Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

R8C/14 Group, R8C/15 Group

Hardware Manual

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / R8C/Tiny SERIES

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Technology Corp. without notice. Please review the latest information published by Renesas Technology Corp. through various means, including the Renesas Technology Corp. website (http://www.renesas.com).

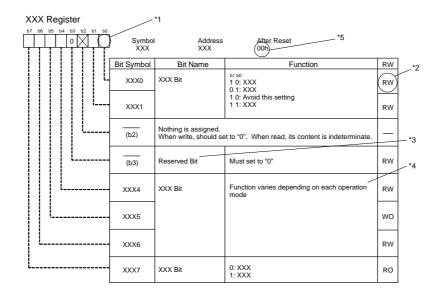
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

How to Use This Manual


1. Introduction

This hardware manual provides detailed information on the R8C/14 Group, R8C/15 Group of microcomputers.

Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

*1

Blank:Set to "0" or "1" according to the application

- 0: Set to "0"
- 1: Set to "1"
- X: Nothing is assigned

*2

RW: Read and write

RO: Read only

WO: Write only

-: Nothing is assigned

*3

•Reserved bit

Reserved bit. Set to specified value.

*1

Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

•Do not set to this value

The operation is not guaranteed when a value is set.

•Function varies depending on mode of operation

Bit function varies depending on peripheral function mode.

Refer to respective register for each mode.

*5

Follow the text in each manual for binary and hexadecimal notations.

3. M16C Family Documents

The following documents were prepared for the M16C family.(1)

Document	Contents	
Short Sheet	Hardware overview	
Data Sheet	Hardware overview and electrical characteristics	
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral specifications, electrical characteristics, timing charts). *Refer to the application note for how to use peripheral functions.	
Software Manual	Detailed description of assembly instructions and microcomputer performance of each instruction	
Application Note • Usage and application examples of peripheral functions • Sample programs • Introduction to the basic functions in the M16C family • Programming method with Assembly and C languages		
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.	

NOTES:

1. Before using this material, please visit the our website to verify that this is the most updated document available.

Table of Contents

SI	FR Pa	ge F	Reference	B - 1
1.	Ove	ervie	∌W	1
	1.1	Ар	plications	1
	1.2	Pe	rformance Overview	2
	1.3	Blo	ock Diagram	4
	1.4	Pro	oduct Information	5
	1.5	Pin	Assignments	7
	1.6	Pin	Description	8
2.	Cei	ntral	Processing Unit (CPU)	10
	2.1	Da	ta Registers (R0, R1, R2 and R3)	11
	2.2	Ad	dress Registers (A0 and A1)	11
	2.3	Fra	ame Base Register (FB)	11
	2.4	Inte	errupt Table Register (INTB)	11
	2.5	Pro	ogram Counter (PC)	11
	2.6	Us	er Stack Pointer (USP) and Interrupt Stack Pointer (ISP)	11
	2.7	Sta	atic Base Register (SB)	11
	2.8	Fla	g Register (FLG)	11
	2.8	.1	Carry Flag (C)	11
	2.8	.2	Debug Flag (D)	11
	2.8	.3	Zero Flag (Z)	11
	2.8	.4	Sign Flag (S)	11
	2.8	.5	Register Bank Select Flag (B)	11
	2.8	.6	Overflow Flag (O)	11
	2.8	.7	Interrupt Enable Flag (I Flag)	12
	2.8	.8	Stack Pointer Select Flag (U Flag)	12
	2.8	.9	Processor Interrupt Priority Level (IPL)	12
	2.8	.10	Reserved Bit	12
3.	Me	mor	у	13
	3.1	R8	C/14 Group	13
	3.2 R8		C/15 Group	14

4.	. Special Function Register (SFR) 15				
5.	Res	et	19		
	5.1	Hardware Reset	21		
	5.1.	1 When the power supply is stable	21		
	5.1.	2 Power on	21		
	5.2	Power-On Reset Function	23		
	5.3	Voltage Monitor 1 Reset	24		
	5.4	Voltage Monitor 2 Reset	24		
	5.5	Watchdog Timer Reset	24		
	5.6	Software Reset	24		
6.	Volt	age Detection Circuit	25		
	6.1	Monitoring VCC Input Voltage	31		
	6.1.	1 Monitoring Vdet1	31		
	6.1.	2 Monitoring Vdet2	31		
	6.2	Voltage Monitor 1 Reset	32		
	6.3	Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset	33		
7.	Pro	cessor Mode	35		
	7.1	Types of Processor Mode	35		
8.	Bus		37		
9.	Clo	ck Generation Circuit	38		
	9.1	Main Clock	45		
	9.2	On-Chip Oscillator Clock	46		
	9.2.	1 Low-Speed On-Chip Oscillator Clock	46		
	9.2.	2 High-Speed On-Chip Oscillator Clock	46		
	9.3	CPU Clock and Peripheral Function Clock	47		
	9.3.	1 System Clock	47		
	9.3.	2 CPU Clock	47		
	9.3.	Peripheral Function Clock (f1, f2, f4, f8, f32)	47		
	9.3.	4 fRING and fRING128	47		
	9.3.	5 fRING-fast	47		
	9.3.	6 fRING-S	47		
	0.4	Dower Control	40		

	9.4.1	Normal Operating Mode	48
	9.4.2	Wait Mode	49
	9.4.3	Stop Mode	51
9.	.5 Os	cillation Stop Detection Function	53
	9.5.1	How to Use Oscillation Stop Detection Function	53
10.	Protect	ion	55
11.	Interrup	ot	56
1	1.1 Inte	errupt Overview	56
	11.1.1	Types of Interrupts	56
	11.1.2	Software Interrupts	57
	11.1.3	Special Interrupts	58
	11.1.4	Peripheral Function Interrupt	58
	11.1.5	Interrupts and Interrupt Vector	59
	11.1.6	Interrupt Control	61
1	1.2 ĪN7	Interrupt	69
	11.2.1	INTO Interrupt	69
	11.2.2	INTO Input Filter	70
	11.2.3	INT1 Interrupt	71
	11.2.4	INT3 Interrupt	72
1	1.3 Ke	y Input Interrupt	74
1	1.4 Ad	dress Match Interrupt	76
12.	Watcho	dog Timer	78
1:	2.1 Wh	nen Count Source Protection Mode Disabled	81
1:	2.2 Wh	nen Count Source Protection Mode Enabled	82
13.	Timers		83
1:	3.1 Tin	ner X	84
	13.1.1	Timer Mode	87
	13.1.2	Pulse Output Mode	88
	13.1.3	Event Counter Mode	90
	13.1.4	Pulse Width Measurement Mode	92
	13.1.5	Pulse Period Measurement Mode	95
1:	3.2 Tin	ner Z	98
	13.2.1	Timer Mode	103

	13.	2.2	Programmable Waveform Generation Mode	105
	13.	2.3	Programmable One-shot Generation Mode	108
	13.	2.4	Programmable Wait One-shot Generation Mode	111
1	3.3	Tin	ner C	115
	13.	3.1	Input Capture Mode	121
	13.	3.2	Output Compare Mode	123
14.	Sei	ial I	nterface	125
1	4.1	Clo	ck Synchronous Serial I/O Mode	130
	14.	1.1	Polarity Select Function	133
	14.	1.2	LSB First/MSB First Select Function	133
	14.	1.3	Continuous Receive Mode	134
1	4.2	Clo	ck Asynchronous Serial I/O (UART) Mode	135
	14.	2.1	CNTR0 Pin Select Function	138
	14.	2.2	Bit Rate	139
15.	Clo	ck S	Synchronous Serial I/O with Chip Select (SSU)	140
1	5.1	Tra	nsfer Clock	149
	15.	1.1	Association between Transfer Clock Polarity, Phase and Data	149
1	5.2	SS	Shift Register (SSTRSR)	151
	15.	2.1	Association between Data I/O Pin and SS Shift Register	151
1	5.3	Inte	errupt Requests	152
1	5.4	Co	mmunication Modes and Pin Functions	153
1	5.5	Clo	ck Synchronous Communication Mode	154
	15.	5.1	Initialization in Clock Synchronous Communication Mode	154
	15.	5.2	Data Transmit	155
	15.	5.3	Data Receive	157
	15.	5.4	Data Transmit/Receive	159
1	5.6	Ор	eration in 4-Wire Bus Communication Mode	161
	15.	6.1	Initialization in 4-Wire Bus Communication Mode	161
	15.	6.2	Data Transmit	163
	15.	6.3	Data Receive	165
	15.	6.4	SCS Pin Control and Arbitration	167
16.	A/D) Co	nverter	168
1	61	On	e-Shot Mode	172

1	6.2	Re	peat Mode	174
1	6.3	Sa	mple and Hold	176
1	6.4	A/E	Conversion Cycles	176
1	6.5	Inte	ernal Equivalent Circuit of Analog Input	177
1	6.6	Infl	ow Current Bypass Circuit	178
17.	Pro	graı	mmable I/O Ports	179
1	7.1	Fui	nctions of Programmable I/O Ports	179
1	7.2	Eff	ect on Peripheral Functions	179
1	7.3	Pin	s Other than Programmable I/O Ports	179
1	7.4	Po	rt setting	186
1	7.5	Un	assigned Pin Handling	190
18.	Flas	sh N	Memory Version	191
1	8.1	Ov	erview	191
1	8.2	Ме	mory Map	193
1	8.3	Fui	nctions To Prevent Flash Memory from Rewriting	195
	18.3	3.1	ID Code Check Function	195
	18.3	3.2	ROM Code Protect Function	196
1	8.4	СР	U Rewrite Mode	197
	18.4	1.1	EW0 Mode	198
	18.4	1.2	EW1 Mode	198
	18.4	1.3	Software Commands	205
	18.4	1.4	Status Register	209
	18.4	1.5	Full Status Check	210
1	8.5	Sta	andard Serial I/O Mode	212
	18.5	5.1	ID Code Check Function	212
1	8.6	Pa	rallel I/O Mode	216
	18.6	3.1	ROM Code Protect Function	216
19.	Elec	ctric	cal Characteristics	217
20.	Pre	cau	tions	235
2	0.1	Sto	pp Mode and Wait Mode	235
	20.1	1.1	Stop Mode	235
	20.1	1.2	Wait Mode	235
2	0.2	Inte	errupts	236

20.	2.1	Reading Address 00000h	236
20.	2.2	SP Setting	236
20.	2.3	External Interrupt and Key Input Interrupt	236
20.	2.4	Watchdog Timer Interrupt	236
20.	2.5	Changing Interrupt Factor	237
20.	2.6	Changing Interrupt Control Register	238
20.3	Clo	ck Generation Circuit	239
20.	3.1	Oscillation Stop Detection Function	239
20.	3.2	Oscillation Circuit Constants	239
20.4	Tim	ners	240
20.	4.1	Timers X and Z	240
20.	4.2	Timer X	240
20.	4.3	Timer Z	241
20.	4.4	Timer C	241
20.5	Ser	ial Interface	242
20.6	Clo	ck Synchronous Serial I/O (SSU) with Chip Select	243
20.	6.1	Access Registers Associated with SSU	243
20.7	A/D	Converter	244
20.8	Flas	sh Memory Version	245
20.	8.1	CPU Rewrite Mode	245
20.9	Noi	se	248
20.9	9.1	Insert a bypass capacitor between VCC and VSS pins as the countermeasures against noise and latch-up	248
20.	9.2	Countermeasures against Noise Error of Port Control Registers	248
21. Pre	caut	tion for On-chip Debugger	249
Append	ix 1.	Package Dimensions	250
Append	ix 2.	Connecting Example between Serial Writer and On-Chip Debugging Emulator	o 251
Append	ix 3.	Example of Oscillation Evaluation Circuit	252
Registe	r Ind	ex	253

SFR Page Reference

	Register	Symbol	Page
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	35
0005h	Processor Mode Register 1	PM1	36
0006h	System Clock Control Register 0	CM0	40
0007h	System Clock Control Register 1	CM1	41
0008h		-	
0009h	Address Match Interrupt Enable Register	AIER	77
000Ah	Protect Register	PRCR	55
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	42
000Dh	Watchdog Timer Reset Register	WDTR	80
000Eh	Watchdog Timer Start Register	WDTS	80
000Fh	Watchdog Timer Control Register	WDC	79
0010h	Address Match Interrupt Register 0	RMAD0	77
0011h			
0012h			
0013h		51415	
0014h	Address Match Interrupt Register 1	RMAD1	77
0015h			
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	80
001Dh			
001Eh	INT0 Input Filter Select Register	INT0F	69
001Fh			
0020h	High-Speed On-Chip Oscillator Control	HRA0	43
	Register 0		
0021h	High-Speed On-Chip Oscillator Control Register 1	HRA1	44
0022h	High-Speed On-Chip Oscillator Control Register 2	HRA2	44
0023h	,		
0024h			
0025h			
0026h			
0027h			
0028h			
0029h		1	
002Ah			
002Ah 002Bh			
002Ah 002Bh 002Ch			
002Ah 002Bh 002Ch 002Dh			
002Ah 002Bh 002Ch 002Dh 002Eh			
0029h 002Ah 002Bh 002Ch 002Dh 002Eh 002Fh			
002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h	Voltage Detection Register 1	VCA1	28
002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h	Voltage Detection Register 1 Voltage Detection Register 2		
002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h 0031h	Voltage Detection Register 1 Voltage Detection Register 2	VCA1 VCA2	28 28
002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h 0031h 0032h			
002Ah 002Bh 002Ch 002Ch 002Eh 002Fh 0030h 0031h 0032h 0033h			
002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h 0031h 0032h 0033h 0034h	Voltage Detection Register 2	VCA2	28
002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h 0031h 0032h 0033h 0034h 0035h	Voltage Detection Register 2 Voltage Monitor 1 Circuit Control Register	VCA2	28
002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h 0031h 0032h 0033h 0034h 0035h 0036h	Voltage Detection Register 2	VCA2	28
002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0031h 0032h 0033h 0034h 0035h 0036h	Voltage Detection Register 2 Voltage Monitor 1 Circuit Control Register	VCA2	28
002Ah 002Bh 002Ch 002Dh 002Eh 002Eh 0030h 0031h 0032h 0033h 0034h 0035h 0036h 0037h	Voltage Detection Register 2 Voltage Monitor 1 Circuit Control Register	VCA2	28
002Ah 002Bh 002Ch 002Ch 002Dh 002Fh 0030h 0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h	Voltage Detection Register 2 Voltage Monitor 1 Circuit Control Register	VCA2	28
002Ah 002Bh 002Ch 002Ch 002Ph 002Fh 0030h 0031h 0032h 0033h 0034h 0035h 0037h 0038h 0038h 0038h 0038h	Voltage Detection Register 2 Voltage Monitor 1 Circuit Control Register	VCA2	28
002Ah 002Bh 002Ch 002Ch 002Ch 002Fh 0031h 0031h 0033h 0034h 0035h 0036h 0036h 0036h 0036h 0036h	Voltage Detection Register 2 Voltage Monitor 1 Circuit Control Register	VCA2	28
002Ah 002Bh 002Ch 002Ch 002Dh 002Fh 0030h 0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h	Voltage Detection Register 2 Voltage Monitor 1 Circuit Control Register	VCA2	28

Address	Register	Symbol	Page
0040h	register	Cymbol	, age
0041h			-
0042h			+
0043h			
0044h			+
0045h			
0046h			
0047h			1
0048h			
0049h			
004Ah			
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	61
004Eh	A/D Conversion Interrupt Control Register	ADIC	61
004Fh	SSU Interrupt Control Register	SSUAIC	61
0050h	Compare 1 Interrupt Control Register	CMP1IC	61
0051h	UART0 Transmit Interrupt Control Register	S0TIC	61
0052h	UARTO Receive Interrupt Control Register	S0RIC	61
0053h	·		
0054h			
0055h			
0056h	Timer X Interrupt Control Register	TXIC	61
0057h			
0058h	Timer Z Interrupt Control Register	TZIC	61
0059h	INT1 Interrupt Control Register	INT1IC	61
005Ah	INT3 Interrupt Control Register	INT3IC	61
005Bh	ı	TCIC	61
005Ch	Timer C Interrupt Control Register	CMP0IC	61
	Compare 0 Interrupt Control Register	INTOIC	62
005Dh	INTO Interrupt Control Register	INTOIC	62
005Eh			
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh 006Ch			
006Ch		+	1
006Eh		+	1
006Eh		+	1
0070h		+	
0070h		+	
0071h		+	
0072H			
0073H		+	
0074H		+	+
0075h			+
0070H		+	+
0077H			+
0079h			
0073h			+
007An		+	†
007Ch			+
007Dh		+	†
007Eh		+	†
007EH			+
33.111		I	<u> </u>

NOTES:

 Blank columns are all reserved space. No access is allowed.

Address	Register	Symbol	Page
0080h	Timer Z Mode Register	TZMR	99
0081h			
0082h			
0083h			
0084h	Timer Z Waveform Output Control Register	PUM	101
0085h	Prescaler Z	PREZ	100
0086h	Timer Z Secondary	TZSC	100
0087h		TZPR	100
	Timer Z Primary	IZPR	100
0088h			
0089h			
008Ah	Timer Z Output Control Register	TZOC	101
008Bh	Timer X Mode Register	TXMR	85
008Ch	Prescaler X	PREX	86
008Dh	Timer X	TX	86
008Eh	Timer Count Source Set Register	TCSS	86,102
008Fh			
0090h	Timer C	TC	117
0091h		1.0	'''
0091h		1	
		-	
0093h		1	
0094h			.
0095h			1
0096h	External Input Enable Register	INTEN	69
0097h			
0098h	Key Input Enable Register	KIEN	75
0099h			
009Ah	Timer C Control Register 0	TCC0	118
009Bh	Timer C Control Register 1	TCC1	119
009Ch	Capture, Compare 0 Register	TM0	117
009Dh	Capitalo, Comparo o regiotor		1
009Eh	Compare 1 Register	TM1	117
	Compare i Negisiei	1 101 1	111/
009Fh	LIADTO Transmit/Dessitut Adulta Dessitut	HOME	400
00A0h	UARTO Transmit/Receive Mode Register	U0MR	128
00A1h	UARTO Bit Rate Register	U0BRG	127
00A2h	UART0 Transmit Buffer Register	U0TB	127
00A3h			
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	128
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	129
00A6h	UART0 Receive Buffer Register	U0RB	127
00A7h	-		I
00A8h			1
00A9h			
00AAh		1	t
00ABh			-
00ABh		1	-
			-
00ADh			1
			1
00AEh			
00AFh			
00AFh 00B0h	UART Transmit/Receive Control Register 2	UCON	129
00AFh	UART Transmit/Receive Control Register 2	UCON	129
00AFh 00B0h	UART Transmit/Receive Control Register 2	UCON	129
00AFh 00B0h 00B1h	UART Transmit/Receive Control Register 2	UCON	129
00AFh 00B0h 00B1h 00B2h	UART Transmit/Receive Control Register 2	UCON	129
00AFh 00B0h 00B1h 00B2h 00B3h	UART Transmit/Receive Control Register 2	UCON	129
00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h	UART Transmit/Receive Control Register 2	UCON	129
00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h	UART Transmit/Receive Control Register 2	UCON	129
00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h			
00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h	SS Control Register H	SSCRH	142
00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h	SS Control Register H SS Control Register L	SSCRH SSCRL	142
00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h	SS Control Register H SS Control Register L SS Mode Register	SSCRH SSCRL SSMR	142 143 144
00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h	SS Control Register H SS Control Register L	SSCRH SSCRL	142
00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h	SS Control Register H SS Control Register L SS Mode Register	SSCRH SSCRL SSMR	142 143 144
00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh	SS Control Register H SS Control Register L SS Mode Register SS Enable Register	SSCRH SSCRL SSMR SSER	142 143 144 145
00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh	SS Control Register H SS Control Register L SS Mode Register SS Enable Register SS Status Register	SSCRH SSCRL SSMR SSER SSER	142 143 144 145 146

NOTES:

1. Blank columns, 0100h to 01AFh and 01C0h to 02FFh are all reserved. No access is allowed.

Address	Register	Symbol	Page
00C0h	A/D Register	AD	171
00C1h	A D Register	7.0	.,,,
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CFh			
00D0h		_	
00D0H		_	
00D2h			
00D3h	A/D Control Degister C	ADCONO	474
00D4h	A/D Control Register 2	ADCON2	171
00D5h	A/D Control Deviator 2	ADCCTIC	470
00D6h	A/D Control Register 0	ADCON0	170
00D7h	A/D Control Register 1	ADCON1	170
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh			
00DFh			
00E0h			
00E1h	Port P1 Register	P1	184
00E2h			
00E3h	Port P1 Direction Register	PD1	184
00E4h			
00E5h	Port P3 Register	P3	184
00E6h			
00E7h	Port P3 Direction Register	PD3	184
00E8h	Port P4 Register	P4	184
00E9h			
00EAh	Port P4 Direction Register	PD4	184
00EBh	1311		
00ECh			
00EDh			
00EEh		+	
00EFh		+	
00F0h		+	1
00F1h		+	1
00F2h	 	+	1
00F3h		+	1
00F4h		+	1
00F4H		+	1
00F5H		+	-
		+	-
00F7h 00F8h		+	
00F9h		+	
		+	
00FAh 00FBh		+	
	Bull Un Control Bogister 0	DUDA	105
00FCh	Pull-Up Control Register 0	PUR0	185
00FDh	Pull-Up Control Register 1	PUR1	185
00FEh	Port P1 Drive Capacity Control Register	DRR	185
00FFh	Timer C Output Control Register	TCOUT	120
04801	Floris Marrows Control S	EME :	004
01B3h	Flash Memory Control Register 4	FMR4	201
01B4h		 	
01B5h	Flash Memory Control Register 1	FMR1	201
01B6h		1	
01B7h	Flash Memory Control Register 0	FMR0	200
05555	10.0.15.0.0.15.11	Lore	
UFFFFF	Optional Function Select Register	OFS	79.196

 0FFFFh
 Optional Function Select Register
 OFS
 79,196

R8C/14 Group, R8C/15 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ09B0164-0210 Rev.2.10 Jan 19, 2006

1. Overview

This MCU is built using the high-performance silicon gate CMOS process using a R8C/Tiny Series CPU core and is packaged in a 20-pin plastic molded LSSOP. This MCU operates using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, it is capable of executing instructions at high speed.

Furthermore, the data flash ROM (1KB x 2blocks) is embedded in the R8C/15 group.

The difference between R8C/14 and R8C/15 groups is only the existence of the data flash ROM. Their peripheral functions are the same.

1.1 Applications

Electric household appliance, office equipment, housing equipment (sensor, security), general industrial equipment, audio, etc.

Page 1 of 253

1.2 Performance Overview

Table 1.1 lists the Performance Outline of the R8C/14 Group and Table 1.2 lists the Performance Outline of the R8C/15 Group.

Table 1.1 Performance Outline of the R8C/14 Group

Item		Performance
CPU	Number of Basic Instructions	
	Minimum Instruction	50ns(f(XIN)=20MHz, VCC=3.0 to 5.5V)
	Execution Time	100ns(f(XIN)=10MHz, VCC=2.7 to 5.5V)
	Operating Mode	Single-chip
	Memory Space	1 Mbyte
	Memory Capacity	See Table 1.3 R8C/14 Group Product Information
Peripheral	Port	I/O port : 13 pins (including LED drive port),
Function		Input: 2 pins
	LED Drive Port	I/O port: 4 pins
	Timer	Timer X: 8 bits x 1 channel, Timer Z: 8 bits x 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits x 1 channel
		(Circuits of input capture and output compare)
	Serial Interface	1 channel
		Clock synchronous serial I/O, UART
	Chip-Select Clock	1 channel
	Synchronous Serial I/O	
	(SSU)	
	A/D Converter	10-bit A/D converter: 1 circuit, 4 channels
	Watchdog Timer	15 bits ×1 channel (with prescaler)
		Reset start selectable, Count source protection mode
	Interrupt	Internal: 9 factors, External: 4 factors, Software: 4 factors,
	·	Priority level: 7 levels
	Clock Generation Circuit	2 circuits
		Main clock oscillation circuit (Equipped with a built-in
		feedback resistor)
		On-chip oscillator (high speed, low speed)
		Equipped with frequency adjustment function on high-
		speed on-chip oscillator
	Oscillation Stop Detection	Main clock oscillation stop detection function
	Function	Thair order decimation dep addedict randicti
	Voltage Detection Circuit	Included
	Power-On Reset Circuit	Included
Electric	Supply Voltage	VCC=3.0 to 5.5V (f(XIN)=20MHz)
Characteristics	3 1 1 7 3 3 3	VCC=2.7 to 5.5V (f(XIN)=10MHz)
	Power Consumption	Typ. 9mA (VCC=5.0V, f(XIN)=20MHz)
		Typ. 5mA (VCC=3.0V, f(XIN)=10MHz)
		Typ. 35μA (VCC=3.0V, wait mode, peripheral clock off)
		Typ. 0.7μA (VCC=3.0V, wait mode)
Flash Memory	Program/Erase Supply	VCC=2.7 to 5.5V
I lasti wellery	Voltage	V00-2.7 t0 0.0 V
	Program/Erase Endurance	100 times
Operating Ambi	ent Temperature	-20 to 85°C
	on romporatore	-40 to 85°C (D Version)
Package		20-pin plastic mold LSSOP
i ackaye		20 pin piastic mola 2000i

Table 1.2 Performance Outline of the R8C/15 Group

Table 1.2 P	Item	Performance
CPU		89 instructions
CPU	Minimum Instruction	50ns (f(XIN)=20MHz, VCC=3.0 to 5.5V)
	Execution Time	100ns (f(XIN)=10MHz, VCC=2.7 to 5.5V)
	Operating Mode	Single-chip
	Memory Space	1 Mbyte
	Memory Capacity	See Table 1.4 R8C/15 Group Product Information
Peripheral	Port	I/O : 13 pins (including LED drive port),
Function		Input: 2 pins
	LED drive port	I/O port: 4 pins
	Timer	Timer X: 8 bits x 1 channel, Timer Z: 8 bits x 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits x 1 channel
		(Circuits of input capture and output compare)
	Serial Interface	1 channel
		Clock synchronous serial I/O, UART
	Chip-select clock	1 channel
	synchronous serial I/O (SSU)	
	A/D Converter	10-bit A/D converter: 1 circuit, 4 channels
	Watchdog Timer	15 bits × 1 channel (with prescaler)
	Transmany miner	Reset start selectable, Count source protection mode
	Interrupt	Internal: 9 factors, External: 4 factors, Software: 4 factors
	Interrupt	Priority level: 7 levels
	Clock Generation Circuit	2 circuits
	Clock Generation Circuit	
		Main clock generation circuit (Equipped with a built-in
		feedback resistor)
		On-chip oscillator (high speed, low speed)
		Equipped with frequency adjustment function on high-
		speed on-chip oscillator
	Oscillation Stop Detection	Main clock oscillation stop detection function
	Function	
	Voltage Detection Circuit	Included
	Power on Reset Circuit	Included
Electric	Supply Voltage	VCC=3.0 to 5.5V (f(XIN)=20MHz)
Characteristics		VCC=2.7 to 5.5V (f(XIN)=10MHz)
	Power Consumption	Typ. 9mA (VCC=5.0V, f(XIN)=20MHz)
		Typ. 5mA (VCC=3.0V, f(XIN)=10MHz)
		Typ. 35μA (VCC=3.0V, wait mode, peripheral clock off)
		Typ. $0.7\mu A$ (VCC=3.0V, stop mode)
Flash Memory	Program/Erase Supply	VCC=2.7 to 5.5V
l laoir Worldry	Voltage	V00-2.7 to 0.0 V
	Program/Erase Endurance	10,000 times (Data flash)
	Togram/Erase Endurance	1,000 times (Pagram ROM)
Operating Ambi	l ient Temperature	-20 to 85°C
	ioni iomporature	
Dockogo		-40 to 85°C (D Version) 20-pin plastic mold LSSOP
Package		Zu-pin piastic molu Loour

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

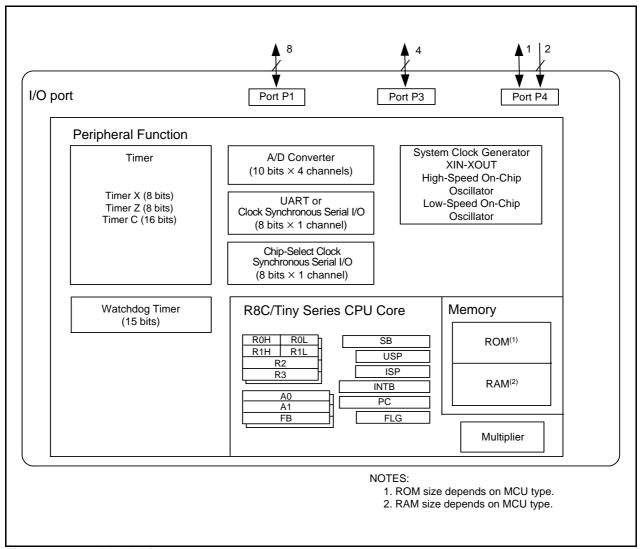


Figure 1.1 Block Diagram

Page 4 of 253

1.4 Product Information

Table 1.3 lists the Product Information of R8C/14 Group and Table 1.4 lists the Product Information of R8C/15 Group.

Table 1.3 Product Information of R8C/14 Group

As of Jan 2006

Type No.	ROM capacity	RAM capacity	Package type	Remarks
R5F21142SP	8 Kbytes	512 bytes	PLSP0020JB-A	Flash memory version
R5F21143SP	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F21144SP	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21142DSP	8 Kbytes	512 bytes	PLSP0020JB-A	D version
R5F21143DSP	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F21144DSP	16 Kbytes	1 Kbyte	PLSP0020JB-A	

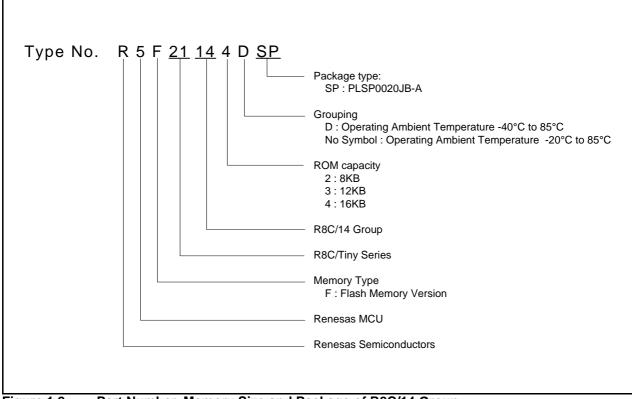


Figure 1.2 Part Number, Memory Size and Package of R8C/14 Group

Page 5 of 253

Table 1.4 Product Information of R8C/15 Group

As of Jan 2006

Type No.	ROM capacity		RAM	Package type	Remarks	
Type No.	Program ROM	Data flash	capacity	r ackage type	Remarks	
R5F21152SP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A	Flash memory version	
R5F21153SP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A		
R5F21154SP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A		
R5F21152DSP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A	D version	
R5F21153DSP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A		
R5F21154DSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A		

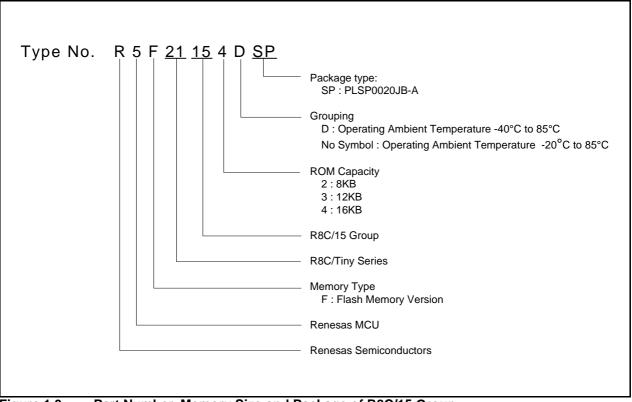


Figure 1.3 Part Number, Memory Size and Package of R8C/15 Group

Page 6 of 253

1.5 Pin Assignments

Figure 1.4 shows the PLSP0020JB-A Package Pin Assignment (top view).

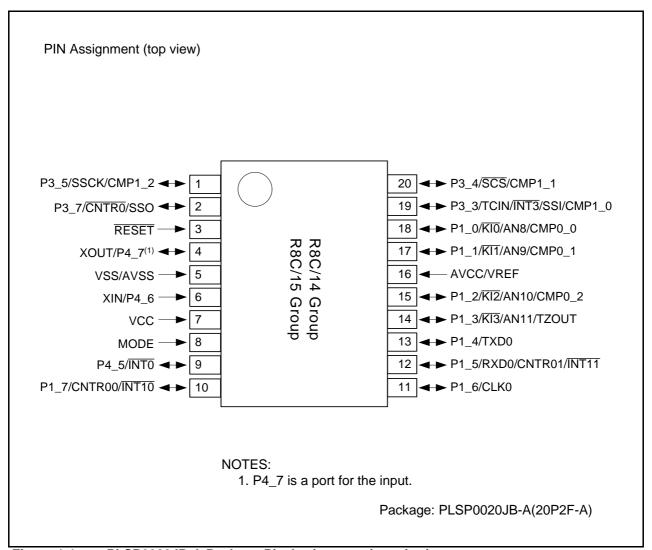


Figure 1.4 PLSP0020JB-A Package Pin Assignment (top view)

1.6 Pin Description

Table 1.5 lists the Pin Description and Table 1.6 lists the Pin Name Information by Pin Number.

Table 1.5 Pin Description

Function	Pin name	I/O type	Description
Power Supply Input	VCC VSS	I	Apply 2.7V to 5.5V to the VCC pin. Apply 0V to the VSS pin
Analog Power Supply Input	AVCC AVSS	I	Power supply input pins to A/D converter. Connect AVCC to VCC. Apply 0V to AVSS. Connect a capacitor between AVCC and AVSS.
Reset Input	RESET	I	Input "L" on this pin resets the MCU
MODE	MODE	I	Connect this pin to VCC via a resistor
Main Clock Input	XIN	I	These pins are provided for the main clock
Main Clock Output	XOUT	0	generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between the XIN and XOUT pins. To use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.
INT Interrupt	INTO, INT1, INT3	I	INT interrupt input pins
Key Input Interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer X	CNTR0	I/O	Timer X I/O pin
	CNTR0	0	Timer X output pin.
Timer Z	TZOUT	0	Timer Z output pin
Timer C	TCIN	I	Timer C input pin
	CMP0_0 to CMP0_2, CMP1_0 to CMP1_2	0	Timer C output pins.
Serial Interface	CLK0	I/O	Transfer clock I/O pin.
	RXD0	I	Serial data input pin.
	TXD0	0	Serial data output pin.
SSU	SSI	I/O	Data I/O pin.
	SCS	I/O	Chip-select signal I/O pin.
	SSCK	I/O	Clock I/O pin.
	SSO	I/O	Data I/O pin.
Reference Voltage Input	VREF	I	Reference voltage input pin to A/D converter Connect VREF to VCC
A/D Converter	AN8 to AN11	I	Analog input pins to A/D converter
I/O Port	P1_0 to P1_7, P3_3 to P3_5, P3_7, P4_5	I/O	These are CMOS I/O ports. Each port contains an I/O select direction register, allowing each pin in that port to be directed for input or output individually. Any port set to input can select whether to use a pull-up resistor or not by program. P1_0 to P1_3 also function as LED drive ports.
Input Port	P4_6, P4_7	I	Port for input-only

I: Input

O: Output

I/O: Input and output

Pin Name Information by Pin Number Table 1.6

			I/O Pin of Peripheral Function				
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	Clock Synchronous Serial I/O with Chip Select	A/D Converter
1		P3_5		CMP1_2		SSCK	
2		P3_7		CNTR0		SSO	
3	RESET						
4	XOUT	P4_7					
5	VSS/AVSS						
6	XIN	P4_6					
7	VCC						
8	MODE						
9		P4_5	ĪNT0				
10		P1_7	ĪNT10	CNTR00			
11		P1_6			CLK0		
12		P1_5	ĪNT11	CNTR01	RXD0		
13		P1_4			TXD0		
14		P1_3	KI3	TZOUT			AN11
15		P1_2	KI2	CMP0_2			AN10
16	AVCC/VREF						
17		P1_1	KI1	CMP0_1			AN9
18		P1_0	KI0	CMP0_0			AN8
19		P3_3	ĪNT3	TCIN/CMP1_0		SSI	
20		P3_4		CMP1_1		SCS	

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Register. The CPU contains 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. Two sets of register banks are provided.

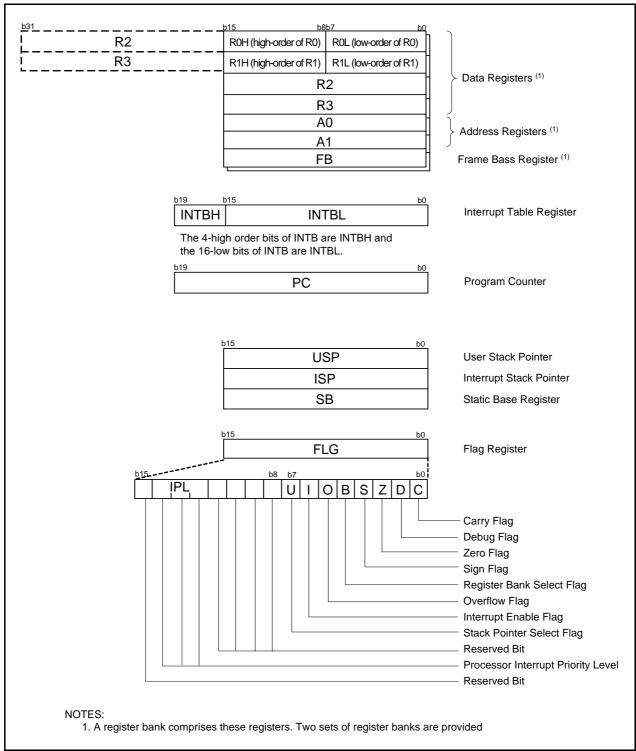


Figure 2.1 CPU Register

2.1 Data Registers (R0, R1, R2 and R3)

R0 is a 16-bit register for transfer, arithmetic and logic operations. The same applies to R1 to R3. The R0 can be split into high-order bit (R0H) and low-order bit (R0L) to be used separately as 8-bit data registers. The same applies to R1H and R1L as R0H and R0L. R2 can be combined with R0 to be used as a 32-bit data register (R2R0). The same applies to R3R1 as R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. They also are used for transfer, arithmetic and logic operations. The same applies to A1 as A0. A0 can be combined with A0 to be used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC, 20 bits wide, indicates the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP and ISP, are 16 bits wide each. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is a 11-bit register indicating the CPU state.

2.8.1 **Carry Flag (C)**

The C flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic logic unit.

2.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

2.8.3 **Zero Flag (Z)**

The Z flag is set to "1" when an arithmetic operation resulted in 0; otherwise, "0".

2.8.4 Sign Flag (S)

The S flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, "0".

2.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is "0". The register bank 1 is selected when this flag is set to "1".

2.8.6 Overflow Flag (O)

The O flag is set to "1" when the operation resulted in an overflow; otherwise, "0".

2.8.7 Interrupt Enable Flag (I Flag)

The I flag enables a maskable interrupt.

An interrupt is disabled when the I flag is set to "0", and are enabled when the I flag is set to "1". The I flag is set to "0" when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is set to "0", USP is selected when the U flag is set to "1". The U flag is set to "0" when a hardware interrupt request is acknowledged or the INT instruction of

The U flag is set to "0" when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

When write to this bit, set to "0". When read, its content is indeterminate.

3. Memory

3.1 R8C/14 Group

Figure 3.1 is a Memory Map of R8C/14 Group. The R8C/14 group provides 1-Mbyte address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but for calling subroutines and stacks when interrupt request is acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated them. All addresses, which have nothing allocated within the SFR, are reserved area and cannot be accessed by users.

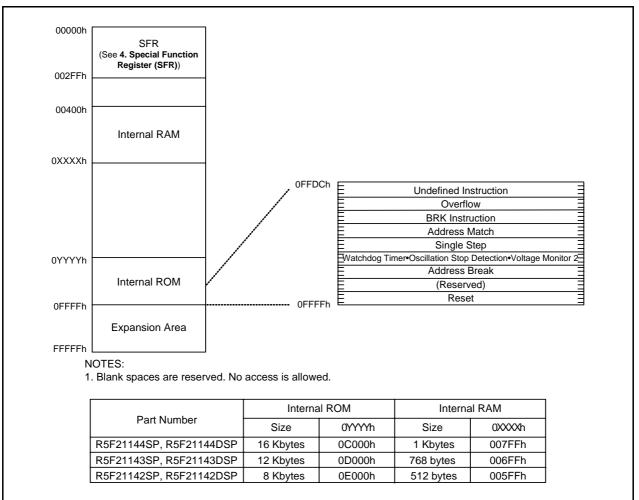


Figure 3.1 Memory Map of R8C/14 Group

3.2 R8C/15 Group

Figure 3.2 is a Memory Map of R8C/15 Group. The R8C/15 group provides 1-Mbyte address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but for calling subroutines and stacks when interrupt request is acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated them. All addresses, which have nothing allocated within the SFR, are reserved area and cannot be accessed by users.

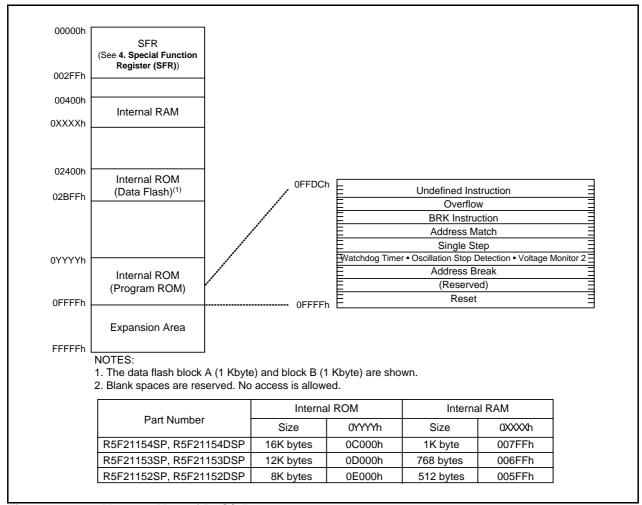


Figure 3.2 Memory Map of R8C/15 Group

4. Special Function Register (SFR)

SFR (Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.4 list the SFR information.

Table 4.1 SFR Information(1)⁽¹⁾

A -1 -1	Desister.	0	A 64 4
Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h			
0009h	Address Match Interrupt Enable Register	AIER	00h
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00011111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h	Thumbur main monaprinograms	20	00h
0011h	-		X0h
0012h			XOII
0013h	Address Match Interrupt Register 1	RMAD1	00h
0014H	Address Mater Interrupt Negister 1	NWADI	00h
0015h	4		
0016h 0017h			X0h
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
001Dh			
001Eh	INT0 Input Filter Select Register	INT0F	00h
001Fh	- 1 1 · · · · · · · · · · · · · · · · ·		
0020h	High-Speed On-Chip Oscillator Control Register 0	HRA0	00h
0021h	High-Speed On-Chip Oscillator Control Register 1	HRA1	When shipping
0022h	High-Speed On-Chip Oscillator Control Register 2	HRA2	00h
0023h	Thigh opodd on only obtained control register 2	111012	0011
002011			
002Ah			
0027th			
002DH			
002Ch			
002Eh			
002Fh			
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h ⁽³⁾
			01000000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register (2)	VW1C	0000X000b ⁽³⁾
•••	- Stage Monte Onoute Control Hogister (1 2	0100X000b ⁽⁴⁾
0027h	Valtage Manitor 2 Circuit Control Danieta (5)	VW2C	
0037h	Voltage Monitor 2 Circuit Control Register (5)	V VVZC	00h
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
OOOLII			

X: Undefined

NOTES:

- 1. Blank spaces are reserved. No access is allowed.
- 2. Software reset, the watchdog timer reset or the voltage monitor 2 reset does not affect this register.
- 3. Owing to Hardware reset.
- 4. Owing to Power-on reset or the voltage monitor 1 reset.

Page 15 of 253

5. Software reset, the watchdog timer reset or the voltage monitor 2 reset does not affect the b2 and b3.

SFR Information(2)⁽¹⁾ Table 4.2

Address	Register	Symbol	After reset
0040h	i i i gianti	5,	1
0041h			
0042h			
0043h		<u> </u>	
0044h		<u> </u>	
0045h			
0046h			
0047h			
0048h			
0049h			
004Ah			
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	SSU Interrupt Control Register	SSUAIC	XXXXX000b
0050h	Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0050h	UARTO Transmit Interrupt Control Register	SOTIC	XXXXX000b
0051h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0052h	OAKTO Receive interrupt Control Register	SURIC	XXXX000D
0053h			
0054H		<u> </u>	
0056h	Timer X Interrupt Control Register	TXIC	XXXXX000b
0056h	Times A interrupt Control Neglatel	INIC	^^^^0
0057h 0058h	Timer Z Interrupt Control Register	TZIC	XXXXX000b
0059h		INT1IC	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	INT1 Interrupt Control Register		
005Ah	INT3 Interrupt Control Register	INT3IC	XXXXX000b
005Bh	Timer C Interrupt Control Register	TCIC	XXXXX000b
005Ch	Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	intro interrupt control register		
005Fh			
0060h		-	<u> </u>
0061h		+	+
0062h		-	<u> </u>
0063h			
0064h			
0065h			
0066h			
0067h			
0067H			
0069h			
0069h			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h			
0072h			
0073h			
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
	1		
007Dh			
007Dh 007Eh 007Fh			

X: Undefined

NOTES:

1. Blank spaces are reserved. No access is allowed.

SFR Information(3)(1) Table 4.3

Address	Register	Symbol	After reset
0080h	Timer Z Mode Register	TZMR	00h
0081h			
0082h			
0083h			
0084h	Timer Z Waveform Output Control Register	PUM	00h
0085h	Prescaler Z Register	PREZ	FFh
0086h	Timer Z Secondary Register	TZSC	FFh
0087h	Timer Z Primary Register	TZPR	FFh
0087H	Timer 2 Filliary Register	IZFK	1111
0089h			
008Ah	Timer Z Output Control Register	TZOC	00h
008Bh	Timer X Mode Register	TXMR	00h
008Ch	Prescaler X Register	PREX	FFh
008Dh	Timer X Register	TX	FFh
008Eh	Timer Count Source Setting Register	TCSS	00h
008Fh			
0090h	Timer C Register	TC	00h
0091h	<u> </u>		00h
0092h			0011
0092h			
0094h			
0095h			
0096h	External Input Enable Register	INTEN	00h
0097h			
0098h	Key Input Enable Register	KIEN	00h
0099h			
009Ah	Timer C Control Register 0	TCC0	00h
009Bh	Timer C Control Register 1	TCC1	00h
009Ch	Capture, Compare 0 Register	TM0	00h
009Dh	Capture, Compare o Register	TIVIO	00h ⁽²⁾
009Eh	Compare 1 Register	TM1	FFh
009Fh			FFh
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h	-		XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	0000010b
00A6h	UARTO Receive Buffer Register	U0RB	XXh
00A0H	OAKTO Receive Bullet Register	CONB	XXh
00A711			XXII
00A9h			
00AAh			
00ABh			
00ACh			
00ADh			1
00AEh			
00AFh			
00B0h	UART Transmit/Receive Control Register 2	UCON	00h
00B0H	2	333.1	
00B1II			
00B3h			
00B4h			
00B5h			
00B6h		Ī	
00B7h			1
00B8h	SS Control Register H	SSCRH	00h
00B9h	SS Control Register L	SSCRL	7Dh
00BAh	SS Mode Register	SSMR	18h
00BBh	SS Enable Register	SSER	00h
NGGUU			
OODO	SS Status Register	SSSR	00h
00BCh 00BDh	SS Mode Register 2	SSMR2	00h
	SS Mode Register 2 SS Transmit Data Register SS Receive Data Register	SSMR2 SSTDR SSRDR	FFh FFh

X: Undefined

NOTES:

- Blank spaces are reserved. No access is allowed.
 When output compare mode (the TCC13 bit in the TCC1 register = 1) is selected, the value after reset is "FFFFh".

SFR Information(4)(1) Table 4.4

Address	Register	Symbol	After reset
00C0h	A/D Register	AD	XXh
00C1h	1772 1109/010.	,	XXh
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CFh			
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Control Register 2	ADCON2	00h
00D5h	-9		
00D6h	A/D Control Register 0	ADCON0	00000XXXb
00D7h	A/D Control Register 1	ADCON1	00h
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh			
00DFh			
00E0h			
00E1h	Port P1 Register	P1	XXh
00E2h			
00E3h	Port P1 Direction Register	PD1	00h
00E4h			
00E5h	Port P3 Register	P3	XXh
00E6h			
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXh
00E9h	· ·		
00EAh	Port P4 Direction Register	PD4	00h
00EBh			
00ECh			
00EDh			
00EEh			
00EFh			
00F0h			
00F1h			
00F2h			
00F3h			
00F4h			
00F5h			
00F6h			
00F7h			
00F8h			
00F9h			
00FAh			
00FBh			
00FCh	Pull-Up Control Register 0	PUR0	00XX0000b
00FDh	Pull-Up Control Register 1	PUR1	XXXXXX0Xb
00FEh	Port P1 Drive Capacity Control Register	DRR	00h
00FFh	Timer C Output Control Register	TCOUT	00h
•			
01B3h	Flash Memory Control Register 4	FMR4	01000000b
01B4h			
01B5h	Flash Memory Control Register 1	FMR1	1000000Xb
01B6h			
01B7h	Flash Memory Control Register 0	FMR0	00000001b
0FFFFh	Optional Function Select Register	OFS	(2)

X: Undefined NOTES:

- Blank columns, 0100h to 01B2h and 01B8h to 02FFh are all reserved. No access is allowed.
 The OFS register cannot be changed by program. Use a flash programmer to write to it.

5. Reset

There are resets: hardware reset, power-on reset, voltage monitor 1 reset, voltage monitor 2 reset, watchdog timer reset and software reset. Table 5.1 lists the Reset Name and Factor.

Table 5.1 Reset Name and Factor

Reset Name	Factor
Hardware Reset	Input voltage of RESET pin is held "L"
Power-On Reset	VCC rises
Voltage Monitor 1 Reset	VCC falls (monitor voltage : Vdet1)
Voltage Monitor 2 Reset	VCC falls (monitor voltage : Vdet2)
Watchdog Timer Reset	Underflow of watchdog timer
Software Reset	Write "1" to PM03 bit in PM0 register

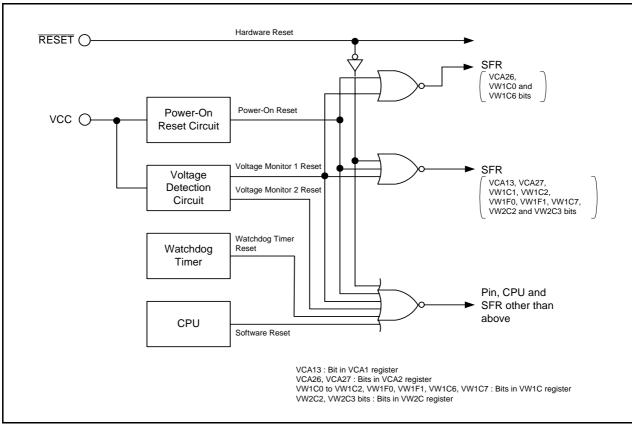


Figure 5.1 Block Diagram of Reset Circuit

Table 5.2 shows the Pin Status after Reset, Figure 5.2 shows CPU Register Status after Reset and Figure 5.3 shows Reset Sequence.

Table 5.2 Pin Status after Reset

Pin Name	Pin Status
P1	Input Port
P3_3 to P3_5, P3_7	Input Port
P4_5 to P4_7	Input Port

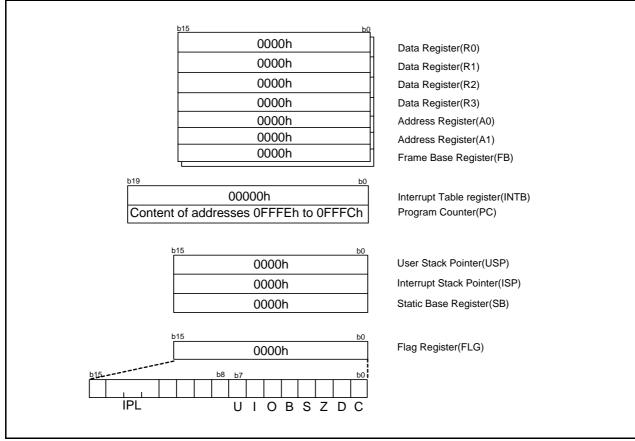


Figure 5.2 CPU Register Status after Reset

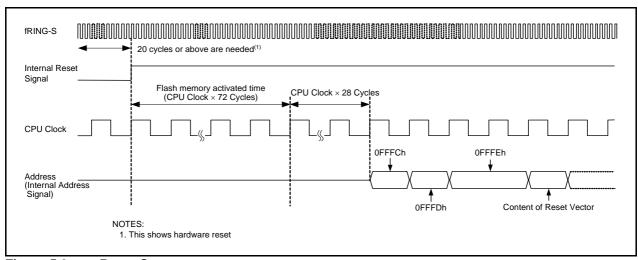


Figure 5.3 Reset Sequence

5.1 Hardware Reset

A reset is applied using the RESET pin. When an "L" signal is applied to the RESET pin while the power supply voltage meets the recommended performance condition, the pins, CPU and SFR are reset (refer to **Table 5.2 Pin Status after Reset**). When the input level applied to the RESET pin changes "L" to "H", the program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator clock divided-by-8 is automatically selected for the CPU clock.

Refer to 4. Special Function Register (SFR) for the status of the SFR after reset.

The internal RAM is not reset. If the \overline{RESET} pin is pulled "L" during writing to the internal RAM, the internal RAM will be in indeterminate state.

Figure 5.4 shows the Example of Hardware Reset Circuit and Operation and Figure 5.5 shows the Example of Hardware Reset Circuit (Use Example of External Power Supply Voltage Detection Circuit) and Operation.

5.1.1 When the power supply is stable

- (1) Apply an "L" signal to the $\overline{\text{RESET}}$ pin.
- (2) Wait for 500µs (1/fRING-S×20).
- (3) Apply an "H" signal to the \overline{RESET} pin.

5.1.2 Power on

- (1) Apply an "L" signal to the \overline{RESET} pin.
- (2) Let the power supply voltage increase until it meets the recommended performance condition.
- (3) Wait for td(P-R) or more until the internal power supply stabilizes (Refer to **19. Electrical Characteristics**).
- (4) Wait for 500μs (1/fRING-S×20).
- (5) Apply an "H" signal to the RESET pin.

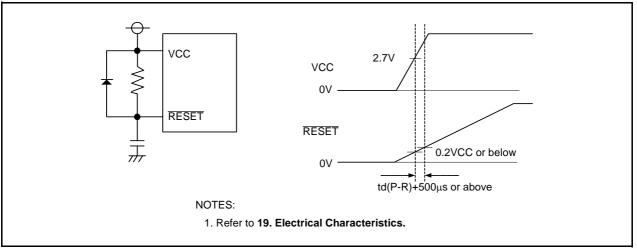


Figure 5.4 Example of Hardware Reset Circuit and Operation

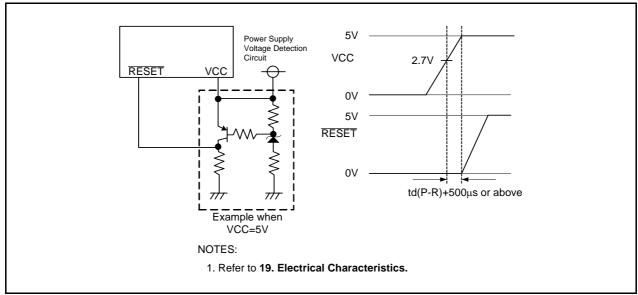


Figure 5.5 Example of Hardware Reset Circuit (Use Example of External Power Supply Voltage Detection Circuit) and Operation

5.2 Power-On Reset Function

When the $\overline{\text{RESET}}$ pin is connected to the VCC pin via about $5k\Omega$ pull-up resistor and the VCC pin rises, the function is enabled and the microcomputer resets its pins, CPU, and SFR. When a capacitor is connected to the $\overline{\text{RESET}}$ pin, always keep the voltage to the $\overline{\text{RESET}}$ pin 0.8VCC or more.

When the input voltage to the VCC pin reaches to the Vdet1 level or above, count operation of the low-speed on-chip oscillator clock starts. When the operation counts the low-speed on-chip oscillator clock for 32 times, the internal reset signal is held "H" and the microcomputer enters the reset sequence (See Figure 5.3). The low-speed on-chip oscillator clock divide-by-8 is automatically selected for the CPU after reset.

Refer to 4. Special Function Register (SFR) for the status of the SFR after power-on reset.

The voltage monitor 1 reset is enabled after power-on reset.

Figure 5.6 shows the Example of Power-On Reset Circuit and Operation.

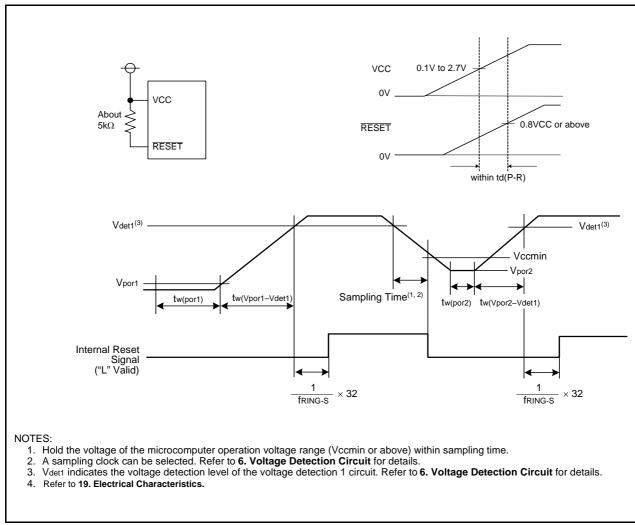


Figure 5.6 Example of Power-On Reset Circuit and Operation

5.3 Voltage Monitor 1 Reset

A reset is applied using the built-in voltage detection 1 circuit. The voltage detection 1 circuit monitors the input voltage to the VCC pin. The voltage to monitor is Vdet1.

