

RX23W Group

Renesas Solution Starter Kit for RX23W User's Manual

RENESAS 32-Bit MCU RX Family / RX200 Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Disclaimer

By using this Renesas Solution Starter Kit (RSSK), the user accepts the following terms:

The RSSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSSK is assumed by the User. The RSSK is provided by Renesas on an "as is" basis without warranty of any kind whether express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular purpose, title and non-infringement of intellectual property rights with regard to the RSSK. Renesas expressly disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data, loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSSK, even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSSK product:

This Renesas Solution Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

- ensure attached cables do not lie across the equipment
- · reorient the receiving antenna
- · increase the distance between the equipment and the receiver
- connect the equipment into an outlet on a circuit different from that which the receiver is connected
- power down the equipment when not in use
- consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the following measures be undertaken;

- The user is advised that mobile phones should not be used within 10m of the product when in use.
- The user is advised to take ESD precautions when handling the equipment.

The Renesas Solution Starter Kit does not represent an ideal reference design for an end product and does not fulfil the regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the CPU Board hardware functionality, and electrical characteristics. It is intended for users designing sample code on the CPU Board platform, using the many different incorporated peripheral devices.

The manual comprises of an overview of the capabilities of the RSSK product, but does not intend to be a guide to embedded programming or hardware design.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the RX23W Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site

Document Type	Description	Document Title	Document No.
User's Manual	Describes the technical details of the	Renesas Solution Starter Kit for RX23W	R20UT4446EG
	CPU Board hardware.	User's Manual	
Tutorial Manual	Provides a guide to setting up RSSK	Renesas Solution Starter Kit for RX23W	R20UT4447EG
	environment, running sample code and debugging programs.	Tutorial Manual	
Quick Start Guide	Provides simple instructions to setup	Renesas Solution Starter Kit for RX23W	R20UT4448EG
	the RSSK and run the first sample.	Quick Start Guide	
Smart Configurator	Provides a guide to code generation	Renesas Solution Starter Kit for RX23W	R20UT4449EG
Tutorial	and importing into the e ² studio IDE.	Smart Configurator Tutorial Manual	
Schematics	Full detail circuit schematics of the	Renesas Solution Starter Kit for RX23W	R20UT4445EG
	CPU Board.	Schematics	
Hardware Manual	Provides technical details of the RX23W microcontroller.	RX23W Group User's Manual: Hardware	R01UH0823EJ

2. List of Abbreviations and Acronyms

Abbreviation	Full Form				
ADC	Analog-to-Digital Converter				
BC	Battery Charging				
	Bluetooth® Low Energy				
BLE	The Bluetooth® word mark and logos are registered trademarks owned be Bluetooth SIG, in and any use of such marks by Renesas Electronics Corporation is under license.				
bps	bits per second				
CAN	Controller Area Network				
CPU	Central Processing Unit				
DAC	Digital-to-Analog Converter				
DIP	Dual In-line Package				
DMA	Direct Memory Access				
DMAC	Direct Memory Access Controller				
DNF	Do Not Fit				
E1 / E2 Lite	Renesas On-chip Debugging Emulator				
EEPROM	Electronically Erasable Programmable Read Only Memory				
EMC	Electromagnetic Compatibility				
ESD	Electrostatic Discharge				
GLCDC	Graphic LCD Controller				
I2C (IIC)	Philips™ Inter-Integrated Circuit Connection Bus				
IRQ	Interrupt Request				
LCD	Liquid Crystal Display				
LED	Light Emitting Diode				
LIN	Local Interconnect Network				
MCU	Micro-controller Unit				
MTU	Multi-Function Timer Pulse Unit				
n/a (NA)	Not Applicable				
n/c (NC)	Not Connected				
NMI	Non-maskable Interrupt				
OTG	On The Go™				
PC	Personal Computer				
PDC	Parallel Data Capture Unit				
PLL	Phase Locked Loop				
Pmod™	This is a Digilent Pmod™ Compatible connector. Pmod™ is registered to Digilent Inc. Digilent-Pmod Interface Specification				
POE	Port Output Enable				
PWM	Pulse Width Modulation				
RAM	Random Access Memory				
RF	Radio Frequency				
ROM	Read Only Memory				
RSSK	Renesas Solution Starter Kit				
RTC	Real Time Clock				
SCI	Serial Communications Interface				
SPI	Serial Peripheral Interface				
SSI	Serial Sound Interface				
TFT	Thin Film Transistor				
TSIP-Lite	Trusted Secure IP Lite				
UART	Universal Asynchronous Receiver/Transmitter				
USB	Universal Serial Bus				
WDT	Watchdog Timer				
	stered trademarks are the property of their respective owners				

All trademarks and registered trademarks are the property of their respective owners.

Table of Contents

1. O	Overview	9
1.1	Purpose	
1.2	Features	
1.3	Board specification	
2. Po	ower Supply	11
2.1	Requirements	11
2 0	oard Layout	10
3.1	Component Layout	
3.2	Board Dimensions	
3.3	Component Placement	14
4. C	connectivity	15
4.1	Internal Board Connections	
4.2	Debugger Connections	
<i>-</i>	la a n Cinavita	4-
	ser Circuitry	
5.1	Reset Circuit	
5.2	Clock Circuit	
5.3	Switches	
5.4	LEDs	
5.5	Potentiometer	
5.6	Pmod™	
5.7	USB Serial Port	
5.8	Controller Area Network (CAN)	20
5.9	Universal Serial Bus (USB)	20
5.10	I ² C Bus (Inter-IC Bus)	21
5.11	Serial Sound Interface (SSI)	21
5.12	Touch Interface	21
5.13	Bluetooth® Low Energy (BLE)	
5.14	MCU Header	
6 C	Configuration	23
6.1	Modifying the RSSK	
6.2	MCU Operating Modes	
6.3	E1/E2 Lite Debugger Configuration	
6.4	Power Supply Configuration	24
6.5	Clock Configuration	25
6.6	Analog Power and ADC Configuration	
6.7	CAN Configuration	25
6.8	I2C & EEPROM Configuration	
6.9	IRQ & Switch Configuration	26
6.10	LED Configuration	27
6.11	MCU Header Configuration	
6.12	PMOD1 Configuration	
6.13	PMOD2 Configuration	
6.14	Bluetooth® Low Energy (BLE)	
6.15	Serial Sound Interface (SSI)	
6.16	Touch Interface Configuration	
6.17	USB to Serial Configuration	
6.18	USB Configuration	
	-	
7. C	ode Development	34
7.1	Overview	
7.2	Compiler Restrictions	
-		

7.3 Mode Support	34
7.4 Debugging Support	34
7.5 Address Space	34
'	
8. Additional Information	35
o. / taditariai ililatinatari	
9. Certification of Compliance	36
9.1 Radio-Related Laws	
3.	

1. Overview

1.1 Purpose

This CPU Board is an evaluation tool for Renesas microcontrollers. This manual describes the technical details of the CPU Board hardware.

1.2 Features

This RSSK provides an evaluation of the following features:

- · Renesas microcontroller programming
- · User code debugging
- User circuitry such as switches, LEDs and a potentiometer
 Through the provided set of sample applications.

The RSSK board contains all the circuitry required for microcontroller operation.

1.3 Board specification

Board specification was shown in Table 1-1 below.

Table 1-1: Board Specification

Item	Specification			
Part Number (Ordering Number)	RTK5523W8AS00000BJ	RTK5523W8BS00000BJ		
Board part Number	RTK5523W8AC00001BJ RTK5523W8BC00001BJ			
	Part No : R5F523W8ADBL *2 Part No : R5F523W8BDBL *2			
Microcontroller	Package : 85-pin TFBGA			
	On-Chip Memory : ROM 512KB, RAM 64KB			
On-Board Memory	I ² C EEPROM: 2Kbit			
	RX23W RF/Main : 32MHz			
Input Clock	RX23W Main(Reserve) : 8MHz			
	RX23W Sub : 32.768kHz (Low-CL)			
	DC Power Jack : 5 V Input			
Power Supply	Power Supply IC: 5V Input, 3.3V Output			
	Power Supply IC : 5V Input, 5V Output(For US	SB Host)		
Debug Interface	E1/E2 Lite 14-pin box header			
DID Owith It	Mode Configuration : 2-pole x 1			
DIP Switch	For User I/O : 4-pole x 1			
Duck Cuitab	Reset Switch x 1			
Push Switch	User Switch x 2			
Potentiometer(for ADC)	Single-turn, 10kΩ			
	5V Power indicator: green x 1			
LED	3.3V Power Indicator : green x 1			
	User : green x 1, orange x 1, red x 2			
	Connector : MM8030-2610RJ3 x 1			
BLE Interface	Chip Antenna: ANT016008LCS2442MA2 x 1			
BLE IIIterrace	Range of frequency: 2402 to 2480 MHz			
	Maximum transmission output power: 0dBm (in 4dBm output mode)			
	Connector : 2.54mm pitch, 3-pin x 1			
CAN	CAN Driver : R2A25416SP *3 x 1			
	USB0-Function : USB-Micro B			
USB	USB0-Host : USB-Type A			
1100 1 0 1 1 0 1 1 1 1	Connector : USB-Micro B			
USB to Serial Converter Interface	USB Serial Driver x 1			
C 17M	PMOD1 : Angle type, 12-pin Connector			
Pmod™	PMOD2 : Angle type, 12-pin Connector			
Touch Interface	Slider x 1(electrode x 4), Key x 1(electrode x 1)			
MCU Header *1	2.54 mm pitch x 44			
*1: The connector is not inclu				

^{*1:} The connector is not included in the product.

