

8.5.18 ADCIN2HTH

Register Nam	ne ADCIN2HTH			Address	0xED	Read/Write		
				Reset	0x00			
				Value				
MSB							LSB	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADCIN2HTH[7:0]								
ADCIN2HTH	[7:0]	0255	High level threshold for ADC_IN channel 2					

8.5.19 ADCIN2LTH

Register Nam	ne ADCIN2LTH			Address	0xEE	Read/Write		
				Reset Value	0x00			
MSB				Value			LSB	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADCIN2LTH[7:0]								
ADCIN2LTH[7:0]	0255	Low level th	nreshold for A	DC_IN chann	el 2		

8.5.20 ADCIN3ARES

Register Nam	e ADC	IN3ARES		Address	0xEF	Read		
				Reset	0x00			
				Value				
MSB							LSB	
R	R	R	R	R	R	R	R	
ADCIN3ARES[7:0]								
ADCIN3ARES[7:0] 0255 Result of the				e automatic A	DCIN3 meas	urement		

8.5.21 ADCIN3HTH

Register Nam	ne ADCIN3HTH			Address	0xF0	Read/Write		
				Reset Value	0x00			
MSB							LSB	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADCIN3HTH[7:0]								
ADCIN3HTH[7:0]	0255	High level t	hreshold for A	ADC_IN chanr	nel 3		

8.5.22 ADCIN3LTH

Register Nam	me ADCIN2LTH			Address	0xF1	Read/Write		
				Reset Value	0x00			
MSB				-			LSB	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADCIN3LTH[7:0]								
ADCIN3LTH[7:0] 0255 Low lev				nreshold for A	DC_IN chann	el 3		

DA6011

Data Sheet

Rev. 1.2 — June 20, 2011

8.5.23 CHIPID

Register Nam	e CHI	PID	Address 0xF2 Read				
				Reset	0x00		
				Value			
MSB							LSB
R	R	R	R	R	R	R	R
	NRC	[3:0]		MRC[3:0]			
MRC[3:0]		015	Chip ID minor revision code (metal mask revision)				
NRC[3:0]		015	Chip ID new release code				

9 JTAG Interface

Signal Name	Туре	Description
тск	DI	JTAG Test Clock: TCK is a clock input used to drive Test Access Port (TAP) state machine during test and debugging.
TDI	DI	JTAG Test Data In: TDI is used to serially shift data and instructions into the TAP
TDO	DO	JTAG Test Data Out: TDI is used to serially shift data out of the device
TMS	DI	Test Mode Select: this signal is used to control the state of the TAP controller

•

10 DA6011 PACKAGE DETAILS

10.1 Pin Description, Pin out

DI, DO, DIO

Below is a pin description list for the DA6011. In the type column the following abbreviations have been used

PS, VSS Power Supply	V
------------------------	---

- Digital Input, Output, Input/Output
- AI, AO, AIO
 Analog Input, Output, Input/Output
- OD Open-Drain Output

10.1.1 Ball order

Ball	Ball Name	Туре	Pin Description
A1	VSS_1P8	VSS	Ground of Buck_V1P8 output driver
A2	VHS_1P8	AO	provide the gate drive for the external PMOS of Buck_V1P8
A3	VLS_1P8	AO	Provide the gate drive for the external NMOS of Buck_V1P8
A4	VSUP_1P8	PS	Powers the Buck_V1P8 output driver
A5	VSS_C	VSS	Ground the Core output driver
A6	VHS_VCC	AO	provide the gate drive for the external PMOS of Buck_Core
A7	VLS_VCC	AO	Provide the gate drive for the external NMOS of Buck_Core
A8	VSUP_C	PS	Powers the Core output driver
A9	VSS_1P05	VSS	Ground the Buck_B1P05 output driver
A10	VHS_1P05	AO	provide the gate drive for the external PMOS of Buck_V1P05
A11	VLS_1P05	AO	Provide the gate drive for the external NMOS of Buck_V1P05
A12	VSUP_1P05	PS	Powers the Buck_V1P05 output driver
A13	IREF	AIO	Bias current reference node, connect $50k\Omega \pm 1\%$ to GND
B1	V1P8_S	AIO	V1P8_S switch output
B2	V1P8	AIO	Buck_V1P8 sense line, voltage feedback node
B3	CS_1P8	AIO	Current sense of Buck_V1P8
B4	VCC_S	AIO	Buck_Core sense line, voltage feedback node
B5	CS_VCC	AIO	Current sense of Buck_Core
B6	VCC_SENSE	AIO	Power sense of Core CPU
B7	VCC_VSS_SENSE	AIO	Ground sense of Core CPU
B8	CS_1P05	AIO	Current sense of Buck_V1P05
B9	V1P05_S	AIO	Buck_V1P05_S sense line, voltage feedback node
B10	VID[0]	DI	VCC,VNN output voltage control bit[0]
B11	VID[1]	DI	VCC,VNN output voltage control bit[1]
B12	VREF	AIO	Reference voltage connection
B13	V3P3_S	AIO	V3P3_S switch output
C1	V1P8_IN	AIO	V1P8 Switch input
C2	VIDEN[0]	DI	VIDEN[0] pin connection
C3	VIDEN[1]	DI	VIDEN[1] pin connection
C4	IO_RST_PLC_B	DO	IO_RST_PLC_B pin connection
C5	THRMTRIP_B	OD	THRMTRIP_B pin connection
C6	ADC_IN_3	AIO	ADC_IN_3 pin connection
C7	ADC_IN_2	AIO	ADC_IN_2 pin connection
C8	TEST	DI	TEST pin connection, triggers DA6011 test mode