When the input voltage to the VCC pin reaches to the Vdet1 level or below, the pins, CPU and SFR are reset.

And when the input voltage to the VCC pin reaches to the Vdet1 level or above, count operation of the low-speed on-chip oscillator clock starts. When the operation counts the low-speed on-chip oscillator clock for 32 times, the internal reset signal is held "H" and the microcomputer enters the reset sequence (See Figure 5.3). The low-speed on-chip oscillator clock divide-by-8 is automatically selected for the CPU after reset.

Refer to 4. Special Function Register (SFR) for the status of the SFR after voltage monitor 1 reset.

The internal RAM is not reset. When the input voltage to the VCC pin reaches to the Vdet1 level or below during writing to the internal RAM, the internal RAM is in indeterminate state.

Refer to 6. Voltage Detection Circuit for details of voltage monitor 1 reset.

5.4 Voltage Monitor 2 Reset

A reset is applied using the built-in voltage detection 2 circuit. The voltage detection 2 circuit monitors the input voltage to the VCC pin. The voltage to monitor is Vdet2.

When the input voltage to the VCC pin drops to the Vdet2 level or below, the pins, CPU and SFR are reset and the program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator clock divide-by-8 is automatically selected for the CPU clock.

The voltage monitor 2 does not reset some SFRs. Refer to **4.** Special Function Register (SFR) for details.

The internal RAM is not reset. When the input voltage to the VCC pin reaches to the Vdet2 level or below during writing to the internal RAM, the internal RAM is in indeterminate state.

Refer to 6. Voltage Detection Circuit for details of voltage monitor 2 reset.

5.5 Watchdog Timer Reset

When the PM12 bit in the PM1 register is set to "1" (reset when watchdog timer underflows), the microcomputer resets its pins, CPU and SFR if the watchdog timer underflows. Then the program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator clock divide-by-8 is automatically selected for the CPU clock.

After reset, the low-speed on-chip oscillator clock divide-by-8 is automatically selected for the CPU clock.

The watchdog timer reset does not reset some SFRs. Refer to 4. Special Function Register (SFR) for details.

The internal RAM is not reset. When the watchdog timer underflows, the internal RAM is in indeterminate state.

Refer to 12. Watchdog Timer for watchdog timer.

5.6 Software Reset

When the PM03 bit in the PM0 register is set to "1" (microcomputer reset), the microcomputer resets its pins, CPU and SFR. The the program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator clock divide-by-8 is automatically selected for the CPU clock.

The software reset does not reset some SFRs. Refer to **4.** Special Function Register (SFR) for details. The internal RAM is not reset.

6. Voltage Detection Circuit

The voltage detection circuit is a circuit to monitor the input voltage to the VCC pin. This circuit monitors the VCC input voltage by the program. And the voltage monitor 1 reset, voltage monitor 2 interrupt and voltage monitor 2 reset can be used.

Table 6.1 lists the Specification of Voltage Detection Circuit and Figures 6.1 to 6.3 show the Block Diagrams. Figures 6.4 to 6.6 show the Associated Registers.

Table 6.1 Specification of Voltage Detection Circuit

ltem		Voltage Detection 1	Voltage Detection 2
VCC Monitor	Voltage to Monitor	Vdet1	Vdet2
	Detection Target	Whether passing	Whether passing
		through Vdet1 by rising	through Vdet2 by rising
		or falling	or falling
	Monitor	None	VCA13 bit in VCA1
			register
			Whether VCC is higher
			or lower than Vdet2
Process When Voltage Is	Reset	Voltage Monitor 1 Reset	Voltage Monitor 2 Reset
Detected		Reset at Vdet1 > VCC;	Reset at Vdet2 > VCC
		Restart CPU operation at	•
		VCC > Vdet1	after a specified time
	Interrupt	None	Voltage Monitor 2
			Interrupt
			Interrupt request at
			Vdet2 > VCC and VCC >
			Vdet2 when digital filter
			is enabled;
			Interrupt request at
			Vdet2 > VCC or VCC >
			Vdet2 when digital filter
D: 1/ 1 E%	0 % 1	A '1 1 1	is disabled
Digital Filter	Switch	Available	Available
	Enabled / Disabled	(5) (1) (15) (15)	(5)
	Sampling Time	(Divide-by-n of fRING-S)	l ' , , , , , , , , , , , , , , , , , ,
		x 4	x 4
		n: 1, 2, 4 and 8	n: 1, 2, 4 and 8

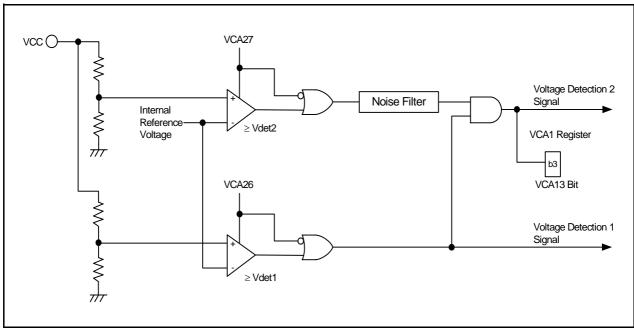


Figure 6.1 Block Diagram of Voltage Detection Circuit

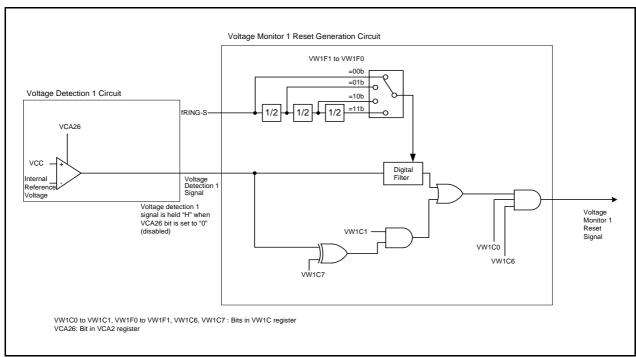
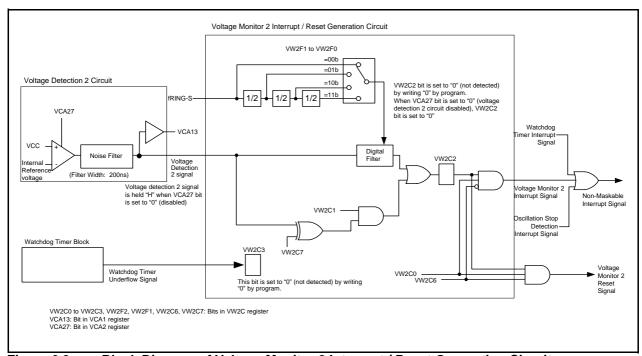
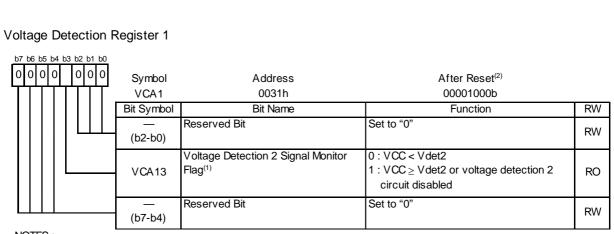
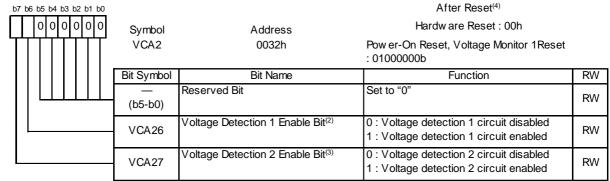
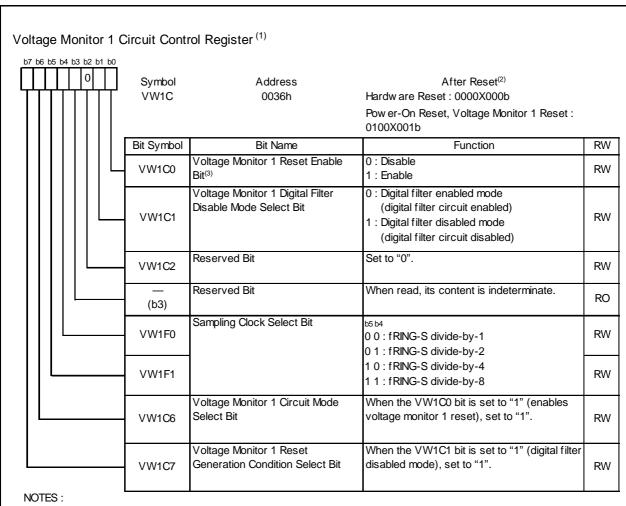


Figure 6.2 Block Diagram of Voltage Monitor 1 Reset Generation Circuit


Figure 6.3 Block Diagram of Voltage Monitor 2 Interrupt / Reset Generation Circuit

NOTES:


- 1. The VCA13 bit is enabled when the VCA27 bit in the VCA2 register is set to "1" (voltage detection 2 circuit enabled). The VCA13 bit is set to "1" (VCC ≥ Vdet 2) when the VCA27 bit in the VCA2 register is set to "0" (voltage detection 2
- 2. The software reset, watchdog timer reset and voltage monitor 2 reset do not affect this register.

Voltage Detection Register 2⁽¹⁾

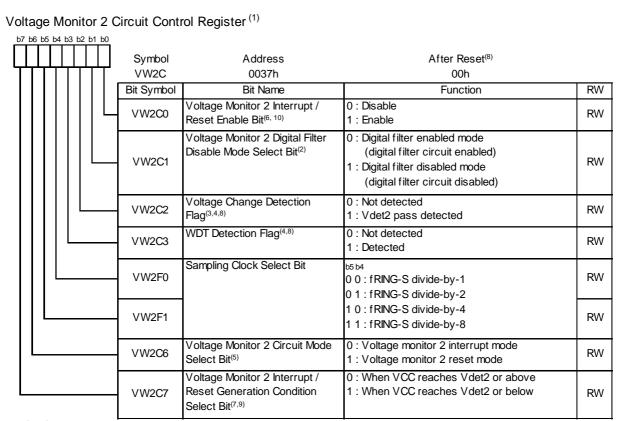

- 1. Set the PRC3 bit in the PRCR register to "1" (write enable) before writing to this register.
- 2. When using the voltage monitor 1 reset, set the VCA26 bit to "1". After the VCA26 bit is set from "0" to "1", the voltage detection circuit elapses for td(E-A) before starting operation.
- 3. When using the voltage monitor 2 interrupt / reset or the VCA13 bit in the VCA1 register, set the VCA27 bit to "1". After the VCA27 bit is from "0" to "1", the voltage detection circuit elapses for td(E-A) before starting operation.
- 4. The softw are reset, w atchdog timer reset and voltage monitor 2 reset do not affect this register.

Figure 6.4 VCA1 and VCA2 Registers

- 1. Set the PRC3 bit in the PRCR register to "1" (write enable) before writing to this register. When rew riting the VW1C register, the VW1C2 bit may be set to "1". Set the VW1C2 bit to "0" after rew riting the VW1C register.
- 2. The value after reset remains unchanged in software reset, watchdogi timer reset and voltage monitor 2 reset.
- 3. The VW1C0 bit is enabled when the VCA26 bit in the VCA2 register is set to "1" (voltage detection 1 circuit enabled). Set the VW1C0 bit to "0" (disable), when the VCA26 bit is set to "0" (voltage detection 1 circuit disabled).

Figure 6.5 **VW1C Register**

- 1. Set the PRC3 bit in the PRCR register to "1" (rew rite enable) before w riting to this register. When rew riting the VW2C register, the VW2C2 bit may be set to "1". Set the VW2C2 bit to "0" after rew riting the VW2C register.
- 2. When the voltage monitor 2 interrupt is used to exit stop mode and to return again, write "0" to the VW2C1 bit before writing "1".
- 3. This bit is enabled when the VCA27 bit in the VCA2 register is set to "1" (voltage detection 2 circuit enabled).
- 4. Set this bit to "0" by a program. When writing "0" by a program, it is set to "0" (It remains unchanged even if it is set to "1").
- 5. This bit is enabled when the VW2C0 bit is set to "1" (voltage monitor 2 interrupt / enables reset).
- 6. The VW2C0 bit is enabled when the VCA27 bit in the VCA2 register is set to "1" (voltage detection 2 circuit enabled). Set the VW2C0 bit to "0" (disable) when the VCA27 bit is set to "0" (voltage detection 2 circuit disabled).
- 7. The VW2C7 bit is enabled when the VW2C1 bit is set to "1" (digital filter disabled mode).
- 8. The VW2C2 and VW2C3 bits remain unchanged in the software reset, watchdog timer reset and voltage monitor 2
- 9. When the VW2C6 bit is set to "1" (voltage monitor 2 reset mode), set the VW2C7 bit to "1" (when VCC reaches to Vdet2 or below)(do not set to "0").
- 10. Set the VW2C0 bit to "0" (disabled) under the conditions of the VCA13 bit in the VCA1 register set to "1" (VCC ≥ Vdet2 or voltage detection 2 circuit disabled), the VW2C1 bit set to "1" (digital filter disabled mode) and the VW2C7 bit set to "0" (when VCC reaches Vdet2 or above).
 - Set the VW2C0 bit to "0" (disabled) under the conditions of the VCA13 bit set to "0" (VCC < Vdet2), the VW2C1 bit set to "1" (digital filter disabled mode) and the VW2C7 bit set to "1" (when VCC reaches Vdet2 or below).

Figure 6.6 VW2C Register

6.1 Monitoring VCC Input Voltage

6.1.1 Monitoring Vdet1

Vdet1 cannot be monitored.

6.1.2 Monitoring Vdet2

Set the VCA27 bit in the VCA2 register to "1" (voltage detection 2 circuit enabled). After td(E-A) (refer to **19. Electrical Characteristics**) elapse, Vdet2 can be monitored by the VCA13 bit in the VCA1 register.

6.2 Voltage Monitor 1 Reset

Table 6.2 lists the Setting Procedure of Voltage Monitor 1 Reset Associated Bit and Figure 6.7 shows the Operating Example of Voltage Monitor 1 Reset. When using the voltage monitor 1 reset to exit stop mode, set the VW1C1 bit in the VW1C register to "1" (digital filter disabled).

Table 6.2 Setting Procedure of Voltage Monitor 1 Reset Associated Bit

Procedure	When Using Digital Filter	When Not Using Digital Filter
1	Set the VCA26 bit in the VCA2 register to "	1" (voltage detection 1 circuit enabled)
2	Wait for td(E-A)	
3(1)	Select the sampling clock of the digital filter by the VW1F0 to VW1F1 bits in the VW1C register	Set the VW1C7 bit in the VW1C register to "1"
4(1)	Set the VW1C1 bit in the VW1C register to "0" (digital f ilter enabled).	Set the VW1C1 bit in the VW1C register to "1" (digital filter disabled)
5(1)	Set the VW1C6 bit in the VW1C register to "1" (voltage monitor 1 reset mode)	
6	Set the VW1C2 bit in the VW1C register to	"0"
7	Set the CM14 bit in the CM1 register to "0" (low-speed on-chip oscillator on)	_
8	Wait for the sampling clock of the digital filter x 4 cycles	- (no wait time)
9	Set the VW1C0 bit in the VW1C register to	"1" (enables voltage monitor 1 reset)

NOTES:

1. When the VW1C0 bit is set to "0" (disabled), procedures 3, 4 and 5 can be executed simultaneously (with 1 instruction).

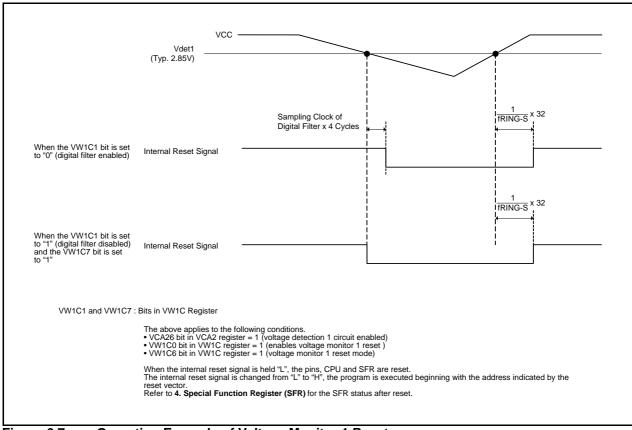


Figure 6.7 Operating Example of Voltage Monitor 1 Reset

Page 32 of 253

6.3 Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset

Table 6.3 lists the Setting Procedure of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset Associated Bit. Figure 6.8 shows the Operating Example of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset. When using the voltage monitor 2 interrupt or voltage monitor 2 reset to exit stop mode, set the VW2C1 bit in the VW2C register to "1" (digital filter disabled).

Table 6.3 Setting Procedure of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset Associated Bit

	When Using Digital Filter		When Not Usi	ng Digital Filter	
Procedure	Voltage Monitor 2	Voltage Monitor 2	Voltage Monitor 2	Voltage Monitor 2	
	Interrupt	Reset	Interrupt	Reset	
1	Set the VCA27 bit in the	ne VCA2 register to "1"	(voltage detection 2 cir	cuit enabled)	
2	Wait for td(E-A)				
3(2)	Select the sampling cl	ock of the digital filter	Select the timing of the	e interrupt and reset	
	by the VW2F0 to VW2	F1 bits in the VW2C	request by the VW2C7	bit in the VW2C	
	register		register ⁽¹⁾		
4(2)	Set the VW2C1 bit in t	he VW2C register to	Set the VW2C1 bit in t	Set the VW2C1 bit in the VW2C register to	
	"0" (digital filter enable	d)	"1" (digital filter disabled)		
5(2)	Set the VW2C6 bit in	Set the VW2C6 bit in	Set the VW2C6 bit in	Set the VW2C6 bit in	
	the VW2C register to	the VW2C register to	the VW2C register to	the VW2C register to	
	"0" (voltage monitor 2	"1" (voltage monitor 2	"0" (voltage monitor 2	"1" (voltage monitor 2	
	interrupt mode)	reset mode)	interrupt mode)	reset mode)	
6	6 Set the VW2C2 bit in the VW2C register to "0" (passing of Vdet2 is not detected)			ot detected)	
7	Set the CM14 bit in the CM1 register to "0"		_		
	(low-speed on-chip os	cillator on)			
8	Wait for the sampling clock of the digital filter		(no wait time)		
°	x 4 cycles				
9	Set the VW2C0 bit in t	he VW2C register to "1	" (enables voltage mon	itor 2 interrupt / reset)	

- 1. Set the VW2C7 bit to "1" (when VCC reaches Vdet2 or below) for the voltage monitor 2 reset.
- 2. When the VW2C0 bit is set to "0" (disabled), procedures 3, 4 and 5 can be executed simultaneously (with 1 instruction).

Figure 6.8 Operating Example of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset

7. Processor Mode

7.1 Types of Processor Mode

Single-chip mode can be selected as processor mode. Table 7.1 lists Features of Processor Mode. Figure 7.1 shows the PM0 Register and Figure 7.2 shows the PM1 Register.

Table 7.1 Features of Processor Mode

Processor Mode	Access Area	Pins to which I/O ports are
1 10000301 Wiode	710003371104	assigned
Single-Chip Mode	SFR, Internal RAM, Internal ROM	All pins are I/O ports or peripheral
		function I/O pins

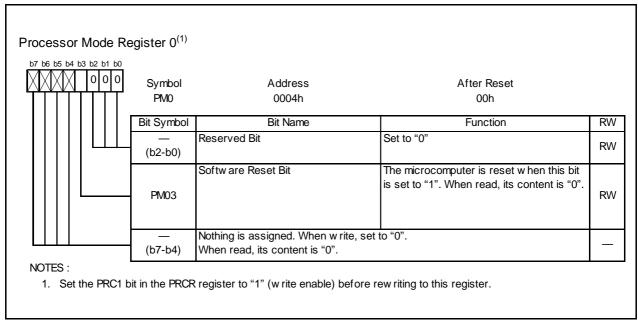
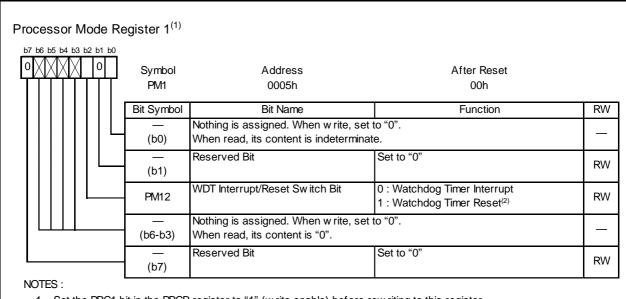



Figure 7.1 PM0 Register

- 1. Set the PRC1 bit in the PRCR register to "1" (w rite enable) before rew riting to this register.
- 2. The PM12 bit is set to "1" by a program (It remains unchanged even if it is set to "0"). When the CSPRO bit in the CSPR register is set to "1" (selects count source protect mode), the PM12 bit is automatically set to "1".

Figure 7.2 PM1 Register

8. Bus

During access, the ROM/RAM and SFR vary from bus cycles. Table 8.1 lists Bus Cycles for Access Space of the R8C/14 Group and Table 8.2 lists Bus Cycles for Access Space of the R8C/15 Group. The ROM/RAM and SFR are connected to the CPU through an 8-bit bus. When accessing in word-(16 bits) unit, these area are accessed twice in 8-bit unit. Table 8.3 lists Access Unit and Bus Operation.

Table 8.1 Bus Cycles for Access Space of the R8C/14 Group

Access Area	Bus Cycle
SFR	2 cycles of CPU clock
ROM/RAM	1 cycle of CPU clock

Table 8.2 Bus Cycles for Access Space of the R8C/15 Group

Access Area	Bus Cycle
SFR/Data flash	2 cycles of CPU clock
Program ROM/RAM	1 cycle of CPU clock

Table 8.3 Access Unit and Bus Operation

Area	SFR, Data flash	ROM (Program ROM), RAM
Even Address Byte Access	CPU Clock	CPU Clock
	Address Even	Address X Even X
	Data X Data X	Data X Data X
Odd Address Byte Access	CPU Clock	CPU Clock
	Address Odd	Address X Odd X
	Data X Data X	Data X Data X
Even Address Word Access	CPU Clock	CPU Clock
	Address X Even X Even+1 X	Address X Even X Even+1 X
	Data X Data X Data X	Data X Data X Data X
Odd Address Word Access	CPU Clock	CPU Clock
	Address X Odd X Odd+1 X	Address X Odd X Odd+1 X
	Data X Data X	Data X Data X Data X

9. **Clock Generation Circuit**

The MCU has two on-chip clock generation circuits:

- Main clock oscillation circuit
- On-chip oscillator (oscillation stop detection function)

Table 9.1 lists Specification of Clock Generation Circuit. Figure 9.1 shows a Clock Generation Circuit. Figures 9.2 to 9.5 show clock-associated registers.

Table 9.1 **Specification of Clock Generation Circuit**

Item	Main Clock	On-Chip Oscillator		
item	Oscillation Circuit	High-Speed On-Chip Oscillator	Low-Speed On-Chip Oscillator	
Use of Clock	• CPU clock source	CPU clock source	CPU clock source	
	 Peripheral 	Peripheral function clock	Peripheral function clock	
	function clock	source	source	
	source	CPU and peripheral function	CPU and peripheral function	
		clock sources when main	clock sources when main	
		clock stops oscillating	clock stops oscillating	
Clock Frequency	0 to 20MHz	Approx. 8MHz	Approx. 125kHz	
Connectable	Ceramic	_	_	
Oscillator	resonator			
	 Crystal oscillator 			
Oscillator	XIN, XOUT ⁽¹⁾	(Note 1)	(Note 1)	
Connect Pins				
Oscillation Stop,	Usable	Usable	Usable	
Restart Function				
Oscillator Status	Stop	Stop	Oscillate	
After Reset				
Others	Externally	_	_	
	generated clock			
	can be input			

NOTES:

1. This pin can be used as P4_6 and P4_7 when using the on-chip oscillator clock for a CPU clock while the main clock oscillation circuit is not used.

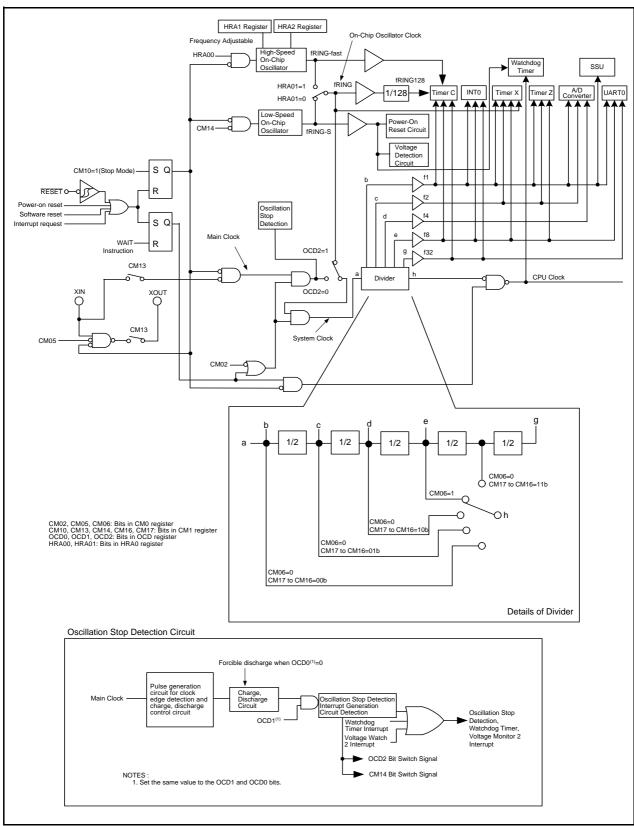
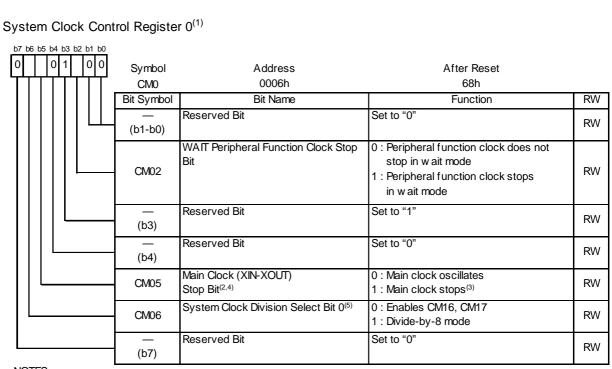
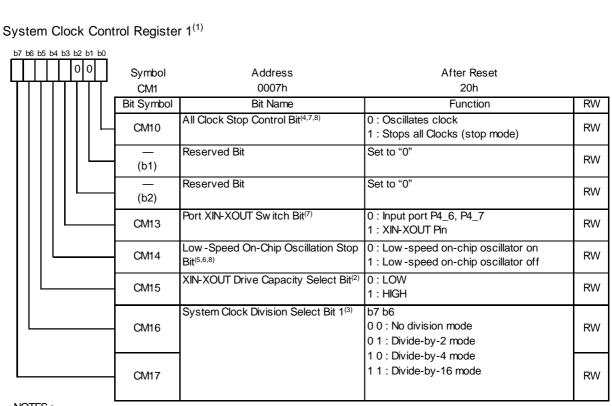




Figure 9.1 **Clock Generation Circuit**

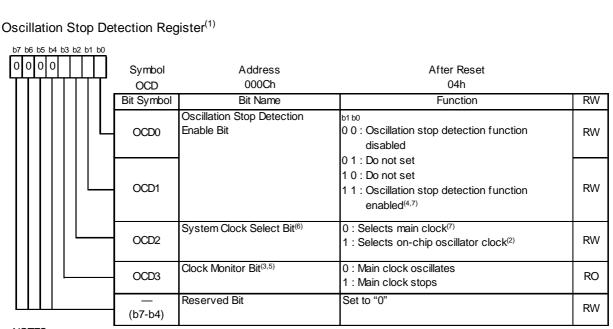

- 1. Set the PRC0 bit in the PRCR register to "1" (w rite enable) before rew riting to this register.
- 2. The CM05 bit is to stop the main clock when the on-chip oscillator mode is selected. Do not use this bit for whether the main clock is stopped. To stop the main clock, set the bits in the following orders:
 - (a) Set the OCD1 to OCD0 bits in the OCD register to "00b" (oscillation stop detection function disabled).
 - (b) Set the OCD2 bit to "1" (selects on-chip oscillator clock).
- 3. Set the CM05 bit to "1" (main clock stops) and the CM13 bit in the CM1 register to "1" (XIN-XOUT pin) when the external clock is input.
- 4. When the CM05 bit is set to "1" (stops main clock), P4_6 and P4_7 can be used as input ports.
- 5. When entering stop mode from high or middle speed mode, the CM06 bit is set to "1" (divide-by-8 mode).

Figure 9.2 **CM0** Register

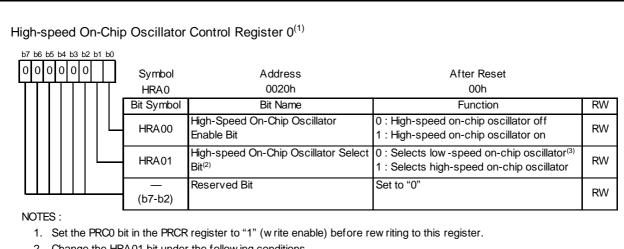

- 1. Set the PRC0 bit in the PRCR register to "1" (w rite enable) before rew riting to this register.
- 2. When entering stop mode from high or middle speed mode, this bit is set to "1" (drive capacity HIGH).
- 3. When the CM06 bit is set to "0" (CM16, CM17 bits enabled), this bit becomes enabled.
- 4. If the CM10 bit is "1" (stop mode), the internal feedback resistor becomes disabled.
- 5. When the OCD2 bit is set to "0" (selects main clock), the CM14 bit is set to "1" (stops low-speed on-chip oscillator). When the OCD2 bit is set to "1" (selects on-chip oscillator clock), the CM14 bit is set to "0" (low-speed on-chip oscillator on). It remains unchanged even if it is set to "1".
- 6. When using the voltage detection interrupt, CM14 bit is set to "0" (low-speed on-chip oscillator on).
- 7. When the CM10 bit is set to "1" (stop mode) or the CM05 bit in the CM0 register to "1" (main clock stops) and the CM13 bit is set to "1" (XIN-XOUT pin), the XOUT (P4_7) pin becomes "H". When the CM13 bit is set to "0" (input ports, P4_6, P4_7), the P4_7 (XOUT) enters input mode.
- 8. In count source protect mode (Refer to 12.2 Count Source Protect Mode), the value remains unchanged even if the CM10 and CM14 bits are set.

Figure 9.3 **CM1** Register

- 1. Set the PRC0 bit in the PRCR register to "1" (w rite enable) before rew riting to this register.
- 2. The OCD2 bit is automatically set to "1" (selects on-chip oscillator clock) if a main clock oscillation stop is detected while the OCD1 to OCD0 bits are set to "11b" (oscillation stop detection function enabled). If the OCD3 bit is set to "1" (main clock stops), the OCD2 bit remains unchanged when writing "0" (selects main clock).
- 3. The OCD3 bit is enabled when the OCD1 to OCD0 bits are set to "11b".
- 4. Set the OCD1 to OCD0 bits to "00b" (oscillation stop detection function disabled) before entering stop and on-chip oscillator mode (main clock stops).
- 5. The OCD3 bit remains "0" (main clock oscillates) if the OCD1 to OCD0 bits are set to "00b".
- 6. The CM14 bit is set to "0" (low-speed on-chip oscillator on) if the OCD2 bit is set to "1" (selects on-chip oscillator
- 7. Refer to Figure 9.9 Procedure of Switching Clock Source From Low-Speed On-Chip Oscillator to Main Clock for the switching procedure when the main clock re-oscillates after detecting an oscillation stop.

Figure 9.4 **OCD Register**

- 2. Change the HRA01 bit under the following conditions.
 - HRA00 = 1 (high-speed on-chip oscillation)
 - The CM14 bit in the CM1 register = 0 (low-speed on-chip oscillator on)
- 3. When setting the HRA01 bit to "0" (selects low-speed on-chip oscillator), do not set the HRA00 bit to "0" (high-speed on-chip oscillator off) at the same time. Set the HRA00 bit to "0" after setting the HRA01 bit to "0".

Figure 9.5 **HRA0** Register

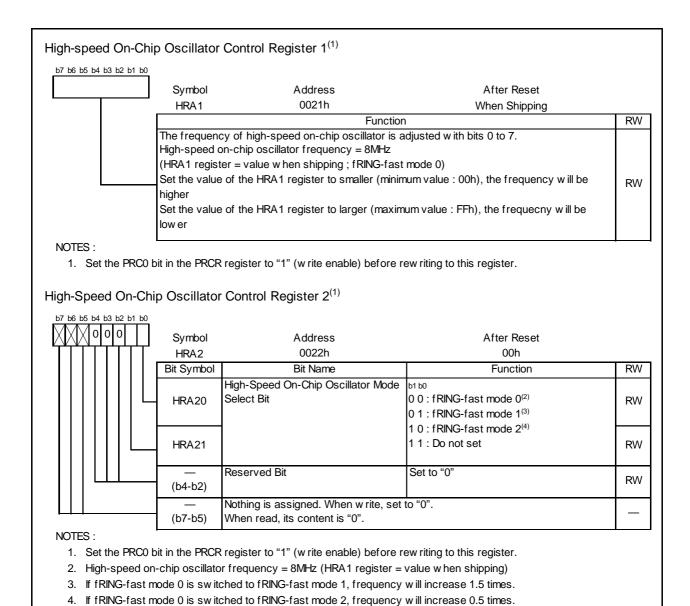


Figure 9.6 HRA1 and HRA2 Registers

The following describes the clocks generated by the clock generation circuit.

9.1 Main Clock

This clock is supplied by a main clock oscillation circuit. This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillation circuit is configured by connecting a resonator between the XIN and XOUT pins. The main clock oscillation circuit contains a feedback resistor, which is disconnected from the oscillation circuit in stop mode in order to reduce the amount of power consumed in the chip. The main clock oscillation circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 9.7 shows the Examples of Main Clock Connection Circuit.

During reset and after reset, the main clock stops.

The main clock starts oscillating when the CM05 bit in the CM0 register is set to "0" (main clock on) after setting the CM13 bit in the CM1 register to "1" (XIN- XOUT pin).

To use the main clock for the CPU clock source, set the OCD2 bit in the OCD register to "0" (select main clock) after the main clock is oscillating stably.

The power consumption can be reduced by setting the CM05 bit in the CM0 register to "1" (stop main clock) if the OCD2 bit is set to "1" (select on-chip oscillator clock).

When the clocks externally generated to the XIN pin are input, a main clock does not stop if setting the CM05 bit to "1". If necessary, use an external circuit to stop the clock.

In stop mode, all clocks including the main clock stop. Refer to 9.4 Power Control for details.

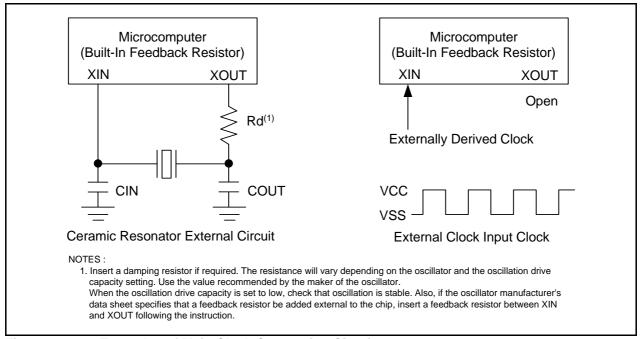


Figure 9.7 Examples of Main Clock Connection Circuit

9.2 On-Chip Oscillator Clock

This clock is supplied by an on-chip oscillator. The on-chip oscillator contains a high-speed on-chip oscillator and a low-speed on-chip oscillator. Either an on-chip oscillator clock is selected by the HRA01 bit in the HRA0 register.

9.2.1 Low-Speed On-Chip Oscillator Clock

The clock generated by the low-speed on-chip oscillator is used as the clock source for the CPU clock, peripheral function clock, fRING, fRING128 and fRING-S.

After reset, the on-chip oscillator clock generated by the low-speed on-chip oscillator by divide-by-8 is selected for the CPU clock.

If the main clock stops oscillating when the OCD1 to OCD0 bits in the OCD register are set to "11b" (oscillation stop detection function enabled), the low-speed on-chip oscillator automatically starts operating, supplying the necessary clock for the microcomputer.

The frequency of the low-speed on-chip oscillator varies depending on the supply voltage and the operating ambient temperature. The application products must be designed with sufficient margin for the frequency change.

9.2.2 High-Speed On-Chip Oscillator Clock

The clock generated by the high-speed on-chip oscillator is used as the clock source for the CPU clock, peripheral function clock, fRING, fRING128, and fRING1-fast.

After reset, the on-chip oscillator clock generated by the high-speed on-chip oscillator stops. The oscillation starts by setting the HRA00 bit in the HRA0 register to "1" (high-speed on-chip oscillator on). The frequency can be adjusted by the HRA1 and HRA2 registers.

Since the difference in delay between the bits, adjust by changing each bit.

9.3 CPU Clock and Peripheral Function Clock

There are two type clocks: a CPU clock to operate the CPU and a peripheral function clock to operate the peripheral functions. Refer to Figure 9.1 Clock Generation Circuit.

9.3.1 System Clock

The system clock is a clock source for the CPU and peripheral function clocks. The main clock or onchip oscillator clock can be selected.

9.3.2 CPU Clock

The CPU clock is an operating clock for the CPU and watchdog timer.

The system clock can be the divide-by-1 (no division), 2, 4, 8 or 16 to produce the CPU clock. Use the CM06 bit in the CM0 register and the CM16 to CM17 bits in the CM1 register to select the value of the division.

After reset, the low-speed on-chip oscillator clock divided-by-8 provides the CPU clock.

When entering stop mode from high-speed or medium-speed mode, the CM06 bit is set to "1" (divide-by-8 mode).

9.3.3 Peripheral Function Clock (f1, f2, f4, f8, f32)

The peripheral function clock is operating clock for the peripheral functions.

The clock fi (i=1, 2, 4, 8, 32) is generated by the system clock divided-by-i. The clock fi is used for timers X, Y, Z, C, serial interface and A/D converter.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to "1" (peripheral function clock stops in wait mode), the clock fi stops.

9.3.4 fRING and fRING128

fRING and fRING128 are operating clocks for the peripheral functions.

The fRING runs at the same frequency as the on-chip oscillator clock and can be used as the source for the timer X. The fRING128 is generated by the fRING by dividing it by 128 and can be used for the timer C.

When the WAIT instruction is executed, the clocks fRING and fRING128 do not stop.

9.3.5 fRING-fast

fRING-fast is used as the count source for the timer C. The fRING-fast is generated by the high-speed on-chip oscillator and provided by setting the HRA00 bit to "1".

When the WAIT instruction is executed, the clock fRING-fast does not stop.

9.3.6 fRING-S

fRING-S is an operating clock for the watchdog timer and voltage detection circuit. When setting the CM14 bit to "0" (low-speed on-chip oscillator on) using the clock generated by the low-speed on-chip oscillator, the fRING-S can be provided. When the WAIT instruction is executed or in count source protect mode of the watchdog timer, fRING-S does not stop.

9.4 **Power Control**

There are three power control modes. All modes other than wait and stop modes are referred to as normal operating mode.

9.4.1 **Normal Operating Mode**

Normal operating mode is further separated into four modes.

In normal operating mode, the CPU clock and the peripheral function clock are supplied to operate the CPU and the peripheral function clocks. Power consumption control is enabled by controlling the CPU clock frequency. The higher the CPU clock frequency, the more processing power increases. The lower the CPU clock frequency, the more power consumption decreases. When unnecessary oscillator circuits stop, power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source after switching needs to be stabilized and oscillated. If the new clock source is the main clock, allow sufficient wait time in a program until an oscillation is stabilized before exiting.

Table 9.2 **Setting and Mode of Clock Associated Bit**

NA	Modes		CM1 Register		CM0 Register	
IVI	oues	OCD2	CM17, CM16	CM13	CM06	CM05
High-Speed Mo	ode	0	00b	1	0	0
Medium-	divide-by-2	0	01b	1	0	0
Speed	divide-by-4	0	10b	1	0	0
Mode	divide-by-8	0	_	1	1	0
	divide-by-16	0	11b	1	0	0
High-Speed,	no division	1	00b	_	0	_
Low-Speed	divide-by-2	1	01b	_	0	_
On-Chip	divide-by-4	1	10b	_	0	_
Oscillator	divide-by-8	1	_	_	1	_
Mode ⁽¹⁾	divide-by-16	1	11b	_	0	_

NOTES:

1. The low-speed on-chip oscillator is used as the on-chip oscillator clock when the CM14 bit in the CM1 register is set to "0" (low-speed on-chip oscillator on) and the HRA01 bit in the HRA0 register is set to "0". The high-speed on-chip oscillator is used as the on-chip oscillator clock when the HRA00 bit in the HRA0 register is set to "1" (high-speed on-chip oscillator A on) and the HRA01 bit in the HRA0 register is set to "1".

9.4.1.1 High-Speed Mode

The main clock divided-by-1 (no division) provides the CPU clock. If the CM14 bit is set to "0" (low-speed on-chip oscillator on) or the HRA00 bit in the HRA0 register is set to "1" (high-speed on-chip oscillator on), the fRING and fRING128 can be used for timers X and C. When the HRA00 bit is set to "1", fRING-fast can be used for timer C. When the CM14 bit is set to "0" (low-speed on-chip oscillator on), fRING-S can be used for the watchdog timer and voltage detection circuit.

9.4.1.2 Medium-Speed Mode

The main clock divided-by-2, -4, -8 or -16 provides the CPU clock. If the CM14 bit is set to "0" (low-speed on-chip oscillator on) or the HRA00 bit in the HRA0 register is set to "1" (high-speed on-chip oscillator on), the fRING and fRING128 can be used for timers X and C. When the HRA00 bit is set to "1", fRING-fast can be used for timer C. When the CM14 bit is set to "0" (low-speed on-chip oscillator on), fRING-S can be used for the watchdog timer and voltage detection circuit.

9.4.1.3 High-Speed, Low-Speed On-Chip Oscillator Mode

The on-chip oscillator clock divided-by-1 (no division), -2, -4, -8 or -16 provides the CPU clock. The on-chip oscillator clock is also the clock source for the peripheral function clocks. When the HRA00 bit is set to "1", fRING-fast can be used for timer C. When the CM14 bit is set to "0" (low-speed on-chip oscillator on), fRING-S can be used for the watchdog timer and voltage detection circuit.

9.4.2 Wait Mode

Since the CPU clock stops in wait mode, the CPU operated in the CPU clock and the watchdog timer when count source protection mode is disabled stops. The main clock and on-chip oscillator clock do not stop and the peripheral functions using these clocks maintain operating.

9.4.2.1 Peripheral Function Clock Stop Function

If the CM02 bit is set to "1" (peripheral function clock stops in wait mode), the f1, f2, f4, f8 and f32 clocks stop in wait mode. The power consumption can be reduced.

9.4.2.2 Entering Wait Mode

The microcomputer enters wait mode by executing the WAIT instruction.

9.4.2.3 Pin Status in Wait Mode

The status before entering wait mode is maintained.

9.4.2.4 Exiting Wait Mode

The microcomputer exits wait mode by a hardware reset or peripheral function interrupt. When using a hardware reset to exit wait mode, set the ILVL2 to ILVL0 bits for the peripheral function interrupts to "000b" (interrupts disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. When the CM02 bit is set to "0" (peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode. When the CM02 bit is set to "1" (peripheral function clock stops in wait mode), the peripheral functions using the peripheral function clock stop operating and the peripheral functions operated by external signals can be used to exit wait mode.

Table 9.3 lists Interrupts to Exit Wait Mode and Usage Conditions.

When using a peripheral function interrupt to exit wait mode, set up the following before executing the WAIT instruction.

- (1) Set the interrupt priority level to the ILVL2 to ILVL0 bits in the interrupt control register of the peripheral function interrupts to use for exiting wait mode. Set the ILVL2 to ILVL0 bits of the peripheral function interrupts not to use for exiting wait mode to "000b" (disables interrupt).
- (2) Set the I flag to "1".
- (3) Operate the peripheral function to use for exiting wait mode.

When an interrupt request is generated and the CPU clock supply is started if exiting by the peripheral function interrupt, an interrupt sequence is executed.

The CPU clock, when exiting wait mode by a peripheral function interrupt, is the same clock as the CPU clock when the WAIT instruction is executed.

Table 9.3 Interrupts to Exit Wait Mode and Usage Conditions

Interrupt	CM02=0	CM02=1
Serial Interface Interrupt	Usable when operating with	Usable when operating with external
	internal or external clock	clock
SSU Interrupt	Usable in all modes	-(Do not use)
Key Input Interrupt	Usable	Usable
A/D Conversion Interrupt	Usable in one-shot mode	-(Do not use)
Timer X Interrupt	Usable in all modes	Usable in event counter mode
Timer Z Interrupt	Usable in all modes	-(Do not use)
Timer C Interrupt	Usable in all modes	-(Do not use)
INT Interrupt	Usable	Usable (INTO and INT3 can be used if
		there is no filter.
Voltage Monitor 2 Interrupt	Usable	Usable
Oscillation Stop Detection	Usable	-(Do not use)
Interrupt		
Watchdog Timer Interrupt	Usable in count source protect	Usable in count source protect mode
	mode	

9.4.3 Stop Mode

Since the oscillator circuits stop in wait mode, the CPU clock and peripheral function clock stop and the CPU and peripheral functions clocked by these clocks stop operating. The least power required to operate the microcomputer is in stop mode. If the voltage applied to the VCC pin is VRAM or more, the internal RAM is maintained.

The peripheral functions clocked by external signals maintain operating. Table 9.4 lists Interrupts to Exit Stop Mode and Usage Conditions.

Table 9.4 Interrupts to Exit Stop Mode and Usage Conditions

Interrupt	Usage Conditions
Key Input Interrupt	
INT0 to INT1 Interrupts	INTO can be used if there is no filter
INT3 Interrupt	No filter. Interrupt request is generated at INT3 input. (TCC06 bit in TCC0 register is set to "1")
Timer X Interrupt	When external pulse is counted in event counter mode
Serial Interface Interrupt	When external clock is selected
Voltage Monitor 2 Interrupt	Usable in digital filter disabled mode (VW2C1 bit in VW2C register is set to "1")

9.4.3.1 Entering Stop Mode

The microcomputer enters stop mode by setting the CM10 bit in the CM1 register to "1" (all clocks stop). At the same time, the CM06 bit in the CM0 register is set to "1" (divide-by-8 mode) and the CM15 bit in the CM10 register is set to "1" (drive capability HIGH of main clock oscillator circuit). When using stop mode, set the OCD1 to OCD0 bits to "00b" (oscillation stop detection function disabled) before entering stop mode.

9.4.3.2 Pin Status in Stop Mode

The status before entering wait mode is maintained.

However, when the CM13 bit in the CM1 register is set to "1" (XIN-XOUT pins), the XOUT(P4_7) pin is held "H". When the CM13 bit is set to "0" (input port P4_6 and P4_7), the P4_7(XOUT) is held in input status.

9.4.3.3 Exiting Stop Mode

The microcomputer exits stop mode by a hardware reset or peripheral function interrupt.

When using a hardware reset to exit stop mode, set the ILVL2 to ILVL0 bits for the peripheral function interrupts to "000b" (disables interrupts) before setting the CM10 bit to "1".

When using a peripheral function interrupt to exit stop mode, set up the following before setting the CM10 bit to "1".

- (1) Set the interrupt priority level to the ILVL2 to ILVL0 bits of the peripheral function interrupts to use for exiting stop mode. Set the ILVL2 to ILVL0 bits of the peripheral function interrupts not to use for exiting stop mode to "000b" (disables interrupt).
- (2) Set the I flag to "1".
- (3) Operates the peripheral function to use for exiting stop mode.

 When an interrupt request is generated and the CPU clock supply is started if exiting by the peripheral function interrupt, an interrupt sequence is executed.

The CPU clock, when exiting stop mode by a peripheral function interrupt, is the divide-by-8 of the clock which is used before entering stop mode.

Figure 9.8 shows the State Transition of Power Control.

Figure 9.8 State Transition of Power Control

9.5 Oscillation Stop Detection Function

The oscillation stop detection function is a function to detect the stop of the main clock oscillating circuit. The oscillation stop detection function can be enabled and disabled by the OCD1 to OCD0 bits in the OCD register.

Table 9.5 lists the Specification of Oscillation Stop Detection Function.

When the main clock is the CPU clock source and the OCD1 to OCD0 bits are set to "11b" (oscillation stop detection function enabled), the system is placed in the following state if the main clock stops.

- OCD2 bit in OCD register = 1 (on-chip oscillator clock selected)
- OCD3 bit in OCD register = 1 (main clock stops)
- CM14 bit in CM1 register = 0 (low-speed on-chip oscillator oscillates)
- Oscillation stop detection interrupt request is generated

Table 9.5 Specification of Oscillation Stop Detection Function

Item	Specification
Oscillation Stop Detection Enable Clock	$f(XIN) \ge 2 MHz$
and Frequency Bandwidth	
Enabled Condition for Oscillation Stop	Set OCD1 to OCD0 bits to "11b" (oscillation stop detection
Detection Function	function enabled)
Operation at Oscillation Stop Detection	Oscillation stop detection interrupt is generated

9.5.1 How to Use Oscillation Stop Detection Function

- The oscillation stop detection interrupt shares the vector with the voltage monitor 2 interrupt and the watchdog timer interrupt. When using the oscillation stop detection interrupt and watchdog timer interrupt, the interrupt cause needs to be determined. Table 9.6 lists the Determine Interrupt Factor of Oscillation Stop Detection, Watchdog Timer and Voltage Monitor 2 Interrupts.
- When the main clock is re-oscillated after oscillation stop, switch the main clock to the clock source of the CPU clock and peripheral functions by a program.
- Figure 9.9 shows the Procedure of Switching Clock Source From Low-Speed On-Chip Oscillator to Main Clock.
- To enter wait mode while using the oscillation stop detection function, set the CM02 bit to "0" (peripheral function clock does not stop in wait mode).
- Since the oscillation stop detection function is a function preparing to stop the main clock by the external cause, set the OCD1 to OCD0 bits to "00b" (oscillation stop detection function disabled) when the main clock stops or oscillates in the program, that is stop mode is selected or the CM05 bit is changed.
- This function cannot be used when the main clock frequency is below 2 MHz. Set the OCD1 to OCD0 bits to "00b" (oscillation stop detection function disabled).
- When using the low-speed on-chip oscillator clock for the CPU clock and clock sources of peripheral functions after detecting the oscillation stop, set the HRA01 bit in the HRA0 register to "0" (low-speed on-chip oscillator selected) and the OCD1 to OCD0 bits to "11b" (oscillation stop detection function enabled).
 - When using the high-speed on-chip oscillator clock for the CPU clock and clock sources of peripheral functions after detecting the oscillation stop, set the HRA01 bit to "1" (high-speed on-chip oscillator selected) and the OCD1 to OCD0 bits to "11b" (oscillation stop detection function enabled).

Table 9.6 Determine Interrupt Factor of Oscillation Stop Detection, Watchdog Timer and Voltage Monitor 2 Interrupts

Generated Interrupt Cause	Bit Showing Interrupt Cause
Oscillation Stop Detection	(a) OCD3 bit in OCD register = 1
((a) or (b))	(b) OCD1 to OCD0 bits in OCD register = 11b and the OCD2 bit = 1
Watchdog Timer	VW2C3 bit in VW2C register = 1
Voltage Monitor 2	VW2C2 bit in VW2C register = 1

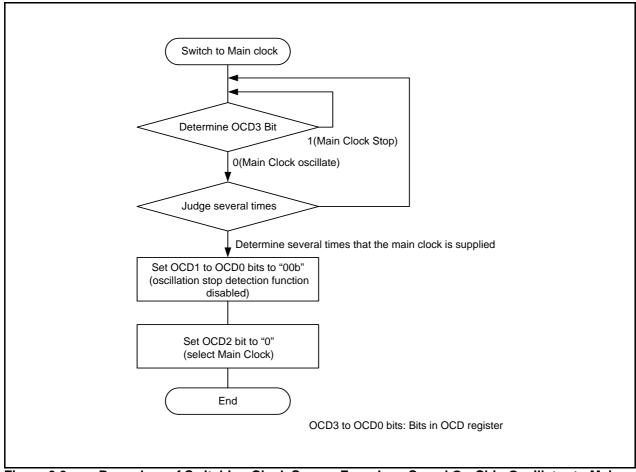


Figure 9.9 Procedure of Switching Clock Source From Low-Speed On-Chip Oscillator to Main Clock

10. Protection

Protection function protects important registers from being easily overwritten when a program runs out of control. Figure 10.1 shows the PRCR Register. The following lists the registers protected by the PRCR register.

- Registers protected by PRC0 bit: CM0, CM1, and OCD, HRA0, HRA1, HRA2 registers
- Registers protected by PRC1 bit: PM0 and PM1 registers
- Registers protected by PRC3 bit: VCA2, VW1C and VW2C registers

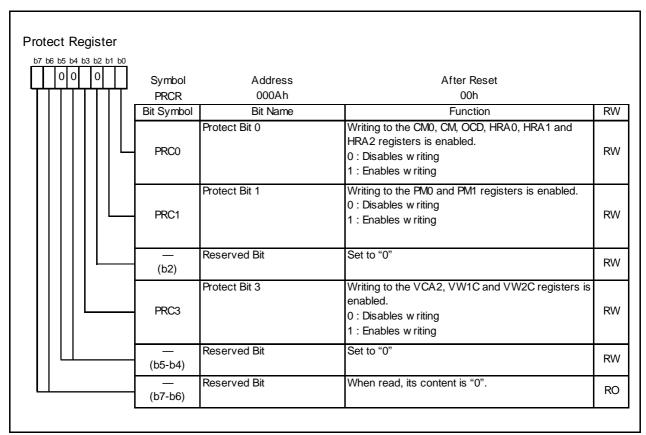


Figure 10.1 PRCR Register

11. Interrupt

11.1 Interrupt Overview

11.1.1 Types of Interrupts

Figure 11.1 shows types of Interrupts.

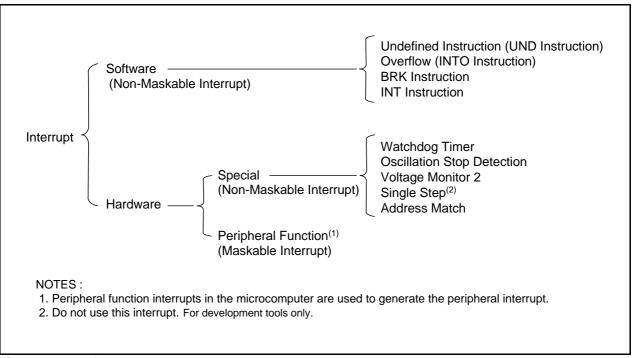


Figure 11.1 Interrupts

• Maskable Interrupt: The interrupt enable flag (I flag) enables or disables an interrupt. The

interrupt priority order based on the interrupt priority level can be

changed.

• Non-Maskable Interrupt: The interrupt enable flag (I flag) does not enable or disable an

interrupt. The interrupt priority order based on interrupt priority level

cannot be changed.

11.1.2 Software Interrupts

A software interrupt is generated when an instruction is executed. The software interrupts are non-maskable interrupts.

11.1.2.1 Undefined Instruction Interrupt

The undefined instruction interrupt is generated when the UND instruction is executed.

11.1.2.2 Overflow Interrupt

The overflow interrupt is generated when the O flag is set to "1" (arithmetic operation overflow) and the INTO instruction is executed. Instructions to set the O flag are:

ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

11.1.2.3 BRK Interrupt

A BRK interrupt is generated when the BRK instruction is executed.

11.1.2.4 INT Instruction Interrupt

An INT instruction interrupt is generated when the INT instruction is executed. The INT instruction can select software interrupt numbers 0 to 63. Software interrupt numbers 4 to 31 are assigned to the peripheral function interrupt. Therefore, the microcomputer executes the same interrupt routine when the INT instruction is executed as when a peripheral function interrupt is generated. In software interrupt numbers 0 to 31, the U flag is saved to the stack during instruction execution and set the U flag to "0" (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. In software interrupt numbers 32 to 63, the U flag does not change state during instruction execution, and the selected SP is used.

11.1.3 Special Interrupts

Special interrupts are non-maskable interrupts.

11.1.3.1 Watchdog Timer Interrupt

The watchdog timer interrupt is generated by the watchdog timer. Reset the watchdog timer after the watchdog timer interrupt is generated. For details, refer to **12. Watchdog Timer**.

11.1.3.2 Oscillation Stop Detection Interrupt

Oscillation Stop Detection Interrupt is generated by the oscillation stop detection function. For details of the oscillation stop detection function, refer to **9.** Clock Generation Circuit.

11.1.3.3 Voltage Monitor 2 Interrupt

The voltage monitor 2 interrupt is generated by the voltage detection circuit. For details of the voltage detection circuit, refer to **6. Voltage Detection Circuit**.

11.1.3.4 Single-Step Interrupt, Address Break Interrupt

Do not use the single-step interrupt. For development tools only.

11.1.3.5 Address Match Interrupt

The address match interrupt is generated immediately before executing an instruction that is stored into an address indicated by the RMAD0 to RMAD1 registers when the AIER0 or AIER1 bit in the AIER register which is set to "1" (address match interrupt enable). For details of the address match interrupt, refer to **11.4 Address Match Interrupt**.

11.1.4 Peripheral Function Interrupt

The peripheral function interrupt is generated by the internal peripheral function of the microcomputer and a maskable interrupt. Refer to **Table 11.2 Relocatable Vector Tables** for the interrupt factor of the peripheral function interrupt. For details of the peripheral function, refer to the description of each peripheral function.

11.1.5 Interrupts and Interrupt Vector

There are 4 bytes in one vector. Set the starting address of interrupt routine in each vector table. When an interrupt request is acknowledged, the CPU branches to the address set in the corresponding interrupt vector. Figure 11.2 shows the Interrupt Vector.