^{*2:} R5F523W8ADBL has a built-in Bluetooth® encryption circuit.

R5F523W8BDBL has a Bluetooth® encryption circuit and encryption function (TSIP-Lite).

^{*3:} This CAN driver has Non-promotion status, so do not use this CAN driver on your system.

2. **Power Supply**

2.1 Requirements

This RSSK is supplied with an E1 debugger or E2 Lite debugger. The debugger is able to power the RSSK board with up to 200mA. When the RSSK is connected to another system, that system can supply power to the RSSK. This board has an optional centre-positive supply connector using a 2.0mm barrel power jack.

This CPU board supports one external voltage input. Details of the external power supply connection are shown in Table 2-1 and Table 2-2 below. The default power configuration is shown in bold, blue text.

Table 2-1: PWR connector Requirements

Connector	Supply voltage
PWR	Input 5VDC

Table 2-2: Main Power Supply Requirements

Supply Source *1	J3 Setting	J13 Setting	J10 Setting	J5 Setting	J4 Setting	R37	R44	R35	Board_5V	Board_VCC *2 UC_VCC
E2 Lite / E1(3.3V)	Open	Open	Short	1-2 Short	1-2 Short	Fit	DNF	DNF	N/A *3, 4, 5, 6	3.3V
	Open	Short	Short	2-3 Short	don't care	Fit	DNF	DNF	5V *4, 5	3.3V
PWR connector	Open	Short	Short	1-2 Short	1-2 Short	Fit	DNF	DNF	5V *3, 4	3.3V
	Open	Short	Short	don't care	don't care	DNF	Fit	DNF	5V *3, 4, 5	1.8V *7
USB0_2	2-3 Short	Short	Short	1-2 Short	2-3 Short	Fit	DNF	DNF	5V *3, 5	3.3V
USBCN0	1-2 Short	Short	Short	1-2 Short	1-2 Short	Fit	DNF	DNF	5V *3, 4	3.3V

^{*1: 5}V can't be supplied with the E1 emulator.

The compatible plug of the AC adapter is center plus, outer diameter 5.5 mm, inner diameter 2.1 mm.

The main power supply connected to PWR should supply a minimum of 5W to ensure full functionality.

When using USB in function mode, be sure to set J5 to 1-2 Short. Also, do not plug in both USB0_1 and USB0_2 cables at the same time.

^{*2: 5}V Pmod™ interface in all setting can't be used.

^{*3:} USB host interface can't be used.

^{*4:} USB function (bus-power) can not be used.

^{*5:} USB function (self-power) can not be used.

^{*6:} USB CAN and EEPROM 5V interface can't be used.

^{*7:} User LED can't be used.

3. Board Layout

3.1 Component Layout

Figure 3-1 below shows the top component layout of the board.

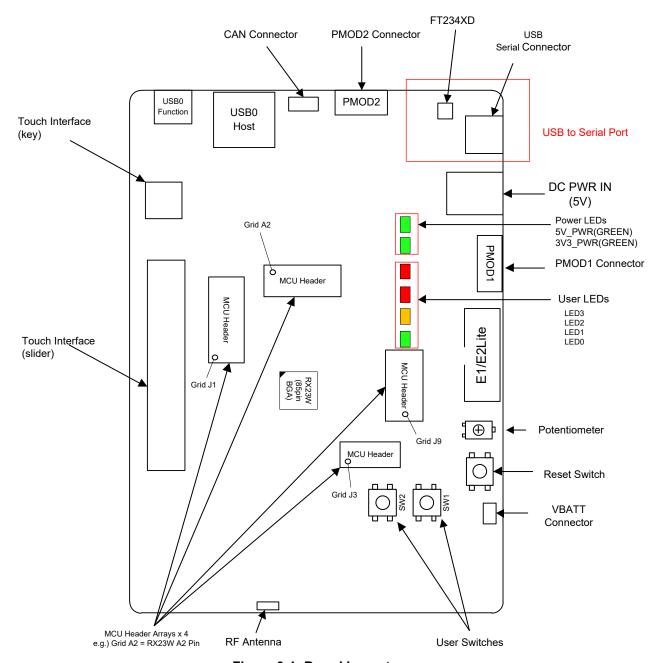


Figure 3-1: Board Layout

3.2 Board Dimensions

Figure 3-2 below gives the board dimensions and connector positions. All the through-hole connectors are on a common 2.54mm pitch grid for easy interfacing.

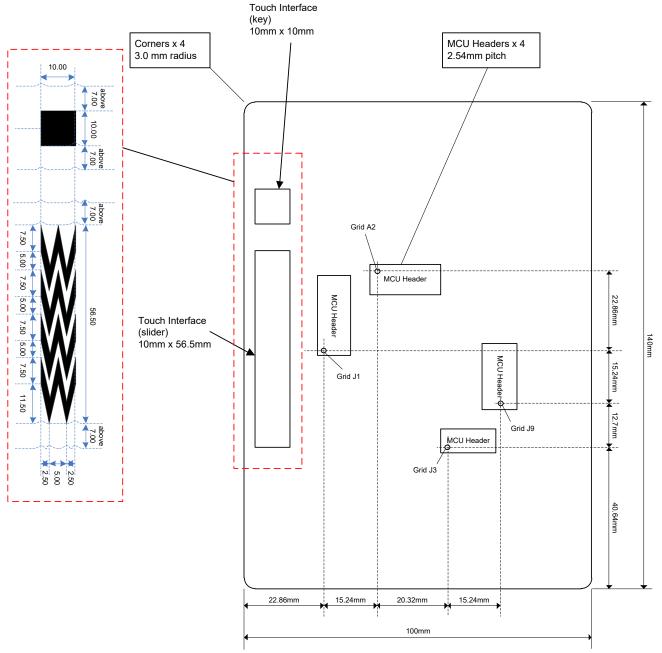


Figure 3-2: Board Dimensions

3.3 Component Placement

Figure 3-3 below shows placement of individual components on the top-side. Component types and values are shown on the board schematics.

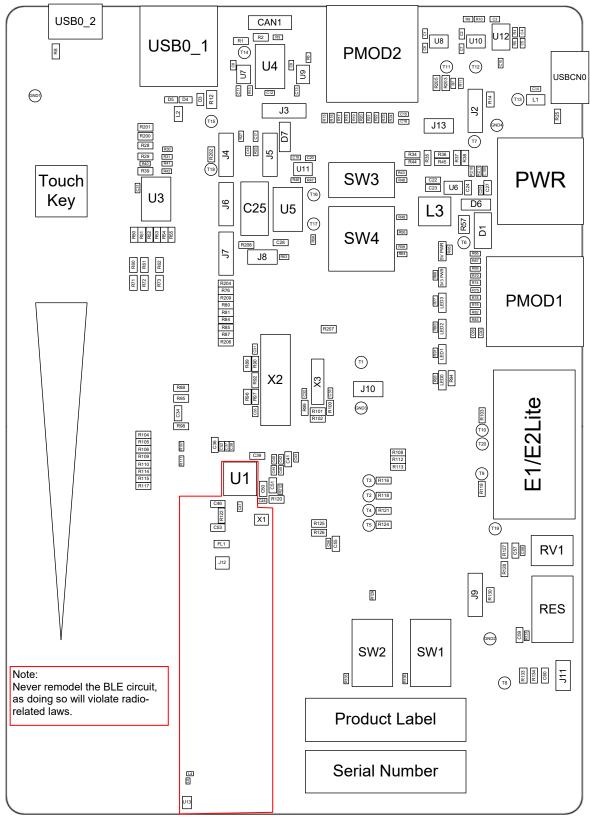


Figure 3-3: Top-Side Component Placement

4. Connectivity

4.1 Internal Board Connections

The diagram below shows the CPU board components and their connectivity to the MCU.

