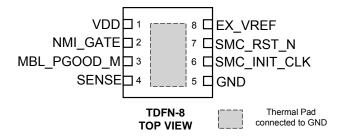


## SLG7NT4505 GreenPAK<sup>™</sup>

## 1 Hz Interrupt Generator


#### **General Description**

Silego GreenPAK SLG7NT4505 is a low power and small form device. The SoC is housed in a 2mm x 2mm TDFN package which is optimal for using with small devices.

#### **Features**

- Low Power Consumption
- 3.3V Supply
- Pb-Free / RoHS Compliant
- Halogen-Free
- TDFN-8 Package

### **Pin Configuration**



#### **Output Summary**

• 2 Outputs — Open Drain NMOS 1X





**Pin Configuration** 

| Pin #                 | Pin Name     | Туре                   | Pin Description                       |
|-----------------------|--------------|------------------------|---------------------------------------|
| 1                     | VDD          | Power                  | 3.3V Supply Voltage                   |
| 2                     | NMI_GATE     | Digital Input          | Digital Input without Schmitt trigger |
| 3                     | MBL_PGOOD_MR | Digital Input          | Digital Input without Schmitt trigger |
| 4                     | SENSE        | Analog<br>Input/Output | Analog Input/Output                   |
| 5                     | GND          | GND                    | Ground                                |
| 6                     | SMC_INIT_CLK | Digital Output         | Open Drain NMOS 1X                    |
| 7                     | SMC_RST_N    | Digital Output         | Open Drain NMOS 1X                    |
| 8                     | EX_VREF      | Analog<br>Input/Output | Analog Input/Output                   |
| Exposed<br>Bottom Pad | GND          | GND                    | Ground                                |

**Ordering Options & Configuration** 

| oracinig options a comigaration |                                         |  |  |  |  |  |  |  |
|---------------------------------|-----------------------------------------|--|--|--|--|--|--|--|
| Part Number                     | Package Type                            |  |  |  |  |  |  |  |
| SLG7NT4505V                     | V = TDFN-8                              |  |  |  |  |  |  |  |
| SLG7NT4505VTR                   | VTR = TDFN-8 – Tape and Reel (3k units) |  |  |  |  |  |  |  |



**Absolute Maximum Ratings** 

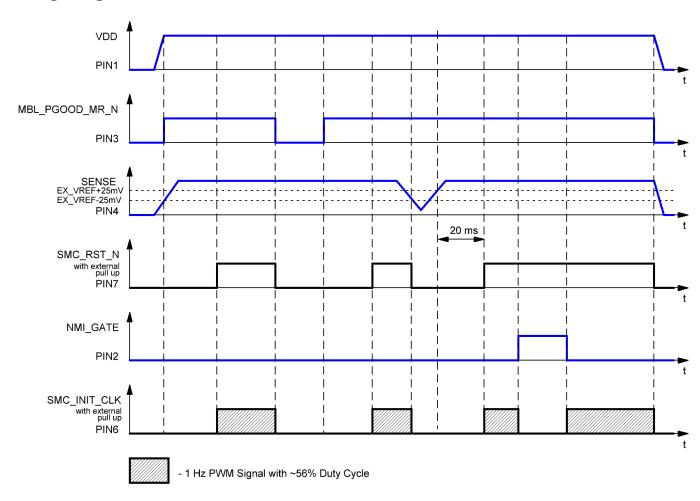
| Parameter                 | Min. | Max. | Unit |
|---------------------------|------|------|------|
| V <sub>DD</sub> to GND    | -0.3 | 4.6  | V    |
| Voltage at input pins     | -0.3 | 4.6  | ٧    |
| Current at input pin      | -1.0 | 1.0  | mA   |
| Storage temperature range | -65  | 150  | °C   |
| Junction temperature      |      | 150  | °C   |
| ESD Human Body Model      | 2000 |      | V    |
| ESD Machine Model         | 200  |      | V    |