C9	RESET_IN_B	DI	RESET_IN_B pin connection						
C10	VID[3]	DI	VCC,VNN output voltage control bit[3]						
C11	VID[2]	DI	CC,VNN output voltage control bit[2] CC,VNN output voltage control bit[5]						
C12	VID[5]	DI	VCC,VNN output voltage control bit[5]						
C13	V3P3_IN	AIO	V3P3 Switch input						
D1	V0P9_S	AIO	LDO_V0P9 output node						
D2	PROCHOT_B	OD	PROCHOT_B pin connection						
D3	IRQ_B	OD	IRQ_B pin connection						
D4	IO_SLP_PLB_B	DO	IO_SLP_PLB_B pin connection						
D5	IO_RST_PLB_B	DO	IO_RST_PLB_B pin connection						
D6	SLPMODE	DI	SLPMODE pin connection, TC Handshake signal						
D7	VSS_QUIET	VSS	Ground connection reference ground						
D8	SMBCLK	DI	SMBus system clock						
D9	VID[4]	DI	VCC,VNN output voltage control bit[4]						
D10	VID[6]	DI	VCC,VNN output voltage control bit[6]						
D11	VLP	AIO	LDO_VLP output node						
D12	VSUP2	PS	Powers the pass device of VINT and VLP regulator						
D13	VINT	AIO	LDO_VINT output node						
E1	VDD_V0P9	AIO	Powers LDO_V0P9						
E2	V0P9R	AIO	Memory reference voltage						
E3	V1P25_S	AIO	LDO_V1P25_S output node						
E4	VDDC_V1P8	AIO	Powers the controller of V1P5_S, V1P25_S and V1P05 LDOs						
E5	VSS	VSS	Thermal VSS connection to ground plane of PCB						
E6	VSS	VSS	Thermal VSS connection to ground plane of PCB						
E7	VSS	VSS	Thermal VSS connection to ground plane of PCB						
E8	VSS	VSS	Thermal VSS connection to ground plane of PCB						
E9	VSS	VSS	Thermal VSS connection to ground plane of PCB						
E10	V3P3_RTC	AIO	LDO_V3P3_RTC output node						
E11	V3P3_A	AIO	LDO_V3P3_A output node						
E12	VSUP1	PS	Powers all LDO cores						
E13	VSUP_3P3	PS	Powers the Buck_V3P3 output driver						
F1	VDD_V1P8	AIO	Powers the pass devices of V1P5_S, V1P25_S and V1P05 LDOs						
F2	V1P05	AIO	LDO_V1P05 output node						
F3	V1P5_S	AIO	LDO_V01P5_S output node						
F4	VDDC_VUNI	AIO	Power the controller of VUNI LDO						
F5	VSS	VSS	Thermal VSS connection to ground plane of PCB						
F6	VSS	VSS	Thermal VSS connection to ground plane of PCB						
F7	VSS	VSS	Thermal VSS connection to ground plane of PCB						
F8	VSS	VSS	Thermal VSS connection to ground plane of PCB						
F9	VSS	VSS	Thermal VSS connection to ground plane of PCB						
F10	V3P3	AIO	Buck_V3P3 sense line, voltage feedback node						
F11	V2P5_A	AIO	LDO_V2P5_A output node						
F12	VSUP3	PS	Powers the pass device of RTC,V3P3_A, V2P5_A regulator						
F13	VLX_3P3	AIO	Switching node of Buck_V3P3						

I

© Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

I

G1	VDD_VUNI	AIO	Powers the pass device of VUNI LDO
G2	VUNI	AIO	LDO_VUNI output node
G3	VNN VSS SENSE	AIO	Ground sense of Graphic CPU
G4	VNN SENSE	AIO	Power sense of Graphic CPU
G5	VSS	VSS	Thermal VSS connection to ground plane of PCB
G6	VSS	VSS	Thermal VSS connection to ground plane of PCB
G7	VSS	VSS	Thermal VSS connection to ground plane of PCB
G8	VSS	VSS	Thermal VSS connection to ground plane of PCB
G9	VSS	VSS	Thermal VSS connection to ground plane of PCB
G10	SMBDAT	DIO	SMBus system data
G11	V1P2	AIO	V1P2 switch output
G12	V1P2 IN	AIO	V1P2 Switch input
G13	VSS 3P3	VSS	Ground of Buck V3P3 output driver
H1	VSUP_G	PS	Powers the Graphic output driver
H2	IO_PWROK	DO	IO_PWROK pin connection
H3	RSTWARN	DO	RSTWARN pin connection
H4	IO_RST_PLA_B	DO	IO_RST_PLA_B pin connection
H5	VSS	VSS	Thermal VSS connection to ground plane of PCB
H6	VSS	VSS	Thermal VSS connection to ground plane of PCB
H7	VSS	VSS	Thermal VSS connection to ground plane of PCB
H8	VSS	VSS	Thermal VSS connection to ground plane of PCB
H9	VSS	VSS	Thermal VSS connection to ground plane of PCB
H10	SYS	DO	SYS clock pin connection
H11	SLPRDY_B	DI	SLPRDY_B pin connection, E6XX Handshake signal
H12	V1P2_A	AIO	Buck_V1P2_A sense line, voltage feedback node
H13	VSUP_1P2	PS	Powers the Buck_V1P2 output driver
J1	VLX_VNN	AIO	switching node of Buck_Graphic
J2	PWRMODE[1]	DO	PWRMODE[1] pin connection
J3	PWRMODE[0]	DO	PWRMODE[0] pin connection
J4	IO_PWROK_EN	DI	IO_PWROK_EN multifunctional pin
J5	VSS	VSS	Thermal VSS connection to ground plane of PCB
J6	VSS	VSS	Thermal VSS connection to ground plane of PCB
J7	VSS	VSS	Thermal VSS connection to ground plane of PCB
J8	VSS	VSS	Thermal VSS connection to ground plane of PCB
J9	VSS	VSS	Thermal VSS connection to ground plane of PCB
J10	VCCIO_SYS	AIO	Powers the SYS clock driver
J11	PWRBTN_B	DI	PWRBTN_B pin connection
J12	TDO	DI	TDO pin connection JTAG
J13	VLX_1P2	AIO	Switching node of Buck_V1P2
K1	VSS_G	VSS	Ground of Buck_Graphic output driver
K2	TDI	VSS	TDI pin connection JTAG
K3	RSMRST_B	DO	RSMRST_B pin connection
K4	PWRMODE[2]	DO	PWRMODE[2] pin connection
K5	VSS_PLL1	VSS	Ground connection for PLL1
K6	VCCIO_PLL23	AIO	Powers the PLL23 clock driver