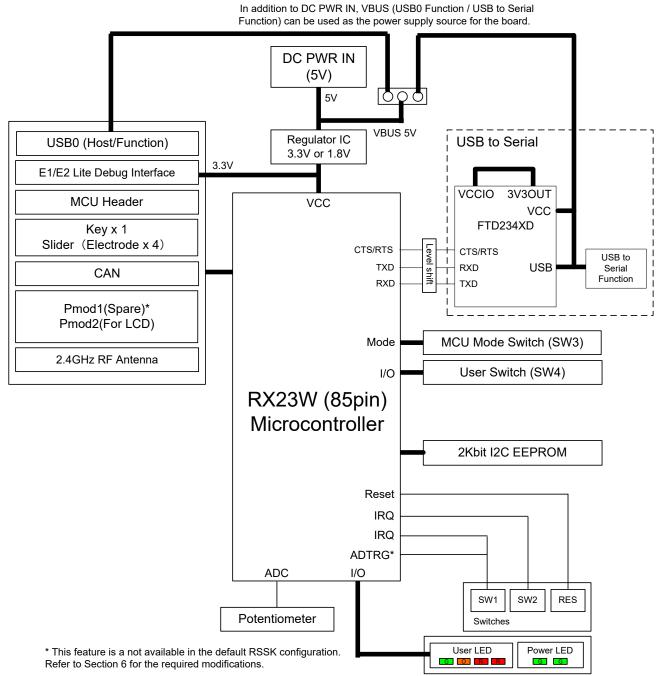


Figure 4-1: Internal Board Block Diagram

4.2 Debugger Connections

Figure 4-2 below shows the connections between the CPU board, E1/E2 Lite debugger and the host PC.

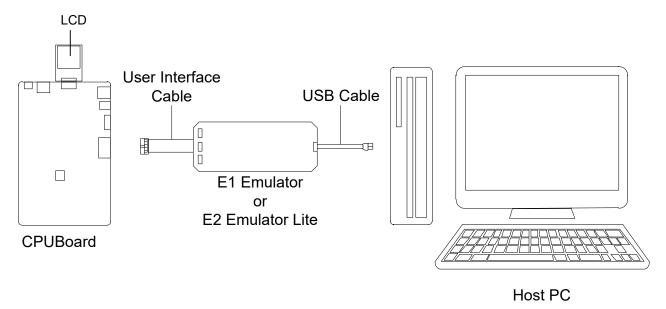


Figure 4-2: Debugger Connection Diagram

5. User Circuitry

5.1 Reset Circuit

A reset control circuit is fitted to the CPU board to generate the required reset signal, and is triggered from the RES switch. Refer to 'RX23W Group User's Manual: Hardware' for details regarding the reset signal timing requirements, and the CPU board schematics for information regarding the reset circuitry in use on the board.

5.2 Clock Circuit

A clock circuit is fitted to the CPU board to generate the required clock signal to drive the MCU, and associated peripherals. Refer to 'RX23W Group User's Manual: Hardware' Manual for details regarding the clock signal requirements, and the CPU board schematics for information regarding the clock circuitry in use on the CPU board. Details of the oscillators fitted to the board are listed in **Table 5-1** below.

Table 5-1: Crystal

Crystal	Function	Default Placement	Frequency	Device Package
X1	RF/Main MCU crystal for RX23W *1	Fitted	32MHz	Encapsulated, SMT
X2	Main(Reserve) MCU crystal for RX23W *1	Fitted	8MHz	Encapsulated, SMT
X3	Real time Clock for RX23W	Fitted	32.768kHz *2	Encapsulated, SMT

^{*1:} If HOCO is selected as the MCU operating clock, the USB function cannot be used.

5.3 Switches

There are five switches located on the CPU board. The function of each switch and its connection is shown in **Table 5-2 and Table 5-3**. For further information regarding switch connectivity, refer to the CPU board schematics.

Table 5-2: Push Switch Connections

Switch	Function	MC	MCU		
	FullCuoii	Signal (Port)	Pin		
RES	When pressed, the microcontroller is reset.	RES#	B6		
SW1	Connects to an ADTRG0 input for ADC controls.	P07	C7		
3001	Connects to an IRQ1 input for user controls.	P31	B4		
SW2	Connects to an IRQ0 input for user controls.	P30 A2			

Table 5-3: DIP Switch Connections

Switch		Function	MC	MCU		
`	SWILCII	Function	Signal (Port)	Pin		
SW3	Pin 1	Refer to section 6.2 for the setting contents.	MD/FINED	B7		
	Pin 2	Refer to section 6.2 for the setting contents.	PC7	F1		
SW4	Pin 1	User switch.	P45	E9		
	Pin 2		P46	E8		
	Pin 3		PB0	J6		
	Pin 4		PE4	J8		

^{*2:} The Sub clock oscillator drive circuit is low power to achieve excellent standby power consumption. The Crystal and associated capacitors must have a capacitance equal or less than 6pF to ensure this oscillator is accurate. The oscillator will function at higher loads, but operation to specification is not guaranteed.

5.4 **LEDs**

There are 6 LEDs on the CPU board. The function of each LED, its colour, and its connections are shown in **Table 5-4**.

Table 5-4: LED Connections

LED	Colour	Function	MCU		
LED	Colour	FullCuoli	Port	Pin	
3V3 PWR	Green	Indicates the status of the Board_VCC power rail.	NC	NC	
5V PWR	Green	Indicates the status of the Board_5V power rail.	NC	NC	
LED0	Green	User operated LED.	P41	C8	
LED1	Orange	User operated LED.	P42	D8	
LED2	Red	User operated LED.	P43	D9	
LED3	Red	User operated LED.	P44	E10	

5.5 **Potentiometer**

A single-turn potentiometer is connected as a potential divider to analog input AN000, pin C9. The potentiometer can be used to create a voltage between Board_VCC and AVSS0. Refer to the maker site for specification of the potentiometer (VISHAY with part number TS53 series).

The potentiometer offers an easy method of supplying a variable analog input to the microcontroller. It does not necessarily reflect the accuracy of the controller's ADC. Refer to refer to 'RX23W Group User's Manual: Hardware' for further details.

5.6 Pmod™

The CPU board has connectors for the Digilent Pmod™ interface. The operation can be checked by connecting the LCD module to the PMOD 2 connector.

Care should be taken when installing the LCD module to ensure pins are not bent or damaged. The LCD module is vulnerable to electrostatic discharge (ESD); therefore appropriate ESD protection should be used.

The Digilent Pmod™ Compatible headers use an SPI interface. Figure 5-1 below shows Digilent Pmod™ Compatible Header Pin Numbering. Connection information for the Digilent Pmod™ Compatible header is provided in Table 5-5 and Table 5-6 below.

Please note that the connector numbering adheres to the Digilent Pmod™ standard and is different from all other connectors on the RSSK designs. Details can be found in the Digilent Pmod™ Interface Specification Revision: November 20, 2011.

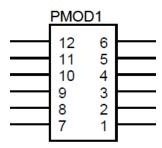


Figure 5-1: Digilent Pmod™ Compatible Header Pin Numbering

Table 5-5: P	mod ™1	Header	Connections
Harat Dan a dTM	0 4!1	-1-111-	04!

	Digilent Pmod™ Compatible Header Connections								
Pin	Circuit Net Name	MCU		Pin	Circuit Net Name	M	CU		
PIII	Circuit Net Name	Port	Pin	PIII	in Circuit Net Name	Port	Pin		
1	PMOD1-CS *1	P31	B4	7	PMOD1-IRQ *1	PB1	J5		
2	PMOD1-MOSI *1	P26	B2	8	PMOD1-IO1	PD3	F9		
3	PMOD1-MISO *1	P30	A2	9	PMOD1-IO2	P05	В9		
4	PMOD1-SCK	P27	B3	10	PMOD1-IO3	PB7	J3		
5	GROUND	-	-	11	GROUND	-	-		
6	Board_VCC	-	-	12	Board_VCC	-	-		

^{*1:} This connection is a not available in the default RSSK configuration - refer to §6 for the required modifications.

Table 5-6: Pmod™2 Header Connections

	Digilent Pmod™ Compatible Header Connections							
Pin	Circuit Net Name	MCU		Pin	Circuit Net Name	MCU		
Pin	Circuit Net Name	Port Pin Circuit	Circuit Net Name	Port	Pin			
1	PMOD2-CS	PE3	H8	7	PMOD2-IRQ	PB1	J5	
2	PMOD2-MOSI	PE1	J9	8	PMOD2-IO1	PB3	H4	
3	PMOD2-MISO	PE2	H9	9	PMOD2-IO2	P03	B8	
4	PMOD2-SCK	PE0	G9	10	PMOD2-IO3	PJ3	C6	
5	GROUND	-	-	11	GROUND	-	-	
6	Board_VCC	-	-	12	Board_VCC	-	-	

5.7 USB Serial Port

A USB serial port is implemented in a FT234XD and is connected to the RX23W Serial Communications Interface (SCI) module. Connections between the USB to Serial converter and the microcontroller are listed in **Table 5-7** below.