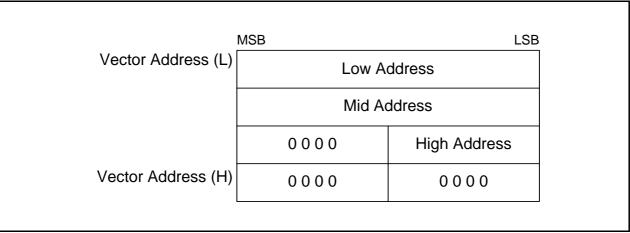


Figure 11.2 Interrupt Vector

11.1.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses 0FFDCh to 0FFFFh. Table 11.1 lists the Fixed Vector Tables. The vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to 18.3 Functions To Prevent Flash Memory from Rewriting.

Table 11.1 Fixed Vector Tables

Interrupt Source	Vector Addresses Address (L) to (H)	Remarks	Reference
Undefined Instruction	0FFDCh to 0FFDFh	Interrupt on UND	R8C/Tiny series software
		instruction	manual
Overflow	0FFE0h to 0FFE3h	Interrupt on INTO instruction	
BRK Instruction	0FFE4h to 0FFE7h	If the content of address OFFE7h is FFh, program execution starts from the address shown by the vector in the relocatable vector table.	
Address Match	0FFE8h to 0FFEBh		11.4 Address Match Interrupt
Single Step ⁽¹⁾	0FFECh to 0FFEFh		
Watchdog Timer Oscillation Stop Detection Voltage Monitor 2	0FFF0h to 0FFF3h		 12. Watchdog Timer 9. Clock Generation Circuit 6. Voltage Detection Circuit
Address Break ⁽¹⁾	0FFF4h to 0FFF7h		
(Reserved)	0FFF8h to 0FFFBh		
Reset	0FFFCh to 0FFFFh		5. Reset

^{1.} Do not use the single-step interrupt. For development tools only.

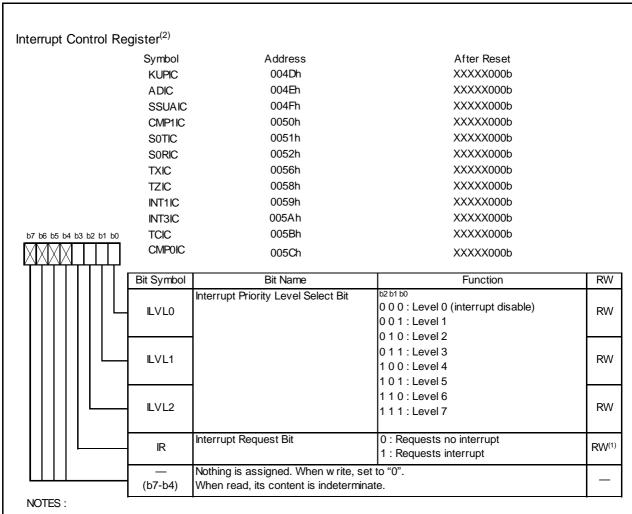
11.1.5.2 Relocatable Vector Tables

The relocatable vector tables occupy 256 bytes from the starting address set in the INTB register. Table 11.2 lists the Relocatable Vector Tables.

Table 11.2 Relocatable Vector Tables

Interrupt Factor	Vector Address ⁽¹⁾ Address (L) to Address (H)	Software Interrupt Number	Reference
BRK Instruction ⁽²⁾	+0 to +3(0000h to 0003h)	0	R8C/Tiny Series software
-(Reserved)		1 to 12	manual
Key Input	+52 to +55(0034h to 0037h)	13	11.3 Key Input Interrupt
A/D Converter	+56 to +59(0038h to 003Bh)	14	16. A/D Converter
SSU	+60 to +63(003Ch to 003Fh)	15	15. Clock Synchronous Serial I/O with Chip Select (SSU)
Compare 1	+64 to +67(0040h to 0043h)	16	13.3 Timer C
UART0 Transmit	+68 to +71(0044h to 0047h)	17	14. Serial Interface
UART0 Receive	+72 to +75(0048h to 004Bh)	18	
-(Reserved)		19	
-(Reserved)		20	
-(Reserved)		21	
Timer X	+88 to +91(0058h to 005Bh)	22	13.1 Timer X
-(Reserved)		23	
Timer Z	+96 to +99(0060h to 0063h)	24	13.2 Timer Z
ĪNT1	+100 to +103(0064h to 0067h)	25	11.2 INT interrupt
ĪNT3	+104 to +107(0068h to 006Bh)	26	
Timer C	+108 to +111(006Ch to 006Fh)	27	13.3 Timer C
Compare 0	+112 to +115(0070h to 0073h)	28	
ĪNT0	+116 to +119(0074h to 0077h)	29	11.2 INT interrupt
-(Reserved)		30	
-(Reserved)		31	
Software Interrupt ⁽²⁾	+128 to +131(0080h to 0083h) to +252 to +255(00FCh to 00FFh)	32 to 63	R8C/Tiny Series software manual

NOTES:


- 1. These addresses are relative to those in the INTB register.
- 2. The I flag does not disable these interrupts.

11.1.6 Interrupt Control

The following describes enable/disable the maskable interrupts and set the priority order to acknowledge. The contents explained does not apply to the nonmaskable interrupts.

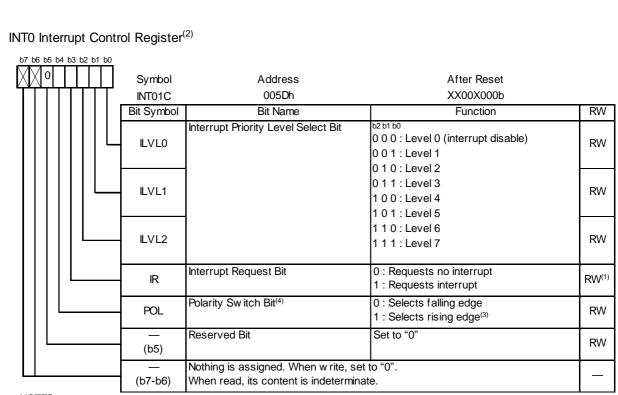

Use the I flag in the FLG register, IPL and the ILVL2 to ILVL0 bits in each interrupt control register to enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in each interrupt control register.

Figure 11.3 shows the Interrupt Control Register and Figure 11.4 shows the INTOIC Register

- 1. Only "0" can be written to the IR bit. Do not write "1".
- 2. To rew rite the interrupt control register, rew rite it when the interrupt request which is applicable for its register is not generated. Refer to 20.2.6 Changing Interrupt Control Registers.

Figure 11.3 Interrupt Control Register

- NOTES:
 - 1. Only "0" can be written to the IR bit. (Do not write "1".)
 - 2. To rewrite the interrupt control register, rewrite it when the interrupt request which is applicable for its register is not generated. Refer to 20.2.6 Changing Interrupt Control Registers.
 - 3. If the INTOPL bit in the INTEN register is set to "1" (both edges), set the POL bit to "0" (selects falling edge).
 - 4. The IR bit may be set to "1" (requests interrupt) when the POL bit is rewritten. Refer to 20.2.5 Changing Interrupt Factor.

Figure 11.4 **INT0IC Register**

11.1.6.1 | Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to "1" (enabled) enables the maskable interrupt. Setting the I flag to "0" (disabled) disables all maskable interrupts.

11.1.6.2 IR Bit

The IR bit is set to "1" (interrupt requested) when an interrupt request is generated. Then, when the interrupt request is acknowledged and the CPU branches to the corresponding interrupt vector, the IR bit is set to "0" (= interrupt not requested).

The IR bit can be set to "0" by a program. Do not write "1" to this bit.

11.1.6.3 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using the ILVL2 to ILVL0 bits.

Table 11.3 lists the Settings of Interrupt Priority Levels and Table 11.4 lists the Interrupt Priority Levels Enabled by IPL.

The following are conditions under which an interrupt is acknowledged:

- I flag = 1
- IR bit = 1
- interrupt priority level > IPL

The I flag, IR bit, ILVL2 to ILVL0 bits and IPL are independent of each other. They do not affect one another.

Table 11.3 Settings of Interrupt Priority Levels

ILVL2 to ILVL0 Bits	Interrupt Priority Level	Priority Order
000b	Level 0 (interrupt disabled)	=
001b	Level 1	Low
010b	Level 2	ı
011b	Level 3	
100b	Level 4	
101b	Level 5	
110b	Level 6	▼
111b	Level 7	High

Table 11.4 Interrupt Priority Levels Enabled by IPL

IPL	Enabled Interrupt Priority Levels
000b	Interrupt level 1 and above
001b	Interrupt level 2 and above
010b	Interrupt level 3 and above
011b	Interrupt level 4 and above
100b	Interrupt level 5 and above
101b	Interrupt level 6 and above
110b	Interrupt level 7 and above
111b	All maskable interrupts are disabled

11.1.6.4 Interrupt Sequence

An interrupt sequence is performed between an interrupt request acknowledgement and interrupt routine execution.

When an interrupt request is generated while an instruction is executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, in regards to the SMOVB, SMOVF, SSTR or RMPA instruction, if an interrupt request is generated while executing the instruction, the microcomputer suspends the instruction to start the interrupt sequence. The interrupt sequence is performed as follows. Figure 11.5 shows the Time Required for Executing Interrupt Sequence.

- (1) The CPU gets interrupt information (interrupt number and interrupt request level) by reading the address 00000h. The IR bit for the corresponding interrupt is set to "0" (interrupt not requested).
- (2) The FLG register immediately before entering the interrupt sequence is saved to the CPU internal temporary register⁽¹⁾.
- (3) The I, D and U flags in the FLG register are set as follows:
 - The I flag is set to "0" (disables interrupts).
 - The D flag is set to "0" (disables single-step interrupt).
 - The U flag is set to "0" (ISP selected).
 - However, the U flag does not change state if an INT instruction for software interrupt numbers 32 to 63 is executed.
- (4) The CPU's internal temporary register⁽¹⁾ is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the acknowledged interrupt is set in the IPL.
- (7) The starting address of the interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, the instructions are executed from the starting address of the interrupt routine.

NOTES:

1. This register cannot be used by user.

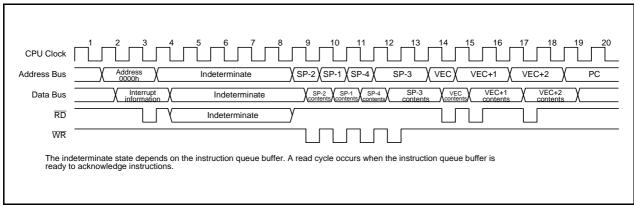


Figure 11.5 Time Required for Executing Interrupt Sequence

11.1.6.5 Interrupt Response Time

Figure 11.6 shows an Interrupt Response Time. The interrupt response time is the period between an interrupt request generation and the execution of the first instruction in an interrupt routine. An interrupt response time includes the period between an interrupt request generation and the completed execution of an instruction (see #a in Figure 11.6) and the period required to perform an interrupt sequence (20 cycles, see #b in Figure 11.6).

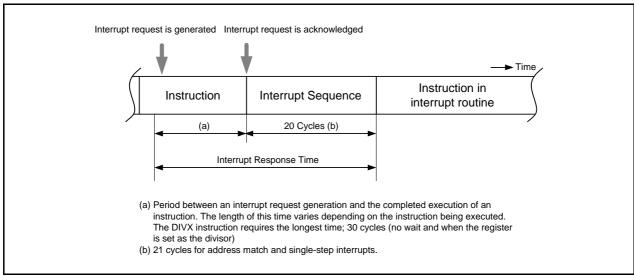


Figure 11.6 Interrupt Response Time

11.1.6.6 IPL Change when Interrupt Request is Acknowledged

When an interrupt request of a maskable interrupt is acknowledged, the interrupt priority level of the acknowledged interrupt is set in the IPL.

When a software interrupt and special interrupt request are acknowledged, the level listed in Table 11.5 is set to the IPL. Table 11.5 lists the IPL Value When Software or Special Interrupts Is Acknowledged.

Table 11.5 IPL Value When Software or Special Interrupts Is Acknowledged

Interrupt Factor	Value Set to IPL
Watchdog Timer, Oscillation Stop Detection, Voltage Monitor 2	7
Software, Address Match, Single-Step	Not changed

11.1.6.7 Saving a Register

In the interrupt sequence, the FLG register and PC are saved to the stack.

After 4 high-order bits in the PC and 4 high-order (IPL) and 8 low-order bits in the FLG register, extended to 16 bits, are saved to the stack, the 16 low-order bits in the PC are saved. Figure 11.7 shows the Stack State Before and After Acknowledgement of Interrupt Request.

The other necessary registers are saved by a program at the beginning of the interrupt routine. The PUSHM instruction can save several registers in the register bank being currently used⁽¹⁾ with 1 instruction.

NOTES:

1. Selectable from the R0, R1, R2, R3, A0, A1, SB and FB registers.

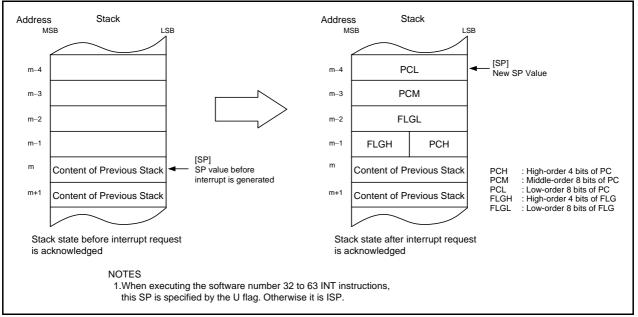


Figure 11.7 Stack State Before and After Acknowledgement of Interrupt Request

The register saving operation which is performed in the interrupt sequence is saved in 8 bits every 4 steps. Figure 11.8 shows the Operation of Saving Register.

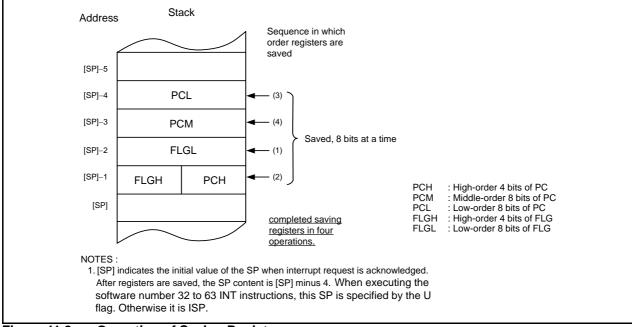


Figure 11.8 Operation of Saving Register

11.1.6.8 **Returning from an Interrupt Routine**

When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC, which have been saved to the stack, are automatically returned. The program, executed before the interrupt request has been acknowledged, starts running again.

Return the register saved by a program in an interrupt routine using the POPM instruction or others before the REIT instruction.

11.1.6.9 **Interrupt Priority**

If two or more interrupt requests are generated while executing one instruction, the interrupt with the higher priority is acknowledged.

Set the ILVL2 to ILVL0 bits to select the desired priority level for maskable interrupts (peripheral functions). However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the higher priority interrupt acknowledged in hardware.

The priority levels of special interrupts such as reset (reset has the highest priority) and watchdog timer are set by hardware. Figure 11.9 shows the Interrupt Priority Levels of Hardware Interrupt.

The interrupt priority does not affect software interrupts. The microcomputer jumps to the interrupt routine when the instruction is executed.

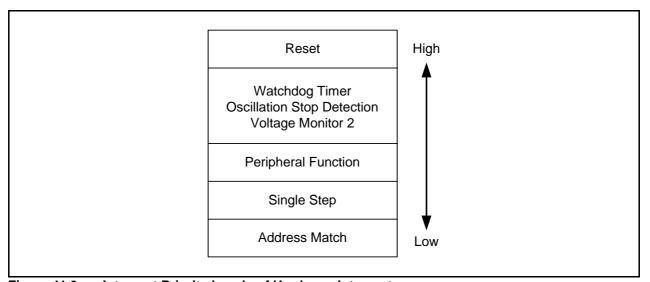
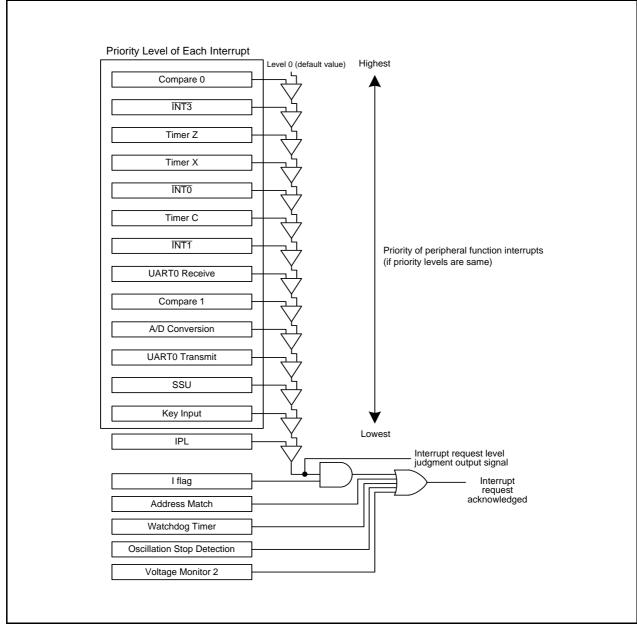



Figure 11.9 **Interrupt Priority Levels of Hardware Interrupt**

11.1.6.10 Interrupt Priority Judgement Circuit

The interrupt priority judgement circuit selects the highest priority interrupt. Figure 11.10 shows the Judgement Circuit of Interrupts Priority Level.

Figure 11.10 Judgement Circuit of Interrupts Priority Level

11.2 INT Interrupt

11.2.1 INTO Interrupt

The INTO interrupt is generated by an INTO input. When using the INTO interrupt, the INTOEN bit in the INTEN register is set to "1" (enable). The edge polarity is selected using the INTOPL bit in the INTEN register and the POL bit in the INTOIC register.

Inputs can be passed through a digital filter with three different sampling clocks.

The INTO pin is shared with the external trigger input pin of timer Z.

Figure 11.11 shows the INTEN and INTOF Registers.

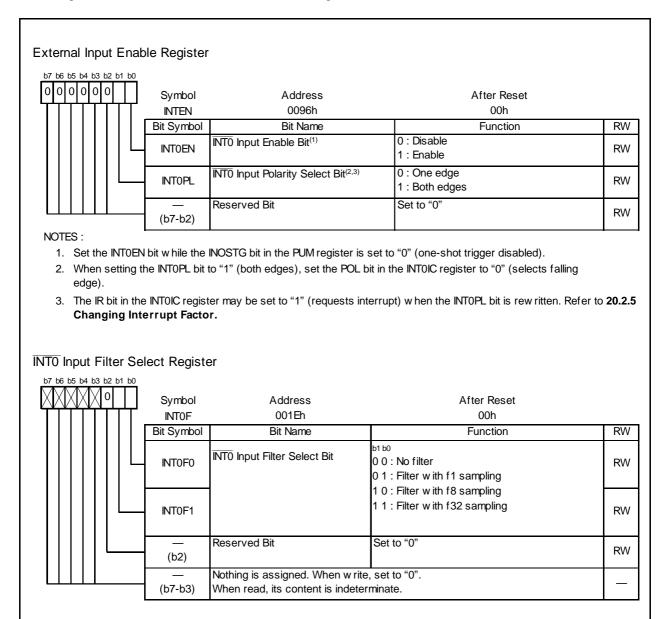
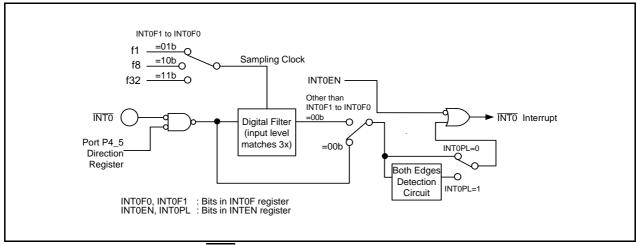
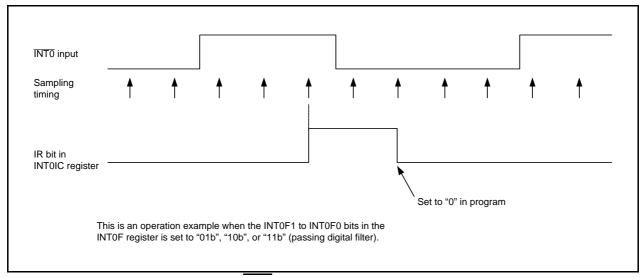



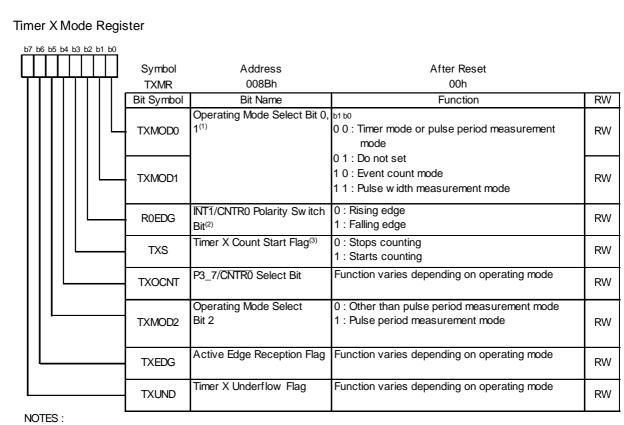
Figure 11.11 INTEN and INT0F Registers


INTO Input Filter 11.2.2

The INTO input contains a digital filter. The sampling clock is selected by the INT0F1 to INT0F0 bits in the INTOF register. The IR bit in the INTOIC register is set to "1" (interrupt requested) when the INTO level is sampled for every sampling clock and the sampled input level matches three times.

Figure 11.12 shows the Configuration of INTO Input Filter. Figure 11.13 shows the Operating Example of INT0 Input Filter.

Figure 11.12 Configuration of INTO Input Filter


Figure 11.13 Operating Example of INTO Input Filter

11.2.3 INT1 Interrupt

The INT1 interrupt is generated by INT1 inputs. The edge polarity is selected by the R0EDG bit in the TXMR register.

When the CNTRSEL bit in the UCON register is set to "0", the INT10 pin becomes the INT1 input pin. When the CNTRSEL bit is set to "1", the INT11 pin becomes the INT1 input pin.

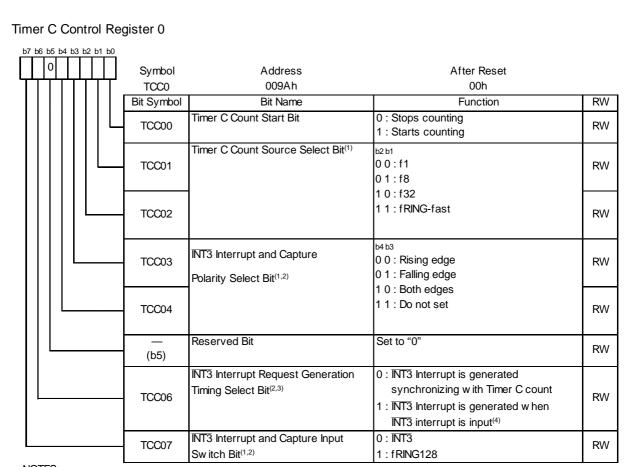
The INT10 pin is shared with the CNTR00 pin and the INT11 pin is shared with the CNTR01 pin. Figure 11.14 shows the TXMR Register when INT1 Interrupt is Used.

- 1. When using INT1 interrupt, select modes other than pulse output mode.
- 2. The IR bit in the INT1IC register may be set to "1" (requests interrupt) when the R0EDG bit is rewritten. Refer to 20.2.5 Changing Interrupt Factor.
- 3. Refer to 20.4.2 Timer X for precautions on the TXS bit.

Figure 11.14 TXMR Register when INT1 Interrupt is Used

11.2.4 INT3 Interrupt

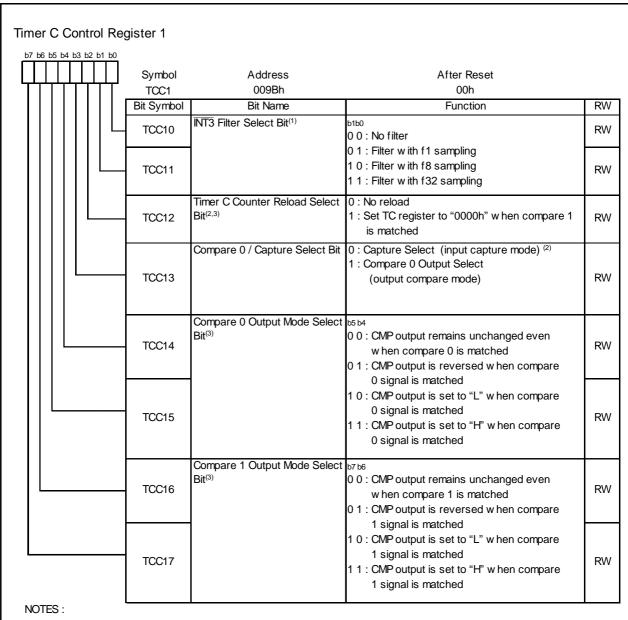
The INT3 interrupt is generated by the INT3 input. Set the TCC07 bit in the TCC0 register to "0" (INT3).


When the TCC06 bit in the TCC0 register is set to "0", the INT3 interrupt request is generated synchronizing with the count source of timer C. When the TCC06 bit is set to "1", the INT3 interrupt request is generated when the INT3 is input.

The INT3 input contains a digital filter. The IR bit in the INT3IC register is set to "1" (interrupt requested) when the INT3 level is sampled for every sampling clock and the sampled input level matches three times. The sampling clock is selected by the TCC11 to TCC10 bits in the TCC1 register. When selecting "Filter", the interrupt request is generated synchronizing with the sampling clock even if the TCC06 bit is set to "1". The P3_3 bit in the P3 register indicates the previous value before filtering regardless of the contents set in the TCC11 to TCC10 bits.

The INT3 pin is used with the TCIN pin.

When setting the TCC07 bit to "1" (fRING128), the INT3 interrupt is generated by the fRING128 clock. The IR bit in the INT3IC register is set to "1" (interrupt requested) every fRING128 clock cycle or every half fRING128 clock cycle.


Figure 11.15 shows the TCC0 Register and Figure 11.16 shows the TCC1 Register.

NOTES:

- 1. Change this bit when the TCC00 bit is set to "0" (count stop).
- 2. The IR bit in the INT3IC register may be set to "1" (requests interrupt) when the TCC03, TCC04, TCC06 and TCC07 bits are rewritten. Refer to 20.2.5 Changing Interrupt Factor.
- 3. When the TCC13 bit is set to "1" (output compare mode) and INT3 interrupt is input, regardless of the setting value of the TCC06 bit, an interrupt request is generated.
- 4. When using $\overline{\text{INT3}}$ filter, the $\overline{\text{INT3}}$ interrupt is generated synchronizing with the clock for the digital filter.

Figure 11.15 TCC0 Register

- 1. When the same value from the $\overline{\text{INT3}}$ pin is sampled three times continuously, the input is determined.
- 2. When the TCC00 bit in the TCC0 register is set to "0" (count stop), rew rite the TCC13 bit.
- 3. When the TCC13 bit is set to "0" (input capture mode), set the TCC12, TCC14 to TCC17 bits to "0".

Figure 11.16 TCC1 Register

11.3 Key Input Interrupt

A key input interrupt request is generated by one of the input edges of the $\overline{\text{K10}}$ to $\overline{\text{K13}}$ pins. The key input interrupt can be used as a key-on wake-up function to exit wait or stop mode.

The KliEN (i=0 to 3) bit in the KlEN register can select whether the pins are used as Kli input. The KliPL bit in the KlEN register can select the input polarity.

When inputting "L" to the $\overline{\text{Kli}}$ pin which sets the KliPL bit to "0" (falling edge), the input of the other $\overline{\text{K10}}$ to $\overline{\text{K13}}$ pins are not detected as interrupts. Also, when inputting "H" to the $\overline{\text{Kli}}$ pin which sets the KliPL bit to "1" (rising edge), the input of the other $\overline{\text{K10}}$ to $\overline{\text{K13}}$ pins are not detected as interrupts.

Figure 11.17 shows a Block Diagram of Key Input Interrupt.

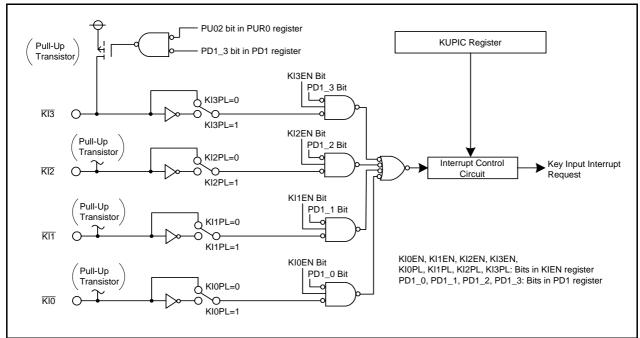


Figure 11.17 Block Diagram of Key Input Interrupt

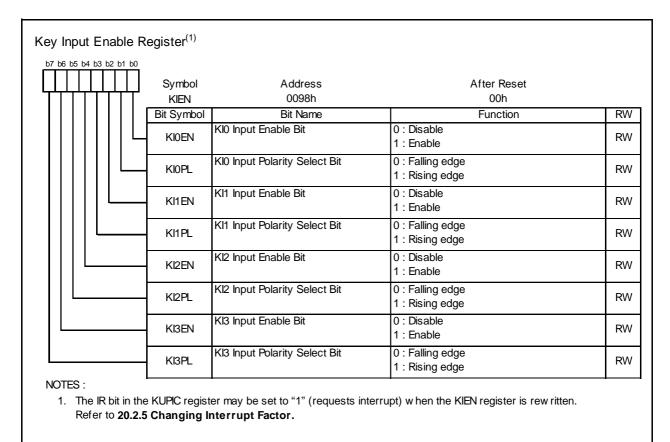


Figure 11.18 KIEN Register

11.4 **Address Match Interrupt**

An address match interrupt request is generated immediately before executing the instruction at the address indicated by the RMADi register (i=0, 1). This interrupt is used for a break function of the debugger. When using the on-chip debugger, do not set an address match interrupt (the registers of AIER, RMAD0, RMAD1 and the fixed vector tables) in a user system.

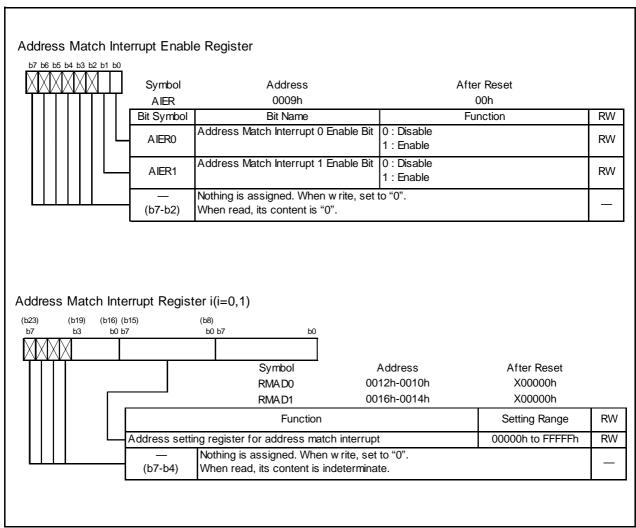
Set the starting address of any instruction in the RMADi register. The AIER0 and AIER1 bits in the AIER0 register can select to enable or disable the interrupt. The I flag and IPL do not affect the address match interrupt.

The value of the PC (Refer to 11.1.6.7 Saving a Register for the value of the PC) which is saved to the stack when an address match interrupt is acknowledged varies depending on the instruction at the address indicated by the RMADi register (The appropriate return address is not pushed on the stack). When returning from the address match interrupt, return by one of the following:

- Change the content of the stack and use the REIT instruction.
- Use an instruction such as POP to restore the stack as it was before an interrupt request was acknowledged. And then use a jump instruction.

Table 11.6 lists the Value of PC Saved to Stack when Address Match Interrupt is Acknowledged. Figure 11.19 shows the AIER, RMAD0 to RMAD1 Registers.

Table 11.6 Value of PC Saved to Stack when Address Match Interrupt is Acknowledged


Address Indicated by RMADi Register (i=0,1)				PC Value Saved ⁽¹⁾		
• 16-bit oper	ration code ins	truction				Address indicated by
 Instruction 	shown below	among 8-bi	t operation co	de instructio	ons	RMADi register + 2
ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest	_
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ.B:S	#IMM8,dest	
STNZ.B:S	#IMM8,dest	STZX.B:S	#IMM81,#IMI	M82,dest		
CMP.B:S	#IMM8,dest	PUSHM	src	POPM	dest	
JMPS	#IMM8	JSRS	#IMM8			
MOV.B:S	MOV.B:S #IMM,dest (However, dest = A0 or A1)					
• Instructions other than the above Address indicated			Address indicated by			
						RMADi register + 1

NOTES:

1. Refer to the **11.1.6.7 Saving a Register** for the PC value saved.

Table 11.7 Between Address Match Interrupt Sources and Associated Registers

Address Match Interrupt Factor	Address Match Interrupt Enable Bit	Address Match Interrupt Register
Address Match Interrupt 0	AIER0	RMAD0
Address Match Interrupt 1	AIER1	RMAD1

AIER, RMAD0 to RMAD1 Registers **Figure 11.19**

12. Watchdog Timer

The watchdog timer is a function to detect when the program is out of control. To use the watchdog timer is recommend for improving reliability of a system. The watchdog timer contains a 15-bit counter and can select count source protection mode is enabled or disabled. Table 12.1 lists the Count Source Protection Mode is Enabled / Disabled

Refer to 5.5 Watchdog Timer Reset for details of the watchdog timer reset.

Figure 12.1 shows the Block Diagram of Watchdog Timer and Figures 12.2 to 12.3 show the OFS, WDC, WDTR, WDTS and CSPR Registers.

Table 12.1 Count Source Protection Mode is Enabled / Disabled

Item	When Count Source Protection	When Count Source Protection	
item	Mode is Disabled	Mode is Enabled	
Count Source	CPU clock	Low-speed on-chip oscillator	
		clock	
Count Operation	Decrement		
Reset Condition of Watchdog	• Reset		
Timer	Write "00h" to the WDTR register before writing "FFh"		
	Underflow		
Count Start Condition	Either of following can be selected		
	After reset, count starts automatically		
	• Count starts by writing to WDTS	register	
Count Stop Condition	Stop mode, wait mode	None	
Operation at the time of	Watchdog timer interrupt or	Watchdog timer reset	
Underflow	watchdog timer reset		

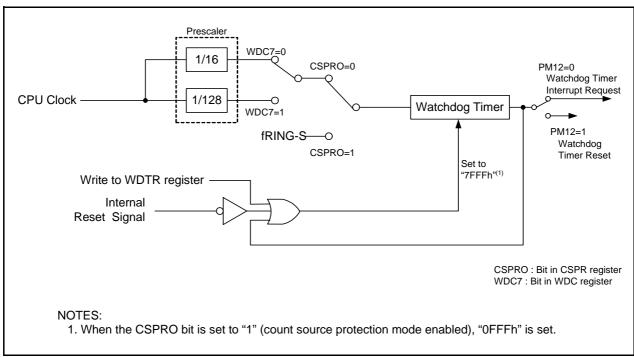


Figure 12.1 Block Diagram of Watchdog Timer

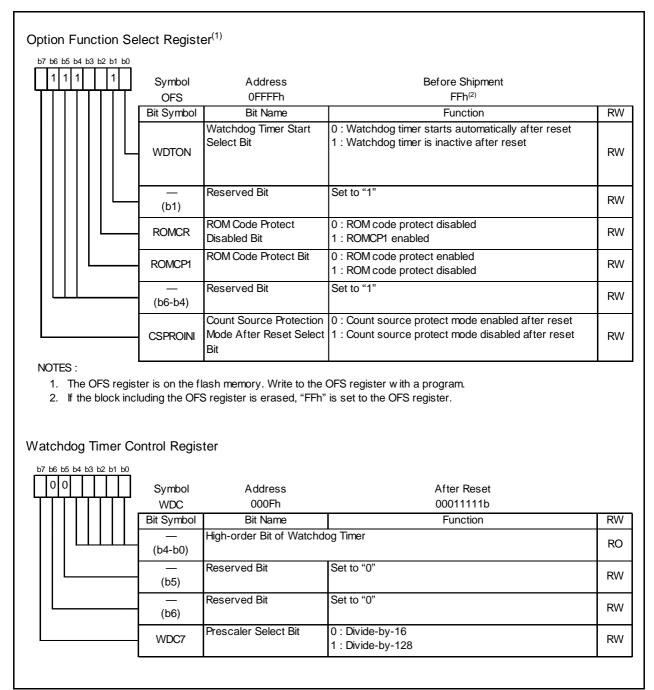


Figure 12.2 OFS and WDC Registers

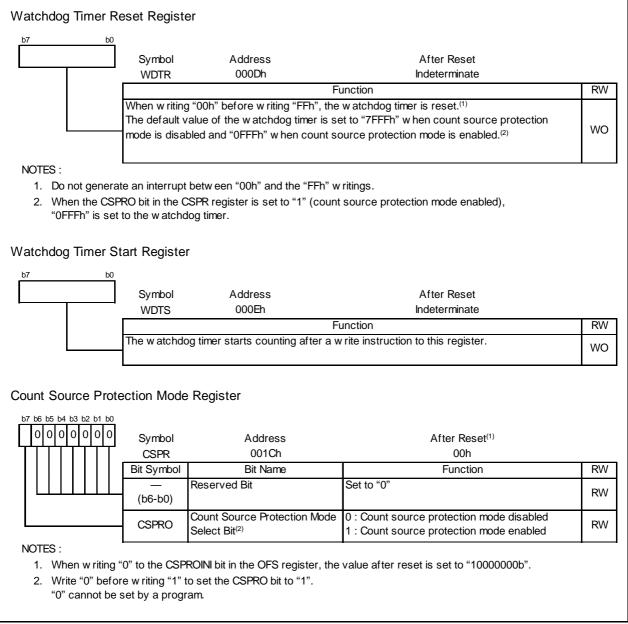


Figure 12.3 WDTR, WDTS and CSPR Registers

12.1 When Count Source Protection Mode Disabled

The count source of the watchdog timer is the CPU clock when count source protection mode is disabled. Table 12.2 lists the Specification of Watchdog Timer (When Count Source Protection Mode is Disabled).

Table 12.2 Specification of Watchdog Timer (When Count Source Protection Mode is Disabled)

Item	Specification
Count Source	CPU clock
Count Operation	Decrement
Period	Division ratio of prescaler(n) x count value of watchdog timer(32768) ⁽¹⁾ CPU clock n: 16 or 128 (selected by WDC7 bit in WDC register) e.g.When the CPU clock is 16MHz and prescaler is divided by 16, the period is approximately 32.8ms
Count Start Condition	The WDTON bit ⁽²⁾ in the OFS register (0FFFFh) selects the operation of watchdog timer after reset • When the WDTON bit is set to "1" (watchdog timer is in stop state after reset) The watchdog timer and prescaler stop after reset and the count starts by writing to the WDTS register • When the WDTON bit is set to "0" (watchdog timer starts automatically after exiting) The watchdog timer and prescaler start counting automatically after reset
Reset Condition of Watchdog Timer Count Stop Condition	 Reset Write "00h" to the WDTR register before writing "FFh" Underflow Stop and wait modes (inherit the count from the held value after exiting
Count Stop Condition	modes)
Operation at the time of Underflow	 When the PM12 bit in the PM1 register is set to "0" Watchdog timer interrupt When the PM12 bit in the PM1 register is set to "1" Watchdog timer reset (refer to 5.5 Watchdog Timer Reset)

NOTES:

- 1. The watchdog timer is reset when writing "00h" to the WDTR register before writing "FFh". The prescaler is reset after the microcomputer is reset. Some errors occur by the prescaler for the period of the watchdog timer.
- 2. The WDTON bit cannot be changed by a program. When setting the WDTON bit, write "0" to the bit 0 of the address 0FFFFh by a flash writer.

12.2 When Count Source Protection Mode Enabled

The count source of the watchdog timer is the low-speed on-chip oscillator clock when count source protection mode is enabled. If the CPU clock stops when the program is out of control, the clock can be supplied to the watchdog timer. Table 12.3 lists the Specification of Watchdog Timer (When Count Source Protection Mode is Enabled).

Table 12.3 Specification of Watchdog Timer (When Count Source Protection Mode is Enabled)

Item	Specification
Count Source	Low-speed on-chip oscillator clock
Count Operation	Decrement
Period	Count value of watchdog timer (4096)
	Low-speed on-chip oscillator clock
	e.g. Period is approximately 32.8ms when the low-speed on-chip
	oscillator clock is 125 kHz
Count Start Condition	The WDTON bit ⁽¹⁾ in the OFS register (0FFFFh) selects the operation
	of the watchdog timer after reset.
	When the WDTON bit is set to "1" (watchdog timer is in stop state)
	after reset)
	The watchdog timer and prescaler stop after reset and the count
	starts by writing to the WDTS register
	When the WDTON bit is set to "0" (watchdog timer starts
	automatically after reset)
	The watchdog timer and prescaler start counting automatically after
Donat Condition of Wetch don	reset
Reset Condition of Watchdog	• Reset
Timer	Write "00h" to the WDTR register before writing "FFh"Underflow
Count Stop Condition	None (the count does not stop in wait mode after the count starts. The
Court Stop Condition	microcomputer does not stop in wait mode after the count starts. The
Operation at the time of	Watchdog timer reset (refer to 5.5 Watchdog Timer Reset)
Underflow	valoridog timer reset (refer to 6.5 valoridog Timer reset)
Register, Bit	When setting the CSPPRO bit in the CSPR register to "1" (count
	source protection mode is enabled) ⁽²⁾ , the following are set
	automatically
	- Set 0FFFh to the watchdog timer
	- Set the CM14 bit in the CM1 register to "0" (low-speed on-chip
	oscillator on)
	- Set the PM12 bit in the PM1 register to "1" (The watchdog timer is
	reset when watchdog timer underflows)
	The following states are held in count source protection mode
	- Writing to the CM10 bit in the CM1 register disables (It remains
	unchanged even if it is set to "1". The microcomputer does not
	enter stop mode)
	- Writing to the CM14 bit in the CM1 register disables (It remains
	unchanged even if it is set to "1". The low-speed on-chip oscillator
	does not stop)

NOTES:

- 1. The WDTON bit cannot be changed by a program. When setting the WDTON bit, write "0" to the bit 0 of the address 0FFFFh by a flash writer.
- 2. Even if writing "0" to the CSPROINI bit in the OFS register, the CSPRO bit is set to "1". The CSPROINI bit cannot be changed by a program. When setting the CSPROINI bit, write "0" to the bit 7 of the address 0FFFFh by a flash writer.

13. Timers

The microcomputer contains two 8-bit timers with 8-bit prescaler and a 16-bit timer. The two 8-bit timers with the 8-bit prescaler contain Timer X and Timer Z. These timers contain a reload register to memorize the default value of the counter. The 16-bit timer is Timer C which contains the input capture and output compare. All these timers operate independently. The count source for each timer is the operating clock that regulates the timing of timer operations such as counting and reloading. Table 13.1 lists Functional Comparison of Timers.

Table 13.1 Functional Comparison of Timers

Item		Timer X	Timer Z	Timer C
Configuration		8-bit timer with 8-bit	8-bit timer with 8-bit	16-bit free-run timer
		prescaler (with	prescaler (with	(with input capture
		reload register)	reload register)	and output compare)
Count		Decrement	Decrement	Increment
Count sou	rce	• f1	• f1	• f1
		• f2	• f2	• f8
		• f8	• f8	• f32
		• fRING	Timer X underflow	fRING-fast
Function	Timer Mode	provided	provided	not provided
	Pulse Output Mode	provided	not provided	not provided
	Event Counter Mode	provided	not provided	not provided
	Pulse Width Measurement	provided	not provided	not provided
	Mode			
	Pulse Period Measurement	provided	not provided	not provided
	Mode			
	Programmable Waveform	not provided	provided	not provided
	Generation Mode			
	Programmable one-shot	not provided	provided	not provided
	generation mode			
	Programmable Wait One-	not provided	provided	not provided
	Shot Generation Mode			
	Input Capture Mode	not provided	not provided	provided
	Output Compare Mode	not provided	not provided	provided
Input Pin	<u>. </u>	CNTR0	ĪNT0	TCIN
Output Pin		CNTR0	TZOUT	CMP0_0 to CMP0_2
		CNTR0		CMP1_0 to CMP1_2
Related Interrupt		Timer X interrupt	Timer Y interrupt	Timer C interrupt
		INT1 interrupt	INT0 interrupt	INT3 interrupt
				Compare 0 interrupt
				Compare 1 interrupt
Timer Stop		provided	provided	provided

13.1 Timer X

Timer X is an 8-bit timer with an 8-bit prescaler.

The prescaler and timer consist of the reload register and counter. The reload register and counter are allocated at the same address. When accessing the PREX and TX registers, the reload register and counter can be accessed (Refer to **Tables 13.2 to 13.6 the Specification of Each Modes**).

Figure 13.1 shows the Block Diagram of Timer X. Figures 13.2 and 13.3 show the registers associated with Timer X.

Timer X contains five operating modes listed as follows:

• Timer mode: The timer counts an internal count source.

• Pulse output mode: The timer counts an internal count source and outputs the

pulses which inverts the polarity by underflow of the timer.

Event counter mode: The timer counts external pulses.

Pulse width measurement mode: The timer measures the pulse width of an external pulse
Pulse period measurement mode: The timer measures the pulse period of an external pulse.



Figure 13.1 Block Diagram of Timer X

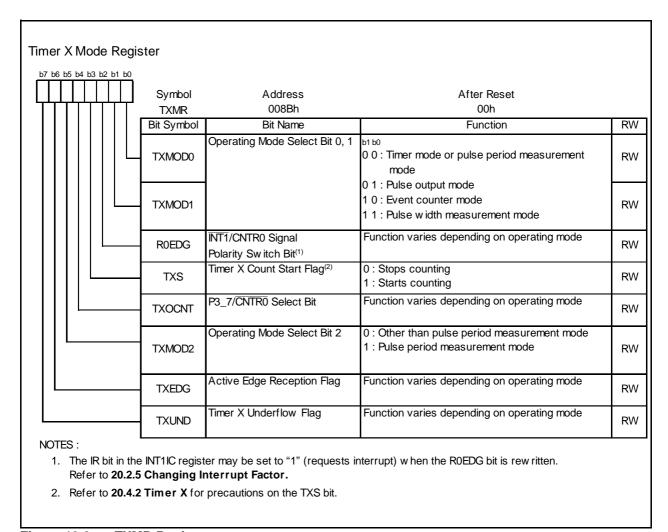


Figure 13.2 **TXMR Register**

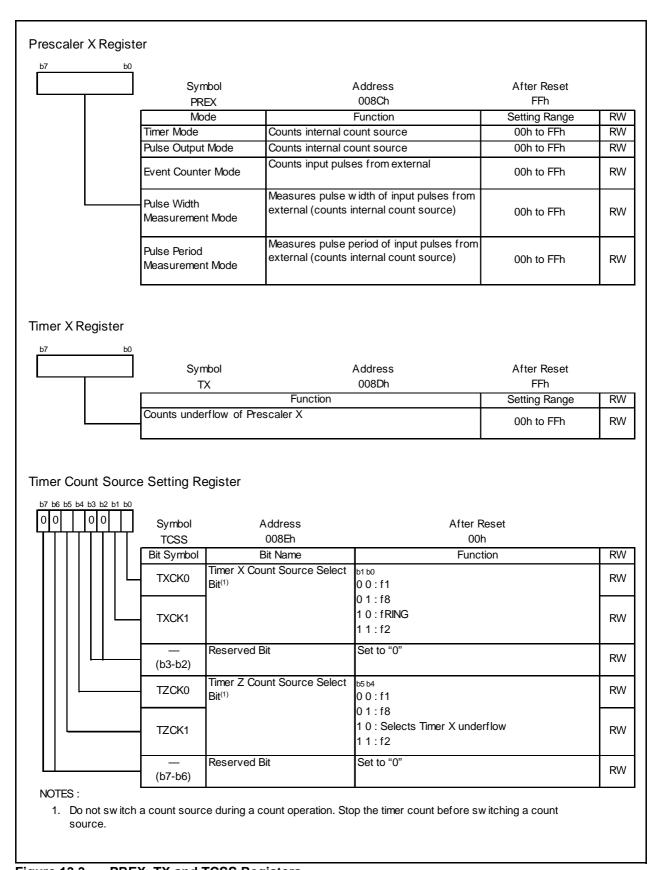


Figure 13.3 PREX, TX and TCSS Registers

13.1.1 Timer Mode

Timer mode is mode to count the count source which is internally generated (See **Table 13.2 Specification of Timer Mode**). Figure 13.4 shows the TXMR Register in Timer Mode.

Table 13.2 Specification of Timer Mode

Item	Specification
Count Source	f1, f2, f8, fRING
Count Operation	Decrement When the timer underflows, the contents in the reload register is reloaded and the count is inherited
Divide Ratio	1/(n+1)(m+1) n: setting value of PREX register, m: setting value of TX register
Count Start Condition	Write "1" (count starts) to the TXS bit in the TXMR register
Count Stop Condition	Write "0" (count stops) to the TXS bit in the TXMR register
Interrupt Request	When Timer X underflows [Timer X interrupt]
Generation Timing	
INT10/CNTR00, INT11/CNTR01 Pin Function	Programmable I/O port, or INT1 interrupt input
CNTR0 Pin Function	Programmable I/O port
Read from Timer	The count value can be read by reading the TX and PREX registers
Write to Timer	 When writing to the TX and PREX registers while the count stops, the value is written to both the reload register and counter. When writing to the TX and PREX registers during the count, the value is written to each reload register of the TX and PREX registers at the following count source input and the data is transferred to the counter at the second count source input and the count re-starts at the third count source input.

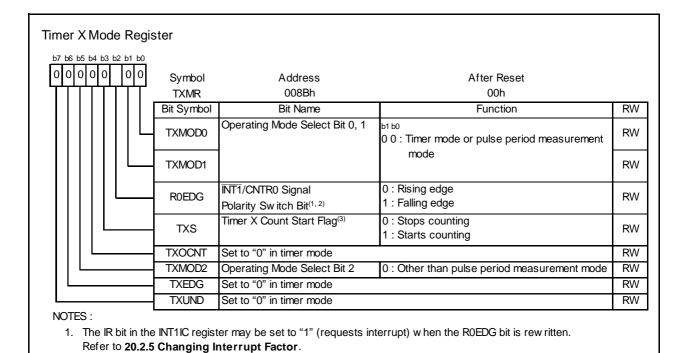


Figure 13.4 TXMR Register in Timer Mode

2. This bit is used to select the polarity of $\overline{\text{INT1}}$ interrupt in timer mode.

3. Refer to 20.4.2 Timer X for precautions on the TXS bit.

13.1.2 **Pulse Output Mode**

Pulse output mode is mode to count the count source internally generated and outputs the pulse which inverts the polarity from the CNTR0 pin each time the timer underflows (See Table 13.3 Specification of Pulse Output Mode). Figure 13.5 shows TXMR Register in Pulse Output Mode.

Table 13.3 Specification of Pulse Output Mode

Item	Specification
Count Source	f1, f2, f8, fRING
Count Operation	 Decrement When the timer underflows, the contents in the reload register is reloaded and the count is inherited
Divide Ratio	1/(n+1)(m+1) n: setting value of PREX register, m: setting value of TX register
Count Start Condition	Write "1" (count starts) to the TXS bit in the TXMR register
Count Stop Condition	Write "0" (count stops) to the TXS bit in the TXMR register
Interrupt Request Generation Timing	When Timer X underflows [Timer X interrupt]
INT10/CNTR00 Pin Function	Pulse output
CNTR0 Pin Function	Programmable I/O port or inverted output of CNTR0
Read from timer	The count value can be read by reading the TX and PREX registers.
Write to Timer	 When writing to the TX and PREX registers while the count stops, the value is written to both the reload register and counter. When writing to the TX and PREX registers during the count, the value is written to each reload register of the TX and PREX registers at the following count source input and the data is transferred to the counter at the second count source input and the count re-starts at the third count source input.
Select Function	INT1/CNTR0 signal polarity switch function The R0EDG bit can select the polarity level when the pulse output starts ⁽¹⁾ Inverted pulse output function The pulse which inverts the polarity of the CNTR0 output can be output from the CNTR0 pin (selected by TXOCNT bit)

NOTES:

1. The level of the output pulse becomes the level when the pulse output starts when the TX register is written to.

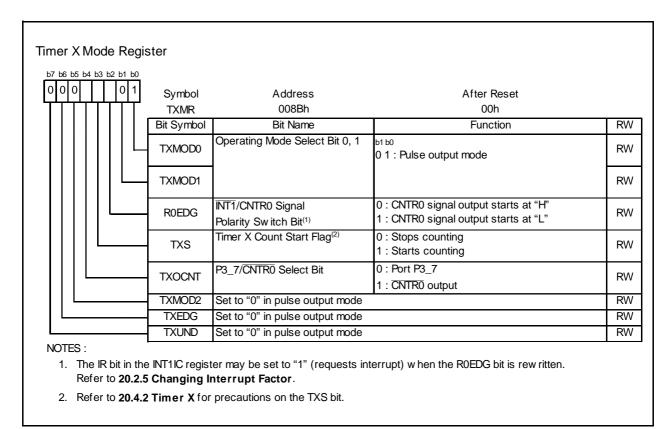


Figure 13.5 **TXMR Register in Pulse Output Mode**

13.1.3 Event Counter Mode

Event counter mode is mode to count an external signal which inputs from the INT1/CNTR0 pin (See **Table 13.4 Specification of Event Counter Mode**). Figure 13.6 shows TXMR Register in Event Counter Mode.

Table 13.4 Specification of Event Counter Mode

Item	Specification
Count Source	External signal which is input to CNTR0 pin (Active edge is selectable by software)
Count Operation	Decrement When the timer underflows, the contents in the reload register is reloaded and the count is inherited
Divide Ratio	1/(n+1)(m+1) n: setting value of PREX register, m: setting value of TX register
Count Start Condition	Write "1" (count starts) to the TXS bit in the TXMR register
Count Stop Condition	Write "0" (count stops) to the TXS bit in the TXMR register
Interrupt Request Generation Timing	When Timer X underflows [Timer X interrupt]
INT10/CNTR00, INT11/CNTR01 Pin Function	Count source input (INT1 interrupt input)
CNTR0 Pin Function	Programmable I/O port
Read from Timer	The count value can be read by reading the TX and PREX registers.
Write to Timer	 When writing to the TX and PREX registers while the count stops, the value is written to both the reload register and counter. When writing to the TX and PREX registers during the count, the value is written to each reload register of the TX and PREX registers at the following count source input and the data is transferred to the counter at the second count source input and the count re-starts at the third count source input.
Select Function	INT1/CNTR0 signal polarity switch function The R0EDG bit can select the active edge of the count source. Count source input pin select function The CNTRSEL bit in the UCON register can select the CNTR00 or CNTR01 pin

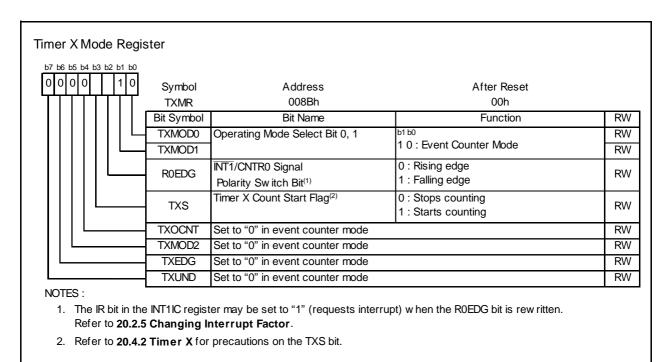


Figure 13.6 **TXMR Register in Event Counter Mode**

13.1.4 Pulse Width Measurement Mode

Pulse width measurement mode is mode to measure the pulse width of an external signal which inputs from the INT1/CNTR0 pin (See **Table 13.5 Specification of Pulse Width Measurement Mode**). Figure 13.7 shows the TXMR Register in Pulse Width Measurement Mode. Figure 13.8 shows an Operating Example in Pulse Width Measurement Mode.

