

RAA457100GBM

Wireless Charging System Receiver IC for Low Power Applications

R19DS0094EJ0100 Rev.1.00 2017.02.28

Datasheet

1. Product Outline

Description

RAA457100 is a receiver IC for low power wireless charging system. RAA457100 performs battery charging by wireless transmission power and DC power supply to receiver application system from battery. When RAA458100 is used in a transmitter, a wireless charging system with bi-directional communication can be constructed.

Features

- Wireless battery charging
- DC power supply to application system by high efficiency DCDC converter
- Monitoring some pin voltages such as rectified output voltage, battery voltage by 12bit A/D converter
- Modulation/Demodulation function for bi-directional communication between transmitter and receiver
- Transmitter system(RAA458100) can read and write RAA457100 registers for setting charge control parameters
- Function which converts wireless communication to 2-wrie serial communication for communication between transmitter and receiver application system
- Battery protection, Low battery voltage detection

2. Block Diagram (Example for Application Circuit)

RENESAS

3. Pin Functions

Pin No.	Pin Name	A/D ⁺1	I/O *2	Function	Remark
A6,B6,F4	GND	-	-	Ground	Connect to minus terminal of battery
A1,B1	RGND	-	-	Ground for Rectifier, Load modulation driver, Clamp driver	Connect to minus terminal of battery
B7,C7	SGND	-	-	Ground for DCDC converter, application system	Connected to discharge control FET on chip
A5,B5	BAT	А	I/O	Battery terminal	Connect to plus terminal of battery
A2	VIN1	А	Ι	Input terminal 1 to rectifier	-
B2	VIN2	А	Ι	Input terminal 2 to rectifier	-
A3,B3	RECT	А	I/O	Rectified output terminal	Connect C _{RECT} between RECT and RGND
C1	COM1	А	0	Load modulation driver output terminal 1	Connect C_{CM1} between COM1 and VIN1
F1	COM2	А	0	Load modulation driver output terminal 2	Connect C_{CM2} between COM2 and VIN2
D1	CLMP1	А	0	Clamp driver output terminal 1	Connect C _{CP1} between CLMP1 and VIN1
E1	CLMP2	Α	0	Clamp driver output terminal 2	Connect C _{CP2} between CLMP2 and VIN2
D4	VDDB	A	ο	Regulated 3.0V output (inside usage)	Connect C _{VDDB} between VDDB and GND
D5	VDDW	A	ο	Regulated 2.7V output (inside usage, reference voltage for thermistor)	Connect C_{VDDW} between VDDW and GND Connect to pull up resistor R_{THM} of NTC thermistor
A4,B4	VCC	A	ο	VCC regulator output (Power supply for DCDC converter)	Connect C _{VCC} between VCC and GND
C4	RIMON	A	0	External resistor connection for output current limit Monitor of VCC regulator output current	Connect R _{IVCC} between RIMON and GND
C5	RICHG	A	0	External resistor connection for current setting of constant current charging	Connect RICHG between RICHG and GND
D6	тнм	Α	Ι	Thermistor voltage input terminal	Divided VDDW voltage by R _{THM} and NTC thermistor
A7	LX	Α	0	DCDC converter switching output terminal	-
C6	SYS	А	Ι	DCDC converter output voltage feedback terminal	-
E7	DDEN	D	Ι	DCDC converter enable control terminal	-
D7	SD	D	Ι	Shut down control terminal	-
E5	MODE	D	0	Operation mode notification output	Open drain
E6	CHG/INT	D	ο	Charging status notification output/ Interruption signal output for Rx application system	Open drain
F7	BUZ	D	0	Low battery voltage notification	Open drain
F3	MS	D	I	Master or slave setting for 2-wire serial interface	Connect to VDDB or GND
F6	SCL	D	I/O	Clock input or output for 2-wire serial interface	Connect pullup resistor R _{SCL}
F5	SDA	D	I/O	Data input or output for 2-wire serial interface	Connect pullup resistor R _{SDA}
E2	DDST0	D	Ι	DCDC converter output voltage setting 1	Connect to VDDB or GND
F2	DDST1	D	I	DCDC converter output voltage setting 2	Connect to VDDB or GND
D2	ATR	D	I	Enable automatic control of rectifier	Connect to VDDB or GND
D3	ATCHG	D	I	Enable automatic start of battery charging	Connect to VDDB or GND
E3	ATPC	D	I	Enable automatic transmission power control function	Connect to VDDB or GND
СЗ	WRC	D	I	Enable contact battery charging	Connect to GND in wireless charging system
C2	TEST	-	-	Test only	Connect to GND

*1 A : Analog signal including power supply, D : Digital signal
*2 I : Input terminal, O : Output terminal, I/O : Input and Output terminal

4. Pin Configuration

5. Absolute Maximum Ratings (Tj=25[degC] unless otherwise noted.)

Item	Symbol	Value	Unit	Remark
	VIN1, VIN2, CLMP1, CLMP2, COM1, COM2, RECT	18	V	
Din voltage	BAT, VCC, SD, DDEN, CHG/INT, MODE, SDA, SCL	-0.3 to 5	V	
Fill Voltage	RIMON, RICHG, THM, WRC, ATR, ATCHG, ATPC DDST0, DDST1, MS, TEST	-0.3 to VDDB + 0.3	V	
	SYS, BUZ	-0.3 to VCC + 0.3	V	5V maximum
Operating temperature	Та	-20 to 50	degC	
Junction temperature	Tj	-20 to 70	degC	
Storage temperature	Tstg	-20 to 70	degC	

6. Recommended Operating Conditions

Item	Symbol	Value	Unit	Remark
RECT pin voltage	V _{RECT}	3.5 to 6.0	V	
BAT pin voltage	V _{BAT}	3.2 to 4.35	V	

7. Electrical Characteristics

Tj=25[degC] unless otherwise noted.

Item	Symbol	Condition	min	typ	max	Unit
Rectified output voltage detection	•					
Rectified output voltage lower limit	V _{RECT_UVLO}	V _{RECT} is raised (hysteresis voltage 100mV)	2.9	3.0	3.1	V
Rectified output voltage upper limit	V _{RECT_OVD}	V _{RECT} is raised (hysteresis voltage 7V)	13	14	15	V
Circuit current						
Current at charge mode	IRECT_CM	V _{RECT} =5V, V _{CC} =no load	-	1.0	2.0	mA
Current at discharge mode	I _{BAT_DM}	V _{RECT} =0V, V _{BAT} =3.8V, V _{CC} =no load, MS=H	-	25	-	uA
Current at shut down mode	I _{BAT_SD}	V _{RECT} =0V, V _{BAT} =3.0V	-	1	-	uA
Regulator for on chip circuit	•					
3.0V regulator output voltage	V _{DDB}	V _{RECT} =5V, I _{SOURCE} =1mA	2.85	3.00	3.15	V
2.7V regulator output voltage	V _{DDW}	V _{RECT} =5V, I _{SOURCE} =30uA	2.60	2.70	2.80	V
VCC regulator						
VCC regulator output voltage	V _{cc}	V _{RECT} =V _{BAT} +500mV, V _{BAT} =3.8V	V _{BAT} +0.2	V _{BAT} +0.3	V _{BAT} +0.4	V
Output current	I _{LIM}		-	-	80	mA
Battery charging						
Charge start voltage	V _{START}	$\rm V_{BAT}$ is raised (hysteresis voltage 100mV)	-	1.5	-	V
Fast charge start voltage	V _{QCHGON}	V _{BAT} is raised (hysteresis voltage 100mV)	-	3.0	-	V
Charge control voltage range	V _{CHG}		4	.05, 4.20, 4.3	5	V
Charge control voltage error	V _{CHG_ERR}	I_{BAT} =0.2 x I_{CHGR} , R_{ICHG} =5.6k Ω	-50	-	+50	mV
Trickle charge current	I _{PRECHG}			0.1 x I _{CHGR}		-
Trickle charge current error	I _{PRECHG_ERR}	I_{BAT} =0.1 x I_{CHGR} , R_{ICHG} =5.6k Ω	-50	-	+50	%
Fast charge current range	I _{CHG}		-	-	70	mA
Fast charge current error	I _{CHG_ERR}	I_{BAT} =0.5 x I_{CHGR} , R_{ICHG} =5.6k Ω	-30	-	+30	%
Charge complete current range	I _{FC}		0.05 x (0.	I _{CHGR} to 0.20 05 x I _{CHGR} ste	x I _{CHGR} ep)	-
Charge complete current error	I _{FC_ERR}	$I_{BAT}{=}0.2 \text{ x } I_{CHGR}, R_{ICHG}{=}5.6 k\Omega$	-60	-	+60	%
Trickle charge timer range	TDCHG			60, 120, 180	-	min
Trickle charge timer error	T _{DCHG_ERR}		-	10	-	%
Fast charge timer range	T _{CHG}		18	0, 240, 300, 3	360	min
Fast charge timer error	T _{CHG_ERR}		-	10	-	%
Battery protection						
Charge overvoltage detection voltage *1	V _{COVD}	BAT to GND differential voltage	-	V _{CHG} +0.1	-	V
Charge overvoltage detection delay time	T _{COVD}		-	256	-	ms
Discharge short circuit current detection voltage	V _{DSCD}	SGND to GND differential voltage	-	160	-	mV
Discharge short circuit current detection delay time	T _{DSCD}		-	250	-	us
Discharge overcurrent detection voltage	V _{DOCD}	SGND to GND differential voltage	-	80	-	mV
Discharge overcurrent detection delay time	T _{DOCD}		-	4	-	ms
Discharge overvoltage detection voltage	V _{DOVD}	BAT to GND differential voltage	-	2.8	-	V
Discharge overvoltage detection delay time	T _{DOVD}		-	32	-	ms

*1 Detection voltage is set to suitable temperature charge control voltage(V_{CHG})+0.1[V] regardless of thermistor temperature.

7. Electrical Characteristics (continued)

Tj=25[degC] unless otherwise noted.