#### **Electrical Characteristics**

| Symbol                | Parameter                                                  | Condition / Note                              | Min  | Тур | Max  | Unit |
|-----------------------|------------------------------------------------------------|-----------------------------------------------|------|-----|------|------|
| $V_{DD}$              | Supply Voltage                                             |                                               | 3.0  | 3.3 | 3.6  | V    |
| IQ                    | Quiescent Current                                          | Static inputs and outputs                     |      | 30  |      | μA   |
| T <sub>A</sub>        | Operating temperature                                      |                                               | -40  | 25  | 85   | °C   |
| $V_{AIR}$             | Analog Input Voltage Range                                 |                                               | 0    |     | 2.2  | V    |
| Vo                    | Maximal Voltage Applied to any PIN in High-Impedance State |                                               |      |     | VDD  | V    |
| lo                    | Maximal Average or DC Current (note 1)                     | Per Each Chip Side                            |      |     | 24   | mA   |
| V <sub>IH</sub>       | HIGH-Level Input Voltage                                   | Logic Input                                   | 1.6  |     |      | V    |
| $V_{IL}$              | LOW-Level Input Voltage                                    | Logic Input                                   |      |     | 0.95 | V    |
| $V_{OL}$              | LOW-Level Output Voltage (note 1)                          | Push-Pull , Open Drain Logic<br>Level Outputs | 0    |     | 0.4  | V    |
| I <sub>IH</sub>       | HIGH-Level Input Current                                   | Logic Input Pins;V <sub>IN</sub> = VDD        | -100 |     | 100  | nA   |
| I <sub>IL</sub>       | LOW-Level Input Current                                    | Logic Input Pins; V <sub>IN</sub> = 0V        | -100 |     | 100  | nA   |
| I <sub>OL</sub>       | LOW-Level Output Current (note 1)                          | Open Drain, 1X Driver                         |      | 20  |      | mA   |
| $V_{OFFSET}$          | Analog Comparator Offset Voltage                           | Analog Comparator 0                           |      | ±20 |      | mV   |
| $V_{HYST}$            | Analog Comparator Hysteresis Voltage (note 1)              | ACMP 0                                        |      | 50  |      | mV   |
| $R_{\text{PULL\_UP}}$ | Internal Pull Up Resistance                                | Pull up on PIN3                               | 80   | 100 | 120  | kΩ   |
| T <sub>DLY0</sub>     | Time Delay0                                                | Delay0                                        | 16   | 20  | 24   | ms   |
| T <sub>DLY2</sub>     | Time Delay2                                                | Delay2                                        | 1.6  | 2.0 | 2.4  | ms   |
| T <sub>SU</sub>       | Start Up Time                                              | After VDD reaches 2.5V                        |      | 7   |      | ms   |

<sup>1.</sup> Guaranteed by Design.

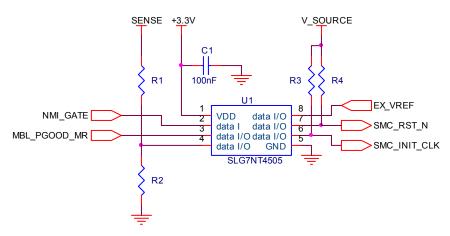





#### **Description**

This is a special oscillator with supervisor system. Three inputs are used to control the oscillator. SENSE (PIN4) controls the voltage supply of the chip. If supply voltage decreases down to the threshold set by EX\_VREF (PIN8), the chip disables the oscillator and sets SMC\_INICK to LOW. When the voltage is bigger than threshold set by EX\_VREF is detected on the SENSE pin, SMC\_RST\_N (PIN7) is set to HIGH with 20 ms delay and enables the oscillator. MBL\_PWRGD\_MR\_N (PIN3) is used for manual reset of SMC\_RST\_N. Use NMI\_GATE (NMI\_GATE) to disable the oscillator.

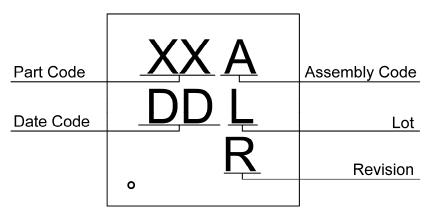



## **Timing Diagram**








## **Typical Application Circuit**



## **SLG7NT4505**

# 1 Hz Interrupt Generator

## **Package Top Marking**

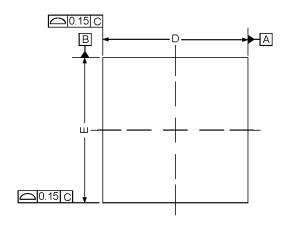


XX - Part Code Field: identifies the specific device configuration

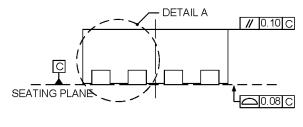
A – Assembly Code Field: Assembly Location of the device.
DD – Date Code Field: Coded date of manufacture

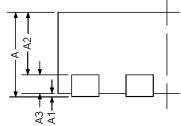
L - Lot Code: Designates Lot #

R - Revision Code: Device Revision


| Datasheet<br>Revision | Programming Code Number | Part Code | Revision | Date       |  |
|-----------------------|-------------------------|-----------|----------|------------|--|
| 1.0                   | 001                     | YP        | Α        | 01/15/2015 |  |

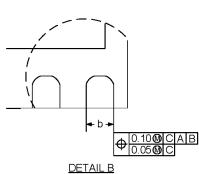






## **Package Drawing and Dimensions**

## **TDFN-8 Package**





| Symbol | Min<br>(mm) | NOM<br>(mm) | Max<br>(mm) |
|--------|-------------|-------------|-------------|
| Α      | 0.70        | 0.75        | 0.80        |
| A1     | 0.00        |             | 0.05        |
| A2     |             | 0.55        |             |
| А3     |             | 0.20        |             |
| b      | 0.20        | 0.25        | 0.30        |
| D      | 1.90        | 2.00        | 2.10        |
| D2     | 1.50        | 1.60        | 1.70        |
| Е      | 1.90        | 2.00        | 2.10        |
| E2     | 0.80        | 0.90        | 1.00        |
| е      |             | 0.50 BSC    |             |
| L      | 0.20        | 0.30        | 0.40        |