Table 13.5 Specification of Pulse Width Measurement Mode

Item	Specification
Count Source	f1, f2, f8, fRING
Count Operation	 Decrement Continuously counts the selected signal only when the measurement pulse is "H" level, or conversely only "L" level. When the timer underflows, the contents in the reload register is reloaded and the count is inherited
Count Start Condition	Write "1" (count starts) to the TXS bit in the TXMR register
Count Stop Condition	Write "0" (count stops) to the TXS bit in the TXMR register
Interrupt Request Generation Timing	When Timer X underflows [Timer X interrupt] Rising or falling of the CNTR0 input (end of measurement period) [INT1 interrupt]
INT10/CNTR00, INT11/CNTR01 Pin Function	Measurement pulse input (INT1 interrupt input)
CNTR0 Pin Function	Programmable I/O port
Read from Timer	The count value can be read by reading the TX and PREX registers.
Write to Timer	 When writing to the TX and PREX registers while the count stops, the value is written to both the reload register and counter. When writing to the TX and PREX registers during the count, the value is written to each reload register of the TX and PREX registers at the following count source input and the data is transferred to the counter at the second count source input and the count re-starts at the third count source input.
Select Function	 INT1/CNTR0 signal polarity switch function The R0EDG bit can select during "H" or "L" level as the input pulse measurement Measurement pulse input pin select function The CNTRSEL bit in the UCON register can select the CNTR00 or CNTR01 pin

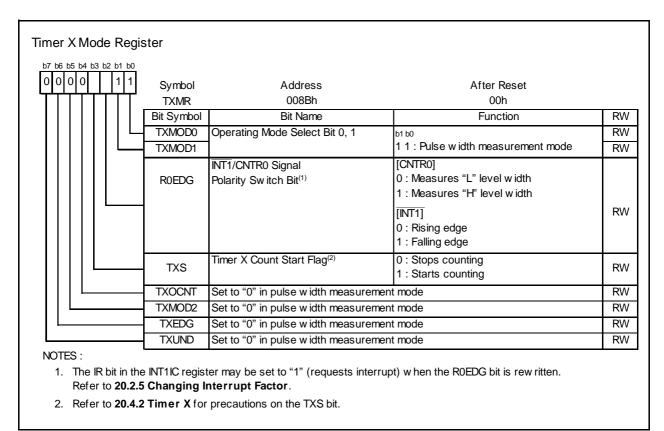


Figure 13.7 TXMR Register in Pulse Width Measurement Mode

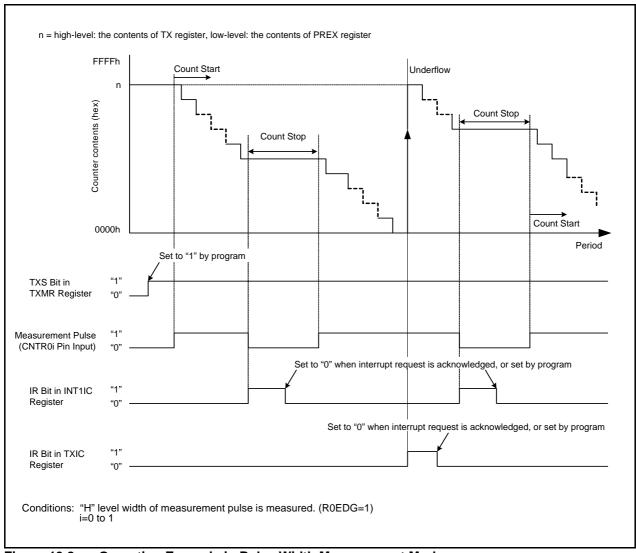


Figure 13.8 Operating Example in Pulse Width Measurement Mode

13.1.5 **Pulse Period Measurement Mode**

Pulse period measurement mode is mode to measure the pulse period of an external signal which inputs from the INT1/CNTR0 pin (See Table 13.6 Specification of Pulse Period Measurement Mode). Figure 13.9 shows the TXMR Register in Pulse Period Measurement Mode. Figure 13.10 shows an Operating Example in Pulse Period Measurement Mode.

Table 13.6 Specification of Pulse Period Measurement Mode

Item	Specification
Count Source	f1, f2, f8, fRING
Count Operation	Decrement After an active edge of measurement pulse is input, contents for the read-out buffer are retained at the first underflow of prescaler X. Then timer X reloads contents in the reload register at the second underflow of prescaler X and continues counting.
Count Start Condition	Write "1" (count start) to the TXS bit in the TXMR register
Count Stop Condition	Write "0" (count stop) to TXS bit in TXMR register
Interrupt Request Generation Timing	 When timer X underflows or reloads [timer X interrupt] Rising or falling of CNTR0 input (end of measurement period) [INT1 interrupt]
INT10/CNTR00, INT11/CNTR01 Pin Function	Measurement pulse input ⁽¹⁾ (INT1 interrupt input)
CNTR0 Pin Function	Programmable I/O port
Read from Timer	Contents in the read-out buffer can be read by reading the TX register. The value retained in the read-out buffer is released by reading TX register.
Write to Timer	 When writing to the TX and PREX registers while the count stops, the value is written to both the reload register and counter. When writing to the TX and PREX registers during the count, the value is written to each reload register of the TX and PREX registers at the following count source input and the data is transferred to the counter at the second count source input and the count re-starts at the third count source input.
Select Function	INT1/CNTR0 polarity switch function The R0EDG bit can select the measurement period of input pulse. Measurement pulse input pin select function The CNTRSEL bit in the UCON register can select the CNTR00 or CNTR01 pin.

NOTES:

1. Input the pulse whose period is longer than twice of the prescaler X period. Input the longer pulse for "H" width and "L" width than the prescaler X period. If the shorter pulse than the period is input to the CNTR0 pin, the input may be disabled.

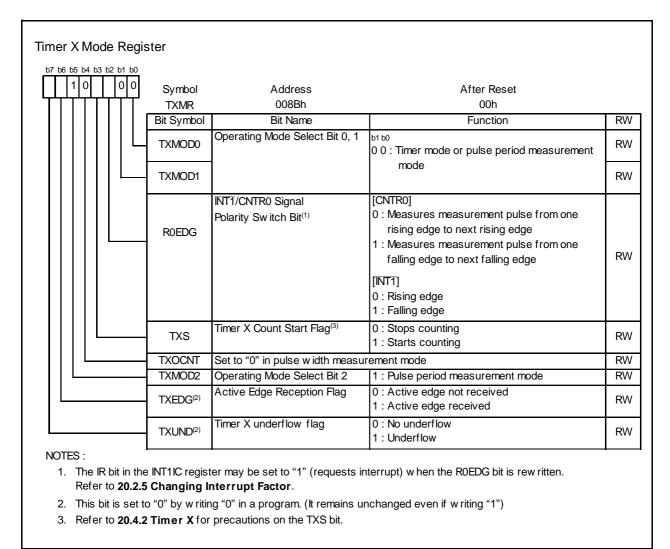


Figure 13.9 TXMR Register in Pulse Period Measurement Mode

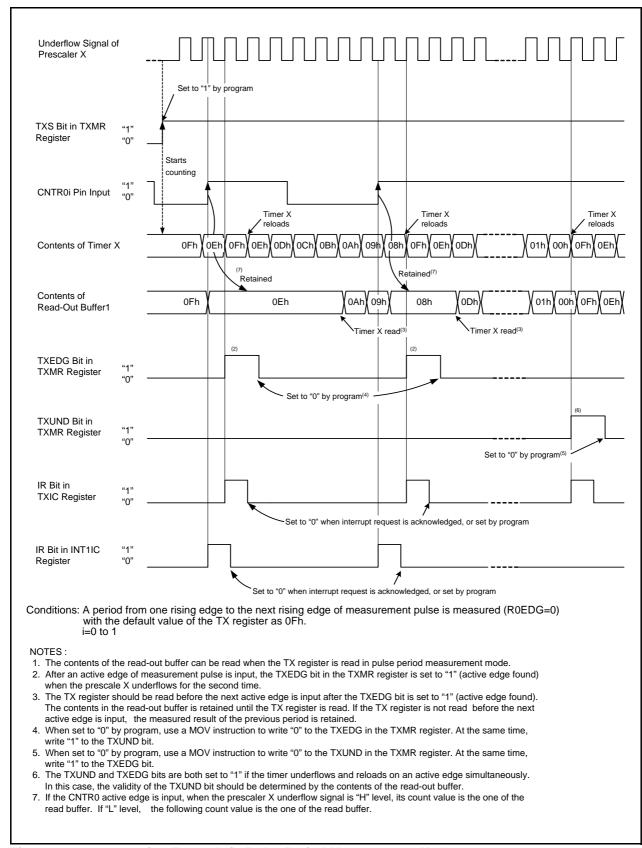


Figure 13.10 Operating Example in Pulse Period Measurement Mode

13.2 Timer Z

Timer Z is an 8-bit timer with an 8-bit prescaler. The prescaler and timer consist of the reload register and counter. The reload register and counter are allocated at the same address. Refer to the **Tables 13.7 to 13.12 for the Specification of Each Modes**. Timer Z contains the timer Z primary and timer Z secondary as the reload register.

Figure 13.11 shows the Block Diagram of Timer Z. Figures 13.12 to 13.15 show the TZMR, PREZ, TZSC, TZPR, TZOC, PUM, and TCSS registers.

Timer Z contains the following four operating modes.

• Timer mode: The timer counts an internal count source or

Timer X underflow.

• Programmable waveform generation mode: The timer outputs pulses of a given width

successively

• Programmable one-shot generation mode: The timer outputs one-shot pulse.

• Programmable wait one-shot generation mode: The timer outputs delayed one-shot pulse.

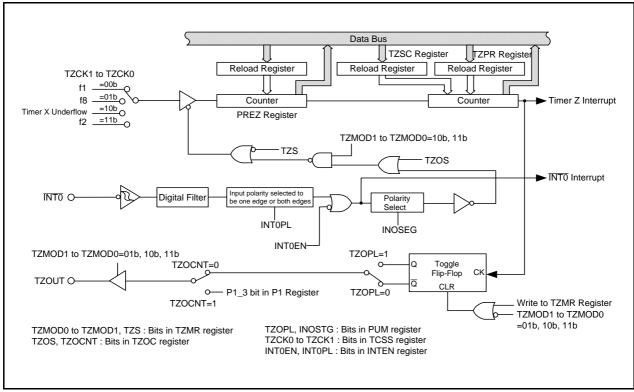


Figure 13.11 Block Diagram of Timer Z

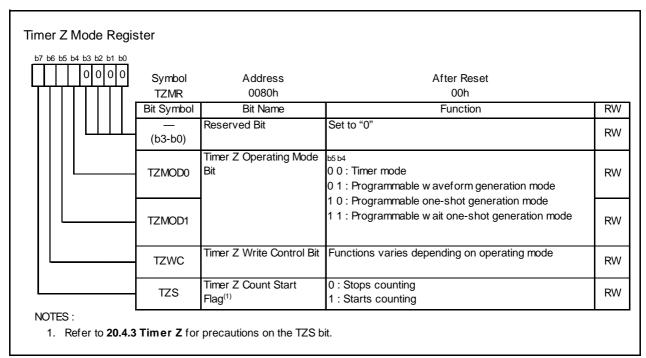


Figure 13.12 TZMR Register

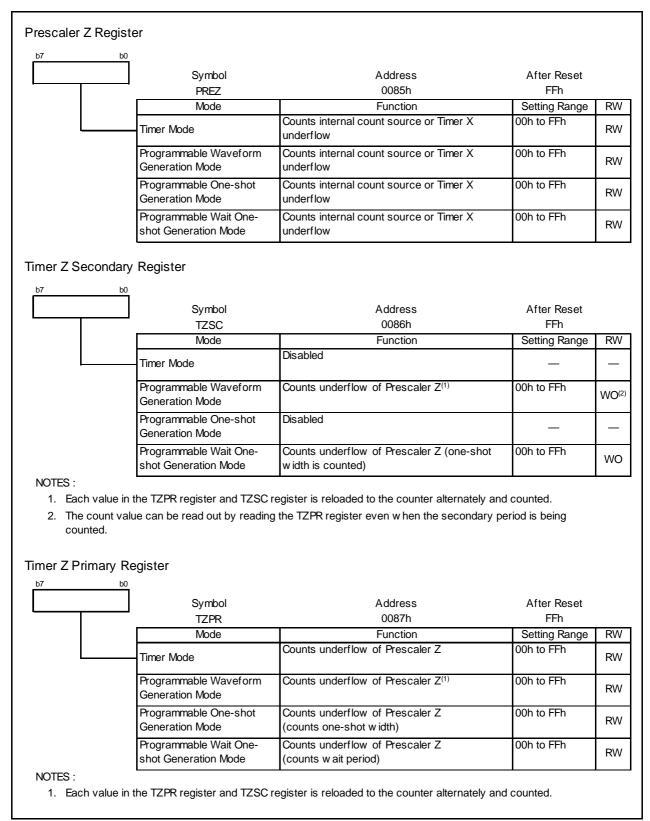
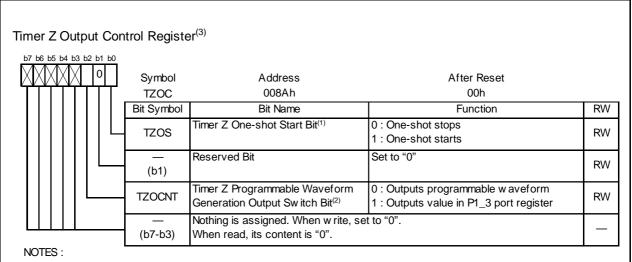
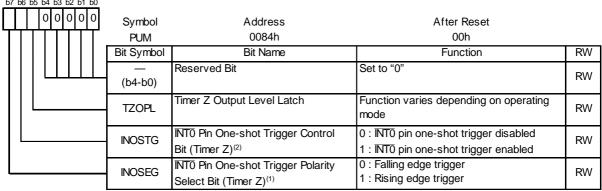




Figure 13.13 PREZ, TZSC and TZPR Registers

- 1. This bit is set to "0" when the output of one-shot waveform is completed. Set the TZOS bit to "0" when the waveform output is stopped by setting the TZS bit in the TZMR register to "0" (count stop) during the one-shot waveform output.
- 2. This bit is enabled only when operating in programmable waveform generation mode.
- 3. If executing an instruction which changes this register when the TZOS bit is set to "1" (during count), the TZOS bit is automatically set to "0" (one-shot stop) when the count is completed while the instruction is executed. If this causes some problems, execute an instruction which changes this register when the TZOS bit is set to "0" (one-shot stop).

Timer Z Waveform Output Control Register

- NOTES:
 - 1. When the INOSEG bit is enabled only when the INTOPL bit in the INTEN register is set to "0" (one edge).
 - 2. Set the INOSTG bit to "1" when setting the INTOEN bit in the INTEN register and the INOSEG bit in the PUM register.

Figure 13.14 TZOC and PUM Registers

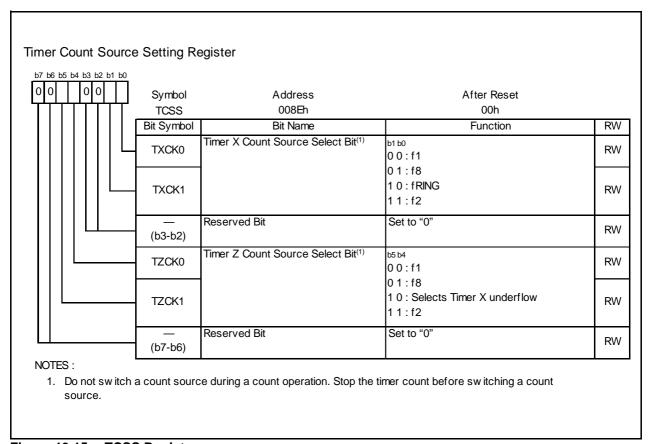


Figure 13.15 TCSS Register

13.2.1 Timer Mode

Timer mode is mode to count a count source which is internally generated or Timer X underflow (see **Table 13.7 Specification of Timer Mode**). The TZSC register is unused in timer mode. Figure 13.16 shows the TZMR and PUM Registers in Timer Mode.

Table 13.7 Specification of Timer Mode

Item	Specification
Count Source	f1, f2, f8, Timer X underflow
Count Operation	Decrement When the timer underflows, it reloads the reload register contents before the count continues (When Timer Z underflows, the contents of Timer Z primary reload register is reloaded)
Divide Ratio	1/(n+1)(m+1) fi: Count source frequency n: setting value in PREZ register, m: setting value in TZPR register
Count Start Condition	Write "1" (count starts) to the TZS bit in the TZMR register
Count Stop Condition	Write "0" (count stops) to the TZS bit in the TZMR register
Interrupt Request Generation Timing	When Timer Z underflows [Timer Z interrupt]
TZOUT Pin Function	Programmable I/O port
INT0 Pin Function	Programmable I/O port, or INTO interrupt input
Read from Timer	The count value can be read out by reading the TZPR and PREZ registers
Write to Timer ⁽¹⁾	 When writing to the TZPR and PREZ registers while the count stops, the value is written to both the reload register and counter. When writing to the TZPR and PREZ registers during the count while the TZWC bit is set to "0" (writing to the reload register and counter simultaneously), the value is written to each reload register of the TZPR and PREZ registers at the following count source input and the data is transferred to the counter at the second count source input and the count re-starts at the third count source input. When the TZWC bit is set to "1" (writing to only the reload register), the value is written to each reload register of the TZPR and PREZ registers (the data is transferred to the counter at the following reload).

NOTES:

- 1. The IR bit in the TZIC register is set to "1" (interrupt requested) when writing to the TZPR or PREZ register while both of the following conditions are met.
 - <Conditions>
 - TZWC bit in TZMR register is set to "0" (write to reload register and counter simultaneously)
 - TZS bit in TZMR register is set to "1" (count starts)

When writing to the TZPR or PREZ register in the above state, disable an interrupt before writing.

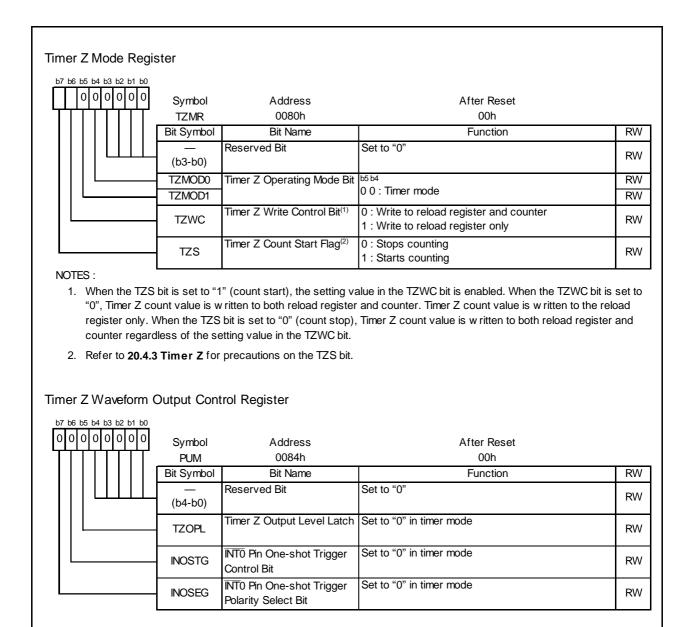


Figure 13.16 TZMR and PUM Registers in Timer Mode

13.2.2 Programmable Waveform Generation Mode

Programmable waveform generation mode is mode to invert the signal output from the TZOUT pin each time the counter underflows, while the values in the TZPR and TZSC registers are counted alternately (See **Table 13.8 Specification of Programmable Waveform Generation Mode**). A counting starts by counting the value set in the TZPR register. Figure 13.17 shows TZMR and PUM Registers in Programmable Waveform Generation Mode. Figure 13.18 shows Operating Example of Timer Z in Programmable Waveform Generation Mode.

Table 13.8 Specification of Programmable Waveform Generation Mode

Item	Specification
Count Source	f1, f2, f8, Timer X underflow
Count Operation	Decrement
	When the timer underflows, it reloads the contents of the primary reload and secondary reload registers alternately before the count continues.
Width and Period of	Primary period: (n+1)(m+1)/fi
Output Waveform	Secondary period: (n+1)(p+1)/fi
	Period: (n+1){(m+1)+(p+1)}/fi
	fi: Count source frequency
	n: Setting value in PREZ register, m: setting value in TZPR register, p: setting value in TZSC register
Count Start Condition	Write "1" (count start) to the TZS bit in the TZMR register
Count Stop Condition	Write "0" (count stop) to the TZS bit in the TZMR register
Interrupt Request	In half of count source, after Timer Z underflows during secondary period (at the
Generation Timing	same time as the TZout output change) [Timer Z interrupt]
TZOUT Pin Function	Pulse output
	(When using this function as a programmable I/O port, set to timer mode.)
INT0 Pin Function	Programmable I/O port, or INT0 interrupt input
Read from timer	The count value can be read out by reading the TZPR and PREZ registers ⁽¹⁾ .
Write to timer	The value written to the TZSC, PREZ and TZPR registers is written to the reload
	register only ⁽²⁾
Select function	Output level latch select function
	The TZOPL bit can select the output level during primary and secondary
	periods.
	Programmable waveform generation output switch function
	When the TZOCNT bit in the TZOC register is set to "0", the output from the
	TZOUT pin is inverted synchronously when Timer Z underflows. And when
	setting to "1", output the value in the P1_3 bit from the TZOUT pin ⁽³⁾

- 1. Even when counting the secondary period, read out the TZPR register.
- 2. The setting value in the TZPR register and TZSC register are made effective by writing a value to the TZPR register. The set values are reflected to the waveform output beginning with the following primary period after writing to the TZPR register.
- 3. The TZOCNT bit is enabled by the followings.
 - · When count starts.
 - When the timer Z interrupt request is generated. The contents after the TZOCNT bit is changed are reflected from the output of the following primary period.

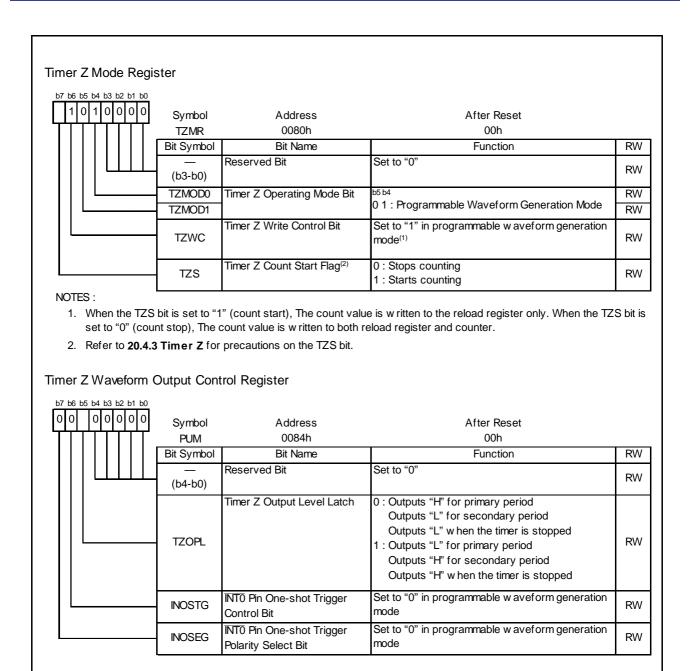


Figure 13.17 TZMR and PUM Registers in Programmable Waveform Generation Mode

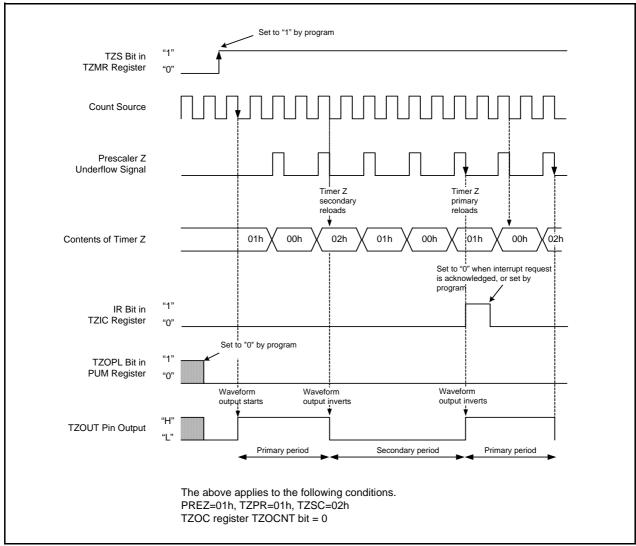
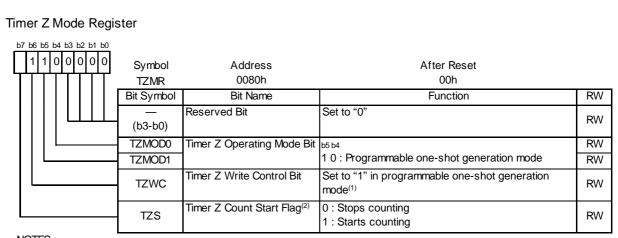
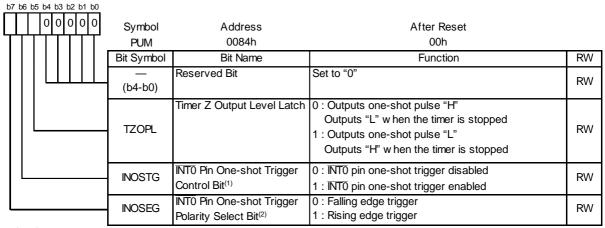


Figure 13.18 Operating Example of Timer Z in Programmable Waveform Generation Mode


13.2.3 Programmable One-shot Generation Mode

Programmable one-shot generation mode is mode to output the one-shot pulse from the TZOUT pin by a program or an external trigger input (input to the INTO pin). (see **Table 13.9 Specification of Programmable One-Shot Generation Mode**). When a trigger is generated, the timer starts operating from the point only once for a given period equal to the set value in the TZPR register. The TZSC register is unused in this mode. Figure 13.19 shows the TZMR and PUM Registers in Programmable One-Shot Generation Mode. Figure 13.20 shows an Operating Example in Programmable One-Shot Generation Mode.

Table 13.9 Specification of Programmable One-Shot Generation Mode


Item	Specification
Count Source	f1, f2, f8, Timer X underflow
Count Operation	 Decrement the setting value in the TZPR register When the timer underflows, it reloads the contents of the reload register before the count completes and the TZOS bit is set to "0" (one-shot stops). When a count stops, the timer reloads the contents of the reload register before it stops.
One-Shot Pulse	(n+1)(m+1)/fi
Output Time	fi: Count source frequency, n: setting value in PREZ register, m: setting value in TZPR register
Count Start Condition	• Set the TZOS bit in the TZOC register to "1" (one-shot starts) (1) • Input active trigger to the INTO pin(2)
Count Stop Condition	 When reloading completes after the count value is set to "00h" When the TZS bit in the TZMR register is set to "0" (count stops) When the TZOS bit in the TZOC register is set to "0" (one-shot stops)
Interrupt Request Generation Timing	In half cycles of count source, after the timer underflows (at the same time as the TZOUT output ends) [Timer Z interrupt]
TZOUT Pin Function	Pulse output
	(When using this function as a programmable I/O port, set to timer mode.)
INTO Pin Function	When the INOSTG bit in the PUM register is set to "0" (INTO one-shot trigger disabled) programmable I/O port or INTO interrupt input When the INOSTG bit in the PUM register is set to "1" (INTO one-shot trigger enabled) external trigger (INTO interrupt input))
Read from Timer	The count value can be read out by reading the TZPR and PREZ registers.
Write to Timer	The value written to the TZPR and PREZ registers is written to the reload register only ⁽³⁾ .
Select Function	Output level latch select function The TZOPL bit can select the output level of the one-shot pulse waveform. INTO pin one-shot trigger control and polarity select functions The INOSTG bit can select the trigger input from the INTO pin is active or inactive. Also, the INOSEG bit can select the active trigger polarity.

- 1. Set the TZS bit in the TZMR register to "1" (count starts).
- 2. Set the TZS bit to "1" (count starts), the INT0EN bit in the INTEN register to "1" (enables INT0 input), and the INOSTG bit in the PUM register to "1" (INT0 one-shot trigger enabled). A trigger which is input during the count cannot be acknowledged, however the INT0 interrupt request is generated.
- 3. The set value is reflected at the following one-shot pulse after writing to the TZPR register.

- 1. When the TZS bit is set to "1" (count start), The count value is written to the reload register only. When the TZS bit is set to "0" (count stop), The count value is written to both reload register and counter.
- 2. Refer to 20.4.3 Timer Z for precautions on the TZS bit.

Timer Z Waveform Output Control Register

- 1. Set the INOSTG bit to "1" after the INT0EN bit in the INTEN register and the INOSEG bit in the PUM register are set. When setting the INOSTG bit to "1" (INT0 pin one-shot trigger enabled), set the INT0F0 to INT0F1 bits in the INT0F register. Set the INOSTG bit to "0" (INT0 pin one-shot trigger disabled) after the TZS bit in the TZMR register is set to "0" (count stop).
- 2. The INOSEG bit is enabled only when the INTOPL bit in the INTEN register is set to "0" (one edge).

Figure 13.19 TZMR and PUM Registers in Programmable One-Shot Generation Mode

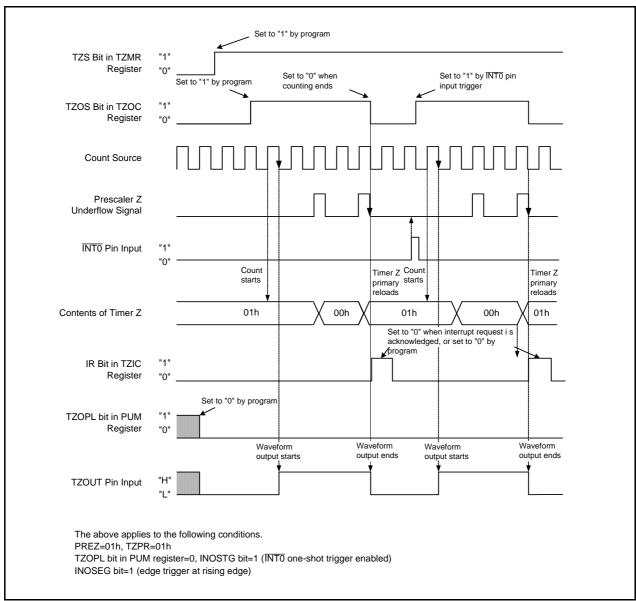
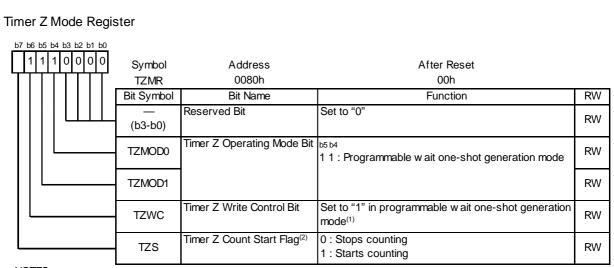
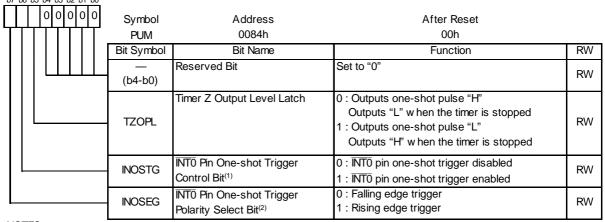


Figure 13.20 Operating Example in Programmable One-Shot Generation Mode


13.2.4 Programmable Wait One-shot Generation Mode

Programmable wait one-shot generation mode is mode to output the one-shot pulse from the TZOUT pin by the external trigger input (input to the INTO pin) (see **Table 13.10 Specification of Programmable Wait One-Shot Generation Mode Specifications**). When a trigger is generated from this point, the timer starts outputting pulses only once for a given length of time equal to the setting value in the TZSC register after waiting for a given length of time equal to the setting value in the TZPR register. Figure 13.21 shows the TZMR and PUM Registers in Programmable Wait One-Shot Generation Mode. Figure 13.22 shows an Operating Example in Programmable Wait One-Shot Generation Mode.

Table 13.10 Specification of Programmable Wait One-Shot Generation Mode Specifications


Item	Specification
Count Source	f1, f2, f8, Timer X underflow
Count Operation	 Decrement the setting value in Timer Z primary When a count of TZPR register underflows, the timer reloads the contents of the TZSC register before the count continues. When a count of the TZSC register underflows, the timer reloads the contents of the TZPR register before the count completes and the TZOS bit is set to "0". When a count stops, the timer reloads the contents of the reload register before it stops.
Wait Time	(n+1)(m+1)/fi fi: Count source frequency n: setting value in PREZ register, m: setting value in TZPR register
One-Shot Pulse Output Time	(n+1)(p+1)/fi fi: Count source frequency n: setting value in PREZ register, p: setting value in TZSC register
Count Start Condition	 Set the TZOS bit in the TZOC register to "1" (one-shot starts)⁽¹⁾ Input active trigger to the INTO pin⁽²⁾
Count Stop Condition	 When reloading completes after Timer Z underflows during secondary period When the TZS bit in the TZMR register is set to "0" (count stops) When the TZOS bit in the TZOC register is set to "0" (one-shot stops)
Interrupt Request	In half cycles of the count source after Timer Z underflows during
Generation Timing	secondary period (complete at the same time as waveform output from the TZOUT pin) [timer Z interrupt]
TZOUT Pin Function	Pulse output (When using this function as a programmable I/O port, set to timer mode.)
INTO Pin Function	 When the INOSTG bit in the PUM register is set to "0" (INTO one-shot trigger disabled), programmable I/O port or INTO interrupt input When the INOSTG bit in the PUM register is set to "1" (INTO one-shot trigger enabled), external trigger (INTO interrupt input)
Read from Timer	The count value can be read out by reading the TZPR and PREZ registers.
Write to Timer	The value written to the TZPR register, PREZ and TZSC register is written to reload register only ⁽³⁾ .
Select Function	Output level latch select function The output level for the one-shot pulse waveform is selected by the TZOPL bit. INTO pin one-shot trigger control function and polarity select function Trigger input from the INTO pin can be set to active or inactive by the INOSTG bit. Also, an active trigger's polarity can be selected by the INOSEG bit.

- 1. Set the TZS bit in the TZMR register to "1" (count starts).
- 2. Set the TZS bit to "1" (count starts), the INT0EN bit in the INTEN register to "1" (enables INT0 input), and the INOSTG bit in the PUM register to "1" (enabling INT0 one-shot trigger). A trigger which is input during the count cannot be acknowledged, however the INT0 interrupt request is generated.
- 3. The setting values are reflected beginning with the following one-shot pulse after writing to the TZPR register.

- 1. When the TZS bit is set to "1" (count start), The count value is written to the reload register only. When the TZS bit is set to "0" (count stop), The count value is written to both reload register and counter.
- 2. Refer to 20.4.3 Timer Z for precautions on the TZS bit.

Timer Z Waveform Output Control Register

- 1. Set the INOSTG bit to "1" after the INTOEN bit in the INTEN register and the INOSEG bit in the PUM register are set. When setting the INOSTG bit to "1" (INTO pin one-shot trigger enabled), set the INTOF0 to INTOF1 bits in the INTOF register. Set the INOSTG bit to "0" (INTO pin one-shot trigger disabled) after the TZS bit in the TZMR register is set to "0" (count stop).
- 2. The INOSEG bit is enabled only when the INTOPL bit in the INTEN register is set to "0" (one edge).

Figure 13.21 TZMR and PUM Registers in Programmable Wait One-Shot Generation Mode

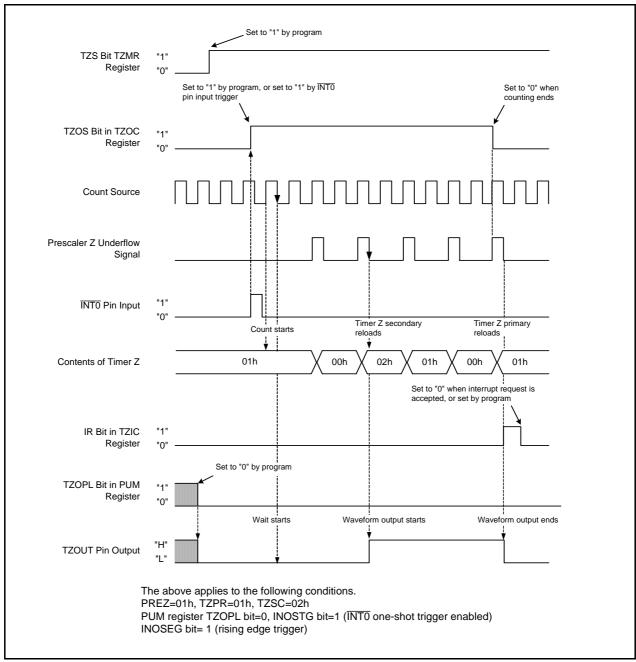


Figure 13.22 Operating Example in Programmable Wait One-Shot Generation Mode

13.3 Timer C

Timer C is a 16-bit timer. Figure 13.23 shows the Block Diagram of Timer C. Figure 13.24 shows the Block Diagram of CMP Waveform Generation Unit. Figure 13.25 shows the Block Diagram of CMP Waveform Output Unit.

Timer C has two modes: input capture mode and output compare mode. Figure 13.26 to 13.29 show the Timer C-associated registers.

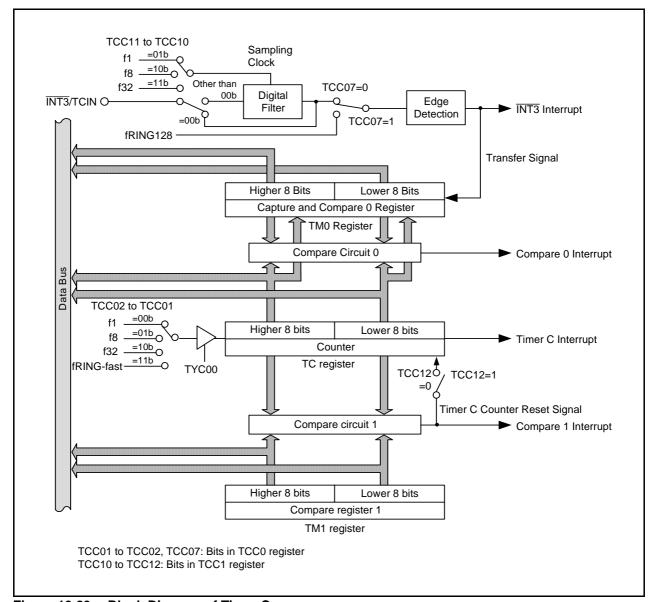


Figure 13.23 Block Diagram of Timer C

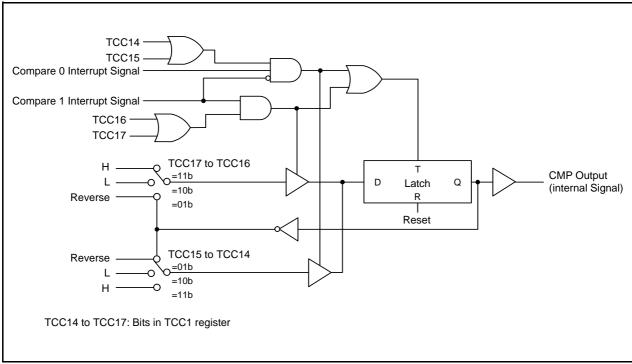


Figure 13.24 Block Diagram of CMP Waveform Generation Unit

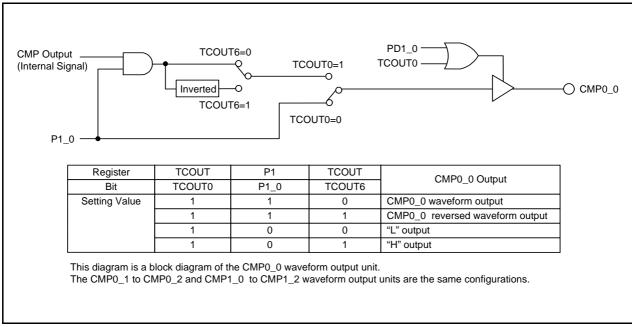


Figure 13.25 Block Diagram of CMP Waveform Output Unit

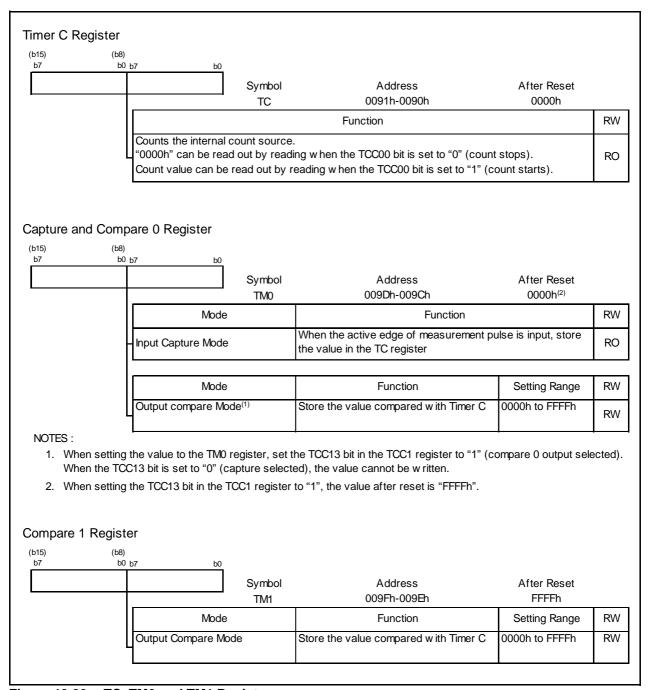
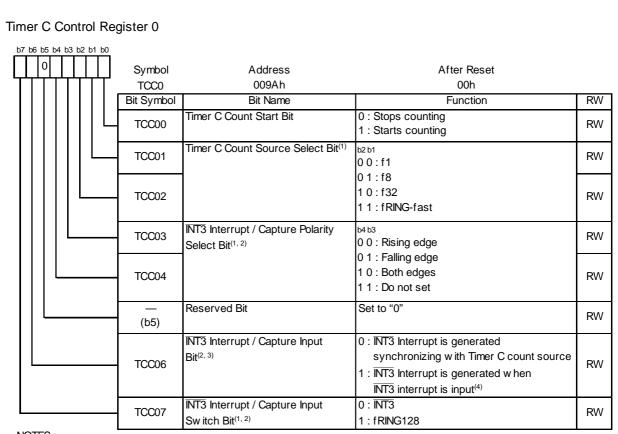
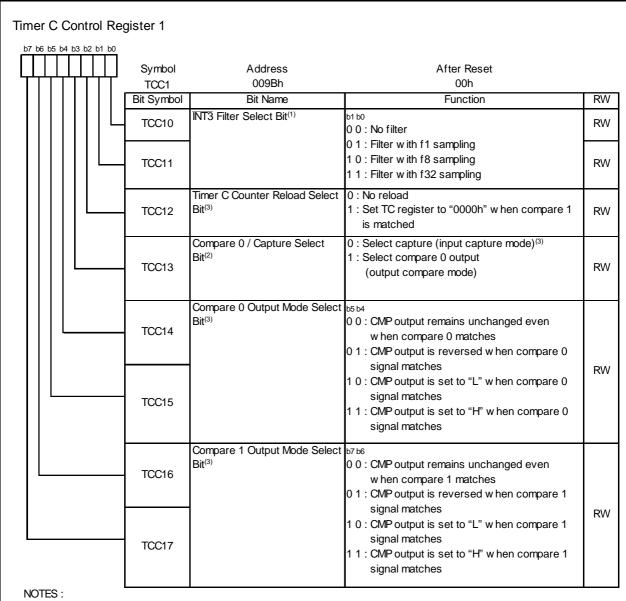




Figure 13.26 TC, TM0 and TM1 Registers

- 1. Change this bit when the TCC00 bit is set to "0" (count stop).
- 2. The IR bit in the INT3IC register may be set to "1" (requests interrupt) when the TCC03, TCC04, TCC06 and TCC07 bits are rewritten. Refer to 20.2.5 Changing Interrupt Factor.
- 3. When the TCC13 bit is set to "1" (output compare mode) and INT3 interrupt is input, regardless of the setting value of the TCC06 bit, an interrupt request is generated.
- 4. When using the INT3 filter, the INT3 interrupt is generated synchronizing with the clock for the digital filter.

Figure 13.27 TCC0 Register

- 1. When the same value from the INT3 pin is sampled three times continuously, the input is determined.
- 2. When the TCC00 bit in the TCC0 register is set to "0" (count stops), rew rite the TCC13 bit.
- 3. When the TCC13 bit is set to "0" (input capture mode), set the TCC12, TCC14 to TCC17 bits to "0".

Figure 13.28 TCC1 Register

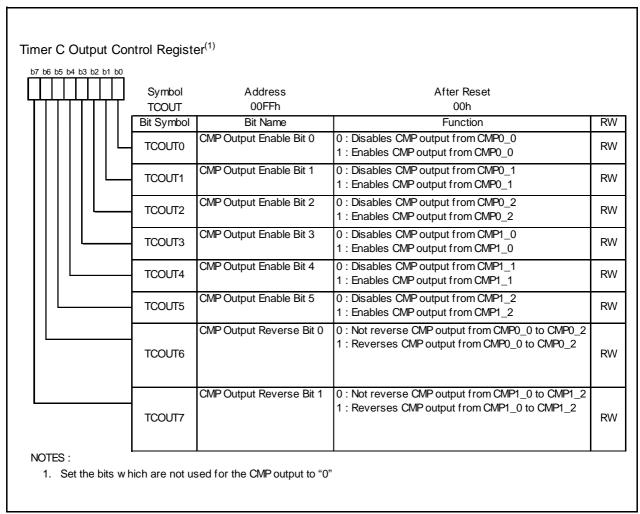


Figure 13.29 TCOUT Register

13.3.1 Input Capture Mode

Input capture mode is mode to input an edge to the TCIN pin or the fRING128 clock as trigger to latch the timer value and generates an interrupt request. The TCIN input contains a digital filter and this prevents an error caused by noise or so on from occurring. Table 13.11 shows Specification of Input Capture Mode. Figure 13.30 shows an Operating Example in Input Capture Mode.

Table 13.11 Specification of Input Capture Mode

Item	Specification
Count Source	f1, f8, f32, fRING-fast
Count Operation	 Increment Transfer the value in the TC register to the TM0 register at the active edge of measurement pulse The value in the TC register is set to "0000h" when the count stops
Count Start Condition	The TCC00 bit in the TCC0 register is set to "1" (count starts)
Counter Stop Condition	The TCC00 bit in the TCC0 register is set to "0" (count stops)
Interrupt Request Generation Timing	When the active edge of measurement pulse is input [INT3 interrupt](1) When Timer C overflows [Timer C interrupt]
INT3/TCIN Pin Function	Programmable I/O port or measurement pulse input (INT3 interrupt input)
P1_0 to P1_2, P3_3 to P3_5 Pin Function	Programmable I/O port
Counter Value Reset Timing	When the TCC00 bit in the TCC0 register is set to "0" (capture disabled)
Read from Timer ⁽²⁾	 The count value can be read out by reading the TC register. The count value at measurement pulse active edge input can be read out by reading the TM0 register
Write to Timer	Write to the TC and TM0 registers is disabled
Select Function	INT3/TCIN polarity select function The TCC03 to TCC04 bits can select the active edge of measurement pulse Digital filter function The TCC11 to TCC10 bits can select the digital filter sampling frequency Trigger select function The TCC07 bit can select the TCIN input or the fRING128

- 1. The digital filter delay and one count source (max.) delay are generated for the INT3 interrupt.
- 2. Read the TC and TM0 registers in 16-bit unit.

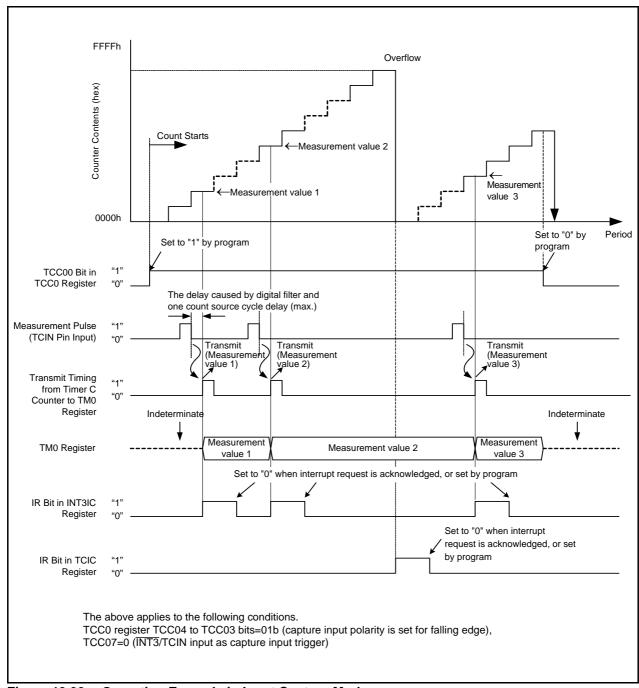


Figure 13.30 Operating Example in Input Capture Mode

13.3.2 Output Compare Mode

Output compare mode is mode to generate an interrupt request when the value of the TC register matches the value of the TM0 or TM1 register. Table 13.12 shows Specification of Output Compare Mode. Figure 13.31 shows an Operating Example in Output Compare Mode.

Table 13.12 Specification of Output Compare Mode

Item	Specification
Count Source	f1, f8, f32, fRING-fast
Count Operation	• Increment
	• The value in the TC register is set to "0000h" when a count stops
Count Start Condition	The TCC00 bit in the TCC0 register is set to "1" (count starts)
Counter Stop Condition	The TCC00 bit in the TCC0 register is set to "0" (count stops)
Waveform Output Start	The TCOUT0 to TCOUT5 bits in the TCOUT register is set to "1" (enables
Condition	CMP output). ⁽²⁾
Waveform Output Stop	The TCOUT0 to TCOUT5 bits in the TCOUT register is set to "0" (disables
Condition	CMP output).
Interrupt Request Generation Timing	 When a match occurs in the compare circuit 0 [compare 0 interrupt] When a match occurs in the compare circuit 1 [compare 1 interrupt] When Time C overflows [Timer C interrupt]
INT3/TCIN Pin Function	Programmable I/O port or INT3 interrupt input
P1_0 to P1_2 Pins and P3_0 to P3_2 Pins Function	Programmable I/O port or CMP output ⁽¹⁾
Counter Value Reset Timing	When the TCC00 bit in the TCC0 register is set to "0" (count stops)
Read from Timer ⁽¹⁾	 The value in the compare register can be read out by reading the TM0 and TM1 registers. The count value can be read out by reading the TC register.
Write to Timer ⁽¹⁾	 Write to the TC register is disabled. The values written to the TM0 and TM1 registers are stored in the compare register at the following timings: When the TM0 and TM1 registers are written if the TCC00 bit is set to "0" (count stops) When the counter overflows if the TCC00 bit is set to "1" (during counting) and the TCC12 bit in the TCC1 register is set to "0" (free-run) When the compare 1 matches a counter if the TCC00 bit is set to "1" and the TCC12 bit is set to "1" (set the TC register to "0000h" when the compare 1 matches)
Select Function	 Timer C counter reload select function The TCC12 bit in the TCC1 register can select whether the counter value in the TC register is set to "0000h" when the compare circuit 1 matches or not. The TCC14 to TCC15 bits in the TCC1 register can select the output level when the compare circuit 0 matches. The TCC16 to TCC17 bits in the TCC1 register can select the output level when the compare circuit 1 matches. The TCOUT6 to TCOUT7 bits in the TCOUT register can select whether the output is reversed or not.

- 1. When the corresponding port data is "1", the waveform is output depending on the setting of the registers TCC1 and TCOUT. When the corresponding port data is "0", the fixed level is output (refer to Figure 13.25 Block Diagram of CMP Waveform Output Unit).
- 2. Access the TC, TM0, and TM1 registers in 16-bit units.

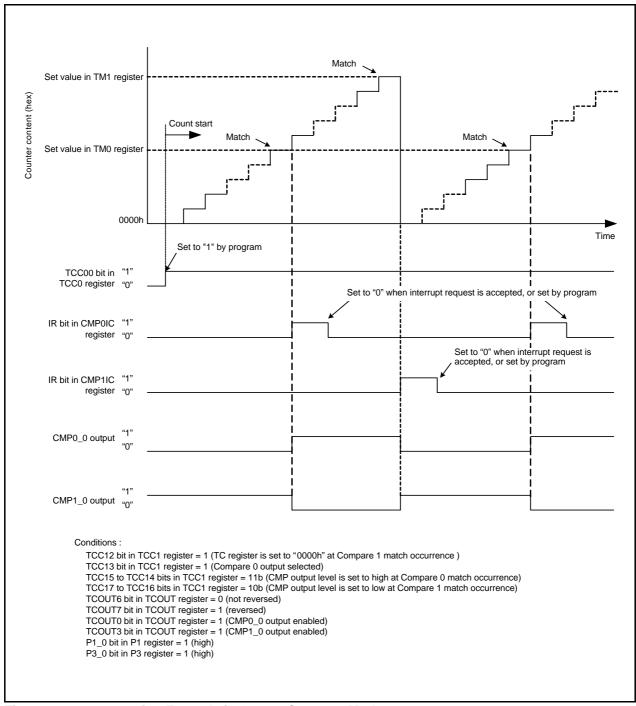


Figure 13.31 Operating Example in Output Compare Mode

14. Serial Interface

Serial Interface is configured with one channels: UART0. UART0 has an exclusive timer to generate a transfer clock.

Figure 14.1 shows a UART0 Block Diagram. Figure 14.2 shows a UART0 Transmit/Receive Unit. UART0 has two modes: clock synchronous serial I/O mode, and clock asynchronous serial I/O mode (UART mode).

Figure 14.3 to 14.5 show the UART0-associated registers.

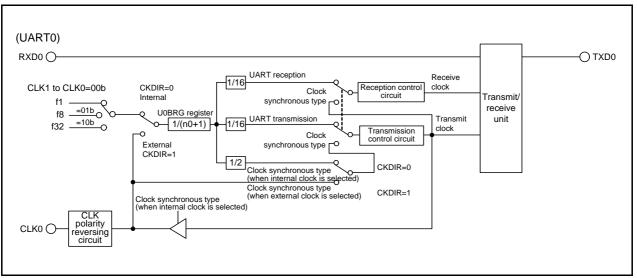


Figure 14.1 UART0 Block Diagram

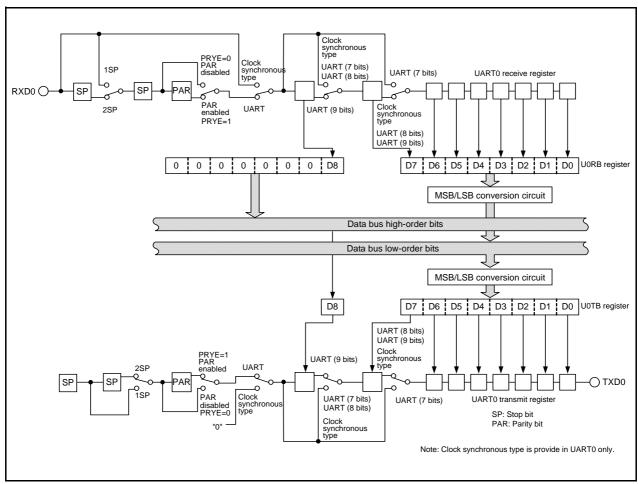
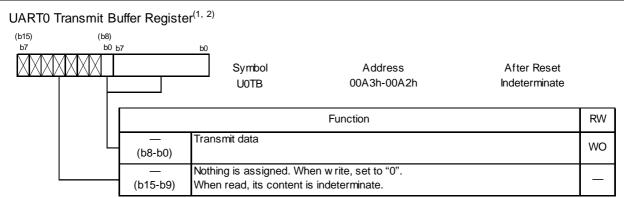
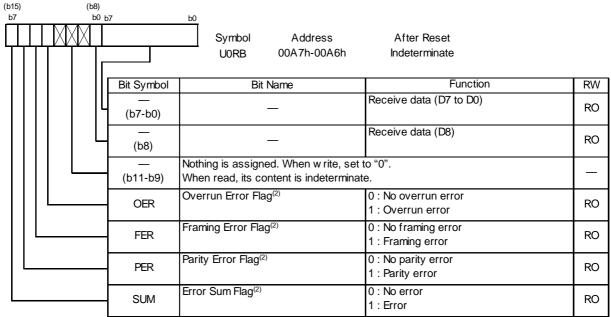
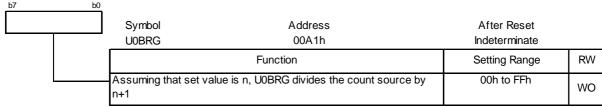




Figure 14.2 UART0 Transmit/Receive Unit

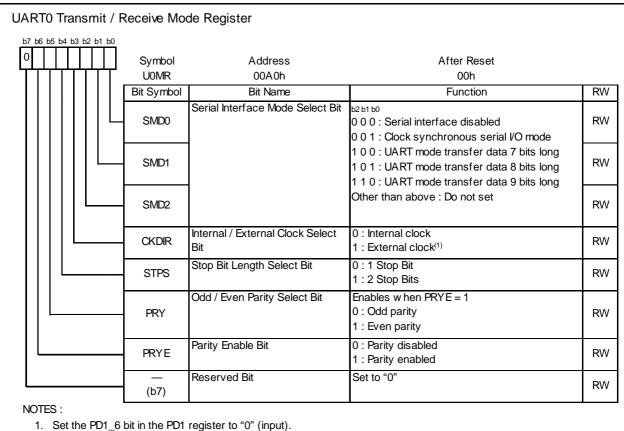
- 1. When the transfer data length is 9-bit long, write to high-byte data first then low-byte data.
- 2. Use the MOV instruction to write to this register.

UARTO Receive Buffer Register⁽¹⁾



NOTES:

- 1. Read out the UiRB register in 16-bit unit.
- 2. The SUM, PER, FER and OER bits are set to "0" (no error) when the SMD2 to SMD0 bits in the UiMR register are set to "000b" (serial interface disabled) or the RE bit in the U0C1 register is set to "0" (receive disable). The SUM bit is set to "0" (no error) when the PER, FER and OER bits are set to "0" (no error).


The PER and FER bits are set to "0" even when the higher byte of the U0RB register is read out.

UARTO Bit Rate Register^(1, 2, 3)

- 1. Write to this register while the serial I/O is neither transmitting nor receiving.
- 2. Use the MOV instruction to write to this register.
- 3. After setting the CLK0 to CLK1 bits of the U0C0 register, write to the U0BRG register.

