

RL78/H1D

RENESAS MCU

R01DS0318EJ0110 Rev. 1.10 Apr 28, 2023

Analog front-end (24-bit $\Delta\Sigma$ A/D converter with programmable gain instrumentation amplifier, Amplifier unit and 12-bit D/A converter), External signal sampler/Sampling output timer detector and Integrated LCD controller/driver.

True Low Power Platform (as low as 70.8 μ A/MHz, and 0.68 μ A in Halt mode(RTC2 + LVD)), 1.8 V to 5.5V operation, 64 to 128 Kbyte Flash, 33 DMIPS at 24 MHz, for Healthcare and Flow meter applications.

1. OUTLINE

1.1 Features

- O Ultra-low power consumption technology
 - VDD = 2.4 to 5.5 V
 (10-bit SAR A/D converter: 2.4 to 5.5 V, operating voltage of the analog front-end (AFE): 2.7 to 5.5 V) Note 1,

 VDD = 1.8 to 5.5 VNote 2
 - HALT mode
 - STOP mode
 - SNOOZE mode
- O RL78 CPU core
 - · CISC architecture with 3-stage pipeline
 - Minimum instruction execution time: Can be changed from high speed (0.04167 μs: @ 24 MHz operation with high-speed on-chip oscillator clock) to ultra-low speed (30.5 μs: @ 32.768 kHz operation with subsystem clock)
 - Multiply/divide and multiply/accumulate instructions are supported.
 - Address space: 1 MB
 - General-purpose registers: (8-bit register × 8)
 × 4 banks
 - On-chip RAM: 5.5 KBNote 1, 8 KBNote 2
- O Code flash memory
 - Code flash memory: 64 to 128 KB
 - Block size: 1 KB
 - Prohibition of block erase and rewriting (security function)
 - · On-chip debug function
 - Self-programming (with boot swap function/flash shield window function)
- O Data flash memory
 - Data flash memory: 4 KB

- Background operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD = 2.4 to 5.5 V^{Note 1},
 1.8 to 5.5 V^{Note 2}
- O High-speed on-chip oscillator
 - Select from 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
 - High accuracy: ±1.0% (VDD = 2.4 to 5.5 V, TA = -20 to +85°C^{Note 1}, VDD = 1.8 to 5.5 V, TA = -20 to +85°C^{Note 2})
- Operating ambient temperature
 - TA = -40 to +85°C (A: Consumer applications^{Note 1}, D: Industrial applications^{Note 2})
- O Power management and reset function
 - On-chip power-on-reset (POR) circuit
 - On-chip voltage detector (LVD) (Select interrupt and reset from 9^{Note 1} or 12^{Note 2} levels)
- O Data transfer controller (DTC)
 - Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
 - Activation sources: Activated by interrupt sources (35 sources).
 - · Chain transfer function
- O Event link controller (ELC)
 - Event signals of 18 to 26 types can be linked to the specified peripheral function.

O Serial interfaces

- Simplified SPI(CSI Note 3)/Simplified SPI(CSI)(SPI supported): 3 channels
- UART/UART (LIN-bus supported):3 channels
- I2C/simplified I2C: 4 channels
- Serial interface UARTMG (9600 bps @ 38.4 kHz): 1 channel (R5F11R only)

○ Timers

• 16-bit timer:

Timer array unit (TAU): 8 channels, Timer RJ: 2 channels (R5F11R only)

- 8-bit timer:2 channelsNote 1, 6 channelsNote 2
- 12-bit interval timer: 1 channel
- Real-time clock 2: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)
- External signal sampler: 1 channel (R5F11R only)
- Sampling output timer detector (SMOTD):
 6 channels for input, 3 channels for output (R5F11R only)

O LCD controller/driver

- Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.
- Segment signal output:
 27 (23) to 36 (32) Note 4
- Common signal output: 4 (8) Note 4
- Analog front-end power supply circuit (R5F11N and R5F11P only)
 - AFE reference power supply (ABGR)
 - LDO for supplying power to internal circuits (REGA)
 - LDO for supplying power to a sensor (SBIAS): 0.5 to 2.2 V
- \bigcirc 24-bit $\Delta\Sigma$ A/D converter with programmable gain instrumentation amplifier (R5F11N and R5F11P only)
 - 24-bit second-order $\Delta\Sigma$ A/D converter (AVDD = 2.7 to 5.5 V)
 - SNDR: 85 dB (TYP.)
 - Output data rate: 488 sps to 15.625 ksps in normal mode
 - 61 sps to 1.953 ksps in low power mode
 - Programmable gain instrumentation amplifier (PGA0)

- Analog input: 1 to 5 channels (differential input mode or single-ended input mode)
- D/A converter for offset adjustment
- Variable gain: x1 to x64

O Amplifier unit (R5F11N and R5F11P only)

- Programmable gain instrumentation amplifier (PGA1): 1 channel (R5F11NL, R5F11PL, and R5F11NG only)
 - Analog input: 1 or 2 channels
 - Variable gain: x12, x16, x20, x24
- Rail-to-rail operational amplifier (AMP0): 1 channel
- General-purpose operational amplifier (AMP1, AMP2): 2 channels (R5F11NL, R5F11PL, and R5F11NG only)

O D/A converter (R5F11N and R5F11P only)

- 8-bit resolution R-2R resistor ladder D/A converter (DAC0) (AVDD = 2.7 to 5.5 V):
 1 channel
- 12-bit resolution R-2R resistor ladder D/A converter (DAC1) (AVDD = 2.7 to 5.5 V): 1 channel (R5F11NL, R5F11PL, and R5F11NG only)

○ 10-bit SAR A/D converter

- 10-bit resolution A/D converter (VDD = 2.4 to 5.5 V^{Note 1}, VDD = 1.8 to 5.5 V^{Note 2})
- · Analog input: 3 channels
- Internal reference voltage (TYP. 1.45 V) Note 5 and temperature sensor Note 5

O I/O ports

- I/O ports: 29 to 63 (N-ch open drain I/O [withstand voltage of 6 V]: 2)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- On-chip clock output/buzzer output controller

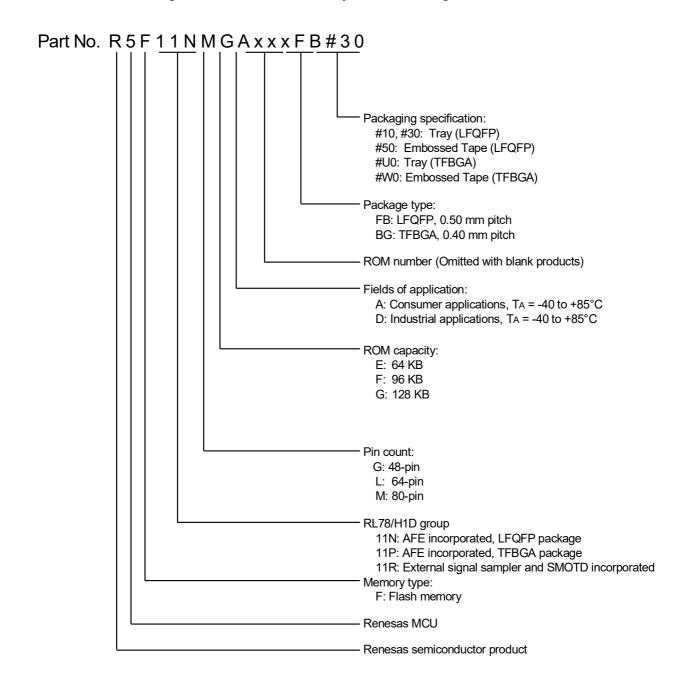
Others

- On-chip BCD (binary-coded decimal) correction circuit
- **Note 1.** In case of R5F11N and R5F11P.
- Note 2. In case of R5F11R.
- Note 3. Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
- Note 4. The number in parentheses indicates the number of signal outputs when 8 coms are used.

Note 5. Selectable only in HS (high-speed main) mode.

Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

○ ROM, RAM capacities


Flash ROM	Data Flash	RAM	RL78/H1D				
	Data Flasii	IVAIVI	80-pin LFQFP	64-pin LFQFP	64-pin TFBGA	48-pin LFQFP	
128 KB	4 KB	5.5 KB	R5F11NMG	R5F11NLG	R5F11PLG	R5F11NGG	
96 KB	4 KB	5.5 KB	R5F11NMF	R5F11NLF	R5F11PLF	R5F11NGF	
64 KB	4 KB	5.5 KB	R5F11NME	_	_	_	
128 KB	4 KB	8 KB	R5F11RMG	_	_	_	

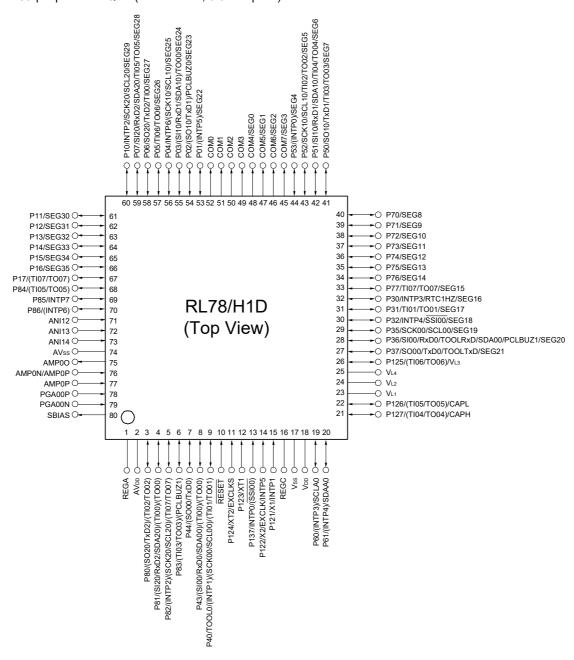
1.2 Ordering Information

Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	А	R5F11NMGAFB#30, R5F11NMFAFB#30, R5F11NMEAFB#30 R5F11NMGAFB#50, R5F11NMFAFB#50, R5F11NMEAFB#50
64 pins	64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)	А	R5F11NLGAFB#30, R5F11NLFAFB#30 R5F11NLGAFB#50, R5F11NLFAFB#50
64 pins	64-pin plastic TFBGA (4 × 4 mm, 0.4 mm pitch)	А	R5F11PLGABG#U0, R5F11PLFABG#U0 R5F11PLGABG#W0, R5F11PLFABG#W0
48 pins	48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)	А	R5F11NGGAFB#30, R5F11NGFAFB#30 R5F11NGGAFB#50, R5F11NGFAFB#50
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	D	R5F11RMGDFB#30, R5F11RMGDFB#50

Remark Products (R5F11PL) in 64-pin TFBGA have the same functionality as those (R5F11NG) in 48-pin LFQFP. The only difference is the package.

Figure 1 - 1 Part Number, Memory Size, and Package of RL78/H1D

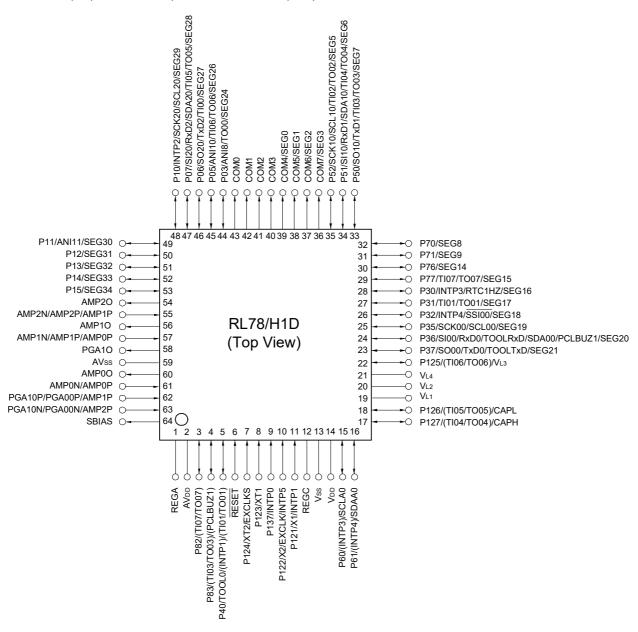
Caution Orderable part numbers are current as of when this manual was published.


Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

<R>

1.3 Pin Configuration (Top View)

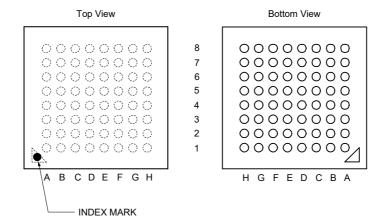
1.3.1 80-pin products (R5F11NM)


• 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Connect the REGA pin to AVss pin via a capacitor (0.22 µF).
- Caution 3. Make the AVss pin the same potential as the Vss pin.
- Caution 4. Make the AVDD pin the same potential as the VDD pin.
- Caution 5. Connect the SBIAS pin to AVss pin via a capacitor (0.22 µF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3)
- Remark 3. Set the AMP0P and AMP0N functions in the above figure by the amplifier unit 1 input select register (AMP0S).

1.3.2 64-pin products (R5F11NL)

• 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)

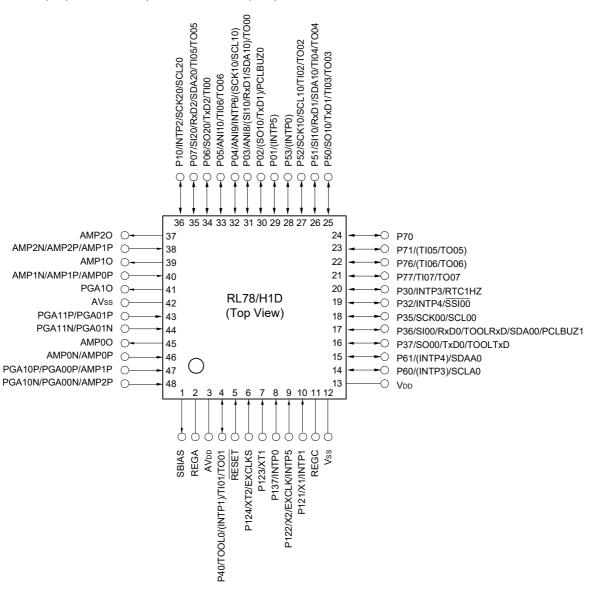

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Caution 2. Connect the REGA pin to AVss pin via a capacitor (0.22 μF).
- Caution 3. Make the AVss pin the same potential as the Vss pin.
- Caution 4. Make the AVDD pin the same potential as the VDD pin.
- Caution 5. Connect the SBIAS pin to AVss pin via a capacitor (0.22 μF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).
- Remark 3. Set the AMP0P and AMP0N functions in the above figure by the amplifier unit 1 input select register (AMP0S).

 Set the AMP1P and AMP1N functions in the above figure by the amplifier unit 2 input select register (AMP1S).

 Set the AMP2P and AMP2N functions in the above figure by the amplifier unit 3 input select register (AMP2S).

1.3.3 64-pin products (R5F11PL)

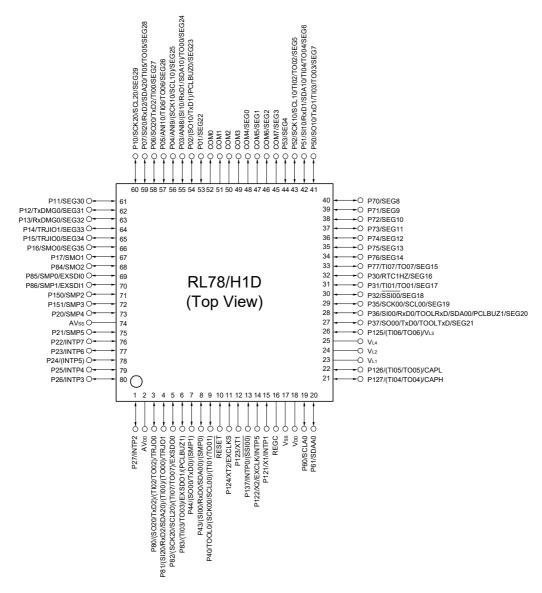
• 64-pin plastic TFBGA (4 × 4 mm, 0.4 mm pitch)



	Α	В	С	D	Е	F	G	Н	
8	Vss	P71/(TI05/ TO05)	P77/TI07/ TO07	P35/SCK00/ SCL00	P36/SI00/ RxD0/ TOOLRxD/ SDA00/ PCLBUZ1	P61/(INTP4)/ SDAA0	VDD	Vss	8
7	P50/SO10/ TxD1/TI03/ TO03	P51/SI10/Rx D1/SDA10/ TI04/TO04	P76/(TI06/ TO06)	P32/INTP4/ SSI00	P37/SO00/ TxD0/ TOOLTxD	P60/(INTP3)/ SCLA0	Vss	P121/X1/ INTP1	7
6	P53/(INTP0)	P52/SCK10/ SCL10/TI02/ TO02	P70	P30/INTP3/ RTC1HZ	Vss	RESET	REGC	P122/X2/ EXCLK/ INTP5	6
5	P02/(SO10/ TxD1)/ PCLBUZ0	P03/ANI8/ (SI10/RxD1/ SDA10)/ TO00	P04/ANI9/IN TP6/(SCK10/ SCL10)	P01/(INTP5)	Vss	P40/TOOL0/ (INTP1)/TI01 /TO01	P137/INTP0	P123/XT1	5
4	P05/ANI10/ TI06/TO06	P07/SI20/ RxD2/ SDA20/ TI05/TO05	P06/SO20/ TxD2/TI00	P10/INTP2/ SCK20/ SCL20	Vss	Vss	Vss	P124/XT2/ EXCLKS	4
3	AMP1O	AVss	AVss	AVss	AVss	AVss	REGA	AVDD	3
2	AMP2O	AMP1N/ AMP1P/ AMP0P	PGA11P/ PGA01P	PGA11N/ PGA01N	AMP0N/ AMP0P	AVss	AVss	SBIAS	2
1	AVss	AMP2N/ AMP2P/ AMP1P	PGA10	AVss	AMP0O	PGA10P/ PGA00P/ AMP1P	PGA10N/ PGA00N/ AMP2P	SBIAS	1
	Α	В	С	D	Е	F	G	Н	

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μF).
- Caution 2. Connect the REGA pin to AVss pin via a capacitor (0.22 μ F).
- Caution 3. Make the AVss pin the same potential as the Vss pin.
- Caution 4. Make the AVDD pin the same potential as the VDD pin.
- Caution 5. Connect an SBIAS pin (either of two) to the AVss pin via a capacitor (0.22 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0, 1, and 3 (PIOR0, PIOR1, and PIOR3).
- Remark 3. Set the AMP0P and AMP0N functions in the above figure by the amplifier unit 1 input select register (AMP0S). Set the AMP1P and AMP1N functions in the above figure by the amplifier unit 2 input select register (AMP1S). Set the AMP2P and AMP2N functions in the above figure by the amplifier unit 3 input select register (AMP2S).

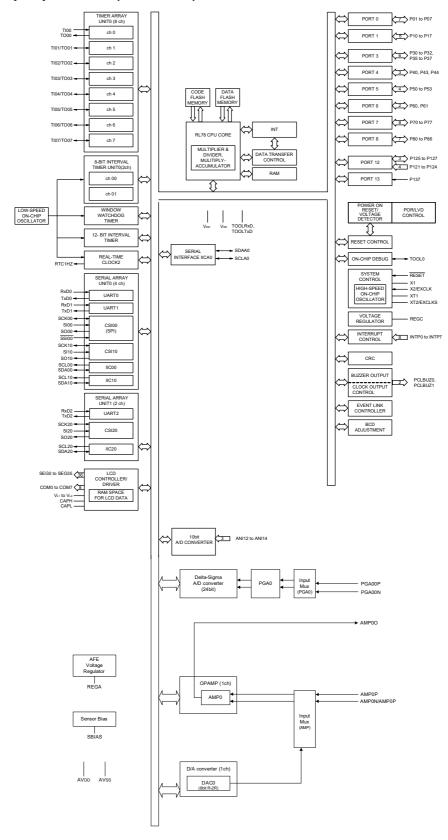
1.3.4 48-pin products (R5F11NG)


• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

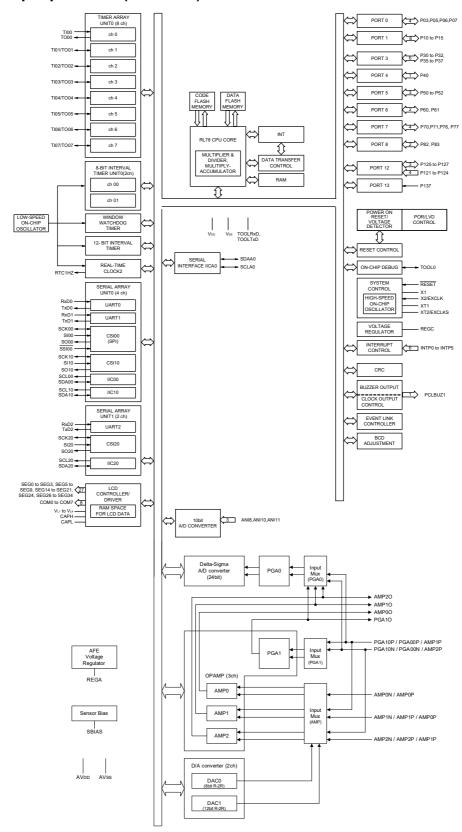
- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Caution 2. Connect the REGA pin to AVss pin via a capacitor (0.22 µF).
- Caution 3. Make the AVss pin the same potential as the Vss pin.
- Caution 4. Make the AVDD pin the same potential as the VDD pin.
- Caution 5. Connect the SBIAS pin to AVss pin via a capacitor (0.22 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0, 1, and 3 (PIOR0, PIOR1, and PIOR3).
- Remark 3. Set the AMP0P and AMP0N functions in the above figure by the amplifier unit 1 input select register (AMP0S). Set the AMP1P and AMP1N functions in the above figure by the amplifier unit 2 input select register (AMP1S). Set the AMP2P and AMP2N functions in the above figure by the amplifier unit 3 input select register (AMP2S).

1.3.5 80-pin products (R5F11RM)

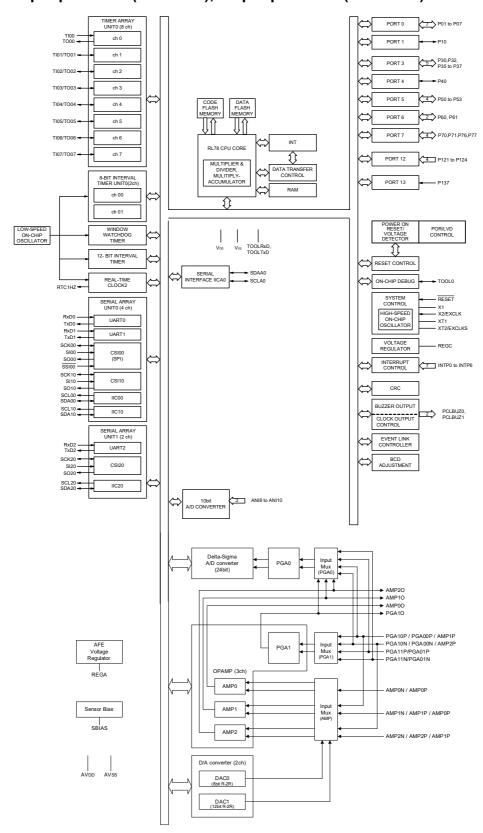
• 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)


- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Caution 2. Make the AVss pin the same potential as the Vss pin.
- Caution 3. Make the AVDD pin the same potential as the VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).