K7	VSS_PLL2	VSS	Ground connection for PLL2					
K8	VSSIO_REF	VSS	Ground connection for REF clock driver					
K9	VCCIO_REF	AIO	Powers the REF clock driver					
K10	MCLK/ETH	DO	MCLK/ETH clock pin connection					
K11	PWROK	DO	PWROK pin connection					
K12	RSTRDY_B	DI	RSTRDY_B pin connection, E6XX handshake signal					
K13	VSS_1P2	VSS	Ground of Buck_V1P2 output driver					
L1	TCLK	DI	TCLK pin connection JTAG					
L2	TMS	DI	TMS pin connection JTAG					
L3	VSSIO_PLL1	VSS	Ground connection for PLL1 clock driver					
L4	VCCIO_PLL1	AIO	Powers the PLL1 clock driver					
L5	VCC_PLL1	AIO	Powers the PLL1					
L6	VCC_PLL2	AIO	Powers the PLL2					
L7	VSSIO_PLL23	VSS	Ground connection for PLL23 clock driver					
L8	VSS_PLL3	VSS	Ground connection for PLL3					
L9	VCC_PLL3	AIO	Powers the PLL3					
L10	VCC_PLL5	AIO	Powers the PLL5 Powers the REF clock driver					
L11	IO_SLP_PLC_B	DO	IO_SLP_PLC_B pin connection					
L12	WAKE_B	DI	WAKE_B pin connection low active					
L13	CTRL_V1P8_S	DO	CTRL_V1P8_S pin connection, controls external switch to save power					
M1	100MHz1_B	DO	100MHz negative output 1 pin connection					
M2	100MHz2_B	DO	100MHz negative output 2 pin connection					
M3	100MHz3_B	DO	100MHz negative output 3 pin connection					
M4	100MHz4_B	DO	100MHz negative output 4 pin connection					
M5	100MHz5_B	DO	100MHz negative output 5 pin connection					
M6	100MHz6_B	DO	100MHz negative output 6 pin connection					
M7	DOT_B	DO	DOT_B clock pin connection					
M8	SATA_B	DO	SATA_B clock pin connection					
M9	USB	DO	USB clock pin connection					
M10	VSS_XTAL	VSS	Ground connection for XO					
M11	VSSIO_SYS	VSS	Ground connection for SYS clock driver					
M12	RESET_B	DO	RESET_B pin connection					
M13	REF	DO	REF clock pin					
N1	100MHz1	DO	100MHz positive output 1 pin connection					
N2	100MHz2	DO	100MHz positive output 2 pin connection					
N3	100MHz3	DO	100MHz positive output 3 pin connection					
N4	100MHz4	DO	100MHz positive output 4 pin connection					
N5	100MHz5	DO	100MHz positive output 5 pin connection					
N6	100MHz6	DO	100MHz positive output 6 pin connection					
N7	DOT	DO	DOT clock pin connection					
N8	SATA	DO	SATA clock pin connection					
N9	VSS_PLL5	VSS	Ground connection for PLL5					
N10	X1	AI	X1 pin connection					
N11	VCC_XTAL	AIO	Power for XO					

N12	X2	AIO	X2 pin connection
N13	VDDIO	PS	IO communication supply. Connect to V3P3_RTC or V3P3_A or V3P3 depending on the application

Table 3: DA6011 Pin out, Ball order

10.1.2 Alphabetic ball name order

Ball	Ball Name	Туре	Pin Description					
N1	100MHz1	DO	100MHz positive output 1 pin connection					
M1	100MHz1_B	DO	00MHz negative output 1 pin connection					
N2	100MHz2	DO	100MHz positive output 1 pin connection					
M2	100MHz2_B	DO	00MHz negative output 1 pin connection					
N3	100MHz3	DO	100MHz positive output 1 pin connection					
M3	100MHz3_B	DO	100MHz negative output 1 pin connection					
N4	100MHz4	DO	100MHz positive output 1 pin connection					
M4	100MHz4_B	DO	100MHz negative output 1 pin connection					
N5	100MHz5	DO	100MHz positive output 1 pin connection					
M5	100MHz5_B	DO	100MHz negative output 1 pin connection					
N6	100MHz6	DO	100MHz positive output 1 pin connection					
M6	100MHz6_B	DO	100MHz negative output 1 pin connection					
C7	ADC_IN_2	AIO	ADC_IN_2 pin connection					
C6	ADC_IN_3	AIO	ADC_IN_3 pin connection					
B8	CS_1P05	AIO	Current sense of Buck_V1P05					
B3	CS_1P8	AIO	Current sense of Buck_V1P8					
B5	CS_VCC	AIO	Current sense of Buck_Core					
L13	CTRL_V1P8_S	DO	CTRL_V1P8_S pin connection, controls external switch to save power					
N7	DOT	DO	DOT clock pin connection					
M7	DOT_B	DO	DOT_B clock pin connection					
H2	IO_PWROK	DO	IO_PWROK pin connection					
J4	IO_PWROK_EN	DI	IO_PWROK_EN multifunctional pin					
H4	IO_RST_PLA_B	DO	IO_RST_PLA_B pin connection					
D5	IO_RST_PLB_B	DO	IO_RST_PLB_B pin connection					
C4	IO_RST_PLC_B	DO	IO_RST_PLC_B pin connection					
D4	IO_SLP_PLB_B	DO	IO_SLP_PLB_B pin connection					
L11	IO_SLP_PLC_B	DO	IO_SLP_PLC_B pin connection					
A13	IREF	AIO	Bias current reference node, connect 50k Ω ±1% to GND					
D3	IRQ_B	OD	IRQ_B pin connection					
K10	MCLK/ETH	DO	MCLK/ETH clock pin connection					
D2	PROCHOT_B	OD	PROCHOT_B pin connection					
J11	PWRBTN_B	DI	PWRBTN_B pin connection					
J3	PWRMODE[0]	DO	PWRMODE[0] pin connection					
J2	PWRMODE[1]	DO	PWRMODE[1] pin connection					
K4	PWRMODE[2]	DO	PWRMODE[2] pin connection					
K11	PWROK	DO	PWROK pin connection					
M13	REF	DO	REF clock pin					

