RENESAS

RL78/I1D

RENESAS MCU

Datasheet

R01DS0244EJ0240 Rev. 2.40 Mar 20, 2023

True low-power platform (58.3 μ A/MHz, and 0.64 μ A for operation with only RTC2 and LVD) for the general-purpose applications, with 1.6-V to 3.6-V operation, 8- to 32-Kbyte code flash memory, and 33 DMIPS at 24 MHz

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- VDD = 1.6 V to 3.6 V
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.04167 µs: @ 24 MHz operation with high-speed on-chip oscillator) to ultra-low speed (66.6 µs: @ 15 kHz operation with low-speed on-chip oscillator clock)
- Multiply/divide/multiply & accumulate instructions are supported.
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 0.7 to 3 KB

Code flash memory

- Code flash memory: 8 to 32 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 2 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD = 1.8 to 3.6 V

High-speed on-chip oscillator

- Select from 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: ±1.0% (VDD = 1.8 to 3.6 V, TA = -20 to +85°C)

Middle-speed on-chip oscillator

• Selectable from 4 MHz, 2 MHz, and 1 MHz.

Operating ambient temperature

• TA = -40 to +105°C (G: Industrial applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 12 levels)

Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- · Activation sources: Activated by interrupt sources.
- Chain transfer function

Event link controller (ELC)

• Event signals of 20 types can be linked to the specified peripheral function.

Serial interfaces

- Simplified SPI (CSINote): 1 or 2 channels
- UART 1 channel
- I²C/simplified I²C: 1 or 2 channels

Timers

- 16-bit timer: 4 channels
- 12-bit interval timer: 1 channel
- 8-bit interval timer: 4 channels
- Real-time clock: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel

A/D converter

- 8/12-bit resolution A/D converter (VDD = 1.6 to 3.6 V)
- Analog input: 6 to 17 channels
- Internal reference voltage (1.45 V) and temperature sensor

Comparator

- 2 channels
- Operating modes: Comparator high-speed mode, comparator low-speed mode, window mode

Operational amplifier

• 4 channels

I/O ports

- I/O port: 14 to 42 (N-ch open drain I/O [withstand voltage of 6 V]: 4, N-ch open drain I/O [VDD withstand voltage]: 3 to 7)
- Can be set to N-ch open drain, TTL input buffer, and onchip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5 V device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

- On-chip BCD (binary-coded decimal) correction circuit
- On-chip data operation circuit

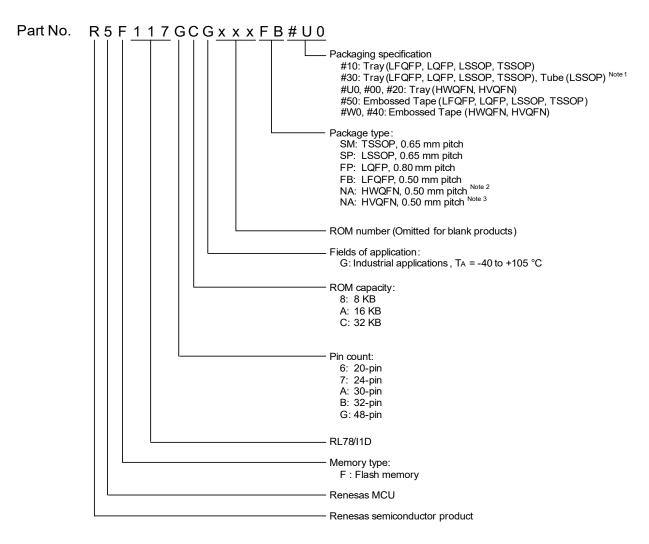
(Note and Remark are listed on the next page.)

- <R> Note Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
 - Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

○ ROM, RAM capacities

Flash	Data flash	RAM			RL78/I1D		
ROM	Data liasii		20 pins	24 pins	30 pins	32 pins	48 pins
32 KB	2 KB	3 KB Note	—	—	R5F117AC	R5F117BC	R5F117GC
16 KB	2 KB	2 KB	R5F1176A	R5F1177A	R5F117AA	R5F117BA	R5F117GA
8 KB	2 KB	0.7 KB	R5F11768	R5F11778	R5F117A8	_	—

Note


The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

1.2 Ordering Information


```
Figure 1 - 1 Part Number, Memory Size, and Package of RL78/I1D
```

Note 1. The packaging specification is only "Tube" for products in the 20-pin LSSOP.

- Note 2. 24-pin products
- Note 3. 32-pin products

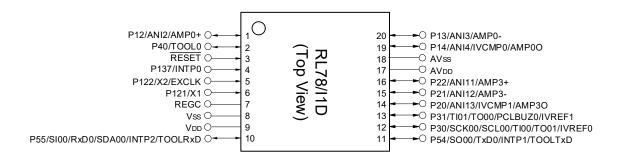
1.0	OUTI	INE
-----	------	-----

Pin count	Package	Ordering Part Number	RENESAS Code
20 pins	20-pin plastic LSSOP	R5F11768GSP#30, R5F1176AGSP#30,	PLSP0020JB-A
	(4.4 × 6.5 mm, 0.65 mm pitch)	R5F11768GSP#50, R5F1176AGSP#50	
	20-pin plastic TSSOP	R5F11768GSM#10, R5F1176AGSM#10,	PTSP0020JI-A
	(4.4 × 6.5 mm, 0.65 mm pitch)	R5F11768GSM#30, R5F1176AGSM#30,	
		R5F11768GSM#50, R5F1176AGSM#50	
24 pins	24-pin plastic HWQFN	R5F11778GNA#U0, R5F1177AGNA#U0,	PWQN0024KE-A
	(4 × 4 mm, 0.5 mm pitch)	R5F11778GNA#W0, R5F1177AGNA#W0	
		R5F11778GNA#00, R5F1177AGNA#00,	PWQN0024KF-A
		R5F11778GNA#20, R5F1177AGNA#20,	PWQN0024KH-A
		R5F11778GNA#40, R5F1177AGNA#40	
30 pins	30-pin plastic LSSOP	R5F117A8GSP#10, R5F117AAGSP#10, R5F117ACGSP#10,	PLSP0030JB-B
	(7.62 mm (300), 0.65 mm pitch)	R5F117A8GSP#30, R5F117AAGSP#30, R5F117ACGSP#30,	
		R5F117A8GSP#50, R5F117AAGSP#50, R5F117ACGSP#50	
32 pins	32-pin plastic HVQFN	R5F117BAGNA#00, R5F117BCGNA#00,	PVQN0032KE-A
	(5 × 5 mm, 0.5 mm pitch)	R5F117BAGNA#20, R5F117BCGNA#20,	
		R5F117BAGNA#40, R5F117BCGNA#40	
	32-pin plastic LQFP	R5F117BAGFP#10, R5F117BCGFP#10,	PLQP0032GB-A
	(7 × 7 mm, 0.8 mm pitch)	R5F117BAGFP#30, R5F117BCGFP#30,	
		R5F117BAGFP#50, R5F117BCGFP#50	
48 pins	48-pin plastic LFQFP	R5F117GAGFB#10, R5F117GCGFB#10,	PLQP0048KB-A
	(7 × 7 mm, 0.5 mm pitch)	R5F117GAGFB#30, R5F117GCGFB#30,	
		R5F117GAGFB#50, R5F117GCGFB#50	

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

<R>

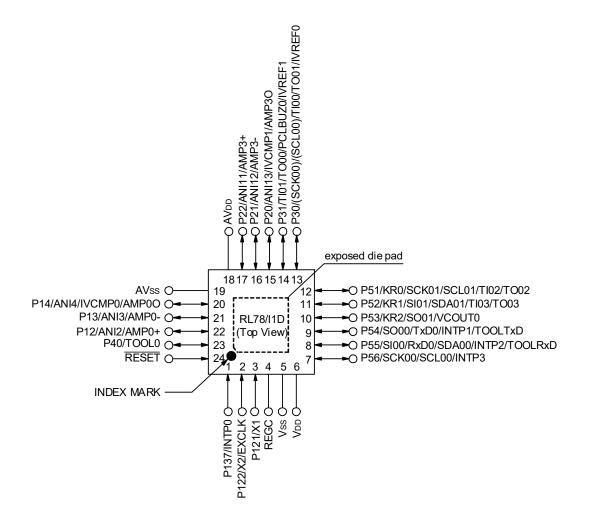
RL78/I1D


R01DS0244EJ0240 Rev. 2.40 Mar 20, 2023

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

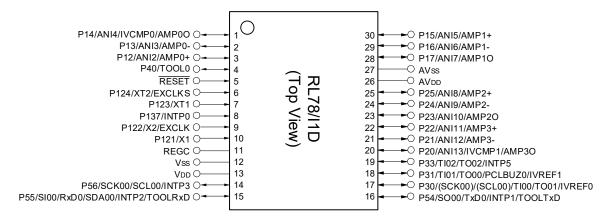
- 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)
- 20-pin plastic TSSOP (4.4 × 6.5 mm, 0.65 mm pitch)



- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark For pin identification, see 1.4 Pin Identification.

1.3.2 24-pin products

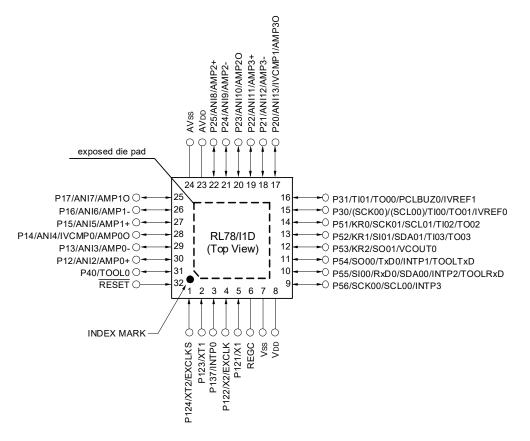
• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)



- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu F).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. It is recommended to connect an exposed die pad to Vss.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

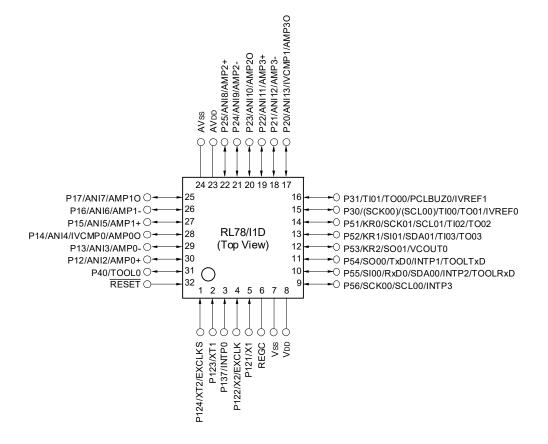
1.3.3 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)



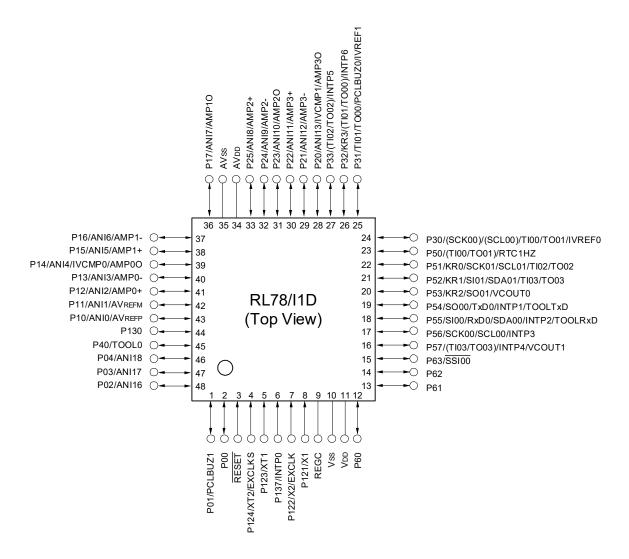
- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

1.3.4 32-pin products


• 32-pin plastic HVQFN (5 × 5 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)

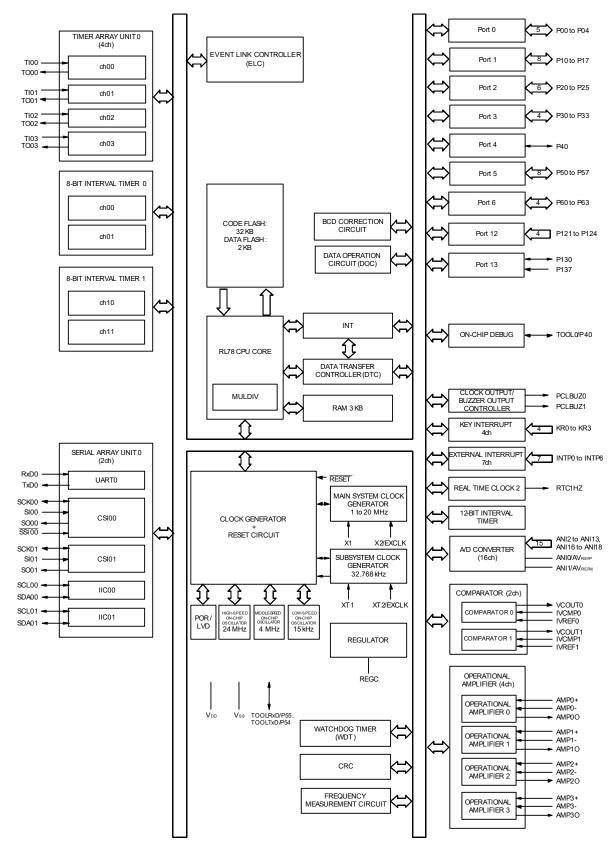


- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu F).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

1.3.5 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu F).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).


Pin Identification 1.4

ANI0 to ANI13,		PCLBUZ0, PCLBUZ1	: Programmable clock output/buzzer
ANI16 to ANI18	: Analog input		output
AVDD	: Analog power supply	REGC	: Regulator capacitance
AVREFM	: A/D converter reference	RESET	: Reset
	potential (- side) input	RTC1HZ	: Real-time clock correction clock (1 Hz)
AVREFP	: A/D converter reference		output
	potential (+ side) input	RxD0	: Receive data
AVss	: Analog ground	SCK00, SCK01	: Serial clock input/output
EXCLK	: External clock input	SCL00, SCL01	: Serial clock input/output
	(main system clock)	SDA00, SDA01	: Serial data input/output
EXCLKS	: External clock input	SI00, SI01	: Serial data input
	(subsystem clock)	SO00, SO01	: Serial data output
INTP0 to INTP6	: External interrupt input	SSI00	: Serial interface chip select input
IVCMP0, IVCMP1	: Comparator input	TI00 to TI03	: Timer input
IVREF0, IVREF1	: Comparator reference input	TO00 to TO03	: Timer output
KR0 to KR3	: Key return	TOOL0	: Data input/output for tool
P00 to P04	: Port 0	TOOLRxD, TOOLTxD	: Data input/output for external device
P10 to P17	: Port 1	TxD0	: Transmit data
P20 to P25	: Port 2	VCOUT0, VCOUT1	: Comparator output
P30 to P33	: Port 3	AMP0+, AMP1+,	
P40	: Port 4	AMP2+, AMP3+	: Operational amplifier (+side) input
P50 to P57	: Port 5	AMP0-, AMP1-,	
P60 to P63	: Port 6	AMP2-, AMP3-	: Operational amplifier (-side) input
P121 to P124	: Port 12	AMP0O, AMP1O,	
P130, P137	: Port 13	AMP2O, AMP3O	: Operational amplifier output
		Vdd	: Power supply
		Vss	: Ground
		X1, X2	: Crystal oscillator (main system clock)
		XT1, XT2	: Crystal oscillator (subsystem clock)

1.5 Block Diagram

1.5.1 48-pin products

1.6 Outline of Functions

Remark This outline describes the functions at the time when Peripheral I/O redirection register 0 (PIOR0) are set to 00H.

						(1/2		
		20-pin	24-pin	30-pin	32-pin	48-pin		
	Item	R5F1176x (x = 8, A)	R5F1177x (x = 8, A)	R5F117Ax (x = 8, A, C)	R5F117Bx (x = A, C)	R5F117Gx (x = A, C)		
Code flash me	emory (KB)	8 to 16 KB	8 to 16 KB	8 to 32 KB	16 to 32 KB	16 to 32 KB		
Data flash me	emory (KB)	2 KB	2 KB	2 KB	2 KB	2 KB		
RAM		0.7 to 2.0 KB	0.7 to 2.0 KB	0.7 to 3.0 KB Note	2.0 to 3.0 KB Note	2.0 to 3.0 KB Note		
Address spac	e	1 MB	•			•		
Main system clock	High-speed system clock (fмx)	HS (High-speed ma HS (High-speed ma LS (Low-speed mai LV (Low-voltage ma	ain) mode:1 to 20 MH ain) mode:1 to 16 MH in) mode:1 to 8 MHz	I main system clock i Hz (VDD = 2.7 to 3.6 N Hz (VDD = 2.4 to 3.6 N) (VDD = 1.8 to 3.6 V) z (VDD = 1.6 to 3.6 V) D = 1.8 to 3.6 V)	√), √),			
	High-speed on-chip oscillator clock (fi⊣) Max: 24 MHz	HS (High-speed ma	ain) mode: 1 to 16 N	$Hz (V_{DD} = 2.7 \text{ to } 3.6)$ $Hz (V_{DD} = 2.4 \text{ to } 3.6)$	V),			
	Middle-speed on-chip oscillator clock (fim) Max: 4 MHz	LV (Low-voltage ma	,	Hz (VDD = 1.8 to 3.6 \ Hz (VDD = 1.6 to 3.6 \ /DD = 1.8 to 3.6 V)				
Subsystem clock	Subsystem clock oscillator (fsx, fsxR)	-	_	XT1 (crystal) oscilla 32.768 kHz (TYP.):				
	Low-speed on-chip oscillator clock (fiL)	15 kHz (TYP.): V _{DD}	= 1.6 to 3.6 V	·				
General-purpo	ose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)						
Minimum instr	ruction execution time	0.04167 μs (High-speed on-chip oscillator clock: fiн = 24 MHz operation)						
		0.05 µs (High-speed system clock: fмx = 20 MHz operation)						
		— 30.5 μs (Subsystem clock oscillator clock: fsx = 32.768 kHz operation)						
Instruction set	t	Multiplication (8 bMultiplication and	ctor/logical operatior its × 8 bits, 16 bits × Accumulation (16 bi	n (8/16 bits) 16 bits), Division (16 its × 16 bits + 32 bits on (Set, reset, test, a)	,		
I/O port	Total	14	18	24	26	42		
	CMOS I/O	11	15	19	21	33		
	CMOS input	3	3	5	5	5		
	N-ch open-drain I/O (6 V tolerance)					4		
Timer	16-bit timer	4 channels	ł	•	ł	+		
	Watchdog timer	1 channel						
	Real-time clock	1 channel						
	12-bit interval timer	1 channel						
	8/16-bit interval timer	4 channels (8 bit) /	2 channels (16 bit)					
	Timer output	2	4	3	4	4		
	RTC output			1 channel • 1 Hz	generator and RTC			

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

(2/2)

		20-pin	24-pin	30-pin	32-pin	48-pin							
Iten	n	R5F1176x (x = 8, A)	R5F1177x (x = 8, A)	R5F117Ax (x = 8, A, C)	R5F117Bx (x = A, C)	R5F117Gx (x = A, C)							
Clock output/buzzer output		1	1	1	1	2							
		(Main system clock [30-pin, 32-pin, 48-pi • 2.44 kHz, 4.88 kHz (Main system clock • 256 Hz, 512 Hz, 1.	z, 9.76 kHz, 1.25 MHz, к: fмаin = 20 MHz oper	ation) 2.5 MHz, 5 MHz, 10 ation) .096 kHz, 8.192 kHz	MHz , 16.384 kHz, 32.768	kHz							
12-bit resolution A/D	converter	6 channels	6 channels	12 channels	12 channels	17 channels							
Comparator (Window	Comparator)	2 channels											
Operational amplifier		2 channels		4 channels									
Data Operation Circu	iit (DOC)	Comparison, addition	n, and subtraction of 1	6-bit data									
Serial interface		 [20-pin, 30-pin products] Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified I²C: 1 channel [24-pin, 32-pin, 48-pin products] Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I²C: 2 channels 											
Data transfer controll	er (DTC)	16 sources	20 sources	19 sources	20 sources	22 sources							
Event link controller (ELC)	Event input: 15 Event trigger output: 5	Event input: 17 Event trigger output: 5	Event input: 17 Event trigger output: 7	Event input: 17 Event trigger output: 7	Event input: 20 Event trigger output: 7							
Vectored interrupt	Internal	22	22	24	24	24							
sources	External	3	5	5	5	8							
Key interrupt	•	—	3	—	3	4							
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access											
Power-on-reset circu	it	 Power-on-reset: 1.51 ± 0.04V (T_A = -40 to +85°C) Power-down-reset: 1.50 ± 0.04 V (T_A = -40 to +85°C) 											
Voltage detector	Power on	1.67 V to 3.13 V (12	stages)										
	Power down	1.63 V to 3.06 V (12	stages)										
On-chip debug function	on	Provided (Enable to	tracing)										
Power supply voltage	;	VDD = 1.6 to 3.6 V											
Operating ambient te	mperature	T _A = -40 to +105°C				T _A = -40 to +105°C							

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/I1D User's Manual.
- Caution 3. Please contact Renesas Electronics sales office for derating of operation under TA = +85 to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- Caution 4. When operating temperature exceeds 85°C, only HS (high-speed main) mode can be used as the flash operation mode. Regulator mode should be used with the normal setting (MCSEL = 0).

(1/2)

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings

				(1/2
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd, AVdd	Vdd = AVdd	-0.3 to + 4.6	V
	AVREFP		0.3 to AVDD + 0.3 Note 2	V
	AVss		-0.5 to + 0.3	V
	AVREFM		-0.3 to AV _{DD} + 0.3 Note 2	V
			and AVREFM ≤ AVREFP	
REGC pin input voltage	VIREGC	REGC	-0.3 to + 2.8	V
			and -0.3 to V _{DD} + 0.3 ^{Note 1}	
Input voltage	VI1	P00 to P04, P30 to P33, P40, P50 to P57,	-0.3 to V _{DD} + 0.3 Note 2	V
		P121 to P124, P130, P137,		
		EXCLK, EXCLKS, RESET		
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to + 6.5	V
	V13	P10 to P17, P20 to P25	-0.3 to AVDD + 0.3 Note 2	V
Output voltage	V01	P00 to P04, P30 to P33, P40, P50 to P57,	-0.3 to VDD + 0.3 Note 2	V
		P60 to P63, P130		
	Vo2	P10 to P17, P20 to P25	-0.3 to AV _{DD} + 0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI18	-0.3 to VDD + 0.3	V
			and -0.3 to AVREF(+) + 0.3 $^{\text{Notes 2, 3}}$	
	VAI2	ANI0 to ANI13	-0.3 to AVDD + 0.3	V
			and -0.3 to AVREF(+) + 0.3 $^{Notes\ 2,\ 3}$	
	Vai3	Operational amplifier input pin	-0.3 to AV _{DD} + 0.3 Note 2	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 4.6 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

Absolute Maximum Ratings

Absolute Maximum	Ratings				(2/2)
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P04, P30 to P33, P40, P50 to P57, P130	-40	mA
		Total of all pins	P00 to P04, P40, P130	-70	mA
		-170 mA	P30 to P33, P50 to P57	-100	mA
	Іон2	Per pin	P10 to P17, P20 to P25	-0.1	mA
		Total of all pins		-1.4	mA
Output current, low	IOL1	Per pin	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130	40	mA
		Total of all pins	P00 to P04, P40, P130	70	mA
		170 mA	P30 to P33, P50 to P57, P60 to P63	100	mA
	IOL2	Per pin	P10 to P17, P20 to P25	0.4	mA
		Total of all pins		5.6	mA
Operating ambient	TA	In normal operat	lion mode	-40 to +105	°C
temperature		In flash memory	programming mode	-	
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$ $(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

· · ·	•	,				
Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1.0		20.0	MHz
	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
		1.8 V ≤ V _{DD} < 2.4 V	1.0		8.0	
		1.6 V ≤ V _{DD} < 1.8 V	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Remark When using the X1 oscillator and XT1 oscillator, refer to 6.4 System Clock Oscillator in the RL78/I1D User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Oscillators	Parameters	Co	onditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fiн			1		24	MHz
High-speed on-chip oscillator clock frequency accuracy		-20 to +85°C	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-1.0		+1.0	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	
		-40 to -20°C	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-1.5		+1.5	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	
		+85 to +105°C	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-2.0		+2.0	%
Middle-speed on-chip oscillator oscillation frequency Note 2	fім			1		4	MHz
Middle-speed on-chip oscillator oscillation frequency accuracy		$1.8V \le V_{DD} \le 3.6$	6V	-12		+12	%
Low-speed on-chip oscillator clock frequency Note 2	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$ $(TA = +85 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

(TA = +85 to +105°C	s, 2.4 V ≤	$AVDD = VDD \le 3.6 V$, $Vss = AVss = 0$	V)				(1/5)
Items	Symbol	Conditions			TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P04, P30 to P33, P40, P50 to P57, P130	TA = -40 to +85°C			-10.0 Note 2	mA
lote 1			TA = +85 to +105°C			-3.0 Note 2	mA
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-10.0	mA				
		(When duty ≤ 70% ^{Note 3})	1.8 V ≤ VDD < 2.7 V			-5.0	mA
			1.6 V ≤ VDD < 1.8 V			-2.5	mA
		Total of P30 to P33, P50 to P57 $2.7 V \le V DD \le 3.6 V$ -19.0 (Mu) $4.7 = 700$ (Note 2) -19.0	-19.0	mA			
		(When duty ≤ 70% ^{Note 3})	1.8 V ≤ VDD < 2.7 V			-10.0	mA
			1.6 V ≤ VDD < 1.8 V			-5.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				-29.0	mA
	Іон2	Per pin for P10 to P17, P20 to P25				-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.6 V ≤ VDD ≤ 3.6 V			-1.4	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) ≈ -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P30 and P51 to P56 do not output high level in N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Dutput current, low Note 1	IOL1	Per pin for P00 to P04, P30 to P33, P40, P50 to P57, P130	TA = -40 to +85°C			20.0 Note 2	mA
			TA = +85 to +105°C			8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40, P130	2.7 V ≤ VDD ≤ 3.6 V			15.0	mA
		(When duty ≤ 70% ^{Note 3})	1.8 V ≤ V _{DD} < 2.7 V			9.0	mA
			1.6 V ≤ V _{DD} < 1.8 V			4.5	mA
		Total of P30 to P33, P50 to P57, P60 to P63	2.7 V ≤ VDD ≤ 3.6 V			35.0	mA
		(When duty ≤ 70% ^{Note 3})	1.8 V ≤ V _{DD} < 2.7 V			20.0	mA
			1.6 V ≤ V _{DD} < 1.8 V			10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				50.0	mA
	IOL2	Per pin for P10 to P17, P20 to P25				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.6 V ≤ VDD ≤ 3.6 V			5.6	mA

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$ $(TA = +85 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

$(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$									
Items	Symbol	Condition	MIN.	TYP.	MAX.	Unit			
Input voltage, high	VIH1	P00 to P04, P30 to P33, P40, P50 to P57, P130	Normal input buffer	0.8 Vdd		Vdd	V		
	VIH2	P30, P32, P33, P51, P52, P54 to P57	TTL input buffer 3.3 V ≤ Vpp ≤ 3.6 V	2.0		Vdd	V		
			TTL input buffer 1.6 V ≤ Vpp < 3.3 V	1.5		Vdd	V		
	Vінз	P10 to P17, P20 to P25	0.7 AVdd		AVdd	V			
	VIH4	P60 to P63	0.7 Vdd		6.0	V			
	Vih5	P121 to P124, P137, EXCLK, E	0.8 Vdd		Vdd	V			
Input voltage, low	VIL1	P00 to P04, P30 to P33, P40, Normal input buffer P50 to P57, P130		0		0.2 Vdd	V		
	VIL2	P30, P32, P33, P51, P52, P54 to P57	TTL input buffer 3.3 V ≤ Vpp ≤ 3.6 V	0		0.5	V		
			TTL input buffer 1.6 V ≤ Vpp < 3.3 V	0		0.32	V		
	VIL3	P10 to P17, P20 to P25	0		0.3 AVDD	V			
	VIL4	P60 to P63		0		0.3 Vdd	V		
	VIL5	P121 to P124, P137, EXCLK, E	0		0.2 Vdd	V			

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$ $(TA = +85 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Caution The maximum value of VIH of pins P30 and P51 to P56 is VDD, even in the N-ch open-drain mode.

Items	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P04, P30 to P33, P40, P50 to P57, P130	2.7 V ≤ VDD ≤ 3.6 V, Іон = -2.0 mA	Vdd - 0.6			V
			1.8 V ≤ V _{DD} ≤ 3.6 V ^{Note 3} , Іон = -1.5 mA	Vdd - 0.5			V
			1.6 V ≤ V _{DD} ≤ 3.6 V ^{Note 1} , Іон = -1.0 mA	Vdd - 0.5			V
	Voh2	P10 to P17, P20 to P25	1.6 V ≤ AV _{DD} ≤ 3.6 V ^{Note 2} , Іон = -100 µА	AVDD - 0.5			V
Output voltage, low	VOL1	P00 to P04, P30 to P33, P40, P50 to P57, P130	$2.7 V \le V_{DD} \le 3.6 V$, IOL = 3.0 mA			0.6	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ IOL = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}^{\text{Note 3}},$ IOL = 0.6 mA			0.4	V
			$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}^{\text{Note 1}},$ IOL = 0.3 mA			0.4	V
	Vol2	P10 to P17, P20 to P25	1.6 V ≤ AV _{DD} ≤ 3.6 V ^{Note 2} , IOL = 400 μA			0.4	V
	Vol3	P60 to P63	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ IOL = 3.0 mA			0.4	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}^{\text{Note 3}},$ IOL = 2.0 mA			0.4	V
			$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}^{\text{Note 1}},$ IOL = 1.0 mA			0.4	V

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$ $(TA = +85 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

(4/5)

Note 1. Only $T_A = -40$ to $+85^{\circ}C$ is guaranteed.

Note 2. The condition that 2.4 V \leq AV_{DD} \leq 3.6 V is guaranteed when +85°C < T_A \leq +105°C.

Note 3. The condition that $2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ is guaranteed when $+85^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$.

Caution P30 and P51 to P56 do not output high level in N-ch open-drain mode.

Items	Symbol	Con	ditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130, P137	VI = VDD				1	μA
	ILIH2	RESET	VI = VDD				1	μA
	Ілнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P10 to P17, P20 to P25	VI = AVDD				1	μA
Input leakage current, low	ILIL1	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130, P137	VI = Vss				-1	μA
	ILIL2	RESET	VI = Vss				-1	μA
	Ilil3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P10 to P17, P20 to P25	VI = AVss				-1	μA
On-chip pull-up resistance	Ru	P00 to P04, P30 to P33, P40, P50 to P57, P130	VI = Vss, In input port		10	20	100	kΩ

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$ $(T_A = +85 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(5/5)

(1/4)

2.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	
$(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$	

Parameter	Symbol			Conditions				MIN.	TYP.	MAX.	Unit
Supply current I Note 1		Operating mode	HS (high-speed main) mode	$f_{IH} = 24 \text{ MHz} \text{ Note 3},$ $T_A = -40 \text{ to } +105^{\circ}\text{C}$	Basic operation	V _{DD} = 3.0 V			1.4		mA
			HS (high-speed main) mode	f _{IH} = 24 MHz ^{Note 3} , T _A = -40 to +85°C	Normal operation	V _{DD} = 3.0 V			3.2	6.3	mA
				f _{IH} = 24 MHz ^{Note 3} , T _A = +85 to +105°C	Normal operation	V _{DD} = 3.0 V				6.7	
				f _{IH} = 16 MHz ^{Note 3} , T _A = -40 to +85°C	Normal operation	V _{DD} = 3.0 V			2.4	4.6	
				f _{IH} = 16 MHz ^{Note 3} , T _A = +85 to +105°C	Normal operation	V _{DD} = 3.0 V				4.9	
			LS (low-speed main)	fin = 8 MHz Note 3,	Normal	V _{DD} = 3.0 V			1.1	2.0	mA
			mode (MCSEL = 0)	T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			1.1	2.0	
			LS (low-speed main)	fin = 4 MHz Note 3,	Normal	V _{DD} = 3.0 V			0.72	1.30	mA
			mode (MCSEL = 1)	T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			0.72	1.30	
			(fim = 4 MHz Note 7,	Normal	V _{DD} = 3.0 V			0.58	1.10	
				T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			0.58	1.10	
			LV (low-voltage main)	fiH = 3 MHz Note 3,	Normal	V _{DD} = 3.0 V	3.0 V		1.2	1.8	mA
			mode	T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			1.2	1.8	
			LP (low-power main)	fiH = 1 MHz Note 3,	Normal	V _{DD} = 3.0 V			290	480	μA
			mode Note 5	T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			290	480	
			(MCSEL = 1)	$T_{4} = 40 \text{ to } \pm 85^{\circ}\text{C}$ operation		V _{DD} = 3.0 V			124	230	
					V _{DD} = 2.0 V			124	230		
			HS (high-speed main) mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input		2.7	5.3	mA
				T _A = -40 to +85°C	operation		Resonator connection		2.8	5.5	
				f _{MX} = 20 MHz ^{Note 2} , T _A = +85 to +105°C	Normal operation	V _{DD} = 3.0 V	Square wave input			5.7	
							Resonator connection			5.8	
				f _{MX} = 10 MHz ^{Note 2} , T _A = -40 to +85°C	Normal	V _{DD} = 3.0 V	Square wave input		1.8	3.1	1
					operation		Resonator connection		1.9	3.2	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input			3.4	
				T _A = +85 to +105°C	operation		Resonator connection			3.5	
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input		0.9	1.9	mA
			mode (MCSEL = 0)	T _A = -40 to +85°C	operation		Resonator connection		1.0	2.0	
			(f _{MX} = 8 MHz ^{Note 2} ,	Normal	V _{DD} = 2.0 V	Square wave input		0.9	1.9	
				T _A = -40 to +85°C	operation		Resonator connection		1.0	2.0	
			LS (low-speed main)	f _{MX} = 4 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input		0.6	1.1	mA
			mode	T _A = -40 to +85°C	operation		Resonator connection		0.6	1.2	
			(MCSEL = 1)	f _{MX} = 4 MHz ^{Note 2} ,	Normal	V _{DD} = 2.0 V	Square wave input		0.6	1.1	
				T _A = -40 to +85°C	operation		Resonator connection		0.6	1.2	
			LP (low-power main)	f _{MX} = 1 MHz Note 2,	Normal	V _{DD} = 3.0 V	Square wave input		100	190	μA
			mode (MCSEL = 1)	T _A = -40 to +85°C	operation		Resonator connection		136	250]
				f _{MX} = 1 MHz ^{Note 2} ,	Normal	V _{DD} = 2.0 V	Square wave input		100	190]
				T _A = -40 to +85°C	operation		Resonator connection		136	250	1

(Notes and Remarks are listed on the next page.)

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$
(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/-	4)
------	----

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	IDD1	Operating	Subsystem clock	fsx = 32.768 kHz,	Normal operation	Square wave input		3.2	6.1	μA
Note 1		mode	operation	$T_A = -40^{\circ}C$ Note 4		Resonator connection		3.3	6.1	
				fsx = 32.768 kHz,	Normal operation	Square wave input		3.4	6.1	
				$T_A = +25^{\circ}C$ Note 4		Resonator connection		3.6	6.1	
				fsx = 32.768 kHz,	Normal operation	Square wave input		3.5	6.7	
				T _A = +50°C Note 4		Resonator connection		3.7	6.7	
				fsx = 32.768 kHz, T _A = +70°C ^{Note 4}	Normal operation	Square wave input		3.7	7.5	
						Resonator connection		3.9	7.5	
				fsx = 32.768 kHz, T _A = +85°C ^{Note 4}	Normal operation	Square wave input		4.0	8.9	
						Resonator connection		4.2	8.9	
				fsx = 32.768 kHz,	Normal operation	Square wave input		4.5	21.0	
				T _A = +105°C Note 4		Resonator connection		4.7	21.1	
				fiL = 15 kHz, TA = -40°C Note 6	Normal operation			1.8	5.9	
				fiL = 15 kHz, T _A = +25°C Note 6	Normal operation			1.9	5.9	
				fiL = 15 kHz, T _A = +85°C Note 6	Normal operation			2.3	8.7	
				fil = 15 kHz, T _A = +105°C Note 6	Normal operation			3.0	20.9	

<R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The following points apply in the HS (high-speed main), LS (low-speed main), LV (low-voltage main), and LP (low-power main) modes.

• The currents in the "TYP." column do not include the operating currents of the peripheral modules.

• The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.

- **Note 2.** When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- <R> Note 4. When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped. When ultra-low-power consumption oscillation is set (AMPHS1, AMPHS0) = (1, 0).
- <R> Note 5. When the high-speed system clock, high-speed on-chip oscillator clock, sub clock, and low-speed on-chip oscillator clock are stopped.
 - **Note 6.** When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and sub clock are stopped.
 - Note 7. When the high-speed system clock, high-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
 - Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - **Remark 2.** fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
 - Remark 4. fiL: Low-speed on-chip oscillator clock frequency
 - Remark 5. fsx: Sub clock frequency (XT1 clock oscillation frequency)
 - Remark 6. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency or low-speed on-chip oscillator clock frequency)

Remark 7. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C.

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{Vss} = \text{AV}_{SS} = 0 \text{ V})$ $(T_A = +85 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{Vss} = \text{AV}_{SS} = 0 \text{ V})$

(3/4)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	IDD2	HALT	HS (high-speed main) mode	fiн = 24 MHz Note 4,	V _{DD} = 3.0 V			0.37	1.83	mA
Note 1	Note 2	mode		T _A = -40 to +85°C						
				fiн = 24 MHz Note 4,	V _{DD} = 3.0 V				2.85	
				T _A = +85 to +105°C						
				fiн = 16 MHz Note 4,	V _{DD} = 3.0 V			0.36	1.38	
				T _A = -40 to +85°C						
				fin = 16 MHz Note 4,	VDD = 3.0 V				2.08	
				T _A = +85 to +105°C						
			LS (low-speed main) mode	fiH = 8 MHz Note 4,	V _{DD} = 3.0 V			250	710	μA
			(MCSEL = 0)	T _A = -40 to +85°C	V _{DD} = 2.0 V			250	710	
			LS (low-speed main) mode	fiH = 4 MHz Note 4,	V _{DD} = 3.0 V			204	400	μA
			(MCSEL = 1)	T _A = -40 to +85°C	VDD = 2.0 V			204	400	
				fim = 4 MHz Note 7,	VDD = 3.0 V			40	250	
				T _A = -40 to +85°C	V _{DD} = 2.0 V			40	250	
			LV (low-voltage main) mode	fiH = 3 MHz Note 4,	VDD = 3.0 V			425	800	μA
				T _A = -40 to +85°C	VDD = 2.0 V			425	800	
			LP (low-power main) mode	fiH = 1 MHz Note 4,	VDD = 3.0 V			192	400	μA
			(MCSEL = 1)	T _A = -40 to +85°C	VDD = 2.0 V			192	400	
				fim = 1 MHz Note 7,	VDD = 3.0 V			27	100	
				T _A = -40 to +85°C	VDD = 2.0 V			27	100	
			HS (high-speed main) mode	f _{MX} = 20 MHz Note 3,	VDD = 3.0 V	Square wave input		0.20	1.55	mA
				T _A = -40 to +85°C		Resonator connection		0.40	1.74	
				f _{MX} = 20 MHz Note 3,	V _{DD} = 3.0 V	Square wave input			2.45	
				T _A = +85 to +105°C		Resonator connection			2.57	
				f _{MX} = 10 MHz ^{Note 3} ,	V _{DD} = 3.0 V	Square wave input		0.15	0.86	
				T _A = -40 to +85°C		Resonator connection		0.30	0.93	
				$f_{MX} = 10 \text{ MHz} \text{ Note } 3$,	V _{DD} = 3.0 V	Square wave input			1.28	
				T _A = +85 to +105°C		Resonator connection			1.36	
			LS (low-speed main) mode	f _{MX} = 8 MHz ^{Note 3} ,	VDD = 3.0 V	Square wave input		68	550	μA
			(MCSEL = 0)	T _A = -40 to +85°C		Resonator connection		120	590	
				f _{MX} = 8 MHz Note 3,	VDD = 2.0 V	Square wave input		68	550	
				T _A = -40 to +85°C		Resonator connection		120	590	
			LS (low-speed main) mode	f _{MX} = 4 MHz Note 3,	VDD = 3.0 V	Square wave input		23	128	μA
			(MCSEL = 1)	T _A = -40 to +85°C		Resonator connection		65	200	
				f _{MX} = 1 MHz Note 3,	VDD = 2.0 V	Square wave input		23	128	
				T _A = -40 to +85°C		Resonator connection		65	200	
			LP (low-power main) mode	$f_{MX} = 4 \text{ MHz} \text{ Note } 3,$	VDD = 3.0 V	Square wave input		10	64	μA
			(MCSEL = 1)	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$		Resonator connection		48	150	
				$f_{MX} = 1 \text{ MHz} \text{ Note } 3$,	V _{DD} = 2.0 V	· · ·		10	64	
			Output the start and starting	$T_A = -40 \text{ to } +85^{\circ}\text{C}$		Resonator connection		48	150	
			Subsystem clock operation	fsx = 32.768 kHz, T _A = -40°C ^{Note 5}		Square wave input	<u> </u>	0.24	0.57	μA
				fsx = 32.768 kHz.		Resonator connection	<u> </u>	0.42	0.76	
				$T_A = +25^{\circ}C$ Note 5		Square wave input	<u> </u>	0.30	0.57	
						Resonator connection	<u> </u>	0.54	0.76	
				fsx = 32.768 kHz,		Square wave input	ļ	0.35	1.17	
				$T_A = +50^{\circ}C$ Note 5		Resonator connection	<u> </u>	0.60	1.36	
				fsx = 32.768 kHz, T _A = +70°C ^{Note 5}		Square wave input	<u> </u>	0.42	1.97	
						Resonator connection Square wave input	<u> </u>	0.70	2.16	
				$T_A = +85^{\circ}C$ Note 5			<u> </u>	0.80	3.37 3.56	
				fsx = 32.768 kHz,		Resonator connection		0.95	3.50 17.10	
				Tsx = 32.768 KHZ, TA = +105°C Note 5		Square wave input	<u> </u>		17.10	
					C Note 6	Resonator connection		2.20 0.40	17.50	11.4
				$f_{IL} = 15 \text{ kHz}, T_A = -40^{\circ}$			<u> </u>			μA
				fi∟ = 15 kHz, T _A = +25°				0.47	1.22	
				fi∟ = 15 kHz, T _A = +85°				0.80	3.30	
				fi∟ = 15 kHz, T _A = +105	5°C Note 6			2.00	17.30	

(Notes and Remarks are listed on the next page.)

_		
<r></r>	Note 1.	tal current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or
		ss. The following points apply in the HS (high-speed main), LS (low-speed main), LV (low-voltage main), and LP (low-
		ower main) modes.
		The currents in the "TYP." column do not include the operating currents of the peripheral modules.
		The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing
		nto the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data lash memory is being rewritten.
		the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating
		Irrents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.
	Note 2.	hen the HALT instruction is executed in the flash memory.
	Note 3.	hen the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, id sub clock are stopped.
	Note 4.	hen the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub
		ock are stopped.
<r></r>	Note 5.	hen the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and high-
		beed on-chip oscillator clock are stopped. When RTCLPC = 1 and ultra-low-power consumption oscillation is set
		MPHS1, AMPHS0) = (1, 0).
	Note 6.	hen the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, high-speed system clock, and sub
		ock are stopped.
	Note 7.	hen the high-speed system clock, high-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock
		e stopped.
	Remark 1.	x: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
	Remark 2.	: High-speed on-chip oscillator clock frequency (24 MHz max.)
	Remark 3.	n: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
	Remark 4.	: Low-speed on-chip oscillator clock frequency
	Remark 5.	x: Sub clock frequency (XT1 clock oscillation frequency)
	Remark 6.	UB: Subsystem clock frequency (XT1 clock oscillation frequency or low-speed on-chip oscillator clock frequency)

Remark 7. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C.

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(4/4)

	Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
	Supply current	IDD3	STOP mode	TA = -40°C		0.16	0.51	μA
<r></r>	Note 1		Note 2	TA = +25°C		0.22	0.51	
				TA = +50°C		0.27	1.10	
				TA = +70°C		0.37	1.90	
			TA = +85°C		0.60	3.30		
				TA = +105°C		1.50	17.00	

<R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

<R> Note 2. For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.

Peripheral Functions (Common to all products)

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/2)

							· /
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	I _{FIL} Note 1				0.20		μA
RTC2 operating current	IRTC Notes 1, 2, 3	fsx = 32.768 kHz			0.02		μΑ
12-bit interval timer operating current	ITMKA Notes 1, 2, 4	fsx = 32.768 kHz	fsx = 32.768 kHz		0.04		μA
8-bit interval timer operating current	ITMT Notes 1, 9	fsx = 32.768 kHz	8-bit counter mode × 2-channel operation		0.12		μA
		fmain stopped (per unit)	16-bit counter mode operation		0.10		μA
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating current	J _{ADC} Notes 6, 10	During maximum-speed conversion	AV _{DD} = 3.0 V		420	720	μA
Avref(+) current	IAVREF Note 11	AVREFP = 3.0 V, ADREFP1 =	= 0, ADREFP0 = 1		14.0	25.0	μA
Internal reference voltage (1.45 V) current	ADREF Notes 1, 12				85.0		μA
Temperature sensor operating current	ITMPS Note 1				85.0		μΑ
Comparator operating current	ICMP Notes 8, 10	AV _{DD} = 3.6 V, Regulator output voltage	Comparator high-speed mode Window mode		12.5		μA
		= 2.1 V	Comparator low-speed mode Window mode		3.0		
			Comparator high-speed mode Standard mode		6.5		
			Comparator low-speed mode Standard mode		1.7		
		AV _{DD} = 3.6 V, Regulator output voltage = 1.8 V	Comparator high-speed mode Window mode		8.0		
			Comparator low-speed mode Window mode		2.2		
			Comparator high-speed mode Standard mode		4.0		
			Comparator low-speed mode Standard mode		1.3		
Operational amplifier operating current	IAMP Notes 10, 13	Low-power consumption	One operational amplifier unit operates Note 14		2.5	4.0	μA
		mode	Two operational amplifier units operate Note 14		4.5	8.0	
			Three operational amplifier units operate Note 14		6.5	11.0	
			Four operational amplifier units operate Note 14		8.5	14.0	
		High-speed mode	One operational amplifier unit operates Note 14		140	220	
			Two operational amplifier units operate Note 14		280	410	
			Three operational amplifier units operate Note 14		420	600	
			Four operational amplifier units operate Note 14		560	780	
LVD operating current	ILVD Notes 1, 7				0.10		μΑ

(Notes and Remarks are listed on the next page.)

Note 1.	Current flowing to VDD.
Note 2.	When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and high-speed system clock are stopped.
Note 3.	Current flowing only to the real-time clock 2 (RTC2) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
Note 4.	Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
Note 5.	Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
Note 6.	Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
Note 7.	Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
Note 8.	Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
Note 9.	Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
Note 10.	Current flowing to AVDD.
Note 11.	Current flowing into AVREFP.
Note 12.	Current consumed by generating the internal reference voltage (1.45 V).

- **Note 13.** Current flowing only to the operational amplifier. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IAMP when the operational amplifier is operating in operating mode, HALT mode, or STOP mode.
- Note 14. The values include the operating current of the operational amplifier reference current circuit.
- Remark 1. fiL: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- **Remark 4.** Temperature condition of the TYP. value is $TA = 25^{\circ}C$.

		- ,	- /				()
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Self-programming operating current	IFSP Notes 1, 3				2.0	12.20	mA
BGO current	IBGO Notes 1, 2				2.0	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation AVREFP = VDD = 3.0 V TA = -40 to +85°C	The mode is performed Note 5		0.50	0.60	mA
			The A/D conversion operations are performed Note 1		0.60	0.75	mA
			The A/D conversion operations are performed Note 4		420	720	μA
		ADC operation AVREFP = VDD = 3.0 V TA = +85 to +105°C	The mode is performed Note 5		0.50	1.10	mA
			The A/D conversion operations are performed Note 1		0.60	1.34	mA
			The A/D conversion operations are performed Note 4		420	720	μA
		Simplified SPI	TA = -40 to +85°C		0.70	0.84	mA
	(CSI)/UART operation	TA = +85 to +105°C		0.70	1.54	mA	

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/2)

Note 1. Current flowing to VDD.

Note 2. Current flowing during programming of the data flash.

Note 3. Current flowing during self-programming.

Note 4. Current flowing to AVDD.

Note 5. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/I1D User's Manual.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 3. fcLK: CPU/peripheral hardware clock frequency

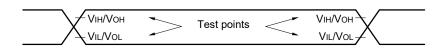
Remark 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

2.4 AC Characteristics

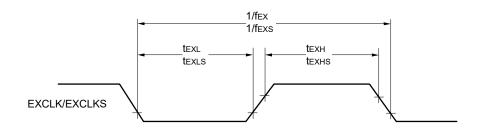
(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)
$(T_A = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{\text{DD}} = \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

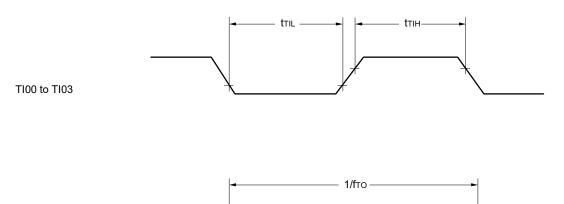
•		•	6 V, Vss = AVss = 0 V	1				(1/2
Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle	Тсү	Main system clock	,	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0.04167		1	μs
(minimum instruction execution time)		(fmain) operation	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
			LS (low-speed main) mode	1.8 V ≤ V _{DD} ≤ 3.6 V PMMC. MCSEL = 0	0.125		1	μs
				1.8 V ≤ V _{DD} ≤ 3.6 V PMMC. MCSEL = 1	0.25		1	
			LP (low-power main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1		μs	
			LV (low-voltage main) mode	1.8 V ≤ VDD ≤ 3.6 V	0.25		1	μs
				1.6 V ≤ VDD < 1.8 V	0.34		1	
		Subsystem clock (fsub) operation	fsx	1.8 V ≤ VDD ≤ 3.6 V	28.5	30.5	31.3	μs
			fı∟	1.8 V ≤ VDD ≤ 3.6 V		66.7		-
		In the self- programming mode	HS (high-speed main) mode	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	0.04167		1	μs
				$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
			LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	0.25		1	μs
External system	fEX	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	/		1.0		20.0	MHz
clock frequency		2.4 V ≤ VDD <2.7 V	,		1.0		16.0	MHz
		1.8 V ≤ VDD <2.4 V	,		1		8	MHz
		1.6 V ≤ V _{DD} <1.8 V	,		1		4	MHz
	fexs				32		35	kHz
External system	texh, texL	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	/		24			ns
clock input high-level		2.4 V ≤ V _{DD} <2.7 V			30			ns
width, low-level width		1.8 V ≤ V _{DD} <2.4 V			60			ns
		1.6 V ≤ VDD <1.8 V			120			ns
	texhs, texls				13.7			μs
TI00 to TI03 input high-level width, low-level width	ttiH, tti∟				1/fмск + 10			ns

Remark fMCK: Timer array unit operation clock frequency

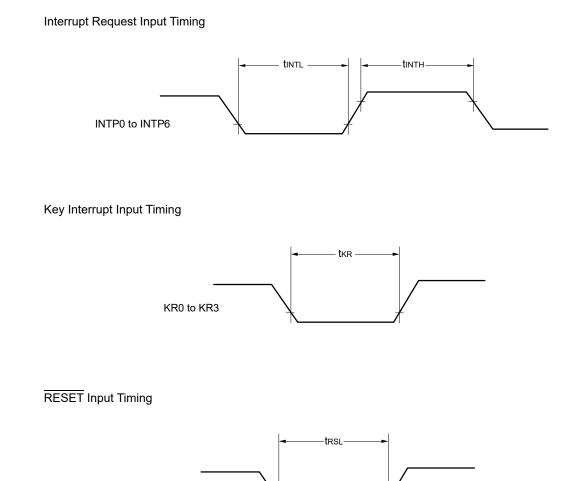

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3))

Items	Symbol fto	Conditions		MIN.	TYP.	MAX.	Unit
TO00 to TO03 output frequency		HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			4	
		LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			4	
		LP (low-power main) mode	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			0.5	
		LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			2	
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			8	MHz
frequency			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			4	
		LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V			4	
		LP (low-power main) mode	1.8 V ≤ V _{DD} ≤ 3.6 V			1	
		LV (low-voltage main) mode	1.8 V ≤ V _{DD} ≤ 3.6 V			4	
			1.6 V ≤ V _{DD} < 1.8 V			2	
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTP6	1.6 V ≤ VDD ≤ 3.6 V	1			μs
Key interrupt input low-level width	tкr	KR0 to KR3	1.8 V ≤ VDD ≤ 3.6 V	250			ns
			1.6 V ≤ VDD < 1.8 V	1			μs
RESET low-level width trsL		10			μs		


(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)


AC Timing Test Points

External System Clock Timing



TI/TO Timing

RESET

2.5 Peripheral Functions Characteristics

AC Timing Test Points

Vін/Vон VIH/VOH Test points ~ VIL/VOL VIL/VOL -

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		ower main) ode		ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		fмск/6		fмск/6		fмск/6		fмск/6	bps
Note 1	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2		4.0		1.3		0.1		0.6	Mbps	
		1.8 V ≤ V _{DD} ≤ 3.6 V	-			fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2	-	_		1.3		0.1		0.6	Mbps
		1.7 V ≤ V _{DD} ≤ 3.6 V	-		-	_	-	_		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2	-	_	-	_	-	_		0.6	Mbps
		1.6 V ≤ V _{DD} ≤ 3.6 V	-	_	-	_	-	_		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2		_	-	_	-	_		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

 Note 2.
 The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode:
 24 MHz (2.7 V ≤ VDD ≤ 3.6 V) 16 MHz (2.4 V ≤ VDD ≤ 3.6 V)

 LS (low-speed main) mode:
 8 MHz (1.8 V ≤ VDD ≤ 3.6 V)

 LP (low-power main) mode:
 1 MHz (1.8 V ≤ VDD ≤ 3.6 V)

 LV (low-voltage main) mode:
 4 MHz (1.6 V ≤ VDD ≤ 3.6 V)

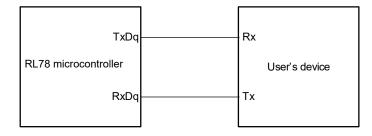
Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

$(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

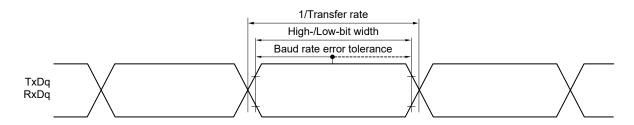
Parameter	Symbol	Conditions	HS (high-spee	Unit	
Faranielei	Symbol	Conditions	MIN.	MAX.	Offic
Transfer rate Note 1		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		fмск/12	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK ^{Note 2}		2.0	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:


HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$)

16 MHz $(2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V})$


Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2) During communication at same potential (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

•					-						
Parameter	Symbol	Conditions	HS (high-s Mo	peed main) ode	· · ·	oeed main) ode	LP (Low-po mo	,	LV (low-vol Mc	tage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ fc∟к/2	83.3		250		2000		500		ns
SCKp high-/low-level width	tĸ∟1		tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsıĸı		33		110		110		110		ns
SIp hold time (from SCKp↑) Note 2	tksi1		10		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF Note 4		10		20		20		20	ns

$(T_A = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(3) During communication at same potential (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Co	nditions	HS (higl main)	h-speed Mode		/-speed Mode		v-power mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkCY1	tĸcy1 ≥ fclĸ/4	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	167		500		4000		1000		ns
time			$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	250								
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	—								
			$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	—		—		—				
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	—		—		—				
SCKp high-/ low-level	tкн1, tк∟1	2.7 V ≤ V _{DD} ≤ 3	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V} $			tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
width		2.4 V ≤ V _{DD} ≤ 3	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$									
		1.8 V ≤ VDD ≤ 3	1.8 V ≤ VDD ≤ 3.6 V									
		1.7 V ≤ V _{DD} ≤ 3	.6 V	—		—		—		tксү1/2 -		
		1.6 V ≤ VDD ≤ 3	.6 V	—		—		—		100		
Slp setup	tsik1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$.6 V	58		110		110		110		ns
time (to SCKp↑)		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$.6 V	75								
Note 1		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$.6 V	—								
		$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$.6 V	—		—		—		220]
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$.6 V	—		—		—				
SIp hold	tksi1	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$.6 V	19		19		19		19		ns
time (from SCKp↑)		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$.6 V	—								
Note 2		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$.6 V	—		—		—				
Delay time	tks01	C = 30 pF	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		33.4		33.4		33.4		33.4	ns
from SCKp↓ to SOp		Note 4	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		_	1						
output Note 3			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		_		_		_	1		

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

$(T_A = +85 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spee	HS (high-speed main) Mode		
Falameter	Symbol		onduions	MIN.	MAX.	Unit	
SCKp cycle time	tксү1	tксү1 ≥ fcLк/4	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	250		ns	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		500		ns	
SCKp high-/low-level width	tĸнı, tĸ∟ı	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		tkcy1/2 - 36		ns	
	2.4 V ≤ V _{DD} ≤ 3.6 V		6 V	tkcy1/2 - 76		ns	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$2.7 V \leq V_{DD} \leq 3.1$	6 V	66		ns	
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.$	6 V	133		ns	
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns	
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF Note 4			50	ns	

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(1/2)

(4) During communication at same potential (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

14 40 10		$2, 1.6 V \ge AVDD$	100 - 0.0 1,			•,						
Parameter	Symbol	Cond	ditions		peed main) ode		oeed main) ode		w-power mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	$2.7~V \leq V_{DD} \leq 3.6~V$	fмск > 16 MHz	8/fмск		-	_	—	_	—	_	ns
Note 5			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		6/fмск		
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		6/fмск and 500		6/fмск		6/fмск		6/fмск		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		6/fмск		6/fмск		6/fмск		
		$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		_		_				
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		—		—				
SCKp high-/ low-level width	tкн2, tкL2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_								
		$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		—		—		—		tксү2/2		
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-		—		—		- 66		
SIp setup time (to SCKp↑)	tsıк2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
Note 1		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		1/fмск + 30								
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_								
		$1.7~V \leq V_{DD} \leq 3.6~V$		—		_		_		1/fмск		
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		-		—		+ 40		
SIp hold time (from SCKp↑)	tĸsı2	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Note 2		$1.8~V \leq V_{DD} \leq 3.6~V$		—								
		$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		—		—		—		1/fмск		
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		—		_		—		+ 250		
Delay time from SCKp↓ to SOp	tĸso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110		2/fмск + 110	ns
output ^{Note 3}			$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		2/fмск + 75							
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		_							
			$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		_		_		2/fмск	
			$1.6~V \leq V_{DD} \leq 3.6~V$		—		—		-		+ 220	

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

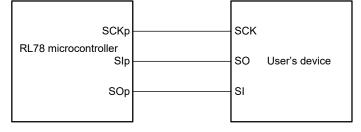
Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

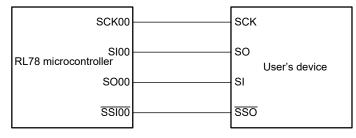
RENESAS

(2/2)

(4) During communication at same potential (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)


(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol		Conditions	HS (high-s Mo	,	LS (low-sp Mo	oeed main) ode	· ·	ower main) ode	``	tage main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SSI00 setup time	tssiĸ	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		ns
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	200		200		200		200	200	
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	_								
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	_		_		_		400		
		DAPmn = 1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1/fмск + 120		1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	-								
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-		—		—		1/fмск + 400		
SSI00 hold time	tkssi	DAPmn = 0	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1/fмск + 120		1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	-								
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-		—		—		1/fмск + 400		
		DAPmn = 1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	120		120		120		120		ns
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	200		200		200		200		1
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	_								
			1.6 V ≤ V _{DD} < 1.8 V	_		_		_		400		1


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Simplified SPI (CSI) mode connection diagram (during communication at same potential)

Simplified SPI (CSI) mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01)

Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

(1/2)

(4) During communication at same potential (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

$(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Demonster	Ourseland	Quad	4°	HS (high-speed	main) Mode	Unit
Parameter	Symbol	Cond	lions	MIN.	MAX.	Unit
SCKp cycle time Note 5	tксү2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.6 \text{ V}$	fмск > 16 MHz	16/fмск		ns
		fмск ≤ 16 MHz		12/fмск		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$		12/fмск and 1000		ns
SCKp high-/low-level width	tkh2, tkl2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		tксү2/2 - 16		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		1/fмск + 40		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	C = 30 pF Note 4 2.7 V ≤ V _{DD} ≤ 3.6 V			2/fмск + 66	ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$			2/fмск + 113	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

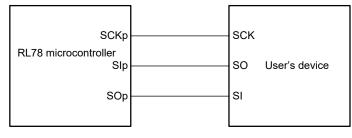
Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2/2)

RL78/I1D

(4) During communication at same potential (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

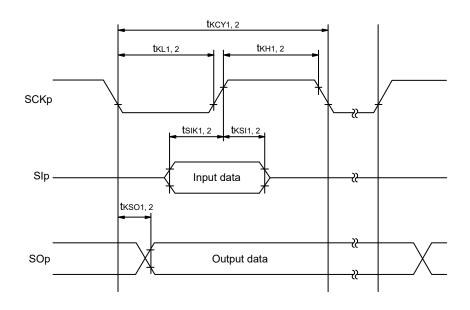

$(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Parameter	Cumph of		Conditions	HS (high-spee	d main) Mode	Unit
Parameter	Symbol		Conditions	MIN.	MAX.	Unit
SSI00 setup time	tssik	DAPmn = 0	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	240		ns
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.7 \text{ V}$	400		ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1/fмск + 240		ns
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	2.7 V ≤ V _{DD} ≤ 3.6 V	1/fмск + 240		ns
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1/fмск + 400		ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	240		ns
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	400	400	

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

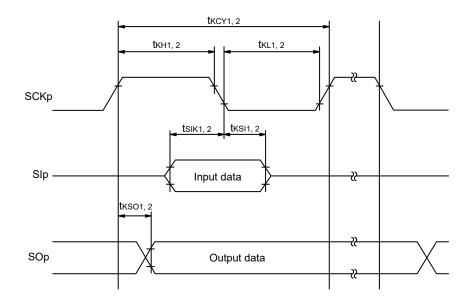
Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Simplified SPI (CSI) mode connection diagram (during communication at same potential)



Simplified SPI (CSI) mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

SCK00	SCK
SI00 RL78 microcontroller	SO User's device
SO00	SI
SSI00	SSO


Remark 1. p: CSI number (p = 00, 01) **Remark 2.** m: Unit number, n: Channel number (mn = 00, 01)

RENESAS

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01) Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

(5) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions		speed main) ode		beed main) bde	-	w-power mode	-	-voltage Mode	Unit
	,		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		1000 Note 1		400 Note 1		250 Note 1		400 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ \mbox{C}_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 \mbox{ k}\Omega \end{array}$		-							
		$1.8 V \le V_{DD} < 2.7 V,$ C _b = 100 pF, R _b = 5 kΩ		-		300 Note 1		250 Note 1		300 Note 1	
		$1.7 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$		-		-		-		250 Note 1	
		$1.6 V \le V_{DD} < 1.8 V,$ C _b = 100 pF, R _b = 5 kΩ		-		—		—			
Hold time when SCLr = "L"	tLow	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\rm DD} \leq 3.6 \mbox{ V}, \\ \mbox{ C}_{\rm b} = 100 \mbox{ pF}, \mbox{ R}_{\rm b} = 3 \mbox{ k}\Omega \end{array}$	-								
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 2.7 \ V, \\ C_{b} = 100 \ p\text{F}, \ R_{b} = 5 \ k\Omega \end{array}$	-		1550		1550		1550		
		$1.7 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	-		—		-		1850		
		$1.6 V \le V_{DD} < 1.8 V,$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-		—		-				
Hold time thigh when SCLr = "H"	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	475		1150		1150		1150		ns	
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ \mbox{C}_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 \mbox{ k}\Omega \end{array}$	-								
		$1.8 V \le V_{DD} < 2.7 V,$ C _b = 100 pF, R _b = 5 kΩ	-		1550		1550		1550		
		$1.7 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	-		—		_		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\rm DD} < 1.8 \mbox{ V}, \\ \mbox{ C}_{\rm b} = 100 \mbox{ pF}, \mbox{ R}_{\rm b} = 5 \mbox{ k}\Omega \end{array}$	_		_		-				
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ \mbox{ C}_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 \mbox{ k}\Omega \end{array}$	-								
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 5 \ k\Omega \end{array}$	-		1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		
		$1.7 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	-		_				1/fмск + 290		
		$1.6 V \le V_{DD} < 1.8 V,$ C _b = 100 pF, R _b = 5 kΩ	-		—				Note 2		
Data hold time (transmission)	THD: DAT	$2.7 V \le V_{DD} \le 3.6 V$, $C_b = 50 \text{ pF}$, $R_b = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	0	305	ns
	x111030011)	$1.8 V \le V_{DD} \le 3.6 V,$ C _b = 100 pF, R _b = 3 kΩ	-	—		355		355		355	
		$1.8 V \le V_{DD} < 2.7 V,$ C _b = 100 pF, R _b = 5 kΩ	-	_							
		1.7 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-	_	-	—		—		405	
		$1.6 V \le V_{DD} < 1.8 V,$ C _b = 100 pF, R _b = 5 kΩ	-	-	—	—	—	—			

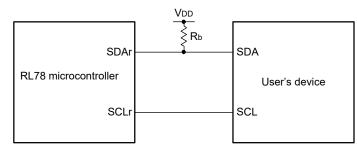
(Notes and Caution are listed on the next page.)

- **Note 1.** The value must also be equal to or less than fMCK/4.
- Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

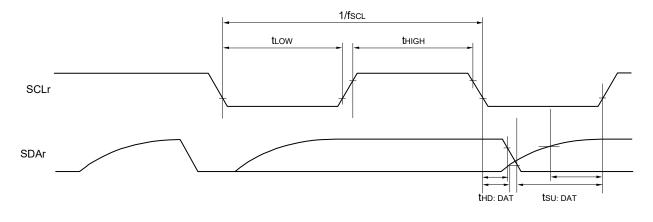
(5) During communication at same potential (simplified I²C mode)

Deveryotan	Queen had	O an dilii ana	HS (high-speed	main) Mode	Unit
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},\\ \text{C}_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLow	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tнigн	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	1/fMCK + 220 Note 2		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$	1/fMCK + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},\\ \text{C}_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega \end{array}$	0	770	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$	0	1420	ns

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)


Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- Remark 2. r: IIC number (r = 00, 01), g: PIM number (g = 5), h: POM number (h = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter Symbol			Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		w-power) mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$2.7 V \le V_{DD} \le 3.6 V$, $2.3 V \le V_b \le 2.7 V$		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
Notes 1, 2			Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		4.0		1.3		0.1		0.6	Mbps
			$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3		0.1		0.6	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

(1/2)

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $V_{DD} \ge Vb$.

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

 $\begin{array}{ll} \text{HS (high-speed main) mode:} & 24 \ \text{MHz} \ (2.7 \ \text{V} \le \text{V}_{\text{DD}} \le 3.6 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \le \text{V}_{\text{DD}} \le 3.6 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \le \text{V}_{\text{DD}} \le 3.6 \ \text{V}) \\ \text{LP (low-power main) mode:} & 1 \ \text{MHz} \ (1.8 \ \text{V} \le \text{V}_{\text{DD}} \le 3.6 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \le \text{V}_{\text{DD}} \le 3.6 \ \text{V}) \\ \end{array}$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(2/2)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter	Symbol		Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 2}		Transmission	$2.7 V \le V_{DD} \le 3.6 V,$ $2.3 V \le V_b \le 2.7 V$		Note 1		Note 1		Note 1		Note 1	bps
			$\label{eq:constraint} \begin{array}{l} \mbox{Theoretical value of the} \\ \mbox{maximum transfer rate} \\ \mbox{C}_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega, \\ \mbox{V}_b = 2.3 \mbox{ V} \end{array}$		1.2 Note 2		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps
			$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Notes 3, 4		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \ p\text{F}, \ R_b = 5.5 \ k\Omega, \\ V_b = 1.6 \ V \end{array}$		0.43 Note 5		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times 100 [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

1

1

- **Note 3.** Use it with $V_{DD} \ge V_b$.
- **Note 4.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times 100 [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 5.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

RENESAS

(1/2)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter	Symbol		Conditions	HS (high-	speed main) Mode	Unit
rarameter	Gymbol		Conditions	MIN.	MAX.	Onic
Transfer rate Notes 1, 2		Reception	$V \le V_{DD} \le 3.6 V$, $V \le V_b \le 2.7 V$		f _{MCK} /12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		2.0	Mbps
			$V \le V_{DD} < 3.3 V,$ $V \le V_b \le 2.0 V$		fMCK/12 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate $f_{\mbox{MCK}}$ = f_{\mbox{CLK}} $^{\mbox{Note 3}}$		0.66	Mbps

$(T_A = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $V_{DD} \ge V_{b}$.

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V) 16 MHz (2.4 V \leq VDD \leq 3.6 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(2/2)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter	Symbol			Conditions	HS (high-	speed main) Mode	Unit
i didineter	Cymbol		•	Conditions	MIN.	MAX.	Offic
Transfer rate Note 2		Transmission		$V \le V_{DD} \le 3.6 V$, $V \le V_b \le 2.7 V$		Note 1	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 kΩ, V_b = 2.3 V		1.2 Note 2	Mbps
				$V \leq V_{DD} < 3.3 \text{ V},$ $V \leq V_{b} \leq 2.0 \text{ V}$		Notes 3, 4	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R _b = 5.5 kΩ, V _b = 1.6 V		0.43 Note 5	Mbps

$(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq VDD \leq 3.6 V and 2.3 V \leq Vb \leq 2.7 V

[bps]
{-C_b × R_b × ln (1 -
$$\frac{2.0}{V_b}$$
)} × 3

1

Baud rate error (theoretical value) =
$$\frac{1}{\frac{1}{\text{Transfer rate} \times 2}} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}$$

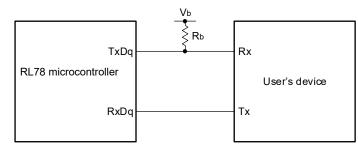
$$(\frac{1}{\frac{1}{\text{Transfer rate}}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

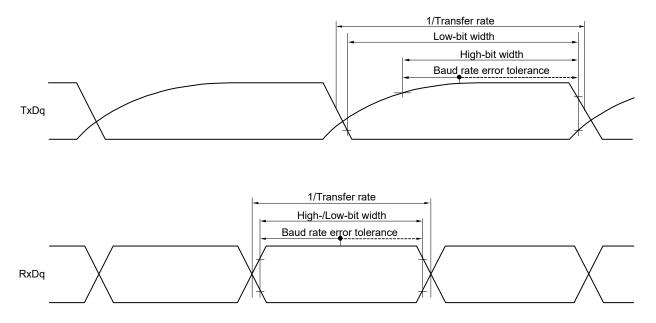
Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

1

- Note 3. Use it with $V_{DD} \ge V_{b}$
- Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


$$\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

_____ [bps]


* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(7) Communication at different potential (2.5 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Sym bol	Conditions		HS (hig main)	h-speed Mode	`	/-speed Mode	``	v-power mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ fc∟к/2	$\label{eq:kcy1} \begin{array}{l} $t_{\text{KCY1}} \geq f_{\text{CLK}}/2$ & $2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V},$$$$$$$$2.7 \ \text{V},$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$			1500		1500		1500		ns
SCKp high-level width	tкнı	$2.7 V \le V_{DD} \le 3$ $2.3 V \le V_b \le 2$ $C_b = 20 \text{ pF, } R_b$	7 V,	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tĸ∟1	$2.7 V \le V_{DD} \le 3$ $2.3 V \le V_b \le 2$ $C_b = 20 \text{ pF, } R_b$	7 V,	tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
Slp setup time (to SCKp↑) ^{Note 1}	tsıĸ1	$2.3 V \leq V_b \leq 2.$	2.7 V ≤ V _{DD} ≤ 3.6 V, 2.3 V ≤ V _b ≤ 2.7 V, C _b = 20 pF, R _b = 2.7 kΩ			479		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$2.7 V \le V_{DD} \le 3$ $2.3 V \le V_b \le 2$. $C_b = 20 \text{ pF, } R_b$	7 V,	10		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$2.7 V \le V_{DD} \le 3$ $2.3 V \le V_b \le 2$ $C_b = 20 \text{ pF, } R_b$	7 V,		130		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$2.7 V \le V_{DD} \le$ $2.3 V \le V_b \le 2$ $C_b = 20 \text{ pF, R}$	2.7 V,	33		110		110		110		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$2.3 \text{ V} \leq \text{V}_b \leq 2$	2.7 V ≤ V _{DD} ≤ 3.6 V, 2.3 V ≤ V _b ≤ 2.7 V, C _b = 20 pF, R _b = 2.7 kΩ			10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$2.3 \text{ V} \leq \text{V}_{b} \leq 2$	$2.7 V ≤ V_{DD} ≤ 3.6 V,$ $2.3 V ≤ V_b ≤ 2.7 V,$ $C_b = 20 pF, R_b = 2.7 kΩ$		10		10		10		10	ns

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(1/2)

(8) Communication at different potential (1.8 V, 2.5 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Sym bol		Conditions		h-speed Mode	LS (low main)	-speed Mode	``	v-power mode	`	-voltage Mode	Unit	
	001				MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCKp cycle time	tксү1	tксү1 ≥ fc∟к/4	$CY1 \ge f_{CLK}/4 2.7V \le V_{DD} \le 3.6 V,$ 2.3 V $\le V_b \le 2.7 V,$ C _b = 30 pF, R _b = 2.7 kΩ			1150		1150		1150		ns	
			$\begin{split} 1.8 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1150		1150		1150		1150		ns	
SCKp high- level width	tĸн1	$2.7 V \le V_{DD} \le 30 PF, R_b$	3.6 V, 2.3 V ≤ Vb ≤ 2.7 V, = 2.7 kΩ	tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns	
		1.8 V ≤ V _{DD} < 3 C _b = 30 pF, R _b	0.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note} , = 5.5 kΩ	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns	
SCKp low-level width	tĸ∟1		$7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $_{b} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$			tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns	
		1.8 V ≤ V _{DD} < 3 C _b = 30 pF, R _b	3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note} , = 5.5 kΩ	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns	

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Note Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

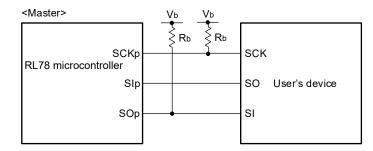
(8) Communication at different potential (1.8 V, 2.5 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

(2/2)

Parameter	Sym bol	Conditions		jh-speed Mode	``	v-speed Mode		w-power mode	``	-voltage Mode	Unit
	100		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time	tsıĸı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		479		ns
(to SCKp↑) Note 1		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		479		ns
SIp hold time (from SCKp↑)	tksi1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	19		19		19		19		ns
Note 1		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b = 30 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↓	tks01	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		195		195		195		195	ns
to SOp output ^{Note 1}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		483		483		483		483	ns
SIp setup time	tsıĸı	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	44		110		110		110		ns
(to SCKp↓) Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		110		ns
SIp hold time (from SCKp↓)	tĸsı1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{R}_{b} = 2.7 \text{ k}\Omega$	19		19		19		19		ns
Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note } 3, \\ C_b = 30 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↑	tkso1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{R}_{b} = 2.7 \text{ k}\Omega$		25		25		25		25	ns
to SOp output ^{Note 2}	o SOp utput Note 2	$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25		25	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

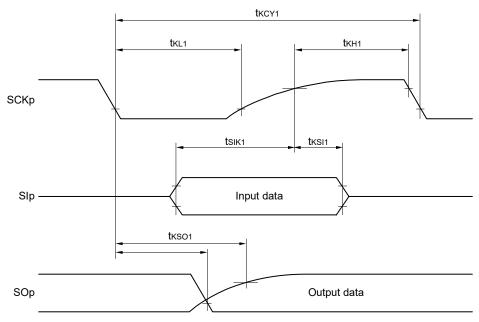
Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

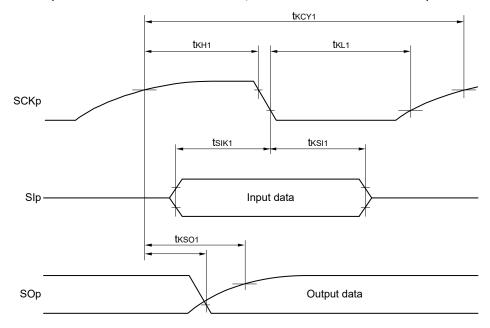
(**Remarks** are listed on the next page.)

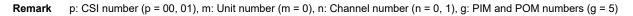
Simplified SPI (CSI) mode connection diagram (during communication at different potential)



- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))



Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(1/2)

(8) Communication at different potential (1.8 V, 2.5 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

$(TA = +85 \text{ to } 105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Parameter	Cumhal		Conditions	HS (high-spee	d main) Mode	Unit
Parameter	Symbol		Conditions	MIN.	MAX.	Unit
SCKp cycle time	tксү1	$\label{eq:kcy1} \begin{array}{l} $ t_{KCY1} \geq f_{CLK} / 4 $ $ 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 30 \ pF, $ R_b = 2.7 \ k\Omega $ \end{array}$		1000		ns
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $C_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega$			ns
SCKp high-level width	tкн1	2.7 V ≤ V _{DD} ≤ C _b = 30 pF, Rt	$3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $_{o} = 2.7 \text{ k}\Omega$	tксү1/2 - 340		ns
		2.4 V ≤ V _{DD} < C _b = 30 pF, Rt	3.3 V, 1.6 V \leq V _b \leq 2.0 V, = 5.5 kΩ	tксү1/2 - 916		ns
SCKp low-level width	tĸ∟1		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω			ns
		$2.4 V \le V_{DD} \le C_b = 30 \text{ pF, Rt}$	3.3 V, 1.6 V \leq V _b \leq 2.0 V, = 5.5 kΩ	tkcy1/2 - 100		ns

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

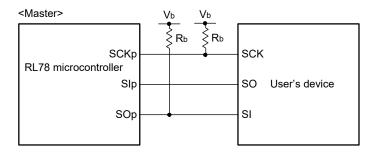
$(TA = +85 \text{ to } 105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions		peed main) ode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	354		ns
		$ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega $	958		ns
Slp hold time (from SCKp↑) ^{Note 1}	tksii	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V , 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 3}, \\ C_b = 30 \; pF , \; R_b = 5.5 \; k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		390	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		966	ns
Slp setup time (to SCKp↓) ^{Note 2}	tsiĸ1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	220		ns
Slp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V\!\!\!, 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 3}, \\ C_b = 30 \; pF\!\!\!, \; R_b = 5.5 \; k\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		50	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

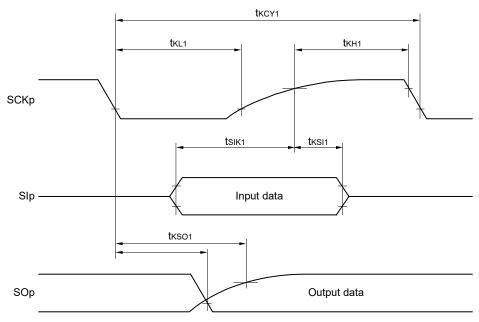
Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Note 3. Use it with $V_{DD} \ge V_b$.

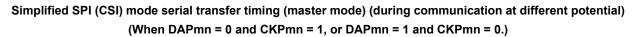
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

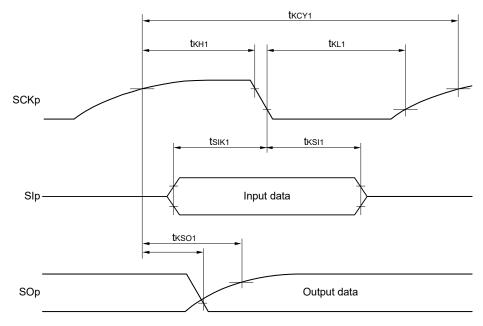
(**Remarks** are listed on the next page.)

Simplified SPI (CSI) mode connection diagram (during communication at different potential)



- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)


Remark 3. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

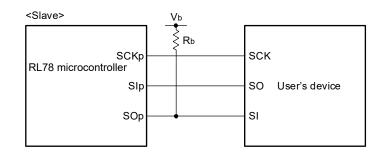
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

(9) Communication at different potential (1.8 V, 2.5 V) (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symb ol	Conditions			HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcv2	$2.7 V \le VDD \le 3.6 V, 2.3$ $V \le Vb \le 2.7 V$	20 MHz < fмск ≤ 24 MHz	16/fмск		—		—		—		ns
			16 MHz < fмск≤ 20 MHz	14/fмск		-		—		—		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		—		_		—		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		—		ns
			fMCK ≤ 4 MHz	6/fмск		10/fмск		10/fмск		10/fмск		ns
		$1.8 V \le VDD < 3.3 V, 1.6$ V $\le Vb \le 2.0 V$ Note 2	20 MHz < fмск ≤ 24 MHz	36/fмск		—		—		—		ns
			16 MHz < fмск ≤ 20 MHz	32/fмск		-		-		-		ns
			8 MHz < fмск ≤ 16 MHz	26/fмск		_		_		—		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		—		-		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	tкн2, tкL2	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 2		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsıк2	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 2		1/fмск + 30		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 5}	tkso2	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, \; 2.3 \; \text{V} \leq V_{b} \leq 2.7 \; \text{V}, \\ C_{b} = 30 \; \text{pF}, \; R_{b} = 2.7 \; \text{k}\Omega \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			2/fмск + 573		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(TA = -40 to 85° C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

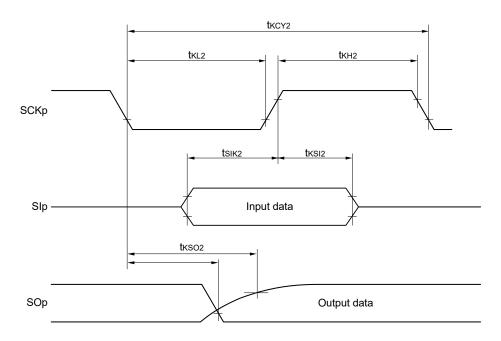
(Notes and Caution are listed on the next page. Remarks are listed on the page after the next page.)


RL78/I1D

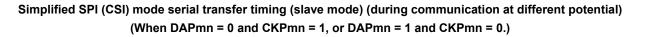
- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Note 2.** Use it with $V_{DD} \ge V_b$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

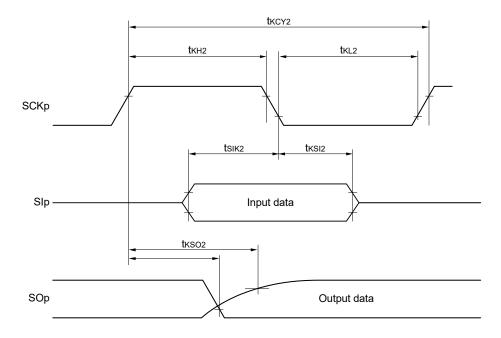
(**Remarks** are listed on the next page.)

Simplified SPI (CSI) mode connection diagram (during communication at different potential)


Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)


Remark 3. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

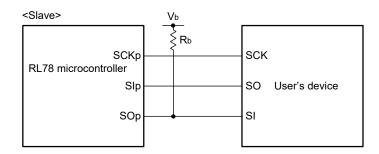
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

(9) Communication at different potential (1.8 V, 2.5 V) (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Con	HS (high-spe			
Parameter		Con	MIN.	MAX.	Unit	
SCKp cycle time Note 1	tксү2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$	20 MHz < fмск ≤ 24 MHz	32/fмск		ns
		$2.3 V \le V_b \le 2.7 V$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ 1.6 V $\le \text{V}_b \le 2.0 \text{ V}$ Note 2	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
			16 MHz < fмск ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмск ≤ 8 MHz	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkh2, tkl2	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		tксү2/2 - 36		ns
		2.4 V ≤ V _{DD} < 3.3 V, 1.6 \	tксү2/2 - 100		ns	
SIp setup time (to SCKp↑) ^{Note 3}	tsıĸ2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}$	1/fмск + 40		ns	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.6 \text{ V}$	1/fмск + 60		ns	
SIp hold time (from SCKp↑) Note 4 tksi2			1/fмск + 62		ns	
Delay time from SCKp↓ to SOp output ^{Note 5}	tĸso2	2.7 V ≤ V _{DD} ≤ 3.6 V, 2.3 \ C _b = 30 pF, R _b = 2.7 kΩ		2/fмск + 428	ns	
		2.4 V ≤ V _{DD} < 3.3 V, 1.6 \ C _b = 30 pF, R _b = 5.5 kΩ		2/fмск + 1146	ns	

$(TA = +85 \text{ to } 105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

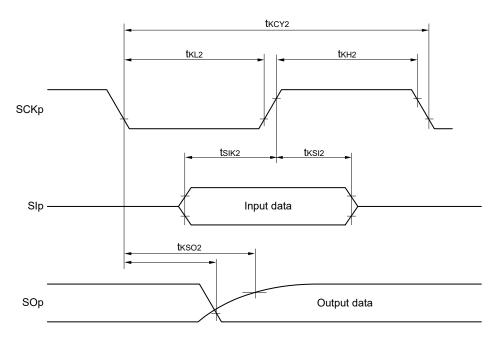
(Notes and Caution are listed on the next page. Remarks are listed on the page after the next page.)


RL78/I1D

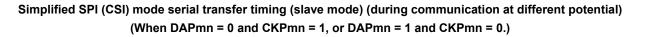
- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $V_{DD} \ge V_b$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

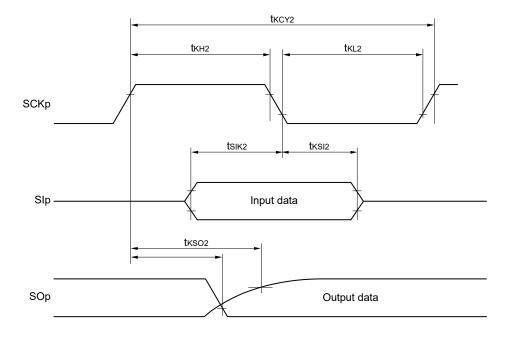
(**Remarks** are listed on the next page.)

Simplified SPI (CSI) mode connection diagram (during communication at different potential)


Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)


Remark 3. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

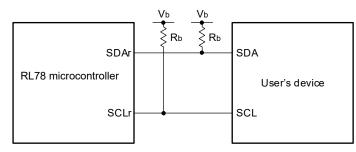
(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Parameter	Sym	Conditions		h-speed Mode	``	/-speed Mode		v-power mode		-voltage Mode	Unit
	bol		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\begin{array}{l} 1.8 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		300 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
Hold time when SCLr	tLow	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	475		1550		1550		1550		ns
= "L"		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1150		1550		1550		1550		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	1550		1550		1550		1550		ns
Hold time thigh when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		610		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	600		610		610		610		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	610		610		610		610		ns
Data setup time (reception)	tsu: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	1/fмск + 135 Note 3		1/fмск + 190 Note 2		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 190 Note 3		ns						
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 100 \ p\text{F}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$	1/fмск + 190 Note 3		ns						
Data hold time (transmission)	thd: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	0	355	ns
		$\begin{array}{l} 1.8 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	0	405	0	405	0	405	0	405	ns

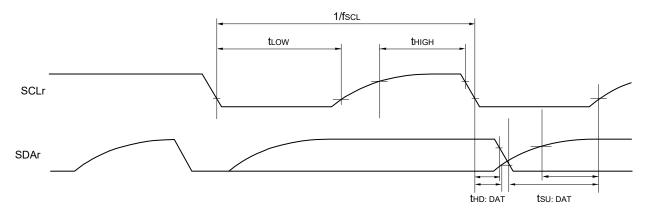
(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Use it with $V_{DD} \ge V_b$.


Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 01), g: PIM, POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

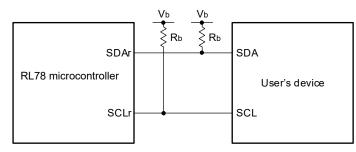
(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Devenenter	Ourseland	Que ditions	HS (high-speed	main) Mode	1.1 14
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 Note 1	kHz
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2,} \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	4600		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	= 100 pF, R _b = 5.5 kΩ	ns	
Hold time when SCLr = "H"	= "H" thigh 2.7 V ≤ VDD ≤ 3.6 V, 2.3 V ≤ Vb ≤ 2.7 V, 500 Cb = 50 pF, Rb = 2.7 kΩ $C_{b} = 50 pF$, Rb = 2.7 kΩ $C_{b} = 50 pF$, Rb = 2.7 kΩ		ns		
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1830		kHz ns ns ns ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 340 Note 3		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 760 Note 3		ns
		$ \begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array} $	1/fMCK + 570 Note 3	ns ns	
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2,} \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$	0	1215	ns

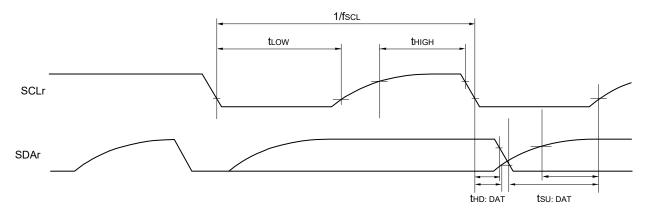
(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Use it with $V_{DD} \ge V_b$.


Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 01), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AV _{REFP} Reference voltage (-) = AV _{REFM}	• • • •	Reference voltage (+) = Internal reference voltage Reference voltage (-) = AVss
High-accuracy channel; ANI0 to ANI13	Refer to 2.6.1 (1) .	Refer to 2.6.1 (2) .	Refer to 2.6.1 (5) .
(input buffer power supply: AVDD)	Refer to 2.6.1 (7).	Refer to 2.6.1 (7) .	Refer to 2.6.1 (10) .
Standard channel; ANI16 to ANI18	Refer to 2.6.1 (3) .	Refer to 2.6.1 (4) .	
(input buffer power supply: Voo)	Refer to 2.6.1 (8) .	Refer to 2.6.1 (9) .	
Internal reference voltage,	Refer to 2.6.1 (3) .	Refer to 2.6.1 (4) .	_
Temperature sensor output voltage	Refer to 2.6.1 (8) .	Refer to 2.6.1 (9) .	

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI13

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$		8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5	
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	6.75			
		ADTYP = 0, 8-bit resolution Note 2	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	13.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	2.5625			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	5.125			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.0	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	1
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.0	
Analog input voltage	VAIN		•	0		AVREFP	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit	
			$1.8 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1		
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2			
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±7.5	LSB	
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0		
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	3.375			μs	
		ADTYP = 0, 10-bit resolution ^{Note 1}	1.8 V ≤ AVDD ≤ 3.6 V	6.75				
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AVDD ≤ 3.6 V	13.5				
		ADTYP = 1,	2.4 V ≤ AVDD ≤ 3.6 V	2.5625				
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	5.125				
			1.6 V ≤ AVDD ≤ 3.6 V	10.25				
Zero-scale error Note 3	Ezs	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±6.0	LSB	
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5		
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB	
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0		
		8-bit resolution	1.6 V ≤ AV _{DD} ≤ 3.6 V			±2.5		
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0		
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.5		
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB	
Note 3		10-bit resolution	1.8 V ≤ AV _{DD} ≤ 3.6 V			±2.0		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5		
Analog input voltage	VAIN	ANI0 to ANI6		0		AVdd	V	

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

(3) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}, 1.6 \text{ V} \le \text{AVREFP} \le \text{AVdd} = \text{Vdd} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V}, \text{AVss} =$
Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±7.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	
Conversion time	tcon∨	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	57.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	3.3125			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±7.0 ±5.5 ±3.0 ±5.0 ±5.0 ±5.0 ±5.0 ±2.5 ±5.0 ±2.5 ±5.0 ±2.5 ±5.0 ±2.5 ±1.5 ±2.0 ±1.5 ±2.0 ±1.5 ±2.0 ±1.5 ±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$				
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
Analog input voltage	VAIN			0		AVREFP	V
		Internal reference voltage (1.8 V ≤ V _{DD} ≤ 3.6 V)			VBGR Note 4		
		Temperature sensor output voltage $(1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$			VTMP25 Note 4		

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(4) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1	
			1.6 V ≤ AV _{DD} ≤ 3.6 V		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.5	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±6.0	
		8-bit resolution	1.6 V ≤ AV _{DD} ≤ 3.6 V			±3.5	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AVDD ≤ 3.6 V	57.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	3.3125			
		8-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$		±5.5	±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0 ±3.5 ±3.5 ±3.0 ±5.5 ±3.0 ±5.5 ±3.0 ±5.5 ±3.0 ±5.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.0 AVDD	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.5	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
Analog input voltage	VAIN		-	0		AVdd	V
		Internal reference voltage (1.8 V \leq VDD \leq 3.6 V)		VBGR Note 4			
		Temperature sensor outµ (1.8 V ≤ V _{DD} ≤ 3.6 V)	V	TMP25 Note	e 4		

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13, ANI16 to ANI18

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Analog input voltage	Vain		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(6) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI13

(TA = +85 to +105°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error ^{Note}	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
Full-scale error Note	EFS	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN			0		AVREFP	V

Note Excludes quantization error (±1/2 LSB).

(7) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	(Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±7.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Full-scale error Note	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Analog input voltage	Vain			0		AVdd	V

Note Excludes quantization error (±1/2 LSB).

(8) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = +85 to +105°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, VSS = 0 V, AVSS = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit	
Overall error Note 1	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±7.0	LSB	
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	4.125			μs	
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	LSB	
Full-scale error Note 1	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	LSB	
Integral linearity error Note 1	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB	
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB	
Analog input voltage	VAIN			0		AVREFP	V	
		Internal reference	VBGR Note 2					
		Temperature sens (2.4 V ≤ V _{DD} ≤ 3.6		V	TMP25 Note	_{AP25} Note 2		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(9) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

 $(T_A = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = 0 \text{ V}, \text{AV}\text{ss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}\text{DD}, \text{Reference voltage (+)} = \text{AV}\text{AV}\text{DD}, \text{Reference voltage (+)} = \text{AV}\text{AV}\text{AV}\text{AV} = \text{AV}\text{AV}\text{AV} = \text{AV}\text{AV} = \text{AV}\text{AV}\text{AV} = \text{AV}\text{AV} = \text{AV} = \text{AV}\text{AV} = \text{AV} = \text{AV}\text{AV} = \text{AV} = \text{AV}$

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±8.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±8.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±8.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.5	LSB
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	LSB
Analog input voltage	VAIN			0		AVdd	V
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V)		VBGR Note 2		2	
		Temperature sensor outp (2.4 V \leq V _{DD} \leq 3.6 V)	V	TMP25 Note	2		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(10) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13, ANI16 to ANI18

 $(T_A = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD}, 2.4 \text{ V} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{AV}_{SS} = 0 \text{ V}, \text{Reference voltage (+) = internal reference voltage, Reference voltage (-) = AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.2 Temperature sensor, internal reference voltage output characteristics

$(TA = -40 \text{ to } 85^{\circ}C, 1.8 \text{ V} \le AVDD = VDD \le 3.6 \text{ V}, \text{ Vss} = AVss = 0 \text{ V})$
(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	5			μs
		1.8 V ≤ V _{DD} < 2.4 V	10			

2.6.3 Comparator

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Input voltage range	lvref0	IVREF0 pin		0		VDD - 1.4 Note	V
	lvref1	IVREF1 pin		1.4 Note		Vdd	V
	lvcmp	IVCMP0, IVCMP1 pins		-0.3		V _{DD} + 0.3	V
Output delay	td	AV _{DD} = 3.0 V Input slew rate > 50 mV/µs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0		μs
			Comparator low-speed mode, window mode		4		μs
Operation stabilization wait time	tсмр			100			μs

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$ $(T_A = +85 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

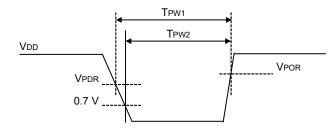
Note In window mode, make sure that Vref1 - Vref0 \ge 0.2 V.

2.6.4 Operational amplifier characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	
(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Common mode input range	Vicm1	Low-power consumption mod	le	0.2		AVDD - 0.5	V
	Vicm2	High-speed mode		0.3		AVDD - 0.6	V
Output voltage range	Vo1	Low-power consumption mod	le	0.1		AVDD - 0.1	V
	Vo2	High-speed mode		0.1		AVDD - 0.1	V
Input offset voltage	Vioff			-10		10	mV
Open gain	Av			60	120		dB
Gain-bandwidth (GB) product	GBW1	Low-power consumption mod	le		0.04		MHz
	GBW2	High-speed mode			1.7		MHz
Phase margin	PM	CL = 20 pF		50			deg
Gain margin	GM	CL = 20 pF		10			dB
Equivalent input noise	Vnoise1	f = 1 kHz	Low-power		230		nV/√Hz
	Vnoise2	f = 10 kHz	consumption mode		200		nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode		90		nV/√Hz
	Vnoise4	f = 2 kHz			70		nV/√Hz
Power supply reduction ratio	PSRR						dB
Common mode signal	CMRR				90		dB
reduction ratio							
Operation stabilization wait	Tstd1	CL = 20 pF	Low-power	650			μs
time		Only operational amplifier is	consumption mode				
	Tstd2	activated ^{Note}	High-speed mode	13			μs
	Tstd3	CL = 20 pF	Low-power	650			μs
		Operational amplifier and reference current circuit are	consumption mode				
	Tstd4	activated simultaneously	High-speed mode	13			μs
Settling time	Tset1	CL = 20 pF	Low-power			750	μs
			consumption mode				
	Tset2		High-speed mode			13	μs
Slew rate	Tslew1	CL = 20 pF	Low-power		0.02		V/µs
			consumption mode				
	Tslew2		High-speed mode		1.1		V/µs
Load current	lload1	Low-power consumption mod	le	-100		100	μA
	lload2	High-speed mode		-100		100	μA
Load capacitance	CL					20	pF

Note


When the operational amplifier reference current circuit is activated in advance.

2.6.5 POR circuit characteristics

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Detection voltage	VPOR	The power supply voltage is rising.	TA = -40 to +85°C	1.47	1.51	1.55	V
			TA = +85 to +105°C	1.45	1.51	1.57	V
	VPDR	The power supply voltage is falling.	TA = -40 to +85°C	1.46	1.50	1.54	V
		Note 1	TA = +85 to +105°C	1.44	1.50	1.56	V
Minimum pulse width Note 2	TPW1	Other than STOP/SUB HALT/SUB RUN	TA = +40 to +105°C	300			μs
	TPW2	STOP/SUB HALT/SUB RUN	TA = +40 to +105°C	300			μs

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.

Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.6 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq AVDD =	$VDD \leq 3.6 V$, $Vss = AVss = 0 V$)
--	---

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	The power supply voltage is rising.	3.07	3.13	3.19	V
			The power supply voltage is falling.	3.00	3.06	3.12	V
		VLVD3	The power supply voltage is rising.	2.96	3.02	3.08	V
			The power supply voltage is falling.	2.90	2.96	3.02	V
		VLVD4	The power supply voltage is rising.	2.86	2.92	2.97	V
			The power supply voltage is falling.	2.80	2.86	2.91	V
		VLVD5	The power supply voltage is rising.	2.76	2.81	2.87	V
			The power supply voltage is falling.	2.70	2.75	2.81	V
		VLVD6	The power supply voltage is rising.	2.66	2.71	2.76	V
			The power supply voltage is falling.	2.60	2.65	2.70	V
		VLVD7	The power supply voltage is rising.	2.56	2.61	2.66	V
			The power supply voltage is falling.	2.50	2.55	2.60	V
		VLVD8	The power supply voltage is rising.	2.45	2.50	2.55	V
			The power supply voltage is falling.	2.40	2.45	2.50	V
		VLVD9	The power supply voltage is rising.	2.05	2.09	2.13	V
			The power supply voltage is falling.	2.00	2.04	2.08	V
		VLVD10	The power supply voltage is rising.	1.94	1.98	2.02	V
			The power supply voltage is falling.	1.90	1.94	1.98	V
		VLVD11	The power supply voltage is rising.	1.84	1.88	1.91	V
			The power supply voltage is falling.	1.80	1.84	1.87	V
		VLVD12	The power supply voltage is rising.	1.74	1.77	1.81	V
			The power supply voltage is falling.	1.70	1.73	1.77	V
		VLVD13	The power supply voltage is rising.	1.64	1.67	1.70	V
			The power supply voltage is falling.	1.60	1.63	1.66	V
Vinimum pulse widt	h	t∟w		300			μs
Detection delay time)					300	μs

(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	The power supply voltage is rising.	3.01	3.13	3.25	V
			The power supply voltage is falling.	2.94	3.06	3.18	V
		VLVD3	The power supply voltage is rising.	2.90	3.02	3.14	V
			The power supply voltage is falling.	2.85	2.96	3.07	V
		VLVD4	The power supply voltage is rising.	2.81	2.92	3.03	V
			The power supply voltage is falling.	2.75	2.86	2.97	V
		VLVD5	The power supply voltage is rising.	2.71	2.81	2.92	V
			The power supply voltage is falling.	2.64	2.75	2.86	V
		VLVD6	The power supply voltage is rising.	2.61	2.71	2.81	V
			The power supply voltage is falling.	2.55	2.65	2.75	V
		VLVD7	The power supply voltage is rising.	2.51	2.61	2.71	V
			The power supply voltage is falling.	2.45	2.55	2.65	V
Minimum pulse width		tLw		300			μs
Detection delay time						300	μs

(2) LVD Detection Voltage of Interrupt & Reset Mode

Parameter	Symbol		Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDA0	VPOC0, VPOC1, VPOC2 = 0, 0, 0, falling reset voltage			1.60	1.63	1.66	V
reset mode	VLVDA1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC0,	VPOC1, VPOC2 = 0, 0, 1, f	alling reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC0,	VPOC1, VPOC2 = 0, 1, 0, f	alling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
VLV				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, f	alling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	1	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

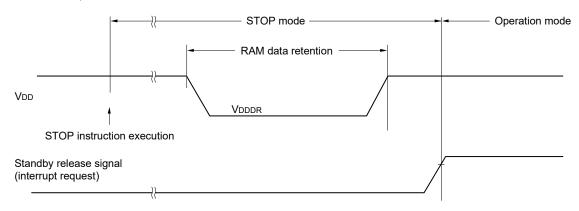
(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol		Conditions			TYP.	MAX.	Unit
Interrupt and	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, falling reset voltage			2.75	2.86	V
reset mode	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V

2.6.7 Power supply voltage rising slope characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.


2.7 RAM Data Retention Characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

 $(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr	TA = -40 to +85°C	1.46 Note		3.6	V
		TA = +85 to +105°C	1.44 Note		3.6	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.8 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$ $(T_A = +85 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year T _A = 25°C ^{Note 4}		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Note 4. This temperature is the average value at which data are retained.

2.9 Dedicated Flash Memory Programmer Communication (UART)

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0	V)
--	----

 $(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the	tsuinit	POR and LVD reset must end			100	ms
initial communication settings are specified Note 1		before the external reset ends.				
How long from when the TOOL0 pin is placed at the	tsu	POR and LVD reset must end	10			μs
low level until an external reset ends ^{Note 1}		before the external reset ends.				
How long the TOOL0 pin must be kept at the low	thd	POR and LVD reset must end	1			ms
level after an external reset ends		before the external reset ends.				
(excluding the processing time of the firmware to						
control the flash memory) Notes 1, 2						

Note 1. Deassertion of the POR and LVD reset signals must precede deassertion of the pin reset signal.

Note 2. This excludes the flash firmware processing time (723 $\mu s).$

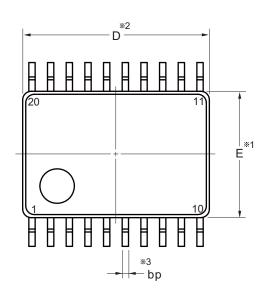
<1> The low level is input to the TOOL0 pin.

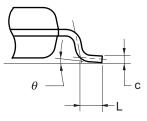
<2> The external reset ends (POR and LVD reset must end before the external reset ends).

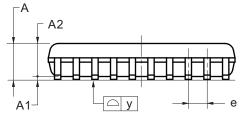
<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.


- tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
- thD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)


3. PACKAGE DRAWINGS


3.1 20-pin package

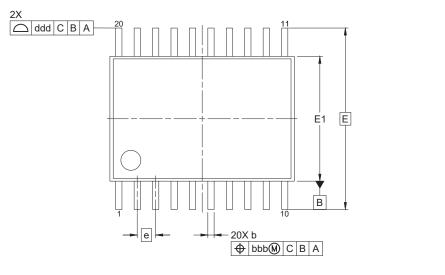
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

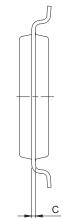
detail of lead end

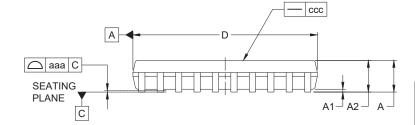
NOTE

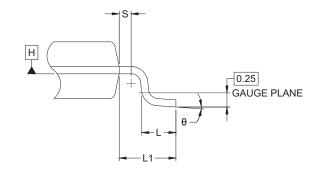
1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "3" does not include trim offset.

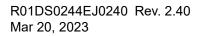



(UNIT:mm)
DIMENSIONS
6.50±0.10
4.40±0.10
6.40±0.20
1.45 MAX.
0.10±0.10
1.15
0.65±0.12
0.22 + 0.10 - 0.05
$0.15 \pm 0.05 - 0.02$
0.50±0.20
0.10
0° to 10°


©2012 Renesas Electronics Corporation. All rights reserved.


JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-TSSOP20-4.40x6.50-0.65	PTSP0020JI-A	0.08

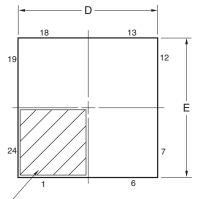
Detail of Lead End

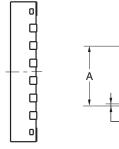


Reference	Dimens	sion in Milli	meters
Symbol	Min.	Nom.	Max.
А	-	-	1.20
A1	0.05	-	0.15
A2	0.80	1.00	1.05
b	0.19	-	0.30
С	0.09	0.127	0.20
D	6.40	6.50	6.60
E1	4.30	4.40	4.50
E	6.40 BSC		
е	0.65 BSC		
L1		1.00 REF	
L	0.50	0.60	0.75
S	0.20	-	-
θ	0°	-	8°
aaa	0.10		
bbb		0.10	
ccc	0.05		
ddd		0.20	

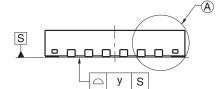
NOTES:

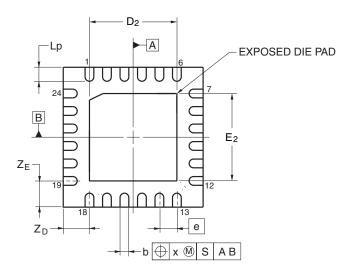
1.DIMENSION 'D' AND 'E1' DOES NOT INCLUDE MOLD FLASH.


2.DIMENSION 'b' DOES NOT INCLUDE TRIM OFFSET. 3.DIMENSION 'D' AND 'E1' TO BE DETERMINED AT DATUM PLANE [].



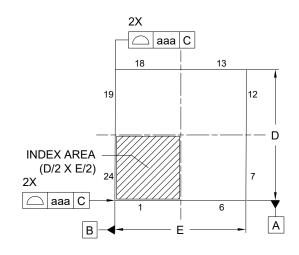
3.2 24-pin package

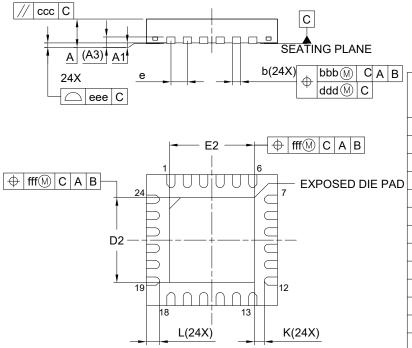

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04



DETAIL OF (A) PART

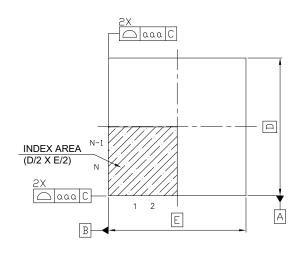
 \angle INDEX AREA

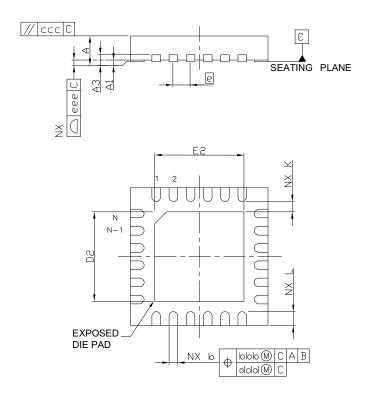



Referance	Dimens	sion in Mil	llimeters
Symbol	Min	Nom	Max
D	3.95	4.00	4.05
E	3.95	4.00	4.05
A			0.80
A ₁	0.00	—	—
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х	_		0.05
у			0.05
ZD		0.75	
Z _E		0.75	
C2	0.15	0.20	0.25
D ₂		2.50	
E ₂		2.50	

©2013 Renesas Electronics Corporation. All rights reserved.

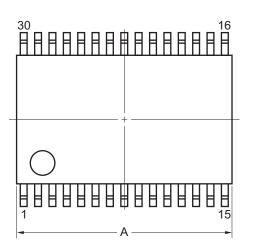
JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN024-4x4-0.50	PWQN0024KF-A	0.04



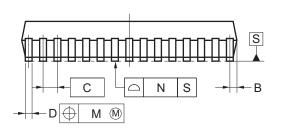

Reference	Dimen	sion in Milli	meters
Symbol	Min.	Nom.	Max.
А	_	0.80	
A1	0.00	0.02	0.05
A3		0.203 REF	
b	0.18	0.25	0.30
D		4.00 BSC	
E	4.00 BSC		
е	0.50 BSC		
L	0.35	0.40	0.45
К	0.20	_	-
D2	2.55	2.60	2.65
E2	2.55	2.60	2.65
aaa		0.15	
bbb	0.10		
ссс	0.10		
ddd	0.05		
eee	0.08		
fff		0.10	

<R>

JEITA Package Code	RENESAS Code	MASS(Typ.)[g]
P-HWQFN24-4×4-0.50	PWQN0024KH-A	0.04

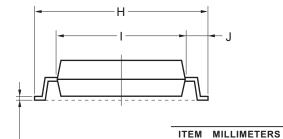


Reference	Dimens	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.	
A	_	_	0.80	
A ₁	0.00	_	0.05	
A ₃	0	.20 REF		
b	0.20	0.25	0.30	
D	_	4.00	—	
E	_	4.00	_	
е	_	0.50	-	
N		24		
L	0.30	0.40	0.50	
K	0.20	—	-	
D ₂	2.50	2.60	2.70	
E ₂	2.50	2.60	2.70	
aaa	—	_	0.15	
bbb	—	-	0.10	
ссс	_	—	0.10	
ddd	—	—	0.05	
eee	_	_	0.08	



3.3 30-pin package

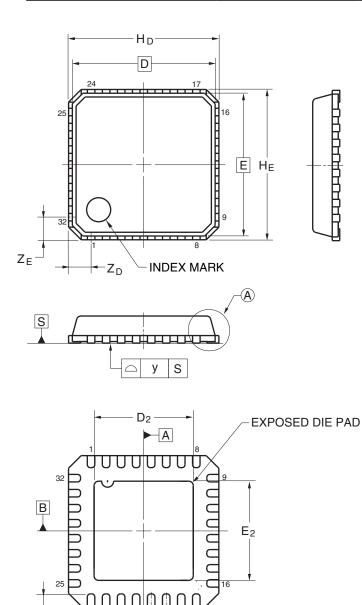
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



detail of lead end

NOTE

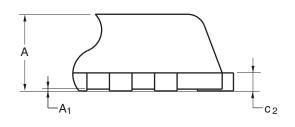
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.


ĸ

Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24 \substack{+0.08 \\ -0.07}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	$3^{\circ}^{+5^{\circ}}_{-3^{\circ}}$
Т	0.25
U	0.6±0.15

3.4 32-pin package

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HVQFN32-5x5-0.50	PVQN0032KE-A	P32K9-50B-BAH	0.058

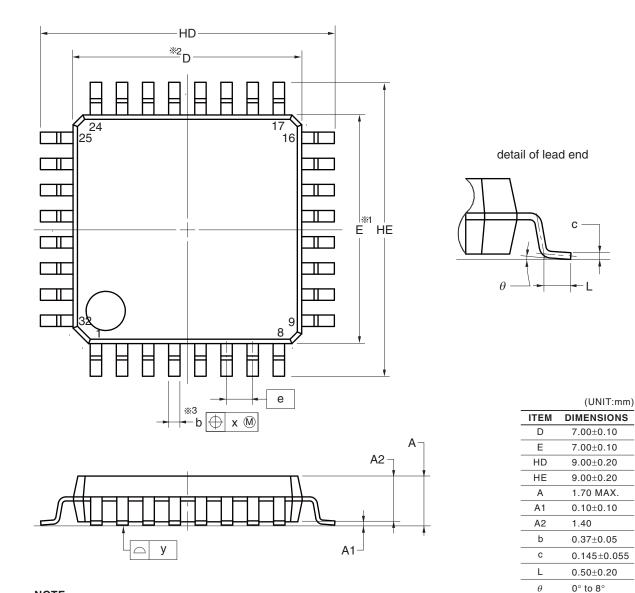


17

е

b 🕀 x 🕅 S AB

DETAIL OF (A) PART



Referance	Dimens	Dimension in Millimeters		
Symbol	Min	Nom	Max	
D		4.75		
E		4.75		
А			0.90	
A ₁	0.00			
b	0.20	0.25	0.30	
е		0.50		
Lp	0.30	0.40	0.50	
х			0.10	
У			0.05	
HD	4.95	5.00	5.05	
HE	4.95	5.00	5.05	
ZD		0.75		
Z _E		0.75		
C ₂	0.19	0.20	0.21	
D ₂		3.30		
E ₂		3.30		

24

- Lp

JEIT	A Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-L	QFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

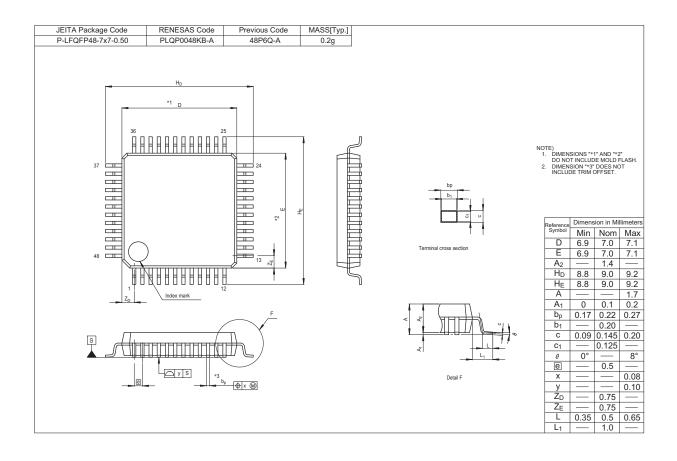
NOTE

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "%3" does not include trim offset.

е

х


у

0.80

0.20

0.10

3.5 48-pin package

REVISION HISTORY	RL78/I1D Datasheet

Dei	Dete	Description				
Rev.	Date	Page	Summary			
1.00	Aug 29, 2014		First Edition issued			
2.00	Jan 16, 2015	24, 25, 27	Addition of note 7 in 2.3.2 Supply current characteristics			
		24, 26	Addition of description in 2.3.2 Supply current characteristics			
		26, 28	Modification of description in 2.3.2 Supply current characteristics			
		28	Correction of error in 2.3.2 Supply current characteristics			
		95	Modification of package drawing in 3.2 24-pin products			
2.20 Feb 20, 2017		ALL	The function name changed from real-time clock to real-time clock 2			
		5	Addition of product name in 1.3.1 20-pin products			
		6	Addition of product name in 1.3.2 24-pin products			
		7	Addition of product name in 1.3.3 30-pin products			
		8	Addition of product name in 1.3.4 32-pin products			
		9	Change of description and addition of product name in 1.3.4 32-pin products			
		10	Addition of product name in 1.3.5 48-pin products			
		13, 14	Change of description in 1.6 Outline of Functions			
		16	Change of 2.1 Absolute Maximum Ratings			
		22	Change of 2.3.1 Pin characteristics			
		24	Change of conditions in 2.3.2 Supply current characteristics			
		25, 27, 28	Change of note 1 in 2.3.2 Supply current characteristics			
		26	Change of conditions and unit in 2.3.2 Supply current characteristics			
		30	Change of note 3 in 2.3.2 Supply current characteristics			
		31	Addition of note 5 in 2.3.2 Supply current characteristics			
		92	Change of table in 2.8 Flash Memory Programming Characteristics			
		92	Addition of note 4 in 2.8 Flash Memory Programming Characteristics			
		99	Change of package drawing in 3.5 48-pin products			
2.30	Jun 30, 2020	1	Change of description in 1.1 Features			
		3	Change of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/I1D			
			and addition of note 1			
		4	Change of table in 1.2 Ordering Information			
		5	Change of description in 1.3.1 20-pin products			
			Change of the figure in 2.10 Timing of Entry to Flash Memory Programming			
		93	Modes			
		95	Addition of package drawing in 3.1 20-pin package			
		97	Addition of package drawing in 3.2 24-pin package			
2.40	Mar 20, 2023	ALL	"3-wire serial" was modified to "simplified SPI".			
	, -	2	1.1 Features: Note was added.			
		5	1.2 Ordering Information: 24-pin RENESAS code was added.			
		26	2.3.2 Supply current characteristics: Notes 1, 4, and 5 were modified.			
		28	2.3.2 Supply current characteristics: Notes 1 and 5 were modified.			
		29	2.3.2 Supply current characteristics: Note 1 was modified and note 2 was			
			deleted.			
		99	3.2 24-pin package: RENESAS code PWQN0024KH-A was added.			

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which reseting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABLITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

R5F117BCGNA#4	0 R5F11768GSP#5	0 R5F1176AGSP#30	R5F117BCGFP#50	R5F117GCGFB#50
R5F117A8GSP#50	R5F11768GSP#30	R5F11778GNA#W0	R5F117BAGFP#30	R5F117ACGSP#50
R5F117A8GSP#30	R5F117BAGNA#40	R5F117GAGFB#30	R5F117GAGFB#50	R5F117BAGNA#20
R5F1177AGNA#U0	R5F117BCGFP#30	R5F117GCGFB#30	R5F117ACGSP#30	R5F1176AGSP#50
R5F117AAGSP#50	R5F11778GNA#U0	R5F117AAGSP#30	R5F1177AGNA#W0	R5F117BAGFP#50
R5F117BCGNA#20	R5F117A8GSP#10	R5F117AAGSP#10	R5F117ACGSP#10	R5F117BAGFP#10
R5F117BCGFP#10	R5F117GAGFB#10	R5F117GCGFB#10	R5F117BCGNA#00	R5F11768GSM#30
R5F11768GSM#50	R5F1176AGSM#30	R5F1176AGSM#50	R5F117BAGNA#00	R5F11778GNA#20
R5F11778GNA#40	R5F1177AGNA#20	R5F1177AGNA#40	R5F11778GNA#00	R5F11768GSM#10
R5F1176AGSM#10	R5F1177AGNA#00			