Figure 14.3 U0TB, U0RB and U0BRG Registers

1. Oct the PD1_o bit in the PD1 register to o (inp

UART0 Transmit / Receive Control Register 0

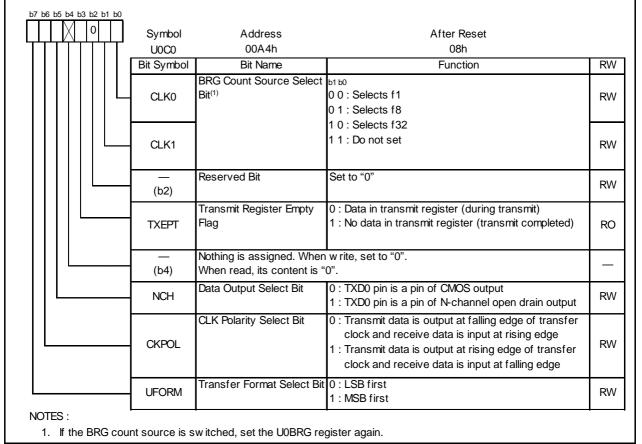


Figure 14.4 U0MR and U0C0 Registers

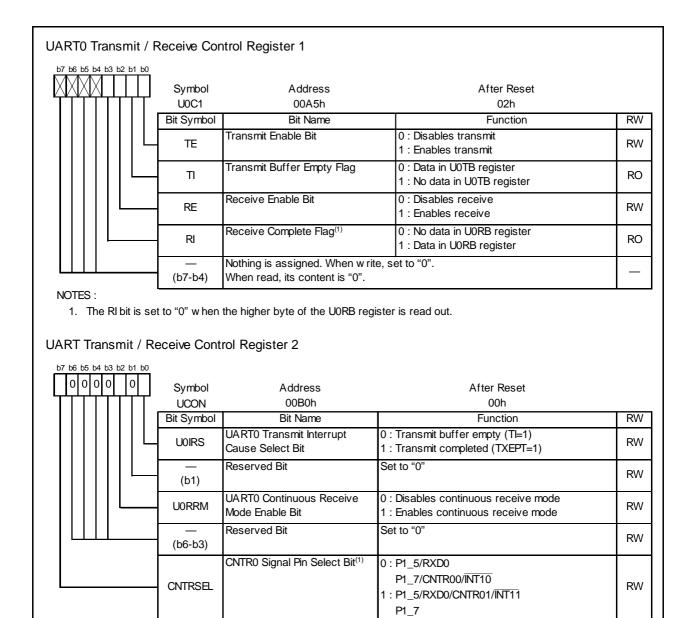


Figure 14.5 U0C1 and UCON Registers

1. The CNTRSEL bit selects the input pin of CNTR0 (INTI) signal.

When the CNTR0 signal is output, it is output from the CNTR00 pin despite the CNTRSEL bit setting.

14.1 Clock Synchronous Serial I/O Mode

The clock synchronous serial I/O mode is mode to transmit and receive data using a transfer clock. Table 14.1 lists the Specification of Clock Synchronous Serial I/O Mode. Table 14.2 lists the Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode(1).

Table 14.1 Specification of Clock Synchronous Serial I/O Mode

Item	Specification
Transfer Data Format	Transfer data length: 8 bits
Transfer Clock	 CKDIR bit in U0MR register is set to "0" (internal clock): fi/(2(n+1)) fi=f1, f8, f32 n=setting value in U0BRG register: 00h to FFh The CKDIR bit is set to "1" (external clock): input from CLK0 pin
Transmit Start Condition	 Before transmit starts, the following requirements are required⁽¹⁾ The TE bit in the U0C1 register is set to "1" (transmit enabled) The TI bit in the U0C1 register is set to "0" (data in the U0TB register)
Receive Start Condition	 Before receive starts, the following requirements are required⁽¹⁾ The RE bit in the U0C1 register is set to "1" (receive enabled) The TE bit in the U0C1 register is set to "1" (transmit enabled) The TI bit in the U0C1 register is set to "0" (data in the U0TB register)
Interrupt Request Generation Timing	When transmit, one of the following conditions can be selected The U0IRS bit is set to "0" (transmit buffer empty): when transferring data from the U0TB register to UART0 transmit register (when transmit starts) The U0IRS bit is set to "1" (transmit completes): when completing transmit data from UARTi transmit register When receive When transferring data from the UART0 receive register to the U0RB register (when receive completes)
Error Detection	Overrun error ⁽²⁾ This error occurs if serial interface starts receiving the following data before reading the U0RB register and receives the 7th bit of the following data
Select Function	 CLK polarity selection Transfer data input/output can be selected to occur synchronously with the rising or the falling edge of the transfer clock LSB first, MSB first selection Whether transmitting or receiving data beginning with the bit 0 or beginning with the bit 7 can be selected Continuous receive mode selection Receive is enabled immediately by reading the U0RB register

- 1. When an external clock is selected, meet the conditions while the CKPOL bit in the U0C0 register is set to "0" (transmit data output at the falling edge and the receive data input at the rising edge of the transfer clock), the external clock is held "H"; if the CKPOL bit in the U0C0 register is set to "1" (transmit data output at the rising edge and the receive data input at the falling edge of the transfer clock), the external clock is held "L".
- 2. If an overrun error occurs, the value of the U0RB register will be indeterminate. The IR bit in the S0RIC register remains unchanged.

Table 14.2 Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode⁽¹⁾

Register	Bit	Function				
U0TB	0 to 7	et transmit data				
U0RB	0 to 7	Receive data can be read				
	OER	Overrun error flag				
U0BRG	0 to 7	Set bit rate				
U0MR	SMD2 to SMD0	Set to "001b"				
	CKDIR	Select the internal clock or external clock				
U0C0	CLK1 to CLK0	Select the count source in the U0BRG register				
	TXEPT	Transmit register empty flag				
	NCH	Select TXD0 pin output mode				
	CKPOL	Select the transfer clock polarity				
	UFORM	Select the LSB first or MSB first				
U0C1	TE	Set this bit to "1" to enable transmit/receive				
	TI	Transmit buffer empty flag				
	RE	Set this bit to "1" to enable reception				
	RI	Reception complete flag				
UCON	U0IRS	Select the factor of UART0 transmit interrupt				
	U0RRM	Set this bit to "1" to use continuous receive mode				
	CNTRSEL	Set this bit to "1" to select P1_5/RXD0/CNTR01/INT11				

1. Set bits which are not in this table to "0" when writing to the registers in clock synchronous serial I/O mode.

Table 14.3 lists the I/O Pin Functions in Clock Synchronous Serial I/O Mode. The TXD0 pin outputs "H" level between the operating mode selection of UART0 and transfer start, an "H" (If the NCH bit is set to "1" (the N-channel open-drain output), this pin is in a high-impedance state.)

Table 14.3 I/O Pin Functions in Clock Synchronous Serial I/O Mode

Pin Name	Function	Selection Method					
TXD0(P1_4)	Output serial data	Outputs dummy data when performing receive only)					
RXD0(P1_5)	Input serial data	PD1_5 bit in PD1 register=0					
		(P1_5 can be used as an input port when performing transmit					
		only)					
CLK0(P1_6)	Output transfer clock	CKDIR bit in U0MR register=0					
	Input transfer clock	CKDIR bit in U0MR register=1					
		PD1_6 bit in PD1 register=0					

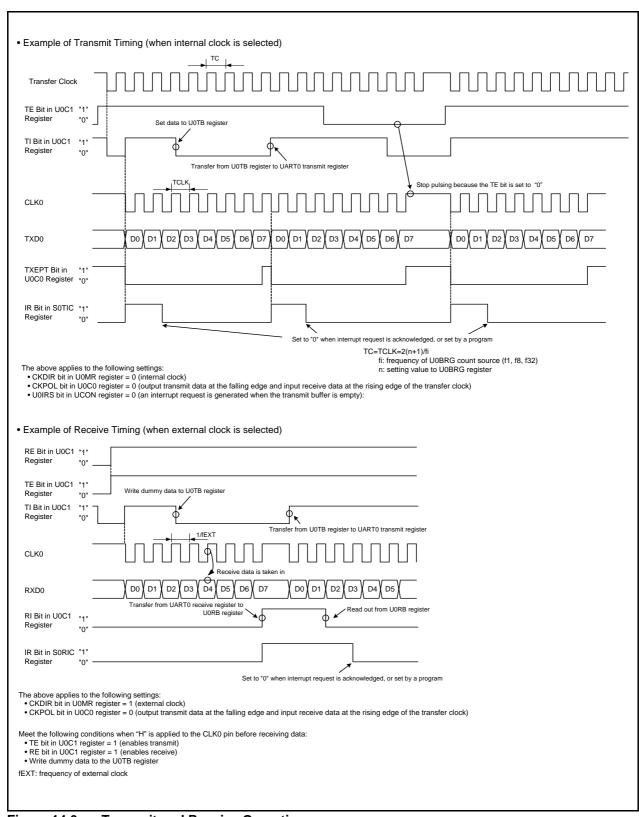


Figure 14.6 Transmit and Receive Operation

14.1.1 Polarity Select Function

Figure 14.7 shows the Transfer Clock Polarity. Use the CKPOL bit in the U0C0 register to select the transfer clock polarity.

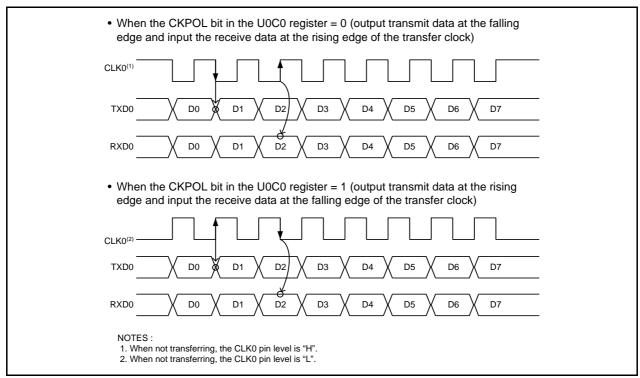


Figure 14.7 Transfer Clock Polarity

14.1.2 LSB First/MSB First Select Function

Figure 14.8 shows the Transfer Format. Use the UFORM bit in the U0C0 register to select the transfer format.

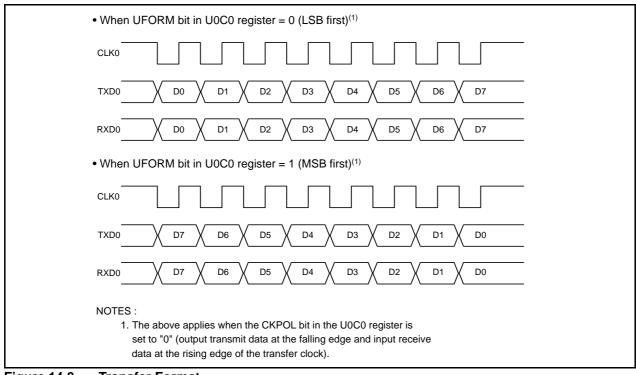


Figure 14.8 Transfer Format

14.1.3 Continuous Receive Mode

Continuous receive mode is held by setting the U0RRM bit in the UCON register to "1" (enables continuous receive mode). In this mode, reading U0RB register sets the TI bit in the U0C1 register to "0" (data in the U0TB register). When the U0RRM bit is set to "1", do not write dummy data to the U0TB register in a program.

14.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmit and receive data after setting the desired bit rate and transfer data format. Table 14.4 lists the Specification of UART Mode. Table 14.5 lists the Registers to Be Used and Settings in UART Mode.

Table 14.4 Specification of UART Mode

Item	Specification
Transfer Data Format	Character bit (transfer data): selectable from 7, 8 or 9 bits Start bit: 1 bit
	Parity bit: selectable from odd, even, or none
	Stop bit: selectable from 1 or 2 bits
Transfer Clock	CKDIR bit in U0MR register is set to "0" (internal clock) : fj/(16(n+1))
	fj=f1, f8, f32 n=setting value in U0BRG register: 00h to FFh
	CKDIR bit is set to "1" (external clock) : fEXT/(16(n+1))
	fEXT: input from CLK0 pin n=setting value in U0BRG register: 00h to FFh
Transmit Start Condition	Before transmit starts, the following are required
	- TE bit in U0C1 register is set to "1" (transmit enabled)
	- TI bit in U0C1 register is set to "0" (data in U0TB register)
Receive Start Condition	Before receive starts, the following are required
	- RE bit in U0C1 register is set to "1" (receive enabled)
	- Detects start bit
Interrupt Request	When transmitting, one of the following conditions can be selected
Generation Timing	- U0IRS bit is set to "0" (transmit buffer empty):
	when transferring data from the U0TB register to UART0 transmit
	register (when transmit starts)
	- U0IRS bit is set to "1" (transfer ends):
	when serial interface completes transmitting data from the UART0
	transmit register
	When receiving
	When transferring data from the UART0 receive register to U0RB
	register (when receive ends)
Error Detection	Overrun error ⁽¹⁾
	This error occurs if serial interface starts receiving the following data
	before reading the U0RB register and receiving the bit one before the last
	stop bit of the following data
	Framing error
	This error occurs when the number of stop bits set are not detected
	Parity error
	This error occurs when parity is enabled, the number of 1's in parity and
	character bits do not match the number of 1's set
	Error sum flag
	This flag is set is set to "1" when any of the overrun, framing, and parity
	errors is generated

NOTES:

1. If an overrun error occurs, the value in the U0RB register will be indeterminate. The IR bit in the S0RIC register remains unchanged.

Table 14.5 Registers to Be Used and Settings in UART Mode

Register	Bit	Function					
U0TB	0 to 8	Set transmit data ⁽¹⁾					
U0RB	0 to 8	Receive data can be read ⁽¹⁾					
	OER,FER,PER,SUM	Error flag					
U0BRG	0 to 7	Set a bit rate					
U0MR	SMD2 to SMD0	Set to "100b" when transfer data is 7-bit long					
		Set to "101b" when transfer data is 8-bit long					
		Set to "110b" when transfer data is 9-bit long					
	CKDIR	Select the internal clock or external clock					
	STPS	Select the stop bit					
	PRY, PRYE	Select whether parity is included and odd or even					
U0C0	CLK0, CLK1	Select the count source for the U0BRG register					
	TXEPT	Transmit register empty flag					
	NCH	Select TXD0 pin output mode					
	CKPOL	Set to "0"					
	UFORM	LSB first or MSB first can be selected when transfer data is 8-bit					
		long. Set to "0" when transfer data is 7- or 9-bit long.					
U0C1	TE	Set to "1" to enable transmit					
	TI	Transmit buffer empty flag					
	RE	Set to "1" to enable receive					
	RI	Receive complete flag					
UCON	U0IRS, U1IRS	Select the factor of UART0 transmit interrupt					
	U0RRM	Set to "0"					
	CNTRSEL	Set to "1" to select P1_5/RXD0/CNTR01/INT11					

1. The bits used for transmit/receive data are as follows: Bits 0 to 6 when transfer data is 7-bit long; bits 0 to 7 when transfer data is 8-bit long; bits 0 to 8 when transfer data is 9-bit long.

Table 14.6 lists the I/O Pin Functions in Clock Asynchronous Serial I/O Mode. After the UART0 operating mode is selected, the TXD0 pin outputs "H" level (If the NCH bit is set to "1" (N-channel open-drain outputs), this pin is in a high-impedance state) until transfer starts.

Table 14.6 I/O Pin Functions in Clock Asynchronous Serial I/O Mode

Pin name	Function	Selection Method					
TXD0(P1_4)	Output serial data	(Cannot be used as a port when performing receive only)					
RXD0(P1_5)	Input serial data	PD1_5 bit in PD1 register=0					
		(P1_5 can be used as an input port when performing transmit					
		only)					
CLK0(P1_6)	Programmable I/O Port	CKDIR bit in U0MR register=0					
	Input transfer clock	CKDIR bit in U0MR register=1					
		PD1_6 bit in PD1 register=0					

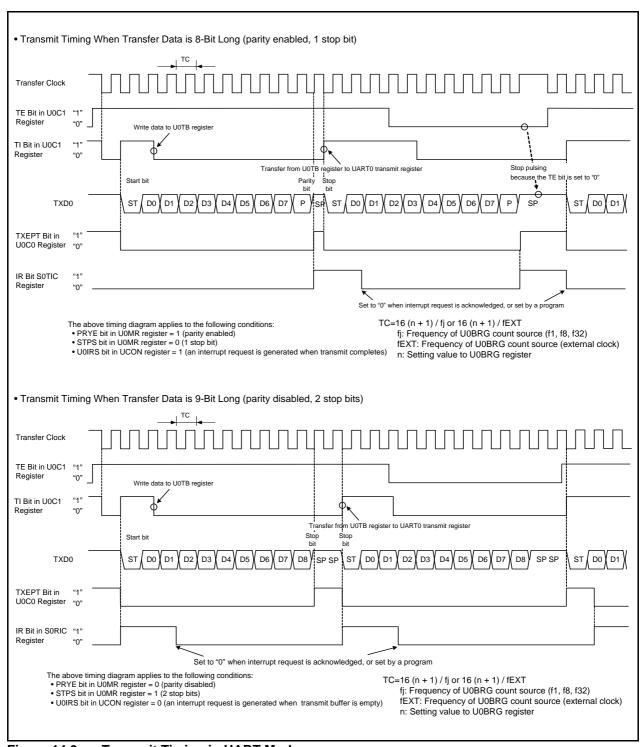


Figure 14.9 Transmit Timing in UART Mode

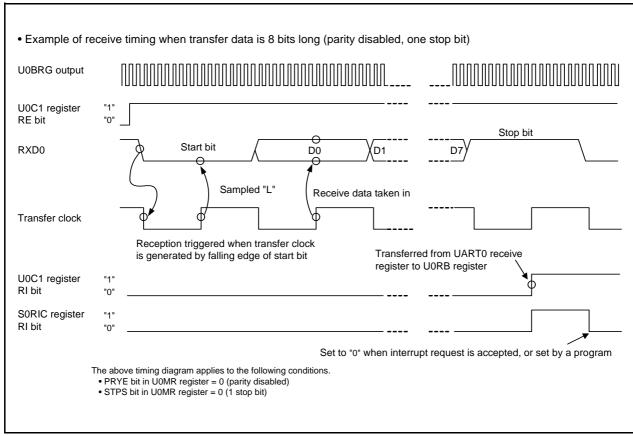


Figure 14.10 Receive Timing in UART Mode

14.2.1 CNTR0 Pin Select Function

The CNTRSEL bit in the UCON register selects whether P1_7 can be used as the CNTR00/INT10 input pin or P1_5 can be used as the CNTR01/INT11 input pin.

When the CNTRSEL bit is set to "0", P1_7 is used as the CNTR00/INT10 pin and when the CNTRSEL bit is set to "1", P1_5 is used as the CNTR01/INT11 pin.

14.2.2 Bit Rate

Divided-by-16 of frequency by the U0BRG register in UART mode is a bit rate.

• When selecting internal clock

Setting value to the U0BRG register =

— fj
— Bit Rate × 16
— or 1

Fj: Count source frequency of the U0BRG register (f1, f8 and f32)

• When selecting external clock

Setting value to the U0BRG register =

— fEXT
— Bit Rate × 16
— or 1

fEXT: Count source frequency of the U0BRG register (external clock)

Figure 14.11 Calculation Formula of U0BRG Register Setting Value

Table 14.7 Bit Rate Setting Example in UART Mode

Bit Rate (bps)	BRG	System	n Clock = 20M	Hz	System Clock = 8MHz		
	Count	BRG Setting	Actual Time	Error(%)	BRG Setting	Actual	Error(%)
(bps)	Source	Value	(bps)	L1101(76)	Value	Time (bps)	
1200	f8	129(81h)	1201.92	0.16	51(33h)	1201.92	0.16
2400	f8	64(40h)	2403.85	0.16	25(19h)	2403.85	0.16
4800	f8	32(20h)	4734.85	-1.36	12(0Ch)	4807.69	0.16
9600	f1	129(81h)	9615.38	0.16	51(33h)	9615.38	0.16
14400	f1	86(56h)	14367.82	-0.22	34(22h)	14285.71	-0.79
19200	f1	64(40h)	19230.77	0.16	25(19h)	19230.77	0.16
28800	f1	42(2Ah)	29069.77	0.94	16(10h)	29411.76	2.12
31250	f1	39(27h)	31250.00	0.00	15(0Fh)	31250.00	0.00
38400	f1	32(20h)	37878.79	-1.36	12(0Ch)	38461.54	0.16
51200	f1	23(17h)	52083.33	1.73	9(09h)	50000.00	-2.34

15. Clock Synchronous Serial I/O with Chip Select (SSU)

The serial data of the clock synchronous can communicate for the clock synchronous serial I/O with chip select (hereinafter referred to as SSU). Table 15.1 shows a SSU Specification and Figure 15.1 shows a Block Diagram of SSU.

Figure 15.2 to 15.8 show SSU Associated Registers.

Table 15.1 SSU Specification

Item	Specification
Transfer Data Format	Transfer-data length 8 bits Continuous transmit and receive of serial data are enabled since both
	transmitter and receiver have buffer structure.(2)
Operating Mode	 Clock synchronous communication mode 4-wire bus communication mode (including bidirectional communication)
Master / Slave Device	Selectable
I/O Pin	SSCK (I/O): Clock I/O pin SSI (I/O): Data I/O pin SSO (I/O): Data I/O pin SCS (I/O): Chip-select I/O pin
Transfer Clock	 When the MSS bit in the SSCRH register is set to "0" (operates as slave device), external clock can be selected. When the MSS bit in the SSCRH register is set to "1" (operates as master device), internal clock (selects from φ/256, φ/128, φ/64, φ/32, φ/16, φ/8 and φ/4 and outputs from SSCK pin) can be selected. Clock polarity and phase of SSCK can be selected.
Receive Error Detection	Overrun error Overrun error occurs during receive and completes by error. While the RDRF bit in the SSSR register is set to "1" (data in the SSRDR register) and completing the next serial data receive, the ORER bit is set to "1".
Multimaster Error Detection	• Conflict error While the SSUMS bit in the SSMR2 register is set to "1" (4-wire bus communication mode) and the MSS bit in the SSCRH register is set to "1" (operates as master device) and when starting a serial communication, the CE bit in the SSSR register is set to "1" if "L" applies to the SCS pin input. When the SSUMS bit in the SSMR2 register is set to "1" (4-wire bus communication mode), the MSS bit in the SSCRH register is set to "0" (operates as slave device) and the SCS pin input changes state from "L" to "H", the CE bit in the SSSR register is set to "1".
Interrupt Request	5 interrupt requests (transmit-end, transmit-data-empty, receive-data-full, overrun error and conflict error). ⁽¹⁾
Select Function	Data transfer direction Selects MSB-first or LSB-first SSCK clock polarity Selects "L" or "H" level when clock stops SSCK clock phase Selects edge of data change and data download

- 1. The interrupt vector table is one of the SSU.
- 2. When setting to the slave device, do not transmit continuously.

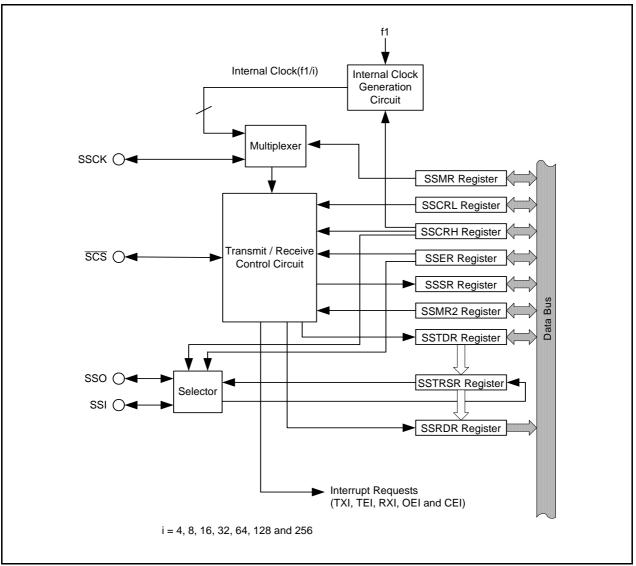
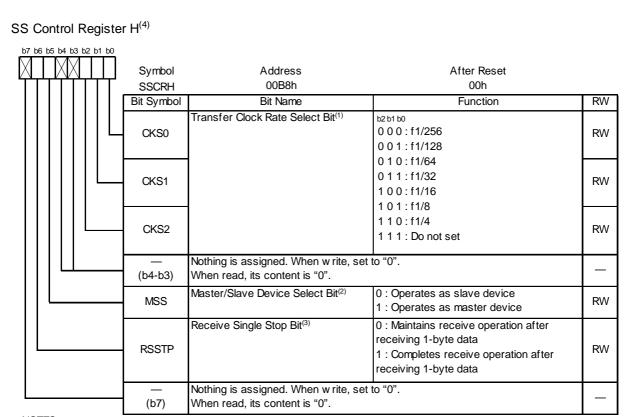
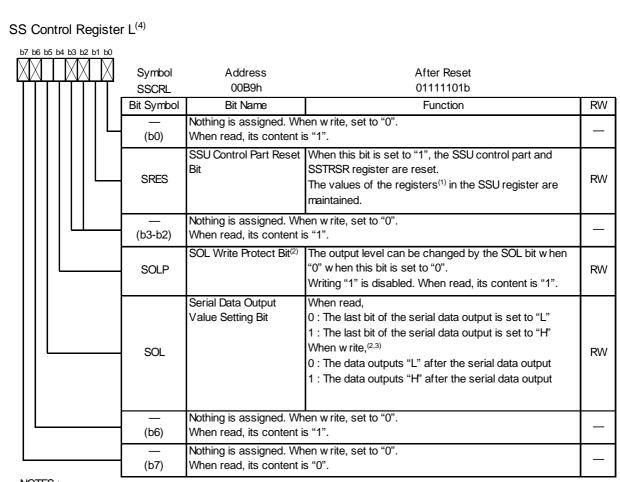




Figure 15.1 **Block Diagram of SSU**

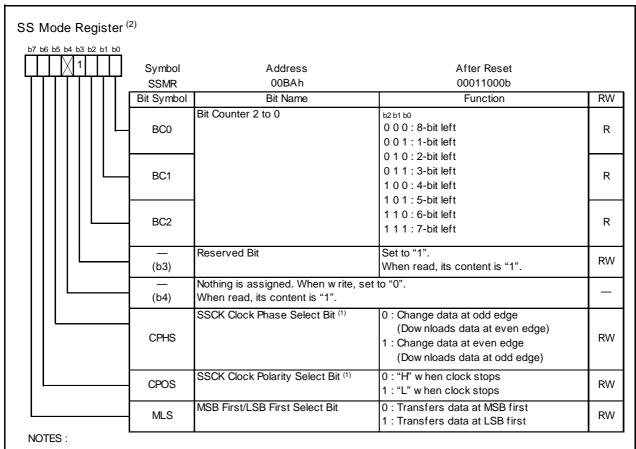

- 1. The set clock is used when the internal clock is selected.
- 2. The SSCK pin functions as the transfer clock output pin when the MSS bit is set to "1" (operates as master device). The MSS bit is set to "0" (operates as slave device) when the CE bit in the SSSR register is set to "1" (conflict error occurs).
- 3. The RSSTP bit is disabled when the MSS bit is set to "0" (operates as slave device).
- 4. Refer to 20.6.1 Access Registers Associated with SSU for accessing registers associated with SSU.

Figure 15.2 SSCRH Register

- 1. SSCRH, SSCRL, SSMR, SSER, SSSR, SSMR2, SSTDR and SSRDR registers.
- 2. The data output after the serial data is output can be changed when writing to the SOL bit before or after transfer. Set the SOLP bit to "0" and write to the SOLP and SOL bits by the MOV instruction when writing to the SOL bit.
- 3. Do not write to the SOL bit during the data transfer.
- 4. Refer to 20.6.1 Access Registers Associated with SSU for accessing registers associated with SSU.

Figure 15.3 **SSCRL Register**

- Refer to 15.1.1 Association between Transfer Clock Polarity, Phase and Data for the setting of the CPHS and CPOS bits.
- 2. Refer to 20.6.1 Access Registers Associated with SSU for accessing registers associated with SSU.

Figure 15.4 SSMR Register

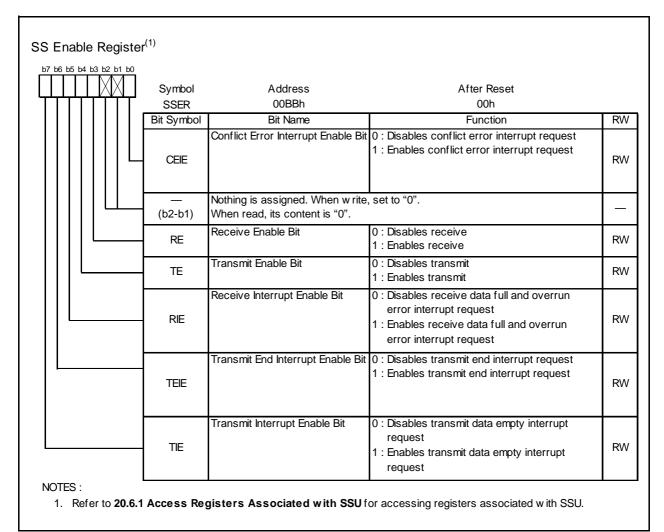
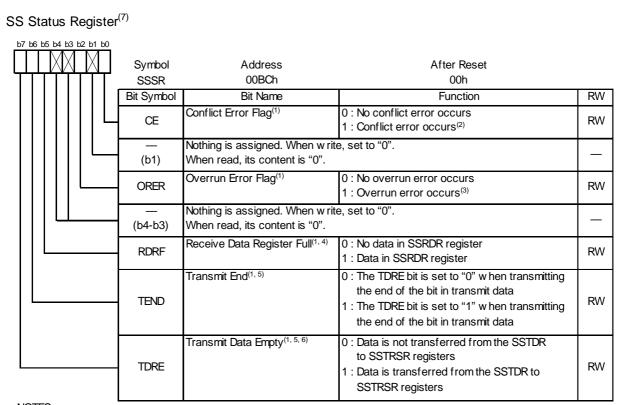
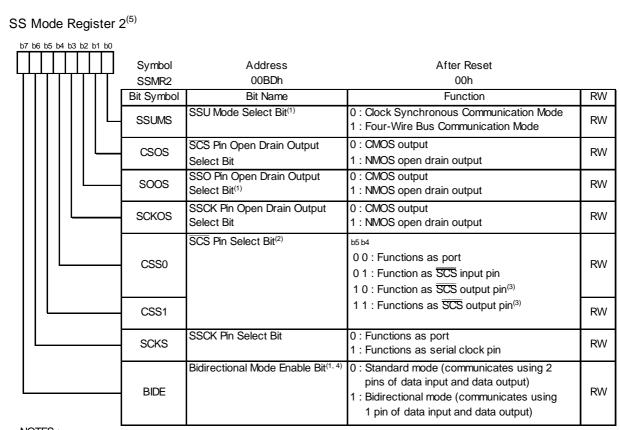




Figure 15.5 SSER Register

- 1. When reading "1" and writing "0", the CE, ORER, RDRF, TEND and TDRE bits are set to "0".
- 2. When the serial communication is started w hile the SSUMS bit in the SSMR2 register is set to "1" (four-wire bus communication mode) and the MSS bit in the SSCRH register is set to "1" (operates as master device), the CE bit is set to "1" if "L" is applied to the \$\overline{\text{SCS}}\$ pin input. When the SSUMS bit in the SSMR2 register is set to "1" (four-wire bus communication mode), the MSS bit in the SSCRH register is set to "0" (operates as slave device) is set to "0" (operates as slave device) and the \$\overline{\text{SCS}}\$ pin input changes the level from "L" to "H" during transfer, the CE bit is set to "1".
- 3. Indicates overrun error occurs and receive completes by error when receive. When the next serial data receive is completed while the RDRF bit is set to "1" (data in the SSRDR register), the ORER bit is set to "1". After the ORER bit is set to "1" (overrun error occurs), do not transmit or receive while the ORER bit is set to "1".
- 4. The RDRF bit is set to "0" when reading out the data from the SSRDR register.
- 5. The TEND and TDRE bits are set to "0" when writing the data to the SSTDR register.
- 6. The TDRE bit is set to "1" when setting the TE bit in the SSER register to "0" (disables transmit).
- 7. Refer to 20.6.1 Access Registers Associated with SSU for accessing registers associated with SSU.

Figure 15.6 SSSR Register

- 1. Refer to 15.2 Relationship between Data I/O Pin and SS Shift Register for the combination of the data I/O pin.
- 2. The SCS pin functions as a port, regardless of the contents of the CSS0 and CSS1 bits when the SSUMS bit is set to "0" (clock synchronous communication mode).
- 3. This bit functions as the $\overline{\text{SCS}}$ input pin before starting transfer.
- 4. The BIDE bit is disabled when the SSUMS bit is set to "0" (clock synchronous communication mode).
- 5. Refer to 20.6.1 Access Registers Associated with SSU for accessing registers associated with SSU.

Figure 15.7 SSMR2 Register

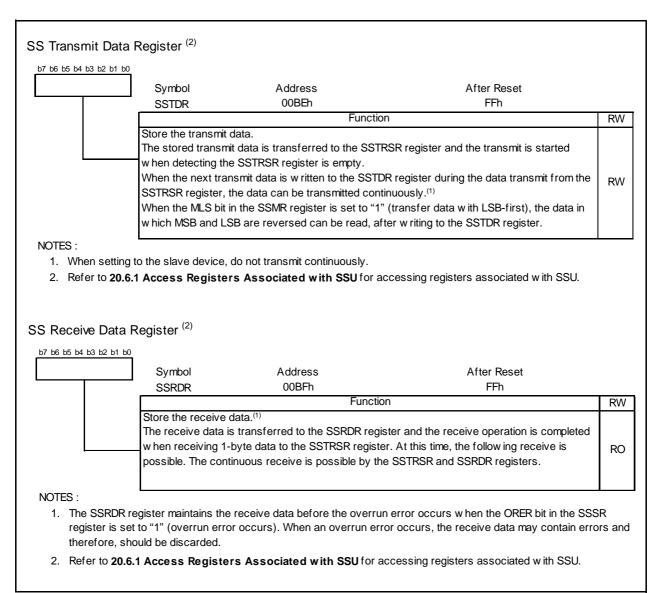


Figure 15.8 SSTDR and SSRDR Register

15.1 Transfer Clock

A transfer clock can be selected from 7 internal clocks (ϕ /256, ϕ /128, ϕ /64, ϕ /32, ϕ /16, ϕ /8 and ϕ /4) and an external clock.

When using the SSU, set the SCKS bit in the SSMR2 register to "1" and select the SSCK pin as the serial clock pin.

When the MSS bit in the SSCRH register is set to "1" (operates as master device), an internal clock can be selected and the SSCK pin functions as output. When transfer is started, the SSCK pin outputs clocks of the transfer rate selected in the CKS0 to CKS2 bits in the SSCRH register.

When the MSS bit in the SSCRH register is set to "0" (operates as slave device), an external clock can be selected and the SSCK pin functions as input.

15.1.1 Association between Transfer Clock Polarity, Phase and Data

Association between transfer clock polarity, phase and data changes according to a combination of the SSUMS bit in the SSMR2 register and the CPHS and CPOS bits in the SSMR register. Figure 15.9 shows the Association between Transfer Clock Polarity, Phase and Transfer Data.

Also, the MSB-first transfer or LSB-first transfer can be selected by setting the MLS bit in the SSMR register. When the MLS bit is set to "1", transfer is started from the LSB to MSB. When the MLS bit is set to "0", transfer is started from the MSB to LSB.

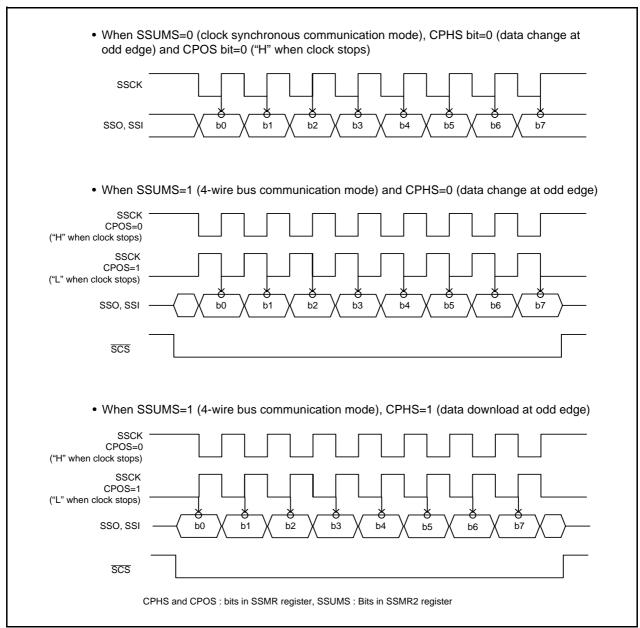


Figure 15.9 Association between Transfer Clock Polarity, Phase and Transfer Data

15.2 SS Shift Register (SSTRSR)

The SSTRSR register is the shift register to transmit and receive the serial data.

When the transmit data is transferred from the SSTDR register to the SSTRSR register and the MLS bit in the SSMR register is set to "0" (MSB-first), the bit 0 in the SSTDR register is transferred to the bit 0 in the SSTRSR register. When the MLS bit is set to "1" (LSB-first), the bit 7 in the SSTDR register is transferred to the bit 0 in the SSTRSR register.

15.2.1 Association between Data I/O Pin and SS Shift Register

Connecting association between the data I/O pin and SSTRSR register (SS shift register) changes according to a combination of the MSS bit in the SSCRH register and the SSUMS bit in the SSMR2 register. Also, connecting association changes according to the BIDE bit in the SSMR2 register. Figure 15.10 shows a Connecting Association between Data I/O Pin and SSTRSR Register.

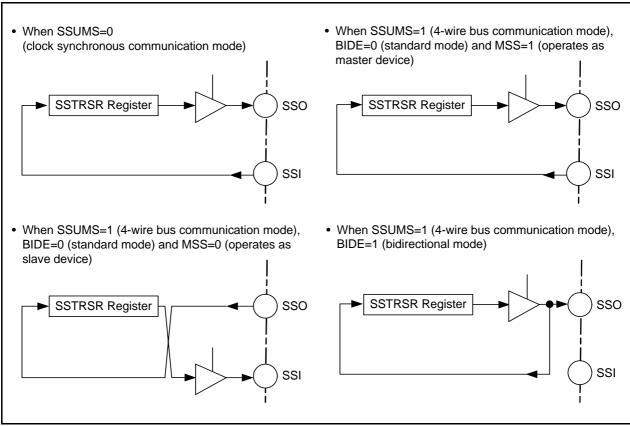


Figure 15.10 Connecting Association between Data I/O Pin and SSTRSR Register

15.3 Interrupt Requests

SSU has five interrupt requests: transmit data empty, transmit end, receive data full, overrun error and conflict error. Since these interrupt requests are assigned to the SSU interrupt vector table, determining interrupt sources by flags is required. Table 15.2 shows the SSU Interrupt Requests.

Table 15.2 SSU Interrupt Requests

Interrupt Request	Abbreviation	Generation Condition		
Transmit Data Empty	TXI	TIE=1, TDRE=1		
Transmit End	TEI	TEIE=1, TEND=1		
Receive Data Full	RXI	RIE=1, RDRF=1		
Overrun Error	OEI	RIE=1, ORER=1		
Conflict Error	CEI	CEIE=1, CE=1		

CEIE, RIE, TEIE and TIE: Bits in SSER register ORER, RDRF, TEND and TDRE: Bits in SSSR register

Generation conditions of Table 15.2 are met, a SSU interrupt request is generated. Set the each interrupt source to "0" by a SSU interrupt routine.

However, the TDRE and TEND bits are automatically set to "0" by writing the transmit data to the SSTDR register and the RDRF bit is automatically set to "0" by reading the SSRDR register. When writing the transmit data to the SSTDR register, at the same time the TDRE bit is set to "1" (data is transmitted from the SSTDR to SSTRSR registers) again and when setting the TDRE bit to "0" (data is not transmitted from the SSTDR to SSTRSR registers), additional 1-byte data may be transmitted.

15.4 Communication Modes and Pin Functions

SSU switches functions of the I/O pin in each communication mode according to the setting of the MSS bit in the SSCRH register and the RE and TE bits in the SSER register. Table 15.3 shows the Association between Communication Modes and I/O Pins.

Table 15.3 Association between Communication Modes and I/O Pins

Communication Mode	Bit Setting				Pin State			
Communication Mode	SSUMS	BIDE	MSS	TE	RE	SSI	SSO	SSCK
Clock Synchronous	0	Disabled	0	0	1	Input	_(1)	Input
Communication Mode				1	0	_(1)	Output	Input
					1	Input	Output	Input
			1	0	1	Input	_(1)	Output
				1	0	_(1)	Output	Output
					1	Input	Output	Output
4-Wire Bus	1	0	0	0	1	_(1)	Input	Input
Communication Mode				1	0	Output	_(1)	Input
					1	Output	Input	Input
			1	0	1	Input	_(1)	Output
				1	0	_(1)	Output	Output
					1	Input	Output	Output
4-Wire Bus	1	1	0	0	1	_(1)	Input	Input
(Bidirectional)				1	0	_(1)	Output	Input
Communication Mode ⁽²⁾			1	0	1	_(1)	Input	Output
				1	0	_(1)	Output	Output

NOTES:

1. This pin can be used as programmable I/O port.

2. Do not set both the TE and RE bits to "1" in 4-wire bus (bidirectional) communication mode.

SSUMS and BIDE: Bits in SSMR2 register

MSS: Bit in SSCRH register
TE and RE: Bits in SSER register

15.5 Clock Synchronous Communication Mode

15.5.1 Initialization in Clock Synchronous Communication Mode

Figure 15.11 shows an Initialization in Clock Synchronous Communication Mode. Set the TE bit in the SSER register to "0" (disables transmit) and the RE bit to "0" (disables receive) before data transmit / receive as an initialization.

When communication mode and format are changed, set the TE bit to "0" and the RE bit to "0" before changing.

Setting the RE bit to "0" does not change the contents of the RDRF and ORER flags, and the contents of the SSRDR register.

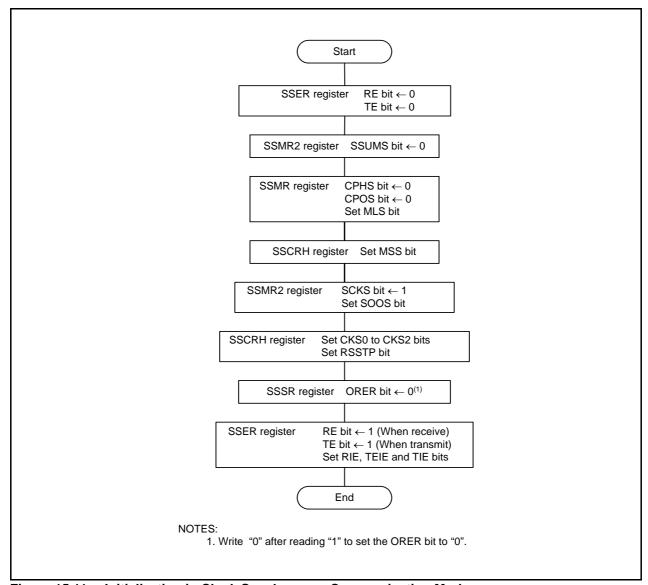


Figure 15.11 Initialization in Clock Synchronous Communication Mode

15.5.2 Data Transmit

Figure 15.12 shows an Example of SSU Operation for Data Transmit (Clock Synchronous Communication Mode). During the data transmit, the SSU operates as described below.

When the SSU is set as a master device, it outputs a synchronous clock and data.

When the SSU is set as a slave device, it outputs data synchronized with the input clock. When setting the TE bit to "1" (enables transmit) before writing the transmit data to the SSTDR register, the TDRE bit is automatically set to "0" (data is not transferred from the SSTDR to SSTRSR registers) and the data is transferred from the SSTDR to SSTRSR registers.

After the TDRE bit is set to "1" (data is transferred from the SSTDR to SSTRSR registers), a transmit is started. When the TIE bit in the SSER register is set to "1", the TXI interrupt request is generated. When one frame of data is transferred while the TDRE bit is set to "0", data is transferred from the SSTDR to SSTRSR registers and a transmit of the next frame is started. If the 8th bit is transmitted while the TDRE bit is set to "1", the TEND bit in the SSSR register is set to "1" (the TDRE bit is set to "1" when the last bit of the transmit data is transmitted) and the state is retained. The TEI interrupt request is generated when the TEIE bit in the SSER register is set to "1" (enables transmit-end interrupt request). The SSCK pin is retained "H" after transmit-end.

Transmit can not be performed while the ORER bit in the SSRR register is set to "1" (overrun error occurs). Confirm that the ORER bit is set to "0" before transmit.

When setting the microcomputer to the slave device, ensure the TEND bit is set to "1" (data transmit ends) and write the following transmit data to the SSTDR register. When setting the microcomputer to the master device, continuous transmit is enabled.

Figure 15.13 shows a Sample Flowchart for Data Transmit (Clock Synchronous Communication Mode).

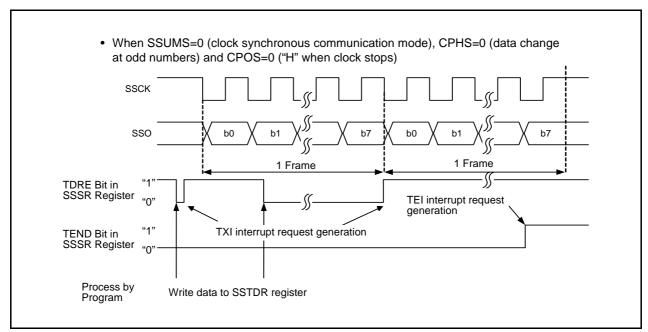


Figure 15.12 Example of SSU Operation for Data Transmit (Clock Synchronous Communication Mode)

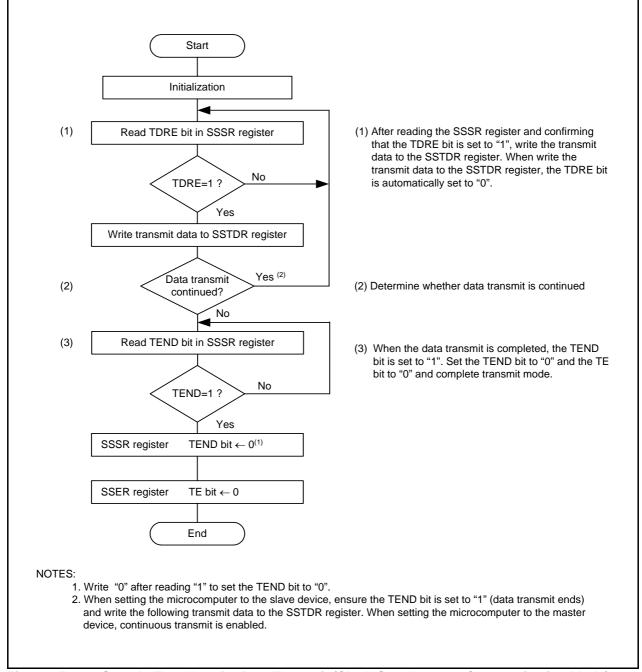


Figure 15.13 Sample Flowchart for Data Transmit (Clock Synchronous Communication Mode)

15.5.3 Data Receive

Figure 15.14 shows an Example of Operation for Data Receive (Clock Synchronous Communication Mode).

During the data receive, the SSU operates as described below. When the SSU is set as a master device, it outputs a synchronous clock and inputs data.

When the SSU is set as a salve device, it outputs data synchronized with the input clock. When the SSU is set as a master device, it outputs a receive clock and starts receiving by performing dummy read on the SSRDR register.

After the 8-bit data is received, the RDRF bit in the SSSR register is set to "1" (data in the SSRDR register) and receive data is stored in the SSRDR register. When the RIE bit in the SSER register is set to "1" (enables RXI and OEI interrupt request), the RXI interrupt request is generated. If the SSDR register is read, the RDRF bit is automatically set to "0" (no data in the SSRDR register).

Read the receive data after setting the RSSTP bit in the SSCRH register to "1" (after receiving 1-byte data, the receive operation is completed). The SSU outputs a clock for receiving 8-bit data and stops. After that, set the RE bit in the SSER register to "0" (disables receive) and the RSSTP bit to "0" (receive operation is continued after receiving the 1-byte data) and read the receive data. If the SSRDR register is read while the RE bit is set to "1" (enables receive), a receive clock is output again. When the 8th clock rises while the RDRF bit is set to "1", the ORER bit in the SSSR register is set to "1" (overrun error occurs: OEI) and the operation is stopped. When the ORER bit is set to "1", receive can not be performed. Confirm that the ORER bit is set to "0" before restarting receive.

Figure 15.15 shows a Sample Flowchart for Data Receive (MSS=1) (Clock Synchronous Communication Mode).

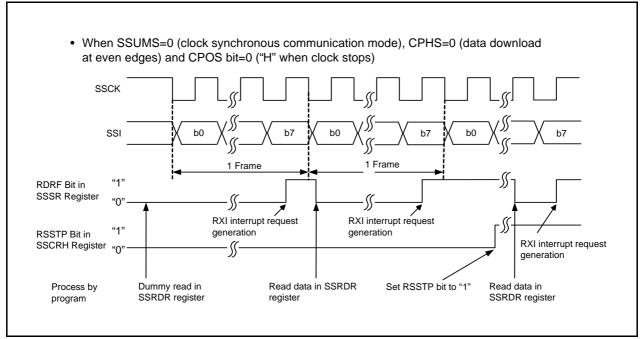


Figure 15.14 Example of Operation for Data Receive (Clock Synchronous Communication Mode)

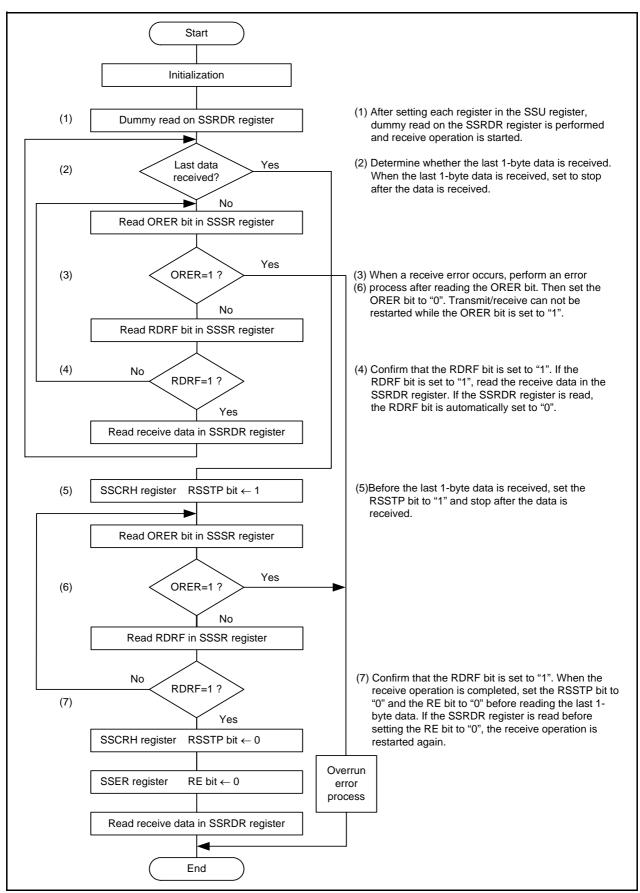


Figure 15.15 Sample Flowchart for Data Receive (MSS=1) (Clock Synchronous Communication Mode)

15.5.4 Data Transmit/Receive

Data transmit/receive is a combined operation of data transmit and receive which are described before. Transmit/receive is started by writing data in the SSTDR register.

When the 8th clock rises or the ORER bit is set to "1" (overrun error occurs) while the TDRE bit is set to "1" (data is transferred from the SSTDR to SSTRSR registers), the transmit/receive operation is stopped.

When switching from transmit mode (TE=1) or receive mode (RE=1) to transmit/receive mode (Te=RE=1), set the TE bit to "0" and RE bit to "0" before switching. After confirming that the TEND bit is set to "0" (the TDRE bit is set to "0" when the last bit of the transmit data is transmitted), the RERF bit is set to "0" (no data in the SSRDR register) and the ORER bit is set to "0" (no overrun error), set the TE and RE bits to "1".

When setting the microcomputer to the slave device, ensure the TEND bit is set to "1" (data transmit ends) and write the following transmit data to the SSTDR register. When setting the microcomputer to the master device, continuous transmit is enabled.

Figure 15.16 shows a Sample Flowchart for Data Transmit/Receive (Clock Synchronous Communication Mode).

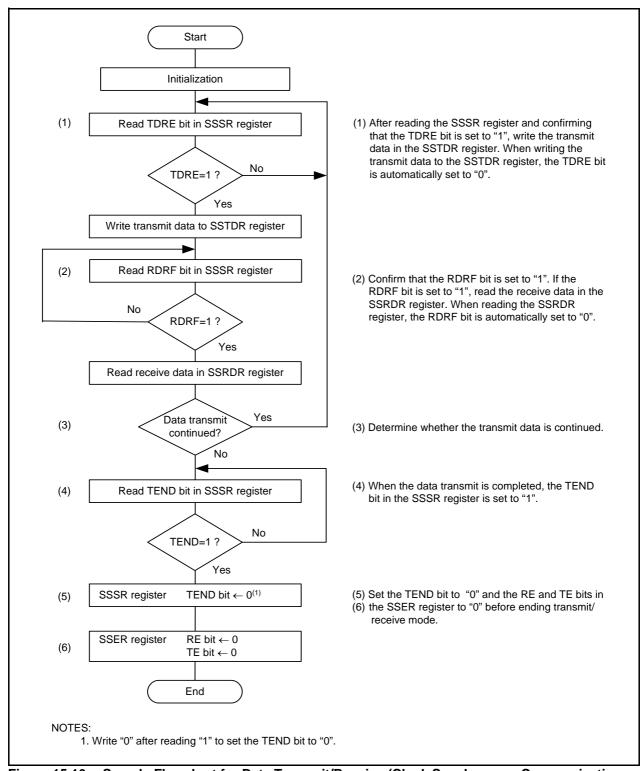


Figure 15.16 Sample Flowchart for Data Transmit/Receive (Clock Synchronous Communication Mode)

15.6 Operation in 4-Wire Bus Communication Mode

4-wire bus communication mode is a mode which communicates with the 4-wire bus; a clock line, data input line, data output line and chip select line. This mode includes bidirectional mode in which the data input line and data output line function as a single pin.

The data input line and output line are changed according to the setting of the MSS bit in the SSCRH register and the BIDE bit in the SSMR2 register. For details, refer to **15.2.1 Association between Data I/O Pin and SS Shift Register**. In this mode, association between the clock polarity, phase and data can be set by the CPOS and CPHS bits in the SSMR register. For details, refer to **15.1.1 Association between Transfer Clock Polarity, Phase and Data**.

When the SSU is set as a master device, the chip select line controls output. When the SSU is set as a slave device, the chip select line controls input. When the SSU is set as master device, the chip select line controls output of the \overline{SCS} pin or controls output of a general port by setting the CSS1 bit in the SSMR2 register. When the SSU is set as a slave device, the chip select line set the \overline{SCS} pin as an input pin by setting the CSS1 and CSS0 bits in the SSMR2 register to "01b".

In 4-wire bus communication mode, the MLS bit in the SSMR register is set to "0" and communication is performed using the MSB-first.

15.6.1 Initialization in 4-Wire Bus Communication Mode

Figure 15.17 shows an Initialization in 4-Wire Bus Communication Mode. Before the data transit/ receive, set the TE bit in the SSER register to "0" (disables transmit) and the RE bit in the SSER register to "0" (disables receive) and initialize the SSU.

When communication mode and format are changed, set the TE bit to "0" and the RE bit to "0" before changing.

Setting the RE bit to "0" does not change the contents of the RDRF and ORER flags, and the contents of the SSRDR register.

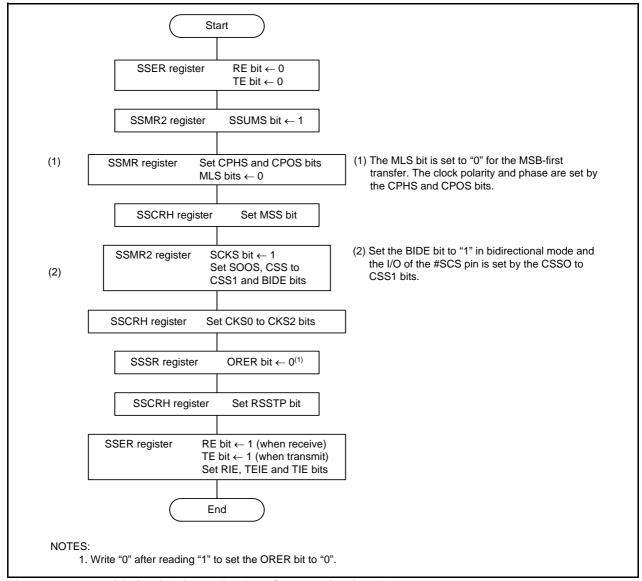


Figure 15.17 Initialization in 4-Wire Bus Communication Mode

15.6.2 Data Transmit

Figure 15.18 shows an Example of Operation in Data Transmit (4-Wire Bus Communication Mode). During the data transmit, the SSU operates as described below.

When the SSU is set as a master device, it outputs a synchronous clock and data. When the UUSA is set as a slave device, it outputs data in synchronized with the input clock while "L" applies to the SCS pin.

When writing the transmit data to the SSTDR register after setting the TE bit to "1" (enables transmit), the TDRE bit is automatically set to "0" (data is not transferred from the SSTDR to SSTRSR registers) and the data is transferred from the SSTDR to SSTRSR registers. After the TDRE bit is set to "1" (data is transferred from the SSTDR to SSTRSR registers), a transmit is started. When the TIE bit in the SSER register is set to "1", the TXI interrupt request is generated.

When the 1-frame data is transferred while the TDRE bit is set to "0", the data is transferred from the SSTDR to SSTRSR registers and the next frame transmit is started. If the 8th bit is transmitted while the TDRE is set to "1", the TEND in the SSSR register is set to "1" (when the last bit of the transmit data is transmitted, the TDRE bit is set to "1") and the state is retained. If the TEIE bit in the SSER register is set to "1" (enables transmit-end interrupt request), the TEI interrupt request is generated. The SSCK pin is retained "H" after transmit-end and the SCS pin is held "H". When the SCS pin is transmitted When transmitting continuously while the SCS pin is held "L", write the next transmit data to the SSTDR register before transmitting the 8th bit.

Transmit can not be performed while the ORER bit in the SSSR register is set to "1" (overrun error occurs). Confirm that the ORER bit is set to "0" before transmit.

When setting the microcomputer to the slave device, ensure the TEND bit is set to "1" (data transmit ends) and write the following transmit data to the SSTDR register. When setting the microcomputer to the master device, continuous transmit is enabled.

The difference from the clock synchronous communication mode is that the SSO pin is placed in high-impedance state while the SCS pin is placed in high-impedance state when operating as a master device and the SSI pin is placed in high-impedance state while the SCS pin is placed in "H" input state when operating as a slave device.