M12	RESET_B	DO	RESET_B pin connection
C9	RESET_IN_B	DI	RESET_IN_B pin connection
K3	RSMRST_B	DO	RSMRST_B pin connection
K12	RSTRDY_B	DI	RSTRDY_B pin connection, E6XX handshake signal
H3	RSTWARN	DO	RSTWARN pin connection
N8	SATA	DO	SATA clock pin connection
M8	SATA_B	DO	SATA_B clock pin connection
D6	SLPMODE	DI	SLPMODE pin connection, E6XX Handshake signal
H11	SLPRDY_B	DI	SLPRDY_B pin connection, E6XX Handshake signal
D8	SMBCLK	DI	SMBus system clock
G10	SMBDAT	DIO	SMBus system data
H10	SYS	DO	SYS clock pin connection
L1	TCLK	DI	TCLK pin connection JTAG
K2	TDI	VSS	TDI pin connection JTAG
J12	TDO	DI	TDO pin connection JTAG
C8	TEST	DI	TEST pin connection, triggers DA6011 test mode
C5	THRMTRIP_B	OD	THRMTRIP_B pin connection
L2	TMS	DI	TMS pin connection JTAG
M9	USB	DO	USB clock pin connection
D1	V0P9_S	AIO	LDO_V0P9 output node
E2	V0P9R	AIO	Memory reference voltage
F2	V1P05	AIO	LDO_V1P05 output node
B9	V1P05_S	AIO	Buck_V1P05_S sense line, voltage feedback node
G11	V1P2	AIO	V1P2 switch output
H12	V1P2_A	AIO	Buck_V1P2_A sense line, voltage feedback node
G12	V1P2_IN	AIO	V1P2 Switch input
E3	V1P25_S	AIO	LDO_V1P25_S output node
F3	V1P5_S	AIO	LDO_V01P5_S output node
B2	V1P8	AIO	Buck_V1P8 sense line, voltage feedback node
C1	V1P8_IN	AIO	V1P8 Switch input
B1	V1P8_S	AIO	V1P8_S switch output
F11	V2P5_A	AIO	LDO_V2P5_A output node
F10	V3P3	AIO	Buck_V3P3 sense line, voltage feedback node
E11	V3P3_A	AIO	LDO_V3P3_A output node
C13	V3P3_IN	AIO	V3P3 Switch input
E10	V3P3_RTC	AIO	LDO_V3P3_RTC output node
B13	V3P3_S	AIO	V3P3_S switch output
L5	VCC_PLL1	AIO	Powers the PLL1
L6	VCC_PLL2	AIO	Powers the PLL2
L9	VCC_PLL3	AIO	Powers the PLL3
L10	VCC_PLL5	AIO	Powers the PLL5 Powers the REF clock driver
B4	VCC_S	AIO	Buck_Core sense line, voltage feedback node
B6	VCC_SENSE	AIO	Power sense of Core CPU
B7	VCC_VSS_SENSE	AIO	Ground sense of Core CPU
N11	VCC_XTAL	AIO	Power for XO

© Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

L4	VCCIO_PLL1	AIO	Powers the PLL1 clock driver
K6	VCCIO_PLL23	AIO	Powers the PLL23 clock driver
K9	VCCIO_REF	AIO	Powers the REF clock driver
J10	VCCIO_SYS	AIO	Powers the SYS clock driver
F1	VDD_V1P8	AIO	Powers the pass devices of V1P5_S, V1P25_S and V1P05 LDOs
E1	VDD_V0P9	AIO	Powers LDO_V0P9
G1	VDD_VUNI	AIO	Powers the pass device of VUNI LDO
F4	VDDC_VUNI	AIO	Power the controller of VUNI LDO
E4	VDDC_V1P8	AIO	Powers the controller of V1P5_S, V1P25_S and V1P05 LDOs
N13	VDDIO	PS	IO communication supply. Connect to V3P3_RTC or V3P3_A or V3P3 depending on the application
A10	VHS_1P05	AO	provide the gate drive for the external PMOS of Buck_V1P05
A2	VHS_1P8	AO	provide the gate drive for the external PMOS of Buck_V1P8
A6	VHS_VCC	AO	provide the gate drive for the external PMOS of Buck_Core
B10	VID[0]	DI	VCC,VNN output voltage control bit[0]
B11	VID[1]	DI	VCC,VNN output voltage control bit[1]
C11	VID[2]	DI	VCC,VNN output voltage control bit[2]
C10	VID[3]	DI	VCC,VNN output voltage control bit[3]
D9	VID[4]	DI	VCC,VNN output voltage control bit[4]
C12	VID[5]	DI	VCC,VNN output voltage control bit[5]
D10	VID[6]	DI	VCC,VNN output voltage control bit[6]
C2	VIDEN[0]	DI	VIDEN[0] pin connection
C3	VIDEN[1]	DI	VIDEN[1] pin connection
D13	VINT	AIO	LDO_VINT output node
D11	VLP	AIO	LDO_VLP output node
A11	VLS_1P05	AO	Provide the gate drive for the external NMOS of Buck_V1P05
A3	VLS_1P8	AO	Provide the gate drive for the external NMOS of Buck_V1P8
A7	VLS_VCC	AO	Provide the gate drive for the external NMOS of Buck_Core
J13	VLX_1P2	AIO	Switching node of Buck_V1P2
F13	VLX_3P3	AIO	Switching node of Buck_V3P3
J1	VLX_VNN	AIO	switching node of Buck_Graphic
G4	VNN_SENSE	AIO	Power sense of Graphic CPU
G3	VNN_VSS_SENSE	AIO	Ground sense of Graphic CPU
B12	VREF	AIO	Reference voltage connection
E5	VSS	VSS	Thermal VSS connection to ground plane of PCB
E6	VSS	VSS	Thermal VSS connection to ground plane of PCB
E7	VSS	VSS	Thermal VSS connection to ground plane of PCB
E8	VSS	VSS	Thermal VSS connection to ground plane of PCB
E9	VSS	VSS	Thermal VSS connection to ground plane of PCB
F5	VSS	VSS	Thermal VSS connection to ground plane of PCB
F6	VSS	VSS	Thermal VSS connection to ground plane of PCB
F7	VSS	VSS	Thermal VSS connection to ground plane of PCB
F8	VSS	VSS	Thermal VSS connection to ground plane of PCB
F9	VSS	VSS	Thermal VSS connection to ground plane of PCB
G5	VSS	VSS	Thermal VSS connection to ground plane of PCB