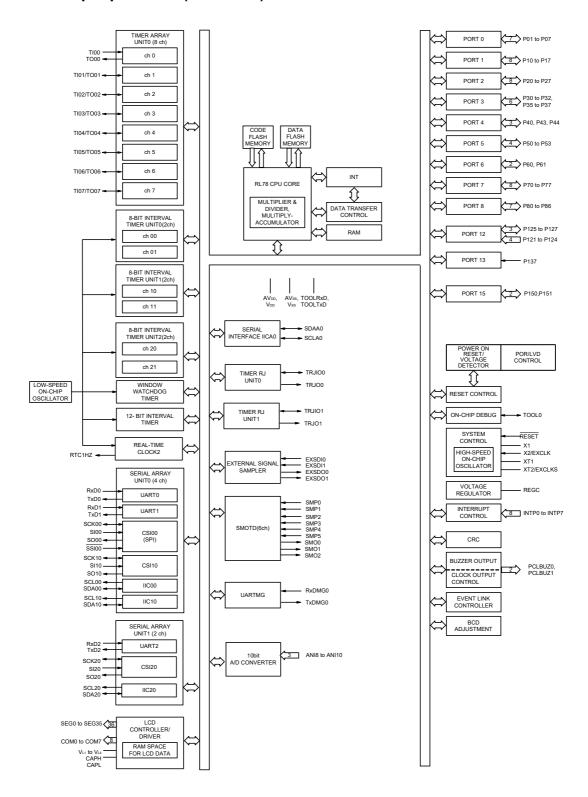
1.4 Pin Identification


AMP0N to AMP2N	:OP AMP Negative Input	REGA	:Regulator Capacitance for
AMP0P to AMP2P	:OP AMP Positive Input		Analog
AMP00 to AMP20	:OP AMP Output	REGC	:Regulator Capacitance
ANI8 to ANI14	:Analog Input	SBIAS	:Reference Voltage Output
AVDD	:Analog Power Supply	RESET	:Reset
AVss	:Analog Ground	RTC1HZ	:Real-time Clock Correction
CAPH, CAPL	:Capacitor for LCD	RxD0 to RxD2, RxDMG0	:Receive Data
COM0 to COM7	:LCD Common Output	SCK00, SCK10, SCK20,	:Serial Clock Input/Output
EXCLK	:External Clock Input	SCLA0	:Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL10, SCL20	:Serial Clock Output
EXCLKS	:External Clock Input	SDAA0, SDA00, SDA10,	:Serial Data Input/Output
	(Sub System Clock)	SDA20	
EXSDI0, EXSDI1	:External Sampling Input	SEG0 to SEG35	:LCD Segment Output
EXSDO0, EXSDO1	:External Sampling Clock	SI00, SI10, SI20	:Serial Data Input
	Output	SO00, SO10, SO20	:Serial Data Output
INTP0 to INTP7	:External Interrupt Input	SSI00	:Slave Select Input
P01 to P07	:Port 0	SMP0 to SMP5	:Sampling Input
P10 to P17	:Port 1	SMO0 to SMO2	:Sampling Clock Output
P20 to P27	:Port 2	TI00 to TI07	:Timer Input
P30 to P32,	:Port 3	TO00 to TO07,TRJO0, TRJO1	:Timer Output
P35 to P37		TOOL0	:Data Input/Output for Tool
P40, P43, P44	:Port 4	TOOLRXD, TOOLTXD	:Data Input/Output for
P50 to P53	:Port 5		External Device
P60 to P61	:Port 6	TRJI00, TRJI01	:Timer Input/Output
P70 to P77	:Port 7	TxD0 to TxD2, TxDMG0	:Transmit Data
P80 to P86	:Port 8	VDD	:Power Supply
P121 to P127	:Port 12	VL1 to VL4	:LCD Power Supply
P137	:Port 13	Vss	:Ground
P150, P151	:Port 15	X1, X2	:Crystal Oscillator
PCLBUZ0, PCLBUZ1	:Programmable Clock Output/		(Main System Clock)
	Buzzer Output	XT1, XT2	:Crystal Oscillator
PGA00N, PGA01N	:PGA Negative Input		(Subsystem Clock)
PGA10N, PGA11N			
PGA00P, PGA01P	:PGA Positive Input		
PGA10P, PGA11P			
PGA10	:PGA Output		

1.5 Block Diagram


1.5.1 80-pin products (R5F11NM)

1.5.2 64-pin products (R5F11NL)



1.5.3 64-pin products (R5F11PL), 48-pin products (R5F11NG)

Remark 64-pin products (R5F11PL) have the same functionality as 48-pin products (R5F11NG). The only difference is the package.

1.5.4 80-pin products (R5F11RM)

1.6 Outline of Functions

(1/3)

					* *		
		80-pin LFQFP	64-pin LFQFP	64-pin TFBGA 48-pin LFQFP	80-pin LFQFP		
	Item		R5F11NLx (x = F, G)	R5F11PLx, R5F11NGx (x = F, G)	R5F11RMG		
Code flash memory ((KB)	64 to 128	96 to 128	96 to 128	128		
Data flash memory (KB)	4	4	4	4		
RAM (KB)		5.5	5.5	5.5	8		
Memory space		1 MB	ı	ı			
Main system clock	High-speed system clock	X1 (crystal/ceram	nic) oscillation, exte	ernal main system	clock input (EXCLK)		
		1 to 20 MHz: VDD 1 to 8 MHz: VDD			1 to 20 MHz: V _{DD} = 2.7 to 5.5 V, 1 to 8 MHz: V _{DD} = 1.8 to 2.7 V		
	High-speed on-chip oscillator clock	HS (high-speed r (VDD = 2.7 to 5.5 HS (high-speed r (VDD = 2.4 to 5.5	HS (high-speed main) operation mode: 1 to 24 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) operation mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) operation mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V)				
Subsystem clock		XT1 (crystal) osc	illation, external su	bsystem clock inp	ut (EXCLKS)		
		32.768 kHz (TYP.): VDD = 2.4 to 5.5 V			32.768 kHz (TYP.): VDD = 1.8 to 5.5 V 38.4 kHz (TYP.): VDD = 1.8 to 5.5 V		
Low-speed on-chip of	scillator clock	15 kHz (TYP.): VDD = 2.4 to 5.5 V 15 kHz (TYP.): VDD = 1.8 to 5.5 V					
General-purpose reg	ister	8 bits × 32 registers (8 bits × 8 registers × 4 banks)					
Minimum instruction	execution time	0.04167 μs (High-speed on-chip oscillator clock: flн = 24 MHz operation)					
		0.05 µs (High-spe	eed system clock:	fmx = 20 MHz oper	ration)		
		30.5 μs (Subsyste	em clock: fsub = 3	2.768 kHz operation	on)		
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 					
I/O port	Total	53	36	29	63		
	CMOS I/O	46	29	22	56		
	CMOS input	5	5	5	5		
	CMOS output	_	_	_	_		
	N-ch open-drain I/O (6 V tolerance)	2	2	2	2		

(2/3)

					(2/3)	
		80-pin LFQFP	64-pin LFQFP	64-pin TFBGA 48-pin LFQFP	80-pin LFQFP	
	Item	R5F11NMx (x = E to G)	R5F11NLx (x = F, G)	R5F11PLx, R5F11NGx (x = F, G)	R5F11RMG	
Timer	16-bit timer TAU	8 channels (Time	r outputs: 8, PWM			
	8-bit or 16-bit interval timer	2 channels (8 bits	s)/1 channel (16 bi	6 channels (8 bits)/3 channels (16 bits)		
	Watchdog timer	1 channel				
	12-bit interval timer	1 channel				
	Real-time clock 2	1 channel				
	RTC output	1 1 Hz (subsystem	clock: fSUB = 32.7	68 kHz)		
	16-bit timer RJ		_		2 channels, timer outputs: 2	
	External signal sampler		_		1 channel	
	Sampling output timer detector (SMOTD)		_		Input: 6 channels Output: 3 channels	
Clock output/buzzer	output	2	1	2	2	
		(Main system c • 256 Hz, 512 Hz	kHz, 9.77 kHz, 1.2 lock: fmain = 20 Mi :, 1.024 kHz, 2.048 ck: fsub = 32.768	Hz operation) 8 kHz, 4.096 kHz, 8	5 MHz, 10 MHz 3.192 kHz, 16.384 kHz, 32.768 kHz	
8/10-bit resolution	Internal	3 channels				
A/D converter	External	2 channels: Interr in HS (high-speed		ge (1.45 V), tempe	rature sensor output voltage (only selectable	
24-bit ΔΣ A/D conver	ter with programmable gain lifier 0 (PGA0)	Analog input: 1 channel (differential or single-ended)	Analog input: 1 channel (differential or single-ended), 3 channels (single-ended)	Analog input: 2 channels (differential or single-ended), 3 channels (single-ended)	_	
D/A converter	12-bit	_	1 channel (with an output amplifier but no external output pin)	1 channel (with an output amplifier but no external output pin)	_	
	8-bit	1 channel (without an output amplifier and no external output pin)	1 channel (without an output amplifier and no external output pin)	1 channel (without an output amplifier and no external output pin)	_	
Programmable gain (PGA1)	instrumentation amplifier 1	_	1 channel	1 channel	_	
Rail-to-rail operation	al amplifier	1 channel	1 channel	1 channel	_	
General-purpose operational amplifier Serial interface		_	2 channels	2 channels	_	
		I ² C: 1 channel • Simplified SPI(0	CSI): 1 channel/U <i>F</i>	ART: 1 channel/sim	RT (LIN-bus supported): 1 channel/simplified uplified I ² C: 1 channel uplified I ² C: 1 channel	
	I ² C bus	·	1 channel		1 channel	
	Serial interface UARTMG		_		1 channel	
	i	i		i channei		

(3/3)

					` '	
		80-pin LFQFP	64-pin LFQFP	64-pin TFBGA 48-pin LFQFP	80-pin LFQFP	
Item		R5F11NMx (x = E to G)	R5F11NLx (x = F, G)	R5F11PLx, R5F11NGx (x = F, G)	R5F11RMG	
LCD controller/driver	LCD controller/driver		poosting method, c	apacitor split meth	od, and external resistance division method	
	Segment signal output	36 (32) Note 2	27 (23) Note 2	_	36 (32) Note 2	
	Common signal output	4 (8) Note 2	4 (8) Note 2	_	4 (8) Note 2	
Data transfer control	ler (DTC)	26 sources	24 sources	25 sources	35 sources	
Event link controller (ELC)		Event input: 20, Event trigger output: 7	Event input: 18, Event trigger output: 10	Event input: 19, Event trigger output: 10	Event input: 26, Event trigger output: 5	
Vectored interrupt	Internal	29	29	29	43	
sources	External	8	6	7	8	
Reset		Internal reset bInternal reset bInternal reset bInternal reset b	ET pin y watchdog timer y power-on-reset y voltage detector y illegal instruction y RAM parity error y illegal-memory a			
Power-on-reset circu	it	Power-on-reset: 1.51 ±0.04 V Power-down-reset: 1.50 ±0.04 V				
Voltage detector		 Rising edge: 2.50 V to 4.06 V (9 stages) Falling edge: 2.45 V to 3.98 V (9 stages) Rising edge: 1.88 V to 4.06 V (12 stages) Falling edge: 1.84 V to 3.98 V (12 stages) 				
On-chip debug functi	ion	Provided				
Power supply voltage		,	V converter: 2.4 to 5. alog front-end (AFI		VDD = 1.8 to 5.5 V	
Operating ambient to	emperature	TA = -40 to +85°C (A: Consumer applications)			TA = -40 to +85°C (D: Industrial applications)	

- **Note 1.** The number of outputs depends on the setting of channels in use and the number of the master.
- **Note 2.** The number in parentheses indicates the number of signal outputs when 8 coms are used.
- Note 3. The illegal instruction is generated when instruction code FFH is executed.

 Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (R5F11N, R5F11P) (A: TA = -40 to +85°C)

This chapter describes the electrical specifications for the products A: Consumer applications (TA = -40 to +85°C).

- Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2 Functions other than port pins in the User's Manual: Hardware.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings

(1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	AVDD	AVDD = VDD	-0.5 to +6.5	V
	AVss	AVss = Vss	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} + 0.3 Note 1	
REGA pin input voltage	VIREGA	REGA	-0.3 to +2.8	V
			and -0.3 to AVDD + 0.3 Note 2	
Input voltage	VI1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P121 to P124, P125 to P127, P137, EXCLK, EXCLKS, RESET	-0.3 to VDD + 0.3 Note 3	V
	VI2	P60, P61 (N-ch open-drain)	-0.3 to +6.5	V
Output voltage	Vo1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127	-0.3 to VDD + 0.3 Note 3	V
Analog input voltage	VAI1	ANI8 to ANI11	-0.3 to VDD + 0.3 Note 3	V
	VAI2	ANI12 to ANI14 PGA00P, PGA01P, PGA10P, PGA11P, PGA00N, PGA01N, PGA10N, PGA11N, AMP0P to AMP2P, AMP0N to AMP2N	-0.3 to AVDD + 0.3 Note 3	V
Analog output voltage	Voa	SBIAS, PGA1O, AMP0O to AMP2O	-0.3 to AVDD + 0.3 Note 3	V

- Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- **Note 2.** Connect the REGA pin to AVss via a capacitor (0.22 μF). This value regulates the absolute maximum rating of the REGA pin. Do not use this pin with voltage applied to it.
- Note 3. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

 That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- **Remark 2.** The reference voltage is Vss (for the VDD systems) = AVss (for the AVDD systems)

Absolute Maximum Ratings

(2/3)

Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VLI1	V _{L1} input voltage ¹	Note 1	-0.3 to +2.8	V
VLI2 VLI3 VLI4 VLI5 VLO1 VLO2	VLI2	VL2 input voltage ¹	√L2 input voltage ^{Note 1} -0.3 to +6		V
	VLI3	VL3 input voltage !	Note 1	-0.3 to +6.5	V
	VLI4	V _L 4 input voltage ¹	Note 1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH inpu	ıt voltage ^{Note 1}	-0.3 to +6.5	V
	VLO1	V _L 1 output voltage	3	-0.3 to +2.8	V
	VLO2	VL2 output voltage	•	-0.3 to +6.5	V
	VLO3	VL3 output voltage	3	-0.3 to +6.5	V
	VLO4	VL4 output voltage	3	-0.3 to +6.5	V
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V
	VLO6	COM0 to COM7 SEG0 to SEG35	External resistance division method	-0.3 to VDD + 0.3 Note 2	V
		output voltage	Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
			Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

- Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μF ± 30%) and connect a capacitor (0.47 μF ± 30%) between the CAPL and CAPH pins.
- Note 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings

(3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin		-40	mA
		Total of all	Total of all P40, P43, P44, P80 to P83		mA
		pins -170 mA	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P50 to P53, P70 to P77, P84 to P86, P125 to P127	-100	mA
Output current, low	IOL1	Per pin	Per pin		mA
		Total of all	P40, P43, P44, P80 to P83	70	mA
		pins 170 mA	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P50 to P53, P60, P61, P70 to P77, P84 to P86, P125 to P127	100	mA
Operating ambient	TA	In normal c	peration mode	-40 to +85	°C
temperature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1 and XT1 oscillator characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx)	Ceramic resonator/crystal resonator	2.7 V ≤ VDD ≤ 5.5 V	1.0		20.0	MHz
Note		2.4 V ≤ VDD < 2.7 V	1.0		16.0	
XT1 clock oscillation frequency	Crystal resonator		32	32.768	35	kHz
(fxr) Note						

Note Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the User's Manual: Hardware.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

			•				
Oscillators	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock	fін	2.7 V ≤ VDD ≤ 5.5 V		1		24	MHz
frequency Notes 1, 2		2.4 V ≤ VDD < 2.7	$2.4 \text{ V} \leq \text{VDD} \leq 2.7 \text{ V}$			16	MHz
High-speed on-chip oscillator clock		-20 to +85°C	2.4 V ≤ VDD ≤ 5.5 V	-1.0		+1.0	%
frequency accuracy		-40 to +85°C	2.4 V ≤ VDD ≤ 5.5 V	-1.5		+1.5	%
Low-speed on-chip oscillator clock	fIL				15		kHz
frequency							
Low-speed on-chip oscillator clock				-15		+15	%
frequency accuracy							[

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output current, high Note 1	ІОН1	Per pin for P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127				-10.0 Note 2	mA
		Total of P40, P43, P44, P80 to P83 (When duty ≤ 70% Note 3)	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ $2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}$ $2.4 \text{ V} \le \text{VDD} < 2.7 \text{ V}$			-55 -10 -5	mA mA
		Total of P01 to P07, P10 to P17, P30 to P32, P35 to P37, P50 to P53, P70 to P77, P84 to P86, P125 to P127 (When duty ≤ 70% Note 3)	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ $2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}$ $2.4 \text{ V} \le \text{VDD} < 2.7 \text{ V}$			-69 -23 -12	mA mA
		Total of all pins (When duty ≤ 70% Note 3)	2.4 V ≤ VDD ≤ 5.5 V			-124	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin (IOH1) to an output pin.
- Note 2. However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = (–10.0 × 0.7)/(80 × 0.01) \cong –8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P02 to P04, P06, P07, P10, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 do not output high level in N-ch open-drain mode.

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127				20.0 Note 2	mA
		Per pin for P60 and P61				15.0 Note 2	mA
		Total of P40, P43, P44, P80 to P83	4.0 V ≤ VDD ≤ 5.5 V			70	mA
		(When duty ≤ 70% Note 3)	2.7 V ≤ V _{DD} < 4.0 V			15	mA
			2.4 V ≤ VDD < 2.7 V			9	mA
		P01 to P07, P10 to P17, P30 to P32,	4.0 V ≤ VDD ≤ 5.5 V			90	mA
		P35 to P37, P50 to P53, P60, P61,	2.7 V ≤ V _{DD} < 4.0 V			35	mA
		P70 to P77, P84 to P86, P125 to P127	2.4 V ≤ VDD < 2.7 V			20	mA
		(When duty ≤ 70% Note 3)					
		Total of all pins (When duty ≤ 70% ^{Note 3})				160	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin (IOL1).
- Note 2. However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127	Normal input buffer	0.8 VDD		VDD	V
	VIH2	For TTL mode supported ports	TTL input buffer 4.0 V ≤ VDD ≤ 5.5 V	2.2			V
			TTL input buffer 3.3 V ≤ VDD < 4.0 V	2.0		VDD	V
			TTL input buffer 2.4 V ≤ VDD < 3.3 V	1.50		VDD	V
	VIH4	P60, P61	0.7 VDD		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLKS,	RESET	0.8 VDD		VDD	V
Input voltage, low	VIL1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127	Normal input buffer	0		0.2 VDD	V
	VIL2	For TTL mode supported ports	TTL input buffer 4.0 V ≤ VDD ≤ 5.5 V	0		0.8	V
			TTL input buffer 3.3 V ≤ VDD < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V ≤ VDD < 3.3 V	0		0.32	V
	VIL4	P60, P61	•	0		0.3 VDD	٧
	VIL5	P121 to P124, P137, EXCLK, EXCLKS,	RESET	0		0.2 VDD	V

Caution The maximum value of VIH of pins P02 to P04, P06, P07, P10, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 is VDD, even in the N-ch open-drain mode.

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	VOH1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44,	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ IOH = -10.0 mA	VDD - 1.5			V
		P50 to P53, P70 to P77, P80 to P86, P125 to P127	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ IOH = -3.0 mA	VDD - 0.7			V
			$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ IOH = -2.0 mA	VDD - 0.6			V
			$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ IOH = -1.5 mA	VDD - 0.5		V	
Output voltage, low	P35 to P37, P40, P43, P44,	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $10L = 20.0 \text{ mA}$			1.3	V	
		P50 to P53, P70 to P77, P80 to P86, P125 to P127	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $10L = 8.5 \text{ mA}$			0.7	V
			$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $\text{IOL} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $\text{IOL} = 1.5 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ IOL = 0.6 mA			0.4	V
	VOL3	P60, P61	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $10L = 15.0 \text{ mA}$			2.0	V
			$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ IOL = 5.0 mA			0.4	V
			$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ IOL = 3.0 mA			0.4	V
			$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ IOL = 2.0 mA			0.4	V

Caution P02 to P04, P06, P07, P10, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 do not output high level in N-ch open-drain mode.

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127, P137, RESET	VI = VDD				1	μА
	ILIH3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μА
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127, P137, RESET	VI = VSS				-1	μА
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-up resistance	Ru1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127	VI = VSS	or In input port	10	20	100	kΩ

2.3.2 Supply current characteristics

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit										
Supply	IDD1	Operating	HS	fiH = 24 MHz Note 3	Basic	VDD = 5.0 V		1.7		mA										
current		mode	(high-speed main)		operation	VDD = 3.0 V		1.7												
Notes 1, Note 6			mode Note 5		Normal	VDD = 5.0 V		3.7	6.2											
					operation	V _{DD} = 3.0 V		3.7	6.2											
				fiH = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		2.8	4.8											
					operation	V _{DD} = 3.0 V		2.8	4.8											
			HS	fmx = 20 MHz Note 2,	Normal	Square wave input		3.1	5.2	mA										
			(high-speed main)	VDD = 5.0 V	operation	Resonator connection		3.3	5.3											
			mode Note 5	fmx = 20 MHz Note 2,	Normal	Square wave input		3.0	5.2											
				VDD = 3.0 V	operation	Resonator connection		3.3	5.3											
				Square wave input		2.6	4.5													
				Resonator connection		2.8	4.6													
				fmx = 16 MHz Note 2,	Normal	Square wave input		2.6	4.5											
				V _{DD} = 3.0 V	operation	Resonator connection		2.8	4.6											
				fmx = 10 MHz Note 2,	Normal	Square wave input		1.9	3.0											
															VDD = 5.0 V	operation	Resonator connection		1.9	3.0
			fMX = 10 MHz Note 2,	fmx = 10 MHz Note 2,	Normal	Square wave input		1.9	3.0											
				VDD = 3.0 V	operation	Resonator connection		1.9	3.0											
			Subsystem clock	fSUB = 32.768 kHz Note 4	Normal	Square wave input		4.3	5.8	μΑ										
			operation	TA = -40°C	operation	Resonator connection		4.6	5.8											
				fsub = 32.768 kHzNote 4	Normal	Square wave input		4.3	5.8											
				TA = +25°C	operation	Resonator connection		4.6	5.8											
				fsuB = 32.768 kHzNote 4	Normal	Square wave input		4.5	7.6											
				TA = +50°C	operation	Resonator connection		4.5	7.6											
				fsub = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.7	9.2											
				TA = +70°C	operation	Resonator connection		5.1	9.2											
				fsuB = 32.768 kHzNote 4	Normal	Square wave input		5.2	12.6											
				TA = +85°C	operation	Resonator connection		5.7	12.6											

- **Note 1.** Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The following points apply in the HS (high-speed main) mode.
 - •The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - •The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the LCD controller/driver, A/D converter, LVD, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2. The current flowing into AFE is not included.

- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \otimes 1 \text{ MHz}$ to 24 MHz

 $2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V@1 MHz}$ to 16 MHz

Note 6. IDD1 do not include the current flowing to the AFE.

The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and AFE current (AVDD systems) when the AFE operates in the operating mode, HALT mode, or STOP mode.

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fil: High-speed on-chip oscillator clock frequency
- Remark 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- **Remark 4.** Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C.

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT mode	HS (high-speed main)	fiH = 24 MHz Note 4	VDD = 5.0 V		0.42	1.83	mA
current	Note 2		mode Note 6		VDD = 3.0 V		0.42	1.83	
Notes 1, Note 8				fih = 16 MHz Note 4	VDD = 5.0 V		0.39	1.38	
					VDD = 3.0 V		0.39	1.38	
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.26	1.55	mA
			mode Note 6	VDD = 5.0 V	Resonator connection		0.40	1.68	
				fmx = 20 MHz Note 3,	Square wave input		0.25	1.55	
				VDD = 3.0 V	Resonator connection		0.40	1.68	
				fmx = 16 MHz Note 3,	Square wave input		0.23	1.22	
				VDD = 5.0 V	Resonator connection		0.36	1.39	
				fmx = 16 MHz Note 3,	Square wave input		0.22	1.22	
				VDD = 3.0 V	Resonator connection		0.35	1.39	
				fmx = 10 MHz Note 3,	Square wave input		0.19	0.82	
			VDD = 5.0 V	Resonator connection		0.29	0.90		
			fmx = 10 MHz Note 3,	Square wave input		0.18	0.82		
				VDD = 3.0 V	Resonator connection		0.28	0.90	
			Subsystem clock	fSUB = 32.768 kHz Note 5	Square wave input		0.32	0.69	μΑ
			operation	TA = -40°C	Resonator connection		0.51	0.89	
				fsuB = 32.768 kHz Note 5	Square wave input		0.41	0.82	
				TA = +25°C	Resonator connection		0.62	1.00	
				fsuB = 32.768 kHz Note 5	Square wave input		0.52	1.40	
				TA = +50°C	Resonator connection		0.75	1.60	
				fsub = 32.768 kHz Note 5	Square wave input		0.82	2.70	
				TA = +70°C	Resonator connection		1.08	2.90	
				fsub = 32.768 kHz Note 5	Square wave input		1.38	4.95	
				TA = +85°C	Resonator connection		1.62	5.15	
	IDD3	STOP mode	T _A = -40°C	•			0.20	0.59	μΑ
		Note 7	T _A = +25°C				0.26	0.72	
		T _A = +50°C				0.33	1.30		
			T _A = +70°C				0.53	2.60	
			T _A = +85°C				0.93	4.85	

(Notes and Remarks are listed on the next page.)

<R>

<R>

- **Note 1.** Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The following points apply in the HS (high-speed main) mode.
 - •The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - •The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the LCD controller/driver, A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2. In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. The current flowing into AFE is not included.

- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- Note 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V} \text{@}1 \text{ MHz}$ to 24 MHz $2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V} \text{@}1 \text{ MHz}$ to 16 MHz
- Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Note 8. IDD2 and IDD3 do not include the current flowing to the AFE.