Item	Symbol	Condition	min	typ	max	Unit	
Low battery voltage detection		·					
		V _{SYS} =1.2V,or 1.5V,or 1.8V	3.10	3.20	3.30		
Low battery detection voltage H	V _{FGHD}	V _{SYS} =3.0V	3.45	3.55	3.65		
	V	V _{SYS} =1.2V,or 1.5V,or 1.8V	2.95	3.05	3.15		
Low battery detection voltage L	VFGLD	V _{SYS} =3.0V	3.25	3.35	3.45	7	
Low battery voltage detection delay time	T _{FGD}		-	256	-	ms	
DCDC converter							
UVLO release voltage	V	V _{SYS} =1.2V,or 1.5V,or 1.8V (hysteresis voltage 100mV)	2.80	2.90	3.00	V	
(V _{CC} is raised)	V DCDC_UVLO	V _{SYS} =3.0V (hysteresis voltage120mV)	3.20	3.30	3.50	v	
Output voltage range	V _{SYS}		1.	2, 1.5, 1.8, 3	.0	V	
Output current range	I _{SYS}	Discharge mode	-	-	100	mA	
A/D converter							
Resolution	ADC _{RES}		-	12	-	bit	
WPT communication							
Bit rate from RX to TX	BR _{RX2TX}		-	250	-	bps	
Bit rate from TX to RX	BR _{TX2RX}		-	125	-	bps	
COM, CLAMP driver							
ON resistance	R _{ON_DRV}		-	0.5	-	Ω	
Leak current	I _{L_DRV}	Pin voltage=15V	-	-	10	uA	
Discharge control FET							
ON resistance	R _{ON_DFET}		-	0.4	-	Ω	
Resistance between SGND and GND	R _{SG}	V_{DOCD} or V_{DSCD} detection condition	-	5	-	kΩ	
SDA, SCL							
High level input voltage	V _{IH_I2C}		1.0	-	-	V	
Low level input voltage	V _{IL_I2C}		-	-	0.3	V	
Low level output voltage	V _{OL_I2C}	I _{SINK} =2mA	-	-	0.2	V	
MODE, CHG/INT, BUZ							
Low level output voltage	V _{OL_OD}	I _{SINK} =2mA	-	-	0.2	V	
Leak current	I _{L_OD}	Pin voltage=3V	-	-	5	uA	
DDEN							
High level input voltage	V _{IH_DDEN}		1.0	-	-	V	
Low level input voltage	V _{IL_DDEN}		-	-	0.3	V	
SD							
High level input voltage	V _{IH_SD}		2.6	-	-	V	
Low level input voltage	V _{IL_SD}		-	-	0.3	V	

8. Functions Description (The values described in this chapter are reference values, not guaranteed values.)

8.1 Operation Mode and SD Pin Function

The RAA457100 have shut down mode and charge mode 1 and charge mode 2, and discharge mode. Table 8.1.1 shows outline of each operating mode, and Table 8.1.2 shows function of each operating mode. Figure 8.1.1 shows mode transition and SD pin function.

Table 8.1.1	Outline of	each	operation	mode
-------------	------------	------	-----------	------

Operating mode	Description
Shut down mode	Major functions stop in this mode. The conditions in this mode are no power feed by wireless power transmission and battery, or VDDB voltage is lower than 2.5V. In discharge mode, the current from BAT pin to the circuit of this IC is shut down when low level voltage longer than 1 second is input to SD pin. In this state, if V_{RECT} is lower than V_{RECT_UVLO} , the operating mode changes shut down mode.
Charge mode 1	This IC operates by rectified voltage in this mode. In discharge mode if V_{RECT} is higher than $V_{RECT_{UVLO}}$ and V_{RECT} is higher than V_{BAT} , or in shut down mode if V_{RECT} is higher than $V_{RECT_{UVLO}}$, the operating mode changes into charge mode 1.
Charge mode 2	In this mode, battery charging and WPT communication are available. In charge mode 1, if V_{RECT} is higher than 4.5V, and V_{RECT} is higher than V_{BAT} +100mV, the operating mode changes charge mode 2. VCC regulator starts to operate. After VCC regulator starts, VCC regulator continues to operate in condition $V_{RECT} > V_{RECT} = V_{RECT_OVLO}$, $V_{RECT} < V_{RECT} > V_{BAT}$ +50mV. The transmission power should be controlled so that the rectified voltage is 0.5V higher than battery voltage. It means that charge control circuit and receiver main system can operate well.
Discharge mode	In this mode, this IC operates by battery power. In shut down mode, if high level voltage longer than 1 second is input to SD pin, the operating mode changes into discharge mode. Or in charging mode 1, if V _{RECT} is lower than V _{RECT_UVLO} and V _{BAT} is higher than V _{RECT} , the operating mode changes into discharge mode.

Table 8.1.2 Function of each operation mode

Operating mode	Battery Protection *1	ADC , VDDW	VCC regulator	Charge control *2	DCDC converter *3
Shut down mode			stop		
Charge mode 1	operate	operate	stop	stop	available
Charge mode 2	operate	operate	operate	available	available
Discharge mode	operate	stop	stop	stop	available

*1 Discharge control FET (DFET) becomes off if battery protection level is detected.

*2 Battery charging is started automatically when operating mode become charge mode 2 if ATCHG pin level is high(VDDB). Battery charging can be started by register setting (0x01 D[0]=1) if ATCHG pin level is low. *3 DCDC converter is started when DDEN pin is high level and $V_{CC} > V_{DCDC,UVLO}$, and discharge control FET is on.

Figure 8.1.1 Mode transition and SD pin function

8.2 Rectifier

Rectifier converts AC voltage (recommended frequency is 125[kHz]) induced at resonant circuit to DC voltage. Figure 8.2.1 shows rectifier circuit. Rectified output (RECT pin) voltage rises in asynchronous rectifying operation by body diode of switch MOSFET. When rectified output voltage lower limit is detected ($V_{RECT} > V_{RECT,UVLO}$), the gate control circuit controls the high side switch depending on VIN1, VIN2, RECT pin voltages (half synchronous rectifying operation). When a current of the high side switch increases, the gate control circuit controls the low side switch too (full synchronous rectifying operation). A current of the high side switch depends on VCC regulator output current(I_{VCC}). When the voltage level of ATR pin and ATPC pin are high voltage, the operation function control depending on VCC regulator current are available in battery charge, such as rectifying operation(half synchronous, half or full synchronous automatically changed) and on-resistance of the high side switch. The settings of the rectifying operation and the on-resistance of the high side switch is low voltage, the operation, and the on-resistance of the high side switch is low voltage, the rectifying operation, and the on-resistance of the high side switch is 1[Ω]. When the settings of the current threshold is not appropriate, rectifying operation becomes unstable), and then ripple voltage of rectified voltage is increased. If the settings of the appropriate current threshold is difficult, it is recommended to set ATR pin level to low voltage.

Figure 8.2.1 Rectifier circuit, and Rectifier action on ATR pin and ATPC pin = high

8.3 A/D Converter

In charge mode, some pin voltages (RECT pin voltage, BAT pin voltage, etc) are monitored by 12bit A/D converter. Table 8.3.1 shows monitor items of A/D converter. These items are monitored in 4[ms] period. These items are used by calculating parameters for automatic transmission power control and charging control (battery temperature, battery voltage). 2-wire serial interface and WPT communication make it possible to read the A/D conversion results. A/D conversion results in register are not updated automatically. When 0x35 D[0] is 1, all registers of A/D conversion result are updated.

Item	monitor point	Output code *1	Input voltage range *2 (Actual voltage range)	Register(12bit)
Rectified output voltage	RECT pin voltage V _{RECT}	(4096 / 10.8) x V _{RECT}	0 to 10.8V (3.2 to 10 V)	0x36 D[7:4] 0x37 D[7:0]
VCC regulator output current (I _{VCC})	RIMON pin voltage V _{RIMON}	$ (4096 / 2.7) \times V_{RIMON} (V_{RIMON} = (I_{VCC} \times R_{IVCC}) / K_{IVCC}) $	0 to 2.7 V (0 to 1.2 V)	0x38 D[7:4] 0x39 D[7:0]
Battery voltage	BAT pin voltage V _{BAT}	(4096 / 5.4) x V _{BAT}	0 to 5.0 V (0 to 4.35 V)	0x3A D[7:4] 0x3B D[7:0]
Charging current (I _{CHG})	RICHG pin voltage V _{RICHG}	$(4096 / 2.7) \times V_{RICHG}$ $(V_{RICHG} = (I_{CHG} \times R_{ICHG}) / K_{ICHG})$	0 to 2.7V (0 to 1.2 V)	0x3C D[7:4] 0x3D D[7:0]
Thermistor temperature (Battery temperature)	THM pin voltage V _{THM}	(4096 / 2.7) x V _{THM}	0 to 2.7 V (0 to 2.7 V)	0x3E D[7:4] 0x3F D[7:0]

Table 8.3.1 Monitor items of A/D converter

*1 Output code range is from 0 to 4095.

*2 Each inputted voltage should be within input voltage range to avoid miss converting. The voltage range in the parenthesis shows a voltage range assumed in practical use.

8.4 Power Supply to VCC Pin

Figure 8.4.1 shows block diagram of VCC regulator and battery charge control and charge control FET(CFET). Charge control FET is conductive in discharge mode and charge mode 1, current from battery flows into VCC pin. VCC regulator operates in charge mode 2. Current from RECT pin flows into VCC pin. When battery charging does not operate, CFET is off. In battery charging, the battery charge control circuit controls the gate voltage of CFET, charging current from VCC pin flows into BAT pin. VCC regulator regulates the voltage which is 3.3V to 4.8V depending on BAT pin voltage. VCC regulator has current limit function showed in Table 8.4.1. VCC regulator output voltage is changed depending on current no limit state or current limit state when charge control operates (Table 8.4.2). If VCC regulator is in current limit state, battery charging current is adjusted depending on limiting current (load current dividing function of charge control circuit). To prevent the current limit by low RECT pin voltage, the transmission power has to maintain recommended RECT pin voltage showed in Table 8.4.2.

Table 8.4.1 Current limit function of VCC regulator	Table 8.4.1	Current	limit function	of VCC	regulator
---	-------------	---------	----------------	--------	-----------

Item	D	Description				
Current limit by	ТΙ	he maximum output current of VCC regulator can be set by external resistor R _{IVCC} between RIMON pin and GND.				
RIVCC	ΤI	he relation of R _{IVCC} and	d output limiting current			
	Limiting current $I_{LIM} = K_{IVCC} \times (1.2 / R_{IVCC})$					
		Parameter	$K_{IVCC} = 80$ $R_{IVCC} = 1.2k\Omega$, or 2.4k Ω , or 4.8k Ω (prohibit using except recommended value ^{*1})			
Current limit by low RECT pin voltage	y When the differential voltage between RECT pin and BAT pin is low, VCC regulator output current is limited. The output current starts to be limited on $V_{RECT} - V_{BAT} < 0.4V$, the output current decreases depending on the differential voltage. The output current is limited so that V_{RECT} does not decrease than below voltage.					
	RECT pin voltage when output current of VCC regulator is 0mA.					
		V _{BAT} > 3.0V	$V_{RECT} = V_{BAT} + 0.2V$			
		V _{BAT} < 3.0V	V _{RECT} = 3.2V			

*1 R_{IVCC} is detected before VCC regulator starts, the circuit works depending on detection result. R_{IVCC} value need to be 1.2k or 2.4k or 4.8kΩ.

Table 8.4.2 VCC pin voltage

BAT pin voltage (V _{BAT})	VCC pin in charge control	voltage circuit operating	RECT pin recommended voltage(V _{RECT}) ^{*1}	
	Current no limit state	Current limit state		
$3.0V \le V_{BAT} \le V_{CHG}$	V _{BAT} + 0.3V	V _{BAT} + 0.1V	$V_{RECT} > V_{BAT} + 0.5V$	
V _{BAT} < 3.0V	3.3V	3.1V	V _{RECT} > 3.5V	

*1 This is the condition in order to avoid limiting the output current of VCC regulator by decreasing RECT pin voltage.

8.5 Battery Charge Control

8.5.1 Battery Charge Method

This IC has the charge function for Li-ion battery (constant current - constant voltage charge method). Some charge control parameters can be set by the registers.