Rev. 1.2 — June 20, 2011

G6	VSS	VSS	Thermal VSS connection to ground plane of PCB
G7	VSS	VSS	Thermal VSS connection to ground plane of PCB
G8	VSS	VSS	Thermal VSS connection to ground plane of PCB
G9	VSS	VSS	Thermal VSS connection to ground plane of PCB
H5	VSS	VSS	Thermal VSS connection to ground plane of PCB
H6	VSS	VSS	Thermal VSS connection to ground plane of PCB
H7	VSS	VSS	Thermal VSS connection to ground plane of PCB
H8	VSS	VSS	Thermal VSS connection to ground plane of PCB
H9	VSS	VSS	Thermal VSS connection to ground plane of PCB
J5	VSS	VSS	Thermal VSS connection to ground plane of PCB
J6	VSS	VSS	Thermal VSS connection to ground plane of PCB
J7	VSS	VSS	Thermal VSS connection to ground plane of PCB
J8	VSS	VSS	Thermal VSS connection to ground plane of PCB
J9	VSS	VSS	Thermal VSS connection to ground plane of PCB
A9	VSS_1P05	VSS	Ground the Buck_B1P05 output driver
K13	VSS_1P2	VSS	Ground of Buck_V1P2 output driver
A1	VSS_1P8	VSS	Ground of Buck_V1P8 output driver
G13	VSS_3P3	VSS	Ground of Buck_V3P3 output driver
A5	VSS_C	VSS	Ground the Core output driver
K1	VSS_G	VSS	Ground of Buck_Graphic output driver
K5	VSS_PLL1	VSS	Ground connection for PLL1
K7	VSS_PLL2	VSS	Ground connection for PLL2
L8	VSS_PLL3	VSS	Ground connection for PLL3
N9	VSS_PLL5	VSS	Ground connection for PLL5
D7	VSS_QUIET	VSS	Ground connection reference ground
M10	VSS_XTAL	VSS	Ground connection for XO
L3	VSSIO_PLL1	VSS	Ground connection for PLL1 clock driver
L7	VSSIO_PLL23	VSS	Ground connection for PLL23 clock driver
K8	VSSIO_REF	VSS	Ground connection for REF clock driver
M11	VSSIO_SYS	VSS	Ground connection for SYS clock driver
A12	VSUP_1P05	PS	Powers the Buck_V1P05 output driver
H13	VSUP_1P2	PS	Powers the Buck_V1P2 output driver
A4	VSUP_1P8	PS	Powers the Buck_V1P8 output driver
E13	VSUP_3P3	PS	Powers the Buck_V3P3 output driver
A8	VSUP_C	PS	Powers the Core output driver
H1	VSUP_G	PS	Powers the Graphic output driver
E12	VSUP1	PS	Powers all LDO cores
D12	VSUP2	PS	Powers the pass device of VINT and VLP regulator
F12	VSUP3	PS	Powers the pass device of RTC,V3P3_A, V2P5_A regulator
G2	VUNI	AIO	LDO_VUNI output node
L12	WAKE_B	DI	WAKE_B pin connection low active
N10	X1	AI	X1 pin connection
N12	X2	AIO	X2 pin connection

Table 4: DA6011 Pin out, alphabetic Ball name order

10.2 DA6011 169 pin BGA package

Map of ball allocations as seen from above the package.