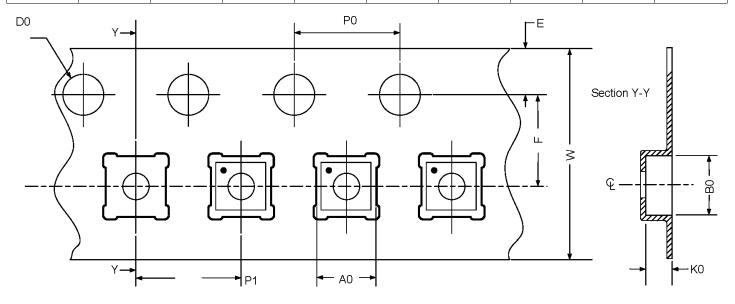




**DETAIL A** 








### **Tape and Reel Specification**

|                        | # of | Dackade  | Max Units |         | Reel &           | Trailer A |                | Leader B |                | Pocket (mm) |       |
|------------------------|------|----------|-----------|---------|------------------|-----------|----------------|----------|----------------|-------------|-------|
| Package Type           | Pins |          | per reel  | per box | Hub Size<br>(mm) | Pockets   | Length<br>(mm) | Pockets  | Length<br>(mm) | Width       | Pitch |
| TDFN 8L<br>2x2mm Green | 8    | 2x2x0.75 | 3000      | 3000    | 178/60           | 100       | 400            | 100      | 400            | 8           | 4     |

## **Carrier Tape Drawing and Dimensions**

| Package<br>Type           | Pocket<br>BTM<br>Length<br>(mm) | Pocket<br>BTM Width<br>(mm) | Pocket<br>Depth<br>(mm) | Index Hole<br>Pitch<br>(mm) | Pocket<br>Pitch<br>(mm) | Index Hole<br>Diameter<br>(mm) | Index Hole<br>to Tape<br>Edge<br>(mm) | Index Hole<br>to Pocket<br>Center<br>(mm) | Tape Width (mm) |
|---------------------------|---------------------------------|-----------------------------|-------------------------|-----------------------------|-------------------------|--------------------------------|---------------------------------------|-------------------------------------------|-----------------|
|                           | Α0                              | В0                          | K0                      | P0                          | P1                      | D0                             | E                                     | F                                         | w               |
| TDFN 8L<br>2x2mm<br>Green | 2.3                             | 2.3                         | 1.05                    | 4                           | 4                       | 1.55                           | 1.75                                  | 3.5                                       | 8               |



## **Recommended Reflow Soldering Profile**

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.00 mm<sup>3</sup> (nominal). More information can be found at <a href="https://www.jedec.org">www.jedec.org</a>.



### **SLG7NT4505**

### 1 Hz Interrupt Generator

#### Silego Website & Support

#### Silego Technology Website

Silego Technology provides online support via our website at <a href="http://www.silego.com/">http://www.silego.com/</a>. This website is used as a means to make files and information easily available to customers.

For more information regarding Silego Green products, please visit:

http://greenpak.silego.com/

http://greenpak2.silego.com/

http://greenpak3.silego.com/

http://greenfet.silego.com/

http://greenfet2.silego.com/

http://greenclk.silego.com/

Products are also available for purchase directly from Silego at the Silego Online Store at http://www.silego.com/

#### Silego Technical Support

Datasheets and errata, application notes and example designs, user guides, and hardware support documents and the latest software releases are available at the Silego website or can be requested directly at info@silego.com.

For specific GreenPAK design or applications questions and support please send e-mail requests to GreenPAK@silego.com

Users of Silego products can receive assistance through several channels:

#### **Online Training**

Silego Technology has live training assistance and sales support available at <a href="http://www.silego.com/">http://www.silego.com/</a>. Please contact us to schedule a 1 on 1 training session with one of our application engineers.

#### **Contact Your Local Sales Representative**

Customers can contact their local sales representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. More information regarding your local representative is available at the Silego website or send a request to info@silego.com

#### **Contact Silego Directly**

Silego can be contacted directly via e-mail at <a href="mailto:info@silego.com">info@silego.com</a> or user submission form, located at the following URL: <a href="http://support.silego.com/">http://support.silego.com/</a>

#### Other Information

The latest Silego Technology press releases, listing of seminars and events, listings of worldwide Silego Technology offices and representatives are all available at http://www.silego.com/

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE

SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. SILEGO TECHNOLOGY DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. SILEGO TECHNOLOGY RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

**Dialog Semiconductor:** 

SLG7NT4505V

Silego:

SLG7NT4505VTR