MCU **Signal Name Function** Port Pin SCI8 Transmit Signal PC7 F1 SERIAL-TXD P26 SCI1 Transmit Signal. *2 B2 SCI8 Receive Signal. PC6 F2 SERIAL-RXD SCI1 Receive Signal. *2 P30 Α2 SERIAL-CTS *1 Clear To Send. PC4 G1 SERIAL-RTS *1 Request To Send. PC4 G1

Table 5-7: Serial Port Connections

USB serial driver made by FTDI is required for USB serial communication. Please download from the URL below. Please contact FTDI for installation method of USB serial driver and questions. https://www.ftdichip.com/Drivers/D2XX.htm

5.8 Controller Area Network (CAN)

A CAN transceiver IC is fitted to CPU board, and connected to the CAN MCU peripheral. For further details regarding the CAN protocol and supported modes of operation, please Refer to 'RX23W Group User's Manual: Hardware'. The connections for the CAN microcontroller signals are listed in **Table 5-8** below.

 CAN Signal
 Function
 MCU

 Port
 Pin

 CANOTX
 CAN Data Transmission.
 P14
 C1

 CANORX
 CAN Data Reception.
 P15
 C2

Table 5-8: CAN Connections

5.9 Universal Serial Bus (USB)

This CPU board is fitted with a USB Host socket (type A) and a Function socket (type Micro B). USB module USB0 is connected to the Host and Function socket, and can operate as either a Host or Function device. The connection for the USB0 module is shown in **Table 5-9** below.

Table 5-9: USB0 Module Connections

LICE Cianal	Function	MCU		
USB Signal	Function	Port	Pin	
USB0-DP	D+ I/O pin of the USB on-chip transceiver	USB0_DP	E1	
USB0-DM	D– I/O pin of the USB on-chip transceiver	USB0_DM	D1	
LICEO VELIC	LISP cable connection menitor nin	PB5 *1	J4	
USB0-VBUS	USB cable connection monitor pin	P16 *2	C3	
USB0-VBUSEN	VBUS (5V) supply enable signal for external power supply chip	P26	B2	
USB0-OVRCURB	External overcurrent detection signals	P22	C4	

^{*1:} Can't be used as USB-VBUS in USB boot mode.

^{*1:} This connection is a not available in the default CPU board configuration - refer to §6 for the required modifications. CTS / RTS can be used exclusively. For details, refer to 'RX23W Group User's Manual: Hardware'.

^{*2:} This connection is a not available in the default RSSK configuration - refer to §6 for the required modifications.

^{*2:} This connection is a not available in the default RSSK configuration - refer to §6 for the required modifications.

5.10 I²C Bus (Inter-IC Bus)

The RX23W features two I2C (Inter-IC Bus) interface modules. RIIC0 is connected to a 2Kbit EEPROM. Table 5-10 below details the connected device, and their connection to the MCU.

Table 5-10: I²C Bus Connections

I2C Rue signal	Function	MCI	U
I ² C Bus signal	Fullction	Port Pin	
E2P-SDA	Data	P17	B1
E2P-SCL	Clock	P16	C3

5.11 Serial Sound Interface (SSI)

The RX23W microcontroller has one channel of serial digital sound interface (SSI), connected to the MCU Headers. Table 5-11 shows the connection relationship.

Table 5-11: SSI Connections

SSI Signal *1	Franction	M	MCU		
	Function	Port	Pin		
SSITXD0	Serial data output	P17	B1		
SSIRXD0	Serial data input	P26	B2		
SSIWS0	Word select	P27	В3		
AUDIO_MCLK	Audio master clock	P30	A2		
SSISCK0	Serial bit clock	P31	B4		

^{*1:} This connection is a not available in the default RSSK configuration - refer to §6 for the required modifications.

5.12 **Touch Interface**

The RX23W microcontroller is fitted with a four Touch Interface (slider) and one Touch Interfaces (key). Table 5-12 below details the connected devices, and their connections to the MCU.

Table 5-12: Touch Interface Connections

Touch Signal	Function	MCU		
	runction	Port	Pin	
TS4	Capacitance measurement terminal (Touch key)	P25	A1	
TS23	Capacitance measurement terminal (Upper of touch slider)	PC5	G2	
TS27	Capacitance measurement terminal (Middle upper of touch slider)	PC3	H1	
TS30	Capacitance measurement terminal (Middle lower of touch slider)	PC2	H2	
TS35	Capacitance measurement terminal (Lower of touch slider)	PC0	J1	
TSCAP	LPF (Low-pass filter) connection terminal	PC4	G1	

5.13 Bluetooth® Low Energy (BLE)

When running any Bluetooth® Low Energy (BLE) software, a unique Bluetooth Device address should be used. A unique Renesas allocated Bluetooth Device address is attached to the PCB on the bottom side as a sticker.

The CPU board has one Bluetooth® Low Energy (BLE) interface. **Table 5-13** below details the connected devices, and their connections to the MCU.

Table 5-13: Bluetooth® Low Energy (BLE) Connections

BLE Signal	Function	MCU		
BLE Signal	FullClion	Port	Pin	
CLKOUT_RF	RF clock output terminal	P47	F10	
ANT	RF single transceiver RF single input / output terminal	ANT	K2	
XTAL1_RF	32 MHz resonator connection terminal	XTAL1_RF	K7	
XTAL2_RF	32 MHz resonator connection terminal	XTAL2_RF	K6	
DCLOUT	Power supply output connection terminal for RF transceiver *1	DCLOUT	K9	
DCLIN_A	Power supply output connection terminal for RF transceiver *1	DCLIN_A	G10	
DCLIN_D	Power supply output connection terminal for RF transceiver *1	DCLIN_D	H10	

^{*1:} Circuit configuration used linear regulator when shipping the product.

5.14 MCU Header

The CPU board has four MCU headers, and some RX23W pins are connected to the MCU headers. **Figure 5-2** shows an example of pin numbers.

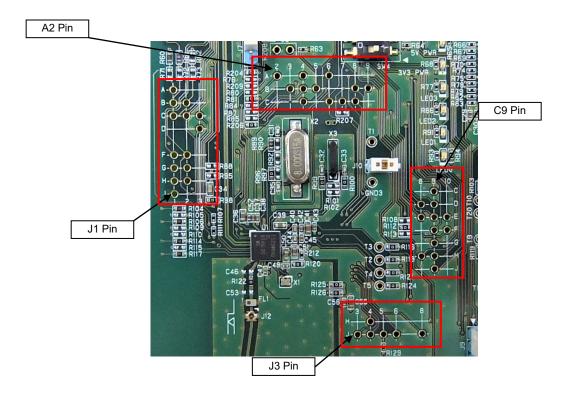


Figure 5-2: Example of MCU Header pin numbers

6. Configuration

6.1 Modifying the RSSK

This section lists the option links that are used to modify the way CPU board operates in order to access different configurations. Configurations are made by modifying link resistors or headers with movable jumpers or by configuration DIP switches

A link resistor is a 0Ω surface mount resistor, which is used to short or isolate parts of a circuit. Option links are listed in the following sections, detailing their function when fitted or removed. Bold, blue text indicates the default configuration that the CPU board is supplied with. Refer to the component placement diagram (§3) to locate the option links, jumpers and DIP switches.

When removing soldered components, always ensure that the CPU board is not exposed to a soldering iron for intervals greater than 5 seconds. This is to avoid damage to nearby components mounted on the board.

When modifying a link resistor, always check the related option links to ensure there is no possible signal contention or short circuits. Because many of the MCU's pins are multiplexed, some of the peripherals must be used exclusively. Refer to 'RX23W Group User's Manual: Hardware' and CPU board schematics for further information.

In the table in this section, "pin" expression is omitted, so please read as follows.

Example: U9.4 -> U9.4pin

J7(1-2 short) -> J7(1pin-2pin short)

6.2 **MCU Operating Modes**

Table 6-1 below details the option links associated with configuring the MCU Operating Modes.

Table 6-1: MCU Operating Modes Switch Settings

SW3 Pin1	SW3 Pin2	J8 *1	Configuration	Related Links
OFF	OFF(don't care)	Open(don't care)	Single Chip Mode	-
OFF	OFF	Open(don't care)	Boot Mode(FINE Interface)	•
ON	OFF	Open(don't care)	Boot Mode (SCI Interface) *2	R205, R209, J7
ON	ON	Open	Boot Mode (USB Interface) (Bus-powered) *3	J5 (1-2 Short) , J3 (2-3 Short), R201, X2
ON		Short	Short	Boot Mode (USB Interface) (Self-powered) *3

^{*1:} Jumper J8 is not mounted on the board at the time of product shipment.

^{*2:} The USB serial port that can be used in the factory setting, does not support boot mode (SCI interface). When using boot mode (SCI interface), change the port used to P26 and P30 according to § 6.17.