Please note that this ball out is preliminary and is a matter of change

	1	2	3	4	5	6	7	8	9	10	11	12	13
A	VSS_1P8	VHS_1P8	VLS_1P8	VSUP_1P8	VSS_C	VHS_VCC	VLS_VCC	VSUP_C	VSS_1P05	VHS_1P05	VLS_1P05	VSUP_1P05	IREF
в	V1P8_S	V1P8	CS_1P8	VCC_S	CS_VCC	VCC_SENSE	VCC_VSS_S ENSE	CS_1P05	V1P05_S	VID[0]	VID[1]	VREF	V3P3_S
с	V1P8_IN	VIDEN[0]	VIDEN[1]	IO_RST_PLC _B	THRMTRIP_B	ADC_IN_3	ADC_IN_2	TEST	RESET_IN_B	VID[3]	VID[2]	VID[5]	V3P3_IN
D	V0P9S	PROCHOT_B	IRQ_B	IO_SLP_PLB _B	IO_RST_PLB _B	SLPMODE	VSS_QUIET	SMB_CLK	VID[4]	VID[6]	VLP	VSUP2	VINT
E	VDD_V0P9	V0P9R	V1P25_S	VDDC_V1P8	VSS	VSS	VSS	VSS	VSS	V3P3_RTC	V3P3_A	VSUP1	VSUP_3P3
F	VDD_V1P8	V1P05	V1P5_S	VDDC_VUNI	VSS	VSS	VSS	VSS	VSS	V3P3	V2P5_A	VSUP3	VLX_3P3
G	VDD_VUNI	VUNI	VNN_VSS_S ENSE	VNN_SENSE	VSS	VSS	VSS	VSS	VSS	SMB_DAT	V1P2	V1P2_IN	VSS_3P3
н	VSUP_G	IO_PWROK	RSTWARN	IO_RST_PLA _B	VSS	VSS	VSS	VSS	VSS	SYS	SLPRDY_B	V1P2_A	VSUP_1P2
J	VLX_VNN	PWRMODE[1]	PWRMODE[0]	IO_PWROK_ EN	VSS	VSS	VSS	VSS	VSS	VCCIO_SYS	PWRBTN_B	TDO	VLX_1P2
κ	VSS_G	TDI	RSMRST_B	PWRMODE[2]	VSS_PLL1	VCCIO_PLL2 3	VSS_PLL2	VSSIO_REF	VCCIO_REF	MCLK/ETH	PWROK	RSTRDY_B	VSS_1P2
L	TCLK	TMS	VSSIO_PLL1	VCCIO_PLL1	VCC_PLL1	VCC_PLL2	VSSIO_PLL2 3	VSS_PLL3	VCC_PLL3	VCC_PLL5	IO_SLP_PLC _B	WAKE_B	CTRL_V1P8_ S
м	100MHz1_B	100MHz2_B	100MHz3_B	100MHz4_B	100MHz5_B	100MHz6_B	DOT_B	SATA_B	USB	VSS_XTAL	VSSIO_SYS	RESET_B	REF
N	100MHz1	100MHz2	100MHz3	100MHz4	100MHz5	100MHz6	DOT	SATA	VSS_PLL5	X1	VCC_XTAL	X2	VDDIO

10.3 Component Marking

Every component will be marked according to the following:

- Product code DA6011, as referred to in the relevant purchase order.
- Dialog logo.
- Date of manufacture, in a four digit code of the form WWYY (e.g. 3504) or other codes as agreed upon.
- An identification index on the case to identify pin one.

DA6011

10.4 Package outline

10.5 Soldering profile

A PCBA reflow profile depends on the thermal mass of the entire populated board. The actual temperature used in the reflow oven is a function of:

- Solder paste types
- Board density
- Component location
- Component mass
- Board finish

The figure and table below show the recommended reflow profile condition for 3Sn/37Pb and lead free solder.

DA6011

Data Sheet

Rev. 1.2 — June 20, 2011

Drofilo Footuro	Pb-Free Assembly				
Prome reature	Large Body Small Body				
Average ramp-up rate	0 12 (an and an an				
(T _L to T _p)	2 C/second max.				
Preheat					
-Temperature Min (Ts _{min})	150°C 200°C				
-Temperature Max (Ts _{max})	60-120 seconds				
-Time (min to max) (ts)					
Time maintained above:					
-Temperature (T _L)	217℃ 60-150 seconds				
-Time (t _L)	00-100 3000103				
Peak Temperature (Tp)	245+5/-5°C				
Time within 5℃ of actual Peak	10-30 seconds				
Temperature (tp)	10-00 3600103				
Ramp-down Rate	3℃/second max.				
Time 25°C to Peak Temperature	8 minutes max.				

Note: 1.All temperatures refer to topside of the package, measured on the package body surface. 2.Depends on other parts on board density and follower solder paste manufacturer's guideline.

Appendix

DA6011 Component proposal

The proposal below includes components which are required by Intel[®] Atom[™] processor E6xx series as well as components required by DA6011. Components requested by the IO-Hubs are not covered in this proposal list.

Due to the extended temperature range, DA6011 capacitors are proposed in X7R quality. The E6xx processor required components are taken out of the E6xx processor Platform Design Guide

The list below is seen as proposal and no guarantee on completeness can be given.

	Stabilization							
	Capacitors	Domoin			tol		turo 0	
Intel		Domain	no	value	ιοι			
E6XX	VCC	VCC S	1	220uF	+20%		Cap AO	
			1	47u	±10%	16V	X7R	
			6	1u	±10%	6.3V	X5R	
				r r		- , -	SP Cap AO	
	VNN	VNN_S	1	220µF	±20%		Сар	
			1	47µ	±10%	16V	X7R	
			4	1µ	±10%	6,3V	X5R	
	VCCD	V1P05_S	10	1µ	±10%	6,3V	X5R	
	VCCQ		6	1µ	±10%	6,3V	X5R	
	VCCP		6	1µ	±10%	6,3V	X5R	
	VCCPA		4	1µ	±10%	6,3V	X5R	
	VCCPDDR		1	47pF	±5%		COG	
	VCCD_DPL		1	1µF	±10%	6,3V	X5R	
			1	120	0,5A			
	VCCQHPLL		1	100nF	±10%	16V	X7R	
			1	22µF	±20%	6,3V	X5R	
			1	120	0,5A			
	VCCA_PEG		6	1µF	±10%	6,3V	 X5R	
	LVD_VBG	V1P25_S	1	47pF	±5%		COG	
	VCCA	V1P5_S	4	1µ	±10%	6,3V	X5R	
			1	1µH	0,22A			
	VCC180	V1P8_S	3	1µ	±10%	6,3V	X5R	
	VCCD180		2	1µ	±10%	6,3V	X5R	
	VCCA180		1	10µF	±20%	6,3V	X5R	
			1	1,8µH	0,05A			
	VCCSFRDPLL		1	100nF	±10%	16V	X7R	
			1	120	0,5A			
	VCCSFR_EXP	-	1	100nF	±10%	16V	X7R	
	VCCSFRHPLL		1	1µ	±10%	6,3V	X5R	
			1	22µF	±20%	6,3V	X5R	
	VCCP33 V3P3_S		4	1µ	±10%	6,3V	X5R	
	VCCRTCEXT	V1P05	1	100nF	±10%	16V	X7R	
	VCC180SR	V1P8	1	1µ	±10%	6,3V	X5R	
	VCCP33SUS	V3P3	1	100nF	±10%	16V	X7R	
	VCCPSUS		1	100nF	±10%	16V	X7R	

© Dialog Semiconductor 2011. All rights reserved.