8.5.2 Charge Start Voltage, Trickle to Fast Charge Transition Threshold Voltage

and Charge Overvoltage Detection Voltage

Table 8.5.2 shows charge start voltage and trickle to fast charge transition threshold voltage and charge overvoltage detection voltage, and detection delay time. These voltages are judged by control circuit using A/D conversion result of BAT pin voltage.

Table 8.5.2 Charge start voltage, Trickle to fast charge transition threshold voltage, Charge overvoltage detection voltage

Item	Detection voltage	Detection delay time
Charge start voltage*1	1.5V (hysteresis voltage 100mV)	256ms
Trickle to fast charge transition threshold voltage	3.0V (hysteresis voltage 100mV)	256ms
Charge overvoltage detection voltage*2	Suitable temperature charge control voltage +100mV	256ms

*1 RAA457100 can charge to zero V battery by setting register D[7] in address 0x04.

¹² In low temperature and suitable temperature and high temperature, each charge control voltage can be set to 4.05V or 4.20V or 4.35V. (show section 8.5.3, 8.5.4)

8.5.3 Charge Current, Charge Complete Current, Charge Control Voltage, Charge Timer

The maximum charge current is 70[mA]. Reference fast charge current I_{CHGR} is set by resistor R_{ICHG} between RICHG pin and GND. Pre-charge current and trickle charge current are set to one tenth(1/10) of reference fast charge current I_{CHGR} . In soft start of fast charge, charging current increases stepped by (1/60)* I_{CHGR} . The transition time of 1 step can be set by register. The fast charge current and the charge control voltage can be set to 3 values in each battery temperature. Trickle charge timer and fast charge timer can be set by register. If the timer overflows, battery charge is stopped. Table 8.5.3 shows the parameters of charge current and charge complete current and charge control voltage, and charge timer.

Table 8.5.3 Charge control parameters

Item	Symbol	Value	Unit	Remark
Reference fast charge current	I _{CHGR}	1.2 x K _{ICHG} / R _{ICHG}	А	K _{ICHG} =80
Pre-charge current Trickle charge current	I _{PRECHG}	0.1 x I _{CHGR}	A	-
Fast charge current range *1	I _{CHG}	I_{CHGR} , 0.5 x I_{CHGR} , 0.25 x I_{CHGR}	А	Register 0x02 D[7:2]
Charge current transition step in soft start of fast charge	I _{CHG_SOFT}	(1 / 60) x I _{CHGR}	A	-
Transition time of one step in soft start of fast charge	T _{CHG_SOFT}	15.625, 7.8125, 3.125	ms	Register 0x02 D[1:0]
Charge control voltage *1	V _{CHG}	4.05 , 4.20 , 4.35	V	Register 0x03 D[7:2]
Charge complete current	I _{FC}	$\begin{array}{l} 0.20 \; x \; I_{CHGR} \; , \; 0.15 \; x \; I_{CHGR} \; , \\ 0.10 \; x \; I_{CHGR} \; , \; 0.05 \; x \; I_{CHGR} \end{array}$	A	Register 0x03 D[1:0]
Charge complete judgement voltage	V _{FC}	3.8	V	-
Trickle charge timer	T _{DCHG}	60, 120, 180	min	Register 0x04 D[1:0]
Fast charge timer	T _{CHG}	180, 240, 300, 360	min	Register 0x04 D[3:2]

*1 It can be set in each battery temperature(low, suitable, high).

8.5.4 Battery Temperature Monitor

RAA457100 controls the fast charging current and the charge control voltage depending on battery temperature. The fast charging current and the charge control voltage can be set by registers in each temperature range. But the charge control voltage of low and high temperature range needs to be lower than the charge control voltage of suitable temperature range. The battery temperature range threshold can be set by registers that are THM_TH_NB_LE(no battery and charge pending in low temperature threshold), THM_TH_L_LE(low rate charge in low temperature and charge pending in low temperature threshold), THM_TH_M_L(normal charge and low rate charge in low temperature and charge pending in high temperature threshold), THM_TH_HE(low rate charge in low temperature and charge pending in high temperature threshold), THM_TH_H_HE(low rate charge in low temperature and charge pending in high temperature threshold), THM_TH_H_HE(low rate charge in low temperature and charge pending in high temperature threshold), THM_TH_H_HE(low rate charge in low temperature and no battery threshold), THM_TH_LE_L(charge pending in low temperature and low rate charge in low temperature and no battery threshold), THM_TH_LE_L(charge pending in low temperature and low rate charge in low temperature and normal charge threshold), THM_TH_H_M(low rate charge in high temperature and normal charge threshold), THM_TH_H_M(low rate charge in high temperature and normal charge threshold), THM_TH_H_M(low rate charge in high temperature and normal charge threshold), THM_TH_H_M(low rate charge in high temperature and normal charge threshold), THM_TH_H_M(low rate charge in high temperature and normal charge threshold), THM_TH_H_M(low rate charge in high temperature and normal charge threshold), THM_TH_H_M(low rate charge in high temperature and normal charge threshold), THM_TH_H_M(low rate charge in high temperature and normal charge threshold), THM_TH_H_H(hormal charge in high temperature and normal charge threshold), THM_TH_H_M(low rate charge in high temp

Figure 8.5.4 Battery temperature threshold, Charge control voltage, Constant current charge current

8.5.5 Charge State Transition Diagram

8.6 Power Supply to Application System (Buck DCDC Converter, Battery Protection)

8.6.1 Buck DCDC Converter

The buck DCDC converter supplies power to application system. The input voltage of DCDC converter is VCC pin voltage. DCDC converter starts when DDEN pin level is high. DCDC converter output voltage can be set by settings of DDST0 pin and DDST1 pin (show Table 8.6.1.1). Some status of DCDC converter can be monitored by registers. When 2-wire serial interface set into slave device by setting MS pin to low, an application system can read the registers by 2-wire serial interface. Table 8.6.1.2 shows registers related to DCDC converter. If the equivalent series resistance of output capacitor C_{DD} is small, the output ripple voltage might be increased. If the DCDC converter output is unstable, series resistance R_{DD} should be connected to output capacitor C_{DD} for improvement (Refer to Block Diagram).

Table 8.6.1.1 DCDC converter output voltage settings

Voltage input	Enable pin	DDST1 pin	DDST0 pin	Output voltage
		L	L	1.2V
VCC DDEN "	L	н	1.5V	
	Н	L	1.8V	
		Н	Н	3.0V

*1 DCDC converter starts when DDEN pin level is high.

If battery protection and junction temperature error and UVLO($V_{CC} < V_{DCDC_UVLO}$) is detected, DCDC converter is stopped.

Table 8.6.1.2 Registers related to DCDC converter

Item	Register	Description
VCC pin voltage detection (UVLO detection)	0x33 D[4]	DCDC converter is controlled depending on VCC pin voltage level. 0 : Stop (UVLO detected) $V_{CC} < 2.80V$ (Output voltage is 1.2V or 1.5V or 1.8V) $V_{CC} < 3.18V$ (Output voltage is 3.0V) 1 : Start (UVLO release) $V_{CC} > 2.90V$ (Output voltage is 1.2V or 1.5V or 1.8V) $V_{CC} > 3.30V$ (Output voltage is 3.0V)
Start up complete	0x33 D[5]	DCDC converter confirms the completion of start up by monitoring SYS pin voltage. 0 : Low voltage status of SYS pin (V _{SYS} < Setting output voltage x 0.831) 1 : Start up complete (V _{SYS} > Setting output voltage x 0.875)
Overvoltage detection of SYS pin	0x33 D[6]	DCDC converter stops switching MOSFET if overvoltage is detected at SYS pin. 0 : Not detected (V_{SYS} < Setting output voltage x 1.207) 1 : Detected (V_{SYS} > Setting output voltage x 1.250)
Overcurrent detection ^{*1}	0x33 D[7] 0x30 D[2]	If overcurrent condition of DCDC converter is detected continuously, the status register is 1(0x33 D[7]=1). The delay time of detection is 8ms.

*1 Interruption signal is output from CHG/INT pin when MS pin level is low and register 0x2F D[2] is 0.

8.6.2 Battery Protection, Maximum Junction Temperature Protection

Battery protection functions are discharge overvoltage protection and discharge overcurrent protection and discharge short circuit current protection. Temperature protection is maximum junction temperature protection. Table 8.6.2 shows protection detection threshold and detection delay time and post-processing.

Table 8.6.2 Protection detection threshold	I, Detection delay time, Post-processing
--	--

		Post-processing *1					
Item (Voltage for detection)	Detection voltage / temperature	Detection delay time	Discharge control FET	Resistor between SGND and GND	DCDC Converter ^{*2}	Digital input / output pins *3	Charge control
Discharge overvoltage (between BAT and GND)	2.8V	32ms	off	disconnect	suspend	suspend	-
Discharge overcurrent (between SGND and GND)	80mV	4ms	off	connect	suspend	suspend	-
Discharge short circuit current (between SGND and GND)	160mV	250us	off	connect	suspend	suspend	-
Maximum junction temperature	68 degree C	256ms	off	disconnect	suspend	suspend	suspend

*1 DCDC converter, discharge control FET and digital input/output pins restart automatically from suspend when each protection is released.

*2 DCDC converter is also suspended when VCC pin voltage is lower than UVLO voltage(V_{DCDC_UVLO}).

*3 MODE, CHG/INT, BUZ, SCL and SDA pins are applicable.

8.7 Battery Low Voltage Notification (BUZ pin)

Battery low voltage notification has two threshold voltages depending on DCDC converter output voltage. There are two ways of notice. BUZ pin (open drain output) outputs low level when battery low voltage H or battery low voltage L is detected and register 0x34 D[2] is 0. BUZ pin outputs specified pulse (show Table 8.7) when register 0x34 D[2] is 1. Battery low voltage detection result is also stored in register 0x34 D[1:0].

Table 8.7	Battery	low	voltage	notification
-----------	---------	-----	---------	--------------

Item	DCDC converter Detection voltage Detection		Detection	Post-pro	ocessing			
	output voltage	Deteotion venage	delay time	0x34 D[2]=0	0x34 D[2]=1			
Battery low voltage	1.2V, 1.5V, 1.8V	3.20V	256ms	256ms	BUZ When beco detec	BUZ pin outputs low level When battery voltage	BUZ pin outputs low level. When battery voltage	BUZ pin outputs pulse, 256[ms] low level pulse width
(between BAT and GND)	3.0V	3.55V				becomes higher than detection voltage, BUZ pin	in 2560[ms] period.	
Battery low voltage	1.2V, 1.5V, 1.8V	3.05V			returns nign ievei.	BUZ pin outputs pulse, 128[ms] low level pulse width		
(between BAT and GND)	3.0V	3.35V			in 1280[ms] period.			

8.8 Charge Status Notification / Interrupt Signal Output (CHG / INT pin)

CHG / INT pin(open drain output) function is changed by MS pin setting. Table 8.8.1 shows this function. CHG / INT pin outputs low level when interruption event showed in Table 8.8.2 occurs and MS pin is low level. These interruption events can be masked by setting mask register showed in Table 8.8.3.

