

RL78/G1G RENESAS MCU R01DS0241EJ0140 Rev. 1.40 Apr 26, 2024

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 2.7 to 5.5 V
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high-speed (0.04167 μs: @ 24 MHz operation with high-speed on-chip oscillator) to low-speed (1.0 μs: @1 MHz operation with high-speed on-chip oscillator)
- Multiply/divide/multiply & accumulate instructions are supported.
- · Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 1.5 KB

Code flash memory

- Code flash memory: 8 to 16 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (flash shield window function)

High-speed on-chip oscillator

- Select from 48 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 4 MHz, and 1 MHz
- High accuracy: ±2.0%

Operating ambient temperature

• TA = -40 to +85°C

Power management and reset function

- · On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 6 levels)

Event link controller (ELC)

 Event signals of 18 to 19 types can be linked to the specified peripheral function.

Serial interfaces

- Simplified SPI (CSINote 1): 1 channel
- UART: 2 channels
- Simplified I2C: 1 channel

Timer

- 16-bit timer: 7 channels (Timer Array Unit (TAU): 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels)
- 12-bit interval timer: 1 channel
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)

A/D converter

- 8/10-bit resolution A/D converter (VDD = 2.7 to 5.5 V)
- · Analog input: 8 to 12 channels
- Internal reference voltage (1.45 V) and temperature sensor^{Note 2}

Comparator

- 2 channels
- The voltage from a dedicated 8-bit DAC (resolution of 256 with VDD/AVREFP or VSS/AVREFM as the internally generated reference voltage) can be selected as the reference voltage.

Programmable gain amplifier

I/O port

- I/O port: 26 to 40
- Can be set to N-ch open drain, TTL input buffer, and onchip pull-up resistor
- Different potential interface: Can connect to a 2.5/3 V device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

- On-chip BCD (binary-coded decimal) correction circuit
- Note 1. Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
- **Note 2.** Selectable only in HS (high-speed main) mode.
- **Remark** The functions mounted depend on the product. See **1.6 Outline of Functions**.

○ ROM, RAM capacities

Flash ROM	RAM	30 pins	32 pins	44 pins
16 KB	1.5 KB Note	R5F11EAAASP	R5F11EBAAFP	R5F11EFAAFP
8 KB		R5F11EA8ASP	R5F11EB8AFP	R5F11EF8AFP

Note This is 630 bytes when the self-programming function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE in the RL78/G1G User's Manual).

1.2 List of Part Numbers

Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1G

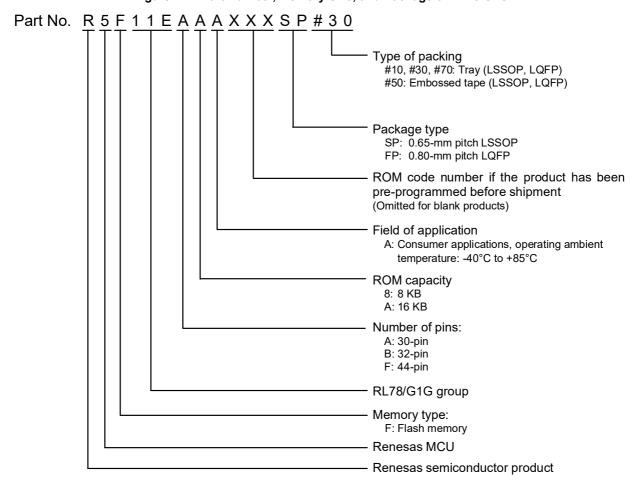
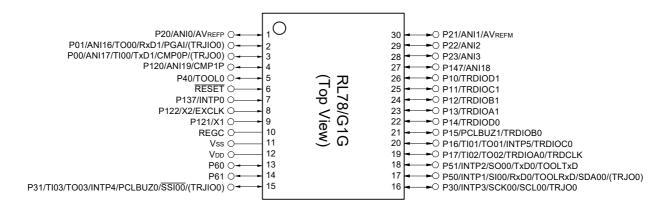


Table 1 - 1 Orderable Part Numbers

Pin Count	Package	Part Number
44 pins	44-pin plastic LQFP (10 × 10 mm)	R5F11EFAAFP#10, R5F11EFAAFP#30, R5F11EFAAFP#50, R5F11EFAAFP#70
		R5F11EF8AFP#10, R5F11EF8AFP#30, R5F11EF8AFP#50, R5F11EF8AFP#70
32 pins	32-pin plastic LQFP (7 × 7 mm)	R5F11EBAAFP#10, R5F11EBAAFP#30, R5F11EBAAFP#50, R5F11EBAAFP#70
		R5F11EB8AFP#10, R5F11EB8AFP#30, R5F11EB8AFP#50, R5F11EB8AFP#70
30 pins	30-pin plastic LSSOP (7.62 mm (300))	R5F11EAAASP#10, R5F11EAAASP#30, R5F11EAAASP#50, R5F11EAAASP#70
		R5F11EA8ASP#10, R5F11EA8ASP#30, R5F11EA8ASP#50, R5F11EA8ASP#70

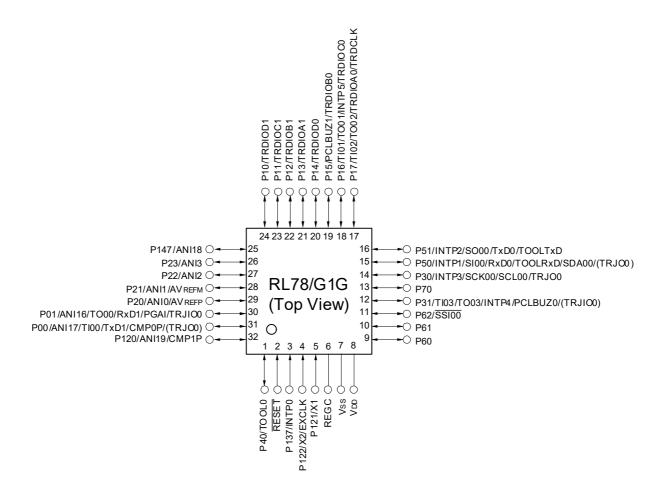

<R>

<R>

1.3 Pin Configuration (Top View)

1.3.1 **30-pin products**

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

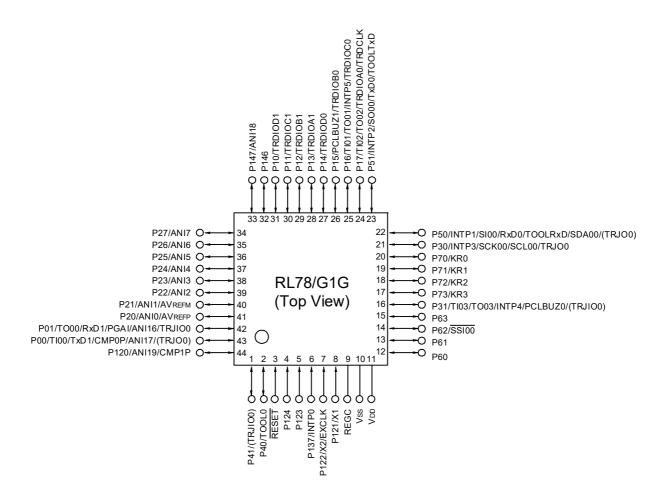

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. The functions in parentheses shown in the above figure can be assigned by setting peripheral I/O redirection register 1 (PIOR1).

1.3.2 32-pin products

• 32-pin plastic LQFP (7 x 7 mm, 0.8 mm pitch)


Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. The functions in parentheses shown in the above figure can be assigned by setting peripheral I/O redirection register 1 (PIOR1).

1.3.3 44-pin products

• 44-pin plastic LQFP (10 x 10 mm, 0.8 mm pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. The functions in parentheses shown in the above figure can be assigned by setting peripheral I/O redirection register 1 (PIOR1).

1.4 Pin Identification

ANI0 to ANI7, ANI16 to ANI19: Analog input

AVREFM: A/D converter reference potential (- side) input
AVREFP: A/D converter reference potential (+ side) input

EXCLK: External clock input (main system clock)

INTP0 to INTP5: External interrupt input

KR0 to KR3: Key Return P00, P01: Port 0 P10 to P17: Port 1 P20 to P27: Port 2 P30, P31: Port 3 P40, P41: Port 4 P50, P51: Port 5 P60 to P63: Port 6 P70 to P73: Port 7 P120 to P124: Port 12 P137: Port 13 P146, P147: Port 14

PCLBUZ0, PCLBUZ1: Programmable clock output/buzzer output

REGC: Regulator capacitance

RESET: Reset

RxD0, RxD1: Receive data

SCK00: Serial clock input/output
SCL00: Serial clock output
SDA00: Serial data input/output

SI00: Serial data input SO00: Serial data output

SSI00: Serial interface chip select input

TI00 to TI03: Timer input
TO00 to TO03, TRJO0: Timer output

TOOL0: Data input/output for tool

TOOLRxD, TOOLTxD: Data input/output for external device

TRDCLK: Timer external input clock

TRDIOA0, TRDIOB0, TRDIOC0, TRDIOD0,:Timer input/output

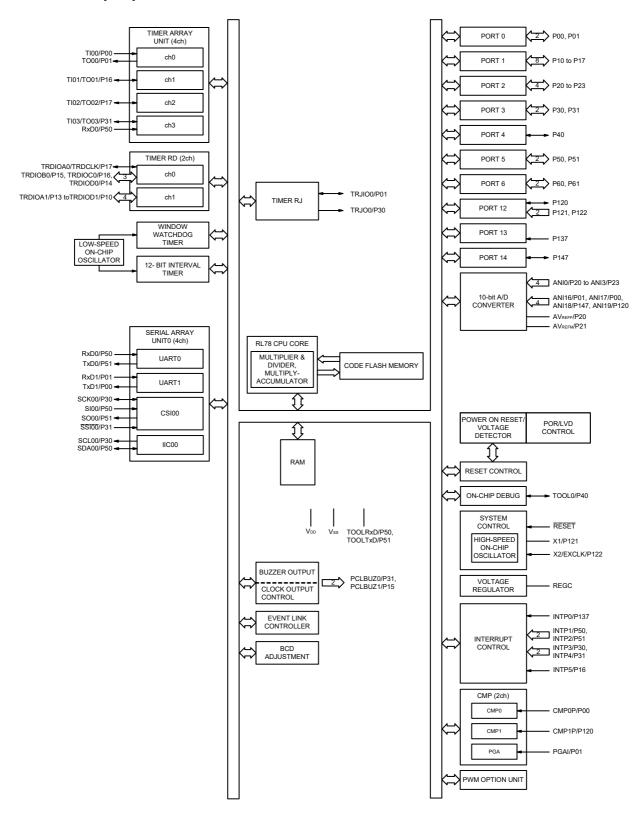
TRDIOA1, TRDIOB1, TRDIOC1, TRDIOD1,

TRJI00

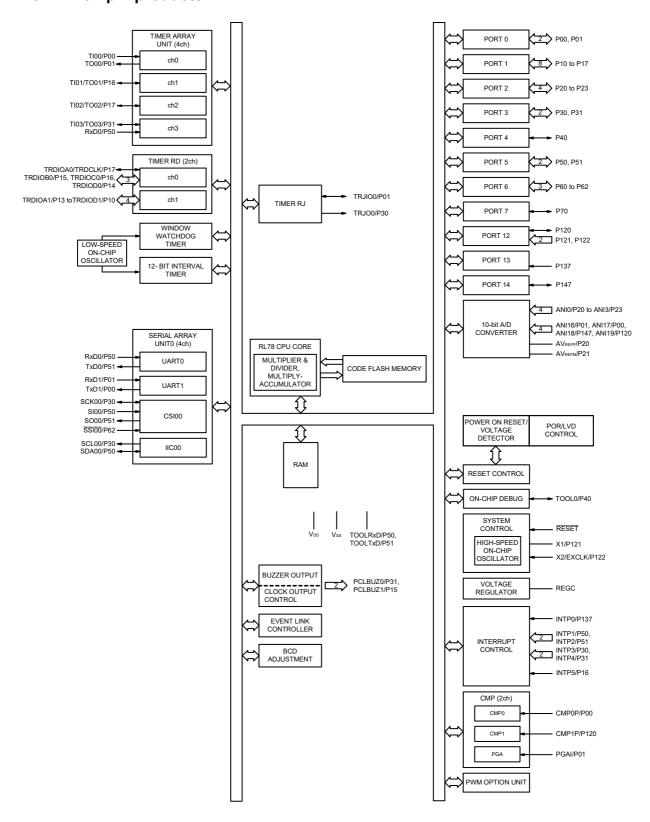
TxD0, TxD1: Transmit data

CMP0P, CMP1P: Comparator input

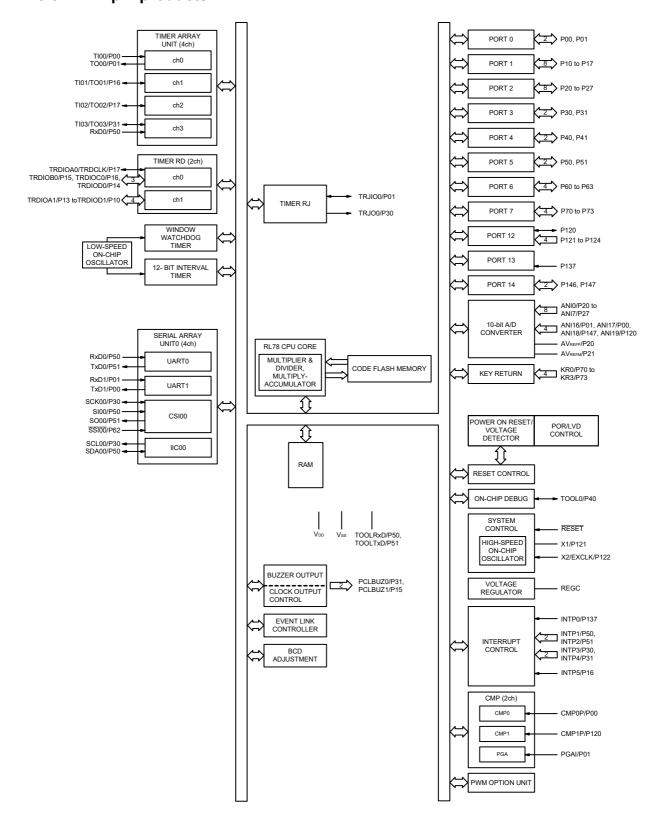
PGAI: PGA input


VDD: Power supply

Vss: Ground


X1, X2: Crystal oscillator (main system clock)

1.5 Block Diagram


1.5.1 30-pin products

1.5.2 32-pin products

1.5.3 44-pin products

1.6 Outline of Functions

[30-pin, 32-pin, 44-pin products (code flash memory 8 KB to 16 KB)]

Caution The above outline of the functions applies when peripheral I/O redirection register 1 (PIOR1) is set to 00H.

(1/2)

		, , , , , , , , , , , , , , , , , , , ,					
		30-pin	32-pin	44-pin			
	Item	R5F11EA8ASP,	R5F11EB8AFP,	R5F11EF8AFP,			
		R5F11EAAASP	R5F11EBAAFP	R5F11EFAAFP			
Code flash m	nemory (KB)		8 to 16				
RAM (KB)			1.5				
Address spa	ce	1 MB					
Main system	High-speed system	X1 (crystal/ceramic) oscillation,	external main system clock input	(EXCLK)			
clock	clock	LS (low-speed main) mode: 1 to	8 MHz (VDD = 2.7 to 5.5 V),				
		HS (high-speed main) mode: 1 t	o 20 MHz (VDD = 2.7 to 5.5 V)				
	High-speed on-chip	LS (low-speed main) mode: 1 to	8 MHz (VDD = 2.7 to 5.5 V)				
	oscillator clock (fін)	HS (high-speed main) mode: 1	to 24 MHz (VDD = 2.7 to 5.5 V)				
Low-speed o	n-chip oscillator clock	15 kHz (TYP.): VDD = 2.7 to 5.5	V				
General-purp	oose register	8 bits × 32 registers (8 bits × 8 r	registers × 4 banks)				
Minimum ins	truction execution	0.04167 μs (High-speed on-chip oscillator clock: fιн = 24 MHz operation)					
time		0.05 μs (High-speed system clock: fмx = 20 MHz operation)					
Instruction se	et	Data transfer (8/16 bits)					
		Adder and subtractor/logical operation (8/16 bits)					
		Multiplication (8 bits × 8 bits, 1)	,	ts ÷ 16 bits, 32 bits ÷ 32 bits)			
		Multiplication and Accumulation (16 bits × 16 bits + 32 bits)					
	T	Rotate, barrel shift, and bit ma	nipulation (Set, reset, test, and	Boolean operation), etc.			
I/O port	Total	26	28	40			
	CMOS I/O	23	25	35			
	CMOS input	3	3	5			
	CMOS output		_				
	N-ch open-drain I/O						
	(6 V tolerance)	_					
Timer	16-bit timer	7 channels					
		(TAU: 4 channels, Timer RJ: 1 c	channel, Timer RD: 2 channels)				
	Watchdog timer	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 14 channels					
		PWM outputs: 9 channels					

Caution Since a library is used when rewriting the flash memory using the user program, flash ROM and RAM areas are used. Refer to the RL78 Family Flash Self-Programming Library Type01 User's Manual before using these products.

(2/2)

		<u>. </u>		(2/2)			
		30-pin	32-pin	44-pin			
	Item	R5F11EA8ASP,	R5F11EB8AFP,	R5F11EF8AFP,			
		R5F11EAAASP	R5F11EBAAFP	R5F11EFAAFP			
Clock output/	buzzer output	2					
		• 2.44 kHz, 4.88 kHz, 9.77 kHz,	1.25 MHz, 2.5 MHz, 5 MHz, 1	10 MHz			
		(Main system clock: fmain = 20	MHz operation)				
8/10-bit resol	ution A/D converter	8 channels		12 channels			
Comparator		2 channels					
PGA		1 channel					
Serial interface	ce	Simplified SPI (CSI): 1 channel UART1: 1 channel	el/UART0: 1 channel/simplified	l I ² C: 1 channel			
Event link cor	ntroller (ELC)	Event input: 18	Event input: 18				
		Event trigger output: 6	Event trigger output: 6				
Vectored	Internal		20				
interrupt sources	External	6	;	7			
Key interrupt		_	4				
Reset		Reset by RESET pin					
		Internal reset by watchdog tim	er				
		Internal reset by power-on-res	et				
		Internal reset by voltage detection	ctor				
		Internal reset by illegal instruction					
		Internal reset by RAM parity error					
		Internal reset by illegal-memory access					
Power-on-res	set circuit	• Power-on-reset: 1.51 ±0					
		Power-down-reset: 1.50 ±0.03 V					
Voltage detec	ctor	2.75 V to 4.06 V (6 stages)					
On-chip debu	ig function	Provided					
Power supply	voltage	V _{DD} = 2.7 to 5.5 V					
Operating am	nbient temperature	Ta = -40 to +85°C					
		•		· · · · · · · · · · · · · · · · · · ·			

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator

2. ELECTRICAL SPECIFICATIONS

Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Caution 2. The pins mounted are as follows according to product.

2.1 Pins Mounted According to Product

2.1.1 Port functions

Refer to **2.1.1 30-pin products**, **2.1.2 32-pin products**, and **2.1.3 44-pin products** in the RL78/G1G User's Manual.

2.1.2 Non-port functions

Refer to 2.2.1 With functions for each product in the RL78/G1G User's Manual.

2.2 Absolute Maximum Ratings

Absolute Maximum Ratings

(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 Note 1	
Input voltage	VI1	P00, P01, P10 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P73, P120, P121 to P124, P137, P146, P147, EXCLK, RESET	-0.3 to V _{DD} +0.3 Note 2	>
Output voltage	Vo1	P00, P01, P10 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P73, P120, P146, P147	-0.3 to V _{DD} +0.3 Note 2	V
Analog input voltage	VAI1	ANI0 to ANI7, ANI16 to ANI19	-0.3 to V _{DD} +0.3 Notes 2, 3 and -0.3 to AVREF (+) +0.3	V

- Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- Note 2. Must be 6.5 V or lower.
- **Note 3.** Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

 That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- Remark 2. AVREF (+): + side reference voltage of the A/D converter.
- Remark 3. Vss: Reference voltage

Absolute Maximum Ratings

(2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P73, P120, P146, P147	-40	mA
		Total of all	P00, P01, P40, P41, P120	-70	mA
		pins -170 mA	P10 to P17, P30, P31, P50, P51, P60 to P63, P70 to P73, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lOL1	Per pin	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P73, P120, P146, P147	40	mA
		Total of all	P00, P01, P40, P41, P120	70	mA
		pins 170 mA	P10 to P17, P30, P31, P50, P51, P60 to P63, P70 to P73, P146, P147	100	mA
	lOL2	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	ТА	In normal of	operation mode	-40 to +85	°C
temperature		In flash me	emory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.3 Oscillator Characteristics

2.3.1 X1 oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1.0		20.0	MHz
	crystal resonator					

Note

Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution

Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G1G User's Manual.

2.3.2 On-chip oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator	fıн		1		24	MHz
clock frequency Notes 1, 2	fносо		1		48	
High-speed on-chip oscillator			-2		+2	%
clock frequency accuracy						
Low-speed on-chip oscillator clock frequency	fiL			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.4 DC Characteristics

2.4.1 Pin characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P73, P120, P146, P147	2.7 V ≤ VDD ≤ 5.5 V			-10.0 Note 2	mA
		Total of P00, P01, P40, P41, P120	$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			-55.0	mA
		(When duty ≤ 70% Note 3)	2.7 V ≤ V _{DD} < 4.0 V			-10.0	mA
		Total of P10 to P17, P30, P31,	$4.0~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			-80.0	mA
		P50, P51, P60 to P63, P70 to P73, P146, P147 (When duty ≤ 70% Note 3)	2.7 V ≤ V _{DD} < 4.0 V			-19.0	mA
		Total of all pins (When duty ≤ 70% Note 3)	2.7 V ≤ VDD ≤ 5.5 V			-135.0	mA
	Іон2	Per pin for P20 to P27	2.7 V ≤ VDD ≤ 5.5 V			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

```
• Total output current of pins = (IoH \times 0.7)/(n \times 0.01)

<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = (-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7 mA
```

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P10, P15, P17, P30, P50, P51 do not output high level in N-ch open-drain mode.

Note 2. Do not exceed the total current value.

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P73, P120, P146, P147				20.0 Note 2	mA
		Total of P00, P01, P40, P41, P120	$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			70.0	mA
		(When duty ≤ 70% Note 3)	2.7 V ≤ V _{DD} < 4.0 V			15.0	mA
		Total of P10 to P17, P30, P31,	$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			80.0	mA
		P50, P51, P60 to P63, P70 to P73, P146, P147 (When duty ≤ 70% Note 3)	2.7 V ≤ V _{DD} < 4.0 V			35.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				150.0	mA
	lol2	Per pin for P20 to P27				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$2.7~\text{V} \le \text{Vdd} \le 5.5~\text{V}$			5.0	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
- Note 2. However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

(Ta = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P73, P120 to P124, P146, P147	Normal input buffer	0.8 VDD		VDD	V
	VIH2	P01, P10, P15 to P17, P30, P31, P50	TTL input buffer 4.0 V ≤ VDD ≤ 5.5 V	2.2		VDD	V
			TTL input buffer 3.3 V ≤ VDD < 4.0 V	2.0		VDD	٧
			TTL input buffer 2.7 V ≤ VDD < 3.3 V	1.50		VDD	٧
	VIH3	P20 to P27	<u> </u>	0.7 Vdd		VDD	V
	VIH4	EXCLK, RESET		0.8 VDD		VDD	V
Input voltage, low	VIL1	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P73, P120 to P124, P146, P147	Normal input buffer	0		0.2 VDD	V
	VIL2	P01, P10, P15 to P17, P30, P31, P50	TTL input buffer 4.0 V ≤ VDD ≤ 5.5 V	0		0.8	V
			TTL input buffer 3.3 V ≤ VDD < 4.0 V	0		0.5	٧
			TTL input buffer 2.7 V ≤ VDD < 3.3 V	0		0.32	٧
	VIL3	P20 to P27		0		0.3 VDD	V
	VIL4	EXCLK, RESET		0		0.2 Vdd	V

Caution The maximum value of VIH of pins P00, P10, P15, P17, P30, P50, and P51 is VDD, even in the N-ch open-drain mode.

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63,	4.0 V ≤ VDD ≤ 5.5 V, IOH1 = -10.0 mA	VDD - 1.5			V
		P70 to P73, P120, P146, P147	4.0 V ≤ VDD ≤ 5.5 V, IOH1 = -3.0 mA	VDD - 0.7			V
			2.7 V ≤ VDD ≤ 5.5 V, IOH1 = -2.0 mA	VDD - 0.6			V
			2.7 V ≤ VDD ≤ 5.5 V, IOH1 = -1.0 mA	VDD - 0.5			V
	VOH2	P20 to P27	2.7 V ≤ VDD ≤ 5.5 V, IOH2 = -100 µA	VDD - 0.5			V
Output voltage, low	VOL1	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63,	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ IOL1 = 20.0 mA			1.3	V
			4.0 V ≤ VDD ≤ 5.5 V, IOL1 = 8.5 mA			0.7	V
			$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			0.6	V
			2.7 V ≤ VDD ≤ 5.5 V, IOL1 = 1.5 mA			0.4	V
			$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V},$ IoL1 = 0.3 mA			0.4	V
	VOL2	P20 to P27	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V},$ $\text{IoL2} = 400 \mu\text{A}$			0.4	V

Caution P00, P10, P15, P17, P30, P50, and P51 do not output high level in N-ch open-drain mode.

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditi	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high							1	μА
	ILIH2	P121, P122 (X1, X2, EXCLK)	VI = VDD	In input port or external clock input			1	μА
				In resonator connection			10	μΑ
Input leakage current, low	ILIL1	P00, P01, P10 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P73, P120, P123, P124, P137, P146, P147, RESET	Vi = Vss				-1	μА
	ILIL2	P121, P122 (X1, X2, EXCLK)	VI = VSS	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pull-up resistance	Ru	P00, P01, P10 to P17, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P73, P120, P146, P147	Vı = Vss, iı	n input port	10	20	100	kΩ

2.4.2 Supply current characteristics

(1) Flash ROM: 16 KB of 30- pin to 44-pin products

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-speed	fносо = 48 МНz,	Basic	V _{DD} = 5.0 V		1.8		mA
current		mode	main) mode Notes 3, 4	fih = 24 MHz	operation	V _{DD} = 3.0 V		1.8		
Note 1			HS (high-speed	fносо = 48 MHz,	Normal	V _{DD} = 5.0 V		3.9	6.9	mA
	main) mo	main) mode Notes 3, 4	fih = 24 MHz	operation	V _{DD} = 3.0 V		3.9	6.9		
			fhoco = 24 MHz,	Normal	V _{DD} = 5.0 V		3.7	6.3		
		fih = 24 MHz	operation	V _{DD} = 3.0 V		3.7	6.3			
			fHOCO = 16 MHz,	Normal	V _{DD} = 5.0 V		2.8	4.6		
		$f_{IH} = 16 \text{ MHz}$ operation $V_{DD} = 3$.	V _{DD} = 3.0 V		2.8	4.6				
			LS (low-speed main)	fih = 8 MHz	Normal	V _{DD} = 3.0 V		1.2	2.0	mA
	mode Notes 3, 4		operation							
			HS (high-speed	fmx = 20 MHz,	Normal	Square wave input		3.1	5.3	mA
			main) mode Notes 2, 4	V _{DD} = 5.0 V	operation	Resonator connection		3.3	5.5	
				fmx = 20 MHz,	Normal	Square wave input		3.1	5.3	
				VDD = 3.0 V	operation	Resonator connection		3.3	5.5	
				fmx = 10 MHz,	Normal	Square wave input		2.0	3.1	
				VDD = 5.0 V	operation	Resonator connection		2.0	3.2	
			fmx = 10 MHz,	Normal	Square wave input		2.0	3.1		
		VDD = 3.0 V	operation	Resonator connection		2.0	3.2			
			LS (low-speed main)	fmx = 8 MHz,	Normal	Square wave input		1.2	1.9	mA
			mode Notes 2, 4	V _{DD} = 3.0 V	operation	Resonator connection		1.2	2.0	

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, watchdog timer, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
- Note 2. When high-speed on-chip oscillator is stopped.
- Note 3. When high-speed system clock is stopped.
- Note 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 HS (high speed main) mode: VDD = 2.7 V to 5.5 V@1 MHz to 24 MHz

 LS (low speed main) mode: VDD = 2.7 V to 5.5 V@1 MHz to 8 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
- **Remark 4.** Temperature condition of the TYP. value is TA = 25°C

(1) Flash ROM: 16 KB of 30-pin to 44-pin products

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Co	nditions		MIN.	TYP.	MAX.	Unit	
Supply	IDD2	HALT mode	`	fносо = 48 MHz,	VDD = 5.0 V		0.60	2.40	mA	
current	Note 2	ote 2 main) mode Notes 4, 6 fil = 24	fih = 24 MHz	VDD = 3.0 V		0.60	2.40			
Note 1				fhoco = 24 MHz,	V _{DD} = 5.0 V		0.40	1.83		
				fiH = 24 MHz	V _{DD} = 3.0 V		0.40	1.83		
				fHOCO = 16 MHz,	V _{DD} = 5.0 V		0.38	1.38		
				fін = 16 MHz	V _{DD} = 3.0 V		0.38	1.38		
			LS (low-speed main)	fiн = 8 MHz	V _{DD} = 3.0 V		260	710	μΑ	
			mode Notes 4, 6							
			HS (high-speed	fmx = 20 MHz,	Square wave input		0.28	1.55	mA	
		main) mode Notes 3, 6	VDD = 5.0 V	Resonator connection		0.42	1.74			
				fmx = 20 MHz,	Square wave input		0.28	1.55		
				V _{DD} = 3.0 V	Resonator connection		0.42	1.74		
				fmx = 10 MHz,	Square wave input		0.19	0.86		
		STOP mode Note 5			V _{DD} = 5.0 V	Resonator connection		0.27	0.93	
				fmx = 10 MHz,	Square wave input		0.19	0.86		
				VDD = 3.0 V	Resonator connection		0.27	0.93		
			LS (low-speed main)	fmx = 8 MHz,	Square wave input		95	550	μA	
			mode Notes 3, 6	VDD = 3.0 V	Resonator connection		145	590		
	IDD3	STOP	TA = -40°C	1	1		0.18	0.51	μΑ	
	mode Note 5	TA = +25°C	= +25°C				0.51			
		TA = +50°C								
			TA = +70°C				0.41	1.90		
			Ta = +85°C				0.90	3.30		

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, watchdog timer, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator is stopped.
- Note 4. When high-speed system clock is stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
- Note 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 HS (high speed main) mode: VDD = 2.7 V to 5.5 V@1 MHz to 24 MHz

 LS (low speed main) mode: VDD = 2.7 V to 5.5 V@1 MHz to 8 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

(2) Peripheral Functions (Common to all products)

$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
12-bit interval timer operating current	I _{IT} Notes 1, 8					0.20		μΑ
Watchdog timer operating current	IWDT Notes 1, 2	fıL = 15 kHz	fil = 15 kHz					μΑ
A/D converter	IADC Note 3	When conversion	Normal mode, AVRE	FP = VDD = 5.0 V		1.3	1.7	mA
operating current		at maximum speed	Low voltage mode, A	WREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF					75		μA
Temperature sensor operating current	ITMPS							μΑ
Comparator operating	ICMP Note 4	Per channel of	When the comparate	or is operating		45.0	65.0	μA
current		comparator 1	When the comparato		0.0	0.1		
Programmable gain	IPGA Note 5	When the program		240.0	340.0	μA		
amplifier operating current		When the program	When the programmable gain amplifier is stopped					
LVD operating current	I _{LVI} Note 6					0.08		μA
SNOOZE operating	Isnoz	ADC operation	The mode is perform	ned Note 7		0.50	0.60	mA
current			The A/D conversion operations are performed	Low voltage mode AVREFP = VDD = 3.0 V		1.20	1.44	mA
		Simplified SPI (CS	SI)/UART operation			0.70	0.84	mA

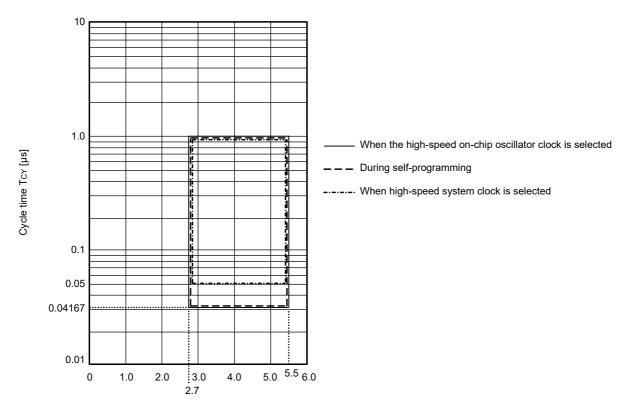
- Note 1. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 2. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).

 The current value of the RL78 microcontroller is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode.
- **Note 3.** Current flowing only to the A/D converter. The current value of the RL78 microcontroller is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **Note 4.** Current flowing only to the comparator. The current value of the RL78 microcontroller is the sum of IDD1 or IDD2 and ICMP when the comparator operates in operating mode or HALT mode.
- **Note 5.** Current flowing only to the programmable gain amplifier. The current value of the RL78 microcontroller is the sum of IDD1 or IDD2 and IPGA when the programmable gain amplifier operates in operating mode or HALT mode.
- Note 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontroller is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 7. For details on the transition time to SNOOZE mode, refer to 18.3.3 SNOOZE mode in the RL78/G1G User's Manual.
- Note 8. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontroller is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fclk: CPU/peripheral hardware clock frequency
- Remark 3. Temperature condition of the TYP. value is TA = 25°C

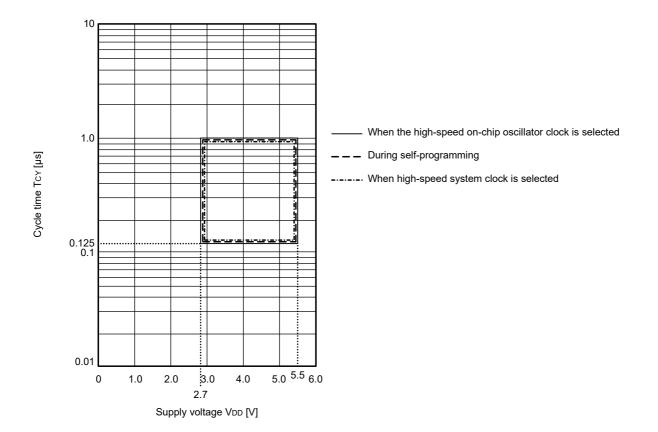
2.5 AC Characteristics

2.5.1 Basic operation

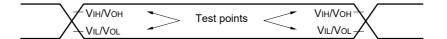
(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

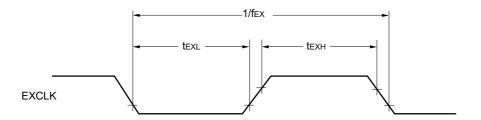

Items	Symbol		Condition	าร	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fMAIN)	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 5.5 V	0.04167		1	μs
		operation	LS (low-speed main) mode	2.7 V ≤ VDD ≤ 5.5 V	0.125		1	μs
		In the self programming	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 5.5 V	0.04167		1	μs
		mode	LS (low-speed main) mode	2.7 V ≤ VDD ≤ 5.5 V	0.125		1	μs
External main system clock frequency	fEX	2.7 V ≤ VDD ≤	5.5 V		1.0		20.0	MHz
External main system clock input high-level width, low-level width	texh, texl	2.7 V ≤ VDD ≤ 5.5 V			24			ns
TI00 to TI03 input high-level width, low-level width	tтін, tтіL				1/fмск + 10			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	100			ns
Timer RJ input high-level width, low-level width	fwh, fwl	TRJIO		2.7 V ≤ VDD ≤ 5.5 V	40			ns
TO00 to TO03,	fто	HS (high-speed main) mode		$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			12	MHz
TRJIO0,TRJO, TRDIOA0/1, TRDIOB0/1,				$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}$			8	MHz
TRDIOC0/1,TRDIOD0/1 output frequency		LS (low-speed	l main) mode	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			4	MHz
PCLBUZ0, PCLBUZ1	fPCL	HS (high-spee	ed main) mode	4.0 V ≤ VDD ≤ 5.5 V			16	MHz
output frequency				2.7 V ≤ V _{DD} < 4.0 V			8	MHz
		LS (low-speed	l main) mode	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTF	25	2.7 V ≤ VDD ≤ 5.5 V	1			μs
Key interrupt input low-level width	tkr	KR0-KR3		2.7 V ≤ VDD ≤ 5.5 V	250			ns
RESET low-level width	trsl				10			μs

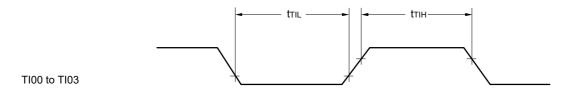
Remark fmck: Timer array unit operation clock frequency

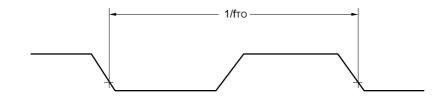

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3))

Minimum Instruction Execution Time during Main System Clock Operation

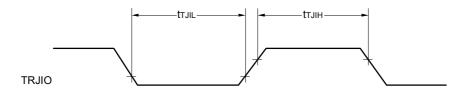

TCY vs VDD (HS (high-speed main) mode)

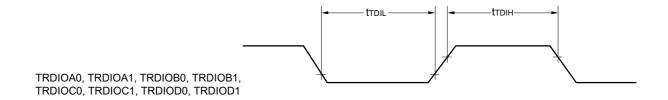

TCY vs VDD (LS (low-speed main) mode)

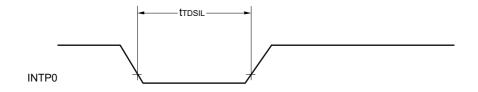

AC Timing Test Points

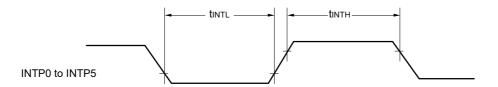


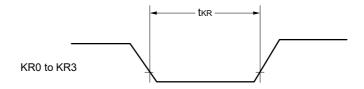
External System Clock Timing




TI/TO Timing

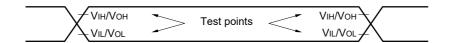



TO00 to TO03 TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1



Interrupt Request Input Timing

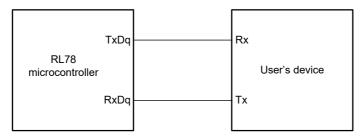
Key Interrupt Input Timing



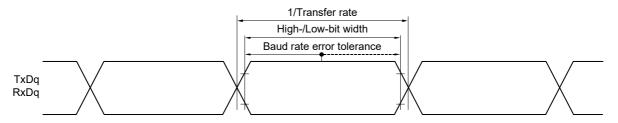
RESET Input Timing

2.6 Peripheral Functions Characteristics

AC Timing Test Points


2.6.1 Serial array unit

(1) During communication at same potential (UART mode)


 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 2		4.0		1.3	Mbps

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

 $\label{eq:hspeed} \begin{array}{ll} \mbox{HS (high-speed main) mode:} & 24 \mbox{ MHz } (2.7 \mbox{ V} \le \mbox{VDD} \le 5.5 \mbox{ V}) \\ \mbox{LS (low-speed main) mode:} & 8 \mbox{ MHz } (2.7 \mbox{ V} \le \mbox{VDD} \le 5.5 \mbox{ V}) \\ \end{array}$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 5)

Remark 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03))

(2) During communication at same potential (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 2/fclk	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	83.3		250		ns
SCKp high-/low-level width	tkH1, tkL1	4.0 V ≤ V _{DD} ≤	4.0 V ≤ V _{DD} ≤ 5.5 V			tkcy1/2 - 50		ns
		2.7 V ≤ V _{DD} ≤	5.5 V	tксү1/2 - 10		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1	4.0 V ≤ V _{DD} ≤	5.5 V	23		110		ns
		2.7 V ≤ V _{DD} ≤	5.5 V	33		110		ns
SIp hold time (from SCKp↑) Note 2	tksi1	2.7 V ≤ V _{DD} ≤	5.5 V	10		10		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF Note 4			10		10	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- $\textbf{Remark 1.} \ \ \textbf{This value is valid only when CSI00's peripheral I/O redirect function is not used.}$
- Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1)
- Remark 3. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00))

(3) During communication at same potential (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

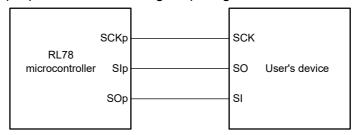
Parameter	Symbol	Conditions F		HS (high-spee mode	d main)	LS (low-speed main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	167		500		ns
SCKp high-/low-level width	tkh1, tkl1			tксү1/2 - 12		tkcy1/2 - 50		ns
				tксү1/2 - 18		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1	4.0 V ≤ V _{DD} ≤	5.5 V	44		110		ns
		2.7 V ≤ V _{DD} ≤	5.5 V	44		110		ns
SIp hold time (from SCKp↑) Note 2	tksi1	2.7 V ≤ V _{DD} ≤	5.5 V	19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1		2.7 V ≤ V _{DD} ≤ 5.5 V C = 30 pF ^{Note 4}		25		25	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)
- Remark 2. fmck: Serial array unit operation clock frequency

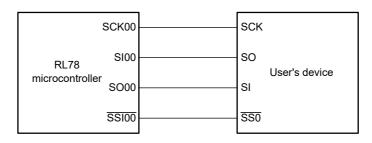
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00))

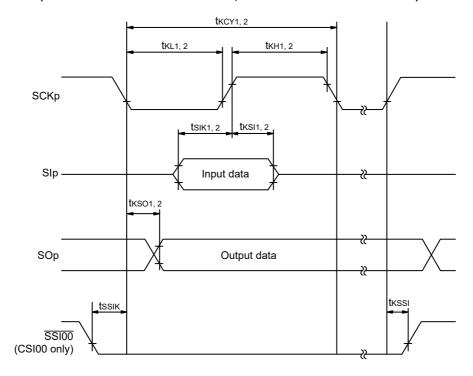
(4) During communication at same potential (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

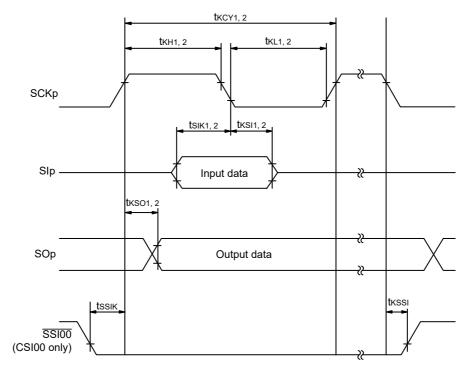

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	HS (high-speed main) mode		LS (low-speed main) mode		Unit	
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	20 MHz < fмск	8/fмск		_		ns
			fмcк ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	16 MHz < fмск	8/fмск		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		ns
SCKp high-/low-level width	tĸн2,	4.0 V ≤ V _{DD} ≤ 5.5 V	•	tkcy2/2 - 7		tkcy2/2 - 7		ns
	tĸL2	2.7 V ≤ V _{DD} ≤ 5.5 V		tkcy2/2 - 8		tkcy2/2 - 8		ns
SIp setup time (to SCKp↑) Note 1	tsık2	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		1/fмск + 20		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 2	tksi2	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110	ns
SSI00 setup time	tssıĸ	DAPmn = 0	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	120		120		ns
		DAPmn = 1	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	1/fмск + 120		1/fмск + 120		ns
SSI00 hold time	tkssi	DAPmn = 0	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	1/fмск + 120		1/fмск + 120		ns
		DAPmn = 1	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	120		120		ns


- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)
- Remark 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00))

Simplified SPI (CSI) mode connection diagram (during communication at same potential)


Simplified SPI (CSI) mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))


Remark 1. p: CSI number (p = 00)

Remark 2. m: Unit number, n: Channel number (mn = 00)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

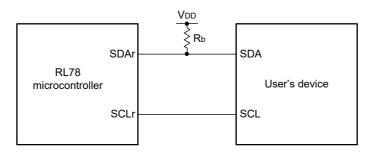
Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00)

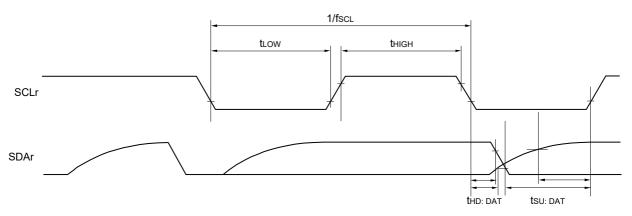
Remark 2. m: Unit number, n: Channel number (mn = 00)

(5) During communication at same potential (simplified I²C mode)

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)


Parameter	Symbol	Conditions	HS (high-speed	d main) mode	LS (low-speed	main) mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 Note 1		400 Note 1	kHz
		$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $C_b = 100 \text{ pF, } R_b = 3 \text{ k}\Omega$		400 Note 1		400 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		ns
		$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $C_b = 100 \text{ pF, } R_b = 3 \text{ k}\Omega$	1150		1150		ns
Hold time when SCLr = "H"	thigh	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1150		1150		ns
Data setup time (reception)	tsu: DAT	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/fмск + 85 Note 2		1/fмск + 145 Note 2		ns
		$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $C_b = 100 \text{ pF, } R_b = 3 \text{ k}\Omega$	1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	305	0	305	ns
		$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $C_b = 100 \text{ pF, } R_b = 3 \text{ k}\Omega$	0	355	0	355	ns

Note 1. The value must also be equal to or less than fMCK/4.


Note 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

 $\textbf{Remark 1.} \ \, \mathsf{Rb}[\Omega] : \mathsf{Communication line (SDAr) pull-up \ resistance}, \ \, \mathsf{Cb}[F] : \mathsf{Communication line (SDAr, SCLr) load \ capacitance}$

Remark 2. r: IIC number (r = 00), g: PIM number (g = 3, 5), h: POM number (h = 3, 5)

Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0), mn = 00)

(6) Communication at different potential (2.5 V, 3 V) (UART mode)

$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol		Conditions	HS (high-spe	eed main) mode	LS (low-spee	d main) mode	Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate fmck = fclk Note 3		4.0		1.3	Mbps
			2.7 V ≤ V _{DD} < 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V		fmck/6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate fmck = fclk Note 3		4.0		1.3	Mbps
			2.7 V ≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. Use it with $VDD \ge Vb$.

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$) LS (low-speed main) mode: 8 MHz ($2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Remark 1. Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 5)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03)

Remark 4. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in UART mode.

 $4.0~V \le V_{DD} \le 5.5~V,~2.7~V \le V_{b} \le 4.0~V;~V_{IH}$ = $2.2~V,~V_{IL}$ = 0.8~V

 $2.7 \text{ V} \le \text{Vdd} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$: VIH = 2.0 V, VIL = 0.5 V

 $2.7 \text{ V} \le \text{VDD} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$: VIH = 1.50 V, VIL = 0.32 V

(6) Communication at different potential (2.5 V, 3 V) (UART mode)

$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Conditions	HS (high-spe	ed main) mode	LS (low-spee	ed main) mode	Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, \\ V_b = 2.7 \text{ V}$		2.8 Note 2		2.8 Note 2	Mbps
			2.7 V ≤ V _{DD} < 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, \\ V_b = 2.3 \text{ V}$		1.2 Note 4		1.2 Note 4	Mbps
			2.7 V ≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V		Note 5, 6		Note 5, 6	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega,$ $V_b = 1.6 \text{ V}$		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq VDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{C}_b \times \text{R}_b \times \text{In} (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

- **Note 2.** This value as an example is calculated when the conditions described in the "Conditions" column are met.
 - Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- Note 3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\left\{-C_b \times R_b \times \ln\left(1 - \frac{2.0}{V_b}\right)\right\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\} }{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} }$$

- Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met.

 Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- Note 5. Use it with $VDD \ge Vb$.

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

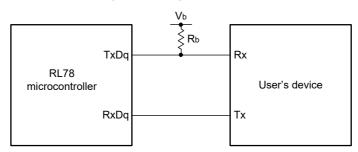
Note 6. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate

Expression for calculating the transfer rate when 2.7 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

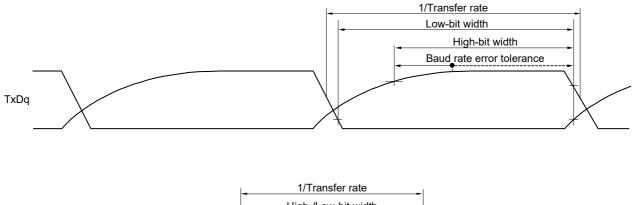
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{C}_b \times \text{R}_b \times \text{In} (1 - \frac{1.5}{\text{V}_b})\}}{\times 100 \, [\%]}$$

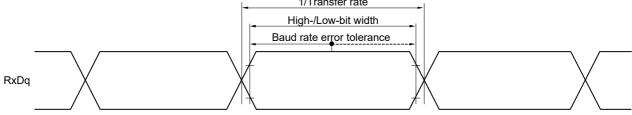
$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$


- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance,
 - Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 5)
- Remark 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03))
- Remark 4. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in UART mode.

$$4.0~V \le V_{DD} \le 5.5~V,~2.7~V \le V_{b} \le 4.0~V;~V_{IH}$$
 = $2.2~V,~V_{IL}$ = $0.8~V$

$$2.7~V \le V_{DD} \le 4.0~V,~2.3~V \le V_{b} \le 2.7~V;~V_{IH} = 2.0~V,~V_{IL} = 0.5~V$$


$$2.7 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$$
: VIH = 1.50 V, VIL = 0.32 V

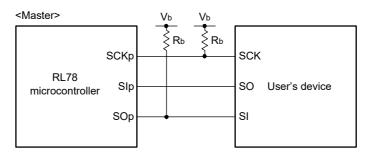

UART mode connection diagram (during communication at different potential)

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

UART mode bit width (during communication at different potential) (reference)

 $\textbf{Remark 1.} \ \ \, \mathsf{Rb}[\Omega] : Communication \ \, \mathsf{line} \ \, (\mathsf{TxDq}) \ \, \mathsf{pull-up} \ \, \mathsf{resistance}, \ \, \mathsf{Vb}[V] : \ \, \mathsf{Communication} \ \, \mathsf{line} \ \, \mathsf{voltage}$

Remark 2. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 5)


(7) Communication at different potential (2.5 V, 3 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed	,	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcY1 ≥ 2/fcLK	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	200		1150		ns
			$ \begin{aligned} &2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ &C_{b} = 20 \text{ pF}, \text{ R}_{b} = 2.7 \text{ k}\Omega \end{aligned} $	300		1150		ns
SCKp high-level width	tкн1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5$ $C_b = 20 \text{ pF}, R_b =$	$5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $1.4 \text{ k}Ω$	tkcy1/2 - 50		tkcy1/2 - 50		ns
		2.7 V ≤ V _{DD} < 4.0 C _b = 20 pF, R _b =	$0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ 2.7 kΩ	tксү1/2 - 120		tксу1/2 - 120		ns
SCKp low-level width	tKL1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5$ C _b = 20 pF, R _b =	$0.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ 0.4 k	tkcy1/2 - 7		tkcy1/2 - 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ C _b = 20 pF, R _b =	$0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ 2.7 kΩ	tkcy1/2 - 10		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1	4.0 V ≤ V _{DD} ≤ 5.5 C _b = 20 pF, R _b =	$0.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ 0.4 k	58		479		ns
		2.7 V ≤ V _{DD} < 4.0 C _b = 20 pF, R _b =	$0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ 2.7 kΩ	121		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	4.0 V ≤ V _{DD} ≤ 5.5 C _b = 20 pF, R _b =	$5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ 1.4 kΩ	10		10		ns
		2.7 V ≤ V _{DD} < 4.0 C _b = 20 pF, R _b =	$0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ 2.7 kΩ	10		10		ns
Delay time from SCKp↓ to SOp output Note 1	tkso1	4.0 V ≤ V _{DD} ≤ 5.5 C _b = 20 pF, R _b =	$0 \text{ V, } 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V,}$ $1.4 \text{ k}Ω$		60		60	ns
		2.7 V ≤ V _{DD} < 4.0 C _b = 20 pF, R _b =	$0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ 2.7 kΩ		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	4.0 V ≤ V _{DD} ≤ 5.5 C _b = 20 pF, R _b =	$0 \text{ V, } 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V,}$ $1.4 \text{ k}Ω$	23		110		ns
		2.7 V ≤ V _{DD} < 4.0 C _b = 20 pF, R _b =	$0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ 2.7 kΩ	33		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksıı	4.0 V ≤ V _{DD} ≤ 5.5 C _b = 20 pF, R _b =	5 V, 2.7 V ≤ V _b ≤ 4.0 V, 1.4 kΩ	10		10		ns
		2.7 V ≤ V _{DD} < 4.0 C _b = 20 pF, R _b =	$0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ 2.7 kΩ	10		10		ns
Delay time from SCKp↑ to SOp output Note 2	tkso1	4.0 V ≤ V _{DD} ≤ 5.5 C _b = 20 pF, R _b =	5 V, 2.7 V ≤ Vb ≤ 4.0 V, 1.4 kΩ		10		10	ns
		2.7 V ≤ V _{DD} < 4.0 C _b = 20 pF, R _b =	$0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ 2.7 kΩ		10		10	ns

(Notes, Caution and Remarks are listed on the next page.)

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

- **Note 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)
- Remark 3. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in simplified SPI (CSI) mode.
 - $4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$: VIH = 2.2 V, VIL = 0.8 V $2.7 \text{ V} \le \text{Vdd} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$: VIH = 2.0 V, VIL = 0.5 V
 - 2.7 V S VDD V 4.0 V, 2.3 V S VD S 2.7 V. VIH 2.0 V, VIL 0.3 V

Remark 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(8) Communication at different potential (2.5 V, 3 V) (fMck/4) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

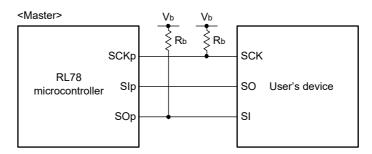
(1/2)

Parameter	Sym bol		Conditions		peed ode	LS (low-speed mode	,	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, $ $ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $	300		1150		ns
			$2.7 \ V \le V_{DD} < 4.0 \ V,$ $2.3 \ V \le V_b \le 2.7 \ V,$ $C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega$	500		1150		ns
			$2.7 \ V \leq V_{DD} < 3.3 \ V,$ $1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$	1150		1150		ns
SCKp high-level width	tкн1	4.0 V ≤ V _{DD} ≤ 5 C _b = 30 pF, R _b	$5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ = 1.4 kΩ	tkcy1/2 - 75		tксү1/2 - 75		ns
		2.7 V ≤ V _{DD} < 4 C _b = 30 pF, R _b	$4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ = 2.7 kΩ	tксү1/2 - 170		tксу1/2 - 170		ns
		2.7 V ≤ V _{DD} < 3 C _b = 30 pF, R _b	3.3 V, 1.6 V \leq V _b \leq 2.0 V, = 5.5 kΩ	tkcy1/2 - 458		tkcy1/2 - 458		ns
SCKp low-level width	tKL1	4.0 V ≤ V _{DD} ≤ 5 C _b = 30 pF, R _b	$5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ = 1.4 kΩ	tkcy1/2 - 12		tkcy1/2 - 50		ns
		2.7 V ≤ V _{DD} < 4 C _b = 30 pF, R _b	$4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ = 2.7 kΩ	tkcy1/2 - 18		tксү1/2 - 50		ns
		2.7 V ≤ V _{DD} < 3 C _b = 30 pF, R _b	3.3 V , $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$, = $5.5 \text{ k}\Omega$	tксү1/2 - 50		tkcy1/2 - 50		ns

- Caution 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Caution 2. Use it with $V_{DD} \ge V_b$.
- Remark 1. $R_b[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
- Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)
- Remark 3. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in simplified SPI (CSI) mode.

 $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$: VIH = $2.2 \text{ V}, \text{V}_{IL}$ = 0.8 V $2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$: VIH = $2.0 \text{ V}, \text{V}_{IL}$ = 0.5 V

(8) Communication at different potential (2.5 V, 3 V) (fMck/4) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)


 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

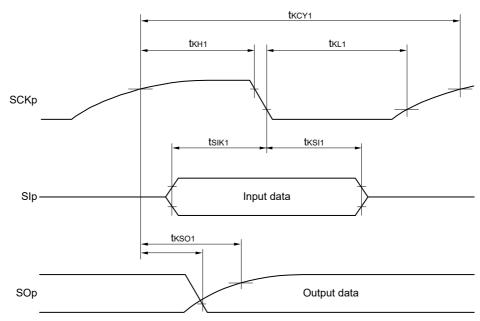
(2/2)

Parameter	Symbol	Conditions	` `	speed main) ode	,	peed main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsıĸ1	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V},~2.7~\text{V} \leq \text{V}_{\text{b}} \leq 4.0~\text{V},$ $C_{\text{b}} = 30~\text{pF},~R_{\text{b}} = 1.4~\text{k}\Omega$	81		479		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega $	177		479		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}, \\ C_b = 30 \text{ pF}, \ R_b = 5.5 \text{ k}\Omega $	479		479		ns
SIp hold time (from SCKp↑) Note 1	tksii	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, $ $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega $	19		19		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega $	19		19		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}, \\ C_b = 30 \text{ pF}, \ R_b = 5.5 \text{ k}\Omega $	19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega $		100		100	ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 30 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega $		195		195	ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$		483		483	ns
SIp setup time (to SCKp↓) Note 2	tsıĸ1	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, $ $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega $	44		110		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega $	44		110		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}, \\ C_b = 30 \text{ pF}, \ R_b = 5.5 \text{ k}\Omega $	110		110		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega $	19		19		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 30 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega $	19		19		ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}, \\ C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$	19		19		ns
Delay time from SCKp↑ to SOp output Note 2	tkso1	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$		25		25	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		25		25	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$		25		25	ns

(Notes, Caution and Remarks are listed on the next page.)

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Caution 2. Use it with $V_{DD} \ge V_b$.
- Remark 1. $R_b[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
- Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)
- Remark 3. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in simplified SPI (CSI) mode.

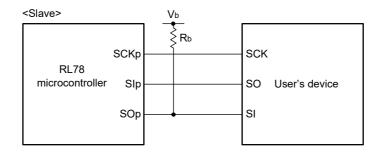

 $4.0~\text{V} \leq \text{Vdd} \leq 5.5~\text{V},~2.7~\text{V} \leq \text{Vb} \leq 4.0~\text{V};~\text{Vih}$ = 2.2~V,~Vil = 0.8~V

 $2.7~\text{V} \leq \text{V}_{DD} < 4.0~\text{V},~2.3~\text{V} \leq \text{V}_{b} \leq 2.7~\text{V};~\text{V}_{IH}$ = $2.0~\text{V},~\text{V}_{IL}$ = 0.5~V

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

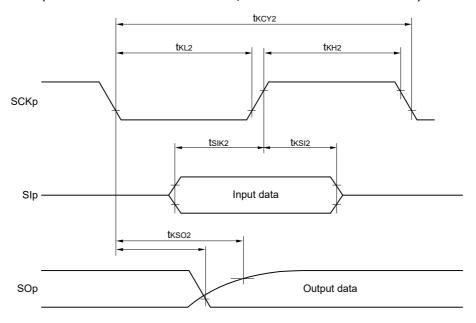
Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)

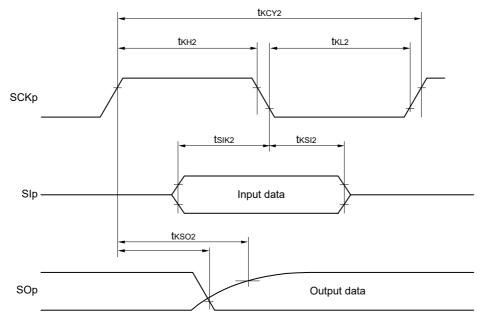

(9) Communication at different potential (2.5 V, 3 V) (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Sym bol	Со	nditions	` •	speed main) ode	,	peed main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	12/fмск		_		ns
		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$	8 MHz < fмcк ≤ 20 MHz	10/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns
		2.7 V ≤ V _{DD} < 4.0 V,	20 MHz < fмcк ≤ 24 MHz	16/fмск		_		ns
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}$	16 MHz < fмcк ≤ 20 MHz	14/fмск		_		ns
			8 MHz < fмcк ≤ 16 MHz	12/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns
		2.7 V ≤ V _{DD} < 3.3 V,	20 MHz < fмcк ≤ 24 MHz	36/fмск		_		ns
		1.6 V ≤ V _b ≤ 2.0 V Note 2	16 MHz < fмcк ≤ 20 MHz	32/fмск		_		ns
		110.0 2	8 MHz < fмcк ≤ 16 MHz	26/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	10/fмск		10/fмск		ns
SCKp high-/low-level	tĸн2,	$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}, 2.7$	7 V ≤ V _b ≤ 4.0 V	tkcy2/2 - 12		tkcy2/2 - 50		ns
width	tKL2	2.7 V ≤ V _{DD} < 4.0 V, 2.3	3 V ≤ V _b ≤ 2.7 V	tkcy2/2 - 18		tkcy2/2 - 50		ns
		2.7 V ≤ V _{DD} < 3.3 V, 1.6	6 V ≤ V _b ≤ 2.0 V Note 2	tkcy2/2 - 50		tkcy2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsıĸ2	2.7 V ≤ VDD ≤ 5.5 V		1/fмск + 20		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 5	tkso2	4.0 V ≤ V _{DD} ≤ 5.5 V, 2.7 C _b = 30 pF, R _b = 1.4 kΩ	,		2/fмск + 120		2/fмск + 573	ns
		$2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V,$ $C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega$			2/fмск + 214		2/fмск + 573	ns
		$2.7~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V~^{Note~2},$ $C_b = 30~pF,~R_V = 5.5~k\Omega$			2/fмск + 573		2/fмск + 573	ns


(Notes, Caution and Remarks are listed on the next page.)

Simplified SPI (CSI) mode connection diagram (during communication at different potential)



- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $V_{DD} \ge V_b$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)
- Remark 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
- Remark 4. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in simplified SPI (CSI) mode.
 - $4.0~V \le V_{DD} \le 5.5~V,~2.7~V \le V_{b} \le 4.0~V;~V_{IH} = 2.2~V,~V_{IL} = 0.8~V$ $2.7~V \le V_{DD} < 4.0~V,~2.3~V \le V_{b} \le 2.7~V;~V_{IH} = 2.0~V,~V_{IL} = 0.5~V$
- **Remark 5.** Communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)

Remark 2. Communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(10) Communication at different potential (2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

(1/2)

Parameter	Symbol	Conditions	` `	speed main) ode	,	peed main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscl	$ 4.0 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, $ $ \text{Cb} = 50 \text{ pF}, \ \text{Rb} = 2.7 \text{ k}\Omega $		1000 Note 1		300 Note 1	kHz
		$2.7 \text{ V} \le \text{Vdd} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 Note 1		300 Note 1	kHz
		$ 4.0 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, $ $ \text{Cb} = 100 \text{ pF}, \ \text{Rb} = 2.8 \text{ k}\Omega $		400 Note 1		300 Note 1	kHz
		$2.7 \text{ V} \le \text{Vdd} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ $\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		400 Note 1		300 Note 1	kHz
		$2.7 \text{ V} \le \text{VDD} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_b < 2.0 \text{ V} \text{ Note 2},$ $C_b = 100 \text{ pF}, \ R_b = 5.5 \text{ k}\Omega$		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	475		1550		ns
		$ 2.7 \text{ V} \leq \text{Vdd} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} < 2.7 \text{ V}, \\ \text{Cb} = 50 \text{ pF}, \ \text{Rb} = 2.7 \text{ k}\Omega $	475		1550		ns
		$ 4.0 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, $ $ \text{Cb} = 100 \text{ pF}, \ \text{Rb} = 2.8 \text{ k}\Omega $	1150		1550		ns
		$2.7 \text{ V} \le \text{Vdd} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ $\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	1150		1550		ns
		$2.7 \text{ V} \le \text{VDD} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_b < 2.0 \text{ V} \text{ Note 2},$ $C_b = 100 \text{ pF}, \ R_b = 5.5 \text{ k}\Omega$	1550		1550		ns
Hold time when SCLr = "H"	thigh	$ 4.0 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, $ $ \text{Cb} = 50 \text{ pF}, \ \text{Rb} = 2.7 \text{ k}\Omega $	245		610		ns
		$2.7 \text{ V} \leq \text{Vdd} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} < 2.7 \text{ V}, \\ \text{Cb} = 50 \text{ pF}, \ \text{Rb} = 2.7 \text{ k}\Omega$	200		610		ns
		$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega$	675		610		ns
		$2.7 \text{ V} \le \text{Vdd} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ $\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	600		610		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{b} < 2.0 \text{ V} \text{ Note } 2,$ $C_{b} = 100 \text{ pF}, \ R_{b} = 5.5 \text{ k}\Omega$	610		610		ns

(Notes, Caution and Remarks are listed on the next page.)

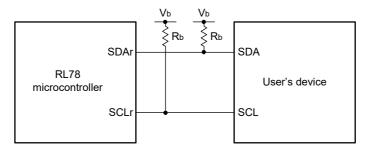
(10) Communication at different potential (2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

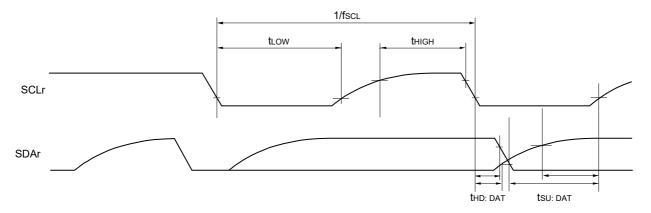
(2/2)

Parameter	Symbol	Conditions	HS (high-speed r	nain)	LS (low-speed m	nain)	Unit
			MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, \\ \text{C}_{b} = 50 \text{ pF}, \text{ R}_{b} = 2.7 \text{ k}\Omega \end{aligned}$	1/fmck + 135 Note 3		1/fmck + 190 Note 3		ns
		$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{split}$	1/fmck + 135 Note 3		1/fmck + 190 Note 3		ns
		$\begin{aligned} &4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, \\ &\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega \end{aligned}$	1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{split}$	1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$\begin{split} 2.7 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_{b} < 2.0 \ V \ ^{Note} \ ^{2}, \\ Cb &= 100 \ pF, \ Rb = 5.5 \ k \Omega \end{split}$	1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, \\ \text{Cb} & = 50 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \end{aligned}$	0	305	0	305	ns
		$ \begin{aligned} 2.7 & \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{b} < 2.7 \text{ V}, \\ C_{b} & = 50 \text{ pF}, \text{ R}_{b} = 2.7 \text{ k}\Omega \end{aligned} $	0	305	0	305	ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, \\ &\text{C}_{b} = 100 \text{ pF}, \text{R}_{b} = 2.8 \text{ k}\Omega \end{aligned} $	0	355	0	355	ns
		$\begin{split} 2.7 \ & V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ & V \leq V_b < 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	0	355	0	355	ns
		$\begin{split} 2.7 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_{b} < 2.0 \ V \ ^{Note} \ 2, \\ Cb &= 100 \ pF, \ Rb = 5.5 \ k \Omega \end{split}$	0	405	0	405	ns

Note 1. The value must also be equal to or less than fMCK/4.


Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)


Note 2. Use it with $VDD \ge Vb$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Remark 1. $Rb[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** r: IIC number (r = 00), g: PIM, POM number (g = 3, 5)
- Remark 3. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0),

 n: Channel number (n = 0), mn = 00)
- Remark 4. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in simplified I²C mode.

 $4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}; \text{ Vih} = 2.2 \text{ V}, \text{ Vil} = 0.8 \text{ V}$ $2.7 \text{ V} \le \text{Vdd} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}; \text{ Vih} = 2.0 \text{ V}, \text{ Vil} = 0.5 \text{ V}$

2.7 Analog Characteristics

2.7.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (-) = AV _{REFM}
ANI0 to ANI7	Refer to 2.7.1 (1).	Refer to 2.7.1 (3).	Refer to 2.7.1 (4).
ANI16 to ANI19	Refer to 2.7.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.7.1 (1) .		_

(1) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target ANI pin: ANI2 to ANI7

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP = VDD	2.7 V ≤ VDD ≤ 5.5 V		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	2.125		39	μs
		AVREFP = VDD	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.1875		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution AVREFP = VDD	2.7 V ≤ VDD ≤ 5.5 V			±0.25	% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AVREFP = VDD	2.7 V ≤ VDD ≤ 5.5 V			±0.25	% FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD	2.7 V ≤ VDD ≤ 5.5 V			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD	2.7 V ≤ VDD ≤ 5.5 V			±1.5	LSB
Reference voltage (+)	AVREFP		•	2.7		VDD	V
Analog input voltage	VAIN			0		AVREFP	V
	VBGR	Select internal refe 2.7 V ≤ VDD ≤ 5.5 N HS (high-speed ma	•	1.38	1.45	1.5	V

Note 1. Excludes quantization error (±1/2 LSB).

(2) When AVREF (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target ANI pin: ANI16 to ANI19

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP = VDD	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	2.125		39	μs
		AVREFP = VDD	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	3.1875		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution AVREFP = VDD	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±0.35	% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AVREFP = VDD	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±0.35	% FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±2.0	LSB
Reference voltage (+)	AVREFP		•	2.7		VDD	V
Analog input voltage	Vain			0		AVREFP	V
	VBGR	Select internal refe 2.7 V ≤ VDD ≤ 5.5 \ HS (high-speed ma	•	1.38	1.45	1.5	V

Note 1. Excludes quantization error (±1/2 LSB).

(3) When AVREF (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), AVREF (-) = VSS (ADREFM = 0), target ANI pin: ANI0 to ANI7, ANI16 to ANI19

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	2.125		39	μs
			$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	3.1875		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±0.60	% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±0.60	% FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI7		0		VDD	V
		ANI16 to ANI19		0		VDD	V
	VBGR	Select internal reference voltage output, 2.7 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode		1.38	1.45	1.5	V

Note 1. Excludes quantization error (±1/2 LSB).