 The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and AFE current (AVDD systems) when the AFE operates in the operating mode, HALT mode, or STOP mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fil: High-speed on-chip oscillator clock frequency
- Remark 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C.

Apr 28, 2023

• Peripheral functions

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol		Condition	าร		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1						0.20		μA
RTC2 operating current	IRTC Notes 1, 3	fsuв = 32.768 kHz					0.02		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4	fsub = 32.768 kHz	, fmain stopped				0.02		μA
8-bit interval timer operating current	ITMRT Notes 1, 14	fsuB = 32.768 kHz	fMAIN stopped, per unit	8-bit counter operation	mode × 2-channel		0.12		μA
				16-bit counte	er mode operation		0.10		μA
Watchdog timer operating current	IWDT Notes 1, 5	fiL = 15 kHz					0.22		μA
A/D converter	IADC	When conversion a	at maximum speed	Normal mod	e, V _{DD} = 5.0 V		1.3	1.7	mA
operating current	Notes 1, 6			Low-voltage	mode, VDD = 3.0 V		0.5	0.7	mA
Internal reference voltage (1.45 V) current	IADREF Notes 1, 7						85		μА
Temperature sensor operating current	ITMPS Note 1						85		μА
LVD operating current	ILVI Notes 1, 8						0.06		μA
Self-programming operating current	IFSP Notes 1, 9						2.0	12.2	mA
BGO operating current	IBGO Notes 1, 10						2.0	12.2	mA
SNOOZE	Isnoz	A/D converter oper	ation	The mode is	performed		0.50	0.60	mA
operating current	Notes 1, 11			During A/D o	conversion, mode, VDD = 3.0 V		1.20	1.44	
		Simplified SPI(CSI)/UART operation	1			0.70	0.84	mA
		DTC operation					3.1		mA
LCD operating current	ILCD1 Notes 12, 13	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 5.0 V, VL4 = 5.0 V		0.04	0.20	μA
	ILCD2 Note 12	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	V _{DD} = 3.0 V, V _{L4} = 3.0 V (V _{LCD} = 04H)		0.85 2.20	2.20	μА
					V _{DD} = 5.0 V, V _{L4} = 5.1 V (V _{LCD} = 04H)		1.55	3.70	μА
	ILCD3 Note 12	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	V _{DD} = 3.0 V, V _{L4} = 3.0 V		0.20	0.50	μA

(Notes and Remarks are listed on the next page.)

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer operates in STOP mode
- Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IADREF when the A/D converter operates in the operating mode or the HALT mode.
- Note 7. Operation current flowing to the internal reference voltage.
- **Note 8.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ILVI when the LVD circuit operates in the operating mode, HALT mode, or STOP mode.
- Note 9. Current flowing only during self-programming.
- Note 10. Current flowing only during data flash rewrite.
- Note 11. For shift time to the SNOOZE mode, see 27.3.3 SNOOZE mode in the User's Manual: Hardware.
- Note 12. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2, or ILCD3) and the supply current (IDD1 or IDD2) when the LCD controller/driver operates in the operating mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 13. Not including the current that flows through the external divider resistor.
- Note 14. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8-bit interval timer operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

AFE functions

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
24-bit ΔΣ A/D converter operating current	IDSAD	Normal mode Notes 1, 2 Circuits that operate: ABGR, REGA, SBIAS, VREFAMP, PGA0, 24-bit $\Delta\Sigma$ A/D converter, and digital filter Differential input mode, OSR = 256, SBIAS IOUT = 0 mA		0.94	1.46	mA
		Low power mode Notes 1, 2 Circuits that operate: ABGR, REGA, SBIAS, VREFAMP, PGA0, 24-bit $\Delta\Sigma$ A/D converter, and digital filter Differential input mode, OSR = 256, SBIAS IOUT = 0 mA		0.60	0.91	mA
Amplifier operating current	IPGA1	Low power mode Notes 1, 2 Circuits that operate: ABGR, PGA1, and DAC1 IL = 0 mA		0.60	1.10	mA
		High-speed mode Notes 1, 2 Circuits that operate: ABGR, PGA1, and DAC1 IL = 0 mA		1.10	1.80	mA
	IAMP0	Low power mode Notes 1, 2 Circuits that operate: ABGR and AMP0 IL = 0 mA		0.10	0.15	mA
		High-speed mode Notes 1, 2 Circuits that operate: ABGR and AMP0 IL = 0 mA		0.30	0.48	mA
	IAMP1, IAMP2	Low power mode Notes 1, 2 Circuits that operate: ABGR and AMP1 or AMP2 IL = 0 mA		0.10	0.14	mA
		High-speed mode Notes 1, 2 Circuits that operate: ABGR and AMP1 or AMP2 IL = 0 mA		0.23	0.35	mA
8-bit D/A converter operating	IDAC0	SBIAS normal mode Notes 1, 2 Circuits that operate: ABGR, REGA, SBIAS, and DAC0 Note 3 IL = 0 mA, SBIAS IOUT = 0 mA		1.00	1.50	mA
current		SBIAS low-power mode Notes 1, 2 Circuits that operate: ABGR, REGA, SBIAS, and DAC0 Note 3 IL = 0 mA, SBIAS IOUT = 0 mA		0.85	1.30	mA
12-bit D/A converter operating	IDAC1	When AVDD is selected as the reference voltage Notes 1, 2 Circuits that operate: ABGR and DAC1 IL = 0 mA		0.61	0.97	mA
current		When SBIAS (normal mode) is selected as the reference voltage Notes 1, 2 Circuits that operate: ABGR, REGA, SBIAS, and DAC1 Note 3 IL = 0 mA, SBIAS IOUT = 0 mA		1.06	1.62	mA
		When SBIAS (low-power mode) is selected as the reference voltage Notes 1, 2 Circuits that operate: ABGR, REGA, SBIAS, and DAC1 Note 3 IL = 0 mA, SBIAS IOUT = 0 mA		0.91	1.42	mA

Note 1. Current flowing to AVDD. The typical conditions are the conditions when TA = 25°C and AVDD = 3.3 V.

Remark Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.

Note 2. Current flowing only into the operating circuit indicated in the column for conditions.

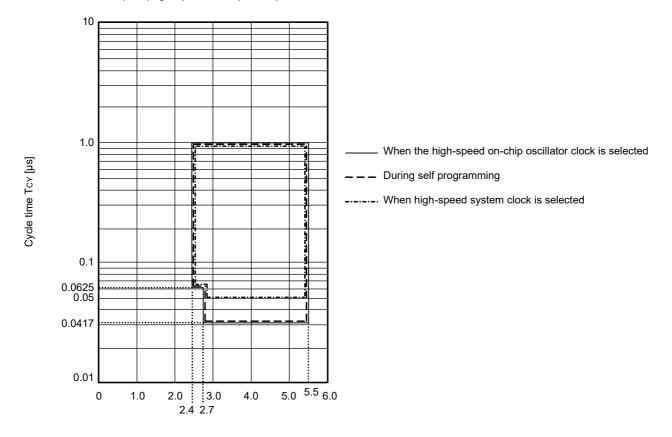
Note 3. Including the static current of VREFAMP, PGA0, and 24-bit $\Delta\Sigma$ A/D converter.

2.4 AC Characteristics

2.4.1 Basic operation

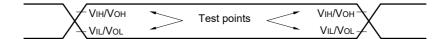
(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Items	Symbol		Conditions			TYP.	MAX.	Unit
Instruction cycle	Tcy	Main system	HS (high-speed main)	2.7 V ≤ VDD ≤ 5.5 V	0.0417		1	μs
(minimum instruction execution time)		clock (fMAIN) operation	mode	2.4 V ≤ VDD < 2.7 V	0.0625		1	μs
		Subsystem clock (fsub) operation	fxT =32.768 kHz	2.4 V ≤ VDD ≤ 5.5 V	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	2.7 V ≤ VDD ≤ 5.5 V	0.0417		1	μs
		programming mode	mode	2.4 V ≤ VDD < 2.7 V	0.0625		1	μs
External main system	fEX	EXCLK		2.7 V ≤ VDD ≤ 5.5 V	1.0		20.0	MHz
clock frequency				2.4 V ≤ VDD < 2.7 V	1.0		16.0	MHz
	fEXT	EXCLKS			32		35	kHz
External main system	texH,	EXCLK		2.7 V ≤ VDD ≤ 5.5 V	24			ns
clock input high-level	texL			2.4 V ≤ V _{DD} < 2.7 V	30			ns
width, low-level width	texhs,	EXCLKS			13.7			μs
Timer input high-level width, low-level width	ttih, ttil	TI00 to TI07			1/fмск + 10			ns
Timer output	fTO	TO00 to	HS (high-speed main)	4.0 V ≤ VDD ≤ 5.5 V			12	MHz
frequency		TO07	mode	2.7 V ≤ VDD < 4.0 V			8	MHz
				2.4 V ≤ VDD < 2.7 V			4	MHz
Buzzer output	fPCL	PCLBUZ0,	HS (high-speed main)	4.0 V ≤ VDD ≤ 5.5 V			12	MHz
frequency		PCLBUZ1	mode	2.7 V ≤ V _{DD} < 4.0 V			8	MHz
				2.4 V ≤ V _{DD} < 2.7 V			4	MHz
Interrupt input high- level width, low-level width	tINTH, tINTL	INTP0 to INTF	77	2.4 V ≤ VDD ≤ 5.5 V	1			μs
RESET low-level width	trsl				10			μs

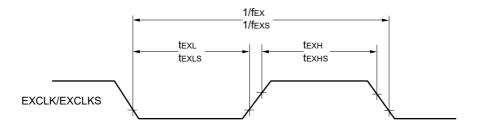

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0),

n: Channel number (n = 0 to 7))

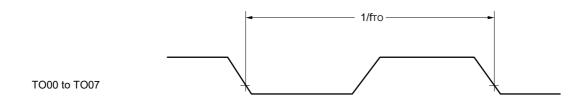

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (HS (high-speed main) mode)

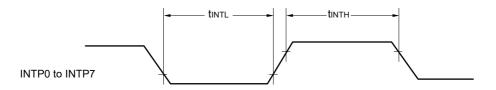


Supply voltage VDD [V]

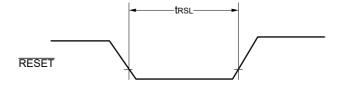
AC Timing Test Points



External System Clock Timing



TI/TO Timing



Interrupt Request Input Timing

RESET Input Timing

2.5 Peripheral Functions Characteristics

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

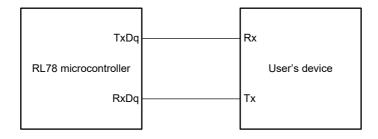
 $(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter Symbol		Conditions	HS (high-spee	Unit	
i alametei	Gymbol	Conditions	MIN.	MAX.	Offic
Transfer rate Note 1		2.4 V ≤ VDD ≤ 5.5 V		fMCK/6 Note 2	bps
		Theoretical value of the maximum transfer rate $fMCK = fCLK$ Note 3		4.0	Mbps

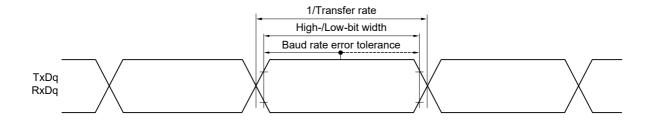
Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The following conditions are required for low voltage interface.

 $2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V: MAX. } 2.6 \text{ Mbps}$


Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz $(2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 3, 4, 5, 8)

Remark 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10, 11))

(2) During communication at same potential (Simplified SPI(CSI) mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol Co		onditions	HS (high-speed main) Mode		Unit
				MIN. MAX.		1
SCKp cycle time	tKCY1	tkcy1 ≥ fclk/4	2.7 V ≤ VDD ≤ 5.5 V	167		ns
			2.4 V ≤ VDD ≤ 5.5 V	250		ns
SCKp high-/low-level width	tKH1,	4.0 V ≤ V _{DD} ≤ 5.5 V		tKCY1/2 - 12		ns
	tKL1	2.7 V ≤ VDD ≤ 5.5 V		tKCY1/2 - 18		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V		tKCY1/2 - 38		ns
SIp setup time (to SCKp↑) Note 1	tsik1	4.0 V ≤ VDD ≤ 5.5 V		44		ns
		2.7 V ≤ V _{DD} ≤ 5.5 V		44		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V		75		ns
SIp hold time (from SCKp↑) Note 2	tKSI1	2.4 V ≤ V _{DD} ≤ 5.5 V		19		ns
Delay time from SCKp↓ to SOp output Note 3	tKSO1	C = 20 pF Note 4	2.7 V ≤ VDD ≤ 5.5 V		25	ns
			2.4 V ≤ VDD ≤ 5.5 V		25	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **Note 4.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 2. fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 02, 10))

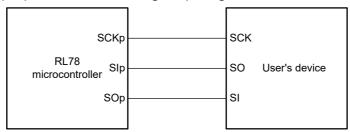
(3) During communication at same potential (Simplified SPI(CSI) mode) (slave mode, SCKp... external clock output) (1/2)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

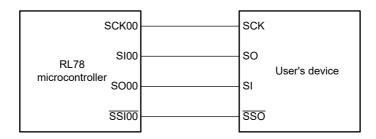
Parameter	Cumphal	Conditions		HS (high-spee	ed main) Mode	Unit
Parameter	Symbol	Co	nditions	MIN.	MAX.	Unit
SCKp cycle time Note 5	tKCY2	4.0 V ≤ VDD ≤ 5.5 V	20 MHz < fmck	8/fMCK		ns
			fмcк ≤ 20 MHz	8/fmck		ns
		2.7 V ≤ VDD ≤ 5.5 V	fMCK > 16 MHz	8/fMCK		ns
			fMCK ≤ 16 MHz	6/fMCK		ns
		2.4 V ≤ VDD ≤ 5.5 V	,	6/fмск and 500		ns
SCKp high-/low-level width	tKH2,	4.0 V ≤ VDD ≤ 5.5 V		tKCY2/2 - 7		ns
	tKL2	2.7 V ≤ V _{DD} ≤ 5.5 V		tKCY2/2 - 8		ns
		2.4 V ≤ VDD ≤ 5.5 V		tKCY2/2 - 18		ns
SIp setup time (to SCKp↑) Note 1	tsik2	2.7 V ≤ VDD ≤ 5.5 V		1/fмcк + 20		ns
		2.4 V ≤ VDD ≤ 5.5 V		1/fмcк + 30		ns
SIp hold time (from SCKp↑) Note 2	tKSI2	2.4 V ≤ VDD ≤ 5.5 V		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 3	tKSO2	C = 30 pF Note 4	2.7 V ≤ VDD ≤ 5.5 V		2/fмск + 44	ns
			2.4 V ≤ VDD ≤ 5.5 V		2/fмск + 75	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 2. fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10))

(3) During communication at same potential (Simplified SPI(CSI) mode) (slave mode, SCKp... external clock output) (2/2)

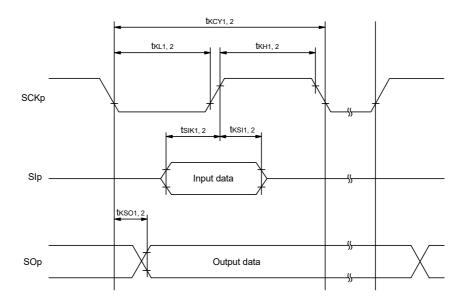

 $(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-speed	HS (high-speed main) Mode		
Farameter	Symbol		Conditions	MIN.	MAX.	Unit	
SSI00 setup time	tssik	DAPmn = 0	2.7 V ≤ VDD ≤ 5.5 V	120		ns	
			2.4 V ≤ VDD ≤ 5.5 V	200		ns	
		DAPmn = 1	2.7 V ≤ VDD ≤ 5.5 V	1/fмcк + 120		ns	
			2.4 V ≤ VDD ≤ 5.5 V	1/fмcк + 200		ns	
SSI00 hold time	tkssi	DAPmn = 0	2.7 V ≤ VDD ≤ 5.5 V	1/fмcк + 120		ns	
			2.4 V ≤ VDD ≤ 5.5 V	1/fмcк + 200		ns	
		DAPmn = 1	2.7 V ≤ VDD ≤ 5.5 V	120		ns	
			2.4 V ≤ VDD ≤ 5.5 V	200		ns	

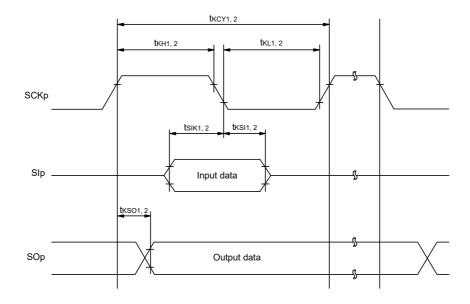

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 4)

Simplified SPI(CSI) mode connection diagram (during communication at same potential)



Simplified SPI(CSI) mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))



Remark p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2)

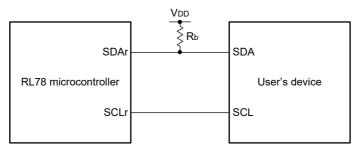
Simplified SPI(CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI(CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

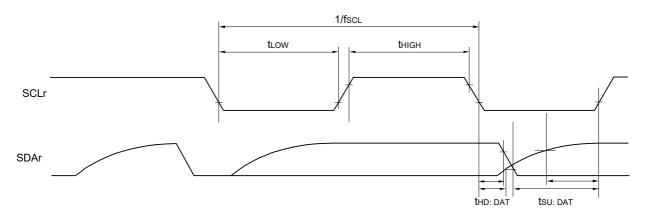
Remark p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2)

(4) During communication at same potential (simplified I²C mode)

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)


Parameter	Symbol	Conditions	HS (high-speed Mode	main)	Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 Note 1	kHz
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ		400 Note 1	kHz
		2.4 V \leq VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		ns
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		ns
		2.4 V \leq VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		ns
Hold time when SCLr = "H"	thigh	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}Ω$	475		ns
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		ns
		2.4 V \leq VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		ns
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}Ω$	1/fмcк + 85 Note 2		ns
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1/fMCK + 145 Note 2		ns
		2.4 V \leq VDD $<$ 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1/fMCK + 230 Note 2		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	305	ns
		2.4 V \leq VDD \leq 5.5 V, Cb = 100 pF, Rb = 3 kΩ	0	355	ns
		2.4 V \leq VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	0	405	ns

Note 1. The value must be equal to or less than fMCK/4.


Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

 $\textbf{Remark 1.} \ \, \mathsf{Rb}[\Omega] : \mathsf{Communication line (SDAr) pull-up \ resistance}, \ \, \mathsf{Cb}[F] : \mathsf{Communication line (SCLr, SDAr) load \ capacitance}$

Remark 2. r: IIC number (r = 00, 10, 20), g: PIM number (g = 0, 1, 3, 4, 5, 8),

Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 02, 10)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol		Conditions		HS (high-speed main) Mode	
				MIN.	MAX.	
Transfer rate		reception	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$		fMCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate ${\sf fMCK} = {\sf fCLK}$ ${\sf Note}$ 4		4.0	Mbps
			$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$		fMCK/6 Note 1	bps
	Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0	Mbps		
			$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$		fMCK/6 Notes 1, 2, 3	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0	Mbps

- Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.
- **Note 2.** Use it with $VDD \ge Vb$.
- Note 3. The following conditions are required for low voltage interface.

 $2.4 \text{ V} \leq \text{VDD} \leq 2.7 \text{ V: MAX. } 2.6 \text{ Mbps}$

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$)

16 MHz $(2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Remark 1. Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10, 11))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) (TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol		Conditions	HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate		transmission	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 1.4$ k Ω , $V_b = 2.7$ V		2.8 Note 2	Mbps
			$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 2.7$ k Ω , $V_b = 2.3$ V		1.2 Note 4	Mbps
			$2.4 \text{ V} \leq \text{VDD} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}$		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 5.5$ k Ω , $V_b = 1.6$ V		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{ \left\{ -C_b \times R_b \times ln \left(1 - \frac{2.2}{V_b} \right) \right\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\times 100 \text{ [\%]}}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met.

 Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}$ and $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} }{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} } \times 100 \, [\%]$$

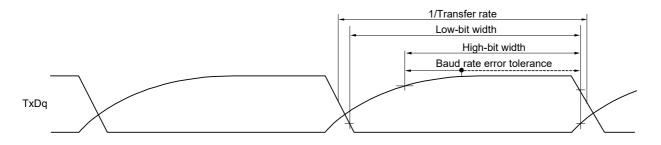
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **Note 4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- Note 5. Use it with $VDD \ge Vb$.

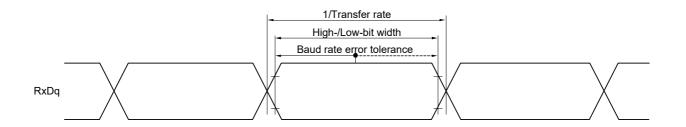
Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\left\{-C_b \times R_b \times \ln \left(1 - \frac{1.5}{V_b}\right)\right\} \times 3}$$
 [bps]


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{\times 100 \text{ [\%]}}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$


- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 3. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI(CSI) mode) (master mode, SCKp... internal clock output) (1/2)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Parameter Symbol		HS (high-speed not		d main)	Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$	300		ns
			$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 30 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	500 Note		ns
			$2.4 \text{ V} \le \text{VDD} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	1150 Note		ns
SCKp high-level tkH1 width	tKH1	4.0 V ≤ V _{DD} ≤ 5 C _b = 30 pF, R _b =	5.5 V, 2.7 V \leq Vb \leq 4.0 V, = 1.4 kΩ	tKCY1/2 - 75		ns
		2.7 V ≤ V _{DD} < 4 C _b = 30 pF, R _b =	4.0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tkcy1/2 - 170		ns
		2.4 V ≤ V _{DD} < 3 C _b = 30 pF, R _b =	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V, = 5.5 kΩ	tkcy1/2 - 458		ns
SCKp low-level width	tKL1	4.0 V ≤ V _{DD} ≤ 5 C _b = 30 pF, R _b =	5.5 V, 2.7 V \leq Vb \leq 4.0 V, = 1.4 kΩ	tKCY1/2 - 12		ns
		2.7 V ≤ V _{DD} < 2 C _b = 30 pF, R _b =	$4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ = 2.7 kΩ	tKCY1/2 - 18		ns
		2.4 V ≤ V _{DD} < 3 C _b = 30 pF, R _b =	3.3 V, 1.6 V \leq V _b \leq 2.0 V, = 5.5 kΩ	tKCY1/2 - 50		ns

Note Use it with $VDD \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

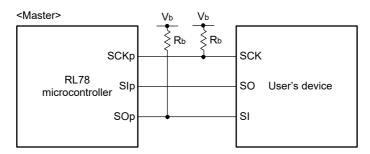
 $(\textbf{Remarks}\ \text{are listed on the page after the next page.})$

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI(CSI) mode) (master mode, SCKp... internal clock output) (2/2)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

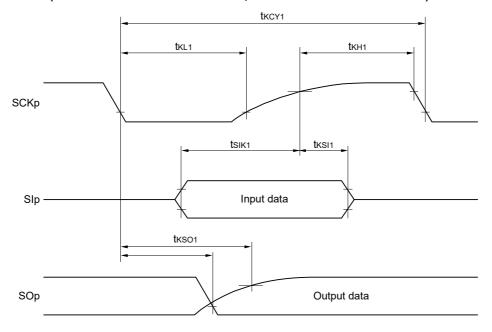
Parameter	Symbol	Conditions	` • .	HS (high-speed main) Mode	
			MIN.	MIN. MAX.	
SIp setup time	tsik1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}, \text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$	81		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	177		ns
		$2.4 \text{ V} \le \text{VDD} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ Note 3, C _b = 30 pF, R _b = 5.5 kΩ	479		ns
SIp hold time	tKSI1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}, \text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$	19		ns
(from SCKp↑) Note 1		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	19		ns
		$2.4 \text{ V} \le \text{VDD} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ Note 3, C _b = 30 pF, R _b = 5.5 kΩ	19		ns
SCKp↓ to SOp	tKSO1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}, \text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$		100	ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		195	ns
output Note 1		$2.4 \text{ V} \le \text{VDD} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ Note 3, C _b = 30 pF, R _b = 5.5 kΩ		483	ns
SIp setup time	tsik1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}, \text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}Ω$	44		ns
(to SCKp↓) Note 2		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}, \text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	44		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ Note 3, C _b = 30 pF, R _b = 5.5 kΩ	110		ns
SIp hold time	tKSI1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}, C_b = 30 \text{ pF}, R_b = 1.4 \text{ kΩ}$	19		ns
(from SCKp↓) Note 2		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}, \text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	19		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ Note 3, Cb = 30 pF, Rb = 5.5 kΩ	19		ns
Delay time from	tKSO1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}, \text{C}_b = 30 \text{ pF}, \text{R}_b = 1.4 \text{ k}\Omega$		25	ns
SCKp↑ to SOp		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}, \text{ Cb} = 30 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$		25	ns
output Note 2		$2.4~V \le V_{DD} < 3.3~V$, $1.6~V \le V_{b} \le 2.0~V$ Note 3 , $C_{b} = 30~pF$, $R_{b} = 5.5~k\Omega$		25	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

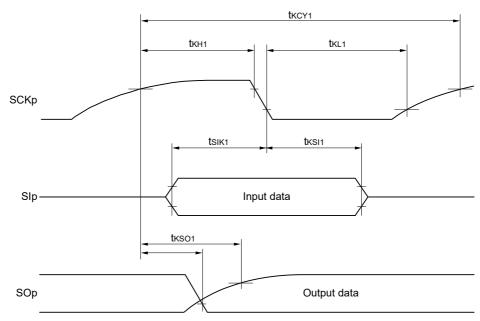

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $VDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified SPI(CSI) mode connection diagram (during communication at different potential)



- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 3. fMcK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10))

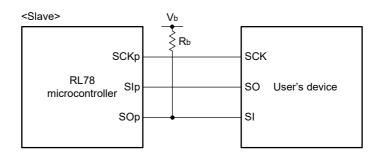
Simplified SPI(CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI(CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 3, 4, 5, 8)

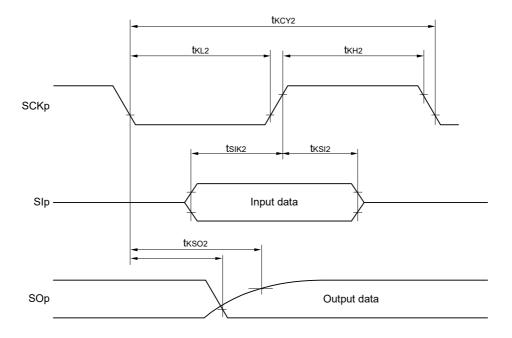
(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI(CSI) mode) (slave mode, SCKp... external clock input)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVSS} = \text{VSS} = 0 \text{ V})$

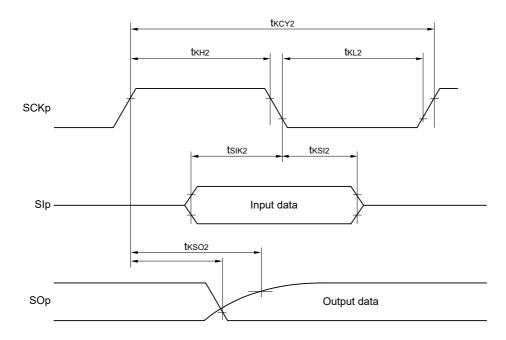

Danamatan	Comple at		O	HS (high-speed main) Mode		1114
Parameter	Symbol		Conditions	MIN.	MAX.	- Unit
SCKp cycle time Note 1	tKCY2	4.0 V ≤ VDD ≤ 5.5 V,	20 MHz < fMCK	12/fMCK		ns
		2.7 V ≤ Vb ≤ 4.0 V	8 MHz < fмcк ≤ 20 MHz	10/fmck		ns
			4 MHz < fMCK ≤ 8 MHz	8/fмcк		ns
			fMCK ≤ 4 MHz	6/fмск		ns
		2.7 V ≤ V _{DD} < 4.0 V,	20 MHz < fMCK	16/fmck		ns
		2.3 V ≤ Vb ≤ 2.7 V	16 MHz < fмcк ≤ 20 MHz	14/fMCK		ns
			8 MHz < fMCK ≤ 16 MHz	12/fMCK		ns
			4 MHz < fMCK ≤ 8 MHz	8/fмcк		ns
			fMCK ≤ 4 MHz	6/fмск		ns
		2.4 V ≤ V _{DD} < 3.3 V,	20 MHz < fMCK	36/fMCK		ns
		1.6 V ≤ V _b ≤ 2.0 V Note 2	16 MHz < fмcк ≤ 20 MHz	32/fMCK		ns
			8 MHz < fMCK ≤ 16 MHz	26/fMCK		ns
			4 MHz < fMCK ≤ 8 MHz	16/fмck		ns
			fMCK ≤ 4 MHz	10/fmck		ns
SCKp high-/low-level	tĸн2,	4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤	tkcy2/2 - 12		ns	
width	tKL2	2.7 V ≤ V _{DD} < 4.0 V, 2.3 V ≤	≤ Vb ≤ 2.7 V	tkcy2/2 - 18		ns
		2.4 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V Note 2		tKCY2/2 - 50		ns
SIp setup time	tsık2	4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤	V _b ≤ 4.0 V	1/fмcк + 20		ns
(to SCKp↑) Note 3		2.7 V ≤ V _{DD} < 4.0 V, 2.3 V ≤	1/fмcк + 20		ns	
		2.4 V ≤ VDD < 3.3 V, 1.6 V ≤	3 Vb ≤ 2.0 V Note 2	1/fмcк + 30		ns
SIp hold time	tKSI2	4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤	V _b ≤ 4.0 V	1/fмcк + 31		ns
(from SCKp↑) Note 4		2.7 V ≤ V _{DD} < 4.0 V, 2.3 V ≤	≤ Vb ≤ 2.7 V	1/fмcк + 31		ns
		2.4 V ≤ VDD < 3.3 V, 1.6 V ≤	V _b ≤ 2.0 V Note 2	1/fмcк + 31		ns
Delay time from SCKp↓ to SOp output Note 5	tKSO2	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le$ Cb = 30 pF, Rb = 1.4 kΩ	V _b ≤ 4.0 V		2/fмск + 120	ns
		2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Cb = 30 pF, Rb = 2.7 kΩ	≤ Vb ≤ 2.7 V		2/fмск + 214	ns
		2.4 V ≤ VDD < 3.3 V, 1.6 V ≤ Cb = 30 pF, Rb = 5.5 kΩ	S Vb ≤ 2.0 V Note 2		2/fmck + 573	ns

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $VDD \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)



Simplified SPI(CSI) mode connection diagram (during communication at different potential)



- Remark 1. $Rb[\Omega]$: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 02, 10))

Simplified SPI(CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI(CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

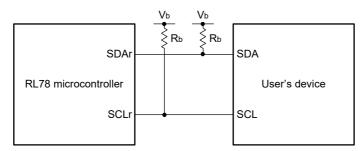
Remark p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1),

n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 3, 4, 5, 8)

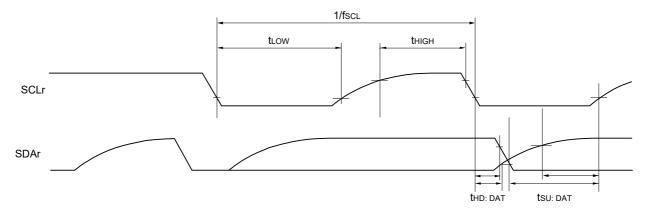
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed m	ain) Mode	Unit
Parameter	Symbol	Conditions	MIN.	MAX.	Onit
SCLr clock	fscl	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}, \text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		1000 Note 1	kHz
frequency		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		1000 Note 1	kHz
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}, \text{Cb} = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega$		400 Note 1	kHz
		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		400 Note 1	kHz
		$2.4~\text{V} \leq \text{VDD} < 3.3~\text{V}, 1.6~\text{V} \leq \text{V}_\text{b} \leq 2.0~\text{V}$ Note 2 , Cb = 100 pF, Rb = $5.5~\text{k}\Omega$		400 Note 1	kHz
Hold time	tLOW	$4.0~\text{V} \leq \text{VDD} \leq 5.5~\text{V}, 2.7~\text{V} \leq \text{V}_{b} \leq 4.0~\text{V}, C_{b} = 50~\text{pF}, R_{b} = 2.7~\text{k}\Omega$	475		ns
when SCLr = "L"		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	475		ns
		$4.0~\text{V} \le \text{VDD} \le 5.5~\text{V}, 2.7~\text{V} \le \text{Vb} \le 4.0~\text{V}, \text{Cb} = 100~\text{pF}, \text{Rb} = 2.8~\text{k}\Omega$	1150		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{ Cb} = 100 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$	1150		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 2, Cb = 100 pF, Rb = 5.5 kΩ	1550		ns
Hold time	tHIGH	$4.0~\text{V} \le \text{VDD} \le 5.5~\text{V},~2.7~\text{V} \le \text{Vb} \le 4.0~\text{V},~\text{Cb} = 50~\text{pF},~\text{Rb} = 2.7~\text{k}\Omega$	245		ns
when SCLr = "H"		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	200		ns
		$4.0~\text{V} \le \text{VDD} \le 5.5~\text{V}, 2.7~\text{V} \le \text{Vb} \le 4.0~\text{V}, \text{Cb} = 100~\text{pF}, \text{Rb} = 2.8~\text{k}\Omega$	675		ns
		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	600		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ Note 2, $C_b = 100 \text{ pF}$, $R_b = 5.5 \text{ k}\Omega$	610		ns
Data setup time	tsu:dat	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}, \text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	1/fMCK + 135 Note 3		ns
(reception)		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	1/fMCK + 135 Note 3		ns
		$4.0~\text{V} \leq \text{VDD} \leq 5.5~\text{V}, 2.7~\text{V} \leq \text{V}_{b} \leq 4.0~\text{V}, C_{b} = 100~\text{pF}, R_{b} = 2.8~\text{k}\Omega$	1/fMCK + 190 Note 3		ns
		$2.7~\text{V} \leq \text{VDD} < 4.0~\text{V}, 2.3~\text{V} \leq \text{Vb} \leq 2.7~\text{V}, \text{Cb} = 100~\text{pF}, \text{Rb} = 2.7~\text{k}\Omega$	1/fMCK + 190 Note 3		ns
		$2.4~\text{V} \leq \text{VDD} < 3.3~\text{V}, 1.6~\text{V} \leq \text{V}_\text{b} \leq 2.0~\text{V}$ Note 2, Cb = 100 pF, Rb = $5.5~\text{k}\Omega$	1/fMCK + 190 Note 3		ns
Data hold time	thd:dat	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}, \text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	0	305	ns
(transmission)		$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	0	305	ns
		$4.0~\text{V} \leq \text{VDD} \leq 5.5~\text{V}, 2.7~\text{V} \leq \text{V}_b \leq 4.0~\text{V}, C_b = 100~\text{pF}, R_b = 2.8~\text{k}\Omega$	0	355	ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}, \text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	0	355	ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 2, Cb = 100 pF, Rb = 5.5 k Ω	0	405	ns


- **Note 1.** The value must also be equal to or less than fMCK/4.
- Note 2. Use it with $VDD \ge Vb$.
- **Note 3.** Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. $Rb[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 10, 20), g: PIM, POM number (g = 0, 1, 3, 4, 5, 8)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0, 2), mn = 00, 02, 10)

2.5.2 Serial interface IICA

(1) I²C standard mode

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		` •	HS (high-speed main) Mode		
					MAX.		
SCLA0 clock frequency	fscl	Standard mode:	2.7 V ≤ VDD ≤ 5.5 V	0	100	kHz	
		fclk ≥ 1 MHz	2.4 V ≤ VDD ≤ 5.5 V	0	100	kHz	
Setup time of restart condition	tsu: sta	2.7 V ≤ VDD ≤ 5.5 V		4.7		μs	
		2.4 V ≤ VDD ≤ 5.5 V		4.7		μs	
Hold time Note 1	thd: STA	2.7 V ≤ VDD ≤ 5.5 V		4.0		μs	
		2.4 V ≤ VDD ≤ 5.5 V		4.0		μs	
Hold time	tLOW	tLow 2.7 V ≤ VDD ≤ 5.5 V		4.7		μs	
when SCLA0 = "L"		2.4 V ≤ VDD ≤ 5.5 V		4.7		μs	
Hold time	tHIGH	2.7 V ≤ VDD ≤ 5.5 V		4.0		μs	
when SCLA0 = "H"		2.4 V ≤ VDD ≤ 5.5 V		4.0		μs	
Data setup time (reception)	tsu: dat	2.7 V ≤ VDD ≤ 5.5 V		250		ns	
		2.4 V ≤ VDD ≤ 5.5 V		250		ns	
Data hold time (transmission) Note 2	thd: dat	2.7 V ≤ VDD ≤ 5.5 V		0	3.45	μs	
		2.4 V ≤ VDD ≤ 5.5 V		0		μs	
Setup time of stop condition	tsu: sto	2.7 V ≤ VDD ≤ 5.5 V		4.0		μs	
		2.4 V ≤ VDD ≤ 5.5 V		4.0		μs	
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 5.5 V		4.7		μs	
		2.4 V ≤ VDD ≤ 5.5 V		4.7		μs	

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 $k\Omega$

(2) I2C fast mode

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
					MAX.	
SCLA0 clock frequency	fscl	Fast mode:	2.7 V ≤ VDD ≤ 5.5 V	0	400	kHz
		fclk ≥ 3.5 MHz	2.4 V ≤ VDD ≤ 5.5 V	0	400	kHz
Setup time of restart condition	tsu: sta	2.7 V ≤ VDD ≤ 5.5 V		0.6		μs
		2.4 V ≤ VDD ≤ 5.5 V		0.6		μs
Hold time Note 1	thd: STA	2.7 V ≤ VDD ≤ 5.5 V		0.6		μs
		2.4 V ≤ VDD ≤ 5.5 V		0.6		μs
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ VDD ≤ 5.5 V		1.3		μs
		2.4 V ≤ VDD ≤ 5.5 V		1.3		μs
Hold time when SCLA0 = "H"	thigh	2.7 V ≤ VDD ≤ 5.5 V		0.6		μs
		2.4 V ≤ VDD ≤ 5.5 V		0.6		μs
Data setup time (reception)	tsu: Dat	2.7 V ≤ VDD ≤ 5.5 V		100		ns
		2.4 V ≤ VDD ≤ 5.5 V		100		ns
Data hold time (transmission) Note 2	thd: dat	2.7 V ≤ VDD ≤ 5.5 V		0	0.9	μs
		2.4 V ≤ VDD ≤ 5.5 V		0		μs
Setup time of stop condition	tsu: sto	2.7 V ≤ VDD ≤ 5.5 V		0.6		μs
		2.4 V ≤ VDD ≤ 5.5 V		0.6		μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 5.5 V		1.3		μs
		2.4 V ≤ VDD ≤ 5.5 V		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thd: DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Remark

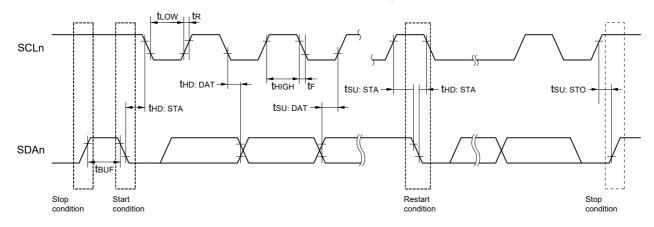
The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb = 320 pF, Rb = 1.1 k Ω

(3) I²C fast mode plus

$(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Cond	Conditions		HS (high-speed main) Mode	
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fcLk ≥ 10 MHz	2.7 V ≤ VDD ≤ 5.5 V	0	1000	kHz
Setup time of restart condition	tsu: sta	2.7 V ≤ VDD ≤ 5.5 V	2.7 V ≤ VDD ≤ 5.5 V			μs
Hold time Note 1	thd: Sta	2.7 V ≤ VDD ≤ 5.5 V	2.7 V ≤ VDD ≤ 5.5 V			μs
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ VDD ≤ 5.5 V		0.5		μs
Hold time when SCLA0 = "H"	thigh	2.7 V ≤ VDD ≤ 5.5 V		0.26		μs
Data setup time (reception)	tsu: dat	2.7 V ≤ VDD ≤ 5.5 V		50		ns
Data hold time (transmission) Note 2	thd: dat	2.7 V ≤ VDD ≤ 5.5 V		0	0.45	μs
Setup time of stop condition	tsu: sto	2.7 V ≤ VDD ≤ 5.5 V		0.26		μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 5.5 V		0.5		μs


Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thd: DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

IICA serial transfer timing

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

(1) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI8 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V, reference voltage (+) = VDD, reference voltage (-) = VSS)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
		Target pin: ANI8 to ANI14	2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
		10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.375		39	μs
		Target pin: internal reference voltage and	2.7 V ≤ VDD ≤ 5.5 V	3.5626		39	μs
		temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±4.0	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±2.0	LSB
Analog input voltage	VAIN	ANI8 to ANI11		0		VDD	V
		ANI12 to ANI14		0		AVDD	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)			V _{BGR} Note 3		
		Temperature sensor output voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)			VTMPS25 Note 3		

- Note 1. Excludes quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. Refer to 2.6.2 Temperature sensor/internal reference voltage output characteristics.

(2) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI8 to ANI11, ANI12 to ANI14

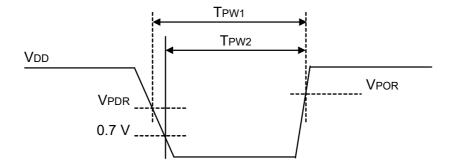
(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V, reference voltage (+) = VBGR Note 3, reference voltage (-) = VSS = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		3	bit
Conversion time	tconv	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±(0.60 + 0.35)	%FSR
Integral linearity error Note 1	ILE	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±(2.0 + 0.5)	LSB
Differential linearity error Note 1	DLE	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±(1.0 + 0.2)	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

- Note 1. Excludes quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. Refer to 2.6.2 Temperature sensor/internal reference voltage output characteristics.

2.6.2 Temperature sensor/internal reference voltage output characteristics

(TA = -40 to +85°C, 2.4 V ≤ AVDD = VDD ≤ 5.5 V, AVSS = VSS = 0 V, HS (high-speed main) mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	TA = +25°C		1.05		V
Internal reference voltage	VBGR		1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp	2.4 V ≤ VDD ≤ 5.5 V	5			μs

2.6.3 POR circuit characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time ^{Note 1}	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW1	Other than STOP/SUB HALT/SUB RUN	300			μs
	TPW2	STOP/SUB HALT/SUB RUN	300			μs

- **Note 1.** If the power supply voltage falls while the voltage detector is off, be sure to either shift to STOP mode or execute a reset by using the voltage detector or external reset pin before the power supply voltage falls below the minimum operating voltage specified in 2.4 AC Characteristics.
- Note 2. Minimum time required for a POR reset when VDD falls below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
Minimum pu	lse width	tLW		300			μs
Detection de	elay time					300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 5.5 V @ 1 MHz to 24 MHz

 \mbox{Vdd} = 2.4 to 5.5 V @ 1 MHz to 16 MHz

(2) LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDC0	VPOC2, VPOC1, VPOC0 = 0, 1,	0, falling reset voltage: 2.4 V	2.40	2.45	2.50	V
mode	VLVDC1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
_			Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
			Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage: 2.7 V			2.75	2.81	V
	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
			Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Programmable gain instrumentation amplifier and 24-bit $\Delta\Sigma$ A/D converter

(1) Analog input in differential input mode

(TA = -40 to +85°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V, normal mode: fs1 = 1 MHz, FDATA1 = 3.90625 ksps, low-power mode: fs2 = 0.125 MHz, FDATA2 = 488.28125 sps, SBIAS = 2.1 V, dofr = 0 mV, Vcom = 1.0 V, external clock input used)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Full-scale differential input voltage range	VID	VID = (PGA0xP - PGA0xN) (x = 0, 1)	_	±800 /GTOTAL0	_	mV
Input voltage range	VI		0.2	_	1.8	V
Common mode input voltage range	Vсом	dofr = 0 mV	0.2+(VID X GSET01)/2	_	1.8-(VID X GSET01)/2	V
Input bias current	lin	VI = 1.0 V			±50	nA
Input offset current	lino	VI = 1.0 V			±20	nA

(2) Analog input in single-ended input mode

(TA = -40 to +85°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V, normal mode: fs1 = 1 MHz, FDATA1 = 3.90625 ksps, low-power mode: fs2 = 0.125 MHz, FDATA2 = 488.28125 sps, SBIAS = 2.1 V, dofr = 0 mV, Vcom = 1.0 V, external clock input used)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Vı		0.2	_	1.8	V
Input bias current	lin	VI = 1.0 V			±50	nA

(3) Programmable gain instrumentation amplifier and 24-bit $\Delta\Sigma$ A/D converter

(TA = -40 to +85°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V, normal mode: fs1 = 1 MHz, FDATA1 = 3.90625 ksps, low-power mode: fs2 = 0.125 MHz, FDATA2 = 488.28125 sps, SBIAS = 2.1 V, dofr = 0 mV, Vcom = 1.0 V, external clock input used, in differential input mode) (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES				24	bit
Sampling frequency	fs1	Normal mode		1		MHz
	fs2	Low-power mode		0.125		MHz
Output data rate	fDATA1	Normal mode	0.488		15.625	ksps
	fDATA2	Low-power mode	61.035		1953.125	sps
Gain setting range	GTOTAL0	GTOTAL0 = GSET01 x GSET02	1		64	V/V
1st gain setting range	GSET01			1, 2, 3, 4, 8		V/V
2nd gain setting range	GSET02			1, 2, 4, 8		V/V
Offset adjustment bit range	doffB			5		bit
Offset adjustment range	dofr	Referred to input	- 164/GSET01		+ 164/GSET01	mV
Offset adjustment steps	dors	Referred to input		11/GSET01		mV

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVSS} = \text{VSS} = 0 \text{ V}, \text{normal mode: fs1} = 1 \text{ MHz}, \text{FDATA1} = 3.90625 \text{ ksps, low-power mode: fs2} = 0.125 \text{ MHz}, \text{FDATA2} = 488.28125 \text{ sps, SBIAS} = 2.1 \text{ V}, \text{dofr} = 0 \text{ mV}, \text{Vcom} = 1.0 \text{ V}, \text{external clock input used, in differential input mode)}$ (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Gain error	EG0	TA = 25°C GSET01 = 1, GSET02 = 1 Excluding SBIAS error		±0.2	±2.7	%
		TA = 25°C GSET01 = 8, GSET02 = 4 Excluding SBIAS error		±0.1		%
Gain drift Note	dEG0	GSET01 = 1, GSET02 = 1 Excluding SBIAS drift		(5.6)	(22.0)	ppm/°C
		GSET01 = 8, GSET02 = 4 Excluding SBIAS drift		(9.1)		ppm/°C
Offset error	Eoso	TA = 25°C GSET01 = 1, GSET02 = 1 Referred to input		±0.32	±2.90	mV
		TA = 25°C GSET01 = 8, GSET02 = 4 Referred to input		±0.03		mV
Offset drift Note	dEos	GSET01 = 1, GSET02 = 1 Referred to input		(±0.02)	(±6.00)	μV/°C
		GSET01 = 8, GSET02 = 4 Referred to input		(±0.02)		μV/°C
SND ratio	SNDR	GSET01 = 1, GSET02 = 1, fin = 50 Hz Normal mode, Pin = -1 dBFS	(82)	(85)		dB
		GSET01 = 8, GSET02 = 4, fin = 50 Hz Normal mode, Pin = -1 dBFS	(73)	(80)		dB
Noise	Vn	GSET01 = 1, GSET02 = 1, OSR = 2048		(13)		μVRms
		GSET01 = 8, GSET02 = 4, OSR = 2048		(0.6)		μVRms
Integral non-linearity error	INL	GSET01 = 1, GSET02 = 1, OSR = 2048		(±10)		ppmFS
Common mode rejection ratio	CMRR0	VCOM = 1.0±0.8 V, fin = 50 Hz GSET01 = 1, GSET02 = 1	(72)	(90)		dB
Power supply rejection ratio	PSRR0	AVDD = 2.7 to 5.5 V, GSET01 = 1, GSET02 = 1	(60)	(85)		dB
$\Delta\Sigma$ A/D converter input clock frequency	fADC		3.8	4.0	4.2	MHz

Note Calculate the gain drift and offset drift by using the following expression (for 85°C products):

For gain drift: (MAX(EG(T(-40) to T(85))) - MIN(EG(T(-40) to T(85)))) / (85°C -(-40°C))

For offset drift: (MAX(EOS(T(-40) to T(85))) - MIN(EOS(T(-40) to T(85)))) / (85°C -(-40°C))

MAX(EG(T(-40) to T(85))): The maximum value of gain error when the temperature range is -40°C to 85° C MIN(EG(T(-40) to T(85))): The minimum value of gain error when the temperature range is -40°C to 85° C MAX(EOS(T(-40) to T(85))): The maximum value of offset error when the temperature range is -40°C to 85° C MIN(EOS(T(-40) to T(85))): The minimum value of offset error when the temperature range is -40°C to 85° C

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.

Remark 2. The typical conditions are the conditions when $TA = 25^{\circ}C$ and AVDD = 3.3 V.

2.6.6 Sensor power supply (SBIAS)

(TA = -40 to +85°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V, COUT = 0.22 μ F, VOUT = 1.0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage range	Vout		0.5		2.2	V
Output voltage adjustment steps	VSTEP			0.1		V
Output voltage precision	VA	IOUT = 1 mA	(- 3)		(+ 3)	%
Maximum output current	Іоит		5			mA
Short circuit current	ISHORT	VOUT = 0 V		40	65	mA
Load regulation	LR	1 mA ≤ lout ≤ 5 mA			(15)	mV
Power supply rejection ratio	PSRR	AVDD = 5.0 V + 0.1 Vpp ripple f = 100 Hz, lout = 2.5 mA, Vout = 2.1 V	(45)	(70)		dB

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.

Remark 2. The typical conditions are the conditions when $TA = 25^{\circ}C$ and AVDD = 3.3 V.

2.6.7 Internal BIAS power supply

$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage	VBIAS		0.95	1.00	1.05	V

Remark The typical conditions are the conditions when $TA = 25^{\circ}C$ and AVDD = 3.3 V.

2.6.8 Programmable gain instrumentation amplifier (PGA1)

(TA = -40 to +85°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(1/2)

•		•	•			•
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Differential input	VID	VID = (PGA1xP - PGA1xN)		±800		mV
voltage range		(x = 0, 1)		/GTOTAL1		
Input voltage range	VIN		0.3		AVDD - 0.6	V
Common mode input	Vсом		0.3+		AVDD-0.6+	V
voltage range			((VID + EOS)		((VID + Eos)	
			×GSET11)/2		×GSET11)/2	
Output voltage range	Vout		0.1		AVDD - 0.1	V
Maximum output	IOUT		-0.1		+0.1	mA
current						
Input bias current	lin				±50	nA
Input bias offset	Ios				±20	nA
current						
Gain setting range	GTOTAL1			GSET11 ×		V/V
				GSET12		
1st gain setting range	GSET11			12, 16,		V/V
				20, 24		
2nd gain setting range	GSET12			Note		V/V
Gain error	EG1	TA = 25°C			±2.7	%
		GSET11 = 24, GSET12 = 1				
Gain drift	dEG1	GSET11 = 24, GSET12 = 1		(5.6)	(22.0)	ppm/°C
Offset error	Eos1	TA = 25°C	-10		+10	mV
		GSET11 = 24, GSET12 = 1				
		Referred to input				
Bandwidth	BW11	Low-power mode		(1.5)		kHz
		GSET11 = 24, GSET12 = 1				
	BW12	High-speed mode		(67)		kHz
		GSET11 = 24, GSET12 = 1				
Slew rate	SR11	Low-power mode		(6)		mV/μs
	SR12	High-speed mode		(220)		mV/µs
Peak-to-peak voltage	Enb11	0.1 Hz to 10 Hz		(3.0)		μVrms
noise		Low-power mode		, ,		
	Enb12	0.1 Hz to 10 Hz		(2.6)		μVrms
	1		1		1	

Note See the setting of PGA1GC3 to PGA1GC0.

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input-referred noise	En11	f = 1 kHz Low-power mode		(210)		nV/ √Hz
	En12	f = 1 kHz High-speed mode		(110)		nV/ √Hz
	En13	f = 10 Hz Low-power mode		(460)		nV/ √Hz
	En14	f = 10 Hz High-speed mode		(410)		nV/ √Hz
Common mode rejection ratio	CMRR1	GSET11 = 24, GSET12 = 1 f = 50 Hz		(100)		dB
Power supply rejection ratio	PSRR1	2.7 V ≤ AVDD ≤ 5.5 V f = 50 Hz When SBIAS is selected as the reference voltage of the 12-bit D/A converter.		(80)		dB

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.

Remark 2. The typical conditions are the conditions when TA = 25° C and AVDD = 3.3 V.

Remark 3. Unless otherwise specified, values are for operation in high-speed mode.

2.6.9 Operational amplifier 0 (AMP0)

(TA = -40 to +85°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Common mode input voltage range	Vсм		0.1		AVDD - 0.1	V
Output voltage range	Vout	IOUT= ±1 mA	0.07		AVDD - 0.15	V
Maximum output current	Іоит		(-2)		(+2)	mA
Input bias current	lin				±50	nA
Input offset voltage	Vos1	Low-power mode	-10		+10	mV
	Vos2	High-speed mode	-7		+7	mV
Slew rate	SR1	Low-power mode		(0.04)		V/µs
	SR2	High-speed mode		(0.7)		V/µs
Gain bandwidth	GBW1	Low-power mode		(0.06)		MHz
	GBW2	High-speed mode		(1)		MHz
Phase margin	PM1	Low-power mode		(70)		deg
	PM2	High-speed mode		(60)		deg
Settling time	Tset1	Low-power mode CL = 50 pF, RL = 10 k Ω			(300)	μs
	Tset2	High-speed mode CL = 50 pF, RL = 10 kΩ			(14)	μs
Stabilization wait time	Tstaw1	AMPEn = $0 \rightarrow 1$, Low-power mode CL = 50 pF, RL = 10 k Ω			(300)	μs
	Tstaw2	AMPEn = $0 \rightarrow 1$, High-speed mode CL = 50 pF, RL = 10 k Ω			(14)	μs
Input-referred noise	En1	f = 1 kHz Low-power mode		(200)		nV/ √Hz
	En2	f = 1 kHz High-speed mode		(80)		nV/ √Hz
Common mode rejection ratio	CMRR	DC		(70)		dB
Power supply rejection ratio	PSRR	DC		(90)		dB

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.

Remark 2. The typical conditions are the conditions when TA = 25° C and AVDD = 3.3 V.

Remark 3. Unless otherwise specified, values are for operation in high-speed mode.

2.6.10 Operational amplifiers 1 and 2 (AMP1, AMP2)

(TA = -40 to +85°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Common mode input voltage range	Vсм1	Low-power mode	0.2		AVDD - 0.5	V
	VCM2	High-speed mode	0.3		AVDD - 0.6	V
Output voltage range	Vout		0.1		AVDD - 0.1	V
Maximum output current	Іоит	2.7 V ≤ AVDD ≤ 5.5 V	-100		+100	μΑ
Input bias current	lin				±50	nA
Input offset voltage	Vos1	Low-power mode	-10		+10	mV
	Vos2	High-speed mode	-10		+10	mV
Slew rate	SR1	Low-power mode		(0.02)		V/µs
	SR2	High-speed mode		(1.1)		V/µs
Gain bandwidth	GBW1	Low-power mode		(0.04)		MHz
	GBW2	High-speed mode		(1.7)		MHz
Phase margin	PM1	Low-power mode		(70)		deg
	PM2	High-speed mode		(60)		deg
Settling time	Tset1	Low-power mode $CL = 50 \text{ pF}, RL = 10 \text{ k}\Omega$			(750)	μs
	Tset2	High-speed mode $CL = 50$ pF, $RL = 10$ kΩ			(13)	μs
Stabilization wait time	Tstaw1	AMPEn = $0 \rightarrow 1$, Low-power mode CL = 50 pF, RL = 10 k Ω			(800)	μs
	Tstaw2	AMPEn = 0 \rightarrow 1, High-speed mode CL = 50 pF, RL = 10 k Ω			(13)	μs
Input-referred noise	En1	f = 1 kHz Low-power mode		(230)		nV/ √Hz
	En2	f = 1 kHz High-speed mode		(90)		nV/ √Hz
Common mode rejection ratio	CMRR	DC		(90)		dB
Power supply rejection ratio	PSRR	DC		(90)		dB

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.

Remark 2. The typical conditions are the conditions when $TA = 25^{\circ}C$ and AVDD = 3.3 V.

Remark 3. Unless otherwise specified, values are for operation in high-speed mode.

2.6.11 8-bit D/A converter (DAC0)

(TA = -40 to +85°C, 2.7 V ≤ AVDD = VDD ≤ 5.5 V, AVSS = VSS = 0 V, reference voltage (+) = 2.1 V (SBIAS))

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	DARES0				8	bit
Absolute accuracy	LE	Note			±2.5	LSB
Differential non-linearity error	DADLE0				±2.0	LSB
Settling time	DAtset0	CL = 50 pF, RL = 10 kΩ			(6)	μs

Note Errors of the SBIAS output voltage are not included.

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.

Remark 2. The 8-bit D/A converter characteristics are the values obtained with the amplifier unit connected.

2.6.12 12-bit D/A converter (DAC1)

(1) When reference voltage (+) = 2.1 V (SBIAS)

(TA = -40 to +85°C, 2.7 V ≤ AVDD = VDD ≤ 5.5 V, AVSS = VSS = 0 V, reference voltage (+) = 2.1 V (SBIAS))

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	DARES1				(12)	bit
Output voltage range	DAOUT	12-bit resolution	0.35		SBIAS	V
Integral non-linearity error	DAILE	12-bit resolution			±4.0	LSB
Differential non-linearity error	DADLE1	12-bit resolution			±1.0	LSB
Offset error	DAErr	12-bit resolution			±30	mV
Gain error	DAEG	12-bit resolution Note			±20	mV
Settling time	DAtset1	12-bit resolution CL = 50 pF, RL = 10 k Ω			(60)	μs

Note Errors of the SBIAS output voltage are not included.

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.

Remark 2. The 12-bit D/A converter characteristics are the values obtained with the amplifier unit connected.

(2) When reference voltage (+) = AVDD

(TA = -40 to +85°C, 2.7 V ≤ AVDD = VDD ≤ 5.5 V, AVSS = VSS = 0 V, reference voltage (+) = AVDD)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	DARES1				(12)	bit
Output voltage range	DAOUT	12-bit resolution	0.35		AVDD - 0.47	V
Integral non-linearity error	DAILE	12-bit resolution			±4.0	LSB
Differential non-linearity error	DADLE1	12-bit resolution			±1.0	LSB
Offset error	DAErr	12-bit resolution			±30	mV
Gain error	DAEG	12-bit resolution			±20	mV
Settling time	DAtset1	12-bit resolution CL = 50 pF, RL = 10 kΩ			(60)	μs

Remark 1. Values in parentheses are target design values (i.e. not guaranteed) and therefore are not tested for shipment.

Remark 2. The 12-bit D/A converter characteristics are the values obtained with the amplifier unit connected.

2.7 Power supply voltage rising slope characteristics

$(TA = -40 \text{ to } +85^{\circ}C, Vss = 0 \text{ V})$

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD			54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

2.8 LCD Characteristics

2.8.1 Resistance division method

(1) Static display mode

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, VL4 \text{ (MIN.)} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		VDD	V

(2) 1/2 bias method, 1/4 bias method

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, VL4 \text{ (MIN.)} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		VDD	V

2.8.2 Internal voltage boosting method

(1) 1/3 bias method

 $(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	0.47 μF	2 V _{L1} - 0.1	2 VL1	2 VL1	V
Tripler output voltage	VL4	C1 to C4 Note 1 = 0.47 µF		3 VL1- 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C4 Note 1 =	0.47 μF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between VL1 and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between VL4 and GND
- $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

$(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 Note 1 =	0.47 μF	2 V _{L1} - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 Note 1 =	0.47 μF	3 V _{L1} - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note 1 =	0.47 μF	4 V _{L1} - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	: 0.47μF	500			ms

- **Note 1.** This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between VL1 and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL3 and GND
 - C5: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = C5 = 0.47 \mu F \pm 30\%$
- Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.8.3 Capacitor split method

(1) 1/3 bias method

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 µF Note 2		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 µF Note 2	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
VL1 voltage	VL1	C1 to C4 = 0.47 µF Note 2	1/3 VL4 - 0.1	1/3 VL4	1/3 VL4 + 0.1	V
Capacitor split wait time Note 1	tvwait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

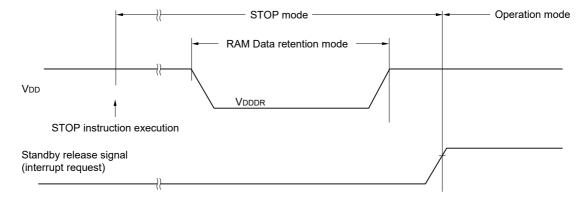
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND


 $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

2.9 RAM data retention characteristics

$(TA = -40 \text{ to } +85^{\circ}C, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

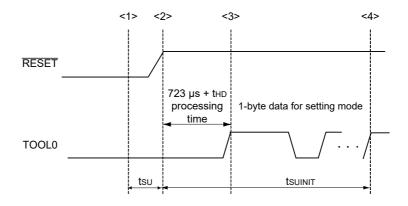
2.10 Flash Memory Programming Characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
System clock frequency	fCLK	2.4 V ≤ VDD ≤ 5.5 V		1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	Ta = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 year	TA = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	TA = 85°C	100,000			
		Retained for 20 years	TA = 85°C	10,000			

- Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
- Note 2. When using flash memory programmer and Renesas Electronics self programming library
- **Note 3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.11 Dedicated Flash Memory Programmer Communication (UART)


(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.12 Timing of Entry to Flash Memory Programming Modes

 $(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
Time to hold the TOOL0 pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until an external reset ends

thd: Time to hold the TOOL0 pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (R5F11R) (D: TA = -40 to +85°C)

This chapter describes the electrical specifications for the products "D: Industrial applications (TA = -40 to +85°C)".

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2 Functions other than port pins in the User's Manual: Hardware.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings

(1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	AVDD	AVDD = VDD	-0.5 to +6.5	V
	AVss	AVss = Vss	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 Note 1	٧
Input voltage	VI1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P121 to P124, P125 to P127, P137, EXCLK, EXCLKS, RESET	-0.3 to VDD +0.3 Note 2	V
	VI2	P60, P61 (N-ch open-drain)	-0.3 to +6.5	V
	VI3	P20 to P27, P150, P151	-0.3 to AVDD + 0.3 Note 2	V
Output voltage	VO1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127	-0.3 to VDD + 0.3 Note 2	V
	VO2	P20 to P27, P150, P151	-0.3 to AVDD + 0.3 Note 2	V
Analog input voltage	VAI1	ANI8 to ANI10	-0.3 to V _{DD} + 0.3 Note 2	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. The reference voltage is Vss (for the VDD systems) = AVss (for the AVDD systems).

Absolute Maximum Ratings

(2/3)

Parameter	Symbol	Cone	ditions	Ratings	Unit
LCD voltage	VLI1	V _{L1} input voltage Note	1	-0.3 to +2.8	V
	VLI2	VL2 input voltage Note	1	-0.3 to +6.5	V
	VLI3	VL3 input voltage Note	1	-0.3 to +6.5	V
	VLI4	VL4 input voltage Note	1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH input vol	tage ^{Note 1}	-0.3 to +6.5	V
	VLO1	V _{L1} output voltage		-0.3 to +2.8	V
	VLO2	VL2 output voltage		-0.3 to +6.5	V
	VLO3	VL3 output voltage		-0.3 to +6.5	V
	VLO4	VL4 output voltage		-0.3 to +6.5	V
	VLO5	CAPL, CAPH output v	oltage	-0.3 to +6.5	V
	VLO6	COM0 to COM7 SEG0 to SEG35	External resistance division method	-0.3 to V _{DD} + 0.3 Note 2	V
	output voltage	Capacitor split method	-0.3 to VDD + 0.3 Note 2	V	
			Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

- Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μF ± 30%) and connect a capacitor (0.47 μF ± 30%) between the CAPL and CAPH pins.
- Note 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings

(3/3)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin		-40	mA
		Total of all pins	P40, P43, P44, P80 to P83	-70	mA
		-170 mA	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P50 to P53, P70 to P77, P84 to P86, P125 to P127	-100	mA
	ІОН2	Per pin		-40	mA
		Total of all pins	P21 to P27	-70	mA
		-140 mA	P20, P150, P151	-70	mA
Output current, low	lOL1	Per pin	Per pin		mA
		Total of all pins 170 mA	P40, P43, P44, P80 to P83	70	mA
			P01 to P07, P10 to P17, P30 to P32, P35 to P37, P50 to P53, P60, P61, P70 to P77, P84 to P86, P125 to P127	100	mA
	lOL2	Per pin		40	mA
		Total of all pins	P21 to P27	70	mA
		140 mA	P20, P150, P151	70	mA
Operating ambient	TA	In normal operation	In normal operation mode		°C
temperature		In flash memory p			
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.2 Oscillator Characteristics

3.2.1 X1 and XT1 characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	crystal resonator	2.7 V ≤ VDD ≤ 5.5 V	1.0		20.0	MHz
		2.4 V ≤ VDD < 2.7 V	1.0		16.0	
		1.8 V ≤ VDD < 2.4 V	1.0		8.0	
X1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz
			31	38.4	39	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the User's Manual: Hardware.

3.2.2 On-chip oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency	fiH	2.7 V ≤ VDD ≤ 5	5.5 V	1		24	MHz
Notes 1, 2		2.4 V ≤ VDD < 2.7 V		1		16	MHz
		1.8 V ≤ VDD < 2.4 V		1		8	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	1.8 V ≤ VDD ≤ 5.5 V	-1.0		+1.0	%
accuracy		-40 to -20°C	1.8 V ≤ VDD ≤ 5.5 V	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fıL		•		15		kHz
Low-speed on-chip oscillator clock frequency	1			-15		+15	%
accuracy							

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

(1/5)

Item	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127				-10.0 Note 2	mA
		Total of P40, P43, P44,	4.0 V ≤ VDD ≤ 5.5 V			-55	mA
		P80 to P83	2.7 V ≤ VDD < 4.0 V			-10	mA
		(When duty ≤ 70% Note 3)	1.8 V ≤ VDD < 2.7 V			-5	mA
		Total of P01 to P07, P10 to P17,	4.0 V ≤ VDD ≤ 5.5 V			-69	mA
		P30 to P32, P35 to P37, P50 to P53, P70 to P77,	2.7 V ≤ V _{DD} < 4.0 V			-23	mA
		P84 to P86, P125 to P127 (When duty ≤ 70% Note 3)	1.8 V ≤ VDD < 2.7 V			-12	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.8 V ≤ VDD ≤ 5.5 V			-124	mA
	Юн2	Per pin for P20 to P27, P150, P151	1.8 V ≤ AVDD ≤ 5.5 V			-10.0 Note 2	mA
		Total of P21 to P27	4.0 V ≤ AVDD ≤ 5.5 V			-50	mA
		(When duty ≤ 70% Note 3)	2.7 V ≤ AVDD < 4.0 V			-10	mA
			1.8 V ≤ AVDD < 2.7 V			-5	mA
		Total of P20, P150, P151	4.0 V ≤ AVDD ≤ 5.5 V			-21	mA
		(When duty ≤ 70% Note 3)	2.7 V ≤ AVDD < 4.0 V			-5	mA
			1.8 V ≤ AVDD < 2.7 V			-3	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.8 V ≤ AVDD ≤ 5.5 V			-71	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin (IOH1) and AVDD pin (IOH2) to an output pin.
- Note 2. Do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH \times 0.7)/(n \times 0.01)
 - <Example> Where n = 80% and loh = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P02 to P04, P06, P07, P10, P12, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 do not output high level in N-ch open-drain mode.

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

(2/5)

Item	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P121 to P127				20.0 Note 2	mA
		Per pin for P60, P61				15.0 Note 2	mA
		Total of P40, P43, P44, P80 to P83	4.0 V ≤ V _{DD} ≤ 5.5 V			70	mA
		(When duty ≤ 70% Note 3)	2.7 V ≤ V _{DD} < 4.0 V			15	mA
			1.8 V ≤ V _{DD} < 2.7 V			9	mA
		Total of P01 to P07, P10 to P17,	4.0 V ≤ V _{DD} ≤ 5.5 V			90	mA
		P30 to P32, P35 to P37,	2.7 V ≤ V _{DD} < 4.0 V			35	mA
		P50 to P53, P60, P61, P70 to P77, P84 to P86, P125 to P127 (When duty ≤ 70% Note 3)	1.8 V ≤ VDD < 2.7 V			20	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.8 V ≤ VDD ≤ 5.5 V			160	mA
	lOL2	Per pin for P20 to P27, P150, P151	1.8 V ≤ AVDD ≤ 5.5 V			20	mA
		Total of P21 to P27	$4.0 \text{ V} \leq \text{AVDD} \leq 5.5 \text{ V}$			60	mA
		(When duty ≤ 70% Note 3)	2.7 V ≤ AVDD < 4.0 V			10	mA
			1.8 V ≤ AVDD < 2.7 V			5	mA
		Total of P20, P150, P151	4.0 V ≤ AVDD ≤ 5.5 V			25	mA
		(When duty ≤ 70% Note 3)	2.7 V ≤ AVDD < 4.0 V			8	mA
			1.8 V ≤ AVDD < 2.7 V			5	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.8 V ≤ AVDD ≤ 5.5 V			85	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from the Vss pin (IoL1) and AVss pin (IoL2) to an output pin.
- Note 2. Do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL \times 0.7)/(n \times 0.01)
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

(3/5)

Item	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127	Normal input buffer	0.8 VDD		VDD	V
	VIH2	For TTL mode supported ports	TTL input buffer, 4.0 V ≤ VDD ≤ 5.5 V	2.2		VDD	V
			TTL input buffer, 3.3 V ≤ VDD < 4.0 V	2.0		VDD	V
			TTL input buffer, 1.8 V ≤ VDD < 3.3 V	1.5		VDD	V
	VIH3	P20 to P27, P150, P151		0.8 AVDD		AVDD	V
	VIH4	P60, P61		0.7 VDD		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EX	0.8 VDD		VDD	V	
Input voltage, low	VIL1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127	Normal input buffer	0		0.2 VDD	V
	VIL2	For TTL mode supported ports	TTL input buffer, 4.0 V ≤ VDD ≤ 5.5 V	0		0.8	V
			TTL input buffer, 3.3 V ≤ VDD < 4.0 V	0		0.5	V
			TTL input buffer, 1.8 V ≤ VDD < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150, P151		0		0.2 AVDD	V
	VIL4	P60, P61		0		0.3 VDD	V
	VIL5	P121 to P124, P137, EXCLK, EX	P121 to P124, P137, EXCLK, EXCLKS, RESET			0.2 VDD	V

Caution The maximum VIH value on P02 to P04, P06, P07, P10, P12, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 is VDD, even in the N-ch open-drain mode.

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

(4/5)

Item	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voн1	P01 to P07, P10	4.0 V ≤ VDD ≤ 5.5 V, IOH = -10.0 mA	VDD - 1.5			V
		to P17, P30 to	4.0 V ≤ VDD ≤ 5.5 V, IOH = -3.0 mA	VDD - 0.7			V
		P32, P35 to P37, P40, P43,	2.7 V ≤ VDD ≤ 5.5 V, IOH = -2.0 mA	VDD - 0.6			V
		P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127	1.8 V ≤ VDD ≤ 5.5 V, IOH = -1.5 mA	VDD - 0.5			V
	VOH2	P20 to P27, P150, P151	4.0 V ≤ AVDD ≤ 5.5 V, IOH = -10.0 mA	AVDD - 1.5			V
			4.0 V ≤ AVDD ≤ 5.5 V, IOH = -3.0 mA	AVDD - 0.7			V
			2.7 V ≤ AVDD ≤ 5.5 V, IOH = -2.0 mA	AVDD - 0.6			V
			1.8 V ≤ AVDD ≤ 5.5 V, IOH = -1.5 mA	AVDD - 0.5			V
Output voltage, low	VOL1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P70 to P77, P80 to P86, P125 to P127	4.0 V ≤ V _{DD} ≤ 5.5 V, I _{OL} = 20.0 mA			1.3	V
			4.0 V ≤ V _{DD} ≤ 5.5 V, I _{OL} = 8.5 mA			0.7	V
			2.7 V ≤ VDD ≤ 5.5 V, IOL = 3.0 mA			0.6	V
			2.7 V ≤ VDD ≤ 5.5 V, IOL = 1.5 mA			0.4	V
			1.8 V ≤ VDD ≤ 5.5 V, IOL = 0.6 mA			0.4	V
	VOL2	P20 to P27,	4.0 V ≤ AVDD ≤ 5.5 V, IOL = 20.0 mA			1.3	V
		P150, P151	4.0 V ≤ AVDD ≤ 5.5 V, IOL = 8.5 mA			0.7	V
			2.7 V ≤ AVDD ≤ 5.5 V, IOL = 3.0 mA			0.6	V
			2.7 V ≤ AVDD ≤ 5.5 V, IOL = 1.5 mA			0.4	V
			1.8 V ≤ AVDD ≤ 5.5 V, IOL = 0.6 mA			0.4	V
	VOL3	P60, P61	4.0 V ≤ VDD ≤ 5.5 V, IOL = 15.0 mA			2.0	V
			4.0 V ≤ VDD ≤ 5.5 V, IOL = 5.0 mA			0.4	V
			2.7 V ≤ VDD ≤ 5.5 V, IOL = 3.0 mA			0.4	V
			1.8 V ≤ VDD ≤ 5.5 V, IOL = 2.0 mA			0.4	V

Caution The maximum VIH value on P02 to P04, P06, P07, P10, P12, P35 to P37, P40, P43, P44, P50 to P52, and P80 to P82 is VDD, even in the N-ch open-drain mode.

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(5/5)

Item	Symbol	Condi	itions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127, P137, RESET	Vi = Vdd				1	μA
	ILIH2	P20 to P27, P150, P151	Vı = AVDD				1	μΑ
	Ішнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port mode or when using external clock input			1	μΑ
				When a resonator is connected			10	μA
Input leakage current, low	ILIL1	P01 to P07, P10 to P17, P30 to P32, P35 to P37, P40, P43, P44, P50 to P53, P60, P61, P70 to P77, P80 to P86, P125 to P127, P137, RESET	Vi = Vss	VI = VSS			-1	μΑ
	ILIL2	P20 to P27, P150, P151	Vı = AVss			-1	μA	
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port mode or when using external clock input			-1	μΑ
				When a resonator is connected			-10	μA
On-chip pull-up	Ru1	P01 to P07, P10 to P16, P30 to	VI = VSS,	2.4 V ≤ VDD ≤ 5.5 V	10	20	100	kΩ
resistance		P32, P35 to P37, P50 to P53, P70 to P77, P125 to P127	in input port mode	1.8 V ≤ VDD < 2.4 V	10	30	100	kΩ
	Ru2	P17, P40, P43, P44, P80 to P86,	Vı = Vss,	in input port mode	10	20	100	kΩ
ļ	Ru3	P20 to P27, P150 and P151	Vı = AVss	, in input port mode	10	20	100	kΩ

3.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Uni
Supply	IDD1	Operating	HS (high-speed	fiH = 24 MHz Note 3	Basic	V _{DD} = 5.0 V		1.7		m/
current		mode	main) Mode Note 5		operation	VDD = 3.0 V		1.7		
Note 1					Normal	VDD = 5.0 V		3.7	6.4	
					operation	VDD = 3.0 V		3.7	6.4	
				fiH = 16 MHz Note 3	Normal	VDD = 5.0 V		2.8	5.0	
					operation	VDD = 3.0 V		2.8	5.0	
			LS (low-speed	fIH = 8 MHz Note 3	Normal	VDD = 3.0 V		1.2	2.1	m/
			main) Mode Note 5		operation	VDD = 2.0 V		1.2	2.1	
			HS (high-speed	fmx = 20 MHz Note 2,	Normal	Square wave input		3.1	5.4	m/
			main) Mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.3	5.5	
				fmx = 20 MHz Note 2,	Normal	Square wave input		3.0	5.4	
				VDD = 3.0 V	operation	Resonator connection		3.3	5.5	
				fmx = 16 MHz Note 2,	Normal	Square wave input		2.6	4.7	
				VDD = 5.0 V	operation	Resonator connection		2.8	4.8	
				fmx = 16 MHz Note 2,	Normal	Square wave input		2.6	4.7	
				VDD = 3.0 V	operation	Resonator connection		2.8	4.8	
				fmx = 10 MHz Note 2,	Normal	Square wave input		1.9	3.1	
			VDD = 5.0 V	operation	Resonator connection		1.9	3.1		
			fmx = 10 MHz Note 2,	Normal	Square wave input		1.9	3.1	l	
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	3.1	l
			LS (low-speed	fmx = 8 MHz Note 2,	Normal	Square wave input		1.1	2.1	m
			main) Mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.1	2.1	1
			fmx = 8 MH Note 2,	Normal	Square wave input		1.1	2.1		
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	2.1	1
			Subsystem clock	fsub = 32.768 kHz Note 4	Normal	Square wave input		4.3	5.8	μ
		operation		TA = -40°C	operation	Resonator connection		4.6	5.8	1
				fsub = 32.768 kHz Note 4	Normal	Square wave input		4.3	5.8	
				TA = +25°C	operation	Resonator connection		4.6	5.8	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		4.5	7.6	
				TA = +50°C	operation	Resonator connection		4.5	7.6	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		4.7	9.2	-
				TA = +70°C	operation	Resonator connection		5.1	9.2	ł
				fsub = 32.768 kHz Note 4	Normal	Square wave input		5.2	12.6	ł
				TA = +85°C	operation	Resonator connection		5.7	12.6	1
				fsub = 38.4 kHz Note 4	Normal	Square wave input		5.0	6.8	μ
				TA = -40°C	operation	Resonator connection		5.4	6.8	۳.
				fsub = 38.4 kHz Note 4	Normal	Square wave input		5.0	6.8	
		TA = +25°C	operation	Resonator connection		5.4	6.8			
		fsub = 38.4 kHz Note 4	Normal	Square wave input		5.3	8.9	-		
		TA = +50°C	operation	Resonator connection		5.3	8.9	1		
			<u> </u>							
				fsub = 38.4 kHz Note 4 TA = +70°C	Normal operation	Square wave input Resonator connection		5.5	10.8	1
			fsuB = 38.4 kHz Note 4	Normal	Square wave input		6.0	10.8 14.8	1	

(Notes and Remarks are listed on the next page.)

<R>

<R>

- Note 1. Total current flowing into VDD and AVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSs. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD, I/O ports, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. The current flowing into AFE is not included.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- Note 5. Relationship between operation voltage width, operation frequency of CPU, and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ VDD ≤ 5.5 V @ 1 MHz to 24 MHz

 $2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$ @ 1 MHz to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fil: High-speed on-chip oscillator clock frequency
- Remark 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 4. Except subsystem clock operation, temperature condition for the TYP. value is TA = 25°C.

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(2/2)

Parameter	Symbol		_	Conditions	1	MIN.	TYP.	MAX.	Unit
Supply current	IDD2	HALT mode	HS (high-speed	fih = 24 MHz Note 4	VDD = 5.0 V		0.42	2.03	mA
lote 1	Note 2		main) Mode Note 6		VDD = 3.0 V		0.42	2.03	
				fih = 16 MHz Note 4	VDD = 5.0 V		0.39	1.58	
					VDD = 3.0 V		0.39	1.58	
			LS (low-speed	fiH = 8 MHz Note 4	VDD = 3.0 V		0.25	0.81	mA
			main) Mode Note 6		VDD = 2.0 V		0.25	0.81	
			HS (high-speed	fmx = 20 MHz Note 3	Square wave input		0.26	1.75	mA
			main) Mode Note 6	VDD = 5.0 V	Resonator connection		0.40	1.88	
				fmx = 20 MHz Note 3	Square wave input		0.25	1.75	
				VDD = 3.0 V	Resonator connection		0.40	1.88	
				fmx = 16 MHz Note 3	Square wave input		0.23	1.42	
				VDD = 5.0 V	Resonator connection		0.36	1.59	
				fmx = 16 MHz Note 3	Square wave input		0.22	1.42	
				VDD = 3.0 V	Resonator connection		0.35	1.59	
				fmx = 10 MHz Note 3	Square wave input		0.19	0.92	1
				VDD = 5.0 V	Resonator connection		0.29	1.00	
				fmx = 10 MHz Note 3	Square wave input		0.18	0.92	
				VDD = 3.0 V	Resonator connection		0.28	1.00	
			LS (low-speed f _{MX} = 8 MHz Note 3 Squ	Square wave input		0.09	0.61	m/	
			main) Mode Note 6	VDD = 3.0 V	Resonator connection		0.15	0.66	
			,	fmx = 8 MHz Note 3	Square wave input		0.10	0.62	
				VDD = 2.0 V	Resonator connection		0.15	0.67	
			Subsystem clock	fsub = 32.768 kHz Note 5	Square wave input		0.32	0.69	μA
			operation	TA = -40°C	Resonator connection		0.51	0.89	·
				fsub = 32.768 kHz Note 5	Square wave input		0.41	0.82	
				TA = +25°C	Resonator connection		0.62	1.00	
				fsub = 32.768 kHz Note 5	Square wave input		0.52	1.40	
				TA = +50°C	Resonator connection		0.75	1.60	
				SUB = 32.768 kHz Note 5	Square wave input		0.82	2.70	
				TA = +70°C	Resonator connection		1.08	2.90	
				fsuB = 32.768 kHz Note 5	Square wave input		1.38	4.95	
				TA = +85°C	Resonator connection		1.62	5.15	
				fsuB = 38.4 kHz Note 5	Square wave input		0.38	0.81	μA
				TA = -40°C	Resonator connection		0.60	1.04	μ
					Square wave input		0.48	0.96	
				fsub = 38.4 kHz Note 5 TA = +25°C	<u> </u>				
				fsub = 38.4 kHz Note 5	Resonator connection		0.73	1.17 1.64	
				TA = +50°C	Square wave input				
					Resonator connection		0.88	1.88	
				SUB = 38.4 kHz Note 5 TA = +70°C	Square wave input		0.96	3.16	
	IDD3 STOP mode TA = -40°C Note 7 TA = +25°C			Resonator connection		1.27	3.40		
			fsub = 38.4 kHz Note 5	Square wave input		1.62	5.80		
		TA = +85°C	Resonator connection		1.90	6.04			
						0.20	0.59	μA	
						0.26	0.72		
		TA = +50°C				0.33	1.30		
			TA = +70°C				0.53	2.60	
			$TA = +85^{\circ}C$				0.93	4.85	l

(Notes and Remarks are listed on the next page.)

<R>

<R>

- Note 1. Total current flowing into VDD and AVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD, I/O ports, and on-chip pull-up/pull-down resistors and the current flowing during writing to the data flash. The current flowing into AFE is not included.
- Note 2. During HALT instruction execution from flash memory
- Note 3. When the high-speed on-chip oscillator and the subsystem clock are stopped
- Note 4. When the high-speed system clock and the subsystem clock are stopped
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- Note 6. Relationship between operation voltage width, operation frequency of CPU, and operation mode is as below.

HS (high-speed main) Mode: 2.7 V ≤ VDD ≤ 5.5 V @ 1 MHz to 24 MHz

 $2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$ @ 1 MHz to 16 MHz

LS (low-speed main) Mode: $1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz

- Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fih: High-speed on-chip oscillator clock frequency
- Remark 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C.

• Peripheral functions

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1				0.20		μА
RTC2 operating current	IRTC Notes 1, 3	fsuB = 32.768	kHz		0.02		μΑ
12-bit Interval timer	Ітмка	fsub = 38.4 kH	Hz, fmain stopped		0.02		μA
operating current	Notes 1, 2, 4	fsub = 32.768	kHz, fMAIN stopped		0.02		μΑ
8-bit Interval timer	ITMRT	fsub = 38.4	8-bit counter mode × 2-channel operation		0.14		μΑ
operating current	Notes 1, 14	kHz, fMAIN stopped, per unit	16-bit counter mode operation		0.12		μА
		fsub =	8-bit counter mode × 2-channel operation		0.12		μΑ
		32.768 kHz, fMAIN stopped, per unit	16-bit counter mode operation		0.10		μА
Watchdog timer operating current	I _{WDT} Notes 1, 5	fiL = 15 kHz			0.22		μA
10-bit A/D converter	IADC Notes 1, 6	When	Normal mode, VDD = 5.0 V		1.3	1.7	mA
operating current		conversion at maximum speed	Low-voltage mode, VDD = 3.0 V		0.5	0.7	mA
Internal reference voltage (1.45 V) current	IADREF Notes 1, 7				85		μA
Temperature sensor operating current	ITMPS Note 1				85		μA
LVD operating current	ILVI Notes 1, 8				0.06		μΑ
Self-programming operating current	IFSP Notes 1, 9				2.0	12.2	mA
BGO operating current	IBGO Notes 1, 10				2.0	12.2	mA
SNOOZE operating	ISNOZ Notes 1, 11	A/D	The mode is performed		0.50	0.60	mA
current		converter operation	During A/D conversion, low-voltage mode, VDD = 3.0 V		1.20	1.44	
		Simplified SPI	(CSI)/UART operation		0.70	0.84	
		DTC operation	1		3.1		

(Notes and Remarks are listed on the page after the next page.)

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(2/2)

Parameter	Symbol			MIN.	TYP.	MAX.	Unit		
LCD operating current	ILCD1 Notes 12, 13	External resistance division method	fLCD = fSUB (32.768 kHz) LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 5.0 V VL4 = 5.0 V		0.04	0.20	μА
			fLCD = fSUB (38.4 kHz) LCD clock = 75 Hz				0.08	0.40	
	ILCD2 Note 12	Internal voltage boosting method	fLCD = fSUB (32.768 kHz) LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V VL4 = 3.0 V (VLCD = 04H)		0.85	2.20	μА
			fLCD = fSUB (38.4 kHz) LCD clock = 75 Hz				0.50	2.20	
			fLCD = fSUB (32.768 kHz) LCD clock = 128 Hz		V _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.55	3.70	μА
			fLCD = fSUB (38.4 kHz) LCD clock = 75 Hz				0.91	3.70	
	ILCD3 Note 12	Capacitor split method	fLCD = fSUB (32.768 kHz) LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V VL4 = 3.0 V		0.20	0.50	μА
			fLCD = fSUB (38.4 kHz) LCD clock = 75 Hz				0.13	0.50	
Operating currents of the	ITMRJ Note 15	fsuB = 38.4 kH	Iz, fmain stoppe	ed, per unit	1		0.10		μA
meter-dedicated macro	IUARTMG Note 15	**					0.12		μΑ
	ISMOTD Note 15						0.10		μΑ
	IEXSD Note 15	fsub = 38.4 kH	Hz, fmain stoppe	ed			0.02		μA

(Notes and Remarks are listed on the next page.)

- Note 1. Current flowing to VDD.
- Note 2. When the high-speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 is operating in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).

 The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is operating.
- Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, IADC, and IADREF when the A/D converter operates in the operating mode or the HALT mode.
- Note 7. Operation current flowing to the internal reference voltage.
- **Note 8.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ILVI when the LVD circuit operates in the operating mode, HALT mode, or STOP mode.
- Note 9. Current flowing during self-programming
- Note 10. Current flowing during writing to the data flash
- Note 11. For time required to shift to the SNOOZE mode, see 27.3.3 SNOOZE mode in the User's Manual: Hardware.
- Note 12. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2, or ILCD3) and the supply current (IDD1 or IDD2) when the LCD controller/driver operates in the operating mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 13. Not including the current that flows through the external divider resistor.
- Note 14. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8-bit interval timer operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **Note 15.** The current value of the RL78 microcontrollers is the sum of IDD2 or IDD3 and ITMRJ, IUARTMG, ISMOTD, or IEXSD when each module operates in the sub-HALT mode or STOP mode.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. The temperature condition for the TYP. value is TA = 25°C.

3.4 AC Characteristics

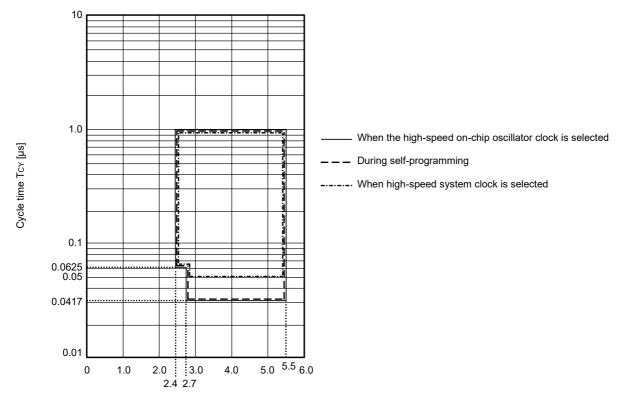
(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(1/2)

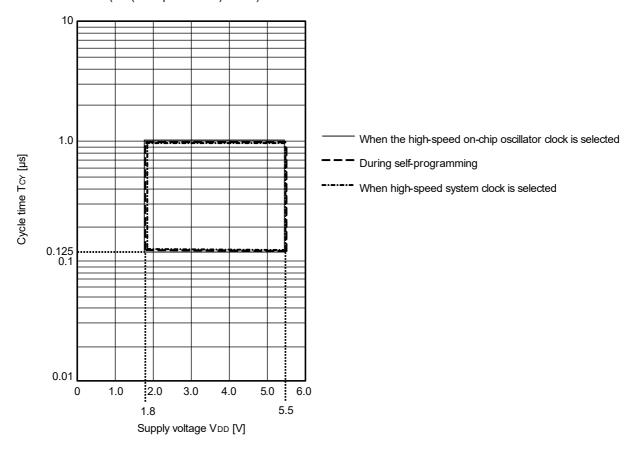
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle	Tcy	Main system	HS (high-speed main)	2.7 V ≤ VDD ≤ 5.5 V	0.0417		1	μs
(minimum instruction		clock (fMAIN)	Mode	2.4 V ≤ VDD < 2.7 V	0.0625		1	μs
execution time)		operation	LS (low-speed main) Mode	1.8 V ≤ VDD ≤ 5.5 V	0.125		1	μs
		Subsystem	fxT = 38.4 kHz	1.8 V ≤ VDD ≤ 5.5 V		26.04		μs
		clock (fSUB) operation	fxT = 32.768 kHz	1.8 V ≤ VDD ≤ 5.5 V	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	2.7 V ≤ VDD ≤ 5.5 V	0.0417		1	μs
		programming	Mode	2.4 V ≤ VDD < 2.7 V	0.0625		1	μs
		mode	LS (low-speed main) Mode	1.8 V ≤ VDD ≤ 5.5 V	0.125		1	μs
External system clock	fEX	EXCLK	-	2.7 V ≤ VDD ≤ 5.5 V	1.0		20.0	MHz
frequency				2.4 V ≤ VDD < 2.7 V	1.0		16.0	MHz
				1.8 V ≤ V _{DD} < 2.4 V	1.0		8.0	MHz
	fEXT	EXCLKS			32		35	kHz
External system clock	texH,	EXCLK		2.7 V ≤ VDD ≤ 5.5 V	24			ns
input high-level width,	texL			2.4 V ≤ VDD < 2.7 V	30			ns
low-level width				1.8 V ≤ VDD < 2.4 V	60			ns
	texhs,	EXCLKS			13.7			μs
Timer input high-level width, low-level width	ttih, ttil	TI00 to TI07			1/fмск + 10			ns
Timer RJ input cycle	tc	TRJIO0, TRJI	01	2.7 V ≤ VDD ≤ 5.5 V	100			ns
				1.8 V ≤ VDD < 2.7 V	300			ns
Timer RJ input high-	ttjih,	TRJIO0, TRJI	O1	2.7 V ≤ VDD ≤ 5.5 V	40			ns
level width, low-level width	ttjil			1.8 V ≤ VDD < 2.7 V	120			ns
Timer output	fто	TO00 to	HS (high-speed main)	4.0 V ≤ VDD ≤ 5.5 V			12	MHz
frequency		TO07	Mode	2.7 V ≤ VDD < 4.0 V			8	MHz
		TRJIO0,		2.4 V ≤ VDD < 2.7 V			4	MHz
		TRJIO1, TRJO0, TRJO1	LS (low-speed main) Mode	1.8 V ≤ VDD ≤ 5.5 V			4	MHz
Buzzer output	fPCL	PCLBUZ0,	HS (high-speed main)	4.0 V ≤ VDD ≤ 5.5 V			12	MHz
frequency		PCLBUZ1	Mode	2.7 V ≤ V _{DD} < 4.0 V			8	MHz
				2.4 V ≤ V _{DD} < 2.7 V			4	MHz
			LS (low-speed main) Mode	1.8 V ≤ VDD ≤ 5.5 V			4	MHz

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

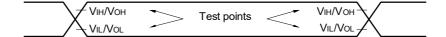
(2/2)

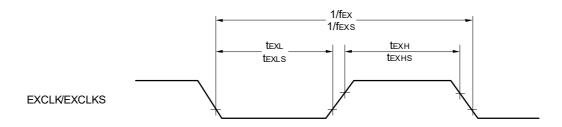

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt input high- level width, low-level width	tinth, tintl	INTP0 to INTP7 (when the pin on which the function is in use is multiplexed with pin functions other than P27 to P22)	1.8 V ≤ VDD ≤ 5.5 V	1			μs
		INTP2 to INTP7 (when the pin on which the function is in use is multiplexed with a pin function from among P27 to P22)	1.8 V ≤ AVDD ≤ 5.5 V	1			μs
RESET low-level width	trsl			10			μs

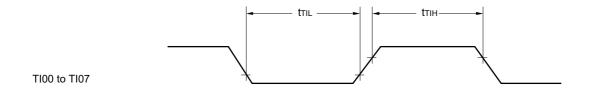
Remark fmck: Timer array unit operation clock frequency

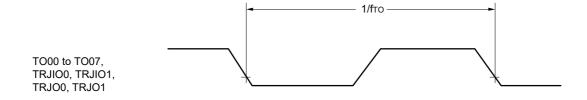

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 7))

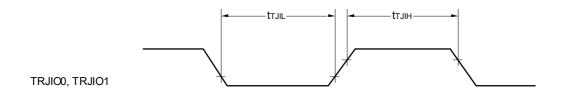
Minimum Instruction Execution Time During Main System Clock Operation

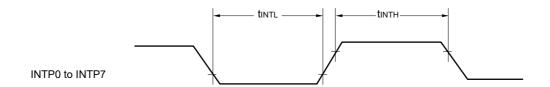

Tcy vs VDD (HS (high-speed main) mode)

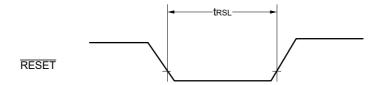

Tcy vs VDD (LS (low-speed main) mode)


AC Timing Test Points




External System Clock Timing


TI/TO Timing



Interrupt Request Input Timing

RESET Input Timing

3.5 Peripheral Functions Characteristics

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	` `	h-speed Mode	LS (low-sp Mc	,	Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		2.4 V ≤ VDD ≤ 5.5 V		fMCK/6 Note 2		fMCK/6 Note 2	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3	Mbps
		1.8 V ≤ VDD ≤ 5.5 V	_	_		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3	_			1.3	Mbps

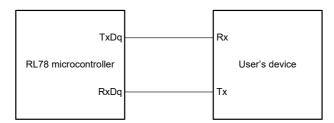
Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The following conditions are required for low voltage interface.

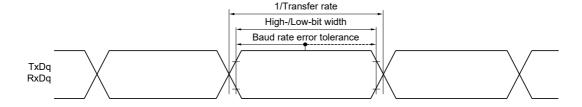
 $2.4 \text{ V} \le \text{VDD} < 2.7 \text{ V}$: MAX. 2.6 Mbps

1.8 V ≤ VDD < 2.4 V: MAX. 1.3 Mbps

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq VDD \leq 5.5 V)


LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 2), g: PIM or POM number (g = 0, 1, 3, 4, 5, 8)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10, 11))

(2) During communication at same potential (Simplified SPI(CSI) mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	С	onditions	HS (high main)		,	/-speed Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ 4/fclk	2.7 V ≤ VDD ≤ 5.5 V	167		500		ns
		2.4 V ≤ VDD ≤ 5.5 V		250		500		ns
			1.8 V ≤ VDD ≤ 5.5 V	_		500		ns
SCKp high-/low-level width	tĸн1,	4.0 V ≤ V _{DD} ≤ \$	4.0 V ≤ VDD ≤ 5.5 V			tKCY1/2		ns
	tKL1			- 12		- 50		
		2.7 V ≤ VDD ≤ \$	5.5 V	tKCY1/2		tKCY1/2		ns
				- 18		- 50		
		2.4 V ≤ VDD ≤ 5.5 V		tKCY1/2-		tKCY1/2		ns
			38		- 50			
		1.8 V ≤ VDD ≤ \$	5.5 V	_		tKCY1/2		ns
						- 50		
SIp setup time (to SCKp↑) Note 1	tsıĸ1	4.0 V ≤ VDD ≤ 5	5.5 V	44		110		ns
		2.7 V ≤ VDD ≤ \$	5.5 V	44		110		ns
		2.4 V ≤ VDD ≤ 5	5.5 V	75		110		ns
		1.8 V ≤ VDD ≤ \$	5.5 V	_		110		ns
SIp hold time (from SCKp↑) Note 2	tksi1	2.4 V ≤ V _{DD} ≤ \$	5.5 V	19		19		ns
		1.8 V ≤ VDD ≤ 5.5 V		_		19		ns
Delay time from SCKp↓ to SOp	tKSO1	C = 30 pF	2.7 V ≤ VDD ≤ 5.5 V		25		50	ns
output Note 3		Note 4	2.4 V ≤ VDD ≤ 5.5 V		25		50	ns
		1.8 V ≤ VDD ≤ 5.5 V			_		50	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIMand POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10))

(3) During communication at same potential (Simplified SPI(CSI) mode) (slave mode, SCKp... external clock input)

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

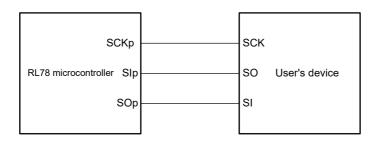
(1/2)

Parameter	Symbol	Cond	litions	HS (high-spe	•	LS (low-spee	,	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 5	tKCY2	4.0 V ≤ VDD ≤ 5.5 V	20 MHz < fmck	8/fмск		_		ns
			fMCK ≤ 20 MHz	8/fмск		6/fмск		ns
		2.7 V ≤ VDD ≤ 5.5 V	16 MHz > fмск	8/fмск		_		ns
			fMCK ≤ 16 MHz	6/fмск		6/fмск		ns
	2.4 V ≤ VDD ≤ 5.5 V			6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ VDD ≤ 5.5 V		_		6/fмск and 750		ns
SCKp high-/low-level	tKH2,	4.0 V ≤ VDD ≤ 5.5 V		tkcy2/2 - 7		tkcy2/2 - 7		ns
width tK	tKL2	2.7 V ≤ VDD ≤ 5.5 V		tkcy2/2 - 8		tkcy2/2 - 8		ns
		2.4 V ≤ VDD ≤ 5.5 V		tkcy2/2 - 18		tkcy2/2 - 18		ns
		1.8 V ≤ VDD ≤ 5.5 V		_		tkcy2/2 - 18		ns
SIp setup time	tsık2	2.7 V ≤ VDD ≤ 5.5 V		1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) Note 1		2.4 V ≤ VDD ≤ 5.5 V		1/fмск + 30		1/fмск + 30		ns
		1.8 V ≤ VDD ≤ 5.5 V		_		1/fмск + 30		ns
SIp hold time	tKSI2	2.4 V ≤ VDD ≤ 5.5 V		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		1.8 V ≤ VDD ≤ 5.5 V		_		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output	tKSO2	C = 30 pF Note 4	2.7 V ≤ VDD ≤ 5.5 V		2/fмск + 44		2/fмск + 110	ns
Note 3			2.4 V ≤ VDD ≤ 5.5 V		2/fмск + 75		2/fмск + 110	ns
			1.8 V ≤ VDD ≤ 5.5 V		_		2/fмск + 110	ns

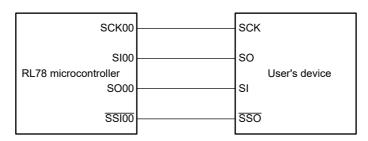
- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Remark 1. p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1, 3, 4, 5, 8)
- Remark 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10))

(3) During communication at same potential (Simplified SPI(CSI) mode) (slave mode, SCKp... external clock input)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVSS} = \text{VSS} = 0 \text{ V})$

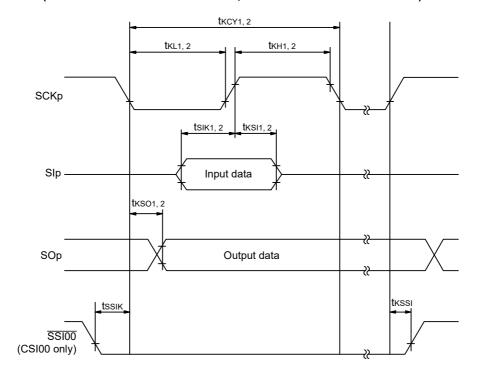

(2/2)

Parameter	Symbol	I Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	2.7 V ≤ VDD ≤ 5.5 V	120		120		ns
			2.4 V ≤ VDD ≤ 5.5 V	200		200		ns
			1.8 V ≤ VDD ≤ 5.5 V	_		200		ns
		DAPmn = 1	2.7 V ≤ VDD ≤ 5.5 V	1/fмск + 120		1/fмск + 120		ns
			2.4 V ≤ VDD ≤ 5.5 V	1/fmck + 200		1/fmck + 200		ns
			1.8 V ≤ VDD ≤ 5.5 V	_		1/fmck + 200		ns
SSI00 hold time	tkssi	DAPmn = 0	2.7 V ≤ VDD ≤ 5.5 V	1/fмск + 120		1/fмск + 120		ns
			2.4 V ≤ VDD ≤ 5.5 V	1/fмск + 200		1/fмcк + 200		ns
			1.8 V ≤ VDD ≤ 5.5 V	_		1/fмcк + 200		ns
		DAPmn = 1	2.7 V ≤ VDD ≤ 5.5 V	120		120		ns
			2.4 V ≤ VDD ≤ 5.5 V	200		200		ns
			1.8 V ≤ VDD ≤ 5.5 V	_		200		ns

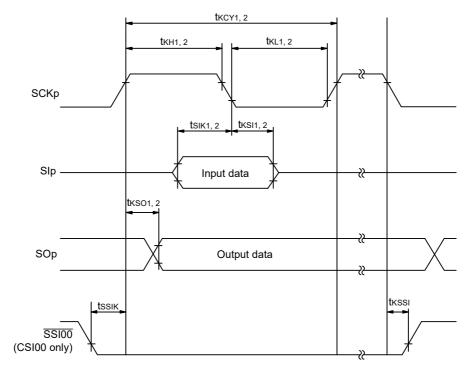

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 4)

Simplified SPI(CSI) mode connection diagram (during communication at same potential)



Simplified SPI(CSI) mode connection diagram (during communication at same potential) (Slave transmission of slave select input function (CSI00))



Remark p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2)

Simplified SPI(CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI(CSI) mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2)

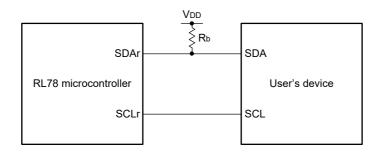
(4) During communication at same potential (simplified I²C mode)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

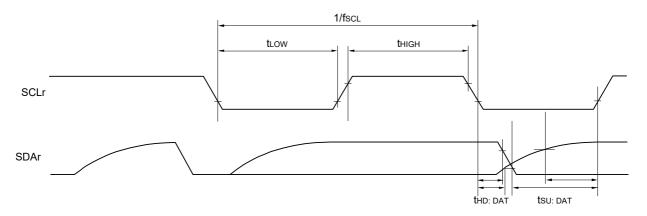
Parameter	Symbol	Conditions	HS (high- main) M	•	LS (low-s main) M	•	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fSCL	2.7 V ≤ VDD ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ		1000 Note 1		400 Note 1	kHz
		1.8 V (2.4 V Note 3) \leq VDD \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ		400 Note 1		400 Note 1	kHz
		1.8 V (2.4 V Note 3) \leq VDD $<$ 2.7 V, Cb = 100 pF, Rb = 5 kΩ		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	2.7 V \leq VDD \leq 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	475		1150		ns
		1.8 V (2.4 V Note 3) \leq VDD \leq 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1150		1150		ns
		1.8 V (2.4 V Note 3) \leq VDD $<$ 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		1550		ns
Hold time when SCLr = "H"	thigh	2.7 V ≤ VDD ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	475		1150		ns
		1.8 V (2.4 V Note 3) \leq VDD \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		1150		ns
		1.8 V (2.4 V Note 3) \leq VDD $<$ 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		1550		ns
Data setup time (reception)	tsu: dat	2.7 V \leq VDD \leq 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	1/fMCK + 85 Note 2		1/fMCK + 145 Note 2		ns
		1.8 V (2.4 V Note 3) \leq VDD \leq 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1/fMCK + 145 Note 2		1/fMCK + 145 Note 2		ns
		1.8 V (2.4 V Note 3) \leq VDD $<$ 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1/fMCK + 230 Note 2		1/fMCK + 230 Note 2		ns
Data hold time (transmission)	thd: dat	2.7 V \leq VDD \leq 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	0	305	0	305	ns
		1.8 V (2.4 V Note 3) ≤ VDD ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	0	355	0	355	ns
		1.8 V (2.4 V Note 3) \leq VDD $<$ 2.7 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	ns

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".


Note 3. Condition in the HS (high-speed main) mode

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

 $\textbf{Remark 1.} \ \ \text{Rb} \ [\Omega]: \ Communication \ line \ (SDAr) \ pull-up \ resistance, \ Cb \ [F]: \ Communication \ line \ (SDAr, SCLr) \ load \ capacitance$

Remark 2. r: IIC number (r = 00, 10, 20), g: PIM number (g = 0, 1, 3, 4, 5, 8)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0, 2), mn = 00, 02, 10)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

(1/2)

Parameter	Symbol		Conditions	, ,	gh-speed n) Mode	`	w-speed n) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V		fMCK/6 Note 1		fMCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0		1.3	Mbps
			2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V		fMCK/6 Note 1		fMCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0		1.3	Mbps
			1.8 V $(2.4 \text{ V Note } 5) \le \text{VDD} < 3.3 \text{ V},$ 1.6 V $\le \text{Vb} \le 2.0 \text{ V}$		fMCK/6 Notes 1, 2, 3		fMCK/6 Notes 1, 2, 3	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0		1.3	Mbps

- Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
- Note 2. Use it with VDD ≥ Vb
- Note 3. The following conditions are required for low voltage interface.

 $2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$: MAX. 2.6 Mbps

 $1.8 \text{ V} \leq \text{VDD} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) Mode: 24 MHz (2.7 V ≤ VDD ≤ 5.5 V)

16 MHz $(2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$

LS (low-speed main) Mode: 8 MHz (1.8 V ≤ VDD ≤ 5.5 V)

- Condition in the HS (high-speed main) mode Note 5.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb [V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 2), g: PIM or POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10, 11))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

(2/2)

Parameter	Symbol		Conditions	,	gh-speed n) Mode	,	ow-speed n) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer		Transmission	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$		Note 1		Note 1	bps
rate			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 Note 2		2.8 Note 2	Mbps
			2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 4		1.2 Note 4	Mbps
			1.8 V (2.4 V Note 8) ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq VDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]
$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}$$
 8 Baud rate error (theoretical value) =
$$\frac{1}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met.

Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\left\{-C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b}\right)\right\} \times 3}$$
 [bps]

$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \text{In} (1 - \frac{2.0}{\text{Vb}})\}}{\text{Transfer rate}} \times 100 \, [\%]$$

$$= \frac{\frac{1}{\text{Transfer rate}} - \{-\text{Cb} \times \text{Rb} \times \text{In} (1 - \frac{2.0}{\text{Vb}})\}}{\text{Number of transferred bits}}$$

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met.

Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

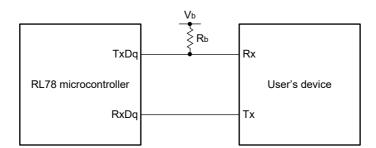
Note 5. Use it with VDD ≥ Vb

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate

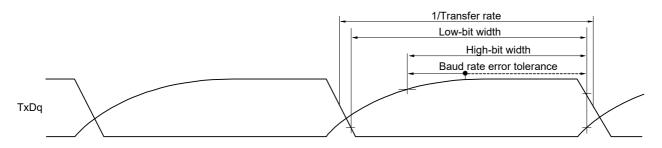
Expression for calculating the transfer rate when 1.8 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

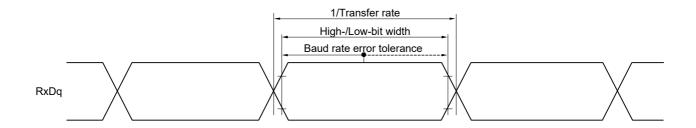

Maximum transfer rate =
$$\frac{1}{\left\{-C_b \times R_b \times \ln \left(1 - \frac{1.5}{V_b}\right)\right\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

- Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met.

 Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Note 8. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


UART mode connection diagram (during communication at different potential)



(Remarks are listed on the next page.)

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb $[\Omega]$: Communication line (TxDq) pull-up resistance,

 $\label{eq:communication} \mbox{Cb [F]: Communication line (TxDq) load capacitance, Vb [V]: Communication line voltage}$

Remark 2. q: UART number (q = 0 to 2), g: PIM or POM number (g = 0, 1, 3, 4, 5, 8)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI(CSI) mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

(1/2)

Parameter	Symbol		Conditions	HS (high- main) N		LS (low- main) N	•	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ 4/fclk	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 kΩ	300		1150		ns
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	500 Note 1		1150		ns
			1.8 V (2.4 V ^{Note 2}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _D \leq 2.0 V, C _D = 30 pF, R _D = 5.5 kΩ	1150 Note 1		1150		ns
SCKp high- level width	tKH1	4.0 V ≤ V _{DD} ≤ 8 C _b = 30 pF, R _b	$5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ = 1.4 k Ω	tKCY1/2 - 75		tkcy1/2 - 75		ns
		2.7 V ≤ V _{DD} < 4 C _b = 30 pF, R _b	$4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ = 2.7 k Ω	tKCY1/2 - 170		tkcy1/2 - 170		ns
		`	e^{2}) \leq V _{DD} $<$ 3.3 V, 0 V, C _b = 30 pF, R _b = 5.5 k Ω	tKCY1/2 - 458		tkcy1/2 - 458		ns
SCKp low- level width	tKL1		$0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ b = 30 pF, Rb = 1.4 k\O			tkcy1/2 - 50		ns
			$7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $\alpha = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$			tkcy1/2 - 50		ns
		`	$(e^2) \le V_{DD} < 3.3 \text{ V},$ 0 V, Cb = 30 pF, Rb = 5.5 k Ω	tKCY1/2 - 50		tkcy1/2 - 50		ns

Note 1. Use it with VDD ≥ Vb

Note 2. Condition in the HS (high-speed main) mode

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI(CSI) mode) (master mode, SCKp... internal clock output)

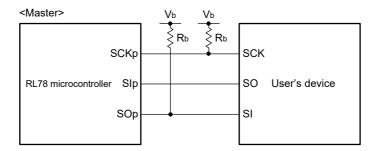
 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions	HS (high main)		LS (low- main)		Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 1	tsıĸ1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 k Ω	81		479		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	177		479		ns
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note ³ , C _b $=$ 30 pF, R _b $=$ 5.5 kΩ	479		479		ns
SIp hold time (from SCKp↓) Note 1	tKSI1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$	19		19		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	19		19		ns
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note ³ , C _b $=$ 30 pF, R _b $=$ 5.5 kΩ	19		19		ns
Delay time from SCKp↑ to SOp	tKSO1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$		100		100	ns
output Note 1		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω		195		195	ns
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note ³ , C _b $=$ 30 pF, R _b $=$ 5.5 kΩ		483		483	ns
SIp setup time (to SCKp↓) Note 2	tsıK1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 k Ω	44		110		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	44		110		ns
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note ³ , C _b $=$ 30 pF, R _b $=$ 5.5 kΩ	110		110		ns
SIp hold time (from SCKp↓) Note 2	tKSI1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 k Ω	19		19		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	19		19		ns
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note ³ , C _b $=$ 30 pF, R _b $=$ 5.5 kΩ	19		19		ns
Delay time from SCKp↑ to SOp	tKSO1	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$		25		25	ns
output Note 2		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω		25		25	ns
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note ³ , C _b $=$ 30 pF, R _b $=$ 5.5 kΩ		25		25	ns

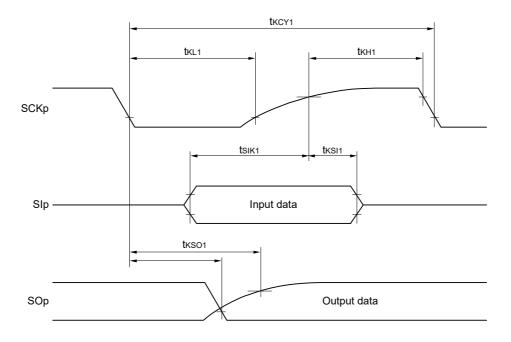
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

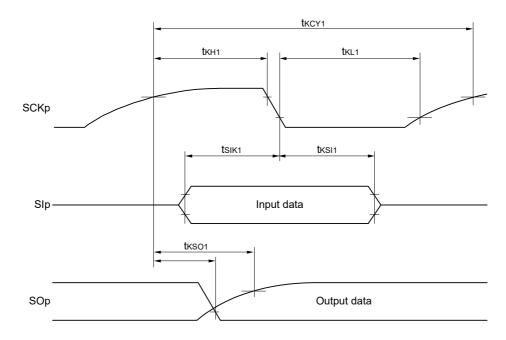

Note 3. Use it with VDD ≥ Vb

Note 4. Condition in the HS (high-speed main) mode

(Caution and remarks are listed on the next page.)


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified SPI(CSI) mode connection diagram (during communication at different potential)



- Remark 1. Rb [Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIM or POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 3. fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 02, 10))

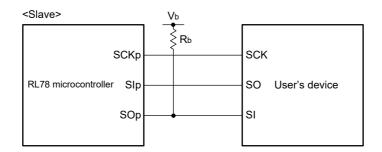
Simplified SPI(CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI(CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

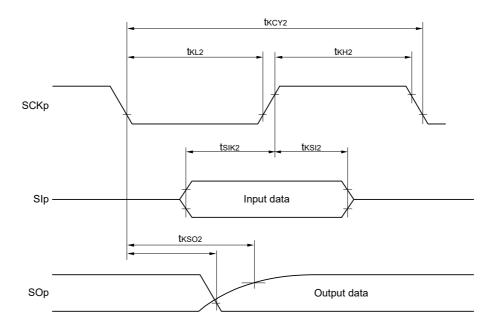
Remark p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIM or POM number (g = 0, 1, 3, 4, 5, 8)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI(CSI) mode) (slave mode, SCKp... external clock input)

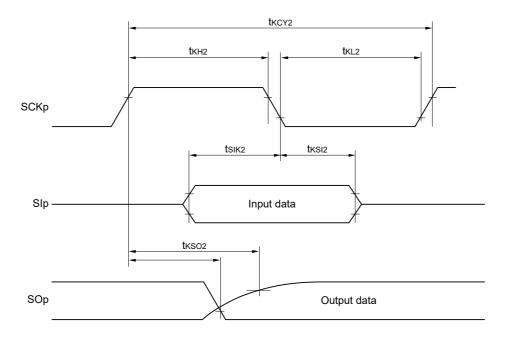
 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVSS} = \text{VSS} = 0 \text{ V})$


Parameter	Symbol	Col	nditions		peed main) ode		peed main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY2	4.0 V ≤ VDD ≤ 5.5 V,	20 MHz < fmck	12/fмск		_		ns
Note 1		2.7 V ≤ Vb ≤ 4.0 V	8 MHz < fмcк ≤ 20 MHz	10/fmck		_		ns
			4 MHz < fMCK ≤ 8 MHz	8/fмск		_		ns
			fMCK ≤ 4 MHz	6/fмск		_		ns
		2.7 V ≤ V _{DD} < 4.0 V,	20 MHz < fmck	16/fмск		_		ns
		2.3 V ≤ Vb ≤ 2.7 V	16 MHz < fмcк ≤ 20 MHz	14/fmck		_		ns
			8 MHz < fMCK ≤ 16 MHz	12/fmck		_		ns
			4 MHz < fMCK ≤ 8 MHz	8/fмск		16/fмск		ns
			fMCK ≤ 4 MHz	6/fмск		10/fмск		ns
		1.8 V (2.4 V ^{Note 6}) ≤	20 MHz < fmck	36/fмск		_		ns
		$V_{DD} < 3.3 \text{ V},$ 1.6 V \le V_b \le 2.0 V	16 MHz < fмcк ≤ 20 MHz	32/fMCK		_		ns
		Note 2	8 MHz < fMCK ≤ 16 MHz	26/fмск		_		ns
			4 MHz < fMCK ≤ 8 MHz	16/fмck		16/fмск		ns
			fMCK ≤ 4 MHz	10/fмck		10/fмск		ns
SCKp high-/ low-level width	tKH2, tKL2	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2$	2.7 V ≤ Vb ≤ 4.0 V	tkcy2/2 -		tkcy2/2 - 50		ns
		2.7 V ≤ VDD < 4.0 V, 2	2.3 V ≤ Vb ≤ 2.7 V	tkcy2/2 -		tkcy2/2 - 50		ns
		1.8 V $(2.4 \text{ V}^{\text{Note 6}}) \le \text{V}$ 1.6 V \le Vb \le 2.0 V Note		tkcy2/2 - 50		tkcy2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsık2	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2$	2.7 V ≤ Vb ≤ 4.0 V	1/fмск + 20		1/fмск + 30		ns
		2.7 V ≤ VDD < 4.0 V, 2	2.3 V ≤ Vb ≤ 2.7 V	1/fмск + 20		1/fмск + 30		ns
		1.8 V $(2.4 \text{ V}^{\text{Note 6}}) \le \text{V}$ 1.6 V \le Vb \le 2.0 V Note		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tKSI2	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2$	2.7 V ≤ Vb ≤ 4.0 V	1/fмск + 31		1/fмск + 31		ns
		2.7 V ≤ VDD < 4.0 V, 2	2.3 V ≤ Vb ≤ 2.7 V	1/fмск + 31		1/fмск + 31		ns
		1.8 V $(2.4 \text{ V}^{\text{Note 6}}) \le 1.6 \text{ V} \le 1.6 \text{ V} \le 1.6 \text{ V} \le 1.6 \text{ V}$		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tKSO2	4.0 V ≤ VDD ≤ 5.5 V, 2 Cb = 30 pF, Rb = 1.4 l			2/fмск + 120		2/fмск + 573	ns
output Note 5		2.7 V ≤ V _{DD} < 4.0 V, 2 C _b = 30 pF, R _b = 2.7 l			2/fмск + 214		2/fмск + 573	ns
		1.8 V $(2.4 \text{ V}^{\text{Note } 6}) \le \text{V}$ 1.6 V $\le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$ Cb = 30 pF, Rb = 5.5 l	e 2 _,		2/fмск + 573		2/fMCK + 573	ns

(Notes, Cautions, and Remarks are listed on the next page.)


- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Note 2.** Use it with $VDD \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 6. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the SIp and SCKp pins, and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified SPI(CSI) mode connection diagram (during communication at different potential)



- **Remark 1.** Rb [Ω]: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance, Vb [V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 , 2), g: PIM or POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02, 10))

Simplified SPI(CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI(CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), g: PIM or POM number (g = 0, 1, 3, 4, 5, 8)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(1/2)

,		,	пс /	high-	10	low-	\ ··· - /
Parameter	Symbol	Conditions	speed	main) de	speed	l main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscl	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		1000 Note 1		300 Note 1	kHz
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		1000 Note 1		300 Note 1	kHz
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 kΩ		400 Note 1		300 Note 1	kHz
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω		400 Note 1		300 Note 1	kHz
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 2} , C _b = 100 pF, R _b = 5.5 kΩ		400 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	475		1550		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	475		1550		ns
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 kΩ	1150		1550		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 kΩ	1150		1550		ns
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 2} , C _b = 100 pF, R _b = 5.5 kΩ	1550		1550		ns
Hold time when SCLr = "H"	thigh	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	245		610		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $\text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	200		610		ns
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 kΩ	675		610		ns
		$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 kΩ	600		610		ns
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 2} , C _b = 100 pF, R _b = 5.5 kΩ	610		610		ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

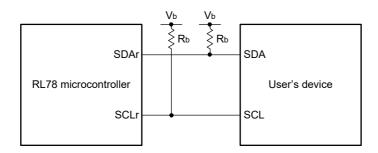
 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVSS} = \text{VSS} = 0 \text{ V})$

(2/2)

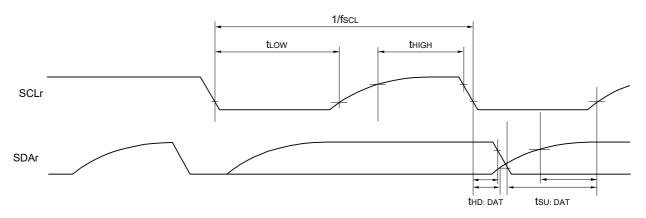
•		,					٠,
Parameter	Symbol	Conditions	HS (high- main) M	•	LS (low-s main) M		Unit
			MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	1/fMCK + 135 Note 3		1/fMCK + 190 Note 2		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	1/fMCK + 135 Note 3		1/fMCK + 190 Note 2		ns
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 k Ω	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 2, C _b = 100 pF, R _b = 5.5 k Ω	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	0	305	0	305	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	0	305	0	305	ns
		$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 k Ω	0	355	0	355	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	0	355	0	355	ns
		1.8 V (2.4 V ^{Note 4}) \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 2, C _b = 100 pF, R _b = 5.5 k Ω	0	405	0	405	ns

Note 1. The value must be equal to or less than fMCK/4.

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Note 2. Use it with $VDD \ge Vb$


Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Note 4. Condition in the HS (high-speed main) mode

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Remark 1. Rb $[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
- **Remark 2.** r: IIC number (r = 00, 10, 20), g: PIM, POM number (g = 0, 1, 3, 4, 5, 8)
- Remark 3. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0),

 n: Channel number (n = 0, 2), mn = 00, 02, 10)

3.5.2 Serial Interface UARTMG

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVSS} = \text{VSS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		fsuв = 38.4 kHz	200		9600	bps
		fsub = 38.4 kHz	200		19200	bps
		(when the clock doubler is in use)				

3.5.3 Serial interface IICA

(1) I²C standard mode

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	HS (high-speed main) Mode		LS (low-spee	Unit	
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Standard mode:	2.7 V ≤ VDD ≤ 5.5 V	0	100	0	100	kHz
		fCLK ≥ 1 MHz	1.8 V (2.4 V ^{Note 3}) ≤ VDD ≤ 5.5 V	0	100	0	100	kHz
Setup time of restart	tsu: sta	2.7 V ≤ VDD ≤ 5.5	V	4.7		4.7		μs
condition		1.8 V (2.4 VNote 3)	≤ VDD ≤ 5.5 V	4.7		4.7		μs
Hold time Note 1	thd: sta	2.7 V ≤ VDD ≤ 5.5	V	4.0		4.0		μs
		1.8 V (2.4 V ^{Note 3})	$V (2.4 \text{ V}^{\text{Note } 3}) \le V_{DD} \le 5.5 \text{ V}$			4.0		μs
Hold time	tLOW	2.7 V ≤ VDD ≤ 5.5	V	4.7		4.7		μs
when SCLA0 = "L"		1.8 V (2.4 V ^{Note 3})	≤ VDD ≤ 5.5 V	4.7		4.7		μs
Hold time	thigh	2.7 V ≤ VDD ≤ 5.5	V	4.0		4.0		μs
when SCLA0 = "H"		1.8 V (2.4 V ^{Note 3})	≤ VDD ≤ 5.5 V	4.0		4.0		μs
Data setup time	tsu: dat	2.7 V ≤ VDD ≤ 5.5	V	250		250		ns
(reception)		1.8 V (2.4 VNote 3)	≤ VDD ≤ 5.5 V	250		250		ns
Data hold time	thd: dat	2.7 V ≤ VDD ≤ 5.5	V	0	3.45	0	3.45	μs
(transmission) Note 2		1.8 V (2.4 V ^{Note 3})	≤ VDD ≤ 5.5 V	0		0	3.45	μs
Setup time of stop	tsu: sto	2.7 V ≤ VDD ≤ 5.5	V	4.0		4.0		μs
condition		1.8 V (2.4 V ^{Note 3})	≤ VDD ≤ 5.5 V	4.0		4.0		μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 5.5	V	4.7		4.7		μs
		1.8 V (2.4 V ^{Note 3})	≤ V _{DD} ≤ 5.5 V	4.7		4.7		μs

- Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
- Note 2. The maximum value (MAX.) of thd:Dat is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.
- Note 3. Condition in the HS (high-speed main) mode

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 $k\Omega$

(2) I2C fast mode

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	С	onditions	` •	speed main) ode	, ,	oeed main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode:	2.7 V ≤ VDD ≤ 5.5 V	0	400	0	400	kHz
		fclk ≥ 3.5 MHz	1.8 V (2.4 V ^{Note 3}) ≤ VDD ≤ 5.5 V	0	400	0	400	kHz
Setup time of restart	tsu: sta	2.7 V ≤ VDD ≤ 5.5	5 V	0.6		0.6		μs
condition		1.8 V (2.4 VNote 3) ≤ VDD ≤ 5.5 V	0.6		0.6		μs
Hold time Note 1	thd: STA	2.7 V ≤ VDD ≤ 5.5	5 V	0.6		0.6		μs
		1.8 V (2.4 V ^{Note 3}) ≤ VDD ≤ 5.5 V	0.6		0.6		μs
Hold time	tLOW	2.7 V ≤ VDD ≤ 5.5	5 V	1.3		1.3		μs
when SCLA0 = "L"		1.8 V (2.4 V ^{Note 3}) ≤ VDD ≤ 5.5 V	1.3		1.3		μs
Hold time	tHIGH	2.7 V ≤ VDD ≤ 5.5	S V	0.6		0.6		μs
when SCLA0 = "H"		1.8 V (2.4 V ^{Note 3}) ≤ VDD ≤ 5.5 V	0.6		0.6		μs
Data setup time	tsu: dat	2.7 V ≤ VDD ≤ 5.5	S V	100		100		ns
(reception)		1.8 V (2.4 VNote 3) ≤ VDD ≤ 5.5 V	100		100		ns
Data hold time	thd: dat	2.7 V ≤ VDD ≤ 5.5	5 V	0	0.9	0	0.9	μs
(transmission) Note 2		1.8 V (2.4 V ^{Note 3}) ≤ VDD ≤ 5.5 V	0		0	0.9	μs
Setup time of stop	tsu: sto	2.7 V ≤ VDD ≤ 5.5	5 V	0.6		0.6		μs
condition		1.8 V (2.4 V ^{Note 3}	$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			0.6		μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 5.5	5 V	1.3		1.3		μs
		1.8 V (2.4 V ^{Note 3}) ≤ VDD ≤ 5.5 V	1.3		1.3		μs

- **Note 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
- **Note 2.** The maximum value (MAX.) of thd: DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.
- Note 3. Condition in the HS (high-speed main) mode

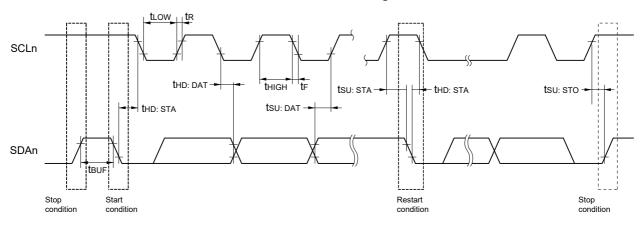
Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb = 320 pF, Rb = 1.1 k Ω

(3) I²C fast mode plus

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Coi	nditions	` •	peed main) ode		peed main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode plus: fcLk ≥ 10 MHz	2.7 V ≤ VDD ≤ 5.5 V	0	1000	_	_	kHz
Setup time of restart condition	tsu: sta	2.7 V ≤ VDD ≤ 5.5 V		0.26		-	_	μs
Hold time Note 1	thd: STA	2.7 V ≤ VDD ≤ 5.5 V		0.26		-	_	μs
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ VDD ≤ 5.5 V		0.5		-	_	μs
Hold time when SCLA0 = "H"	tHIGH	2.7 V ≤ VDD ≤ 5.5 V		0.26		-	_	μs
Data setup time (reception)	tsu: dat	2.7 V ≤ VDD ≤ 5.5 V		50		-	_	ns
Data hold time (transmission) Note 2	thd: dat	2.7 V ≤ VDD ≤ 5.5 V		0	0.45	_	_	μs
Setup time of stop condition	tsu: sto	2.7 V ≤ VDD ≤ 5.5 V		0.26		-	_	μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 5.5 V		0.5		-	_	μs


Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thd: DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: Cb = 120 pF, Rb = 1.1 k Ω

IICA serial transfer timing

3.6 Analog Characteristics

3.6.1 A/D converter Characteristics

(1) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI8 to ANI10, internal reference voltage, and temperature sensor output voltage
 (TA = -40 to +85°C, 1.8 V ≤ AVDD = VDD ≤ 5.5 V, AVss = Vss = 0 V, reference voltage (+) = VDD, reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
		Target pin: ANI8 to ANI10	2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
		10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.375		39	μs
		Target pin: internal reference voltage and temperature sensor output voltage	2.7 V ≤ VDD ≤ 5.5 V	3.5626		39	μs
	(HS (high-speed main) mode)	1.8 V ≤ VDD ≤ 5.5 V	17		39	μs	
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±2.0	LSB
Analog input voltage	VAIN	ANI8 to ANI10	1	0		VDD	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed ma		VBGR Note 3	1	V	
		Temperature sensor output voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed ma	V _{TMPS25} Note 3			V	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor/internal reference voltage output characteristics.

(2) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI8 to ANI10

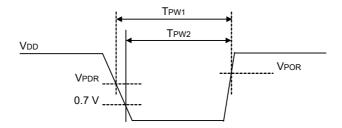
(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V, reference voltage (+) = VBGR^{Note 3}, reference voltage (-) = VSS = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8	bit		
Conversion time	tconv	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error Notes 1, 2,	Ezs	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±(0.60+0.35)	%FSR
Integral linearity error Note 1	ILE	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±(2.0+0.5)	LSB
Differential linearity error Note 1	DLE	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±(1.0+0.2)	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

- Note 1. Excludes quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. Refer to 3.6.2 Temperature sensor/internal reference voltage output characteristics.

3.6.2 Temperature sensor/internal reference voltage output characteristics

(TA = -40 to +85°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V, HS (high-speed main) Mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTEMP	TA = +25°C		1.05		V
Internal reference voltage	VBGR		1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp	2.4 V ≤ VDD ≤ 5.5 V	5			μs

3.6.3 POR circuit characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW1	Other than STOP/SUB HALT/SUB RUN	300			μs
	TPW2	STOP/SUB HALT/SUB RUN	300			μs

- **Note 1.** If the power supply voltage falls while the voltage detector is off, be sure to either shift to STOP mode or execute a reset by using the voltage detector or external reset pin before the power supply voltage falls below the minimum operating voltage specified in **3.4 AC Characteristics**.
- Note 2. Minimum time required for a POR reset when VDD falls below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

(1) LVD detection voltage in reset mode and interrupt mode $(TA = -40 \text{ to } +85^{\circ}\text{C}, VPDR \le AVDD} = VDD \le 5.5 \text{ V}, AVSS} = VSS = 0 \text{ V})$

Pa	rameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD0	Rising edge	3.98	4.06	4.14	V
			Falling edge	3.90	3.98	4.06	V
		VLVD1	Rising edge	3.68	3.75	3.82	V
			Falling edge	3.60	3.67	3.74	V
		VLVD2	Rising edge	3.07	3.13	3.19	V
			Falling edge	3.00	3.06	3.12	V
		VLVD3	Rising edge	2.96	3.02	3.08	V
			Falling edge	2.90	2.96	3.02	V
		VLVD4	Rising edge	2.86	2.92	2.97	V
			Falling edge	2.80	2.86	2.91	V
		VLVD5	Rising edge	2.76	2.81	2.87	V
		Falling edge	2.70	2.75	2.81	V	
		VLVD6	Rising edge	2.66	2.71	2.76	V
			Falling edge	2.60	2.65	2.70	V
		VLVD7	Rising edge	2.56	2.61	2.66	V
			Falling edge	2.50	2.55	2.60	V
		VLVD8	Rising edge	2.45	2.50	2.55	V
			Falling edge	2.40	2.45	2.50	V
		VLVD9	Rising edge	2.05	2.09	2.13	V
			Falling edge	2.00	2.04	2.08	V
		VLVD10	Rising edge	1.94	1.98	2.02	V
			Falling edge	1.90	1.94	1.98	V
		VLVD11	Rising edge	1.84	1.88	1.91	V
			Falling edge	1.80	1.84	1.87	V
Minimum pulse wid	lth	tLW		300			μs
Detection delay tim	ne					300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 5.5 V @ 1 MHz to 24 MHz

VDD = 2.4 to 5.5 V @ 1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 5.5 V @ 1 MHz to 8 MHz

(2) LVD Detection Voltage of Interrupt & Reset Mode

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, VPDR \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol		Cond	tions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDB0	VPOC2	, VPOC1, VPOC0 = 0, 0, 1, fa	lling reset voltage: 1.8 V	1.80	1.84	1.87	V
mode	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2	VPOC1, VPOC0 = 0, 1, 0, fa	alling reset voltage: 2.4 V	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2	VPOC1, VPOC0 = 0, 1, 1, fa	Illing reset voltage: 2.7 V	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

3.7 Power supply voltage rising slope characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

3.8 LCD Characteristics

3.8.1 Resistance division method

(1) Static display mode

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, VL4 \text{ (MIN.)} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		VDD	V

(2) 1/2 bias method, 1/4 bias method

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, VL4 \text{ (MIN.)} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) 1/3 bias method

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, VL4 \text{ (MIN.)} \le AVDD = VDD \le 5.5 \text{ V}, AVSS = VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		VDD	V

3.8.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	0.47 μF	2 V _{L1} - 0.1	2 VL1	2 VL1	V
Tripler output voltage	VL4	C1 to C4 Note 1 = 0.47 µF		3 VL1- 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C4 Note 1 =	= 0.47µF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between VL1 and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between VL4 and GND
- $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 Note 1 =	0.47 μF	2 V _{L1} - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 Note 1 =	0.47 μF	3 V _{L1} - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note 1 = 0.47 µF		4 V _{L1} - 0.16	4 VL1	4 VL1	٧
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	0.47μF	500			ms

- Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between VL1 and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL3 and GND
 - C5: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = C5 = 0.47 \mu F \pm 30\%$
- Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.8.3 Capacitor split method

(1) 1/3 bias method

(TA = -40 to +85°C, 2.2 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _L 4 voltage	VL4	C1 to C4 = 0.47 µF Note 2		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 µF Note 2	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
V _L 1 voltage	VL1	C1 to C4 = 0.47 µF Note 2	1/3 VL4 - 0.1	1/3 VL4	1/3 VL4 + 0.1	V
Capacitor split wait time Note 1	tvwait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

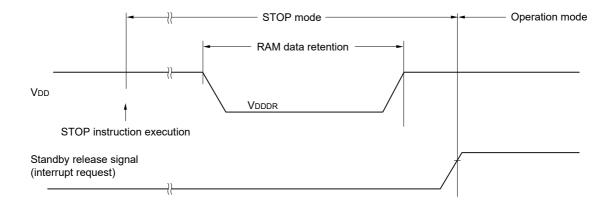
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND


 $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

3.9 RAM Data Retention Characteristics

$(TA = -40 \text{ to } +85^{\circ}C, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

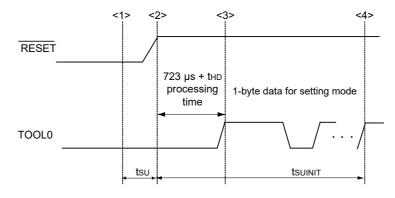
3.10 Flash Memory Programming Characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
System clock frequency	fCLK	1.8 V ≤ VDD ≤ 5.5 V	1.8 V ≤ VDD ≤ 5.5 V			24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	Ta = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 year	TA = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	TA = 85°C	100,000			
		Retained for 20 years	TA = 85°C	10,000			

- Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
- Note 2. When using flash memory programmer and Renesas Electronics self-programming library
- **Note 3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

3.11 Dedicated Flash Memory Programmer Communication (UART)


(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.12 Timing of Entry to Flash Memory Programming Modes

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

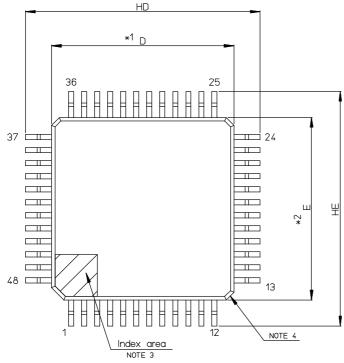
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thD	POR and LVD reset must end before the external reset ends.	1			ms

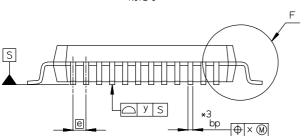
- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

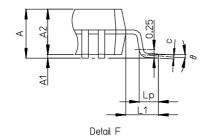
Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

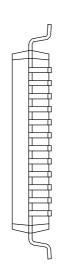
tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
thd: How long to keep the TOOL0 pin at the low level from when the external resets end
(excluding the processing time of the firmware to control the flash memory)

Remark


4. PACKAGE DRAWINGS

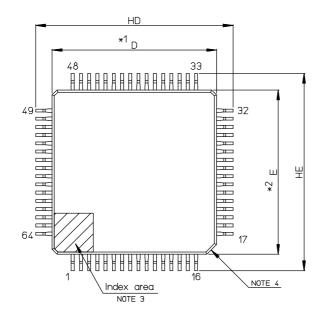

4.1 48-pin products

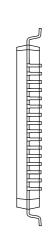

R5F11NGGAFB, R5F11NGFAFB

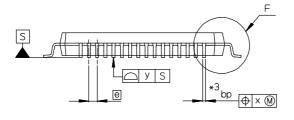

<R>

JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-LFQFP48-7×7-0.50	PLQP0048KB-B		0.2g

NOTE)

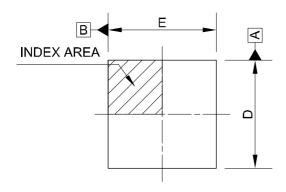

- 1. 2. 3.
- DIMENSIONS '*1' AND '*2" DO NOT INCLUDE MOLD FLASH.
 DIMENSION '*3" DOES NOT INCLUDE TRIM OFFSET.
 PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
 LOCATED WITHIN THE HATCHED AREA.
 CHAMFERS AT CORNERS ARE OPTIONAL; SIZE MAY VARY.

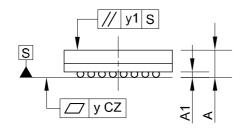

Reference	Dimens	ion in Mil	limeters
Symbol	Min	Nom	Max
D	6.9	7.0	7.1
E	6.9	7.0	7.1
A2		1.4	
HD	8.8	9.0	9.2
HE	8.8	9.0	9.2
А			1.7
A1	0.05		0.15
bp	0.17	0.20	0.27
С	0.09		0.20
θ	0	3.5"	8 8
е		0.5	
×			0.08
У			0.08
Lp	0.45	0.6	0.75
L1		1.0	

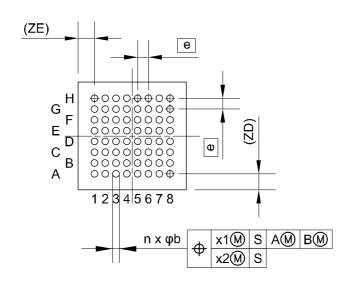

4.2 64-pin products

R5F11NLGAFB, R5F11NLFAFB

JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-LFQFP64-10×10-0.50	PLQP0064KB-C		0.3g

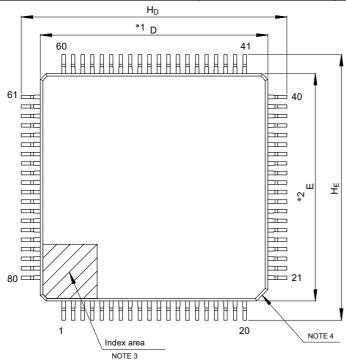

- DIMENSIONS '*1' AND '*2' DO NOT INCLUDE MOLD FLASH.
 DIMENSION '*3' DOES NOT INCLUDE TRIM OFFSET.
 PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
 LOCATED WITHIN THE HATCHED AREA.
 CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
- 1. 2. 3.


A CA		θ
A A	Detail F	

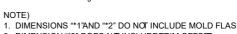

Reference	Dimens	ion in Mil	limeters
Symbol	Min	Nom	Max
D	9.9	10.0	10.1
Е	9.9	10.0	10.1
A2		1.4	
HD	11.8	12.0	12.2
HE	11.8	12.0	12.2
А			1.7
A1	0.05		0.15
bp	0.15	0.20	0.27
С	0.09		0.20
θ	0 "	3.5	8 "
е		0.5	
×			0.08
У			0.08
Lp	0.45	0.6	0.75
L1	_	1.0	

R5F11PLGABG, R5F11PLFABG

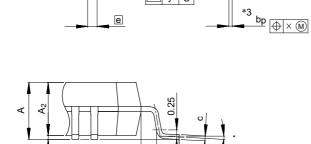
JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-TFBGA64-4x4-0.40	PTBG0064LA-A	0.03


Reference Symbol	Dimension in Millimeters				
	Min.	Nom.	Max.		
D	3.9	4.0	4.1		
E	3.9	4.0	4.1		
А	_	_	1.10		
A1	0.15	0.20	0.25		
b	0.20	0.25	0.30		
е	_	0.40	_		
x1	_	_	0.15		
x2	_	_	0.05		
у	_	_	0.08		
y1	_	_	0.20		
n		64	_		
ZD	_	0.60	_		
ZE	_	0.60	_		

4.3 80-pin products


R5F11NMGAFB, R5F11NMFAFB, R5F11NMEAFB R5F11RMGDFB

<R>


JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-LFQFP80-12x12-0.50	PLQP0080KB-B	_	0.5

- 1. DIMENSIONS "*1"AND "*2" DO NOT INCLUDE MOLD FLASH
 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.
 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHINTHE HATCHEDAREA.
- 4. CHAMFERSAT CORNERSARE OPTIONAL, SIZE MAY VARY.

y s

∢ !	A ₂					0.25	-	·	<u> </u>	
	Α1			_	-	L _p	-		ļ	
			Deta	ail F						

Reference	Dimensions in millimeters				
Symbol	Min Nom		Max		
D	11.9	12.0	12.1		
E	11.9	12.0	12.1		
A ₂	•	1.4	•		
H _D	13.8	14.0	14.2		
HE	13.8	14.0	14.2		
Α	•	٠	1.7		
A ₁	0.05	•	0.15		
bp	0.15	0.20	0.27		
С	0.09	٠	0.20		
•	0 •	3.5 •	8 •		
е	•	0.5			
х	•	٠	0.08		
у	•	•	0.08		
Lp	0.45	0.6	0.75		
L ₁	•	1.0	•		

© 2017 Renesas Electronics Corporation. All rights reserved.

REVISION HISTORY	RL78/H1D Datasheet
------------------	--------------------

Rev. Date			Description				
Rev.	Nev. Date		Page Summary				
1.00	Apr 13 2018	_	First Edition issued				
1.10	1.10 Apr 28 2023		The module name for CSI was changed to simplified SPI.				
		All	"Wait" was modified to "clock stretch".				
		p.2	Addition of Note 3 in 1.1 Features				
			Modification of Note 3 to Note 4 in 1.1 Features				
			Modification of Note 4 to Note 5 in 1.1 Features				
		p.5	Modification of Figure 1 - 1 in 1.2 Ordering Information				
		p.31	Modification of Note 1 in 2.3.2 Supply current characteristics				
		μ.5 ι	Modification of Note 4 in 2.3.2 Supply current characteristics				
			Modification of Note 1 in 2.3.2 Supply current characteristics				
		p.33	Modification of Note 5 in 2.3.2 Supply current characteristics				
			Deletion of Note 6 in 2.3.2 Supply current characteristics				
			Modification of Note 7 to Note 6 in 2.3.2 Supply current characteristics				
			Modification of Note 8 to Note 7 in 2.3.2 Supply current characteristics				
			Modification of Note 9 to Note 8 in 2.3.2 Supply current characteristics				
		p.93	Modification of Note 1 in 3.3.2 Supply current characteristics				
		p.95	Modification of Note 4 in 3.3.2 Supply current characteristics				
			Modification of Note 1 in 3.3.2 Supply current characteristics				
			Modification of Note 5 in 3.3.2 Supply current characteristics				
		p.95	Deletion of Note 6 in 3.3.2 Supply current characteristics				
			Modification of Note 7 to Note 6 in 3.3.2 Supply current characteristics				
			Modification of Note 8 to Note 7 in 3.3.2 Supply current characteristics				
			Replacement of PLQP0048KB-A with PLQP0048KB-B in 4.1 48-pin products				
		p.141	Replacement of PLQP0064KB-A with PLQP0064KB-C in 4.2 64-pin products				
		p.143	Replacement of PLQP0080KB-A with PLQP0080KB-B in 4.3 80-pin products				

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

- 1. Precaution against Electrostatic Discharge (ESD)
 - A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
- 2. Processing at power-on
 - The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
- 3. Input of signal during power-off state
 - Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
- 4. Handling of unused pins
 - Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
- 5. Clock signals
 - After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses
 - Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
- 8. Differences between products
 - Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

```
        R5F11NMFAFB#30
        R5F11NMEAFB#30
        R5F11PLGABG#U0
        R5F11NGFAFB#30
        R5F11NGGAFB#30

        R5F11PLFABG#U0
        R5F11NMGAFB#30
        R5F11NLFAFB#30
        R5F11RMGDFB#30
        R5F11NGFAFB#50

        R5F11NGGAFB#50
        R5F11NLFAFB#50
        R5F11NLGAFB#30
        R5F11NLGAFB#50
        R5F11NMEAFB#50

        R5F11NGFAFB#10
        R5F11NGGAFB#10
        R5F11NLFAFB#10
        R5F11NLGAFB#10
        R5F11NMEAFB#10

        R5F11NMFAFB#10
        R5F11NMGAFB#10
        R5F11NMGAFB#10
        R5F11NMGAFB#70
        R5F11NMGAFB#70

        R5F11NMGAFB#70
        R5F11NMGAFB#70
        R5F11NMGAFB#70
        R5F11NMGAFB#70
        R5F11NMGAFB#70
```