Table 8.8.1 CHG / INT pin function description

MS pin	Description
L (GND)	CHG / INT pin outputs low level when interruption event occurs (refer to Table 8.8.2). Application system can confirm interruption event factor by reading factor register after receiving that CHG / INT pin is low level.
H (VDDB)	CHG / INT pin outputs low level when charge control circuit status is pre-charge or trickle charge or fast charge.

Table 8.8.2 Interruption signal output event

Item	Factor register	Description
WPT communication receive notification	0x30 D[0]	WPT communication data is received from transmitter. The register is clear after reading.
Charge state transition notification	0x30 D[1]	Charge state transition. (Refer to charge state transition diagram) The register is clear after reading.
DCDC converter overcurrent detection	0x30 D[2]	DCDC converter detects overcurrent. This register is always set by 1 in overcurrent.
VCC regulator current limit detection	0x30 D[3]	VCC regulator limits output current. This register is always set by 1 in limiting current.

Table 8.8.3 Interruption signal output mask register

Item	Mask register	Description
WPT communication receive notification	0x2F D[0]	0 : Interruption output available, 1 : Interruption output unavailable
Charge state transition notification	0x2F D[1]	If all mask register are set by 1, CHG / IN1 pin function is as same as MS pin=H .
DCDC converter overcurrent detection	0x2F D[2]	
VCC regulator current limit detection	0x2F D[3]	

8.9 Charge Mode or Discharge Mode Notification (MODE pin)

MODE pin level depends on charge mode or discharge mode.

Table 8.9 MODE pin function description

MODE pin	Description
L	MODE pin outputs low level in charge mode 1 or 2. If MODE pin connects to DDEN pin and DDEN connects VCC or VDDB via external resistor, DCDC converter stops in charge mode (Refer to block circuit). When register 0x00 D[0] is 1, MODE pin level is always high (Open drain output is off).
н	Mode pin outputs high level in discharge mode (Open drain output is off).

8.10 2-wire Serial Communication Interface (MS, SCL, SDA pin)

RAA457100 can communicate to application system by 2-wire serial interface. Master device or slave device can be selected by MS pin setting. Figure 8.10.1(a), (b) shows SDA data format in slave device, Figure 8.10.2(a), (b) shows SDA data format in master device. Figure 8.10.3 shows timing specification. High level input threshold voltage of SDA and SCL pins is low voltage (less than 1.0V). The communication may be affected adversely if noise voltage at pins is high. If communication error occurs, capacitor should be put between that pins and GND for filtering noise.

MS pin	SCL frequency	Description
L (GND)	64 [kHz]	RAA457100 becomes slave device. The slave device address is 0x0A(0001010). Application system can read and write registers. 0x40 D[0] should be set to 1 for writing into the registers in address 0x00 to 0x0F.
H (VDDB)	64 [kHz]	RAA457100 becomes master device. The transmitter system can write and read the register of receiver application system via WPT communication. When RAA457100 receives an access requirement (read or write register) from transmitter system to receiver application system, RAA457100 converts the access requirement to 2-wire serial interface format and communicates to receiver application system.

I2C_SLV_ADRS[6:0] I2C_REG_ADRS[7:0] I2C_W_DATA[7:0]

Figure 8.10.2(a) SDA data format(Master, Write)

I2C_SLV_ADRS[6:0] I2C_REG_ADRS[7:0] I2C_SLV_ADRS[6:0] I2C_R_DATA[7:0]

Figure 8.10.2(b) SDA data format(Master, Read)

Sta	.rt	Start	Stop	Start				
SCL V _{II}								
SDA VIII	tHD:STA tR, tF tSU:DAT tHD:DAT tSU:ST.	A	tsu:sto	t _{BUF}				
Symbol	Item	Min	Max	Unit				
fSCL	SCL clock frequency	0	64	kHz				
tBUF	Bus free time between Stop condition and Start condition	8.1	-	us				
tHD:STA	Hold time of Start condition or repeated Start condition (First clock pulse is generated after this period) 3.7 - us							
tLOW	Low hold time of the SCL clock 8.1 - us							
tHIGH	High hold time of the SCL clock 3.7 - us							
tSU:STA	Set-up time for a repeated Start condition 3.7 - us							
tHD:DAT	Data hold time (for input data) 3.7 - us							
tSU:DAT	Data set-up time 3.7 - us							
tR	Rise time of both SDA and SCL signals - 0.3 us							
tF	Fall time of both SDA and SCL signals - 0.3 us							
tSU:STO	Set-up time for Stop condition 3.7 - us							

Figure 8.10.3 2-wire serial interface SCL, SDA timing diagram (for reference)

8.11 WPT Communication and Rectified Output Overvoltage Protection

8.11.1 Outline

RAA457100 and RAA458100(Transmitter IC) support a bidirectional communication by amplitude modulation on wireless power transmission carrier signal. In receiver to transmitter communication, RAA457100 changes transmitting antenna voltage by load modulation and then RAA458100 detects the voltage variation and demodulates data. In transmitter to receiver communication, RAA458100 changes rectified voltage of RAA457100 by changing transmission power and then RAA457100 detects the voltage variation and demodulates data.

8.11.2 Packet Format in WPT Communication

The packet of WPT communication is consisted of fixed data length packet including Preamble, Header, Message1, Message2, Checksum showed in Figure 8.11.2. The Header, Message1, Message2 have 1 bit of odd parity bit respectively, and the check sum generated by exclusive OR is added to the last of the packet. When ATPC pin level of RAA458100 and RAA457100 is high, automatic transmission power control function is available (ATPC Mode). In ATPC Mode, the packet which includes a special header code (0x00 to 0x0F) is sent from RAA457100 to RAA458100 periodically, and RAA458100 adjusts transmission power based on the data included in packet.

St : Start bit(1bit), Pr : Parity bit(1bit), Sp : Stop bit(1bit)

Figure 8.11.2 Data packet format

Table 8.11.2 Header code

Header code	Description
0x00 to 0x0F	Header code for automatic transmission power control function (ATPC Mode)
0x10 to 0xFF	Header code for any user purpose

8.11.3 Data Transfer Function

RAA457100 modulates transmitting antenna voltage by switching COM1, COM2 driver (NMOS open drain) depending on transmission data. C_{CM1} between VIN1 pin and COM1 pin, and C_{CM2} between VIN2 pin and COM2 pin are connected or disconnected to GND by COM1 and COM2 driver. If peak current of COM driver needs to suppress, series resistor R_{CM1} , R_{CM2} need to be inserted. (Refer to Block diagram)

8.11.4 Data Receive Function

RAA457100 demodulates data packet showed in Figure 8.11.2. RAA457100 detects rectified voltage variation depending on modulated signal from transmitter and demodulates. RAA458100 can read and write the register of RAA457100 by using the specific header code.

8.11.5 Communication Bit Rate

Table 8.11.5 shows communication bit rate. The transmission data rate is 250[bps], the reception data rate is 125[bps].

Table 8.11.5 Communication bit rate

Communication direction	Bit rate	Remark
Data transmission (Receiver to transmitter)	250bps	
Data reception (Transmitter to receiver)	125bps	

8.11.6 Rectified Output Overvoltage Protection(Clamp function)

When rectified output overvoltage(V_{RECT_OVD}) is detected, rectified voltage is suppressed by clamp function. Connect C_{CP1} between VIN1 pin and CLMP1 pin, and C_{CP2} between VIN2 pin and CLMP2 pin. These capacitors are connected between VIN1 pin, VIN2 pin and GND by clamp driver of CLMP1pin and CLMP2 pin(NMOS open drain), then rectified voltage is suppressed. If peak current of clamp driver needs to suppress, series resistor R_{CP1} , R_{CP2} need to be inserted. (Refer to Block diagram)

8.12 Wired Charging Function (WRC pin)

RAA457100 can charge not only by wireless but also by wire. Wireless or wired charging is selectable by voltage level of WRC pin. (Refer to Table 8.12)

Table 8.12 WRC pin function

WRC pin level	Description
L (GND)	Wireless charging is selected using RAA457100 and RAA458100.
H (VDDB)	Wired charging is selected using RAA457100 only. 5 V DC should be supplied to RECT pin.