^{*3:} USB-VBUS, which can be used in the factory setting, does not support boot mode (USB interface). When using the boot mode (USB interface), refer to § 6.18 and change the port used to P16. You also need an external clock (X2). Change the option link referring to § 6.5.

6.3 E1/E2 Lite Debugger Configuration

Table 6-2 below details the function of the option links associated with E1/E2 Lite Debugger Configuration.

Table 6-2: E1/E2 Lite Debugger Configuration Option Links

Signal	MC	CU	MCU Peripheral Selection			Desti	nation Selection	1
name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
			PMOD1-MOSI	J7 (2-3pin short), R204	R62, R73, R205	PMOD1.2	-	-
			EMU-TXD	J7 (2-3pin short), R62	R204, R73 , R205	E1.5	-	-
P26	B2	P26	SSIRXD0	J7 (2-3pin short), R73	R204, R62, R205	P26	-	-
			SERIAL-TXD	J7 (2-3pin short), R205	R204, R62, R73	U8.2	-	R203
			USB0-VBUSEN	J7 (1-2pin short)	-	U5.4	-	-
			PMOD1-MISO	J6 (2-3pin short)	R76, R80, R209	PMOD1.3	-	-
			SW2	J6 (1-2pin short)	R76, R80, R209	SW2	-	-
P30	A2	P30	EMU-RXD	R76	J6 (open), R80, R209	E1.11	=	-
			AUDIO_MCLK	R80	J6 (open), R76, R209	P30	=	-
			SERIAL-RXD	R209	J6 (open), R76, R80	U10. 2	-	R208
			EMU-UB			E1.10	-	-
			DSW-UB	-	-	SW3.2	=	-
PC7	F1	PC7	PC7	=	-	PC7	=	-
			SERIAL-TXD	R203	-	U8.2	J7 (1-2pin short)	-
RESn	В6		EMU-RESn	-	-	E1.13	-	-
KESII	_ B0		SW-RESn			RES(Switch)	-	-
MD FINED	B7		EMU-MD_FINED	-	-	E1.7	-	-
MD_FINED	B/	-	DSW-MD_FINED	-	-	SW3.1	-	-

6.4 Power Supply Configuration

Table 6-3 below details the function of the option links associated with Power Supply Configuration.

Table 6-3: Power Supply Configuration Option Links

Reference	Configuration	Fit	DNF	Related Links
USB0_2	Connect 5V Power rail to VBUS0.	J3 (2-3 short), J5 (1-2 short)	-	U6.1, U6.2
USBCN0	Connect 5V Power rail to FT234_5V.	J3 (1-2 short), J5 (1-2 short)	-	U6.1, U6.2
USB_5V	Connect 5V power rail to USB_5V.	R57	-	U5.2, U5.3
U6 Output	Connect U6 Output power rail to Board_VCC.	J13 (short)	-	-
Board_5V	Connect 5V power rail to Board_5V.	-	-	U3.8, U6.1, U6.2
Board_VCC	Connect Board_VCC power rail to UC_VCC.	-	-	E1.8, U3.8
UC VCC	Connect Board_VCC power rail to UC_VCC.	J10 (short)	-	U1
00_700	Enable current probe for measurement MCU current consumption.	-	J10 (open)	U1
VBATT	Connect UC_VCC power rail to VBATT.	R133	R134	U1
VDALI	J11 *1 connected to VBATT of MCU.	R134	R133	U1

^{*1:} J11 is a power connector for VBATT, not a jumper. Do not short-circuit J11 Pin 1 and Pin 2 because the power supply is directly connected to ground.

Table 6-4 below details the function of the jumpers associated with the Power Supply Configuration.

Table 6-4: Power Supply Configuration Jumper Settings

Reference	Jumper Position	Configuration	Related Links.
110	Short	Connect Board_VCC power rail to UC_VCC.	-
J10	Open	Enable current probe for measurement MCU current consumption.	-
J13	Short	Enable U6 Output power.	-
J13	Open	Disable U6 Output power.	-
	1-2 Short	Enable USBCN0(FT234_5V).	-
J3	2-3 Short	Enable USB0_2(VBUS0).	J5 (1-2 short)
	All open	Disable USBCN0(FT234_5V), USB0_2(VBUS0).	-

6.5 Clock Configuration

Table 6-5 below details the function of the option links associated with Clock Configuration.

Table 6-5: Clock Configuration Option Links

Reference	Configuration	Fit	DNF	Related Links
P47/CLKOUT_RF	Connect CLKOUT_RF to P36/EXTAL.	R112, R89	R113, R108, R92, R90, R97	X2
	Connect CLKOUT_RF to MCU header.	R113	R112	P47
XTAL1_RF, XTAL2_RF	Connect 32MHz crystal (X1) to RX23W.	-	-	-
	Connect 8MHz crystal (X2) to RX23W.	R90, R97	R89, R96	-
XTAL, EXTAL	Disconnect 8MHz crystal (X2) from RX23W and connect to MCU header.	R89, R96 , R108	R90 , R97 , R92 , R112	P36, P37
XCIN, XCOUT	Connect 32.768kHz crystal (X3) to RX23W.	R100, R99	R102	-
	Disconnect X2 from RX23W.	R102	R100, R99	-

6.6 Analog Power and ADC Configuration

Table 6-6 below details the function of the option links associated with Analog Power and ADC Configuration.

Table 6-6: Analog Power and ADC Configuration Option Links

	MC	U	MCU	Peripheral Sele	ection	0	estination Selection	on
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
P07	C7	P07	SW1	R207	-	SW1	-	R206
FU/	C1	FU/	P07	-	-	P07	-	-
DV4 ADC	C9	D40	DV4 ADC			RV1	-	-
RV1-ADC	C9	P40	RV1-ADC	-	-	P40	-	-
VREFH0	C10	-	UC_VCC	R121	-	-	-	-
VREFL0	D10	-	GROUND	R124	-	-	-	-
AV/CCO 1	D40		UC_VCC	R118	R127 or R128	-	-	-
AVCC0-1	B10	-	Board_VCC	R128, R127	R118	-	-	-
AVSS0-1	A10	-	GROUND	R116	-	-	-	-

6.7 CAN Configuration

Table 6-7 below details the function of the option links associated with CAN Configuration.

Table 6-7: CAN Configuration Option Links

	MC	:U	MCU	Peripheral Selection	Destination Selection			
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
CAN0RX	C2	D15	CANORX			U9.3	-	-
CANURA	UZ	F 13	CANURA	-	-	P15	-	-
CAN0TX	C1	D1/	CANOTX			U7.3	-	-
CANUTA	CI	F 14	CANUIX	•	-	P14	-	-

6.8 I2C & EEPROM Configuration

Table 6-8 and **Table 6-9** below detail the function of the option links associated with I2C & EEPROM Configuration.

Table 6-8: I2C & EEPROM Configuration Option Links (1)

	M	CU	MCU Peripheral Selection			Destination Selection		
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
P17	B1	P17	E2P-SDA	R61	R72	U3.5	-	-
PII	ы	P17	SSITXD0	R72	R61	P17	-	-
			E2P-SCL	R200	R201	U3.6	-	-
E2P-SCL	C3	P16	USB0-VBUS	R201	R200	J4.2	R202	-
			P16	-	-	P16	-	-

Table 6-9: I2C & EEPROM Configuration Option Links (2)

Reference	Configuration	Fit	DNF	Related Links
SDA0. SCL0	Connect pull-up resistors to Board_VCC.	R29	R28	U3
SDAU, SCLU	Connect pull-up resistors to Board_5V.	R28	R29	U3
WP	EEPROM Write protect.	R39	-	U3
A0. A1. A2	Device address (0xA6).	R50, R52, R55	R51, R53, R54	U3
AU, A1, A2	Device address (0xA4).	R50, R53, R55	R51, R52, R54	U3

6.9 IRQ & Switch Configuration

Table 6-10 below details the function of the option links associated with IRQ & Switch Configuration.