A sample flowchart is the same as the clock synchronous communication mode (Refer to Figure 15.13 Sample Flowchart for Data Transmit (Clock Synchronous Communication Mode)).

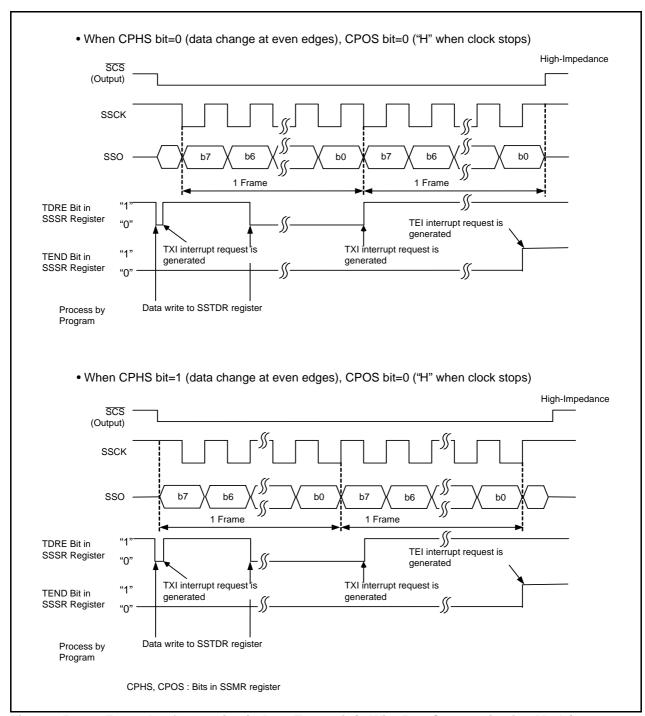


Figure 15.18 Example of Operation in Data Transmit (4-Wire Bus Communication Mode)

15.6.3 Data Receive

Figure 15.19 shows an example of the SSU operation for the data receive. During the data receive, the SSU operates as described below.

When the SSU is set as a master device, it outputs a synchronous clock and inputs data. When the SSU is set as a salve device, it outputs data synchronized with the input clock while the SCS pin is held "L" input. When the SSU is set as a master device, it outputs a receive clock and starts receiving by performing dummy read on the SSRDR register.

After the 8-bit data is received, the RDRF bit in the SSSR register is set to "1" (data in the SSRDR register) and receive data is stored in the SSRDR register. When the RIE bit in the SSER register is set to "1" (enables RXI and OEI interrupt request), the RXI interrupt request is generated. If the SSRDR register is read, the RDRF bit is automatically set to "0" (no data in the SSRDR register).

Read the receive data after setting the RSSTP bit in the SSCRH register to "1" (after receiving 1-byte data, the receive operation is completed). The SSU outputs a clock for receiving 8-bit data and stops. After that, set the RE bit in the SSER register to "0" (disables receive) and the RSSTP bit to "0" (receive operation is continued after receiving 1-byte data) and read the receive data. If the SSRDR register is read while the RE bit is set to "1" (enables receive), a receive clock is output again.

When the 8th clock rises while the RDRF bit is set to "1", the ORER bit in the SSSR register is set to "1" (overrun error occurs: OEI) and the operation is stopped. When the ORER bit is set to "1", receive can not be performed. Confirm that the ORER bit is set to "0" before restarting receive.

When the RDRF and ORER bits are set to "1", it varies depending on setting the CPHS bit in the SSMR register. Figure 15.19 shows when the RDRF and ORER bits are set to "1".

When the CPHS bit is set to "1" (data download at the odd edges), the RDRF and ORER bits are set to "1" at one point of a frame.

A sample flowchart is the same as the clock synchronous communication mode (Refer to Figure 15.15 Sample Flowchart for Data Receive (MSS=1) (Clock Synchronous Communication Mode)).

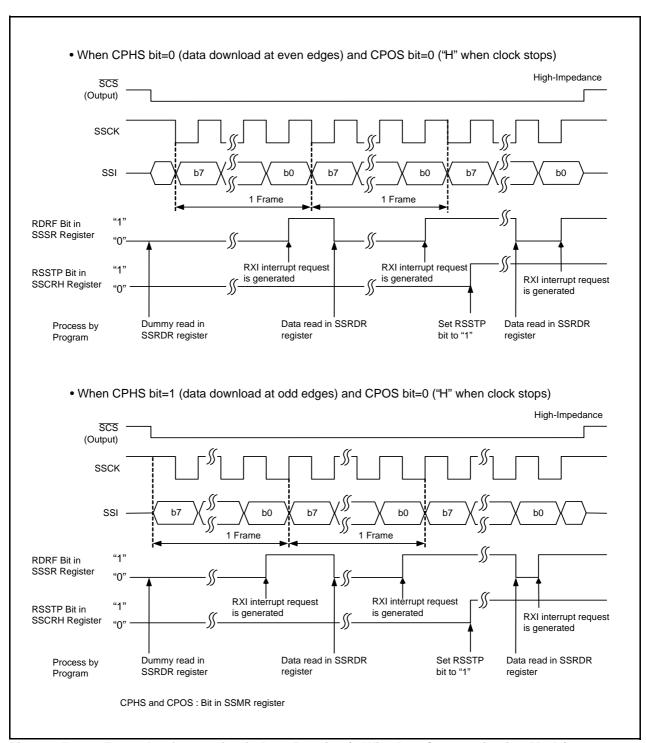


Figure 15.19 Example of Operation in Data Receive (4-Wire Bus Communication Mode)

15.6.4 SCS Pin Control and Arbitration

When setting the SSUMS bit in the SSMR2 register to "1" (4-wire bus communication mode).and the CSS1 bit in the SSMR2 register to "1" (functions as \overline{SCS} output pin), Set the \overline{MSS} bit in the SSCRH register to "1" (operates as a master device) and check the arbitration of the \overline{SCS} pin before starting serial transfer. If the SSU detects that the synchronized internal \overline{SCS} signal is held "L" in this period, the CE bit in the SSSR register to "1" (a conflict error occurs) and the MSS bit is automatically set to "0" (operates as a slave device).

Figure 15.20 shows an Arbitration Check Timing.

A future transmit operation is not performed while the CE bit is set to "1". Set the CE bit to "0" (a conflict error does not occur) before a transmit is started.

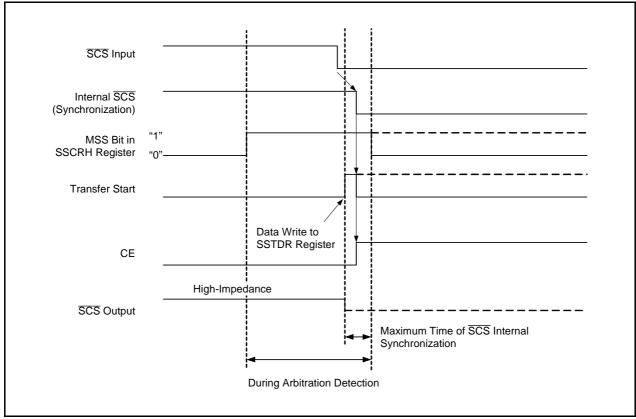


Figure 15.20 Arbitration Check Timing

16. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter circuit with a capacitive coupling amplifier. The analog input shares the pins with P1_0 to P1_3. Therefore, when using these pins, ensure the corresponding port direction bits are set to "0" (input mode).

When not using the A/D converter, set the VCUT bit in the ADCON1 register to "0" (Vref unconnected), so that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

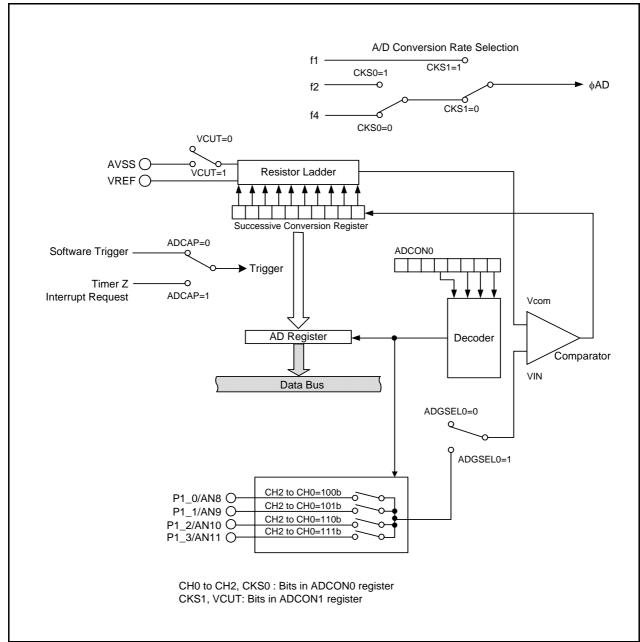
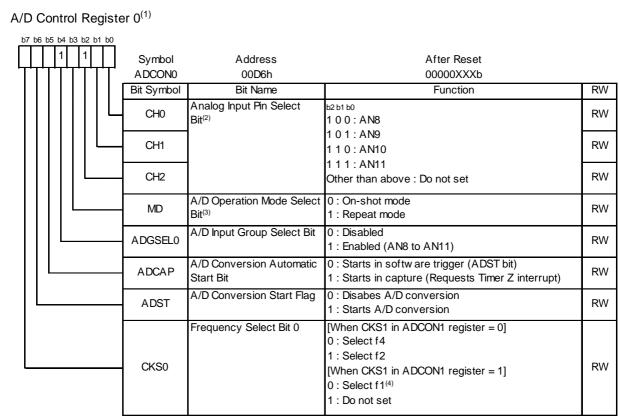
The result of A/D conversion is stored in the AD register.

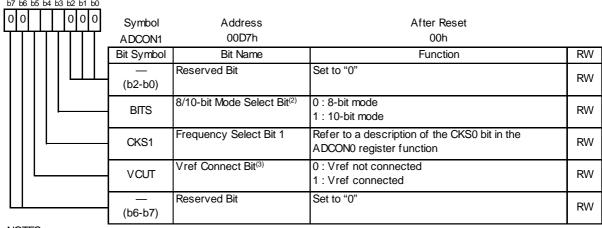
Table 16.1 lists the Performance of A/D converter. Figure 16.1 shows the Block Diagram of A/D Converter. Figures 16.2 and 16.3 show the A/D converter-related registers.

Table 16.1 Performance of A/D converter

Item	Performance
A/D Conversion Method	Successive approximation (with capacitive coupling amplifier)
Analog Input Voltage ⁽¹⁾	0V to Vref
Operating Clock $\phi AD^{(2)}$	4.2V ≤ AVCC ≤ 5.5V f1, f2, f4
	2.7V ≤ AVCC < 4.2V f2, f4
Resolution	8 bit or 10 bit is selectable
Absolute Accuracy	AVCC = Vref = 5V
	• 8-bit resolution ±2 LSB
	• 10-bit resolution ±3 LSB
	AVCC = Vref = 3.3 V
	• 8-bit resolution ±2 LSB
	• 10-bit resolution ±5 LSB
Operating Mode	One-shot and repeat modes ⁽³⁾
Analog Input Pin	4 pins (AN8 to AN11)
A/D Conversion Start Condition	Software trigger
	Set the ADST bit in the ADCON0 register to "1" (A/D conversion
	starts)
	Capture
	Timer Z interrupt request is generated while the ADST bit is set to "1"
Conversion Rate Per Pin	Without sample and hold function
	8-bit resolution: 49φAD cycles, 10-bit resolution: 59φAD cycles
	With sample and hold function
	8-bit resolution: 28φAD cycles, 10-bit resolution: 33φAD cycles

- 1. Analog input voltage does not depend on use of sample and hold function.
- 2. The frequency of ϕAD must be 10 MHz or below. Without sample and hold function, the ϕAD frequency should be 250 kHz or above. With the sample and hold function, the ϕAD frequency should be 1 MHz or above.
- 3. In repeat mode, only 8-bit mode can be used.


Figure 16.1 Block Diagram of A/D Converter

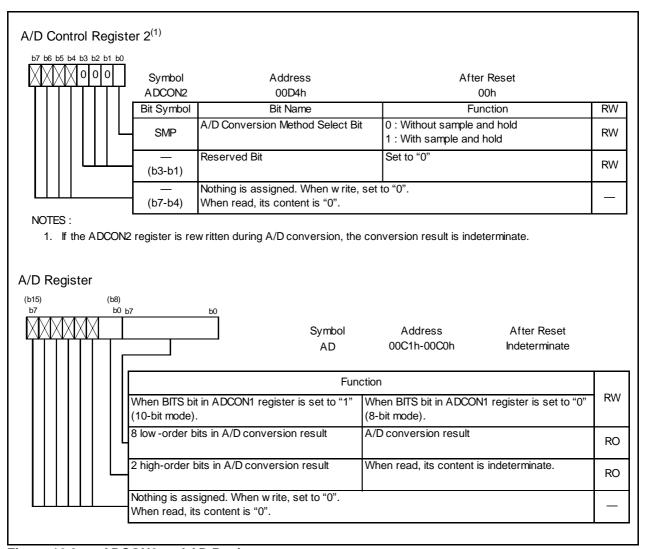
NOTES:

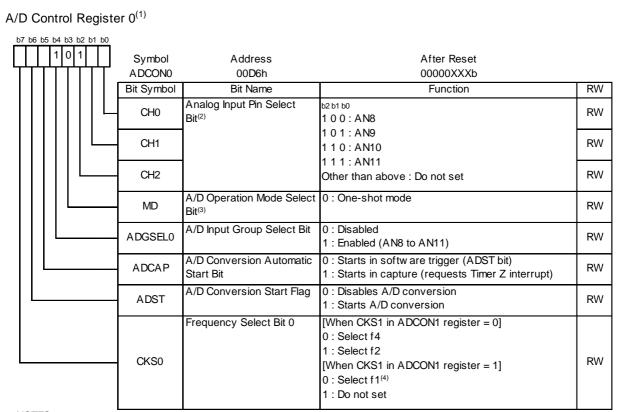
- 1. If the ADCON0 register is rewritten during A/D conversion, the conversion result is indeterminate.
- 2. CH0 to CH2 bits are enabled when the ADGSEL0 bit is set to "1". After setting the ADGSEL0 bit to "1", write to the CH0 to CH2 bits.
- 3. When changing A/D operatio mode, set the analog input pin again.
- 4. Set ØAD frequency to 10MHz or below.

A/D Control Register 1⁽¹⁾

- 1. If the ADCON1 register is rewritten during A/D conversion, the conversion result is indeterminate.
- 2. Set the BITS bit to "0" (8-bit mode) in repeat mode.
- 3. When the VCUT bit is set to "1"(connected) from "0" (not connected), wait for 1µs or more before starting A/D conversion.

Figure 16.2 ADCON0 and ADCON1 Registers

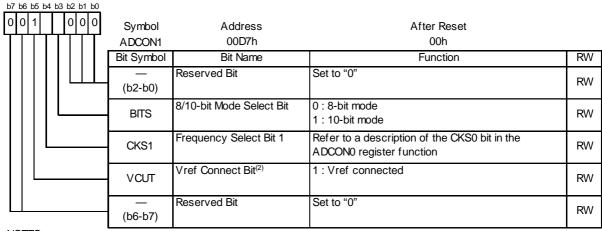



Figure 16.3 **ADCON2 and AD Registers**

16.1 One-Shot Mode

In one-shot mode, the input voltage on one selected pin is A/D converted once. Table 16.2 lists the Specification of One-Shot Mode. Figure 16.4 shows the ADCON0 and ADCON1 Registers in One-Shot Mode.

Table 16.2 Specification of One-Shot Mode

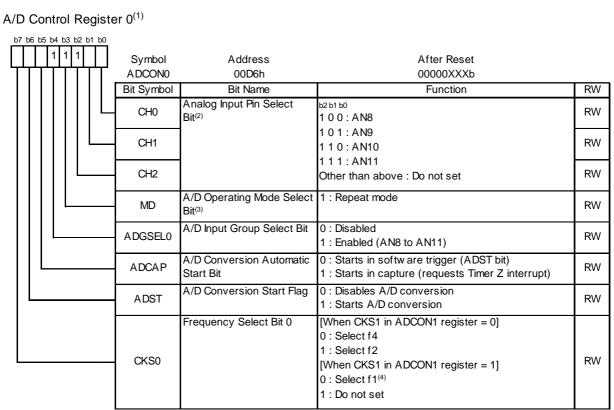

Item	Specification
Function	The input voltage on one selected pin by the CH2 to CH0 bits is A/D converted once
Start Condition	 When the ADCAP bit is set to "0" (software trigger), set the ADST bit to "1" (A-D conversion starts) When the ADCAP bit is set to "1" (capture), Timer Z interrupt request is generated while the ADST bit is set to "1"
Stop Condition	 A/D conversion completes (ADST bit is set to "0") Set the ADST bit to "0"
Interrupt Request	A/D conversion completes
Generation Timing	
Input Pin	Select one of AN8 to AN11
Reading of A/D Conversion Result	Read AD register

NOTES:

- 1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is indeterminate.
- 2. CH0 to CH2 bits are enabled when the ADGSEL0 bit is set to "1". After setting the ADGSEL0 bit to "1", write to the CH0 to CH2 bits.
- 3. When changing A/D operation mode, set the analog input pin again.
- 4. Set øAD frequency to 10MHz or below.

A/D Control Register 1⁽¹⁾

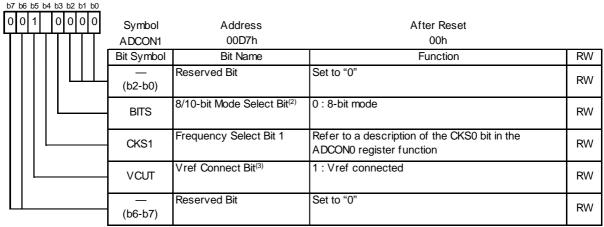
- 1. If the ADCON1 register is rewritten during A/D conversion, the conversion result is indeterminate.
- 2. When the VCUT bit is set to "1"(connected) from "0" (not connected), wait for 1µs or more before starting A/D conversion.


Figure 16.4 ADCON0 and ADCON1 Registers in One-Shot Mode

16.2 Repeat Mode

In repeat mode, the input voltage on one selected pin is A/D converted repeatedly. Table 16.3 lists the Repeat Mode Specifications. Figure 16.5 shows the ADCON0 and ADCON1 Registers in Repeat Mode.

Table 16.3 Repeat Mode Specifications


Item	Specification				
Function	The Input voltage on one pin selected by CH2 to CH0 and ADGSEL0 bits				
	is A/D converted repeatedly				
Start condition	When the ADCAP bit is set to "0" (software trigger)				
	Set the ADST bit to "1" (A-D conversion starts)				
	When the ADCAP bit is set to "1" (capture)				
	Timer Z interrupt request is generated while the ADST bit is set to "1"				
Stop condition	Set the ADST bit to "0"				
Interrupt request generation	Not generated				
timing					
Input pin	Select one of AN8 to AN11				
Reading of result of A/D	Read AD register				
converter					

NOTES:

- 1. If the ADCON0 register is rewritten during A/D conversion, the conversion result is indeterminate.
- 2. CH0 to CH2 bits are enabled when the ADGSEL0 bit is set to "1". After setting the ADGSEL0 bit to "1", write to the CH0 to CH2 bits.
- 3. When changing A/D operating mode, set the analog input pin again.
- 4. Set øAD frequency to 10MHz or below.

A/D Control Register 1⁽¹⁾

- $1. \quad \text{If the ADCON1 register is rew ritten during A/D conversion, the conversion result is indeterminate.} \\$
- 2. Set the BITS bit to "0" (8-bit mode) in repeat mode.
- When the VCUT bit is set to "1"(connected) from "0" (not connected), wait for 1µs or more before starting A/D conversion.

Figure 16.5 ADCON0 and ADCON1 Registers in Repeat Mode

16.3 Sample and Hold

When the SMP bit in the ADCON2 register is set to "1" (with sample and hold function), A/D conversion rate per pin increases to $28\phi AD$ cycles for 8-bit resolution or $33\phi AD$ cycles for 10-bit resolution. The sample and hold function is available in all operating modes. Start the A/D conversion after selecting whether the sample and hold circuit is to be used or not.

When performing the A/D conversion, charge the comparator capacitor in the microcomputer. Figure 16.6 shows the Timing Diagram of A/D Conversion.

Figure 16.6 Timing Diagram of A/D Conversion

16.4 A/D Conversion Cycles

Figure 16.7 shows the A/D Conversion Cycles.

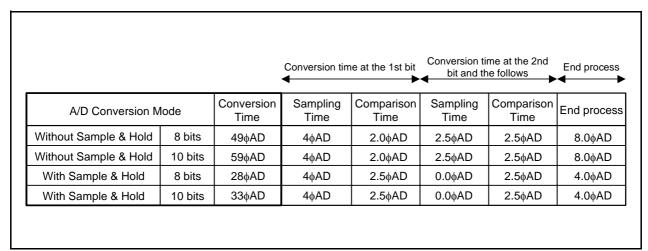


Figure 16.7 A/D Conversion Cycles

16.5 Internal Equivalent Circuit of Analog Input

Figure 16.8 shows the Internal Equivalent Circuit of Analog Input.

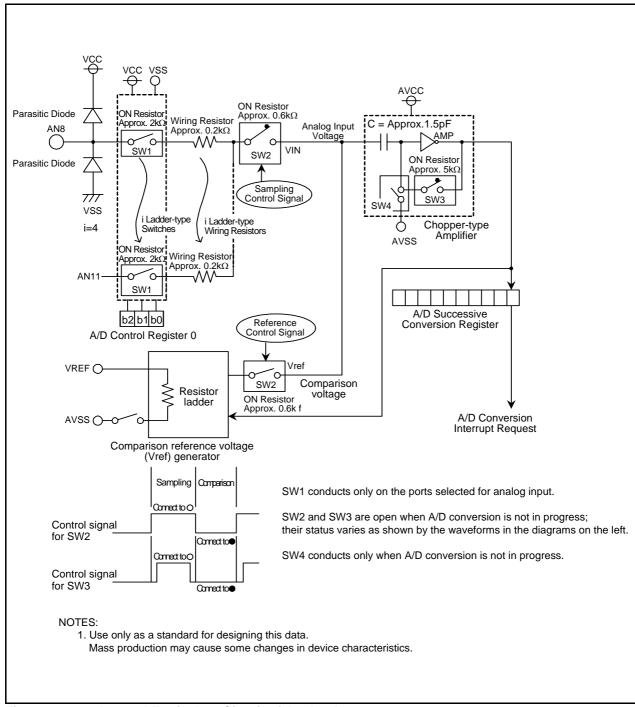


Figure 16.8 Internal Equivalent Circuit of Analog Input

16.6 Inflow Current Bypass Circuit

Figure 16.9 shows the Configuration of the Inflow Current Bypass Circuit, Figure 16.10 shows the Example of an Inflow Current Bypass Circuit where VCC or More is Applied.

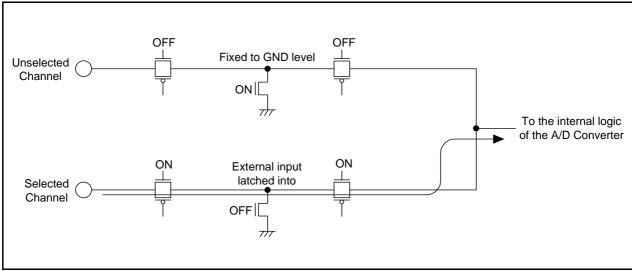


Figure 16.9 Configuration of the Inflow Current Bypass Circuit

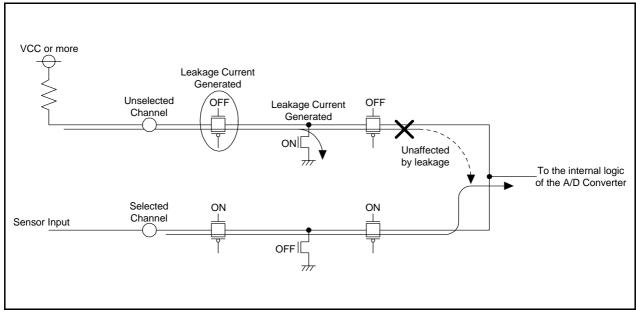


Figure 16.10 Example of an Inflow Current Bypass Circuit where VCC or More is Applied

17. Programmable I/O Ports

Programmable Input/Output ports (hereafter referred to as "I/O ports") have 13 ports of the P1, P3_3 to P3_5, P3_7, and P4_5. Also, the main clock oscillation circuit is not used, the P4_6 and P4_7 can be used as the input port only. Table 17.1 lists the Overview of Programmable I/O Ports.

Table 17.1 Overview of Programmable I/O Ports

Ports	I/O	Output Form	I/O Setting	Internal Pull-Up Resistor	Drive Capacity Selection
P1	I/O	CMOS3 State	Set every bit	Set every 4 bits ⁽¹⁾	Set every bit ⁽²⁾ of P1_0 to P1_3
P3_3, P4_5	I/O	CMOS3 State	Set every bit	Set every bit ⁽¹⁾	None
P3_4, P3_5, P3_7	I/O	CMOS3 State	Set every bit	Set every 3 bits ⁽¹⁾	None
P4_6, P4_7 ⁽³⁾	I	(Without output function)	None	None	None

NOTES:

- 1. In input mode, whether the internal pull-up resistor is connected or not can be selected by the PUR0 and PUR1 registers.
- 2. This port can be used as the LED drive port by setting the DRR register to "1" (High).
- 3. When the main clock oscillation circuit is not used, these ports can be used as the input port only.

17.1 Functions of Programmable I/O Ports

The PDi_j (j=0 to 7) bit in the PDi (i=1,3 and 4) register controls I/O of the ports P1, P3_3 to P3_5, P3_7 and P4_5. The Pi register consists of a port latch to hold output data and a circuit to read pin state. Figures 17.1 to 17.3 show the Configurations of Programmable I/O Ports.

Table 17.2 lists the Functions of Programmable I/O Ports. Also, Figure 17.5 shows the PD1, PD3 and PD4 Registers. Figure 17.6 shows the P1, P3 and P4 Registers, Figure 17.7 shows the PUR0 and PUR1 Registers and Figure 17.8 shows the DRR Register.

Table 17.2 Functions of Programmable I/O Ports

Operation When	Value of PDi_j Bit in PDi Register ⁽¹⁾					
Accessing Pi Register	When PDi_j bit is set to "0" (input mode)	When PDi_j bit is set to "1" (output mode)				
Reading	Read pin input level	Read the port latch				
Writing	Write to the port latch	Write to the port latch. The value written in the port latch, it is output from the pin.				

NOTES:

1. Nothing is assigned to the PD3_0 to PD3_2, PD3_6, PD4_0 to PD4_4, PD4_6 and PD4_7 bits.

17.2 Effect on Peripheral Functions

Programmable I/O ports function as I/O of peripheral functions (Refer to **Table 1.6** Pin Name Information by Pin Number). Table 17.3 lists the Setting of PDi_j Bit When Functioning as I/O of Peripheral Functions. Refer to descriptions of each function for how to set peripheral functions.

Table 17.3 Setting of PDi_j Bit When Functioning as I/O of Peripheral Functions

I/O of Peripheral Functions	PDi_j Bit Setting of Port shared with Pin
Input	Set this bit to "0" (input mode).
Output	This bit can be set to both "0" and "1" (output regardless of the port setting)

17.3 Pins Other than Programmable I/O Ports

Figure 17.4 shows the Configuration of I/O Pins.

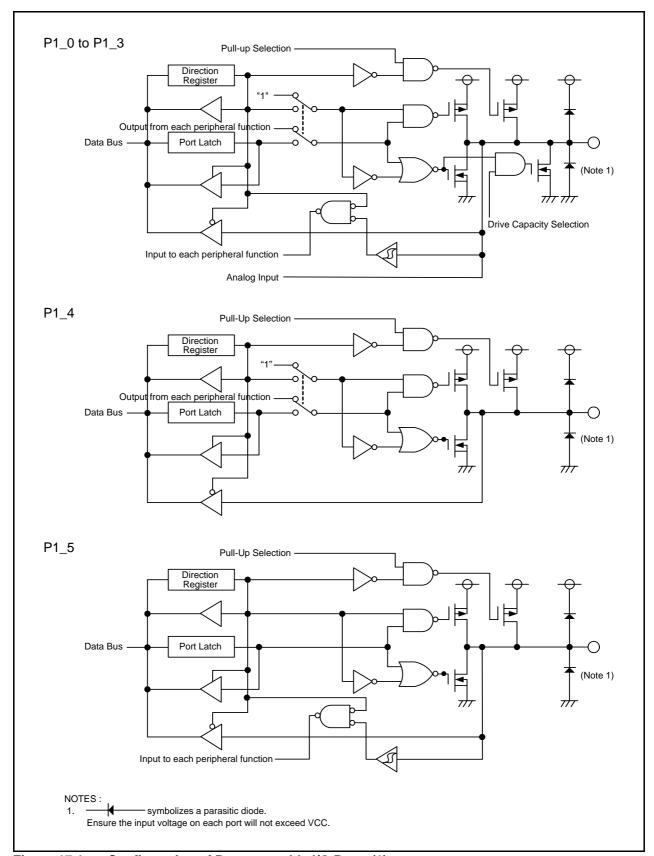


Figure 17.1 Configuration of Programmable I/O Ports (1)

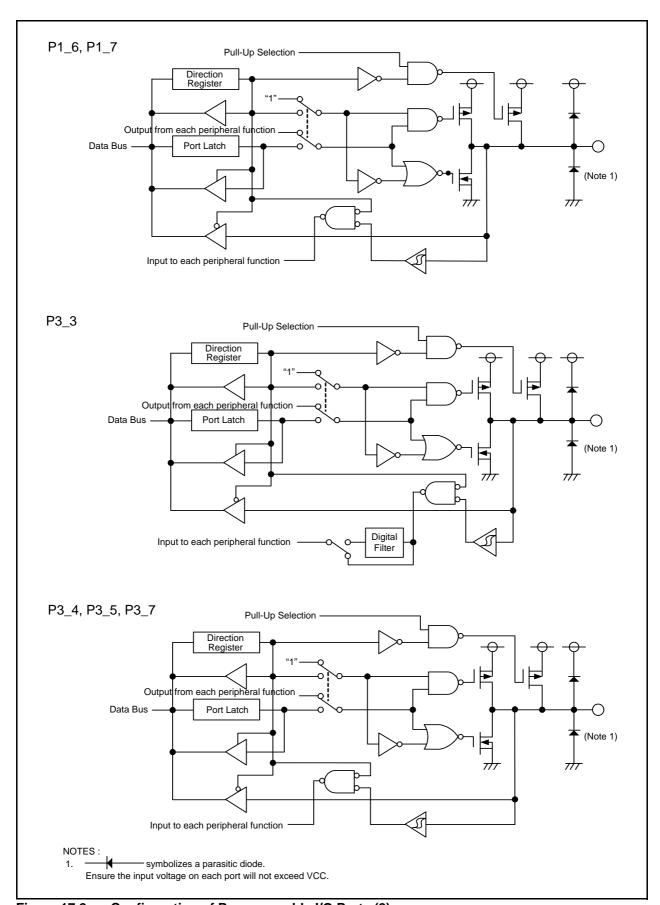


Figure 17.2 Configuration of Programmable I/O Ports (2)

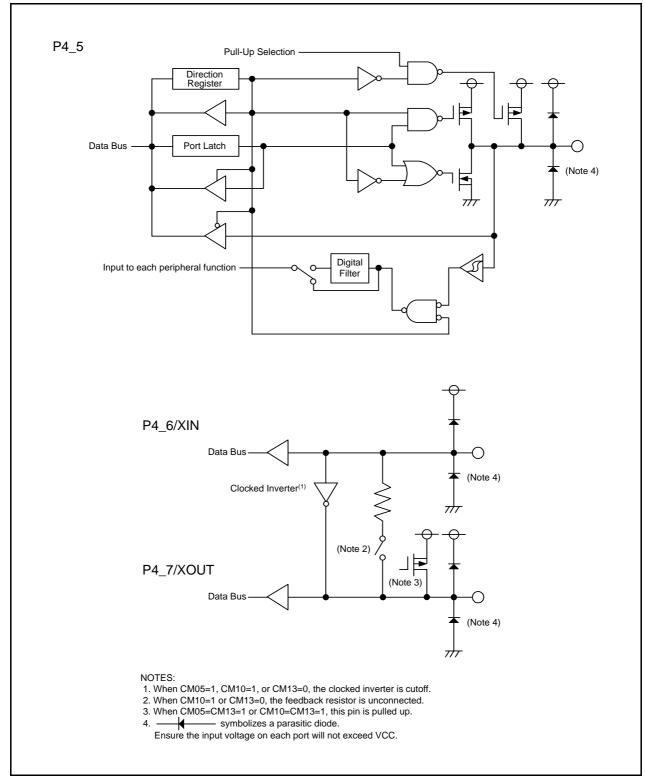
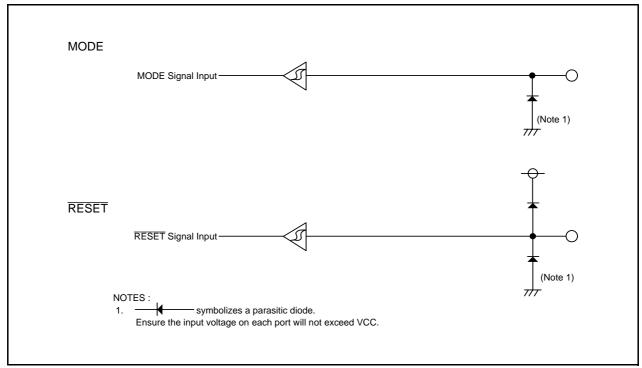
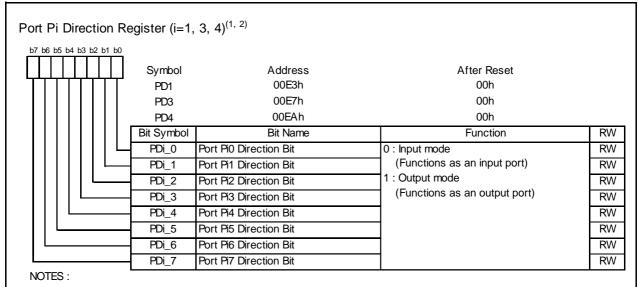
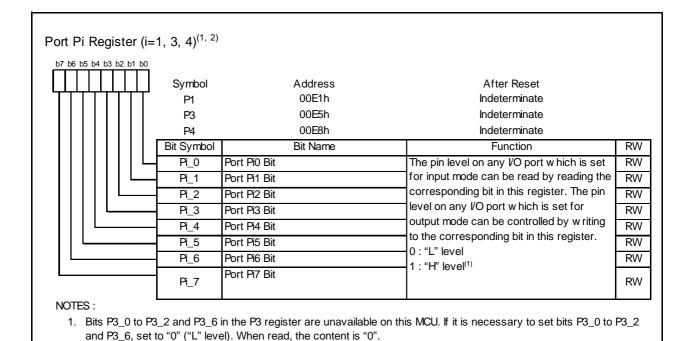




Figure 17.3 Configuration of Programmable I/O Ports (3)



Configuration of I/O Pins Figure 17.4

- 1. Bits PD3_0 to PD3_2 and PD3_6 in the PD3 register are unavailable on this MCU. If it is necessary to set bits PD3_0 to PD3_2 and PD3_6, set to "0" (input mode). When read, the content is "0".
- 2. Bits PD4_0 to PD4_4, PD4_6 and PD4_7 in the PD4 register are unavailable on this MCU. If it is necessary to set bits PD4_0 to PD4_4, PD4_6 and PD4_7, set to "0" (input mode). When read, the content is "0".

Figure 17.5 PD1, PD3 and PD4 Registers

2. Bits P4_0 to P4_4 in the P4 register are unavailable on this MCU. If it is necessary to set bits P4_0 to P4_4, set to

Figure 17.6 P1, P3 and P4 Registers

"0" ("L" level). When read, the content is "0".

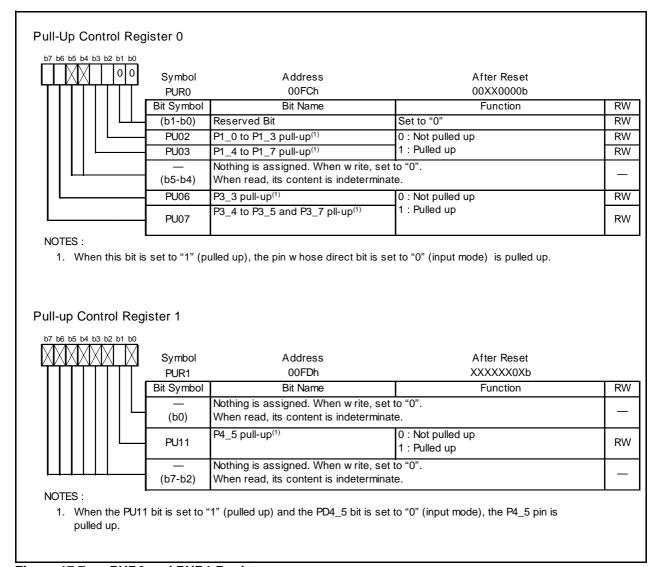


Figure 17.7 PUR0 and PUR1 Registers

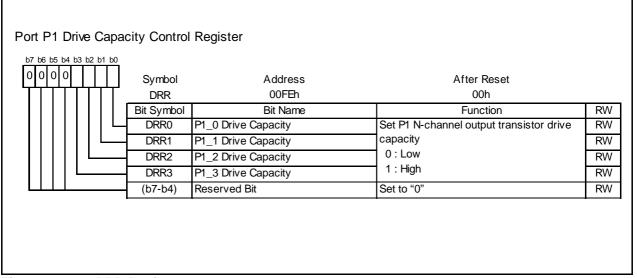


Figure 17.8 DRR Register

17.4 Port setting

Table 17.4 to Table 17.17 list the port setting.

Table 17.4 Port P1_0/KI0/AN8/CMP0_0 Setting

Register	PD1	PUR0	DRR	KIEN	ADCON0	TCOUT	Function	
Bit	PD1_0	PU02	DRR0	KI0EN	CH2, CH1, CH0, ADGSEL0	TCOUT0	Function	
	0	0	Х	Х	XXXXb	0	Input port (not pulled up)	
	0	1	Х	Х	XXXXb	0	Input port (pulled up)	
	0	0	Х	1	XXXXb	0	KI0 input	
Setting Value	0	0	Х	Х	1001b	0	A/D Converter input (AN8)	
74.40	1	Х	0	Х	XXXXb	0	Output port	
	1	Х	1	Х	XXXXb	0	Output port (High drive)	
	Х	Х	Х	Х	XXXXb	1	CMP0_0 output	

X: "0" or "1"

Table 17.5 Port P1_1/KI1/AN9/CMP0_1 Setting

Register	PD1	PUR0	DRR	KIEN	ADCON0	TCOUT	Function	
Bit	PD1_1	PU02	DRR1	KI1EN	CH2, CH1, CH0, ADGSEL0	TCOUT1	Function	
	0	0	Х	X	XXXXb	0	Input port (not pulled up)	
	0	1	Х	Х	XXXXb	0	Input port (pulled up)	
	0	0	Х	1	XXXXb	0	KI1 input	
Setting Value	0	0	Х	Х	1011b	0	A/D Converter input (AN9)	
Value	1	Х	0	Х	XXXXb	0	Output port	
	1	Х	1	Х	XXXXb	0	Output port (High drive)	
	Х	Х	Х	Х	XXXXb	1	CMP0_1 output	

X: "0" or "1"

Table 17.6 Port P1_2/KI2/AN10/CMP0_2 Setting

Register	PD1	PUR0	DRR	KIEN	ADCON0	TCOUT	Function	
Bit	PD1_2	PU02	DRR2	KI2EN	CH2, CH1, CH0, ADGSEL0	TCOUT2	Function	
	0	0	Х	Х	XXXXb	0	Input port (not pulled up)	
	0	1	Х	Х	XXXXb	0	Input port (pulled up)	
	0	0	Х	1	XXXXb	0	KI2 input	
Setting Value	0	0	Х	Х	1101b	0	A/D Converter input (AN10)	
Value	1	Х	0	Х	XXXXb	0	Output port	
	1	Х	1	Х	XXXXb	0	Output port (High drive)	
	Х	Х	Х	Х	XXXXb	1	CMP0_2 input	

Table 17.7 Port P1_3/KI3/AN11/TZOUT Setting

Register	PD1	PUR0	DRR	KIEN	ADCON0	TZMR	TZOC		
Bit	PD1_3	PU02	DRR3	KI3EN	CH2, CH1, CH0, ADGSEL0	TZMOD1, TZMOD0	TZOCNT	Function	
	0	0	Х	X	XXXXb	00b	Х	Input port (not pulled up)	
	0	1	Х	Х	XXXXb	00b	Х	Input port (pulled up)	
	0	0	Х	1	XXXXb	00b	Х	KI3 input	
	0	0	Х	X	1111b	00b	Х	A/D Converter input (AN11)	
Setting	1	Х	0	Х	XXXXb	00b	Х	Output port	
Value	1	Х	1	Х	XXXXb	00b	Х	Output port (High drive)	
	Х	Х	0	Х	XXXXb	01b	1	Output port	
	Х	Х	1	Х	XXXXb	01b	1	Output port (High drive)	
	Х	Х	Х	Х	XXXXb	01b	0	TZOUT output	
	Х	Х	Х	Х	XXXXb	1Xb	Х	TZOUT output	

X: "0" or "1"

Table 17.8 Port P1_4/TXD0 Setting

Register	PD1	PUR0	U0MR	U0C0	Function
Bit	PD1_4	PU03	SMD2, SMD1, SMD0	NCH	Function
	0	0	000b	Х	Input port (not pulled up)
	0	1	000b	Х	Input port (pulled up)
	1	Х	000b	Χ	Output port
			001b	0	TXD0 output, CMOS output
0	Х	Х	100b		
Setting Value	^		101b		
	value		110b		
			001b	1	
	Х	Х	100b		TXD0 output, N-channel open output
	^	^	101b		1 A Do output, N-Granner open output
			110b		

Table 17.9 Port P1_5/RXD0/CNTR01/INT11 Setting

Register	PD1	PUR0	UCON	TXMR	Function
Bit	PD1_5	PU03	CNTRSEL	TXMOD1, TXMOD0	Function
	0	0	Х	XXb	Input port (not pulled up)
	0	1	Х	XXb	Input port (pulled up)
Setting	0	Х	Х	Other than 01b	RXD0 input
Value	0	Х	1	Other than 01b	CNTR01/INT11 input
	1	Х	Х	Other than 01b	Output port
	1	Х	1	Other than 01b	CNTR01 output

Table 17.10 Port P1_6/CLK0/SSI Setting

Register	PD1	PUR0	U0MR	Function
Bit	PD1_6	PU03	SMD2, SMD1, SMD0, CKDIR	Function
	0	0	Other than 0X10b	Input port (not pulled up)
	0	1	Other than 0X10b	Input port (pulled up)
Setting Value	0	0	XXX1b	CLK0 (external clock) input
74.40	1	Х	Other than 0X10b	Output port
	Х	Х	0X10b	CLK0 (internal clock) output

X: "0" or "1"

Table 17.11 Port P1_7/CNTR00/INT10 Setting

Register	PD1	PUR0	TXMR	UCON	Function
Bit	PD1_7	PU03	TXMOD1, TXMOD0	CNTRSEL	Function
	0	0	Other than 01b	Х	Input port (not pulled up)
	0	1	Other than 01b	Χ	Input port (pulled up)
Setting Value	0	0	Other than 01b	0	CNTR00/INT10 input
valuo	1	Х	Other than 01b	Х	Output port
	Х	Х	Other than 01b	0	CNTR00 output

X: "0" or "1"

Table 17.12 Port P3_3/TCIN/INT3/SSI/CMP1_0 Setting

Register	PD3	PUR0	SSU (Refer to Table 15.3 Association between Communication Modes and I/O Pins)		TCOUT	Function
Bit	PD3_3	PU06	SSI Output Control	SSI Input Control	TCOUT3	
	0	0	0	0	0	Input port (not pulled up)
	0	1	0	0	0	Input port (pulled up)
	Х	0	0	1	Х	SSI input
Setting Value	1	Х	0	0	0	Output port
	Х	Х	0	0	1	CMP1_0 output
	Х	Х	1	0	Х	SSI output
	0	Х	1	1	0	TCIN input/INT3

X: "0" or "1"

Table 17.13 Port P3_4/SCS/CMP1_1 Setting

Register	PD3	PUR0	SSU (Refer to Table 15.3 Association between Communication Modes and I/O Pins)		TCOUT	Function
Bit	PD3_4	PU07	SCS Output Control SCS Input Control TCOUT4			
	0	0	0	0	0	Input port (not pulled up)
	0	1	0	0	0	Input port (pulled up)
Setting	0	0	0	1	0	SCS input
Value	1	Х	0	0	0	Output port
	Х	Х	0	0	1	CMP1_1 output
	Х	Х	1	0	Х	SCS output

Table 17.14 Port P3_5/SSCK/CMP1_2 Setting

Register	PD3	PUR0	SSU (Refer to Tabl between Communica Pir	ation Modes and I/O	TCOUT	Function
Bit	PD3_5	PU07	SSCK Output Control	SSCK Input Control	TCOUT5	
	0	0	0	0	0	Input port (not pulled up)
	0	1	0	0	0	Input port (pulled up)
Setting	0	0	0	1	0	SSCK input
Value	1	Х	0	0	0	Output port
	Х	Х	0	0	1	CMP1_2 output
	Х	Х	1	0	Х	SSCK output

X: "0" or "1"

Table 17.15 Port P3_7/CNTR0/SSO Setting

Register	PD3	PUR0	SSU (Refer to Table 15.3 Association between Communication Modes and I/O Pins)		TXMR	UCON	Function	
Bit	PD3_7	PU07	SSO Output Control	SSO Input Control	TXOCNT	U1SEL1, U1SEL0		
	0	0	0	0	0	0Xb	Input port (not pulled up)	
	0	1	0	0	0	0Xb	Input port (pulled up)	
Setting	1	Х	0	0	0	0Xb	Output port	
Value	Х	Х	0	0	1	XXb	CNTR0 output pin	
	Х	Х	0	1	Х	XXb	SSO input pin	
	Х	Х	1	0	Х	XXb	SSO output pin	

X: "0" or "1"

Table 17.16 Port XIN/P4_6, XOUT/P4_7 Setting

Register	CM1	CM1	CM0	Circuit Specification			
Bit	CM13	CM10	CM05	Oscillation Buffer	Feedback Resistance	Function	
	1	1	1	OFF	OFF	XIN-XOUT oscillation stop	
Setting	1	0	1	OFF	ON	External input to XIN pin, "H" output from XOUT pin	
Value	1	0	1	OFF	ON	XIN-XOUT oscillation stop	
	1	0	0	ON	ON	XIN-XOUT oscillation	
	0	Х	Х	OFF	OFF	Input port	

X: "0" or "1"

Table 17.17 Port P4_5/INT0 Setting

Register	PD4	PUR1	INTEN	Function
Bit	PD4_5	PU11	INT0EN	Function
	0	0	0	Input port (not pulled up)
Setting	0	1	0	Input port (pulled up)
Value	0	0	1	INTO input
	1	Х	Х	Output port

17.5 Unassigned Pin Handling

Table 17.18 lists the Unassigned Pin Handling. Figure 17.9 show the Unassigned Pin Handling.

Table 17.18 Unassigned Pin Handling

Pin Name	Connection
Ports P1, P3_3 to P3_5,	After setting to input mode, connect every pin to VSS via a resistor (pull-
P3_7, P4_5	down) or connect every pin to VCC via a resistor (pull-up).(2)
	After setting to output mode, leave these pins open. (1, 2)
Ports P4_6, P4_7	Connect to VCC via a resistor (pull-up) ⁽²⁾
AVCC, VREF	Connect to VCC
RESET (3)	Connect to VCC via a resistor (pull-up) ⁽²⁾

- 1. When setting these ports to output mode and leaving them open, they remain input mode until they are switched to output mode by a program. The voltage level of these pins may be indeterminate and the power current may increase while the ports remain input mode.
 - The content of the direction registers may change due to noise or out of control caused by noise. In order to enhance program reliability, set the direction registers periodically by a program.
- 2. Connect these unassigned pins to the microcomputer using the shortest wire length (within 2 cm) as possible.
- 3. When power-on reset function is used.

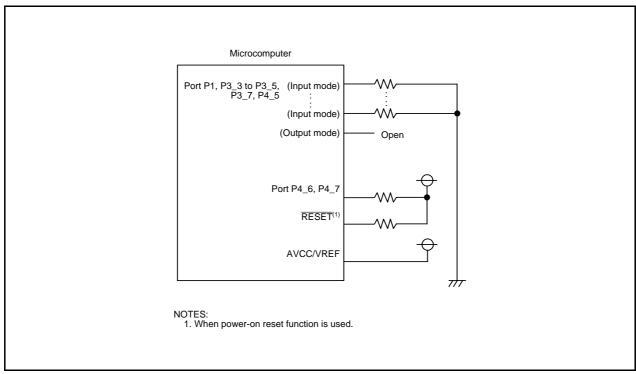


Figure 17.9 Unassigned Pin Handling

18. Flash Memory Version

18.1 Overview

In the flash memory version, rewrite operations to the flash memory can be performed in three modes; CPU rewrite, standard serial I/O, parallel I/O modes.

Table 18.1 lists the Flash Memory Version Performance (see **Table 1.1** Performance Outline of the R8C/14 Group and **Table 1.2** Performance Outline of the R8C/15 Group for the items not listed on Table 18.1).

Table 18.1 Flash Memory Version Performance

ŀ	tem	Specification	
Flash Memory	Operating Mode	3 modes (CPU rewrite, standard serial I/O, and parallel I/O mode)	
Division of Eras	se Block	See Figure 18.1 and Figure 18.2	
Program Metho	od	Byte unit	
Erase Method		Block erase	
Program, Erase	e Control Method	Program and erase control by software command	
Rewrite Contro	l Method	Rewrite control for Block 0 and 1 by FMR02 bit in FMR0 register	
		Rewrite control for Block 0 by FMR16 bit and Block 1 by FMR16 bit	
Number of Con	nmands	5 commands	
Program and	Block0 and 1	R8C/14 Group : 100 times ; R8C/15 Group : 1,000 times	
Erase	(Program ROM)		
Endurance ⁽¹⁾	BlockA and B	10,000 times	
	(Data flash)(2)		
ID Code Check	Function	Standard serial I/O mode supported	
ROM Code Pro	tect	For parallel I/O mode supported	

- 1. Definition of program and erase endurance.
 - The program and erase endurance is defined to be per-block. When the program and erase endurance is n times (n=100 or 10,000 times), to erase n times per block is possible. For example, if performing one-byte write to the distinct addresses on Block A of 1K-byte block 1,024 times and then erasing that block, the program and erase endurance is counted as one time. If rewriting more than 100 times, execute the program until the blank areas are all used to reduce the substantial rewrite endurance and then erase. Do not rewrite only particular blocks and rewrite to average the program and erase endurance to each block. Also keep the erase endurance as information and set up the limit endurance.
- 2. Blocks A and B are embedded only in the R8C/15 group.

Flash Memory Rewrite Modes Table 18.2

Flash Memory Rewrite mode	CPU Rewrite Mode	Standard Serial I/O Mode	Parallel I/O mode
Function	User ROM area is rewritten by executing software commands from the CPU. EW0 mode: Rewritable in any area other than flash memory EW1 mode: Rewritable in flash memory	User ROM area is rewritten by using a dedicated serial programmer.	User ROM area is rewritten by using a dedicated parallel programmer.
Areas which can be rewritten	User ROM area	User ROM area	User ROM area
Operating Mode	Single chip mode	Boot mode	Parallel I/O mode
ROM Programmer	None	Serial programmer	Parallel programmer

18.2 Memory Map

The flash memory contains a user ROM area and a boot ROM area (reserved area). Figure 18.1 shows the Flash Memory Block Diagram for R8C/14 Group. Figure 18.2 shows the Flash Memory Block Diagram for R8C/15 Group.

The user ROM area of R8C/15 group contains an area (program ROM) which stores a microcomputer operating program and the 1-Kbyte Block A and B (data flash).

The user ROM area is divided into several blocks. The user ROM area can be rewritten in CPU rewrite and standard serial I/O and parallel I/O modes.

When rewriting the Block 0 and Block 1 in CPU rewrite mode, set the FMR02 bit in the FMR0 register to "1" (rewrite enables), and when setting the FMR15 bit in the FMR1 register to "0" (rewrite enables), Block 0 is rewritable. When setting the FMR16 bit to "0" (rewrite enables), Block 1 is rewritable.

The rewrite control program for standard serial I/O mode is stored in boot ROM area before shipment. The boot ROM area and the user ROM area share the same address, but have an another memory.

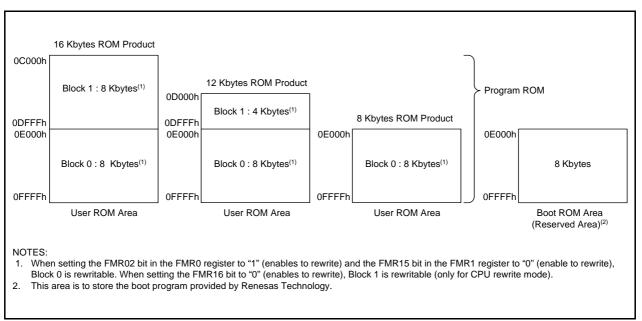


Figure 18.1 Flash Memory Block Diagram for R8C/14 Group

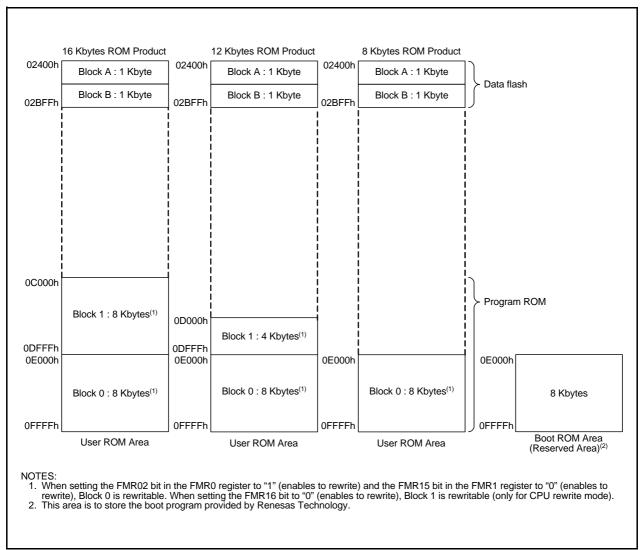


Figure 18.2 Flash Memory Block Diagram for R8C/15 Group

18.3 Functions To Prevent Flash Memory from Rewriting

Standard serial I/O mode contains an ID code check function, and the parallel I/O mode contains a ROM code protect function to prevent the flash memory from reading or rewriting easily.

18.3.1 ID Code Check Function

Use this function in standard serial I/O mode. Unless the flash memory is blank, the ID codes sent from the programmer and the ID codes written in the flash memory are determined whether they match. If the ID codes do not match, the commands sent from the programmer are not acknowledged. The ID code consists of 8-bit data, the areas of which, beginning with the first byte, are 00FFDFh, 00FFE3h, 00FFEBh, 00FFEFh, 00FFF7h, and 00FFFBh. Write a program in which the ID codes are set at these addresses and write it in the flash memory.

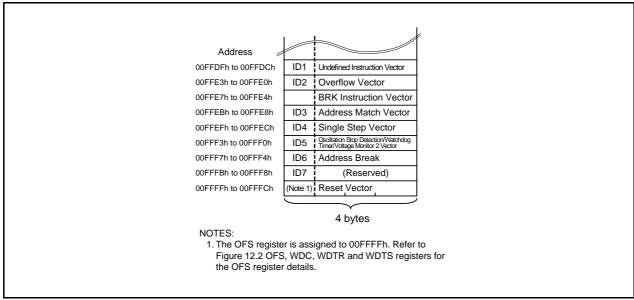


Figure 18.3 Address for ID Code Stored

18.3.2 ROM Code Protect Function

The ROM code protect function disables to read and change the internal flash memory by the OFS register in parallel I/O mode. Figure 18.4 shows the OFS Register.

The ROM code protect function is enabled by writing "0" to the ROMCP1 bit and "1" to the ROMCR bit and disables to read and change the internal flash memory. Once the ROM code protect is enabled, the content in the internal flash memory cannot be rewritten in parallel I/O mode. To disable ROM code protect, erase the block including the OFS register with CPU rewrite mode or standard serial I/O mode.

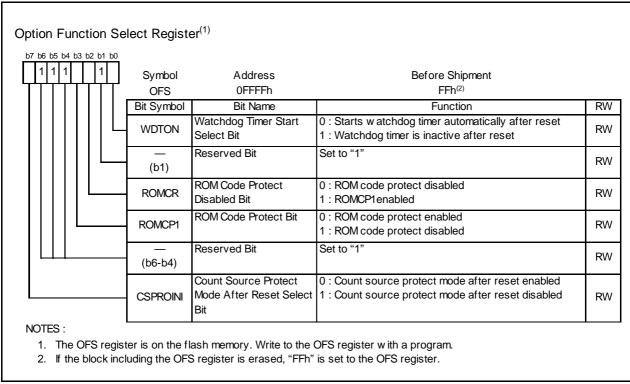


Figure 18.4 OFS Register

18.4 CPU Rewrite Mode

In CPU rewrite mode, user ROM area can be rewritten by executing software commands from the CPU. Therefore, the user ROM area can be rewritten directly while the microcomputer is mounted on a board without using such as a ROM programmer. Execute the program and block erase commands only to each block in user ROM area.

When an interrupt request is generated during an erase operation in CPU rewrite mode, the flash module contains an erase-suspend function which performs the interrupt process after the erase operation is halted temporarily. During the erase-suspend, user ROM area can be read by a program. CPU rewrite mode contains erase write 0 mode(EW0 mode) and erase write 1 mode(EW1 mode). Table 18.3 lists the Differences between EW0 Mode and EW1 Mode.