All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

DA6011

Data Sheet

Rev. 1.2 — June 20, 2011

I	DA6011		VOP9 S	1	10uF	+20%	6 3\/	X7R	
ļ	DAUUTI		V0P9R	1	1uF	+10%	6 3V	X7R	
			V1P05_S	1	47uF	+20%	6.3V	X7R	or
			VII 00_0	2	22µF	+20%	6.3V	X7R	or
				4	10uF	+20%	6.3V	X7R	
L			V1P2 S	1	4 7uF	+20%	6,3V	X7R	
I			V1P25 S	1	220nF	±20%	6.3\/	X7R	
			V1120_0	1	10uE	±20%	6.3V	X7R ¥7P	
I			V1P05	1	10µ1	<u>+10%</u>	6.21/	X7R	
I			VIEUS	1	тµг	±10 %	0,3 V	SP Can AO	
			V1P8	1	100µF	±20%		Cap	or
			-	2	47µF	±20%	6,3V	X7R	or
				4	22µF	±20%	6,3V	X7R	or
			-	8	10µF	±20%	6,3V	X7R	
								SP Cap AO	
			V3P3	1	220µF	±20%	6,3V	Cap	
			V1P2_A	1	220µF	±20%	6,3V	X7R	
l			V2P5_A	1	1µF	±10%	6,3V	X7R	
			V3P3_A	1	1µF	±10%	6,3V	X7R	
			V3P3_RTC	1	1µF	±10%	6,3V	X7R	
			VINT	1	1µF	±10%	6,3V	X7R	
			VLP	1	220nF	±10%	6,3V	X7R	
		Input							
		decoupling							
		Buck CORE	VCC S	2	10uF	±20%	6.3V	X7R	
		_	_	1	10µF	±20%	10V	X7R	
		Buck_GRAPHIC	VNN_S	1	10µF	±20%	10V	X7R	
		VDD_V0P9	V0P9_S	1	100nF	±10%	6,3V	X7R	
		Buck_V1P05	V1P05_S	2	10µF	±20%	6,3V	X7R	
				1	10			VID	
		Buck_V1P2			ιυμε	±20%	10V	X/R	
			VIP2_5	1	10μF 10μF	±20% ±20%	10V 10V	X7R X7R	
		VDD_V1P8	V1P2_5 V1P8_S	1 1	10μF 100nF	<u>+20%</u> +20% +10%	10V 10V 6,3V	X7R X7R X7R	
		VDD_V1P8 Buck_V1P8	V1P2_S V1P8_S V1P8	1 1 2	10μF 10μF 100nF 10μF	±20% ±20% ±10% ±20%	10V 10V 6,3V 6,3V	X7R X7R X7R X7R X7R	
		VDD_V1P8 Buck_V1P8	V1P2_S V1P8_S V1P8	1 1 2 1	10μF 10μF 100nF 10μF 10μF	+20% +20% +10% +20% +20%	10V 10V 6,3V 6,3V 10V	X7R X7R X7R X7R X7R X7R X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI	V1P2_S V1P8_S V1P8 V1P8	1 1 2 1 1	10μF 10μF 100nF 10μF 10μF 100nF	+20% +20% +10% +20% +20% +20%	10V 10V 6,3V 6,3V 10V 6,3V	X7R X7R X7R X7R X7R X7R X7R X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3	VIP2_S V1P8_S V1P8 VUNI V3P3	1 1 2 1 1 1 1	10μF 10μF 100nF 10μF 10μF 100nF 10μF	+20% +20% +10% +20% +20% +10% +20%	10V 10V 6,3V 6,3V 10V 6,3V 10V	X7R X7R X7R X7R X7R X7R X7R X7R X7R X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3 VSUP1	V1P2_S V1P8_S V1P8 VUNI V3P3	1 1 2 1 1 1 1 1 1	10μF 10μF 100nF 10μF 10μF 100nF 10μF 4,7μF	+20% +20% +10% +20% +20% +20% +20%	10V 10V 6,3V 6,3V 10V 6,3V 10V 10V	X7R X7R X7R X7R X7R X7R X7R X7R X7R X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3 VSUP1	VIP2_S V1P8_S V1P8 VUNI V3P3	1 2 1 1 1 1 1 1 1 1	10μF 10μF 10μF 10μF 10μF 10μF 10μF 4,7μF 100nF	±20% ±20% ±20% ±20% ±10% ±20% ±20% ±10%	10V 10V 6,3V 6,3V 10V 6,3V 10V 10V 10V	X7R X7R X7R X7R X7R X7R X7R X7R X7R X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3 VSUP1 VSUP2	VIP2_S V1P8_S V1P8 VUNI V3P3	1 2 1 1 1 1 1 1 1 1 1 1	10μF 10μF 10μF 10μF 10μF 10μF 10μF 4,7μF 100nF 4,7μF	±20% ±20% ±20% ±20% ±20% ±20% ±20% ±20%	10V 10V 6,3V 6,3V 10V 6,3V 10V 10V 10V 10V	X7R X7R X7R X7R X7R X7R X7R X7R X7R X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3 VSUP1 VSUP2	VIP2_S V1P8_S V1P8 VUNI V3P3	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	10μF 10μF 10μF 10μF 10μF 10μF 4,7μF 100nF 4,7μF 100nF	±20% ±20% ±20% ±20% ±10% ±20% ±20% ±10% ±20%	10V 10V 6,3V 6,3V 10V 6,3V 10V 10V 10V 10V 10V	X7R X7R X7R X7R X7R X7R X7R X7R X7R X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3 VSUP1 VSUP2 VSUP3	VIP2_S V1P8_S V1P8 VUNI V3P3	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	10μF 10μF 10μF 10μF 10μF 10μF 10μF 4,7μF 100nF 4,7μF 100nF 4,7μF	+20% +20% +20% +20% +20% +20% +20% +20%	10V 10V 6,3V 6,3V 10V 6,3V 10V 10V 10V 10V 10V 10V	X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3 VSUP1 VSUP2 VSUP3	VIP2_S V1P8_S V1P8 VUNI V3P3	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	10μF 10μF 10μF 10μF 10μF 10μF 10μF 4,7μF 100nF 4,7μF 100nF 4,7μF 100nF	+20% +20% +20% +20% +20% +20% +20% +20%	10V 10V 6,3V 6,3V 10V 6,3V 10V 10V 10V 10V 10V 10V 10V	X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3 VSUP1 VSUP2 VSUP3 VCC_PLL1	VIP2_S V1P8_S V1P8 VUNI V3P3 VINT	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	10μF 10μF 10μF 10μF 10μF 10μF 10μF 4,7μF 100nF 4,7μF 100nF 4,7μF 100nF 4,7μF	+20% +20% +20% +20% +20% +20% +20% +20%	10V 10V 6,3V 6,3V 10V 6,3V 10V 10V 10V 10V 10V 10V 10V 10V 10V 0,3V	X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3 VSUP1 VSUP2 VSUP3 VCC_PLL1	VIP2_S V1P8_S V1P8 VUNI V3P3 VINT	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	10μF 4,7μF 100nF 4,7μF 100nF 4,7μF 100nF 4,7μF 100nF 4,7μF 100nF 4,7μF 100nF	+20% +20% +20% +20% +20% +20% +20% +20%	10V 10V 6,3V 6,3V 10V 6,3V 10V 10V 10V 10V 10V 10V 10V 10	X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3 VSUP1 VSUP2 VSUP3 VCC_PLL1 VCC_PLL2	VIP2_S V1P8_S V1P8 VUNI V3P3 VINT VINT	1 1 2 1	10μF 4,7μF 100nF 4,7μF 100nF 4,7μF 100nF 4,7μF 100nF 100nF 100nF 100nF 100nF	+20% +20% +20% +20% +20% +20% +20% +20%	10V 10V 6,3V 6,3V 10V 6,3V 10V 10V 10V 10V 10V 10V 10V 10V 10V 6,3V 6,3V 6,3V	X7R	
		VDD_V1P8 Buck_V1P8 VDD_UNI Buck_V3P3 VSUP1 VSUP2 VSUP3 VCC_PLL1 VCC_PLL2 VCC_PLL3	VIP2_S V1P8_S V1P8 VUNI V3P3 VINT VINT VINT	1 2 1	10μF 4,7μF 100nF 4,7μF 100nF 4,7μF 100nF 4,7μF 100nF 100nF 100nF 100nF 100nF	±20% ±20% ±20% ±20% ±20% ±20% ±20% ±10% ±20% ±10% ±20% ±10% ±10% ±10% ±10%	10V 10V 6,3V 6,3V 10V 6,3V 10V 10V 10V 10V 10V 10V 10V 10	X7R X7R	