Table 6-10: IRQ & Switch Configuration Option Links

	M	CU		MCU Peripheral Select	tion	Destin	ation Selecti	on
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
P07	C7	P07	SW1	R207	-	SW1	-	R206
FUI	C/	FUI	P07	-	-	P07	-	-
JP-UPSEL	B5	P35	JP-UPSEL			J8.2	-	-
JF-UF SEL	БЭ	F 33	JP-UPSEL	_	-	P35	-	-
			PMOD1-CS	R87	R85 , R206	PMOD1.1	-	-
P31	B4	P31	SSISCK0	R85	R87 , R206	P31	-	-
			SW1	R206	R87, R85	SW1	-	R207-
			PMOD1-MISO	J6 (2-3pin short)	R76, R80, R209	PMOD1.3	-	-
			SW2	J6 (1-2pin short)	R76, R80, R209	SW2	-	-
P30	A2	P30	EMU-RXD	R76	J6 (open), R80, R209	E1.11	-	-
			AUDIO_MCLK	R80	J6 (open), R76, R209	P30	-	-
			SERIAL-RXD	R209	J6 (open), R76, R80	U10. 2	-	R208
DIP-SW1	E8	P46	DIP-SW1			SW4.2	-	-
DIF-SW1	LO	F 4 0	DIF-3W1	-	-	P46	-	-
DIP-SW0	E9	P45	DIP-SW0			SW4.1	-	-
DIF-3000	L9	F43	DIF-3W0	-	-	P45	-	-
			PMOD1-IRQ	J9 (2-3pin short)	-	PMOD1.7	-	-
PB1 *1	J5	PB1	PMOD2-IRQ	J9 (1-2pin short)	-	PMOD2.7	-	-
			PB1	-	-	PB1	-	-
DIP-SW2	J6	PB0	DIP-SW2			SW4.3	-	-
חור-300	JO	FDU	DIF-9WZ	-	-	PB0	-	-
DIP-SW3	J8	PE4	DIP-SW3			SW4.4	-	-
טור-טעט	Jo	F E 4	טור-סווט			PE4	-	-

^{*1:} PMODx-IRQ can be multi-connection interrupts by mounting R130.

6.10 LED Configuration

Table 6-11 below details the function of the option links associated with LED Configuration.

Table 6-11: LED Configuration Option Links

	MO	CU	MCU Peri	pheral Select	tion	Dest	ination Select	ion
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
LED3	E10	P44	LED3			LED3.K	-	-
LEDS	E10	P44	LEDS	-	-	P44	-	-
LEDO	DO	D42	LEDO			LED2.K	-	-
LED2	D9	P43	LED2	-	-	P43	-	-
LED4	DO	D40	LED4			LED1.K	-	-
LED1	D8	P42	LED1	-	-	P42	-	-
LEDO	<u> </u>	D44	LEDO			LED0.K	-	-
LED0	C8	P41	LED0	-	-	P41	-	-

6.11 MCU Header Configuration

Table 6-12 and Table 6-13 below details the function of the option links associated with MCU Header Configuration.

Table 6-12: MCU Header Configuration Option Links(1)

	Signal name C T		14510 0 12111	MCU Peripheral Selecti			ination Sele	ction
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
P07	C7	P07	SW1	R207	-	SW1	-	R206
1 07	01	101	P07	-	-	P07	-	-
PMOD1-IO2	В9	P05	PMOD1-IO2	-	_	PMOD1.9	-	-
1 111021 102		1 00	1 111051 102			P05	-	-
PMOD2-IO2	В8	P03	PMOD2-IO2	_	_	PMOD2.9	-	-
				D04	D70	P03	-	-
P17	B1	P17	E2P-SDA SSITXD0	R61 R72	R72 R61	U3.5 P17	-	-
			E2P-SCL	R200	R201	U3.6	-	-
P16	C3	P16	USB0-VBUS	R201	R200	J4.2	R202	_
1 10	00	1 10	P16	-	-	P16	-	_
						U9.3	-	-
CAN0RX	C2	P15	CAN0RX	-	-	P15	-	_
CANIOTY	- 04	D4.4	CANOTY			U7.3	-	-
CAN0TX	C1	P14	CAN0TX	-	-	P14	-	-
P27	ВЗ	P27	PMOD1-SCK	R81	R84	PMOD1.4	-	-
P21	БЭ	PZI	SSIWS0	R84	R81	P27	-	-
			PMOD1-MOSI	J7 (2-3pin short), R204	R62, R73, R205	PMOD1.2	-	-
			EMU-TXD	J7 (2-3pin short), R62	R204, R73 , R205	E1.5	-	-
P26	B2	P26	SSIRXD0	J7 (2-3pin short), R73	R204, R62 , R205	P26	-	-
			SERIAL-TXD	J7 (2-3pin short), R205	R204, R62 , R73	U8.2	-	R203
		<u> </u>	USB0-VBUSEN	J7 (1-2pin short)	- D74	U5.4	+	-
P25	A1	P25	TS4 CON-P25	R60 R71	R71 R60	Touch KEY P25	-	-
USB0-			CON-P25	R/ I	ROU	U11.3	-	-
OVRCURB	C4	P22	USB0-OVRCURB	-	-	P22	<u> </u>	
P21	D3	P21	P21	_	-	P21		_
			-	R97	R92 , R96	X2.2	1_	_
P37	A6	P37	P37	R96	R92, R97	P37	-	_
						U1.F10	R112	R113, R108
P36	A4	P36	CLKOUT_RF	R89	R92, R90	P36	R113	R112
			-	R90	R92 , R89	X2.1	-	-
ID LIDCEI	DE	Dae	ID LIDGEL			J8.2	-	-
JP-UPSEL	B5	P35	JP-UPSEL	-	-	P35	-	-
			PMOD1-CS	R87	R85, R206	PMOD1.1	-	-
P31	B4	P31	SSISCK0	R85	R87, R206	P31	-	-
			SW1	R206	R87, R85	SW1	-	R207-
			PMOD1-MISO	J6 (2-3pin short)	R76, R80, R209	PMOD1.3	-	-
D20	40	Dan	SW2	J6 (1-2pin short)	R76, R80, R209	SW2	-	-
P30	A2	P30	EMU-RXD AUDIO_MCLK	R76 R80	J6 (open), R80, R209 J6 (open), R76, R209	E1.11 P30	-	-
			SERIAL-RXD	R209	J6 (open), R76 , R80	U10. 2	1	R208
			OLIVIAL-TOOD				<u> </u>	R92, R90,
P47	F10	P47	P47	R112	R113	U1.A4	R89	R108
		' ''		R113	R112	P47	-	-
DID CW4	Ε0	D40	DID CW4			SW4.2	-	-
DIP-SW1	E8	P46	DIP-SW1	-	-	P46		-
DIP-SW0	E9	P45	DIP-SW0			SW4.1	<u>-</u>	-
טור-סווט	_ ⊑9	P40	טור-סווט			P45	-	-
LED3	E10	DΛΛ	LED3			LED3.K	-	-
LLDU	L10	1 44	LLDV	=	=	P44	-	-
LED2	D9	P43	LED2			LED2.K	-	-
	55	1 70	LLUZ			P43	-	-

Table 6-13: MCU Header Configuration Option Links(2)

	M	CU		U Peripheral Selecti		Option Links(2) Destinati	on Selection	
Signal name	Pi	Port			DNF	Interface		DNF
	<u>-</u>	Pc	Signal	Fit	DINF	/Function	Fit	DNL
LED1	D8	P42	LED1	-	-	LED1.K	-	-
						P42 LED0.K	-	-
LED0	C8	P41	LED0	-	-	P41	<u>-</u>	-
D140D4 100		DD7	D110D4 100			PMOD1.10	-	-
PMOD1-IO3	J3	PB7	PMOD1-IO3	-	-	PB7	-	-
PB5	J4	PB5	USB0-VBUS	R202	-	J4.2	-	R201
1 00	J 4	1 00	PB5	-	-	PB5	-	-
PMOD2-IO1	H4	PB3	PMOD2-IO1	-	-	PMOD2.8	-	-
			PMOD1-IRQ	J9 (2-3pin short)		PB3 PMOD1.7	-	-
PB1	J5	PB1	PMOD1-IRQ	J9 (1-2pin short)	-	PMOD2.7		-
		'	PB1	-	-	PB1	-	-
DID CWO	ıc	DDA	DID CW2			SW4.3	-	-
DIP-SW2	J6	PB0	DIP-SW2	-	-	PB0	-	-
			EMU-UB		_	E1.10	-	-
507		D07	DSW-UB			SW3.2	-	-
PC7	F1	PC7	PC7	-	-	PC7	- J7 (1-2pir	-
			SERIAL-TXD	R203	-	U8.2	short)	-
PC6	F2	PC6	SERIAL-RXD	R208	-	U10.2	-	R209
1 00	12	1 00	PC6	-	-	PC6	-	-
PC5	G2	PC5	TS23	R104	R105	Touch Slider (Upper)	-	-
			CON-PC5	R105	R104	PC5	-	-
PC4	G1	PC4	TSCAP SERIAL-CTSRTS	R88	R88, R95 R98, R95	C34 J2.2	-	-
1 04		104	CON-PC4	R95	R88, R98	PC4	-	-
			T\$27	R106	R109	Touch Slider		
PC3	H1	PC3				(Middle Upper)		-
			CON-PC3	R109	R106	PC3	-	-
PC2	H2	PC2	TS30	R114	R110	Touch Slider (Middle Lower)	-	-
1 02	112	1 02	CON-PC2	R110	R114	PC2	-	-
						Touch Slider		
PC0	J1	PC0	TS35	R117	R115	(Lower)	-	-
			CON-PC0	R115	R117	PC0	-	-
PMOD1-IO1	F9	PD3	PMOD1-IO1	-	-	PMOD1.8	-	-
						PD3 SW4.4	-	-
DIP-SW3	J8	PE4	DIP-SW3	-	-	PE4	<u>-</u>	-
						PMOD2.1	-	_
PMOD2-CS	H8	PE3	PMOD2-CS	-	-	PE3	-	-
PMOD2-MISO	Н9	PE2	PMOD2-MISO			PMOD2.3		
I WIODZ-WIIOO	113	1 LZ	I MODE-MIGO		1	PE2	-	-
PMOD2-MOSI	J9	PE1	PMOD2-MOSI	-	-	PMOD2.2		
						PE1	-	-
PMOD2-SCK	G9	PE0	PMOD2-SCK	-	-	PMOD2.4 PE0		_
	-				1	PMOD2.10	-	-
PMOD2-IO3	C6	PJ3	PMOD2-IO3	-	-	PJ3	1-	-

6.12 PMOD1 Configuration

Table 6-14 below details the function of the option links associated with PMOD1 Configuration.