Table 18.3 Differences between EW0 Mode and EW1 Mode

Item	EW0 Mode	EW1 Mode
Operating Mode	Single chip mode	Single chip mode
Area in which rewrite control program can be located	User ROM area	User ROM area
Area in which rewrite control program can be executed Area which can be	Necessary to transfer to any areas other than the flash memory (e.g., RAM) before executing User ROM area	Executing directly on user ROM area is possible User ROM area
rewritten		However, other than the blocks which contain a rewrite control program ⁽¹⁾
Software Command Restriction	None	 Program, block erase command Disable to execute on any block which contains a rewrite control program Disables to execute the read status register command
Mode after Program or Erase	Read status register mode	Read array mode
CPU Status during Auto- Write and Auto-Erase	Operating	Hold state (I/O ports hold state before the command is executed)
Flash Memory Status Detection	 Read the FMR00, FMR06, and FMR07 bits in the FMR0 register by a program Execute the read status register command and read the SR7, SR5, and SR4 bits in the status register. 	Read the FMR00, FMR06, and FMR07 bits in the FMR0 register by a program
Condition for Transition to Erase-Suspend	Set the FMR40 and FMR41 bits in the FMR4 register to "1" by a program.	The FMR40 bit in the FMR4 register is set to "1" and the interrupt request of the enabled maskable interrupt is generated
CPU Clock	5MHz or below	No restriction to the following (clock frequency to be used)

NOTES:

1. When setting the FMR02 bit in the FMR0 register to "1" (rewrite enables) and rewriting Block 0 is enabled by setting the FMR15 bit in the FMR1 register to "0" (rewrite enables). Rewriting Block 1 is enabled by setting the FMR16 bit to "0" (rewrite enables).

18.4.1 EW0 Mode

The microcomputer enters CPU rewrite mode and software commands can be acknowledged by setting the FMR01 bit in the FMR0 register to "1" (CPU rewrite mode enabled). In this case, since the FMR11 bit in the FMR1 register is set to "0", EW0 mode is selected.

Use software commands to control a program and erase operations. The FMR0 register or the status register can determine status when program and erase operation complete.

When entering an erase-suspend, set the FMR40 bit to "1" (enables erase-suspend) and the FMR41 bit to "1" (requests erase-suspend). Wait for td(SR-ES) and ensure that the FMR46 bit is set to "1" (enables reading) before accessing the user ROM area. The auto-erase operation restarts by setting the FMR41 bit to "0" (erase restarts).

18.4.2 EW1 Mode

The microcomputer enters EW1 mode by setting the FMR11 bit to "1" (EW1 mode) after setting the FMR01 bit to "1" (CPU rewrite mode enabled).

The FMR0 register can determine status when program and erase operation complete. Do not execute the read status register command in EW1 mode.

To enable the erase-suspend function, execute the block erase command after setting the FMR40 bit to "1" (enables erase-suspend). The interrupt to enter an erase-suspend should be in interrupt enabled status. After passing td(SR-ES) since the block erase command is executed, an interrupt request is acknowledged.

When an interrupt request is generated, the FMR41 bit is automatically set to "1" (requests erase-suspend) and the auto-erase operation is halted. If the auto-erase operation does not complete (FMR00 bit is "0") when the interrupt process completes, the auto-erase operation restarts by setting the FMR41 bit to "0" (erase restarts)

Figure 18.5 shows the FMR0 Register. Figure 18.6 shows the FMR1 and FMR4 Registers.

18.4.2.1 FMR00 Bit

This bit indicates the operating status of the flash memory. The bit is "0" during programming, erasing, or erase-suspend mode; otherwise, the bit is "1".

18.4.2.2 FMR01 Bit

The microcomputer is made ready to accept commands by setting the FMR01 bit to "1" (CPU rewrite mode).

18.4.2.3 FMR02 Bit

The Block1 and Block0 do not accept the Program and Block Erase commands if the FMR02 bit is set to "0" (rewrite disabled).

The Block0 and Block1 are controlled rewriting in the FMR15 and FMR16 bits if the FMR02 bit is set to "1" (rewrite enabled).

18.4.2.4 FMSTP Bit

This bit is provided for initializing the flash memory control circuits, as well as for reducing the amount of current consumed in the flash memory. The flash memory is disabled against access by setting the FMSTP bit to "1". Therefore, the FMSTP bit must be written to by a program in other than the flash memory.

In the following cases, set the FMSTP bit to "1":

- When flash memory access resulted in an error while erasing or programming in EW0 mode (FMR00 bit not reset to "1" (ready))
- When entering on-chip oscillator mode (main clock stop)

Figure 18.10 shows a flow chart to be followed before and after entering on-chip oscillator mode (main clock stop). Note that when going to stop or wait mode while the CPU rewrite mode is disabled, the FMR0 register does not need to be set because the power for the flash memory is automatically turned off and is turned back on again after returning from stop or wait mode.

18.4.2.5 FMR06 Bit

This is a read-only bit indicating the status of auto program operation. The bit is set to "1" when a program error occurs; otherwise, it is cleared to "0". For details, refer to the description of the **18.4.5 Full Status Check**.

18.4.2.6 FMR07 Bit

This is a read-only bit indicating the status of auto erase operation. The bit is set to "1" when an erase error occurs; otherwise, it is set to "0". Refer to **18.4.5 Full Status Check** for the details.

18.4.2.7 FMR11 Bit

Setting this bit to "1" (EW1 mode) places the microcomputer in EW1 mode.

18.4.2.8 FMR15 Bit

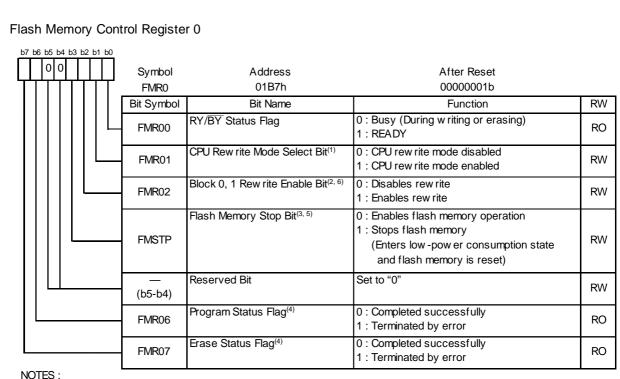
When the FMR02 bit is set to "1" (rewrite enabled) and the FMR15 bit is set to "0" (rewrite enabled), the Block0 accepts the program command and block erase command.

18.4.2.9 FMR16 Bit

When the FMR02 bit is set to "1" (rewrite enabled) and the FMR16 bit is set to "0" (rewrite enabled), the Block1 accepts the program command and block erase command.

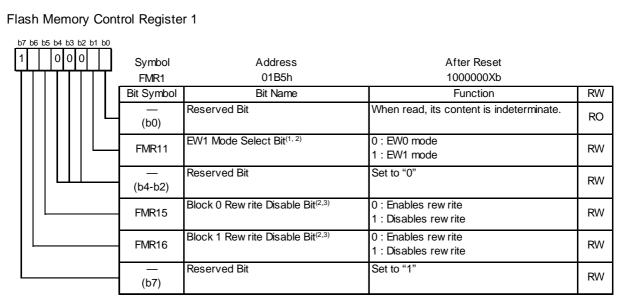
18.4.2.10 FMR40 bit

The erase-suspend function is enabled by setting the FMR40 bit to "1" (enable).


18.4.2.11 FMR41 bit

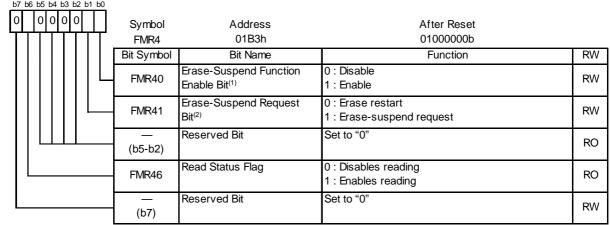
In EW0 mode, the microcomputer enters erase-suspend mode when setting the FMR41 bit to "1" by a program. The FMR41 bit is automatically set to "1" (requests erase-suspend) when an interrupt request of an enabled interrupt is generated in EW1 mode, and then the microcomputer enters erasesuspend mode.

Set the FMR41 bit to "0" (erase restart) when the auto-erase operation restarts.


18.4.2.12 FMR46 bit

The FMR46 bit is set to "0" (disable reading) during auto-erase execution and set to "1" (enables reading) in erase-suspend mode. Do not access to the flash memory while this bit is set to "0".

- 1. When setting this bit to "1", set to "1" immediately after setting it first to "0". Do not generate an interrupt between setting the bit to "0" and setting it to "1". Enter read array mode and set this bit to "0".
- 2. Set this bit to "1" immediately after setting this bit first to "0" w hile the FMR01 bit is set to "1". Do not generate an interrupt between setting the bit to "0" and setting it to "1".
- 3. Set this bit by a program in a space other than the flash memory.
- 4. This bit is set to "0" by executing the clear status command.
- 5. This bit is enabled when the FMR01 bit is set to "1" (CPU rew rite mode). When the FMR01 bit is set to "0" and w riting "1" to the FMSTP bit, the FMSTP bit is set to "1". The flash memory does not enter low -pow er consumption stat nor is reset.
- 6. When setting the FMR01 bit to "0" (CPU rew rite mode disabled), the FMR02 bit is set to "0" (disables rew rite).


Figure 18.5 FMR0 Register

NOTES:

- 1. When setting this bit to "1", set to "1" immediately after setting it first to "0" while the FMR01 bit is set to "1" (CPU rew rite mode enable). Do not generate an interrupt between setting the bit to "0" and setting it to "1".
- 2. This bit is set to "0" by setting the FMR01 bit to "0" (CPU rew rite mode disabled).
- 3. When the FMR01 bit is set to "1" (CPU rew rite mode enabled), the FMR15 and FMR16 bits can be written. When setting this bit to "0", set to "0" immediately after setting it first to "1". When setting this bit to "1", set it to "1".

Flash Memory Control Register 4

- 1. When setting this bit to "1", set to "1" immediately after setting it first to "0". Do not generate an interrupt between setting the bit to "0" and setting it to "1".
- 2. This bit is enabled when the FMR40 bit is set to "1" (enable) and this bit can be written during the period between issuing an erase command and completing an erase (This bit is set to "0" during the periods other than above). In EW0 mode, this can be set to "0" and "1" by a program. In EW1 mode, this bit is automatically set to "1" if a maskable interrupt is generated during an erase operation while the FMR40 bit is set to "1". Do not set this bit to "1" by a program ("0" can be written).

Figure 18.6 FMR1 and FMR4 Registers

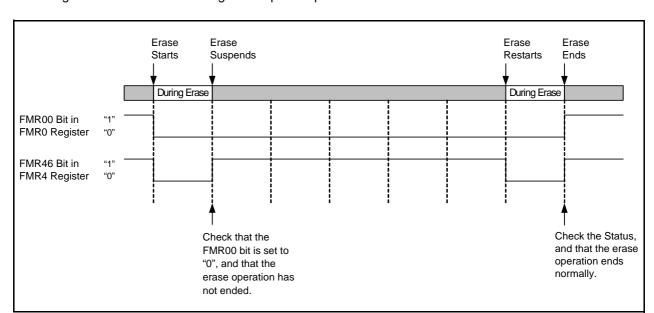


Figure 18.7 shows the Timing on Suspend Operation.

Figure 18.7 Timing on Suspend Operation

Figure 18.8 shows the How to Set and Exit EW0 Mode. Figure 18.9 shows the How to Set and Exit EW1 Mode.

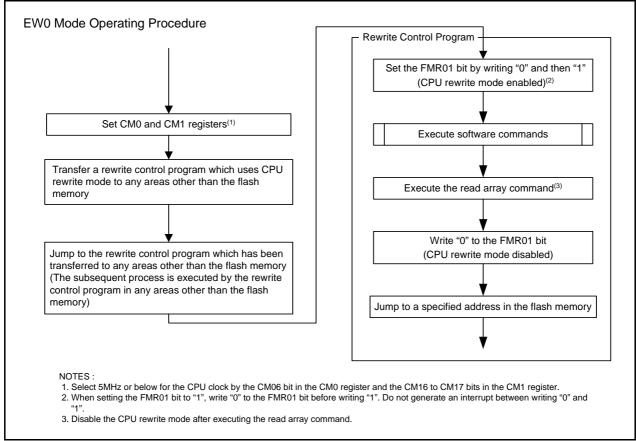


Figure 18.8 How to Set and Exit EW0 Mode

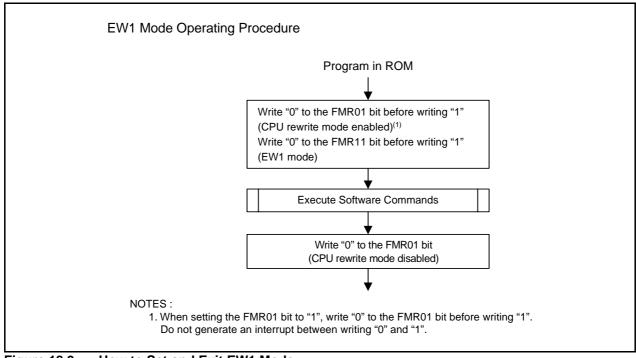
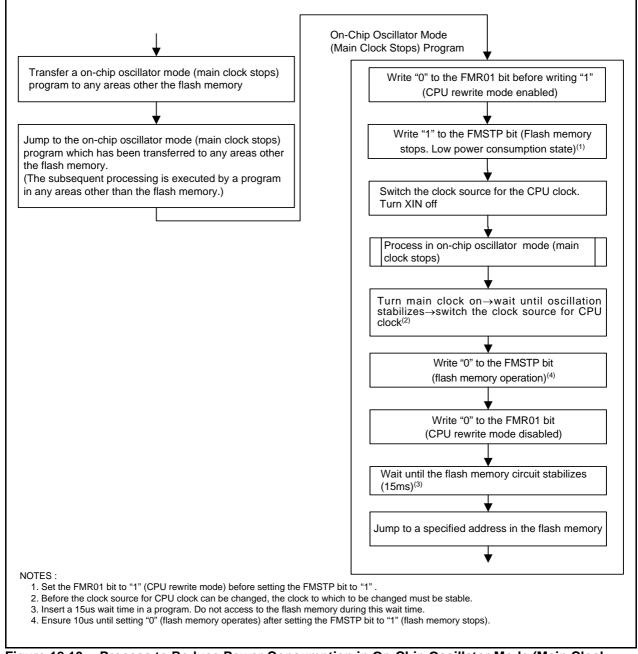



Figure 18.9 How to Set and Exit EW1 Mode

Figure 18.10 Process to Reduce Power Consumption in On-Chip Oscillator Mode (Main Clock Stops)

18.4.3 Software Commands

Software commands are described below. Read or write commands and data from or to in 8-bit units.

Table 18.4 Software Commands

	First Bus Cycle			Second Bus Cycle			
Command	Mode	Address	Data (D7 to D0)	Mode	Address	Data (D7 to D0)	
Read Array	Write	×	FFh				
Read Status Register	Write	×	70h	Read	×	SRD	
Clear Status Register	Write	×	50h				
Program	Write	WA	40h	Write	WA	WD	
Block Erase	Write	×	20h	Write	BA	D0h	

SRD: Status register data (D7 to D0)

WA: Write address (Ensure the address specified in the first bus cycle is the same address as the address specified in the second bus cycle.)

WD: Write data (8 bits)
BA: Given block address

x: Any specified address in the user ROM area

18.4.3.1 Read Array Command

The read array command reads the flash memory.

The microcomputer enters read array mode by writing "FFh" in the first bus cycle. If entering the read address after the following bus cycles, the content of the specified address can be read in 8-bit units. Since the microcomputer remains in read array mode until another command is written, the contents of multiple addresses can be read continuously.

18.4.3.2 Read Status Register Command

The read status register command reads the status register.

If writing "70h" in the first bus cycle, the status register can be read in the second bus cycle. (Refer to **18.4.4 Status Register**) When reading the status register, specify an address in the user ROM area. Do not execute this command in EW1 mode.

18.4.3.3 Clear Status Register Command

The clear status register command sets the status register to "0".

If writing "50h" in the first bus cycle, the FMR06 to FMR07 bits in the FMR0 register and SR4 to SR5 in the status register will be set to "0".

18.4.3.4 Program Command

The program command writes data to the flash memory in 1-byte units.

Write "40h" in the first bus cycle and write data to the write address in the second bus cycle, and an auto program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register can determine whether auto programming has completed. The FMR00 bit is set to "0" during auto programming and set to "1" when auto programming completes.

The FMR06 bit in the FMR0 register can determine the result of auto programming after it has been finished.(Refer to **18.4.5 Full Status Check**)

Do not write additions to the already programmed address.

When the FMR02 bit in the FMR0 register is set to "0" (disable rewriting), or the FMR02 bit is set to "1" (rewrite enables) and the FMR15 bit in the FMR1 register is set to "1" (disable rewriting), the program command on Block 0 is not acknowledged. When the FMR16 bit is set to "1" (disable rewriting), the program command on Block 1 is not acknowledged.

In EW1 mode, do not execute this command on any address at which the rewrite control program is allocated.

In EW0 mode, the microcomputer enters read status register mode at the same time auto programming starts and the status register can be read. The status register bit 7 (SR7) is set to "0" at the same time auto programming starts and set back to "1" when auto programming completes. In this case, the microcomputer remains in read status register mode until a read array command is written next. Reading the status register can determine the result of auto programming after auto programming has completed.

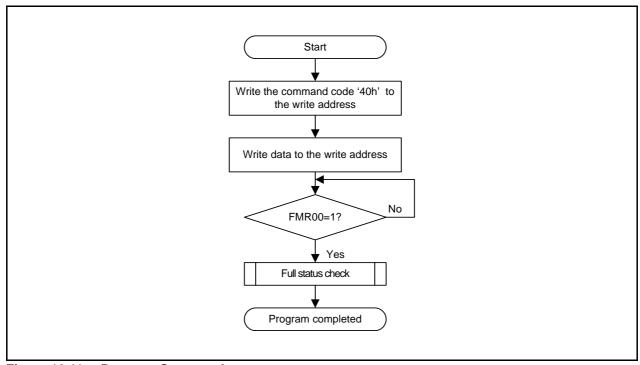


Figure 18.11 Program Command

18.4.3.5 Block Erase

If writing "20h" in the first bus cycle and "D0h" to the given address of a block in the second bus cycle, and an auto erase operation (erase and verify) will start.

The FMR00 bit in the FMR0 register can determine whether auto erasing has completed.

The FMR00 bit is set to "0" during auto erasing and set to "1" when auto erasing completes.

The FMR07 bit in the FMR0 register can determine the result of auto erasing after auto erasing has completed. (Refer to **18.4.5 Full Status Check**)

When the FMR02 bit in the FMR0 register is set to "0" (disable rewriting) or the FMR02 bit is set to "1" (rewrite enables) and the FMR15 bit in the FMR1 register is set to "1" (disable rewriting), the block erase command on Block 0 is not acknowledged. When the FMR16 bit is set to "1" (disable rewriting), the block erase command on Block 1 is not acknowledged.

Figure 18.12 shows the Block Erase Command (When Not Using Erase-Suspend Function). Figure 18.13 shows the Block Erase Command (When Using Erase-Suspend Function).

In EW1 mode, do not execute this command on any address at which the rewrite control program is allocated

In EW0 mode, the microcomputer enters read status register mode at the same time auto erasing starts and the status register can be read. The status register bit 7 (SR7) is set to "0" at the same time auto erasing starts and set back to "1" when auto erasing completes. In this case, the microcomputer remains in read status register mode until the read array command is written next.

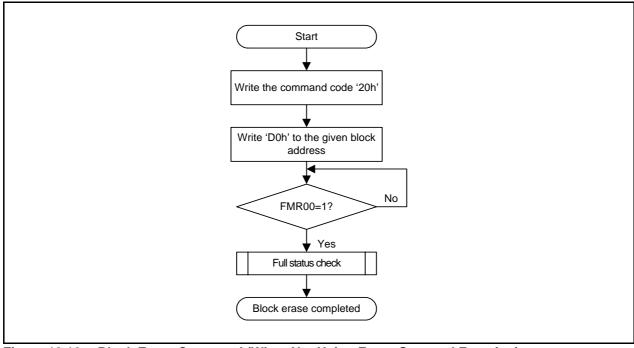


Figure 18.12 Block Erase Command (When Not Using Erase-Suspend Function)

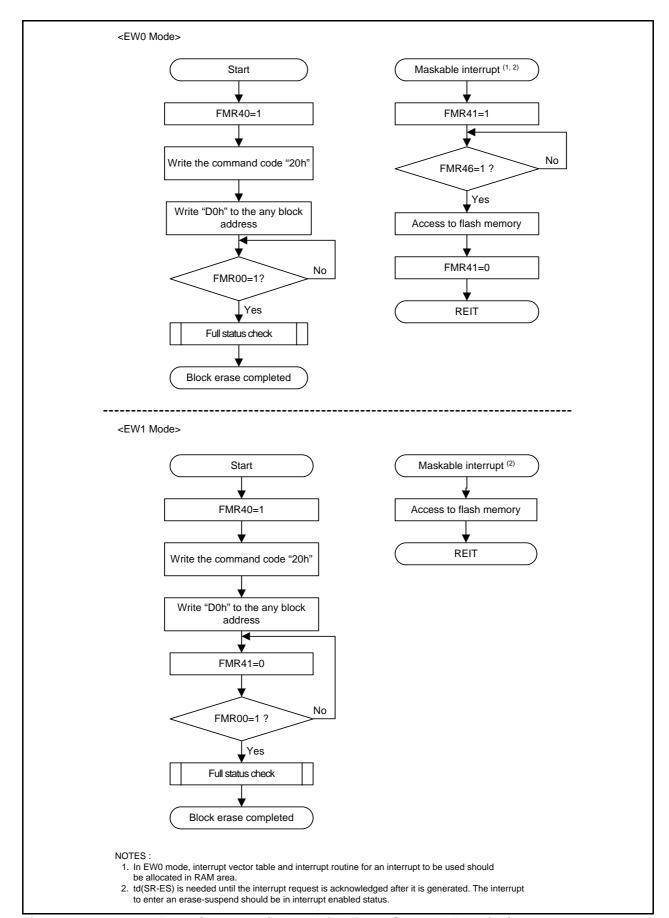


Figure 18.13 Block Erase Command (When Using Erase-Suspend Function)

18.4.4 Status Register

The status register indicates the operating status of the flash memory and whether an erasing or programming operation completes normally or in error. Status of the status register can be read by the FMR00, FMR06, and FMR07 bits in the FMR0 register.

Table 18.5 lists the Status Register.

In EW0 mode, the status register can be read in the following cases:

- When a given address in the user ROM area is read after writing the read status register command
- When a given address in the user ROM area is read after executing the program or block erase command but before executing the read array command.

18.4.4.1 Sequencer Status (SR7 and FMR00 Bits)

The sequencer status indicates operating status of the flash memory. SR7 = 0 (busy) during auto programming and auto erasing, and is set to "1" (ready) at the same time the operation completes.

18.4.4.2 Erase Status (SR5 and FMR07 Bits)

Refer to 18.4.5 Full Status Check.

18.4.4.3 Program Status (SR4 and FMR06 Bits)

Refer to 18.4.5 Full Status Check.

Table 18.5 Status Register

Status	FMR0	Status Name	Con	tents	Value
Register	Register	Status Ivairie	"0"	"4"	after
Bit	Bit		U	'	Reset
SR0 (D0)	_	Reserved	_	_	_
SR1 (D1)	_	Reserved	_	_	_
SR2 (D2)	_	Reserved	_	_	_
SR3 (D3)	_	Reserved	_	_	_
SR4 (D4)	FMR06	Program status	Completed	Error	0
			normally		
SR5 (D5)	FMR07	Erase status	Completed	Error	0
			normally		
SR6 (D6)	_	Reserved	_	_	_
SR7 (D7)	FMR00	Sequencer	Busy	Ready	0
		status			

- D0 to D7: Indicates the data bus which is read when the read status register command is executed.
- The FMR07 (SR5) to FMR06 bits (SR4) are set to "0" by executing the clear status register command.
- When the FMR07 bit (SR5) or FMR06 bit (SR4) is set to "1", the program and block erase command cannot be accepted.

18.4.5 Full Status Check

When an error occurs, the FMR06 to FMR07 bits in the FMR0 register are set to "1", indicating occurrence of each specific error. Therefore, Checking these status bits (full status check) can determine the executed result.

Table 18.6 lists the Errors and FMR0 Register Status. Figure 18.14 shows the Full Status Check and Handling Procedure for Each Error.

Table 18.6 Errors and FMR0 Register Status

FRM00 Regi	ster (Status		
Register)) Status	Error	Error occurrence condition
FMR07(SR5)	FMR06(SR4)		
1	1	Command Sequence Error	 When any command is not written correctly When invalid data other than those that can be written in the second bus cycle of the block erase command is written (i.e., other than "D0h" or "FFh")(1) When executing the program command or block erase command while rewriting is disabled using the FMR02 bit in the FMR0 register, the FMR15 or FMR16 bit in the FMR1 register. When inputting and erasing the address in which the Flash memory is not allocated during the erase command input When executing to erase the block which disables rewriting during the erase command input. When inputting and writing the address in which the Flash memory is not allocated during the write command input. When executing to write the block which disables rewriting during the write command input.
1	0	Erase Error	 When the block erase command is executed but not automatically erased correctly
0	1	Program Error	When the program command is executed but not automatically programmed correctly.

NOTES:

1. The microcomputer enters read array mode by writing "FFh" in the second bus cycle of these commands, at the same time the command code written in the first bus cycle will disabled.

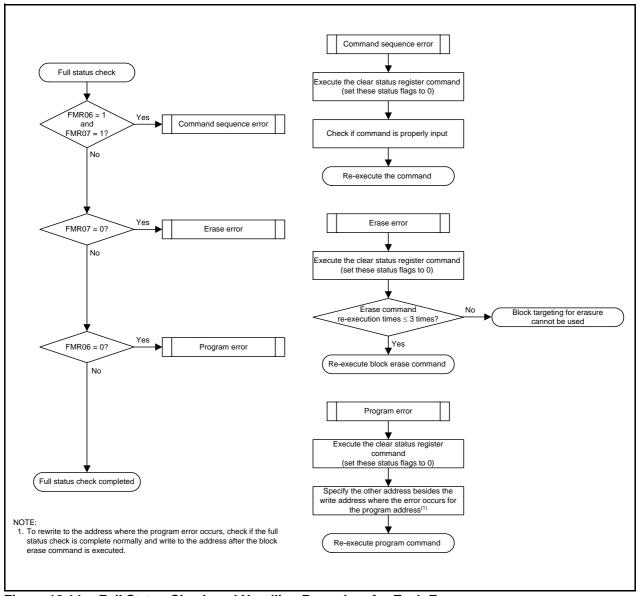


Figure 18.14 Full Status Check and Handling Procedure for Each Error

18.5 Standard Serial I/O Mode

In standard serial I/O mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial programmer which is applicable for this microcomputer.

Standard serial I/O mode is used to connect with a serial writer using a special clock asynchronous serial I/O.

There are three types of Standard serial I/O modes:

- Standard serial I/O mode 1 Clock synchronous serial I/O used to connect with a serial programmer
- Standard serial I/O mode 2........... Clock asynchronous serial I/O used to connect with a serial programmer
- Standard serial I/O mode 3 Special clock asynchronous serial I/O used to connect with a serial programmer

This microcomputer uses Standard serial I/O mode 2 and Standard serial I/O mode 3.

Refer to Appendix 2. Connecting Example between Serial Writer and On-Chip Debugging Emulator. Contact the manufacturer of your serial programmer for serial programmer. Refer to the user's manual of your serial programmer for details on how to use it.

Table 18.7 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 2), Table 18.8 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 3). Figure 18.15 show Pin Connections for Standard Serial I/O Mode 3.

After processing the pins shown in Table 18.8 and rewriting a flash memory using a writer, apply "H" to the MODE pin and reset a hardware if a program is operated on the flash memory in single-chip mode.

18.5.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer and those written in the flash memory match (refer to **18.3 Functions To Prevent Flash Memory from Rewriting**).

Table 18.7 Pin Functions (Flash Memory Standard Serial I/O Mode 2)

Pin	Name	I/O	Description
VCC,VSS	Power input		Apply the voltage guaranteed for program and erase to
			VCC pin and 0V to VSS pin.
RESET	Reset input	I	Reset input pin.
P4_6/XIN	P4_6 input/clock input	I	Connect ceramic resonator or crystal oscillator
			between XIN and XOUT pins.
P4_7/XOUT	P4_7 input/clock output	I/O	
AVCC, AVSS	Analog power supply input	I	Connect AVSS to VSS and AVCC to VCC, respectively.
P1_0 to P1_7	Input port P1	I	Input "H" or "L" level signal or leave the pin open.
VREF	Reference voltage input	I	Reference voltage input pin to A/D converter.
P3_3 to P3_5	Input port P3	I	Input "H" or "L" level signal or leave the pin open.
MODE	MODE	I/O	Input "L".
P3_7	TXD output	0	Serial data output pin.
P4_5	RXD input	I	Serial data input pin.

Pin Functions (Flash Memory Standard Serial I/O Mode 3) **Table 18.8**

Pin	Name	I/O	Description
VCC,VSS	Power input		Apply the voltage guaranteed for program and erase to VCC pin and 0V to VSS pin.
RESET	Reset input	I	Reset input pin.
P4_6/XIN	P4_6 input/clock input	I	Connect ceramic resonator or crystal oscillator between XIN and XOUT pins when connecting external
P4_7/XOUT	P4_7 input/clock output	I/O	oscillator. Apply "H" and "L" or leave the pin open when using as input port
AVCC, AVSS	Analog power supply input	I	Connect AVSS to VSS and AVCC to VCC, respectively.
VREF	Reference voltage input	I	Reference voltage input pin to A/D converter.
P1_0 to P1_7	Input port P1	I	Input "H" or "L" level signal or leave the pin open.
P3_3 to P3_5, P3_7	Input port P3	I	Input "H" or "L" level signal or leave the pin open.
P4_5	Input port P4	I	Input "H" or "L" level signal or leave the pin open.
MODE	MODE	I/O	Serial data I/O pin. Connect to the flash programmer.

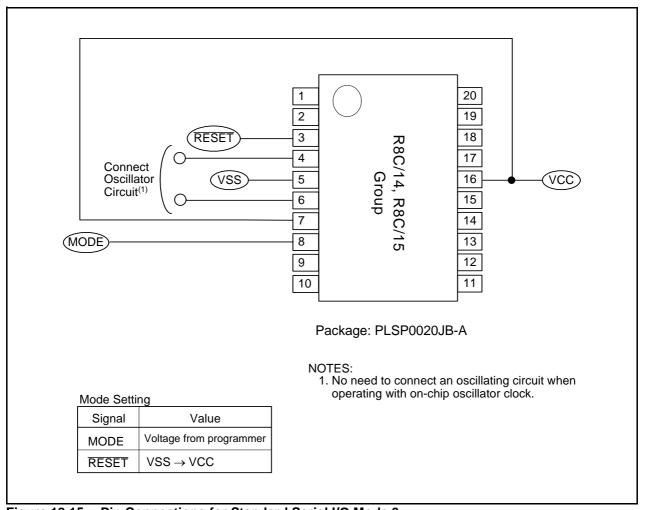


Figure 18.15 Pin Connections for Standard Serial I/O Mode 3

18.5.1.1 Example of Circuit Application in the Standard Serial I/O Mode

Figure 18.16 show Pin Process in Standard Serial I/O Mode 2, Figure 18.17 show Pin Process in Standard Serial I/O Mode 3. Since the controlled pins vary depending on the programmer, refer to the manual of your serial programmer.

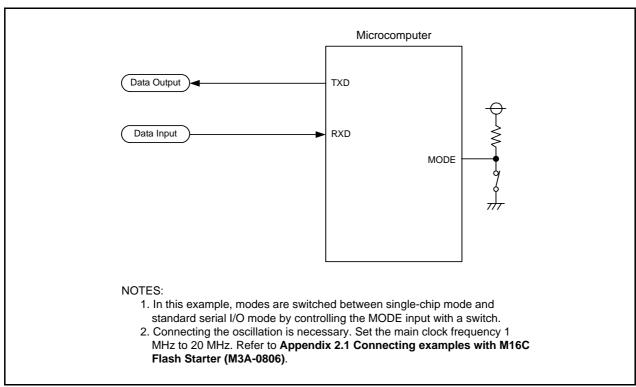


Figure 18.16 Pin Process in Standard Serial I/O Mode 2

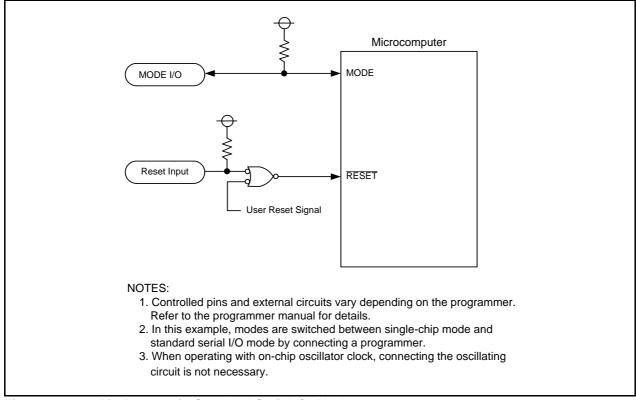


Figure 18.17 Pin Process in Standard Serial I/O Mode 3

18.6 Parallel I/O Mode

Parallel I/O mode is used to input and output the required software command, address and data parallel to controls (read, program and erase) for internal flash memory. Use a parallel programmer which supports this microcomputer. Contact the manufacturer of your parallel programmer about the parallel programmer and refer to the user's manual of your parallel programmer for details on how to use it.

User ROM area can be rewritten shown in Figures 18.1 and 18.2 in parallel I/O mode.

18.6.1 ROM Code Protect Function

The ROM code protect function disables to read and rewrite the flash memory. (Refer to the **18.3** Functions To Prevent Flash Memory from Rewriting.)

19. Electrical Characteristics

Table 19.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated value	Unit
Vcc	Supply Voltage	Vcc = AVcc	-0.3 to 6.5	V
AVcc	Analog Supply Voltage	Vcc = AVcc	-0.3 to 6.5	V
Vı	Input Voltage		-0.3 to Vcc+0.3	V
Vo	Output Voltage		-0.3 to Vcc+0.3	V
Pd	Power Dissipation	Topr = 25°C	300	mW
Topr	Operating Ambient Temperature		-20 to 85 / -40 to 85 (D version)	°C
Tstg	Storage Temperature		-65 to 150	°C

Table 19.2 Recommended Operating Conditions

Cumbal	Do	rameter	Conditions		Standard			
Symbol	Pa	rameter	Conditions	Min.	Тур.	Max.	Unit	
Vcc	Supply Voltage			2.7	-	5.5	V	
AVcc	Analog Supply Vo	Itage		_	Vcc(3)	-	V	
Vss	Supply Voltage			=	0	=	V	
AVss	Analog Supply Vo	Itage		_	0	-	V	
VIH	Input "H" Voltage			0.8Vcc	_	Vcc	V	
VIL	Input "L" Voltage			0	_	0.2Vcc	V	
IOH(sum)	Peak Sum Output "H" Current	Sum of All Pins IOH (peak)		-	-	-60	mA	
IOH(peak)	Peak Output "H" C	Current		=	=	-10	mA	
IOH(avg)	Average Output "H	H" Current		_	_	-5	mA	
IOL(sum)	Peak Sum Output "L" Currents	Sum of All Pins IOL (peak)		-	-	60	mA	
IOL(peak)	Peak Output "L"	Except P1_0 to P1_3		-	-	10	mA	
	Currents	P1_0 to P1_3	Drive Capacity HIGH	_	_	30	mA	
			Drive Capacity LOW	_	_	10	mA	
IOL(avg)	Average Output	Except P1_0 to P1_3		_	_	5	mA	
	"L" Current	P1_0 to P1_3	Drive Capacity HIGH	_	-	15	mA	
			Drive Capacity LOW	_	-	5	mA	
f(XIN)	Main Clock Input (Oscillation Frequency	3.0V ≤ Vcc ≤ 5.5V	0	-	20	MHz	
			2.7V ≤ Vcc < 3.0V	0	_	10	MHz	

- Vcc = AVcc = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
 The typical values when average output current is 100ms.
- 3. Hold Vcc = AVcc.

Table 19.3 A/D Converter Characteristics

Symbol	Parameter		Conditions	Standard			Unit
Symbol	[F	arameter	Conditions	Min.	Тур.	Max.	Offic
-	Resolution		Vref = VCC	_	-	10	Bits
=	Absolute	10-Bit Mode	φAD = 10MHz, Vref = VCC = 5.0V	_	=	±3	LSB
	Accuracy	8-Bit Mode	φAD = 10MHz, Vref = VCC = 5.0V	_	-	±2	LSB
		10-Bit Mode	$\phi AD = 10MHz, Vref = VCC = 3.3V^{(3)}$	_	_	±5	LSB
		8-Bit Mode	$\phi AD = 10MHz, Vref = VCC = 3.3V^{(3)}$	-	=	±2	LSB
Rladder	Resistor Ladder		Vref = VCC	10	_	40	kΩ
tconv	Conversion Time	10-Bit Mode	φAD = 10MHz, Vref = VCC = 5.0V	3.3	_	_	μS
		8-Bit Mode	φAD = 10MHz, Vref = VCC = 5.0V	2.8	=	=	μS
Vref	Reference voltage)		_	Vcc ⁽⁴⁾	-	V
VIA	Analog Input Volta	ige		0	_	Vref	V
=	A/D Operating	Without Sample & Hold		0.25	_	10	MHz
	Clock Frequency ⁽²⁾	With Sample & Hold		1	-	10	MHz

- 1. VCC = AVCC = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. If f1 exceeds 10MHz, divide the f1 and hold A/D operating clock frequency (ϕ AD) 10MHz or below.
- 3. If the AVcc is less than 4.2V, divide the f1 and hold A/D operating clock frequency (\$\phi_{AD}\$) f1/2 or below.
- 4. Hold Vcc = Vref

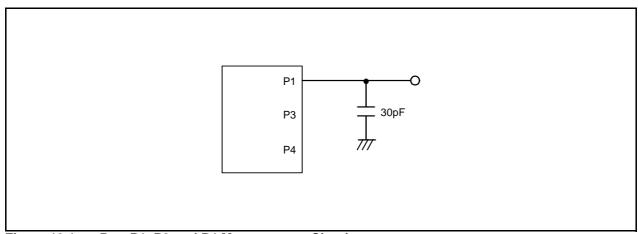


Figure 19.1 Port P1, P3 and P4 Measurement Circuit

Table 19.4 Flash Memory (Program ROM) Electrical Characteristics

Symbol	Parameter	Conditions	,	- Unit		
Symbol		Conditions	Min.	Тур.	Max.	Onit
=	Program/Erase Endurance ⁽²⁾	R8C/14 Group	100 ⁽³⁾	=	=	times
		R8C/15 Group	1,000(3)	_	_	times
Ī	Byte Program Time	Vcc = 5.0 V at Topr = 25 °C	-	50	400	μS
=	Block Erase Time	Vcc = 5.0 V at Topr = 25 °C	_	0.4	9	S
td(SR-ES)	Time Delay from Suspend Request until Erase Suspend		_	-	8	ms
=	Erase Suspend Request Interval		10	_	-	ms
=	Program, Erase Voltage		2.7	_	5.5	V
=	Read Voltage		2.7	_	5.5	V
=	Program, Erase Temperature		0	-	60	°C
=	Data Hold Time ⁽⁷⁾	Ambient temperature = 55 °C	20	_	=	year

- 1. Vcc = AVcc = 2.7 to 5.5V at Topr = 0 to 60 °C, unless otherwise specified.
- 2. Definition of program and erase

The program and erase endurance shows an erase endurance for every block.

If the program and erase endurance is "n" times (n = 100, 10000), "n" times erase can be performed for every block.

For example, if performing 1-byte write to the distinct addresses on Block A of 1Kbyte block 1,024 times and then erasing that block, program and erase endurance is counted as one time.

- However, do not perform multiple programs to the same address for one time ease. (disable overwriting).
- 3. Endurace to guarantee all electrical characteristics after program and erase.(1 to "Min." value can be guaranateed).
- 4. In the case of a system to execute multiple programs, perform one erase after programming as reducing effective reprogram endurance not to leave blank area as possible such as programming write addresses in turn. If programming a set of 16 bytes, programming up to 128 sets and then erasing them one time can reduce effective reprogram endurance. Additionally, averaging erase endurance for Block A and B can reduce effective reprogram endurance more. To leave erase endurance for every block as information and determine the restricted endurance are recommended.
- 5. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring Program/Erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time incudes time that the power supply is off or the clock is not supplied.

Table 19.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics

Cumbal	Parameter	Conditions	5	Unit		
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Offic
=	Program/Erase Endurance ⁽²⁾		10,000(3)	-	-	times
=	Byte Program Time (Program/Erase Endurance ≤ 1,000 Times)	Vcc = 5.0 V at Topr = 25 °C	=	50	400	μS
_	Byte Program Time (Program/Erase Endurance > 1,000 Times)	Vcc = 5.0 V at Topr = 25 °C	_	65	_	μS
_	Block Erase Time (Program/Erase Endurance ≤ 1,000 Times)	Vcc = 5.0 V at Topr = 25 °C	-	0.2	9	S
-	Block Erase Time (Program/Erase Endurance > 1,000 Times)	Vcc = 5.0 V at Topr = 25 °C	=	0.3	_	S
td(SR-ES)	Time Delay from Suspend Request until Erase Suspend		=	=	8	ms
_	Erase Suspend Request Interval		10	1	-	ms
_	Program, Erase Voltage		2.7	1	5.5	V
_	Read Voltage		2.7	-	5.5	V
=	Program, Erase Temperature		-20 ⁽⁸⁾	=	85	°C
=	Data Hold Time ⁽⁹⁾	Ambient temperature = 55 °C	20	=	-	year

- 1. Vcc = AVcc = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. Definition of program and erase

The program and erase endurance shows an erase endurance for every block.

If the program and erase endurance is "n" times (n = 100, 10000), "n" times erase can be performed for every block. For example, if performing 1-byte write to the distinct addresses on Block A of 1Kbyte block 1,024 times and then erasing that block, program and erase endurance is counted as one time.

However, do not perform multiple programs to the same address for one time ease.(disable overwriting).

- 3. Endurace to guarantee all electrical characteristics after program and erase.(1 to "Min." value can be guaranateed).
- 4. Standard of Block A and Block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times aer the same as that in program area.
- 5. In the case of a system to execute multiple programs, perform one erase after programming as reducing effective reprogram endurance not to leave blank area as possible such as programming write addresses in turn. If programming a set of 16 bytes, programming up to 128 sets and then erasing them one time can reduce effective reprogram endurance. Additionally, averaging erase endurance for Block A and B can reduce effective reprogram endurance more. To leave erase endurance for every block as information and determine the restricted endurance are recommended.
- 6. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring Program/Erase failure rate information should contact their Renesas technical support representative.
- 8. -40 °C for D version.
- 9. The data hold time incudes time that the power supply is off or the clock is not supplied.

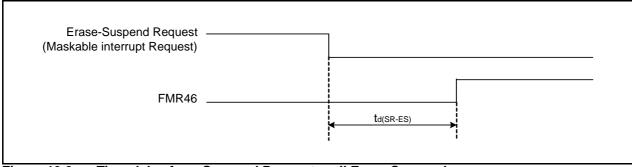


Figure 19.2 Time delay from Suspend Request until Erase Suspend

Table 19.6 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	raidilletei	Condition	Min.	Тур.	Max.	Offit
Vdet1	Voltage Detection Level ⁽³⁾		2.70	2.85	3.00	V
=	Voltage Detection Circuit Self Power Consumption	VCA26 = 1, Vcc = 5.0V	=	600	=	nA
td(E-A)	Waiting Time until Voltage Detection Circuit Operation Starts ⁽²⁾		=	=	100	μS
Vccmin	Microcomputer Operating Voltage Minimum Value		2.7	-	-	V

- 1. The measurement condition is Vcc = AVcc = 2.7V to 5.5V and Topr = -40°C to 85 °C.
- 2. Necessary time until the voltage detection circuit operates when setting to "1" again after setting the VCA26 bit in the VCA2 register to "0".
- 3. Hold Vdet2 > Vdet1.

Table 19.7 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage Detection Level ⁽⁴⁾		3.00	3.30	3.60	V
-	Voltage Monitor 2 Interrupt Request Generation Time ⁽²⁾		-	40	-	μS
=	Voltage Detection Circuit Self Power Consumption	VCA27 = 1, Vcc = 5.0V	=	600	=	nA
td(E-A)	Waiting Time until Voltage Detection Circuit Operation Starts ⁽³⁾		=	=	100	μ\$

- 1. The measurement condition is Vcc = AVcc = 2.7V to 5.5V and $T_{opr} = -40^{\circ}C$ to 85 °C.
- 2. Time until the voltage monitor 2 interrupt request is generated since the voltage passes V_{det1} .
- 3. Necessary time until the voltage detection circuit operates when setting to "1" again after setting the VCA27 bit in the VCA2 register to "0".
- 4. Hold Vdet2 > Vdet1.

Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset) **Table 19.8**

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor2	Power-On Reset Valid Voltage	-20°C ≤ Topr < 85°C	=	=	Vdet1	V
tw(Vpor2-Vdet1)	Supply Voltage Rising Time When Power-On Reset is	-20°C ≤ Topr < 85°C,	-	-	100	ms
	Deasserted ⁽¹⁾	$t_{\text{W(por2)}} \ge 0s^{(3)}$				

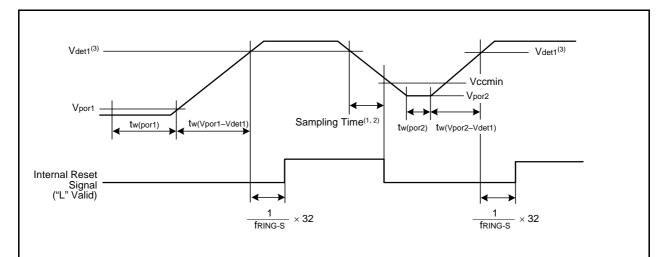

- 1. This condition is not applicable when using with $Vcc \ge 1.0V$.
- 2. When turning power on after the time to hold the external power below effective voltage (Vport) exceeds10s, refer to Table 19.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).
- 3. tw(por2) is time to hold the external power below effective voltage (Vpor2).

Table 19.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor1	Power-On Reset Valid Voltage	-20°C ≤ Topr < 85°C	=	=	0.1	V
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 10s^{(2)}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$\label{eq:continuous} \begin{split} -20^{\circ}C & \leq Topr < 0^{\circ}C, \\ tw(por1) & \geq 30s^{(2)} \end{split}$	-	=	100	ms
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$ -20^{\circ}C \leq Topr < 0^{\circ}C, $ $ tw(por1) \geq 10s^{(2)} $	-	_	1	ms
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 1s^{(2)}$	-	_	0.5	ms

NOTES:

- 1. When not using the voltage monitor 1 reset, use with Vcc≥ 2.7V.
- 2. tw(por1) is time to hold the external power below effective voltage (Vpor1).

- 1. Hold the voltage of the microcomputer operation voltage range (Vccmin or above) within sampling time.
- A sampling clock can be selected. Refer to 6. Voltage Detection Circuit for details.
 V_{det1} indicates the voltage detection level of the voltage detection 1 circuit. Refer to 6. Voltage Detection Circuit for details.

Figure 19.3 **Reset Circuit Electrical Characteristics**

Table 19.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Parameter	Condition		Тур.	Max.	Unit
_	High-Speed On-Chip Oscillator Frequency When the Reset is Deasserted	Vcc = 5.0V, Topr = 25 °C	-	8	ı	MHz
_	High-Speed On-Chip Oscillator Frequency	0 to +60 °C / 5 V ± 5 % ⁽²⁾	7.44	-	8.56	MHz
	Temperature • Supplay Voltage Dependence	-20 to +85 °C / 2.7 to 5.5 V ⁽²⁾	7.04	_	8.96	MHz
		-40 to +85 °C / 2.7 to 5.5 V ⁽²⁾	6.80	=	9.20	MHz

- 1. The measurement condition is Vcc = AVcc = 5.0V and Topr = 25 °C.
- 2. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to 00h

Table 19.11 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Unit
	Falametei	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for Internal Power Supply Stabilization during Power-On ⁽²⁾		1	=	2000	μS
td(R-S)	STOP Exit Time ⁽³⁾		-	-	150	μS

NOTES:

- 1. The measurement condition is Vcc = AVcc = 2.7 to 5.5V and $T_{opr} = 25$ °C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until CPU clock supply starts since the interrupt is acknowledged to exit stop mode.

Table 19.12 Timing Requirements of Clock Synchronous Serial I/O (SSU) with Chip Select(1)

Cumbal	Parameter		Conditions		Standard			
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit	
tsucyc	SSCK Clock Cycle Time			4	=	=	tcyc(2)	
tHI	SSCK Clock "H" Width			0.4	-	0.6	tsucyc	
tLO	SSCK Clock "L" Width			0.4	-	0.6	tsucyc	
trise	SSCK Clock Rising Time	Master		-	=	1	tcyc(2)	
		Slave		-	-	1	μS	
tFALL	SSCK Clock Falling Time	Master		-	-	1	tcyc(2)	
		Slave		-	-	1	μS	
tsu	SSO, SSI Data Input Setup	Time		100	-	=	ns	
tн	SSO, SSI Data Input Hold T	ïme		1	=	=	tcyc(2)	
tLEAD	SCS Setup Time	Slave		1tcyc+50	=	=	ns	
tLAG	SCS Hold Time	Slave		1tcyc+50	-	_	ns	
top	SSO, SSI Data Output Dela	y Time		-	-	1	tcyc(2)	
tsa	SSI Slave Access Time			_	-	1.5tcyc+100	ns	
tor	SSI Slave Out Open Time			-	_	1.5tcyc+100	ns	

- 1. Vcc = AVcc = 2.7 to 5.5V, Vss = 0V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. 1tcyc = 1/f1(s)

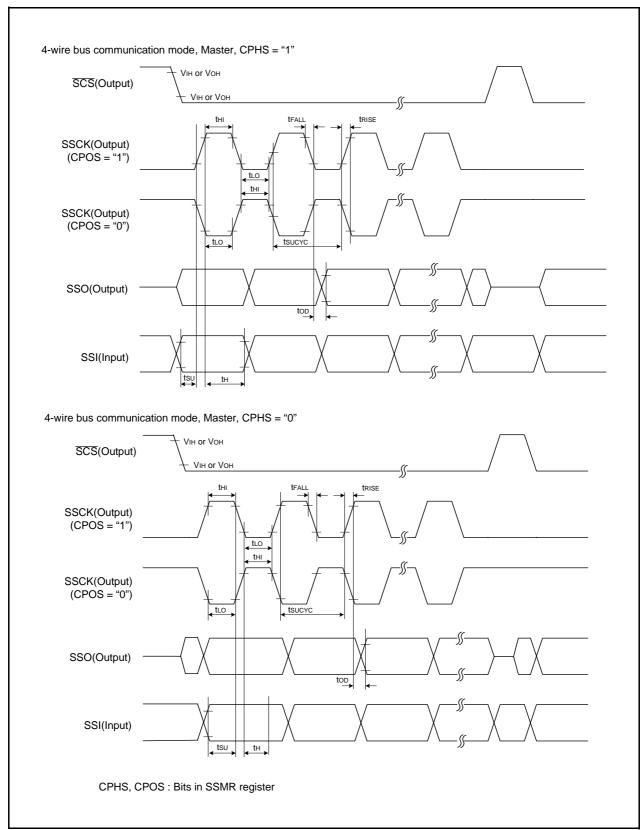


Figure 19.4 I/O Timing of Clock Synchronous Serial I/O (SSU) with Chip Select (Master)

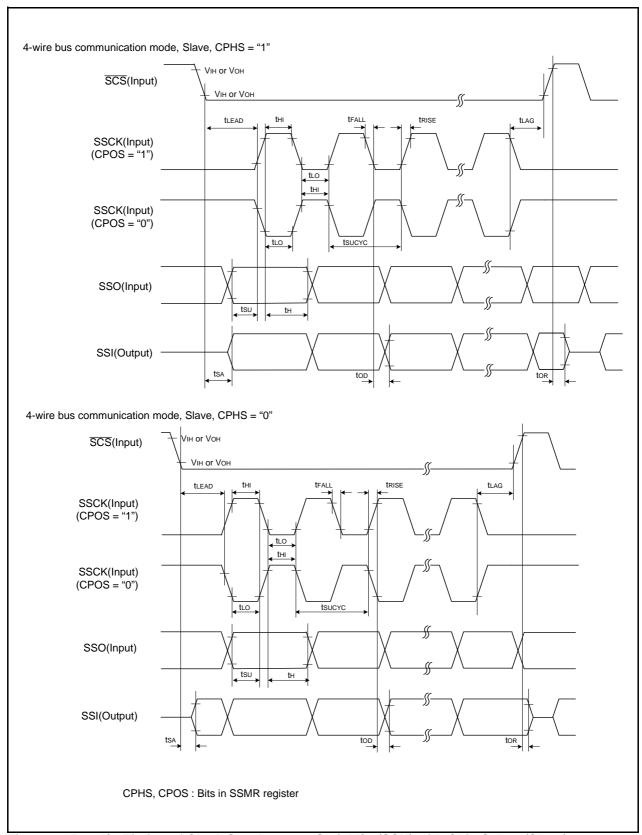


Figure 19.5 I/O Timing of Clock Synchronous Serial I/O (SSU) with Chip Select (Slave)

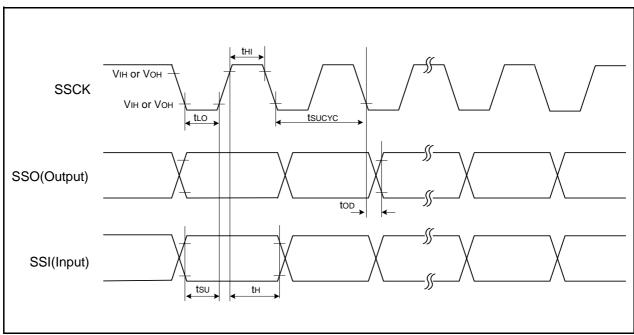


Figure 19.6 I/O Timing of Clock Synchronous Serial I/O (SSU) with Chip Select (Clock Synchronous Communication Mode)

Table 19.13 Electrical Characteristics (1) [Vcc = 5V]

Cumbal	Dox	·omotor	Cons	dition.	St	andard		Unit
Symbol	Par	rameter	Cond	dition	Min.	Тур.	Max.	Unit
Vон	Output "H" Voltage	Except Xout	Iон = -5mA		Vcc - 2.0	-	Vcc	V
			IOH = -200μA		Vcc - 0.3	-	Vcc	V
		Хоит	Drive capacity HIGH	Iон = -1mA	Vcc - 2.0	=	Vcc	V
			Drive capacity LOW	IOH = -500μA	Vcc - 2.0	-	Vcc	V
Vol	Output "L" Voltage	Except P1_0 to P1_3,	IoL = 5mA	IOL = 5mA		_	2.0	V
		Xout	IoL = 200μA		-	=	0.45	V
		P1_0 to P1_3	Drive capacity HIGH	IoL = 15mA	=	=	2.0	V
			Drive capacity LOW	IoL = 5mA	=	=	2.0	V
			Drive capacity LOW	IoL = 200μA	-	=	0.45	V
		Хоит	Drive capacity HIGH	IoL = 1mA	-	=	2.0	V
			Drive capacity LOW	IoL = 500μA	-	=	2.0	V
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, CNTR0, CNTR1, TCIN, RXD0, SSO		'	0.2	-	1.0	V
		RESET			0.2	=	2.2	V
lін	Input "H" current	•	VI = 5V		-	-	5.0	μΑ
lı∟	Input "L" current		VI = 0V		-	-	-5.0	μΑ
RPULLUP	Pull-Up Resistance		VI = 0V		30	50	167	kΩ
RfXIN	Feedback Resistance	XIN			=	1.0	-	ΜΩ
fring-s	Low-Speed On-Chip	Oscillator Frequency			40	125	250	kHz
VRAM	RAM Hold Voltage		During stop mode	9	2.0	-	_	V

^{1.} Vcc = AVcc = 4.2 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=20MHz, unless otherwise specified.

Table 19.14 Electrical Characteristics (2) [Vcc = 5V] (Topr = -40 to 85 $^{\circ}$ C, unless otherwise specified.)

Symbol	Parameter		Condition		Standard		Unit
Cyllibol	raidinotor		Condition	Min.	Тур.	Max.	Orne
Icc	Power Supply Current (Vcc=3.3 to 5.5V) In single-chip mode,	High-Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	9	15	mA
	the output pins are open and other pins are Vss		XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	8	14	mA
		XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	-	5	_	mA	
	Medium- Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	4	_	mA	
			XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	3	=	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	2	_	mA
	High-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz No division	_	4	8	mA	
			Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz Divide-by-8	_	1.5	_	mA
		Low-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	470	900	μА
		Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock operation VCA26 = VCA27 = 0	_	40	80	μА
		Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock off VCA26 = VCA27 = 0	_	38	76	μА
		Stop Mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	0.8	3.0	μА

Timing Requirements (Unless otherwise specified: Vcc = 5V, Vss = 0V at Topr = 25 °C) [Vcc = 5V]

Table 19.15 XIN Input

Symbol	Parameter	Stan	Unit	
Syllibol	Falametei	Min.	Max.	Offic
tc(XIN)	XIN Input Cycle Time	50	=	ns
twh(xin)	XIN Input "H" Width	25	=	ns
twl(xin)	XIN Input "L" Width	25	-	ns

Table 19.16 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Offic
tc(CNTR0)	CNTR0 Input Cycle Time	100	=	ns
tWH(CNTR0)	CNTR0 Input "H" Width	40	=	ns
tWL(CNTR0)	CNTR0 input "L" Width	40	=	ns

Table 19.17 TCIN Input, INT3 Input

Symbol	Parameter		Standard		
Symbol		Min.	Max.	Unit	
tc(TCIN)	TCIN Input Cycle Time	400(1)	-	ns	
twh(TCIN)	TCIN Input "H" Width	200(2)	_	ns	
tWL(TCIN)	TCIN input "L" Width	200(2)	=	ns	

NOTES:

- 1. When using Timer C input capture mode, adjust the cycle time (1/Timer C count source frequency x 3) or above.
- 2. When using Timer C input capture mode, adjust the width (1/Timer C count source frequency x 1.5) or above.