© Dialog Semiconductor 2011. All rights reserved. All brand and product names are trademarks or service marks of their respective owners. Printed in Europe.

DA6011

Data Sheet

Rev. 1.2 — June 20, 2011

VCCIO_PLL1	V1P8	1	4,7µF	±20%	6,3V	X7R	
		1	100nF	±10%	6,3V	X7R	
VCCIO_PLL23	V1P8	1	100nF	±10%	6,3V	X7R	
VCCIO_REF	V3P3_S*	1	4,7µF	±20%	6,3V	X7R	
		1	100nF	±10%	6,3V	X7R	
VCCIO_SYS	V3P3_S or VUNI*	1	100nF	±10%	6,3V	X7R	
VREF		1	100nF	±10%	6,3V	X7R	
		2	5,6pF	±5%		NP0	
Resistors							
	VCC_S, V1P05_S,						
Gate Resistors	V1P8	6	010Ω	±1%			
IREF		2	100kΩ	±1%			
	VCC S	5	100Ω	±1%			
Resistors for	VNN_S	1	10Ω	±1%			
sensing	V1P05_S	2	383Ω	±1%			
Pull-up	V1P05_S	1	10kΩ	±5%		PROCHOT_B	
Pull-up	V1P05_S	1	10kΩ	±5%		THERMTRIP_B	
Current measurement	VCC_S, V1P05_S, V1P8	3	10mΩ	±1%			
Inductors							
	VCC_S, V1P05_S, V1P8	3	1,5µH	±20%	~50mΩ	Saturation current ≥8A	
	VNN_S, V1P2	2	1,5µH	±20%	~50mΩ	Saturation current ≥3A	
	V3P3	1	4,7µH	±20%	~50mΩ	Saturation current ≥3A	
FETs							
	VCC_S, V1P05_S, V1P8	3	SI 7540DP μPA1890 μPA2792 FDS8858CZ				
Crystal					-		
		1	14,31818 MHz				

* application depending

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Dialog Semiconductor:

<u>DA6011-00HDA1</u> <u>DA6011-00HDA2</u> <u>DA6011-02HDA1</u> <u>DA6011-02HDA2</u> <u>DA6011-04HDA1</u> <u>DA6011-04HDA1</u> <u>DA6011-04HDA2</u> DA6011-05HDA1 DA6011-05HDA2