Table 6-14: PMOD1 Configuration Option Links

	М	CU		MCU Peripheral Selec	tion	Destir	ation Selec	ction
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
PMOD1-IO2	В9	P05	PMOD1-IO2			PMOD1.9	-	-
FINIOD 1-102	БЭ	F03	PIVIOD 1-102	-	-	P05	-	-
P27	В3	P27	PMOD1-SCK	R81	R84	PMOD1.4	-	-
F21	DO	FZ1	SSIWS0	R84	R81	P27	-	-
			PMOD1-MOSI	J7 (2-3pin short), R204	R62, R73, R205	PMOD1.2	-	-
			EMU-TXD	J7 (2-3pin short), R62	R204, R73 , R205	E1.5	-	-
P26	B2	P26	SSIRXD0	J7 (2-3pin short), R73	R204, R62 , R205	P26	-	-
			SERIAL-TXD	J7 (2-3pin short), R205	R204, R62 , R73	U8.2	-	R203
			USB0-VBUSEN	J7 (1-2pin short)	-	U5.4	-	-
			PMOD1-CS	R87	R85 , R206	PMOD1.1	-	-
P31	В4	P31	SSISCK0	R85	R87 , R206	P31	-	-
			SW1	R206	R87, R85	SW1	-	R207-
			PMOD1-MISO	J6 (2-3pin short)	R76, R80, R209	PMOD1.3	-	-
			SW2	J6 (1-2pin short)	R76, R80, R209	SW2	-	-
P30	A2	P30	EMU-RXD	R76	J6 (open), R80, R209	E1.11	-	-
			AUDIO_MCLK	R80	J6 (open), R76, R209	P30	-	-
			SERIAL-RXD	R209	J6 (open), R76, R80	U10. 2	-	R208
DMOD4 102	12	DD7	DMOD4 IO2			PMOD1.10	-	-
PMOD1-IO3	J3	PB7	PMOD1-IO3	-	-	PB7	-	-
			PMOD1-IRQ	J9 (2-3pin short)	-	PMOD1.7	-	-
PB1	J5	PB1	PMOD2-IRQ	J9 (1-2pin short)	-	PMOD2.7	-	-
			PB1	-	-	PB1	-	-
DMOD4 104	F9	DD3	DMOD4 104			PMOD1.8	-	-
PMOD1-IO1	F9	PD3	PMOD1-IO1	-	-	PD3	-	-

6.13 PMOD2 Configuration

Table 6-15 below details the function of the option links associated with PMOD2 Configuration.

Table 6-15: PMOD2 Configuration Option Links

	M	CU		MCU Peripheral Sele	ction	Destin	ation Selec	tion
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
PMOD2-IO2	В8	P03	PMOD2-IO2	-	-	PMOD2.9 P03	-	-
PMOD2-IO1	H4	PB3	PMOD2-IO1	-	-	PMOD2.8 PB3	-	-
PB1	J5	PB1	PMOD1-IRQ PMOD2-IRQ PB1	J9 (2-3pin short) J9 (1-2pin short) -		PMOD1.7 PMOD2.7 PB1		-
PMOD2-CS	H8	PE3	PMOD2-CS	-	-	PMOD2.1 PE3	-	-
PMOD2-MISO	Н9	PE2	PMOD2-MISO	-	-	PMOD2.3 PE2	-	-
PMOD2-MOSI	J9	PE1	PMOD2-MOSI	-	-	PMOD2.2 PE1	-	-
PMOD2-SCK	G9	PE0	PMOD2-SCK	<u> </u>	-	PMOD2.4 PE0	-	-
PMOD2-IO3	C6	PJ3	PMOD2-IO3	-	-	PMOD2.10 PJ3	-	-

6.14 Bluetooth® Low Energy (BLE)

Table 6-16 below details the function of the option links associated with Bluetooth® Low Energy (BLE) Configuration.

Table 6-16: Bluetooth® Low Energy (BLE) Configuration Option Links

	MO	CU	MC	U Peripheral Sele		Destination Selection		
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
ANT	K2	-	ANT	R122	-	FL1.1	-	-

6.15 Serial Sound Interface (SSI)

Table 6-17 below details the function of the option links associated with Serial Sound Interface (SSI) Configuration.

Table 6-17: Serial Sound Interface (SSI) Configuration Option Links

	MO	CU		MCU Peripheral Select	ion	Des	tination Sele	ction
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
P17	B1	P17	E2P-SDA	R61	R72	U3.5	-	-
F I I	ы	Г17	SSITXD0	R72	R61	P17	-	-
P27	В3	P27	PMOD1-SCK	R81	R84	PMOD1.4	-	-
PZI	БЭ	PZI	SSIWS0	R84	R81	P27	-	-
			PMOD1-MOSI	J7 (2-3pin short), R204	R62, R73, R205	PMOD1.2	-	-
			EMU-TXD	J7 (2-3pin short), R62	R204, R73 , R205	E1.5	-	-
P26	B2	P26	SSIRXD0	J7 (2-3pin short), R73	R204, R62 , R205	P26	-	-
				SERIAL-TXD	J7 (2-3pin short), R205	R204, R62 , R73	U8.2	-
			USB0-VBUSEN	J7 (1-2pin short)	-	U5.4	-	-
			PMOD1-CS	R87	R85, R206	PMOD1.1	-	-
P31	B4	P31	SSISCK0	R85	R87 , R206	P31	-	-
			SW1	R206	R87, R85	SW1	-	R207-
			PMOD1-MISO	J6 (2-3pin short)	R76, R80, R209	PMOD1.3	-	-
			SW2	J6 (1-2pin short)	R76, R80, R209	SW2	-	-
P30	A2	P30	EMU-RXD	R76	J6 (open), R80, R209	E1.11	-	-
			AUDIO_MCLK	R80	J6 (open), R76, R209	P30	-	-
			SERIAL-RXD	R209	J6 (open), R76 , R80	U10. 2	-	R208

6.16 Touch Interface Configuration

Table 6-18 below details the function of the option links associated with Touch Interface configuration.

Table 6-18: Touch Interface Configuration Option Links

	MCU		MCU Peripheral Selection			Destination Selection		
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
P25	A1	P25	TS4	R60	R71	Touch KEY	-	-
F25	ΑI	P25	CON-P25	R71	R60	P25	-	-
PC5	G2	DCE	TS23	R104	R105	Touch Slider (Upper)	-	-
		PC5	CON-PC5	R105	R104	PC5	-	-
	G1	PC4	TSCAP	R98	R88, R95	C34	-	-
PC4			SERIAL-CTSRTS	R88	R98, R95	J2.2	-	-
				CON-PC4	R95	R88 , R98	PC4	-
PC3	H1	H1 PC3	TS27	R106	R109	Touch Slider (Middle Upper)	-	-
			CON-PC3	R109	R106	PC3	-	-
PC2	H2	PC2	TS30	R114	R110	Touch Slider (Middle Lower)	-	-
			CON-PC2	R110	R114	PC2	-	-
PC0	J1	PC0	TS35	R117	R115	Touch Slider (Lower)	-	-
			CON-PC0	R115	R117	PC0	-	-

6.17 USB to Serial Configuration

Table 6-19 below details the function of the option links associated with USB to Serial Configuration.