Table 19.18 Serial Interface

Symbol	Parameter	Stan	Unit	
Symbol	Farameter	Min.	Max.	Offic
tc(CK)	CLKi Input Cycle Time	200	-	ns
tW(CKH)	CLKi Input "H" Width	100	-	ns
tW(CKL)	CLKi Input "L" Width	100	-	ns
td(C-Q)	TXDi Output Delay Time	-	50	ns
th(C-Q)	TXDi Hold Time	0	-	ns
tsu(D-C)	RXDi Input Setup Time	50	_	ns
th(C-D)	RCDi Input Hold Time	90	-	ns

Table 19.19 External Interrupt INTO Input

Symbol	Parameter	Standard		Unit
Symbol	Symbol		Max.	Offic
tW(INH)	INTO Input "H" Width	250 ⁽¹⁾	-	ns
tW(INL)	INTO Input "L" Width	250(2)	-	ns

- 1. When selecting the digital filter by the INTO input filter select bit, use the INTO input HIGH width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.
- 2. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input LOW width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

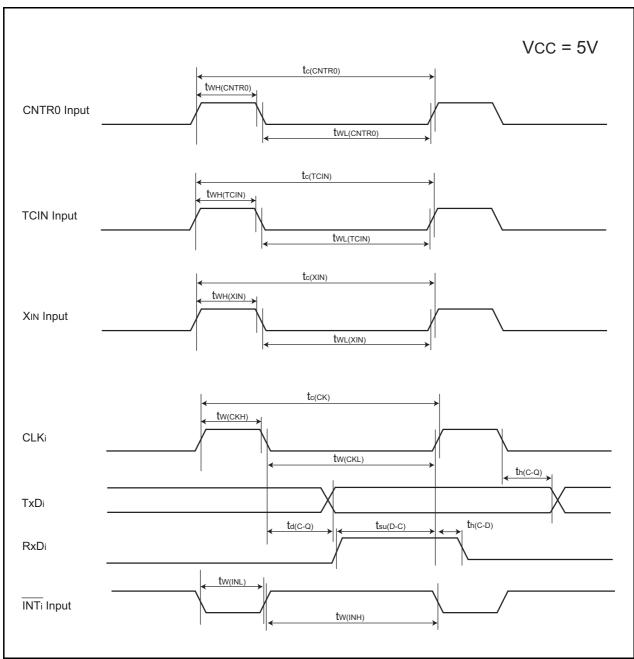


Figure 19.7 Timing Diagram When Vcc = 5V

Table 19.20 Electrical Characteristics (3) [Vcc = 3V]

Symbol	Parameter		Condition		Standard			Unit
Symbol					Min.	Тур.	Max.	Unit
Vон	Output "H" Voltage	Except Xout	IOH = -1mA		Vcc - 0.5	_	Vcc	V
		Хоит	Drive capacity HIGH	Iон = -0.1mA	Vcc - 0.5	_	Vcc	V
			Drive capacity LOW	IOH = -50μA	Vcc - 0.5	=	Vcc	V
Vol	Output "L" Voltage	Except P1_0 to P1_3, Xout	IoL = 1mA	·	=	=	0.5	V
		P1_0 to P1_3	Drive capacity HIGH	IOL = 2mA	_	-	0.5	V
			Drive capacity LOW	IOL = 1mA	_	_	0.5	V
		Хоит	Drive capacity HIGH	IOL = 0.1mA	_	_	0.5	V
			Drive capacity LOW	IOL = 50μA	=	=	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, CNTR0, CNTR1, TCIN, RXD0, SSO			0.2	-	0.8	V
		RESET			0.2	-	1.8	V
Іін	Input "H" Current		VI = 3V		-	-	4.0	μΑ
lıL	Input "L" Current	ut "L" Current VI = 0V		-	-	-4.0	μΑ	
RPULLUP	Pull-Up Resistance VI = 0V			66	160	500	kΩ	
RfXIN	Feedback Resistance	XIN			=	3.0	_	ΜΩ
fring-s	Low-Speed On-Chip	Oscillator Frequency			40	125	250	kHz
VRAM	RAM Hold Voltage		During stop mode		2.0	_	-	V

^{1.} Vcc = AVcc = 2.7 to 3.3V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=10MHz, unless otherwise specified.

Table 19.21 Electrical Characteristics (4) [Vcc = 3V] (Topr = -40 to 85 °C, unless otherwise specified.)

Symbol	Parameter	rameter Condition	Standard			Unit	
Cymbol			Min.	Тур.	Max.	O'III	
Icc	Power Supply Current (Vcc=2.7 to 3.3V) In single-chip mode,	High-Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	8	13	mA
	the output pins are open and other pins are Vss XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	-	7	12	mA		
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	5	Ι	mA
		Medium- Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	3	I	mA
			XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	2.5	-	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	1.6		mA
		High-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz No division	_	3.5	7.5	mA
			Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz Divide-by-8	_	1.5	-	mA
		Low-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	420	800	μА
		Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock operation VCA26 = VCA27 = 0	_	37	74	μА
		Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock off VCA26 = VCA27 = 0	=	35	70	μА
		Stop Mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	0.7	3.0	μА

Timing requirements (Unless otherwise specified: Vcc = 3V, Vss = 0V at Topr = 25 °C) [Vcc = 3V]

Table 19.22 XIN Input

Symbol	Parameter	Standard		Unit
Syllibol	Falanielei		Max.	
tc(XIN)	XIN Input Cycle Time	100	=	ns
twh(xin)	XIN Input "H" Width	40	=	ns
twl(XIN)	XIN Input "L" Width	40	-	ns

Table 19.23 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter		Standard	
Symbol			Max.	Unit
tc(CNTR0)	CNTR0 Input Cycle Time		=	ns
tWH(CNTR0)	CNTR0 Input "H" Width		=	ns
tWL(CNTR0)	CNTR0 Input "L" Width	120	=	ns

Table 19.24 TCIN Input, INT3 Input

Symbol	Parameter	Standard		Unit
Symbol	Falanielei	Min.	Max.	Offic
tc(TCIN)	TCIN Input Cycle Time		-	ns
tWH(TCIN)	TCIN Input "H" Width		=	ns
tWL(TCIN)	TCIN Input "L" Width	600(2)	Ī	ns

NOTES:

- 1. When using the Timer C input capture mode, adjust the cycle time (1/Timer C count source frequency x 3) or above.
- 2. When using the Timer C input capture mode, adjust the width (1/Timer C count source frequency x 1.5) or above.

Table 19.25 Serial Interface

Symbol	Parameter	Stan	Unit		
Symbol	Faranielei		Max.	Offic	
tc(CK)	CLKi Input Cycle Time	300	=	ns	
tW(CKH)	CLKi Input "H" Width	150	=	ns	
tW(CKL)	CLKi Input "L" Width	150	-	ns	
td(C-Q)	TXDi Output Delay Time	=	80	ns	
th(C-Q)	TXDi Hold Time	0	-	ns	
tsu(D-C)	RXDi Input Setup Time	70	-	ns	
th(C-D)	RCDi Input Hold Time	90	-	ns	

Table 19.26 External Interrupt INTO Input

Symbol	Parameter	Standard		Unit
Symbol	raidilletei		Max.	
tW(INH)	INTO Input "H" Width	380 ⁽¹⁾	-	ns
tW(INL)	INTO Input "L" Width	380(2)	-	ns

- 1. When selecting the digital filter by the INTO input filter select bit, use the INTO input HIGH width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.
- 2. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input LOW width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

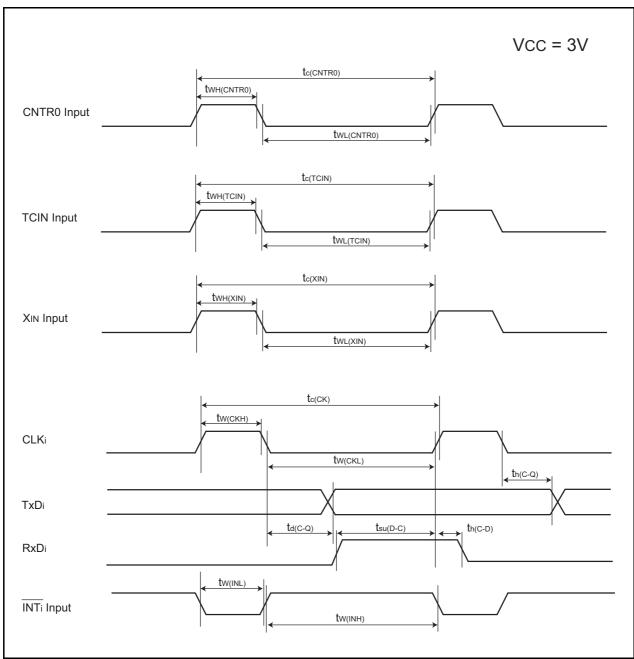


Figure 19.8 Timing Diagram When Vcc = 3V

20. Precautions

20.1 Stop Mode and Wait Mode

20.1.1 Stop Mode

When entering stop mode, set the FMR01 bit to "0" (CPU rewrite mode disabled) and the CM10 bit to "1" (stop mode). An instruction queue pre-reads 4 bytes from the instruction which sets the CM10 bit in the CM1 register to "1" (stop mode) and the program stops. Insert at least 4 NOP instructions after inserting the JMP.B instruction immediately after the instruction which sets the CM10 bit to "1". Use the next program to enter stop mode.

• Program to enter stop mode

```
; CPU rewrite mode disabled
      BCLR
                 1,FMR0
      BSET
                 0,PRCR
                                ; Protect disabled
      BSET
                 0.CM1
                                ; Stop mode
      JMP.B
                 LABEL 001
LABEL 001:
      NOP
      NOP
      NOP
      NOP
```

20.1.2 Wait Mode

When entering wait mode, set the FMR01 bit to "0" (CPU rewrite mode disabled) and execute the WAIT instruction. An instruction queue pre-reads 4 bytes from the WAIT instruction and the program stops. Insert at least 4 NOP instructions after the WAIT instruction.

Also, the value in the specific internal RAM area may be rewritten when exiting wait mode if writing to the internal RAM area before executing the WAIT instruction and entering wait mode. The area for a maximum of 3 bytes is rewritten from the following address of the internal RAM in which the writing is performed before the WAIT instruction. The rewritten value is the same value as the one which was written before the WAIT instruction. If this causes a problem, avoid by inserting the JMP.B instruction between the writing instruction to the internal RAM area and WAIT instruction as shown in the following program example.

• Example to execute the WAIT instruction

Program Example	MOV.B	#055h,0601h	; Write to internal RAM area
	JMP.B	LABEL_001	
	LABEL _001 : FSET	1	; Enable interrupt
	BCLR WAIT	1,FMR0	; CPU rewrite mode disabled ; Wait mode
	NOP		, wait mode
	NOP		
	NOP		
	NOP		

When accessing any area other than the internal RAM area between the writing instruction to the internal RAM area and execution of the WAIT instruction, this situation will not occur.

20.2 Interrupts

20.2.1 Reading Address 00000h

Do not read the address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At this time, the acknowledged interrupt IR bit is set to "0".

If the address 00000h is read in a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to "0". This may cause a problem that the interrupt is canceled, or an unexpected interrupt is generated.

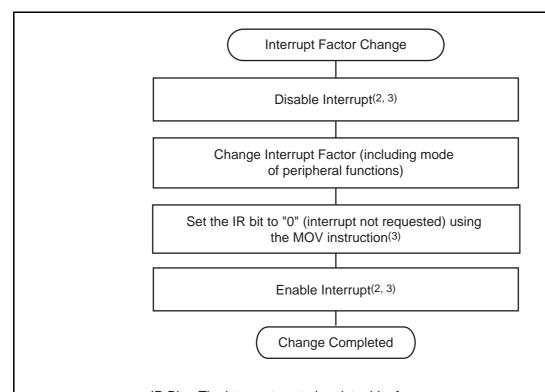
20.2.2 SP Setting

Set any value in the SP before an interrupt is acknowledged. The SP is set to "0000h" after reset. Therefore, if an interrupt is acknowledged before setting any value in the SP, the program may run out of control.

20.2.3 External Interrupt and Key Input Interrupt

Either an "L" level or an "H" level of at least 250ns width is necessary for the signal input to the $\overline{\text{INT0}}$ to $\overline{\text{INT3}}$ pins and $\overline{\text{KI0}}$ to $\overline{\text{KI3}}$ pins regardless of the CPU clock.s

20.2.4 Watchdog Timer Interrupt


Reset the watchdog timer after a watchdog timer interrupt is generated.

20.2.5 Changing Interrupt Factor

The IR bit in the interrupt control register may be set to "1" (interrupt requested) when the interrupt factor changes. When using an interrupt, set the IR bit to "0" (no interrupt requested) after changing the interrupt factor.

In addition, the changes of interrupt factors include all factors that change the interrupt factors assigned to individual software interrupt numbers, polarities, and timing. Therefore, when a mode change of the peripheral functions involves interrupt factors, edge polarities, and timing, Set the IR bit to "0" (no interrupt requested) after the change. Refer to each peripheral function for the interrupts caused by the peripheral functions.

Figure 20.1 shows an Example of Procedure for Changing Interrupt Factor.

IR Bit: The interrupt control register bit of an interrupt whose factor is changed.

- Execute the above setting individually. Do not execute 2 or more settings at once (by one instruction).
- 2. Use the I flag for the INTi (i=0 to 3) interupt. To prevent interrupt requests from being generated when using peripheral function interupts other than the INTi interrupt, disable the peripheral function before changing the interrupt factor. In this case, use the I flag when all maskable interrupts can be disabled. When all maskable interrupts cannot be disabled, use the ILVL0 to ILVL2 bits of interrupt whose factor is changed.
- 3. Refer to the **21.2.6 Changing Interrupt Control Register** for the instructions to be used and their usage notes.

Figure 20.1 Example of Procedure for Changing Interrupt Factor

Changing Interrupt Control Register 20.2.6

- (a) Each interrupt control register can only be changed while interrupt requests corresponding to that register are not generated. If interrupt requests may be generated, disable the interrupts before changing the interrupt control register.
- (b) When changing any interrupt control register after disabling interrupts, be careful with the instructions to be used.

When changing any bit other than IR bit

If an interrupt request corresponding to that register is generated while executing the instruction, the IR bit may not be set to "1" (interrupt requested), and the interrupt request may be ignored. If this causes a problem, use the following instructions to change the register. Instructions to use: AND, OR, BCLR, BSET

When changing IR bit

If the IR bit is set to "0" (interrupt not requested), it may not be set to "0" depending on the instruction to be used. Therefore, use the MOV instruction to set the IR bit to "0".

(c) When disabling interrupts using the I flag, set the I flag according to the following sample programs. Refer to (b) for the change of interrupt control registers in the sample programs.

Sample programs 1 to 3 are preventing the I flag from being set to "1" (interrupt enables) before changing the interrupt control register for reasons of the internal bus or the instruction queue buffer.

Example 1: Use NOP instructions to prevent I flag being set to "1" before interrupt control register is changed

INT SWITCH1:

FCLR ; Disable interrupts

; Set TXIC register to "00h" AND.B #00H,0056H

NOP

NOP

FSET ; Enable interrupts

Example 2: Use dummy read to have FSET instruction wait

INT SWITCH2:

FCLR ; Disable interrupts

AND.B #00H,0056H ; Set TXIC register to "00h"

MOV.W MEM,R0 ; Dummy read FSET ; Enable interrupts

Example 3: Use POPC instruction to change I flag

INT SWITCH3:

PUSHC FLG

FCLR 1 ; Disable interrupts

AND.B #00H,0056H ; Set TXIC register to "00h"

POPC FLG ; Enable interrupts

20.3 Clock Generation Circuit

20.3.1 Oscillation Stop Detection Function

Since the oscillation stop detection function cannot be used if the main clock frequency is below 2MHz, set the OCD1 to OCD0 bits to "00b" (oscillation stop detection function disabled).

20.3.2 Oscillation Circuit Constants

Ask the maker of the oscillator to specify the best oscillation circuit constants on your system.

20.4 Timers

20.4.1 Timers X and Z

- Timers X and Z stop counting after reset. Set the value to these timers and prescalers before the count starts.
- Even if the prescalers and timers are read out in 16-bit units, these registers are read by 1 byte in the microcomputer. Consequently, the timer value may be updated during the period these two registers are being read.

20.4.2 Timer X

- Do not rewrite the TXMOD0 to TXMOD1 bits, the TXMOD2 and TXS bits simultaneously.
- In pulse period measurement mode, the TXEDG bit and TXUND bit in the TXMR register can be set to "0" by writing "0" to these bits by a program. However, these bits remain unchanged when "1" is written. When using the READ-MODIFY-WRITE instruction for the TXMR register, the TXEDG or TXUND bit may be set to "0" although these bits are set to while the instruction is executed. At the time, write "1" to the TXEDG or TXUND bit which is not supposed to be set to "0" with the MOV instruction.
- When changing to pulse period measurement mode from other mode, the contents of the TXEDG and TXUND bits are indeterminate. Write "0" to the TXEDG and TXUND bits before the count starts.
- The TXEDG bit may be set to "1" by the prescaler X underflow which is generated for the first time since the count starts.
- When using the pulse period measurement mode, leave two periods or more of the prescaler X immediately after count starts, and set the TXEDG bit to "0".
- The TXS bit in the TXMR register has a function to instruct Timer X to start or stop counting, and a function to indicate the count starts or stops.
 - "0" (count stops) can be read until the following count source is applied after "1" (count starts) is written to the TXS bit while the count is being stopped. If the following count source is applied, "1" can be read from the TXS bit. Do not access registers associated with Timer X (TXMR, PREX, TX, TCSS, TXIC registers) except for the TXS bit until "1" can be read from the TXS bit. The count starts at the following count source after the TXS bit is set to "1".

Also, when writing "0" (count stops) to the TXS bit during the count, Timer X stops counting at the following count source.

"1" (count starts) can be read by reading the TXS bit until the count stops after writing "0" to the TXS bit. Do not access registers associated with Timer X other than the TXS bit until "0" can be read by the TXS bit after writing "0" to the TXS bit.

20.4.3 Timer Z

- Do not rewrite the TZMOD0 to TZMOD1 bits and the TZS bit simultaneously.
- In programmable one-shot generation mode and programmable wait one-shot generation mode, when setting the TZS bit in the TZMR register to "0" (stops counting) or setting the TZOS bit in the TZOC register to "0" (stops one-shot), the timer reloads the value of reload register and stops. Therefore, read the timer count value in programmable one-shot generation mode and programmable wait one-shot generation mode before the timer stops.
- The TZS bit in the TZMR register has a function to instruct Timer Z to start or stop counting, and a function to indicate the count starts or stops.

"0" (count stops) can be read until the following count source is applied after "1" (count starts) is written to the TZS bit while the count is being stopped. If the following count source is applied, "1" can be read from the TZS bit. Do not access registers associated with Timer Z (TZMR, PREZ, TZSC, TZPR, TZOC, PUM, TCSC, TZIC registers) except for the TZS bit until "1" can be read from the TZS bit. The count starts at the following count source after the TZS bit is set to "1". Also, when writing "0" (count stops) to the TZS bit during the count, Timer Z stops counting at the following count source.

"1" (count starts) can be read by reading the TZS bit until the count stops after writing "0" to the TZS bit. Do not access registers associated with Timer Z other than the TZS bit until "0" can be read by the TZS bit after writing "0" to the TZS bit.

20.4.4 Timer C

Access the TC, TM0 and TM1 registers in 16-bit units.

The TC register can be read in 16-bit units. This prevents the timer value from being updated between the low-order byte and high-order byte are being read.

Example (when Timer C is read):

MOV.W 0090H,R0 ; Read out timer C

20.5 Serial Interface

• When reading data from the U0RB (i = 0, 1) register even in the clock asynchronous serial I/O mode or in the clock synchronous serial I/O mode. Ensure to read data in 16-bit unit. When the high-order byte of the U0RB register is read, the PER and FER bits in the U0RB register and the RI bit in the U0C1 register are set to "0".

Example (when reading receive buffer register):

MOV.W 00A6H,R0 ; Read the U0RB register

• When writing data to the U0TB register in the clock asynchronous serial I/O mode with 9-bit transfer data length, write data high-order byte first, then low-order byte in 8-bit units.

Example (when reading transmit buffer register):

MOV.B #XXH,00A3H ; Write the high-order byte of U0TB register MOV.B #XXH,00A2H ; Write the low-order byte of U0TB register

20.6 Clock Synchronous Serial I/O (SSU) with Chip Select

BEST

20.6.1 Access Registers Associated with SSU

After the conditions of "3 instructions or more after writing to the registers associated with SSU (00B8h to 00BFh)" or "4 cycles or more after writing to them" are met, read those registers.

•	An (example	to:	wait	for	3	instructions	or more
---	------	---------	-----	------	-----	---	--------------	---------

in champions to man for a m			
Program Example	MOV.B NOP NOP NOP	#00h,00BBh	; Set the SSER register to "00h".
	MOV.B	00BBh,R0L	
An example to wait for 4 cy	cles or more		
Program Example	BCLR	4,00BBh	: Disable transmit
	JMP.B	NEXT	
NE)	(T:		

3,00BBh

: Enable receive

20.7 A/D Converter

- Write to each bit (other than bit 6) in the ADCON0 register, each bit in the ADCON1 register, or the SMP bit in the ADCON2 register when the A/D conversion stops (before a trigger occurs). When the VCUT bit in the ADCON1 register is changed from "0" (VREF not connected) to "1" (VREF connected), wait for at least 1µs or longer before the A/D conversion starts.
- When changing A/D operating mode, select an analog input pin again.
- When using in one-shot mode. Ensure that the A/D conversion is completed and read the AD register. The IR bit in the ADIC register or the ADST bit in the ADCON0 register can determine whether the A/D conversion is completed.
- When using In repeat mode, use the undivided main clock for the CPU clock.
- If setting the ADST bit in the ADCON0 register to "0" (A/D conversion stops) by a program and the A/D conversion is forcibly terminated during the A/D conversion operation, the conversion result of the A/D converter will be indeterminate. If the ADST bit is set to "0" by a program, do not use the value of AD register.
- Connect 0.1μF capacitor between the AVCC/VREF pin and AVSS pin.

20.8 Flash Memory Version

20.8.1 CPU Rewrite Mode

20.8.1.1 Operating Speed

Before entering CPU rewrite mode (EW0 mode), select 5MHz or below for the CPU clock using the CM06 bit in the CM0 register and the CM16 to CM17 bits in the CM1 register. This usage note is not needed for EW1 mode.

20.8.1.2 Instructions Inhibited Against Use

The following instructions cannot be used in EW0 mode because the flash memory internal data is referenced: UND, INTO, and BRK instructions.

20.8.1.3 Interrupts

Table 20.1 lists the Interrupt in EW0 Mode and Table 20.2 lists the Interrupt in EW1 Mode.

Table 20.1 Interrupt in EW0 Mode

Mode	Status	When maskable interrupt request is acknowledged	When watchdog timer, oscillation stop detection and voltage monitor 2 interrupt request are acknowledged
EWO	During automatic erasing Automatic writing	Any interrupt can be used by allocating a vector to RAM	Once an interrupt request is acknowledged, the auto-programming or auto-erasing is forcibly stopped immediately and resets the flash memory. An interrupt process starts after the fixed period and the flash memory restarts. Since the block during the auto-erasing or the address during the auto-programming is forcibly stopped, the normal value may not be read. Execute the auto-erasing again and ensure the auto-erasing is completed normally. Since the watchdog timer does not stop during the command operation, the interrupt request may be generated. Reset the watchdog timer regularly.

NOTES:

- 1. Do not use the address match interrupt while the command is executed because the vector of the address match interrupt is allocated on ROM.
- 2. Do not use the non-maskable interrupt while Block 0 is automatically erased because the fixed vector is allocated Block 0.

Table 20.2 Interrupt in EW1 Mode

Mod e	Status	When maskable interrupt request is acknowledged	When watchdog timer, oscillation stop detection and voltage monitor 2 interrupt request are acknowledged
EW1	During automatic erasing (erase-suspend function is enabled) During automatic erasing (erase-suspend function is disabled)	The auto-erasing is suspended after td(SR-ES) and the interrupt process is executed. The auto-erasing can be restarted by setting the FMR41 bit in the FMR4 register to "0" (erase restart) after the interrupt process completes. The auto-erasing has a priority and the interrupt request acknowledgement is waited. The interrupt process is executed after the auto-erasing completes. Refer to 20.8.1.9 Interrupt Request Generation during Auto-erase	Once an interrupt request is acknowledged, the auto-programming or auto-erasing is forcibly stopped immediately and resets the flash memory. An interrupt process starts after the fixed period and the flash memory restarts. Since the block during the auto-erasing or the address during the auto-programming is forcibly stopped, the normal value may not be read. Execute the auto-erasing again and ensure the auto-erasing is completed normally. Since the watchdog timer does not stop during the command operation, the interrupt request may be generated. Reset
		Operation in EW1 Mode.	the watchdog timer regularly using the
	Auto	The auto-programming has a	erase-suspend function.
	programming	priority and the interrupt request	
		acknowledgement is waited. The	
		interrupt process is executed after	
		the auto-programming completes.	

NOTES:

- 1. Do not use the address match interrupt while the command is executed because the vector of the address match interrupt is allocated on ROM.
- 2. Do not use the non-maskable interrupt while Block 0 is automatically erased because the fixed vector is allocated Block 0.

20.8.1.4 How to Access

Write "0" to the corresponding bits before writing "1" when setting the FMR01, FMR02, or FMR11 bit to "1". Do not generate an interrupt between writing "0" and "1".

20.8.1.5 Rewriting User ROM Area

In EW0 Mode, if the power supply voltage drops while rewriting any block in which the rewrite control program is stored, the flash memory may not be able to be rewritten because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

20.8.1.6 Program

Do not write additions to the already programmed address.

20.8.1.7 Reset Flash Memory

When setting the FMSTP bit in the FMR0 register to "1" (flash memory stops) during erase-suspend in EW1 mode, a CPU stops and cannot return. Do not set the FMSTP bit to "1".

20.8.1.8 Entering Stop Mode or Wait Mode

Do not enter stop mode or wait mode during erase-suspend.

20.8.1.9 Interrupt Request Generation during Auto-erase Operation in EW1 Mode

When an interrupt request is generated during erasing with FMR01 = 1 (CPU rewrite mode enabled) in FMR0 register, FMR11 = 1 (EW1 mode) in FMR1 register and FMR40 = 0 (disable erase suspend function) in FMR4 register, the CPU may not operate properly.

Select any of the following 3 processes as a software countermeasure:

- (a) Disable an interrupt by setting the priority level of all maskable interrupts to level 0. Note that disabling the interrupts by the I flag will not be in the software countermeasure
- (b) Set the FMR40 = 1 (enable erase suspend function) and the I flag = 1 (enable interrupt) when using the FMR11 = 1 (EW1 mode)
- (c) Use EW0 mode.

20.9 Noise

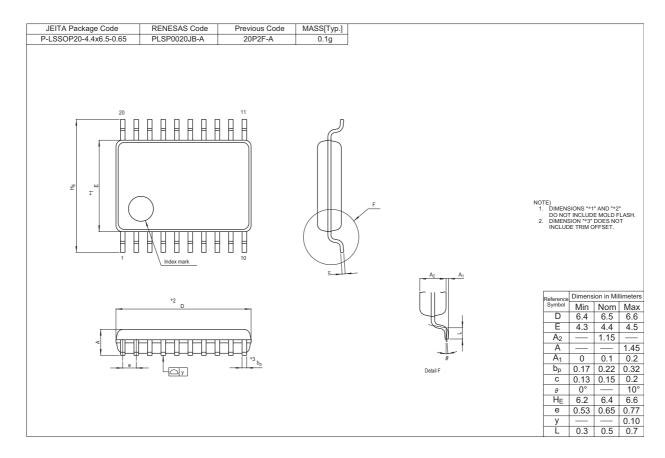
20.9.1 Insert a bypass capacitor between VCC and VSS pins as the countermeasures against noise and latch-up

Connect the bypass capacitor (at least $0.1 \mu F$) using the shortest and thickest as possible.

20.9.2 Countermeasures against Noise Error of Port Control Registers

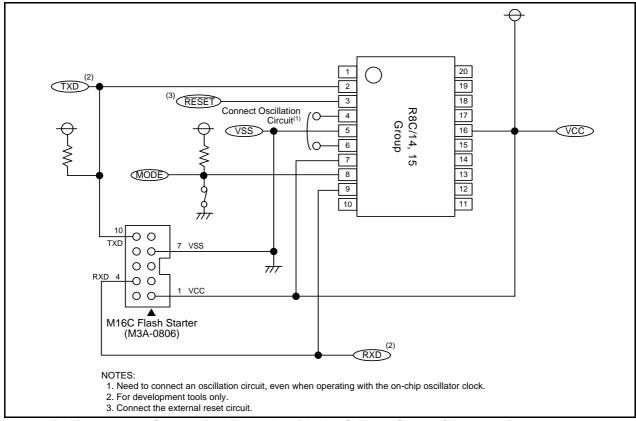
During severe noise testing, mainly power supply system noise, and introduction of external noise, the data of port related registers may be changed.

As a firmware countermeasure, it is recommended to periodically reset the port registers, port direction registers and pull-up control registers. However, examine fully before introducing the reset routine as conflicts may be created between this reset routine and interrupt routines.

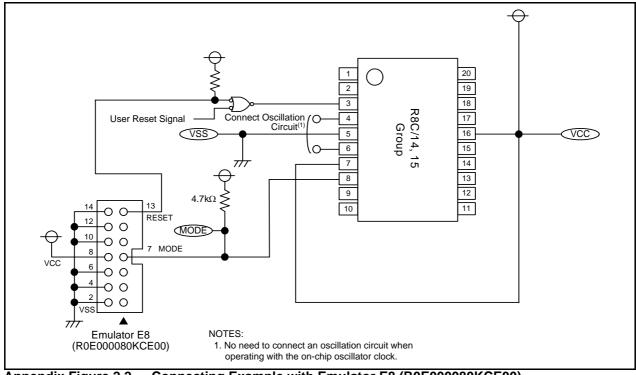

21. Precaution for On-chip Debugger

When using the on-chip debugger to develop the R8C/14 and R8C/15 groups program and debug, pay the following attention.

- (1) Do not use from OC000h address to OC7FFh because the on-chip debugger uses these addresses.
- (2) Do not set the address match interrupt (the registers of AIER, RMAD0, RMAD1 and the fixed vector tables) in a user system.
- (3) Do not use the BRK instruction in a user system.
- (4) The stack pointer with up to 8 bytes is used during the user program break. Therefore, save space of 8 bytes for the stack area.

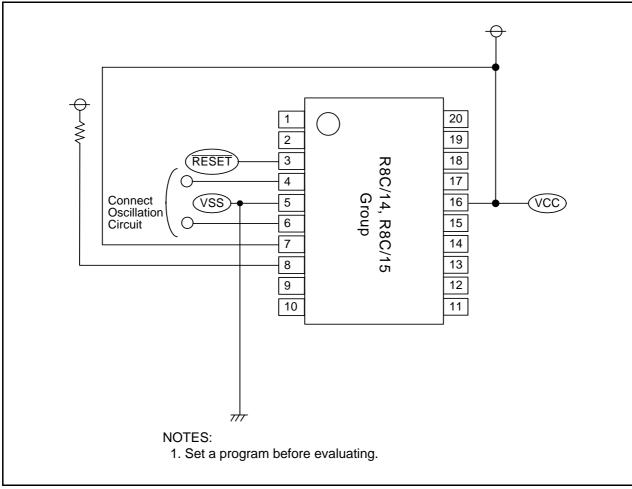

Connecting and using the on-chip debugger has some peculiar restrictions. Refer to each on-chip debugger manual for on-chip debugger details.

Appendix 1. Package Dimensions



Appendix 2. Connecting Example between Serial Writer and On-Chip Debugging Emulator

Appendix Figure 2.1 shows the Connecting Example with M16C Flash Starter (M3A-0806) and Appendix Figure 2.2 shows the Connecting Example with Emulator E8 (R0E000080KCE00).


Appendix Figure 2.1 Connecting Example with M16C Flash Starter (M3A-0806)

Appendix Figure 2.2 Connecting Example with Emulator E8 (R0E000080KCE00)

Appendix 3. Example of Oscillation Evaluation Circuit

Appendix Figure 3.1 shows the Example of Oscillation Evaluation Circuit.

Appendix Figure 3.1 Example of Oscillation Evaluation Circuit

Register Index

	Α	P		ı	U	
	A	F		•	U	
	171	P1		U0BRG		
	170	P3	184	U0C0	1	28
ADCON1	170	P4	184	U0C1	1	29
ADCON2	171	PD1	184	U0MR	1	28
ADIC	61	PD3	184	U0RB	1	27
AIER	77	PD4	184	U0TB	1:	27
		PM0	35	UCON	1	29
	С	PM1	36			
	C	PRCR	.55	,	V	
		PREX			V	
CM0	40	PREZ				
CM1	41	PUM		VCA1		28
CMP0IC	61	PUR0		VCA2		28
CMP1IC	61			VW1C		29
CSPR	80	PUR1	185	VW2C		30
	D	R		,	W	
	D			•	/ V	
		RMAD0	77			
DRR	185	RMAD1		WDC		
		NIVIAD I	, ,	WDTR		80
	F			WDTS		80
	-	S				
EMDO	200					
-	201	S0RIC	61			
		S0TIC	61			
FIVIR4	201	SSCRH	142			
		SSCRL	143			
	Н	SSER	145			
		SSMR	144			
HRA0	43	SSMR2				
	44	SSRDR				
	44	SSSR	_			
111VAZ	тт	SSTDR				
		SSUAIC				
	I	330AIC	01			
		-				
INT0F	69	Т				
INTOIC	62					
INT1IC	61	TC	117			
INT3IC	61	TCC0	118			
INTEN	69	TCC1	119			
		TCIC	61			
	K	TCOUT	120			
	IX	TCSS86,				
		TM0				
KIEN	75	TM1				
KUPIC	61	TX				
		TXIC				
	0	TXMR	-			
	-					
000	40	TZIC				
	42	TZMR				
UFS	79, 196	TZOC				
		TZPR				
		TZSC	100			

REVISION HISTORY

R8C/14 Group, R8C/15 Group Hardware

	5 .		Description
Rev.	Date	Page	Summary
0.10	May 17, 2004	_	First Edition issued
0.20	Jul 12, 2004	_	Rev.0.20 issued
0.30	Aug 06, 2004	all pages	Words standardized (on-chip oscillator, serial interface, SSU)
		2	Table 1.1 revised
		3	Table 1.2 revised
		9	Table 1.5 revised
		10	Table 1.6 added
		14,15	"Address Break" in Figures 3.1 and 3.2; notes added
		16	Table 4.1, HRA2 Register at 0022h added; NOTE2 to 6 revised
		18	Table 4.3 the value after reset to FFh at 009Ch to 009Fh revised
		19	Tabel 4.4, the value after reset to FFh at 009Ch to 009Fh revised;
			NOTES added
		20-25	Compositions and contents of "5. Reset" modified
		26-35	Compositions and contents of "6. Voltage Detection Circuit" modified
		37	Figure 7.2, function of b0 revised
		40	Figure 9.1 revised
		41	Figure 9.2, "System" at CM06 bit added
		42	Figure 9.3, "System" at CM16 and CM17 bits added
		44	Figure 9.5 revised
		47	9.2.2, "The oscillation startsHRA2 registers" added
		48	9.3.1 added
			9.3.3 "The clockdivided-by-i"added
		52	Table 9.4 revised
		60	11.1.3.4, "Address Break Interrup" added; the referred distination to "20.
			On-Chip Debugger" revised
		61	Table 11.1, some referred distinations revised
		62	Table 11.2, some referred distinations revised
		68	Figures 11.7 and 11.8 added
		72	11.2.1, "The INT0 pintimer Z" added
		74	11.2.3, "The INT0 pinCNTR01 pin" added
		75	11.2.4, "The INT3 pin is used with the TCIN pin" added
		80-84	Compositions and contents of "12. Watchdog Timer" modified
		87	Figure 13.2 revised
		89	Table 13.2 revised
		90	Table 13.3 revised
		91	Figure 13.5 revised
		92	Table 13.4 revised
		93	Figure 13.6 revised
		94	Table 13.5 revised
		95	Figure 13.7 revised
		97	Table 13.6 revised
		98	Figure 13.9 revised
		99	Figure 13.10 revised
		100	13.2 revised
		105	Table 13.7 revised
		107	Table 13.8 revised

Day	Dete		Description
Rev.	Date	Page	Summary
0.30	Aug 06, 2004	110	Table 13.9 revised
		112	Figure 13.20 revised
		114	Table 13.10 revised
		118	Figure 13.25 revised
		119	Figure 13.26 revised
		121	Figure 13.28 revised
		123	Table 13.11 revised
		125	Table 13.12 revised
		130	Figure 14.4 revised
		131	Figure 14.5 revised
		136	14.1.3 revised
		138	Table 14.5, NOTES revised
		140	Figure 14.10 revised ; 14.2.1 "input" added
		141	14.2.2 added
		143	Figure 15.1 revised
		144	Figure 15.2 revised
		146	Figure 15.4 revised
		148	Figure 15.6 revised
		152	Figure 15.9 revised
		154	15.3 revised
		159	Figure 15.14 revised
		162	15.6 revised
		164	15.6.2 revised
		165	Figure 15.18 revised
		167	Figure 15.19 revised
		171 174	Figure 16.2 revised
		174	Figure 16.4 revised Table 16.3 revised
		175	Figure 16.5 revised
		178	17.1.4 revised
		179	Figure 17.1 revised
		180	Figure 17.2 revised
		184	Figure 17.8 revised
			Table 17.1 revised
		186	Table 18.1 revised
		188	18.2 revised
		89	Figure 18.2, NOTES revised
		190	Figure 18.3 ID5 and 6 revised
		191	18.3.2 revised; "After Reset" revised to "Before Shipment"
		193	18.4.1 and 18.4.2 revised
		195	18.4.2.11 and 18.4.2.12 revised
			Figure 18.5 revised
		196	Figure 18.6 revised
		198	Figure 18.9 revised
		204	Table 18.6 revised
		210-223	"19. Electrical Characteristics" added
			21.1 "Stop Mode and Wait Mode" revised
		240	21.7.1.8 revised
			21.7.1.9 added
		244	"Appendix 2. Connecting Example between Serial Writer and On-Chip
			Debugging Emulator" added
		247	"Appendix 3. Example of Oscillation Evaluation Circuit" added

REVISION HISTORY

R8C/14 Group, R8C/15 Group Hardware

D	Dete		Description
Rev.	Date	Page	Summary
1.00	Feb 25, 2005	2-3	Tables 1.1 and 1.2 revised
		5	Table 1.3 and figure 1.2 revised
		6	Table 1.4 and figure 1.3 revised
		7-8	Figures 1.4 and 1.5 revised
		16	Tabel 4.1, The value after reset to 000XXXXXb to 00011111b at 000Fh;
			and the value after reset to 00001000b to 0000X000b and 01001001b to
			0100X001b at 0036h revised
		18	Tabel 4.3, The value after reset to 0000h at 009Ch to 009Dh revised;
			NOTES2 added, and the value after reset to 00h at 00BCh revised
		20	Figure 5.1 revised
		22	5.1.1 (2) and 5.1.2 (4) revised
		24	5.2 revised
			Figure 5.6 revised
		25	5.3 revised
		26	Table 6.1 revised
		27	Figures 6.1 and 6.2 revised
		29	Figure 6.4 revised
		30	Figure 6.5 revised
		31	Figure 6.6 revised
		32 33	6.1.1 revised Table 6.2 and figure 6.7 revised
		33 34	Table 6.3 revised
		35	Figure 6.8 revised
		37	Figure 7.2 revised
		39	Table 9.1 revised; NOTE2 added
		40	Figure 9.1 revised
		41	Figure 9.2 revised
		42	Figure 9.3 revised
		44	Figure 9.5 revised
		51	Table 9.3 revised
		52	Table 9.4 revised
		55	9.5 and 9.5.1 revised
			Table 9.5 revised
		60	11.1.3.5 revised
		61	Table 11.1 revised
		68	11.1.6.7 revised
		71	Figure 11.11 "INTEN Register" revised
		78-79	11.4 "Address Match Interrupt", Table 11.6, 11.7 and Figure 11.19 added
		81	Figure 12.2 "WDC Register" revised
		83	Table 12.1 revised
		89-96	Table 13.2, 13.3, 13.4, 13.5 and 13.6 revised; "Write to Timer" revised
		104	Table 13.7 revised
			Table 13.8, 13.9 and 13.10 revised
		118	Figure 13.26 revised
		126	Figure 14.1 revised
		129	Figure 14.4 "U0C0 Register" revised
		130 131	Figure 14.5 "UCON Register" revised 14.1 revised
		137	Table 14.6 revised
		137	1 auic 14.0 (6)1560

REVISION HISTORY

R8C/14 Group, R8C/15 Group Hardware

			Description
Rev.	Date	Page	Summary
1.00	Feb 25, 2005	141	Table 15.1 NOTE2 added
	,	145	Figure 15.4 NOTES added
		147	Figure 15.6 revised; The value after reset to 00h
		149	Figure 15.8 revised
		152	15.2 revised; "15.2 SS Shift Register" added and 15.2 revised to 15.5.2
			Figure 15.13 NOTE2 added
			Figure 15.14 revised
		160	15.5.4 revised
		162	15.6 revised
		163	Figure 15.17 revised
		164	15.6.2 revised
		168	15.6.4 revised
		169	Table 16.1 revised
		171-176	Figures 16.2, 16.4 and 16.5 revised
		178	17.1, 17.2 and 17.3 revised; Tables 17.1, 17.2 and 17.3 added
		185	Table 17.4 revised
			Figure 17.9 added
			Figures 18.1 and 18.2 revised
		191	18.3.2 revised
		192	Table 18.3 revised
			Figure 18.12 revised
			Figure 18.14 revised
		211	Table 19.3 revised
		212	Table 19.4 and 19.5 revised
			Figure 19.2, Tables 19.6 and 19.7 revised
		214	Tables 19.8 and 19.9 revised
		215	Table 19.10, 19.11 revised and Table 19.12 added
			Figures 19.4, 19.5 and 19.6 added
		219	Table 19.13 revised
		220	Table 19.14 revised
		221, 225	Table 19.16 and 19.23 revised: Table title "INT2" → "INT1" Table 19.20 NOTE revised
		223 224	Table 19.20 NOTE revised Table 19.21 revised
			20.1.1 and 20.1.2 revised
			20.4.2 revised
		232	20.4.3 revised
		235	20.6 added
		236	20.7 revised
		239	20.8.1.7 and 20.8.1.8 revised
		241	"20. On-chip Debugger" deleted
		242	Appendix Package Dimensions revised
		243	Appendix Figure 2.1 revised; "USB Flash Writer" deleted and "M16C
		10	Flash Starter" NOTE3 added
			I lash statter 140 i Es added

_	D /		Description
Rev.	Date	Page	Summary
2.00	Jan 12, 2006	1	 Overview; "20-pin plastic molded LSSOP or SDIP" → "20-pin plastic molded LSSOP" revised
		2	Table 1.1 Performance Outline of the R8C/14 Group; Package: "20-pin plastic molded SDIP" deleted
		3	Table 1.2 Performance Outline of the R8C/15 Group; Package: "20-pin plastic molded SDIP" deleted, Flash Memory: (Data area) → (Data flash) (Program area) → (Program ROM) revised
		4	Figure 1.1 Block Diagram; "Peripheral Function" added, "System Clock Generation" → "System Clock Generator" revised
		5, 6	Table 1.3 Product Information of R8C/14 Group, Table 1.4 Product Information of R8C/15 Group; revised. Figure 1.2 Part Number, Memory Size and Package of R8C/14 Group, Figure 1.3 Part Number, Memory Size and Package of R8C/15 Group; Package type: "DD: PRDP0020BA-A" deleted
		8	Figure 1.5 PRDP0020BA-A Package Pin Assignment (top view) deleted Table 1.5 Pin Description; Timer C: "CMP0_0 to CMP0_3, CMP1_0 to CMP1_3" → "CMP0_0 to CMP0_2, CMP1_0 to CMP1_2" revised
		10	Figure 2.1 CPU Register; "Reserved Area" → "Reserved Bit" revised
		12	2.8.10 Reserved Area; "Reserved Area" → "Reserved Bit" revised
		13	Figure 3.1 Memory Map of R8C/14 Group revised
		14	3.2 R8C/15 Group, Figure 3.2 Memory Map of R8C/15 Group revised
		15	Table 4.1 SFR Information(1); $0009h$: "XXXXXX00b" \rightarrow "00h" $000Ah$: "00XXX000b" \rightarrow "00h" $001Eh$: "XXXXX000b" \rightarrow "00h"
		17	Table 4.3 SFR Information(3); 0085h: "Prescaler Z" \rightarrow "Prescaler Z Register" 0086h: "Timer Z Secondary" \rightarrow "Timer Z Secondary Register" 0087h: "Timer Z Primary" \rightarrow "Timer Z Primary Register" 008Ch: "Prescaler X" \rightarrow "Prescaler X Register" 008Dh: "Timer X" \rightarrow "Timer X Register" 0090h, 0091h: "Timer C" \rightarrow "Timer C Register" revised
		20	Figure 5.3 Reset Sequence revised
		23	5.2 Power-On Reset Function; "When a capacitor is connected to 0.8VCC or more." added
		29	Figure 6.5 VW1C Register revised
		30	Figure 6.6 VW2C Register NOTE10 added

D.	Data		Description
Rev.	Date	Page	Summary
2.00	Jan 12, 2006	32	Table 6.2 Setting Procedure of Voltage Monitor 1 Reset Associated Bit revised
		33	Table 6.3 Setting Procedure of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset Associated Bit revised
		37	Table 8.2 Bus Cycles for Access Space of the R8C/15 Group added, Table 8.3 Access Unit and Bus Operation; "SFR" → "SFR, Data flash", "ROM/RAM" → "ROM (Program ROM), RAM" revised
		38	Table 9.1 Specification of Clock Generation Circuit NOTE2 deleted
		39	Figure 9.1 Clock Generation Circuit revised
		40	Figure 9.2 CM0 Register NOTE2 revised
		42	Figure 9.4 OCD Register NOTES 3, 4 revised
		43	Figure 9.5 HRA0 Register NOTE2 revised
		45	9.1 Main Clock;
			"After reset," → "During reset and after reset," revised
		46	9.2.1 Low-Speed On-Chip Oscillator Clock; "The application to accommodate the frequency range." → "The application for the frequency change."
		47	9.3.2 CPU Clock; "When changing the clock source the OCD2 bit." deleted
		48	9.4.1 Normal Operating Mode; " into three modes" → " into four modes" revised Table 9.2 Setting and Mode of Clock Associated Bit revised
		49	9.4.1.1 High-Speed Mode, 9.4.1.2 Medium-Speed Mode; "Set the CM06 bit to "1" on-chip oscillator mode." deleted 9.4.1.3 High-Speed, Low-Speed On-Chip Oscillator Mode; "9.4.1.3 On-Chip Oscillator Mode" → "9.4.1.3 High-Speed, Low-Speed On-Chip Oscillator Mode" revised, "Set the CM06 bit to "1" high-speed and medium-speed." deleted
		52	Figure 9.8 State Transition to Stop and Wait Modes; "Figure 9.8 State Transition to Stop and Wait Modes" → "Figure 9.8 State Transition of Power Control" revised Figure 9.9 State Transition in Normal Operating Mode deleted
		53	9.5.1 How to Use Oscillation Stop Detection Function; "● This function cannot is 2 MHz or below" → "● This function cannot is below 2 MHz" revised
		54	Figure 9.9 Procedure of Switching Clock Source From Low-Speed On- Chip Oscillator to Main Clock revised
		55	Figure 10.1 PRCR Register "00XXX000b" → "00h" revised
		68	Figure 11.10 Judgement Circuit of Interrupts Priority Level NOTE1 deleted
		69	Figure 11.11 INTEN and INT0F Registers; INT0F Register "XXXXX000b" → "00h" revised

Davi	Data		Description
Rev.	Date	Page	Summary
2.00	Jan 12, 2006	76	11.4 Address Match Interrupt; ", do not use an address match interrupt in a user system." → ", do not set an address match interrupt (the registers of AIER, RMAD0, RMAD1 and the fixed vector tables) in a user system." revised
		77	Figure 11.19 AIER, RMAD0 to RMAD1 Registers; AIER Register revised
		79	Figure 12.2 OFS and WDC Registers; Option Function Select Register NOTE1 revised, NOTE2 added Watchdog Timer Control Register NOTE1 deleted
		83	Table 13.1 Functional Comparison of Timers; "Decrement" → "Increment"
		84	Figure 13.1 Block Diagram of Timer X revised
		87	Table 13.2 Specification of Timer Mode; • "INT1/CNTR0 Signal Pin Function" → "INT10/CNTR00, INT11/CNTR01 Pin Function" revised
			 • "• When writing registers (the data is transferred to the counter when the following count source is input)."→ • When writing registers at the following count source input and the data is transferred to the counter at the second count source input and the count re-starts at the third count source input." revised
		88	Table 13.3 Specification of Pulse Output Mode; • "INT1/CNTR0 Signal Pin Function" → "INT10/CNTR00 Pin Function" revised
			 "• When writing registers (the data is transferred to the counter when the following count source is input)."→ "• When writing registers at the following count source input and the data is transferred to the counter at the second count source input and the count re-starts at the third count source input." revised • NOTE1 added
		90, 92, 95	Table 13.4 Specification of Event Counter Mode, Table 13.5 Specification of Pulse Width Measurement Mode, Table 13.6 Specification of Pulse Period Measurement Mode; • "INT1/CNTR0 Signal Pin Function" → "INT10/CNTR00, INT11/CNTR01 Pin Function" revised • "• When writing registers (the data is transferred to the counter when the following count source is input)" >
			the following count source is input)."→ "• When writing registers at the following count source input and the data is transferred to the counter at the second count source input and the count re-starts at the third count source input." revised
		98	Figure 13.11 Block Diagram of Timer Z; "Peripheral Data Bus" → "Data Bus" revised
		101	Figure 13.14 TZOC and PUM Registers; Timer Z Output Control Register "Stops counting" → "One-shot stops", "Starts counting" → "One-shot starts" revised

Rev.	Date	Description	
		Page	Summary
2.00	Jan 12, 2006	103	Table 13.7 Specification of Timer Mode; "• When writing registers (the data is transferred to the counter when the following count source is input) while the TZWC bit is set to "0" (writing to the reload register and counter simultaneously)." → "• When writing registers at the following count source input and the data is transferred to the counter at the second count source input and the count re-starts at the third count source input." revised
		108, 112	Table 13.9 Specification of Programmable One-Shot Generation Mode, Table 13.10 Specification of Programmable Wait One-Shot Generation Mode Specifications; Count Operation; "● When a count completes, …" → "● When a count stops, …" revised
		112	Table 13.10 Specification of Programmable Wait One-Shot Generation Mode Specifications; NOTE1, 2, 3 revised
		116	Figure 13.25 Block Diagram of CMP Waveform Output Unit revised
		123	Table 13.12 Specification of Output Compare Mode NOTE1 revised
		124	Figure 13.31 Operating Example of Timer C in Output Compare Mode revised
		127	Figure 14.3 U0TB, U0RB and U0BRG Registers; U0TB and U0RB Registers revised, U0BRG Register NOTE3 added
		128	Figure 14.4 U0MR and U0C0 Registers; U0C0 Register NOTE1 added
		136	Table 14.5 Registers to Be Used and Settings in UART Mode; U0BRG: "–" → "0 to 7" revised
		169	Figure 16.1 Block Diagram of A/D Converter "Vref" → "Vcom" revised
		170, 173, 175	Figure 16.2 ADCON0 and ADCON1 Registers, Figure 16.4 ADCON0 and ADCON1 Registers in One-Shot Mode, Figure 16.5 ADCON0 and ADCON1 Registers in Repeat Mode; ADCON0 Register revised
		176 to 178	Figure 16.6 Timing Diagram of A/D Conversion revised and 16.4 A/D Conversion Cycles to 16.6 Inflow Current Bypass Circuit added
		180, 181	Figure 17.1 Configuration of Programmable I/O Ports (1), Figure 17.2 Configuration of Programmable I/O Ports (2); NOTE1 added
		182	Figure 17.3 Configuration of Programmable I/O Ports (3) NOTE4 added
		184	Figure 17.5 PD1, PD3 and PD4 Registers, Figure 17.6 P1, P3 and P4 Registers; NOTE1, 2 revised
		185	Figure 17.7 PUR0 and PUR1 Registers revised
		186 to 189	17.4 Port setting added, Table 17.4 Port P1_0/KI0/AN8/CMP0_0 Setting to Table 17.17 Port P4_5/INT0 Setting added
		191	Table 18.1 Flash Memory Version Performance; Program and Erase Endurance: (Program area) → (Program ROM), (Data area) → (Data flash) revised

Rev.	Date	Description	
		Page	Summary
2.00	Jan 12, 2006	193	18.2 Memory Map; "The user ROM area Block A and B." → "The user ROM area (program ROM) Block A and B (data flash)." revised Figure 18.1 Flash Memory Block Diagram for R8C/14 Group revised
		194	Figure 18.2 Flash Memory Block Diagram for R8C/15 Group revised
		196	Figure 18.4 OFS Register; NOTE1 revised, NOTE2 added
		200	Figure 18.5 FMR0 Register; NOTE6 revised
		201	Figure 18.6 FMR1 and FMR4 Registers; FMR4 Register NOTE2 revised
		202	Figure 18.7 Timing on Suspend Operation added
		203	Figure 18.8 How to Set and Exit EW0 Mode and Figure 18.9 How to Set and Exit EW1 Mode revised
		208	Figure 18.13 Block Erase Command (When Using Erase-Suspend Function) revised
		211	Figure 18.14 Full Status Check and Handling Procedure for Each Error revised
		212 to 213	18.5 Standard Serial I/O Mode revised
		214	Figure 18.15 Pin Connections for Standard Serial I/O Mode 3; Figure title revised
		215	Figure 18.16 Pin Process in Standard Serial I/O Mode → Figure 18.16 Pin Process in Standard Serial I/O Mode 2 revised, Figure 18.17 Pin Process in Standard Serial I/O Mode 3 added
		219	Table 19.4 Flash Memory (Program ROM) Electrical Characteristics; • NOTES 1 to 7 added • "Topr" = "Ambient temperature"
		220	Table 19.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics; • revised • "Topr" = "Ambient temperature"
		221	Figure 19.2 Time delay from Suspend Request until Erase Suspend revised
		222	Table 19.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset) NOTE2 revised. Table 19.12 Timing Requirements of Clock Synchronous Serial I/O (SSU) with Chip Select revised.
		223	Table 19.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics revised
		224	Figure 19.4 I/O Timing of Clock Synchronous Serial I/O (SSU) with Chip Select (Master) revised
		225	Figure 19.5 I/O Timing of Clock Synchronous Serial I/O (SSU) with Chip Select (Slave) revised
		227	Table 19.13 Electrical Characteristics (1) [VCC = 5V] revised

Rev.	Date	Description	
		Page	Summary
2.00	Jan 12, 2006	228	Table 19.14 Electrical Characteristics (2) [Vcc = 5V] NOTE1 deleted
		229	Table 19.18 Serial Interface; "35" → "50", "80" → "50"
		231	Table 19.20 Electrical Characteristics (3) [VCC = 3V] revised
		232	Table 19.21 Electrical Characteristics (4) [Vcc = 3V] NOTE1 deleted
		233	Table 19.25 Serial Interface; "55" \rightarrow "70", "160" \rightarrow "80"
		239	20.3.1 Oscillation Stop Detection Function; "Since is 2MHz or below," → "Since is below 2 MHz," revised 20.3.2 Oscillation Circuit Constants added
		240	20.4.2 Precautions on Timer X; '• When writing "1" (count starts) to writing "1" to the TXS bit.' → '• "0" (count stops) can be after the TXS bit is set to "1".' revised
		241	20.4.3 Precautions on Timer Z; • "• In programmable "0" and the timer" → "• In programmable "0" (stops counting) or setting the TZOS bit in the TZOC register to "0" (stops one-shot), the timer" revised • '• When writing "1" (count starts) to writing "1" to the TZS bit.' → '• "0" (count stops) can be after the TZS bit is set to "1".' revised
		246	Table 20.2 Interrupt in EW1 Mode revised
		247	20.8.1.9 Interrupt Request Generation During Auto-erase Operation in EW1 Mode added
		249	21. Precaution for On-chip Debugger (2) revised, (4) added
		250	Appendix 1. Package Dimensions; Package "PRDP0020BA-A" deleted
		251	Appendix Figure 2.1 Connecting Example with M16C Flash Starter (M3A-0806); • NOTE1 revised • Pulled up added
2.10	Jan 19, 2006	223	Table 19.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics; High-Speed On-Chip Oscillator Frequency Temperature • Supplay Voltage Dependence 0 to +60 °C / 5 V ± 5 % Standard Max. "8.16" → "8.56"
		247	20.8.1.9 Interrupt Request Generation during Auto-erase Operation in EW1 Mode; (b) revised

R8C/14 Group, R8C/15 Group Hardware Manual

Publication Data: Rev.0.10 May 17, 2004

Rev.2.10 Jan 19, 2006

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan

R8C/14 Group, R8C/15 Group Hardware Manual

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

<u>R5F21152SP#U0</u> <u>R5F21153SP#U0</u> <u>R5F21144SP#U0</u> <u>R5F21154DSP#U0</u> <u>R5F21142SP#U0</u> <u>R5F21154SP#U0</u> <u>R5F21153DSP#U0</u>