9. Register Map (The values described in this chapter are reference values, not guaranteed values.)

9.1 Address 0x00 to 0x07 (Transmitter system can write to these register.)

Address	Dit No	Deviator Name	1	DAM	Description
Address	BIT NO.		Init	R/W	
	DO	MODE_OFF	0	R/W	MODE pin output disable 0 : Enable 1 : Disable(NMOS 1r OFF usually)
0×00	D1		0	R	
	D2		0	R	
	D3		0	R	
0,000	D4		0	R	
	D5		0	R	
	D6		0	R	
	D7		0	R	
	D0		0		Charge start enable 0 · Charge step/Initialize charging flow) 1 · Charge start
	D0				
				R	
	D2		0	к	
0x01	D3		0	R	
	D4		0	R	
	D5		0	R	
	D6		0	R	
	D7		0	R	
	D0	TCC SOFTIOI	0	R/W	Trickle to fast charging transition time(per one sten)
	D1		0	R/W	0 : 15.625[ms] 1 : 7.8125[ms] 2 : 3.125[ms] 3 : Unused
	D2			DAM	
	D2				Fast charge current setting of low temperature operation in battery temperature profile
0x02	D3		0	R/W	
	D4	ICC_THM_M[0]	1	R/W	Fast charge current setting of suitable temperature operation in battery temperature profile
	D5	ICC_THM_M[1]	0	R/W	0 : ICHGR 1 : 0.5*ICHGR 2 : 0.25*ICHGR 3 : 0.25*ICHGR
	D6	ICC_THM_H[0]	1	R/W	Fast charge current setting of high temperature operation in battery temperature profile
	D7	ICC_THM_H[1]	0	R/W	0 : ICHGR 1 : 0.5*ICHGR 2 : 0.25*ICHGR 3 : 0.25*ICHGR
	D0	ICV_FIN[0]	0	R/W	Constant voltage charge complete current setting
	D1	ICV FIN[1]	0	R/W	0 : 0.1*ICHGR 1 : 0.05*ICHGR 2 : 0.15*ICHGR 3 : 0.2*ICHGR
	D2		0	R/W	Constant voltage charge control voltage catting of low temperature operation in battery temperature profile
	D3		0	R/M	0 : 4.05[V] 1 : 4.20[V] 2 : 4.35[V] 3 : 4.05[V]
0x03	D3			DAM	- · · · · · · · · · · · · · · · · · · ·
	D4			R/VV	Constant voltage charge control voltage setting of suitable temperature operation in battery temperature profile
	D5	VCV_THM_M[1]	0	R/W	0:4.05[V] 1:4.20[V] 2:4.35[V] 3:4.05[V]
	D6	VCV_THM_H[0]	0	R/W	Constant voltage charge control voltage setting of high temperature operation in battery temperature profile
	D7	VCV_THM_H[1]	0	R/W	0 : 4.05[V] 1 : 4.20[V] 2 : 4.35[V] 3 : 4.05[V]
	D0	TIM_CHG_TRKL[0]	1	R/W	Trickle charge timer setting
	D1	TIM_CHG_TRKL[1]	1	R/W	V 0 : 60[min] 1 : 120[min] 2 : 180[min] 3 : 180[min]
	D2	TIM CHG CCCV[0]	1	R/W	Fast charge timer setting
	D3		1	R/W	0:180[min] 1:240[min] 2:300[min] 3:360[min]
0x04	D4		0	R/W	Charge control timer balt setting 0 : Count 1 : Halt
	D5		0	D	
	D3	5. H M D		R.	
	D6	FULMD	0	R/W	U : Normal operation 1 : Full charge mode (Charge is continued in spite of detecting charge complete current)
	D7	VCHG_ST_0V	0	R/W	Charge start threshold voltage 0:1.5[V] 1:0[V]
	D0	THM_TH_H_HE[0]	1	R/W	Transition temperature setting of High temperature low rate charge to Charge pending in high temperature :
	D1	THM_TH_H_HE[1]	0	R/W	I HM_I H_H_HE 5.273[mV/code]
	D2	THM_TH_H_HE[2]	0	R/W	The value higher than 25/degC1 including hysteresis can be set (because of MSB=0 fixed)
	D3	THM TH H HE[3]	1	R/W	Initial value : 45[degC] at NTC thermistor NCP03WF104F05RL(Murata Manufacturing)
0x05	D4		1	R/W	(9bit resolution, 153 x 5.273=806.7[mV] at THM pin voltage)
	D5		0	R/W	I ransition temperature of Charge pending in high temperature to High temperature low rate charge :
	De		0	D AA/	
	D0				Register value is applied by 0x0A D[7]=1
	D7		1	R/W	
	D0		1	R/W	Transition temperature setting of Suitable temperature charge to High temperature low rate charge :
	D1	THM_TH_M_H[1]	0	R/W	(0. THM_TH_M_H7:0), 000 } and 12 bit A/D converted value of THM pin voltage are compared.
	D2	THM_TH_M_H[2]	0	R/W	The value higher than 25[degC] including hysteresis can be set (because of MSB=0 fixed)
0,400	D3	THM_TH_M_H[3]	0	R/W	Initial value : 40[degC] at NTC thermistor NCP03WF104F05RL(Murata Manufacturing)
0000	D4	THM_TH_M_H[4]	1	R/W	(9bit resolution, 177 x 5.273=933.3[mV] at THM pin voltage) Transition temperature of High temperature low rate charge to Suitable temperature charge :
	D5	THM_TH_M_H[5]	1	R/W	THM_TH_H_M is calculated by { 0, THM_TH_M_H[7:0], 000 } + { 0000, THM_TH_HYS[4:0], 000 }
	D6		0	R/W	
			1	R/M	Register value is applied by 0x0A D[7]=1
 				D AA/	Transition tomograture patting of Suitable tomograture abarra to Law tomograture law rate abarra to
1					Transition temperature setting or suitable temperature charge to Low temperature low rate charge : THM TH M L 5.273[mV/code]
	1			K/W	{ 1, THM_TH_M_L[7:0], 000 } and 12 bit A/D converted value of THM pin voltage are compared.
1	D2	IHM_IH_M_L[2]		K/W	The value less than 25[degC] including hysteresis can be set (because of MSB=1 fixed)
0x07	D3	THM_TH_M_L[3]	0	R/W	Initial value : 10[degC] at NTC thermistor NCP03WF104F05RL(Murata Manufacturing) (9bit resolution, (256+86) x 5 273–1803[m//] at THM pip voltage)
	D4	THM_TH_M_L[4]	1	R/W	Transition temperature of Low temperature low rate charge to Suitable temperature charge :
	D5	THM_TH_M_L[5]	0	R/W	THM_TH_L_M is calculated by { 1, THM_TH_M_L[7:0], 000 } - { 0000, THM_TH_HYS[4:0], 000 }
	D6	THM_TH_M_L[6]	1	R/W	De nister unter in annite data 0:00 DIZI 4
1	D7	THM_TH_M L(7)	0	R/W	Register value is applied by UXUA U[7]=1

9.2 Address 0x08 to 0x0F (Transmitter system can write to these register.)

Address	Bit No.	Register Name	Init	R/W	Description
	D0	THM_TH_L_LE[0]	0	R/W	Transition temperature setting of Low temperature low rate charge to Charge pending in low temperature :
	D1	THM_TH_L_LE[1]	0	R/W	THM_TH_LLE 5.273[mV/code]
	D2	THM_TH_L_LE[2]	1	R/W	The value less than 25[degC] including hysteresis can be set (because of MSB=1 fixed)
000	D3	THM_TH_L_LE[3]	1	R/W	Initial value : 0[degC] at NTC thermistor NCP03WF104F05RL(Murata Manufacturing)
0x08	D4	THM_TH_L_LE[4]	0	R/W	(9bit resolution, (256+140) x 5.273=2088[mV] at THM pin voltage) Transition temperature of Charge pending in low temperature to Low temperature low rate charge :
	D5	THM_TH_L_LE[5]	0	R/W	THM_TH_LE_L is calculated by { 1, THM_TH_L_LE[7:0], 000 } – { 0000, THM_TH_HYS[4:0], 000 }
	D6	THM_TH_L_LE[6]	0	R/W	
	D7	THM_TH_L_LE[7]	1	R/W	Register value applied by 0x0A D[r]=1.
	D0	THM_TH_NB_LE[0]	0	R/W	Transition temperature setting of No battery to Charge pending in low temperature :
	D1	THM_TH_NB_LE[1]	0	R/W	THM_TH_NB_LE 5.273[mV/code]
	D2	THM_TH_NB_LE[2]	1	R/W	{ 1, THM_TH_NB_LE[7:0], 000 } and 12 bit A/D converted value of THM pin voltage are compared. The value less than 25[degC] including hysteresis can be set (because of MSB=1 fixed)
	D3	THM_TH_NB_LE[3]	0	R/W	Initial value : -20[degC] at NTC thermistor NCP03WF104F05RL(Murata Manufacturing)
0x09	D4	THM_TH_NB_LE[4]	1	R/W	(9bit resolution, (256+212) x 5.273=2467[mV] at THM pin voltage)
	D5	THM_TH_NB_LE[5]	0	R/W	THM_TH_LE_NB is calculated by { 1, THM_TH_NB_LE[7:0], 000 } + { 0000, THM_TH_HYS[4:0], 000 }
	D6	THM_TH_NB_LE[6]	1	R/W	
	D7	THM_TH_NB_LE[7]	1	R/W	Register value applied by 0x0A D[7]=1.
	D0	THM_TH_HYS[0]	0	R/W	Battery transition temperature setting : Hysteresis 5.273[mV/code]
	D1	THM_TH_HYS[1]	1	R/W	Initial value : 3[degC] around (Hysteresis depend on temperature because of non linearity of thermistor)
	D2	THM TH HYS[2]	0	R/W	(9bit resolution, 18 x 5.273=94.91[mV] at THM pin voltage)
0x0A	D3		0	R/W	0x05 to 0x09 or subtracting this from 0x05 to 0x09.
	D4	THM TH HYSI41	1	R/W	Register value applied by 0x0A D[7]=1.
	D5		0	R	
	 D6		0	R	
	D7	THM TH UPLOAD	0	R/W	1 · Transition temperature register values (0x05 to 0x0A) are applied. This register is reset after applying
			0	R/W	2-wire I/E communication trigger 0 : Stand-by state 1 : Communication start (When MS pin is high level)
	D1	I2C READ	0	R/W	2-wire I/F Write/Read selection 0: Write 1: Read (When MS pin is high level)
	D2	120_112/12	0	R	
	D3		0	R	
0x0B	D4		0	R	
	D5		0	R	
	D6		0	R	
			0	R	
			0	R/M	Slave address setting for 2 wire I/E of receiver application device (When MS nin is high level)
			0	RM	
			0	R/M	
	D2 D3		0	R/M	
0x0C	D3		0	DAM	
	D4 D5		0	R/W	
	D6		0	R/M	
			0	D	
			0		Projector address softing for 2 wire I/E of receiver application device (When MS pip is high level.)
			0	DAM	register address setting for 2-wire in or receiver application device (when wis pin is high lever)
			0		
			0	DAM	
0x0D				DAM	
			0	R/W	
		120_REG ADRSIA	0	R/W	
	D7		0	R/M	
			0	R/W	Write data setting for 2-wire I/E of receiver application device (M/bon MS nin is high level.)
				DAM	The data setting for z-wite in or receiver application device (writen into pill is fligh level)
			0	R/W	
	D2		0		
0x0E	D3	120_W_DATA[3]	0	R/W	
	D4				
	00		0		
		120_W_DATA[7]			Pool data for 2 wire I/E of receiver explication device (Mhere MO size is kink level)
			0	ĸ	rceau data for 2-wife l/F of receiver application device (when MS pin is high level)
		120_K_DATA[1]		к Г	
	D2		0	R	
0x0F	D3	IZU_K_DATA[3]		ĸ	
	D4		0	R	
	D5	I2C_R_DATA[5]	0	R	
	D6	I2C_R_DATA[6]	0	R	
	D7	I2C_R_DATA[7]	0	R	

9.3 Address 0x10 to 0x17

Addross	Dit No.	Pagistar Nama	Init	D/M	Description
Address	BIT NO.		Init	R/W	Description
0x10	DU	ATPCRX_INTERVAL	0	R/W	[RX to TX WPT communication period(ATPC Mode) 0:1[s]/2[s] 1:2[s]/4[s] (Identification, Configuration / Battery Charge)
	D1		0	R	
	D2		0	R	
	D3		0	R	
	D4		0	R	
	D5		0	R	
	D6		0	R	
	D7		0		
			0		Oranteel among a standarding a ffe of AV/4 (ATRO Marda)
	DU	ATPCRX_CTRL_ERR_OFS1[0]	0	R/W	Control error calculation offset voltage in condition of fast charge state and ICHG > 0.2C
	D1	AIPCRX_CIRL_ERR_OFS1[1]	0	R/W	10.547[mV/code]
	D2	ATPCRX_CTRL_ERR_OFS1[2]	0	R/W	Initial value : 48 (48x10.547=506.26[mV])
0v11	D3	ATPCRX_CTRL_ERR_OFS1[3]	0	R/W	
	D4	ATPCRX_CTRL_ERR_OFS1[4]	1	R/W	
	D5	ATPCRX_CTRL_ERR_OFS1[5]	1	R/W	
	D6	ATPCRX CTRL ERR OFS1[6]	0	R/W	
		ATPCRX CTRL ERR OFS1[7]	0	R/M	
<u> </u>			0	DAM	Control error coloulation officet AV/2 (ATRC Mode)
		ATPORX_CTRL_ERR_OF32[0]	0		$\Delta V2$ is applied to offset voltage in condition of no fast charge state or (fast charge state & ICHG < 0.15C.)
	D1	AIPCRX_CIRL_ERR_OFS2[1]	0	R/W	10.547[mV/code]
	D2	ATPCRX_CTRL_ERR_OFS2[2]	0	R/W	Initial value : 144 (144x10.547=1518.77[mV])
0v12	D3	ATPCRX_CTRL_ERR_OFS2[3]	0	R/W	
0.12	D4	ATPCRX_CTRL_ERR_OFS2[4]	1	R/W	
	D5	ATPCRX CTRL ERR OFS2[5]	0	R/W	
	D6	ATPCRX CTRL ERR OFS2[6]	0	RW	
	D7			DAM	
	07	ATPCRA_CTRL_ERR_OF52[7]		R/W	
	D0	AIPCRX_CIRL_ERR_IH[0]	0	R/W	Control error convergence judgement threshold (ATPC Mode)
	D1	ATPCRX_CTRL_ERR_TH[1]	1	R/W	Initial value : 10 (10x10.547=105.47[mV])
	D2	ATPCRX_CTRL_ERR_TH[2]	0	R/W	
	D3	ATPCRX_CTRL_ERR_TH[3]	1	R/W	
0x13	D4	ATPCRX CTRL ERR TH[4]	0	R/W	
	D5	ATPCRX CTRL ERR THIS	0	R/W	
	 D6		0	R/M	
	D7				
	07	ATPCRA_CTRL_ERR_TH[7]	0	R/W	
	DU	ATPCRX_NCTRL_ERR_TH[0]	0	R/W	Control error non-convergence judgement threshold (ATPC Mode)
	D1	ATPCRX_NCTRL_ERR_TH[1]	0	R/W	Initial value : 32 (32x1=32[count])
	D2	ATPCRX_NCTRL_ERR_TH[2]	0	R/W	
0.14	D3	ATPCRX_NCTRL_ERR_TH[3]	0	R/W	
UX14	D4	ATPCRX_NCTRL_ERR_TH[4]	0	R/W	
	D5	ATPCRX NCTRL ERR THI51	1	R/W	
	D6	ATPCRX NCTRI ERR THI61	0	R/W	
	D7		0	D AA/	
		ATPCKA_NCTRL_ERR_TH[7]	0		
	DU	WPI_R_CNI_OVER_ERR[0]	0	R/W	Bit number threshold for error judgement when WP1 data is received. (A1PC Mode)
	D1	WPT_R_CNT_OVER_ERR[1]	0	R/W	
	D2	WPT_R_CNT_OVER_ERR[2]	0	R/W	
0v15	D3		0	R	
	D4		0	R	
	D5		0	R	
	D6		0	R	
	D7		0	R	
	D0		0		Differential value threshold of AD converted data(V/RECT) (ATPC Mode)
	D0		0		2.637[mV/code] (RECT pin voltage, 12bit resolution)
	D1	VRECT_CMP_TH[1]	0	R/W	Initial value : 32 (32 x 2.637=84.38[mV])
	D2	VRECT_CMP_TH[2]	0	R/W	
0x16	D3	VRECT_CMP_TH[3]	0	R/W	
UX IO	D4	VRECT_CMP_TH[4]	0	R/W	
	D5	VRECT_CMP_TH[5]	1	R/W	
	D6	VRECT CMP TH[6]	0	R/W	
	D7	VRECT CMP THI71	0	R/W	
<u> </u>			0	R/M	Differential value threshold of AD converted data(IVCC) (ATPC Mode)
	- D0			D AAY	43.945[uA/code] @ RIVCC=1.2[kΩ] (VCC regulator output current(IVCC), 12bit resolution)
1			U	K/VV	21.972[uA/code] @ RIVCC=2.4[kΩ] (VCC regulator output current(IVCC), 12bit resolution)
1	D2	IVCC_CMP_TH[2]	0	R/W	10.986[uA/code] @ RIVCC=4.8[kΩ] (VCC regulator output current(IVCC), 12bit resolution)
0x17	D3	IVCC_CMP_TH[3]	0	R/W	U.5592[mV/code] (RIMON pin voltage, 12bit resolution)
0.17	D4	IVCC_CMP_TH[4]	0	R/W	(64 x 43.945[uA/code]=2812[uA] @ RIVCC=1.2[kΩ],
	D5	IVCC_CMP_TH[5]	0	R/W	64 x 21.972[uA/code]=1406[uA] @ RIVCC=2.4[kΩ],
	D6	IVCC_CMP_TH[6]	1	R/W	64 x 10.986[uA/code]=703.1[uA] @ RIVCC=4.8[kΩ])
	D7	IVCC_CMP_TH[7]	0	R/W	

Address	Bit No.	Register Name	Init	R/W	Description
	D0	VBAT_CMP_TH[0]	0	R/W	Differential value threshold of AD converted data(VBAT) (ATPC Mode)
	D1	VBAT CMP TH[1]	0	R/W	1.318[mV/code] (BAT pin voltage, 12bit resolution)
0x18	D2	VBAT CMP TH[2]	0	R/W	Initial value : 32 (32 x 1.318=42.18[mV])
	 D3	VBAT CMP TH[3]	0	R/W	
	D4	VBAT CMP TH[4]	0	R/W	
	D5		1	RW	
	De		0	RW	
			0	DAM	
			0		
	D0		0		Connected resistance detection result at RIMON pin 0 · 1 2[k0] 1 · 2 4[k0] 2 · 4 8[k0] 3 · Error
	D1		0		
	D2		0	R	
0x19	D3		0	R	
	D4		0	R	ATPC Phase (operation status of ATPC Mode) monitor
	D5	ATPC_PHASE[1]	0	R	
	D6		0	R	
	D7		0	R	
	D0	RECT_PSA[0]	0	R/W	On resistance setting of high side switch in rectifier (Available in 0x1A D[3]=1)
	D1	RECT_PSA[1]	0	R/W	
	D2	RECT_FULLSYNC_EN	0	R/W	0 : Half synchronous operation 1 : Half or full synchronous automatic change operation (Available in 0x1A D[3]=1)
0x1A	D3	RECT_SW_FORCE	0	R/W	1 : On resistance register setting mode of high side switch in rectifier
	D4	ATR_RECT_PSA[0]	0	R	On resistance setting monitor of rectifier high-side switch
	D5	ATR_RECT_PSA[1]	0	R	0 : 1[Ω] 1 : 2[Ω] 2 : 4[Ω] 3 : 8[Ω]
	D6	ATR_RECT_FULLSYNC_EN	0	R	Rectifier operation monitor 0 : Half synchronous operation 1 : Half or full synchronous automatic change operation
	D7		0	R	
	D0	RECT_TH_FS8_HS1[0]	1	R/W	VCC regulator output current threshold 1 (decreasing) for switching the rectifier operation
	D1	RECT_TH_FS8_HS1[1]	1	R/W	in ATPC pin and ATR pin = H
	D2	RECT_TH_FS8_HS1[2]	0	R/W	0.3516[mA/code] (VCC regulator output current(IVCC), not depending on RIMON resistance)
0.45	D3	RECT_TH_FS8_HS1[3]	1	R/W	9bit resolution in setting of RIVCC=1.2[k Ω], 2.4[k Ω], 4.8[k Ω]
0X1B	D4	RECT_TH_FS8_HS1[4]	0	R/W	Initial value : 11 (11 x 0.3516=3.868[mA])
	D5	RECT_TH_FS8_HS1[5]	0	R/W	Register value is applied by 0x1F D[7]=1.
	D6	RECT_TH_FS8_HS1[6]	0	R/W	
	D7	RECT TH FS8 HS1[7]	0	R/W	
	D0	RECT TH FS4 FS8[0]	1	R/W	VCC regulator output current threshold 2 (decreasing) for switching the rectifier operation
	D1	RECT TH FS4 FS8[1]	1	R/W	in ATPC pin and ATR pin = H
	D2	RECT TH FS4 FS8[2]	1	R/W	This value is compared by A/D converted result of RIMON pin voltage.
	 D3	RECT TH ES4 ES8[3]	0	R/W	9bit resolution in setting of RIVCC=1.2[k Ω], 2.4[k Ω], 4.8[k Ω]
0x1C	D4	RECT TH ES4 ES8[4]	1	R/W	Initial value : 23 (23 x 0.3516=8.087[mA])
	D5	RECT_TH_ES4_ES8[5]	0	R/W	Register value is applied by 0v1F DI71-1
	De	RECT_TH_ES4_ES8[6]	0	RW	
			0	DAM	
	D0		0	DAM	VCC requistor output surrent threshold 2 (decreasing) for switching the restifier operation
	DU		0	R/W	in ATPC bin and ATR bin = H
		REGI_IN_F02_F04[1]	4	R/VV	This value is compared by A/D converted result of RIMON pin voltage.
		NEGI_IT_F02_F04[2]	4		0.3516[mA/code] (VCC regulator output current(IVCC), not depending on RIMON resistance) 9bit resolution in setting of RIVCC-1 2[kO] 2 4[kO] 4 8[kO]
0x1D		REGI_IT_F02_F04[3]		R/VV	Initial value : 46 (46 x 0.3516=16.17[mA])
	D4	REUI_IN_F82_F84[4]	0		Desister volue is applied by 0x45 D(7) 4
	D5	REUI_IH_FS2_FS4[5]	1	R/W	Register value is applied by UXTF U[7]=1.
	D6	REUT_TH_FS2_FS4[6]	0	R/W	
	D7	RECI_IH_FS2_FS4[7]	0	R/W	
	D0	RECT_TH_FS1_FS2[0]	1	R/W	VCC regulator output current threshold 4 (decreasing) for switching the rectifier operation
	D1	RECT_TH_FS1_FS2[1]	1	R/W	This value is compared by A/D converted result of RIMON pin voltage.
	D2	RECT_TH_FS1_FS2[2]	0	R/W	0.3516[mA/code] (VCC regulator output current(IVCC), not depending on RIMON resistance)
0x1E	D3	RECT_TH_FS1_FS2[3]	1	R/W	9bit resolution in setting of RIVCC=1.2[kΩ], 2.4[kΩ], 4.8[kΩ] Initial value : 91 (91 x 0.3516=31.99[mA])
	D4	RECT_TH_FS1_FS2[4]	1	R/W	
	D5	RECT_TH_FS1_FS2[5]	0	R/W	Register value is applied by 0x1F D[7]=1.
	D6	RECT_TH_FS1_FS2[6]	1	R/W	
	D7	RECT_TH_FS1_FS2[7]	0	R/W	
	D0	RECT_TH_HYS[0]	1	R/W	VCC regulator output current threshold (hysteresis) for switching the rectifier operation
	D1	RECT_TH_HYS[1]	1	R/W	In ATPC pin and ATR pin = H
	D2	RECT_TH_HYS[2]	0	R/W	0.3516[mA/code] (VCC regulator output current(IVCC), not depending on RIMON resistance)
0.45	D3	RECT_TH_HYS[3]	1	R/W	9bit resolution in setting of RIVCC=1.2[k Ω], 2.4[k Ω], 4.8[k Ω]
0x1F	D4	RECT TH HYS ^[4]	0	R/W	Initial value : 11 (11 x 0.3516=3.868[mA])

D5

D6

D7

RECT_TH_HYS[4]

RECT_TH_HYS[5]

RECT_TH_HYS[6]

RECT_TH_UPLOAD

R/W

R/W

0

0

0

0

R/W 1 : Load current threshold register values (0x1B to 0x1F) are applied. This register is reset after applying.