Table 6-19: USB to Serial Configuration Option Links

Cianal	MCU			Destination Selection				
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
			PMOD1-MOSI	J7 (2-3pin short), R204	R62, R73, R205	PMOD1.2	-	-
			EMU-TXD	J7 (2-3pin short), R62	R204, R73 , R205	E1.5	-	-
P26	B2	P26	SSIRXD0	J7 (2-3pin short), R73	R204, R62 , R205	P26	-	-
			SERIAL-TXD	J7 (2-3pin short), R205	R204, R62, R73	U8.2	-	R203
			USB0-VBUSEN	J7 (1-2pin short)	-	U5.4	-	-
		P30	PMOD1-MISO	J6 (2-3pin short)	R76, R80, R209	PMOD1.3	-	-
	A2		SW2	J6 (1-2pin short)	R76, R80, R209	SW2	-	-
P30			EMU-RXD	R76	J6 (open), R80, R209	E1.11	-	-
			AUDIO_MCLK	R80	J6 (open), R76, R209	P30	-	-
			SERIAL-RXD	R209	J6 (open), R76, R80	U10. 2	-	R208
	F1	PC7	EMU-UB			E1.10	-	-
			DSW-UB]-	-	SW3.2	-	-
PC7			PC7	-	-	PC7	-	-
			SERIAL-TXD	R203	-	U8.2	J7 (1-2pin short)	-
PC6	F2	PC6	SERIAL-RXD	R208	-	U10.2	-	R209
			PC6	-		PC6		-
PC4	G1	PC4	TSCAP	R98	R88, R95	C34	-	-
			SERIAL-CTSRTS	R88	R98, R95	J2.2	-	-
			CON-PC4	R95	R88 , R98	PC4	-	-

6.18 USB Configuration

Table 6-20 below details the function of the option links associated with the USB Configuration.

Table 6-20: USB Configuration Option Links

	MCU		MCU Peripheral Selection			Destination Selection		
Signal name	Pin	Port	Signal	Fit	DNF	Interface /Function	Fit	DNF
			E2P-SCL	R200	R201	U3.6	-	-
P16	C3	P16	USB0-VBUS	R201	R200	J4.2	R202	-
			P16	-	-	P16	-	-
	B2	P26	PMOD1-MOSI	J7 (2-3pin short), R204	R62, R73, R205	PMOD1.2	-	-
			EMU-TXD	J7 (2-3pin short), R62	R204, R73 , R205	E1.5	-	-
P26			SSIRXD0	J7 (2-3pin short), R73	R204, R62 , R205	P26	-	-
			SERIAL-TXD	J7 (2-3pin short), R205	R204, R62, R73	U8.2	-	R203
			USB0-VBUSEN	J7 (1-2pin short)	-	U5.4	-	-
USB0-OVRCURB	C4	P22	USB0-OVRCURB -	-	-	U11.3	-	-
						P22	-	-
DDE	J4	J4 PB5	USB0-VBUS	R202	-	J4.2	-	R201
PB5			PB5	-	-	PB5	-	-
LIODA DD	E1	-	USB0-DP -			USB0 1.3	-	-
USB0-DP				-	USB0_2.3	-	-	
LICDO DM	D1	1 -	USB0-DM			USB0_1.2	-	-
USB0-DM				-	USB0_2.2	-	-	

Table 6-21 below details the function of the jumpers associated with the USB Configuration.

Table 6-21: USB Configuration Jumper Option Links

Reference	Jumper Position	Configuration	Related Links	
	Short Pin1-2	Self-powered	J5 (1-2 short), J3 (open)	
J4	Short Pin2-3	Bus-powered	J5 (1-2 short) , J3 (2-3 short)	
	All open	DO NOT SET.	J5 (1-2 short)	
J5	Short Pin1-2	USB0 Function mode	-	
	Short Pin2-3	USB0 Host mode	-	
	All open	DO NOT SET.	-	

When using USB in function mode, be sure to set J5 to 1-2 Short. Also, do not plug in both USB0_1 and USB0_2 cables at the same time.

7. Code Development

7.1 Overview

For all code debugging using Renesas software tools, the CPU board must be connected to a PC via an E1/E20/E2 Lite debugger. An E1/E2 Lite debugger is supplied with this RSSK product.

For further information regarding the debugging capabilities of the E1/E20/E2 Lite debuggers, refer to 'E1/E20 Emulator, E2 Emulator Lite - Additional Document for User's Manual' (R20UT0399EJ).

7.2 Compiler Restrictions

The compiler supplied with this RSSK is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the compiler will default to a maximum of 128k code and data. To use the compiler with programs greater than this size you need to purchase the full tools from your distributor.

The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely.

7.3 Mode Support

The MCU supports Single Chip and Boot Modes (SCI and USB), which are configured on the CPU board. Details of the modifications required can be found in §6.2. All other MCU operating modes are configured within the MCU's registers, which are listed in 'RX23W Group User's Manual: Hardware'.

Only ever change the MCU operating mode whilst the MCU is in reset, or turned off; otherwise the MCU may become damaged as a result.

7.4 Debugging Support

The E1 Emulator or E2 Emulator Lite (as supplied with this RSSK) supports break points, event points (including mid-execution insertion) and basic trace functionality. It is limited to a maximum of 8 on-chip event points, 256 software breaks and 256 branch/cycle trace. For further details, refer E1/E20 Emulator User's Manual (R20UT0398EJ) or E2 Emulator Lite User's Manual (R20UT3240EJ).

7.5 Address Space

For the MCU address space details, refer to the 'Address Space' section of 'RX23W Group User's Manual: Hardware'.

8. Additional Information

Technical Support

For information about the RX23W Group microcontrollers refer to 'RX23W Group User's Manual: Hardware'.

For information about the RX assembly language, refer to 'RX Family User's Manual: Software'.

Technical Contact Details

Please refer to the contact details listed in section 9 of the "Quick Start Guide"

General information on Renesas microcontrollers can be found on the Renesas website at: https://www.renesas.com/

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Electronics Europe GmbH.

- © 2019-2020 Renesas Electronics Europe GmbH. All rights reserved.
- © 2019-2020 Renesas Electronics Corporation. All rights reserved.

9. Certification of Compliance

The Renesas Solution Starter kit for RX23W has obtained certificates of compliance with the laws and regulations stated below.

Since the use of this product in countries and regions that require compliance with other regulations may lead to the violation of the laws; confirm the regulations of such countries in which the product is to be used. The use of this product in a Faraday-shielded chamber or box may be required.

9.1 Radio-Related Laws

Japan: Type certification (authentication number: 001-A16430)

Europe: CE (RE)

North America: FCC (FCC ID: 2AEMXRX23WSKB85), ISED (ISED: 20194-RX23WSKB85)

RE Directive

Hereby, Renesas Electronics Corporation declares that the radio equipment type RTK5523W8AC00001BJ (TSIP Version: RTK5523W8BC00001BJ) is in compliance with Directive 2014/53/EU.

RENESAS

FCC/ISED Regulatory

Since this module is not sold to general end users directly, there is no user manual of the module.

For the details about this module, please refer to the specification sheet of the module.

This module should be installed in the host device according to the interface specification (installation procedure).

The following information must be indicated on the host device of this module;

FCC ID: 2AEMXRX23WSKB85

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

ISED: 20194-RX23WSKB85

[for FCC]

FCC CAUTION

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This transmitter must not be co-located or operated in conjunction with any other antenna or transmitter.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment and meets the FCC radio frequency (RF) Exposure Guidelines. This equipment has very low levels of RF energy that is deemed to comply without maximum permissive exposure evaluation (MPE). But it is desirable that it should be installed and operated keeping the radiator at least 20cm or more away from person's body.

This device complies with FCC Part 15.203 because the antenna is not removable from this device.

[for ISED]

This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions: (1) This device may not cause interference; and (2) This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : 1) l'appareil ne doit pas produire de brouillage; 2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment and meets RSS-102 of the IC radio frequency (RF) Exposure rules. This equipment has very low levels of RF energy that is deemed to comply without maximum permissive exposure evaluation (MPE). But it is desirable that it should be installed and operated keeping the radiator at least 20cm or more away from person's body.

Cet équipement est conforme aux limites d'exposition aux rayonnements énoncées pour un environnement non contrôlé et respecte les règles d'exposition aux fréquences radioélectriques (RF) CNR-102 de l'IC. Cet équipement émet une énergie RF très faible qui est considérée conforme sans évaluation de l'exposition maximale autorisée. Cependant, il est souhaitable qu'il devrait être installé et utilisé en gardant une distance de 20 cm ou plus entre le radiateur et le corps humain.

HVIN and PMN of this product is "RTK5523W8AC00001BJ" (TSIP Version: RTK5523W8BC00001BJ).

REVISION HISTORY	RX23W Group
REVISION HISTORY	Renesas Solution Starter Kit for RX23W User's Manual

Rev.	Date		Description		
Rev. Date		Page	Summary		
1.00	Aug.30.19	-	First Edition issued		
1.01	Mar.25.20	36	9 Added contents of Certification of Compliance		
			9.1 Change authentication number of Japan's Type certification		

RX23W Group

Renesas Solution Starter Kit for RX23W User's Manual

Publication Date: Rev.1.00 Aug 30, 19

Rev.1.01 Mar 25, 20

Published by: Renesas Electronics Corporation

RX23W Group

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics: