

R1LP5256E Series

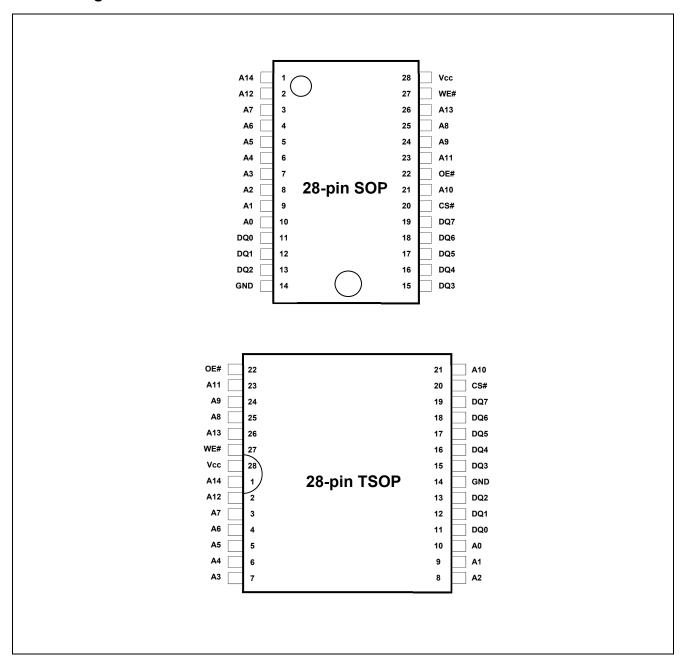
256Kb Advanced LPSRAM (32k word x 8bit)

R10DS0268EJ0200 Rev.2.00 2019.10.29

Description

The R1LP5256E Series is a family of low voltage 256-Kbit static RAMs organized as 32,768-word by 8-bit, fabricated by Renesas's high-performance 0.15um CMOS and TFT technologies. The R1LP5256E Series has realized higher density, higher performance and low power consumption. The R1LP5256E Series is suitable for memory applications where a simple interfacing, battery operating and battery backup are the important design objectives. It has been packaged in 28-pin SOP and 28-pin TSOP.

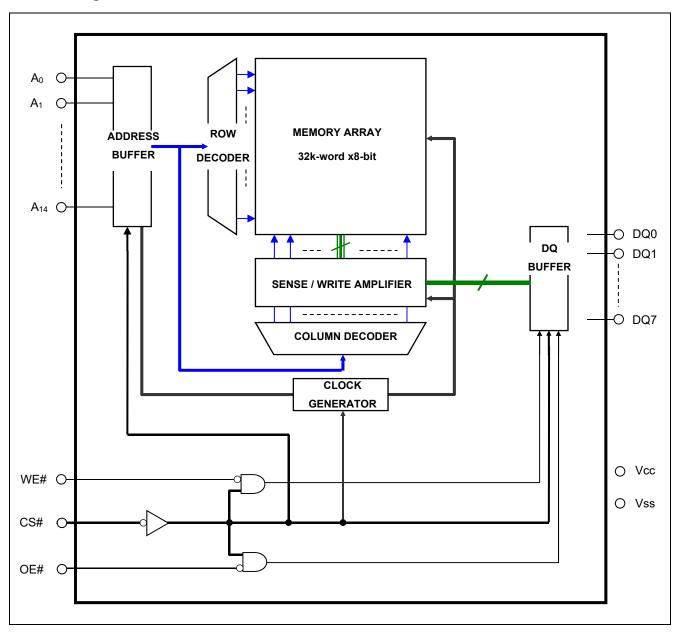
Features


- Single 4.5V~5.5V power supply
- Small stand-by current: 0.6µA (5.0V, typical)
- No clocks, No refresh
- All inputs and outputs are TTL compatible.
- Easy memory expansion by CS#
- Common Data I/O
- Three-state outputs: OR-tie Capability
- OE# prevents data contention on the I/O bus

Ordering Information

Orderable part name	Access time	Temperature range	Package	Shipping container	
R1LP5256ESP-5SI#B*			450-mil 28-pin	Tube (Magazine)	
R1LP5256ESP-5SI#S*	55 m -	-40 ~ +85°C	plastic SOP	Embossed tape	
R1LP5256ESA-5SI#B*	55 ns		-40 ~ +85 C	-40 ~ +85 C	8mm×13.4mm 28-pin
R1LP5256ESA-5SI#S*	LP5256ESA-5SI#S*	plastic TSOP	Embossed tape		

Note 1. * = Revision code for Assembly site change, etc. (* = 0, 1, etc.)


Pin Arrangement

Pin Description

Pin name	Function
Vcc	Power supply
Vss (GND)	Ground
A0 to A14	Address input
DQ0 to DQ7	Data input/output
CS#	Chip select
WE#	Write enable
OE#	Output enable

Block Diagram

Operation Table

CS#	WE#	OE#	DQ0~7	Operation
Н	Х	Х	High-Z	Stand-by
L	L	Х	Din	Write
L	Н	L	Dout	Read
L	Н	Н	High-Z	Output disable

Note 1. H: V_{IH} L: V_{IL} X: V_{IH} or V_{IL}

Absolute Maximum

Parameter	Symbol	Value	unit
Power supply voltage relative to Vss	Vcc	-0.3 to +7.0	V
Terminal voltage on any pin relative to Vss	V _T	-0.3*1 to Vcc+0.3*2	V
Power dissipation	P _T	0.7	W
Operation temperature	Topr	-40 to +85	°C
Storage temperature range	Tstg	-65 to 150	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Note 1. –3.0V for pulse ≤ 30ns (full width at half maximum)

^{2.} Maximum voltage is +7.0V.

DC Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	Vcc	4.5	5.0	5.5	V	
	Vss	0	0	0	V	
Input high voltage	ViH	2.2	-	Vcc+0.3	V	
Input low voltage	VIL	-0.3	-	0.8	V	1
Ambient temperature range	Та	-40	-	+85	°C	

Note 1. -3.0V for pulse ≤ 30 ns (full width at half maximum)

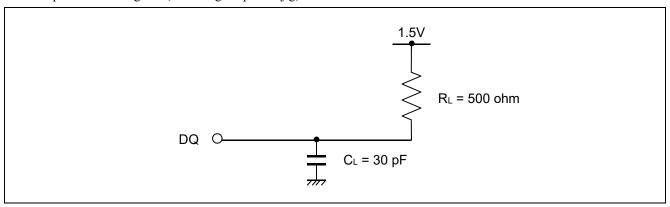
DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions		
Input leakage current		-	-	1	μΑ	Vin = Vss to Vcc		
Output leakage current	I LO	_	_	1	μА	CS# =V _{IH} c	or OE# =V _{IH} ,	
	1101			'	μιν	VI/O =Vss	to Vcc	
Average operating current	Icc ₁	_	25	35	mA		duty = 100%, $II/O = 0mA$,	
	1001		20	00	1117 \	CS# =V _{IL} , (Others = V _{IH} /V _{IL}	
						Cycle =1µs	s, duty =100%, II/O = 0mA,	
	Icc2	-	2	4	mA	CS# ≤ 0.2\	/,	
						V _{IH} ≥ Vcc-0	.2V, V _{IL} ≤ 0.2V	
Standby current	I _{SB}	_	_	3	mA	CS# =V _{IH} ,		
	128	_	_	3	ША	Others = V	ss to Vcc	
Standby current			0.6 ^{*1}	_	_	10500	Vin = Vss to Vcc,	
		-	0.6	2	μΑ	~+25°C	CS# ≥ Vcc-0.2V	
						. 4000		
	I _{SB1}	-	-	3	μΑ	~+40°C		
		ISB1					7000	
		-	-	8	μΑ	~+70°C		
				40	_	.0500		
		-	-	10	μΑ	~+85°C		
Output high voltage	Vон	2.4	-	-	V	I _{OH} = -1mA		
	V _{OH2}	Vcc	_	_	V	Iон = -0.1m	nA	
	V 0112	- 0.5				.511 0.111		
Output low voltage	V_{OL}	-	-	0.4	V	I _{OL} = 2mA		

Note 1. Typical parameter indicates the value for the center of distribution at 5.0V (Ta= 25°C), and not 100% tested.

Capacitance

 $(Vcc = 4.5V \sim 5.5V, f = 1MHz, Ta = -40 \sim +85^{\circ}C)$


Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Input capacitance	C in	-	-	6	pF	Vin =0V	1
Input / output capacitance	C 1/0	-	-	8	pF	VI/O =0V	1

Note 1. This parameter is sampled and not 100% tested.

AC Characteristics

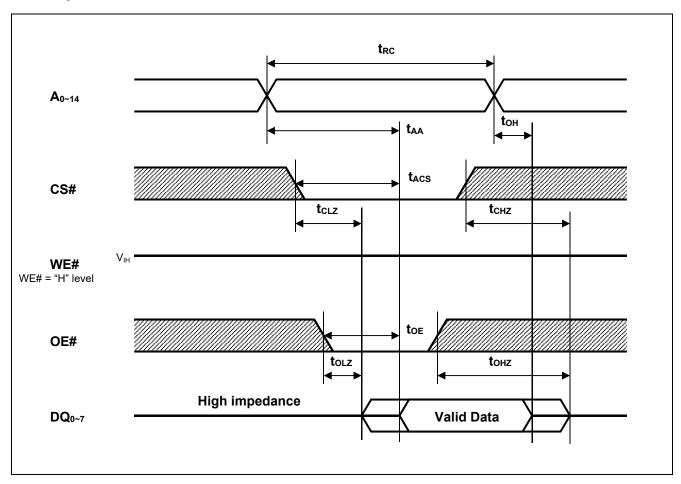
Test Conditions (Vcc = 4.5V ~ 5.5 V, Ta = $-40 \sim +85$ °C)

- Input pulse levels: VIL = 0.6V, VIH = 2.4V
- Input rise and fall time: 5ns
- Input and output timing reference level: 1.5V
- Output load: See figures (Including scope and jig)

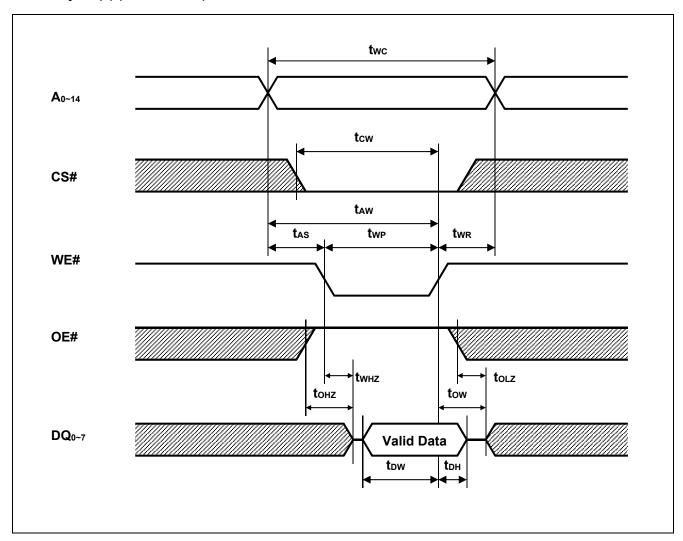
Read Cycle

Parameter	Symbol	Min.	Max.	Unit	Note
Read cycle time	t _{RC}	55	-	ns	
Address access time	t _{AA}	-	55	ns	
Chip select access time	t _{ACS}	-	55	ns	
Output enable to output valid	toE	-	30	ns	
Output hold from address change	tон	10	-	ns	
Chip select to output in low-Z	tcLz	5	-	ns	2,3
Output enable to output in low-Z	tolz	5	-	ns	2,3
Chip deselect to output in high-Z t _{CHZ}		0	20	ns	1,2,3
Output disable to output in high-Z toHz		0	20	ns	1,2,3

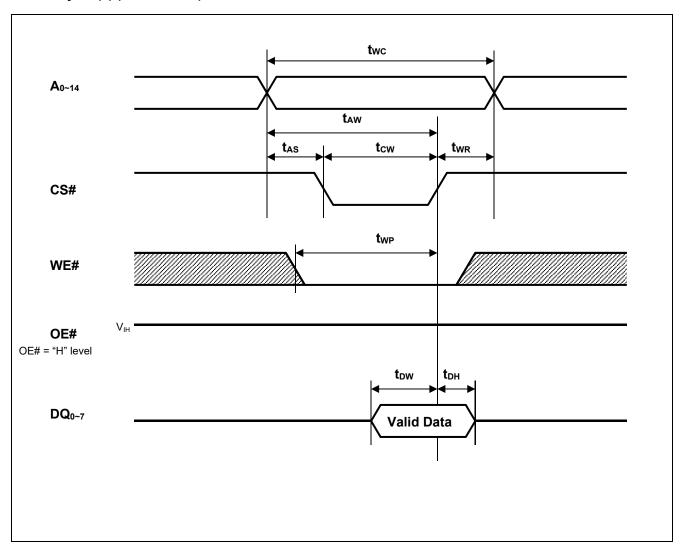
Write Cycle


Parameter	Symbol	Min.	Max.	Unit	Note
Write cycle time	twc	55	-	ns	
Address valid to end of write	t _{AW}	50	-	ns	
Chip select to end of write	tcw	50	-	ns	5
Write pulse width	twp	40	-	ns	4
Address setup time	t _{AS}	0	-	ns	6
Write recovery time	twR	0	-	ns	7
Data to write time overlap	t _{DW}	25	-	ns	
Data hold from write time	t₀н	0	-	ns	
Output enable from end of write	tow	5	-	ns	2
Output disable to output in high-Z toHz		0	20	ns	1,2
Write to output in high-Z		0	20	ns	1,2

Note

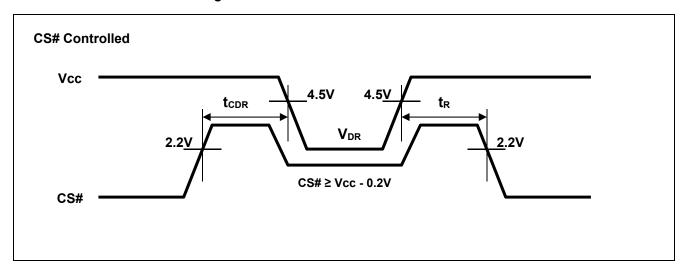

- 1. t_{CHZ} , t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.
- 2. This parameter is sampled and not 100% tested.
- 3. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
- 4. A write occurs during the overlap of a low CS#, a low WE#.
 - A write begins at the latest transition among CS# going low and WE# going low.
 - A write ends at the earliest transition among CS# going high and WE# going high.
 - t_{WP} is measured from the beginning of write to the end of write.
- 5. t_{CW} is measured from the later of CS# going low to end of write.
- 6. tas is measured the address valid to the beginning of write.
- 7. twR is measured from the earliest of CS# or WE# going high to the end of write cycle.
- 8. Don't apply inverted phase signal externally when DQ pin is output mode.

Timing Waveforms


Read Cycle

Write Cycle (1) (WE# CLOCK)

Write Cycle (2) (CS# CLOCK)



Low Vcc Data Retention Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions*2		
V _{CC} for data retention	V_{DR}	2.0	-	5.5	>	Vin ≥ 0V, CS# ≥ Vcc	c-0.2V	
	Iccor	-	0.6*1	2	μΑ	~+25°C		
Data retention current		-	1	3	μΑ	~+40°C	Vcc=3.0V, Vin ≥ 0V, CS# ≥ Vcc-0.2V	
		-	-	8	μΑ	~+70°C	C5# 2 VCC-0.2V	
		-	-	10	μΑ	~+85°C		
Chip deselect time to data retention	t _{CDR}	0	-	-	ns	See retention waveform.		
Operation recovery time	t _R	5	-	-	ms			

Note 1. Typical parameter indicates the value for the center of distribution at 3.0V (Ta= 25°C), and not 100% tested.

Low Vcc Data Retention Timing Waveforms

^{2.} CS# controls address buffer, WE# buffer, OE# buffer and Din buffer. If CS# controls data retention mode, Vin levels (address, WE#, OE#, DQ) can be in the high impedance state.

Revision History	R1LP5256E Series Data Sheet

		Description				
Rev.	Date	Page	Summary			
1.00	2017.1.27	-	First Edition issued			
2.00	2019.10.29	p.1	p.1 Revised orderable part name information.			

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

<u>R1LP5256ESP-5SI#S0</u> <u>R1LP5256ESA-5SI#B1</u> <u>R1LP5256ESA-5SI#B1</u> <u>R1LP5256ESA-5SI#B0</u> <u>R1LP5256ESP-5SI#B1</u>