R/W Register value is applied by 0x1F D[7]=1.

9.5 Address 0x20 to 0x27

Address	Bit No.	Register Name	Init	R/W	Description
	D0	WPT_T_TRNS	0	R/W	Data transmission trigger of WPT communication 0 : Complete 1 : Start (This register is reset after transmission)
0x20	D1		0	R	
	D2		0	R	
	D3		0	R	
	D4		0	R	
	D5		0	R	
	D6		0	R	
	D7		0	R	
	D0	WPT T HDR[0]	0	R/W	Transmission data Header of WPT communication
	D1	WPT T HDR[1]	0	R/W	
	D2	WPT T HDR[2]	0	R/W	
	D3	WPT T HDR[3]	0	R/W	
0x21	D4	WPT_T_HDR[4]	0	R/W	
	D5	WPT T HDR[5]	0	R/W	
	D6	WPT T HDR[6]	0	R/W	
	D7	WPT T HDR(7)	0	R/W	
	D0	WPT T MSG1[0]	0	R/W	Transmission data Message1 of WPT communication
	D1	WPT T MSG1[1]	0	R/W	
	D2	WPT T MSG1[2]	0	R/W	
	D3	WPT T MSG1[3]	0	R/W	
0x22	D4	WPT T MSG1[4]	0	R/W	
	D5	WPT T MSG1[5]	0	R/W	
	D6	WPT T MSG1[6]	0	R/W	
	D7	WPT_T_MSG1[7]	0	R/W	
	D0	WPT_T_MSG2[0]	0	R/W	Transmission data Message2 of WPT communication
	D1	WPT T MSG2[1]	0	R/W	
	D2	WPT_T_MSG2[2]	0	R/W	
	D3	WPT T MSG2[3]	0	R/W	
0x23	D4	WPT T MSG2[4]	0	R/W	
	D5	WPT T MSG2[5]	0	R/W	
	 D6	WPT_T_MSG2[6]	0	R/W	
	D7	WPT_T_MSG2[7]	0	R/W	
			0	R	Received data Header of WPT communication
	D1	WPT R HDR[1]	0	R	This register is overwritten by next received data of WPT communication even if this register is not read.
	D2	WPT R HDR[2]	0	R	
	D3	WPT R HDR[3]	0	R	
0x24	D4	WPT R HDR[4]	0	R	
	D5	WPT R HDR[5]	0	R	
	D6	WPT R HDR[6]	0	R	
			0	R	
	D0	WPT R MSG1[0]	0	R	Received data Message1 of WPT communication
	D1	WPT R MSG1[1]	0	R	This register is overwritten by next received data of WPT communication even if this register is not read.
	D2	WPT R MSG1[2]	0	R	
	D3	WPT_R_MSG1[3]	0	R	
0x25	D4	WPT_R_MSG1[4]	0	R	
	D5	WPT_R_MSG1[5]	0	R	
	 D6	WPT R MSG1[6]	0	R	
	D7	WPT R MSG1[7]	0	R	
	D0	WPT R MSG2[0]	0	R	Received data Message2 of WPT communication
	 D1	WPT R MSG2[1]	0	R	This register is overwritten by next received data of WPT communication even if this register is not read.
	D2	WPT R MSG2[2]	0	R	
	D3	WPT R MSG2[3]	0	R	
0x26	D4	WPT R MSG2[4]	0	R	
	D5	WPT R MSG2[5]	0	R	
	D6	WPT R MSG2[6]	0	R	
	 D7	WPT_R_MSG2[7]	0	R	
	D0	WPT_T_RATE[0]	1	R/W	WPT communication data rate setting (Receiver to Transmitter communication)
	D1	WPT T RATE[1]	0	R/W	0 : 125[bps] 1 : 250[bps] 2 : 500[bps] 3 : 1000[bps]
	D2	WPT R DIFF OLDI01	1	R/W	Assigning data point to calculate the rectified output voltage variation for WPT communication packet demodulation
	D3	WPT_R_DIFF_OLD[1]	1	R/W	0:Previous data 1:Data 2 times before 2:Data 3 times before 3:Data 4 times before
0x27	D4	WPT_R_DIFF_WAIT[0]	1	R/W	Timing to acquire the rectified output voltage variation for WPT communication packet demodulation.
	D5	WPT_R_DIFF_WAIT[1]	1	R/W	Recommended value 125bps : 7 250bps : - 500bps : - 1000bps :-
	 D6	WPT R DIFF WAITI21	1	R/W	
	 D7	WPT R DIFF WAIT[3]	0	R/W	

9.6 Address 0x28 to 0x2F

Address	Dit No.	Deviator Name	India	DAM	Description
Address	BIT NO.	Register Name	Init	R/W	Description
	D0	WPT_R_DIFF_TH[1]	0	R/W	Threshold to detect the rectified output voltage variation for WPT communication packet demodulation.
	D1	WPT_R_DIFF_TH[2]	0	R/W	5.273[mV/code] (RECI pin voltage, 11bit resolution)
	D2		0	R/M	(000, WP1_RDIFF_IH[8:1], 0 } and 12bit differential value of RECT pin voltage are compared.
	D2		0	DAV	Recommended value 125bps : 32(168.7[mV]) 250bps : - 500bps : - 1000bps : -
0x28	D3	WPT_R_DIFF_TH[4]	0	R/W	
	D4	WPT_R_DIFF_TH[5]	0	R/W	
	D5	WPT R DIFF TH[6]	1	R/W	
	 DC		0	DAA	
	D6	WP1_R_DIFF_IH[7]	0	R/VV	
	D7	WPT_R_DIFF_TH[8]	0	R/W	
	D0	WPT_R_CNT_TH[0]	1	R/W	Counter timing to detect data 1/0 for WPT communication packet demodulation.
	D1		1		Recommended value 125bps : 11 250bps : - 500bps : - 1000bps : -
			-	10/00	
	D2	WPT_R_CNT_TH[2]	0	R/W	
0.00	D3	WPT_R_CNT_TH[3]	1	R/W	
0x29	D4	WPT R CNT THIA	0	R/W	1
	04		0	5.44	
	D5	WPI_R_CNI_IH[5]	0	R/W	
	D6	WPT_R_CNT_TH[6]	0	R/W	
	D7	WPT R CNT THI71	0	R/W	
	DO		0	DAA/	Counter timing to detect data processes/shapped for WPT communication peoket demodulation
	00		0	R/ VV	Counter limiting to detect data presence absence to two r communication packet demodulation.
	D1	WPT_R_CNT_TH_1CYC[1]	0	R/W	Recommended value 1230ps . 20 2300ps 1000ps
	D2	WPT R CNT TH 1CYC[2]	1	R/W	
	D3		0		
0x2A	03		0	R/VV	
	D4	WPT_R_CNT_TH_1CYC[4]	1	R/W	
	D5	WPT_R_CNT_TH_1CYC[5]	0	R/W	
	D6	WPT R CNT TH 1CYCI61	0	RW	
	50		0	10.00	
	D7	WPI_R_CNI_IH_1CYC[7]	0	R/W	
	D0		0	R	
0.05	D1		0	R	
	- ·		0		
	DZ		0	ĸ	
	D3		0	R	
UX2B	D4		0	R	
	D5		0	Þ	
	00		0	ĸ	
	D6		0	R	
	D7		0	R	
	DO		0	R	
	D0		0		
	D1		0	ĸ	
	D2		0	R	
	D3		0	R	
0x2C			0		
	D4		0	ĸ	
	D5		0	R	
	D6		0	R	
	DZ		0	ь	
	זט		0	ĸ	
	D0		0	R	
	D1		0	R	
	D2		0	R	
	02		0		
0x2D	D3		0	R	
UNED	D4		0	R	
	D5		0	R	
	D0		0		
	D6		0	ĸ	
	D7		0	R	
	D0		0	R	
			0		
	וט		0	ĸ	
	D2		0	R	
	D3		0	R	
0x2E	D4		0	Þ	
	D4		0	ĸ	
	D5		0	R	
	D6		0	R	
	D7		0	R	
		INT MOT ON DOV MACK	۲, T		
	00	INI_WPI_CM_RCV_MASK	0	R/W	Notification setting of WPT data receiving (Tx to Rx) 0: Notify 1: Do not notify (flag is masked)
	D1	INT_CHG_STAT_CNG_MASK	0	R/W	Notification setting of battery charge state transition 0 : Notify 1 : Do not notify (flag is masked)
	ר2	INT DD OCP DET MASK	0	R/W	Notification setting of DCDC overcurrent detection 0 · Notify 1 · Do not notify (flag is masked)
	- <u>-</u>	INT VOODEO OUDET MACK	۲, T	D 44/	Natification active of VOO regulator surrent limit 0. Natific 4. Do not notify (Reg 10 matrice)
0x2F	03	INT_VOOREG_OLDET_MASK	0	K/W	Inouncation setting of VCC regulator current limit. U : Nouly 1: Do not notify (flag is masked)
	D4		0	R	
	D5		0	R	
1	De		0	Р	
	00		0	ĸ	
	D7		0	R	

9.7 Address 0x30 to 0x37

Address	Bit No.	Register Name	Init	R/W	Description
	D0	INT_WPT_CM_RCV	0	R	Interruption notification of WPT data receiving (Tx to Rx) 1 : Data is received (return 0 after register read)
	D1	INT_CHG_STAT_CNG	0	R	Interruption notification of battery charge state transition 1 : State is transited (return 0 after register read)
	D2	INT_DD_OCP_DET	0	R	Interruption notification of DCDC overcurrent detection 1: Detected
	D3	INT_VCCREG_CLDET	0	R	Interruption notification of VCC regulator current limit 1 : Current limiting
0x30	D4		0	R	
	D5		0	R	
	D6		0	R	
	D7		0	R	
	D0	MCTRL_STATE_MON[0]	0	R	Operation mode
	D1	MCTRL_STATE_MON[1]	0	R	0,1 : Shut down mode 2 to 7 : Charge mode 1 8 : Charge mode 2 9 : Discharge mode
	D2	MCTRL_STATE_MON[2]	0	R	
0.21	D3	MCTRL_STATE_MON[3]	0	R	
0,51	D4	VCCREG_CLDET	0	R	Notification of VCC regulator current limit 0 : Normal condition 1 : Current limiting
	D5	CHG_LDDET	0	R	Notification that load current automatic dividing function is operated 0: OFF 1: ON
	D6	BAT_ASSISTDET	0	R	Notification that assist function by battery is operated 0 : OFF 1 : ON
	D7		0	R	
	D0	CHG_STATE_MON[0]	0	R	Battery charging status
	D1	CHG_STATE_MON[1]	0	R	U : Initial 1 : Pre-charge 2 : I rickle charge 3 : Fast charge 4 : Charge complete judging 5 : Charge complete 6 : No battery 7 : Charge error 1 8 : Charge error 2 9 : Charge error 3
	D2	CHG_STATE_MON[2]	0	R	
0x32	D3	CHG_STATE_MON[3]	0	R	
0,52	D4	THM_AREA[0]	0	R	Charge control profile for battery temperature
	D5	THM_AREA[1]	0	R	10: No battery 1: Charge pending in low temperature 2: Low temperature low rate charge 3: Suitable temperature charge 4: High temperature low rate charge 5: Charge pending in high temperature
	D6	THM_AREA[2]	0	R	
	D7		0	R	
	D0	WPT_R_ERR	0	R	WPT communication error 0: Undetected 1: Detected
	D1	I2C_WR_ERR	0	R	2-wire interface communication error 0: Undetected 1: Detected
	D2	RIMON_DET_ERR	0	R	RIMON connected resistance value error 0: Undetected 1: Detected
0x33	D3		0	R	
0,000	D4	DD_DDIN_OK	0	R	DCDC converter UVLO detection 0 : Detected(DCDC stop) 1 : UVLO release(DCDC start)
	D5	DD_SYS_OK	0	R	DCDC converter SYS voltage detection 0 : Low voltage condition 1 : Normal voltage condition (start up complete)
	D6	DD_OVP_DET	0	R	DCDC converter overvoltage detection 0: OVP release(DCDC start) 1: Detected(DCDC stop)
	D7	DD_OCP_DET	0	R	DCDC converter overcurrent detection 0 : Normal current 1 : Detected
	D0	FGH_DET	0	R	Battery low voltage detection H (First step) 0 : Undetected 1 : Detected
	D1	FGL_DET	0	R	Battery low voltage detection L (Second step) 0 : Undetected 1 : Detected
	D2	BUZ_MODE	0	R/W	BUZ output setting 0 : Level output 1 : Pulse output
0x34	D3		0	R	
	D4	DSCP_DET	0	R	Battery discharge short circuit current detection 0: Undetected 1: Detected
	D5		0	R	Battery discharge overcurrent detection 0 : Undetected 1 : Detected
	D6		0	R	Battery discharge overvoltage detection 0: Undetected 1: Detected
			0	R	Maximum junction temperature detection 0: Undetected 1: Detected
		ADC_OPLOAD	0	R/W	T : AVD converted results are retched and 0x36 to 0x3F registers are updated. (return o arter update)
	01		0	Б	
	D2 D2		0	Б	
0x35	D3		0	R	
	D5		0	R	
	D6		n n	R	
	D7		0	R	
<u> </u>	D0		0	R	RECT pin voltage detection RECT pin voltage is higher than ADC input voltage range 0 · Undetected 1 · Detected
	D1	/////	0	R	
	D2		0	R	
	D3		0	R	
0x36	D4	ADC VRECT (2CI0)	0	R	A/D converted result of rectified voltage (RECT pin voltage)
	D5	ADC VRECT I2C[1]	0	R	2.637[mV/code] (RECT pin voltage, 12bit resolution)
0x37	D6	ADC_VRECT_I2C[2]	0	R	
	D7	ADC_VRECT_I2C[3]	0	R	
	D0	ADC_VRECT_I2C[4]	0	R	
	D1	ADC_VRECT_I2C[5]	0	R	
	D2	ADC_VRECT_I2C[6]	0	R	
	D3	ADC_VRECT_I2C[7]	0	R	
	D4	ADC_VRECT_I2C[8]	0	R	
	D5	ADC_VRECT_I2C[9]	0	R	
	D6	ADC_VRECT_I2C[10]	0	R	
	D7	ADC_VRECT_I2C[11]	0	R	

9.8 Address 0x38 to 0x3F

Address	Bit No.	Register Name	Init	R/W	Description	
	D0		0	R		
	D1		0	R		
	D2		0	R		
	D3		0	R		
0x38	D4	ADC_IVCC_I2C[0]	0	R	A/D converted result of VCC regulator output current (RIMON pin voltage)	
	D5	ADC_IVCC_I2C[1]	0	R	592[mV/code] (RIMON pin voltage, 12bit resolution)	
	D6	ADC IVCC I2C[2]	0	R	RIMON pin voltage is limited in 1.2V(Current limit function) (1.2[V]/0.6592[mV/code] = 1820 [code]) 43 94[uA/code] @ RIVCC=1.2[kO] (VCC regulator output current(IVCC), 12bit resolution)	
	D7	ADC IVCC I2C[3]	0	R	21.97[uA/code] @ RIVCC=2.4[kΩ] (VCC regulator output current(IVCC), 12bit resolution)	
	D0	ADC IVCC I2C[4]	0	R	10.98[uA/code] @ RIVCC=4.8[kΩ] (VCC regulator output current(IVCC), 12bit resolution)	
	D1	ADC IVCC I2CI51	0	R		
	D2	ADC IVCC I2CI61	0	R		
	D3		0	R		
0x39	D4	ADC IVCC I2C[8]	0	R		
	 D5		0	R		
	D6		0	R		
	D7		0	R		
	D0	///////////////////////////////////////	0	R		
	D1		0	R		
	D2		0	R		
	D2		0	D		
0x3A	D3		0		A/D converted result of battery voltage (BAT pip voltage)	
	D4 D5		0		1.318[mV/code] (BAT pin voltage, 12bit resolution)	
	DS		0			
			0	ĸ		
	D7		0	R		
	D0		0	R		
	D1		0	R		
	D2	ADC_VBAT_I2C[6]	0	R		
0x3B	D3	ADC_VBAT_I2C[7]	0	R		
	D4	ADC_VBAT_I2C[8]	0	R		
	D5	ADC_VBAT_I2C[9]	0	R		
	D6	ADC_VBAT_I2C[10]	0	R		
	D7	ADC_VBAT_I2C[11]	0	R		
	DO		0	R		
	D1		0	R		
	D2		0	R		
0x3C	D3		0	R		
	D4	ADC_ICHG_I2C[0]	0	R	A/D converted result of charging current (RICHG pin voltage) 0.6592[mV/code] (RICHG pin voltage, 12bit resolution)	
	D5	ADC_ICHG_I2C[1]	0	R	RICHG pin voltage is limited in 1.2V(1C) (1.2[V]/0.6592[mV/code] = 1820 [code])	
	D6	ADC_ICHG_I2C[2]	0	R	9.417[uA/code] @ RICHG=5.6[kΩ] (charge current(ICHG), 12bit resolution) 1C=17.14[mA]	
	D7	ADC_ICHG_I2C[3]	0	R	[35.16[uA/code] @ RICHG=1.5[K1] (charge current(ICHG), 12bit resolution) 1C=64.00[mA]	
	D0	ADC_ICHG_I2C[4]	0	R		
	D1	ADC_ICHG_I2C[5]	0	R		
	D2	ADC_ICHG_I2C[6]	0	R		
0x3D	D3	ADC_ICHG_I2C[7]	0	R		
	D4	ADC_ICHG_I2C[8]	0	R		
	D5	ADC_ICHG_I2C[9]	0	R		
	D6	ADC_ICHG_I2C[10]	0	R		
	D7	ADC_ICHG_I2C[11]	0	R		
	D0		0	R		
	D1		0	R		
	D2		0	R		
0x3E	D3		0	R		
	D4	ADC_VTHM_I2C[0]	0	R	A/D converted result of battery temperature (THM pin voltage)	
	D5	ADC_VTHM_I2C[1]	0	R	0.0392[mV/code] (THM pm Voltage, T2bit resolution)	
	D6	ADC_VTHM_I2C[2]	0	R		
0x3F	D7	ADC_VTHM_I2C[3]	0	R		
	D0	ADC_VTHM_I2C[4]	0	R		
	D1	ADC_VTHM_I2C[5]	0	R		
	D2	ADC_VTHM_I2C[6]	0	R		
	D3	ADC_VTHM_I2C[7]	0	R		
	D4	ADC_VTHM_I2C[8]	0	R		
	D5	ADC_VTHM_I2C[9]	0	R		
	D6	ADC_VTHM_I2C[10]	0	R		
	D7	ADC_VTHM_I2C[11]	0	R		

9.9 Address 0x40 to 0x6F

Address	Bit No.	Register Name	Init	R/W	Description			
0x40	D0	I2C_WRITE_EN	0	R/W	Write enable to registers of 0x00 to 0x0F by 2-wire I/F. 0 : Write disable 1: Write enable			
	D1		0	R/W				
	D2		0	R/W				
	D3		0	R/W				
	D4	I2C_RSET[0]	0	R/W	Pull up resistance setting for SDA, SCL I/O circuit. (This resistance does not mean the pull up resistance of bus line $1:500$ k $\Omega = 2:1000$ k $\Omega = 3:2000$ k Ω			
	D5	I2C_RSET[1]	0	R/W				
	D6	Test Register	0	R/W	atting 0 only. Catting 1 is familidan			
	D7	Test Register	0	R/W	Setting 0 only. Setting 1 is forbidden.			
0x41								
to 0x6F	to Test registers (Unavailable for user)							
0,01								

10. Package Dimensions

JEITA Package code	RENESAS Code	Previous Code	2	MAS	SS(TYP.)[g]
S-WFBGA41-3.22x2.77-0.40	SWBG0041LB-A	_			0.012	
A1 INDEX AF		A A B C C C C C C C C C C C C C	1 (IEW)	- (Z E)		- IS B
	Term		Symbols	Dimensi	ons in mi	limeters
	Dacka	ge length	D	Min 2 72	Nom	Max 2.82
	Раска	ge width	E	3.17	3.22	3.27
	Overh	ang dimension in length	ZD	-	0.385	-
	Overh	ang dimension in width	ZE	-	0.41	-
	Profile	e height	А	-	_	0.70
	Stand	-off height	A1	0.15	0.19	0.23
	Termi	nal diameter	b	0.22	0.27	0.32
	Termi	nal pitch	e	-	0.4	-
	Cente	er terminal distance from datum B	SD	-	0.2	_
< C area	Positi	onal tolerance of terminals	x	_	0.05	_
	Copla	narity	y v	-	0.03	_

REVISION	HISTORY
REVISION	HISIUKI

RAA457100GBM Datasheet

Boy	Date	Description			
Rev.		Page	Summary		
1.00	2017.02.28	-	First Edition issued		

All marks and registered trademarks are the property of their respective owners.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpilling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.
- 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

(Rev.3.0-1 November 2016)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Ciara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +44-1628-585-900 Renesas Electronics Curope GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +44-1628-585-900 Renesas Electronics Curope CombH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ld. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +861-02-825-1155, Fax: +862-10-823-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A., Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +862-226-0389, Fax: +862-226-0399 Renesas Electronics Hong Kong Limited Unit 1801-1611, 16/F., Tower 2, Grand Century Plaze, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852-2886-9022 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 33949 Tel: +856-28175-9600, Fax: +886 2-8175-9670 Renesas Electronics Malaysia Sch.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +656-213-0200, Fax: +865-621-3000 Renesas Electronics Malaysia Sch.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +656-275-9030, Fax: +81-40-67208777 Renesas Electronics Malaysia Sch.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics: RAA457100GBM#HC0