(4) When AVREF (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target ANI pin: ANI0 to ANI7, ANI16 to ANI19

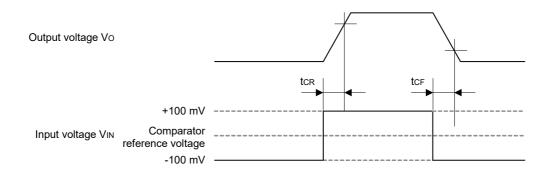
(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR, Reference voltage (-) = AVREFM = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Co	Conditions			MAX.	Unit
Resolution	Res				8		bit
Conversion time	tconv	8-bit resolution	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	EZS	8-bit resolution	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			±1.0	LSB
Reference voltage (+)	VBGR		•	1.38	1.45	1.5	V
Analog input voltage	VAIN			0		VBGR	V

Note 1. Excludes quantization error (±1/2 LSB).

2.7.2 Temperature sensor characteristics

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Reference output voltage	Vconst	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

2.7.3 Comparator

(Ta = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

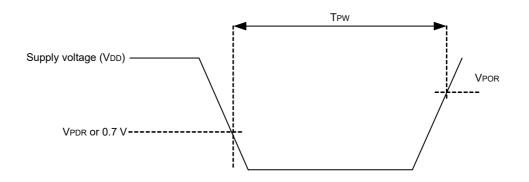
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOCMP				±5	±40	mV
Input voltage range	VICMP			0		Vdd	V
Internal reference voltage deviation	ΔVIREF	CmRVM register v	CmRVM register value: 7FH to 80H (m = 0, 1)			±2	LSB
		Other than above				±1	LSB
Response time	tcr, tcf	Input amplitude = :	Input amplitude = ±100 mV		70	150	ns
Operation stabilization time Note 1	tcmp	CMPnEN = 0→1	V _{DD} = 3.3 to 5.5 V			1	μs
			V _{DD} = 2.7 to 3.3 V			3	
Reference voltage stabilization wait time	tvr	CVRE: 0→1 Note 2	•			20	μs

- **Note 1.** Time required after the operation enable signal of the comparator has been changed (CMPnEN = $0 \rightarrow 1$) until a state satisfying the DC and AC characteristics of the comparator is entered.
- **Note 2.** Enable operation of internal reference voltage generation (CVREm bit = 1; m = 0, 1) and wait for the operation stabilization wait time before enabling the comparator output (CnOE bit = 1; n = 0, 1).

2.7.4 Programmable gain amplifier

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOPGA				±5	±10	mV
Input voltage range	VIPGA			0		0.9 × V _{DD} /gain	V
Response time	Vohpga			0.9 × VDD			V
	Volpga					0.1 × VDD	
Gain error	_	4, 8 times				±1	%
		16 times				±1.5	
		32 times				±2	
Slew rate	SRRPGA	Rising edge	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	1.4			V/µs
			$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}$	0.5			
	SRFPGA	Falling edge	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	1.4			
			$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}$	0.5			
Operation stabilization wait time	tpga	4, 8 times	4, 8 times 16, 32 times			5	μs
Note		16, 32 times				10	


Note Time required after the PGA operation has been enabled (PGAEN = 1) until a state satisfying the DC and AC specifications of the PGA is entered.

2.7.5 POR circuit characteristics

(TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	tpw		300			μs

Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.7.6 LVD circuit characteristics

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parai	meter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage	voltage level		Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
Minimum pulse	width	tLW		300			μs
Detection delay time tLD					300	μs	

Remark VLVD(n-1) > VLVDn: n = 1 to 5

LVD Detection Voltage of Interrupt & Reset Mode

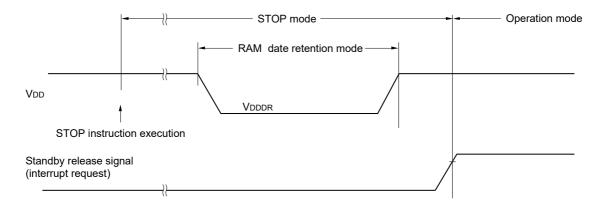
(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	itions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVD5	VPOC2,	VPOC1, VPOC0 = 0, 1, 1, fal	2.70	2.75	2.81	V	
mode	VLVD4		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			(+0.1 V)	Falling interrupt voltage	2.80	2.86	2.91	V
	VLVD3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			(+0.2 V)	Falling interrupt voltage	2.90	2.96	3.02	V
	VLVD0		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
		(+1.2 V)	Falling interrupt voltage	3.90	3.98	4.06	V	

2.7.7 Power supply voltage rising slope characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.5 AC Characteristics.

2.8 RAM Data Retention Characteristics

$(TA = -40 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.9 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$		1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	TA = 85°C Note 3	1,000			Times

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

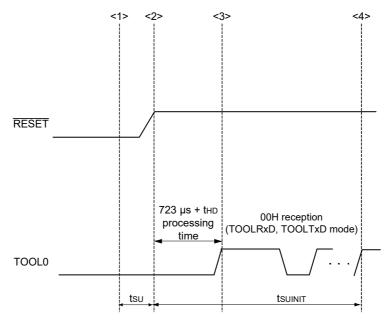
The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self programming library.

Note 3. These specifications show the characteristics of the flash memory and the results obtained from Renesas Electronics reliability testing.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)


(Ta = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115.2 k		1 M	bps

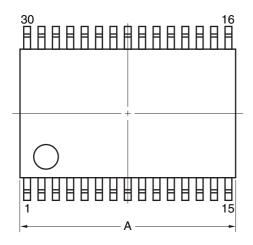
2.11 Timing for Switching Flash Memory Programming Modes

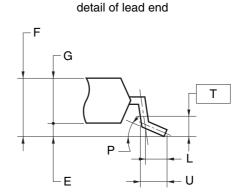
(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V

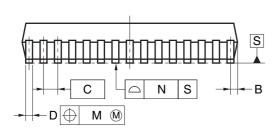
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thD	POR and LVD reset must end before the external reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

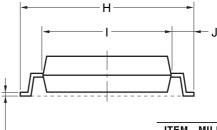

tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
thd: How long to keep the TOOL0 pin at the low level from when the external resets end
(the flash firmware processing time is excluded)


3. PACKAGE DRAWINGS


3.1 30-pin Products

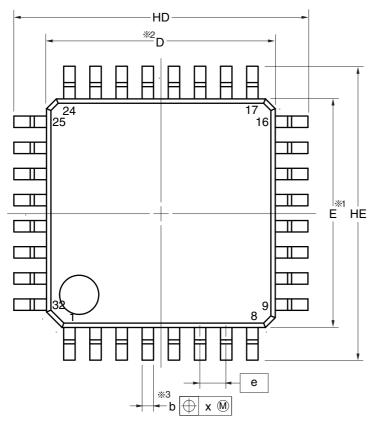
R5F11EA8ASP, R5F11EAAASP

JEITA Package Code	RENESAS Code Previous Code MASS (TY		MASS (TYP.) [g]
P-LSSOP30-0300-0.65	P-LSSOP30-0300-0.65 PLSP0030JB-B S30MC-65-5A4-3		0.18

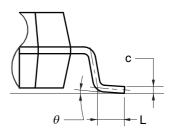


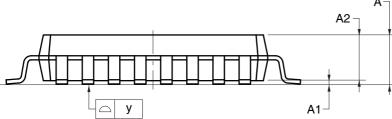
NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.


 $^{\perp}$ K

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15

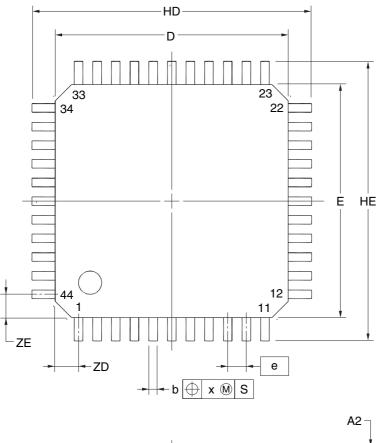

32-pin Products 3.2

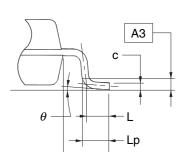

R5F11EB8AFP, R5F11EBAAFP

JEITA Package Code	ITA Package Code RENESAS Code Pr		MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

detail of lead end

	(UNIT:mm)
ITEM	DIMENSIONS
D	7.00±0.10
Е	7.00±0.10
HD	9.00±0.20
HE	9.00±0.20
Α	1.70 MAX.
A1	0.10±0.10
A2	1.40
b	0.37±0.05
С	0.145±0.055
L	0.50±0.20
θ	0° to 8°
е	0.80
х	0.20
у	0.10


NOTE


- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

3.3 44-pin Products

R5F11EF8AFP, R5F11EFAAFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80 PLQP0044GC-A P44GB-80-UES-		P44GB-80-UES-2	0.36

– L1 →

detail of lead end

A2 A A S

NOTE

Each lead centerline is located within 0.20 mm of its true position at maximum material condition.

	(UNIT:mm)
ITEM	DIMENSIONS
D	10.00±0.20
Е	10.00±0.20
HD	12.00±0.20
HE	12.00±0.20
Α	1.60 MAX.
A1	0.10±0.05
A2	1.40±0.05
A3	0.25
b	$0.37^{+0.08}_{-0.07}$
С	$0.145{}^{+0.055}_{-0.045}$
L	0.50
Lp	0.60±0.15
L1	1.00±0.20
θ	3°+5°
е	0.80
х	0.20
у	0.10
ZD	1.00
ZE	1.00

REVISION HISTORY	RL78/G1G Datasheet
------------------	--------------------

Rev.	Date		Description	
i Nev. Date		Page	Summary	
1.00	Jul 31, 2014	_	First Edition issued	
1.20	Mar 25, 2015	1	Change of description in 1.1 Features	
		3	Change of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1G	
		3	Change of Table 1 - 1 Orderable Part Numbers	
		11	Change of 1.6 Outline of Functions	
1.30 Sep 30, 2016 1		1	Addition of Note to 1.1 Features	
		4	Modification of Pin configuration in 1.3.1 30-pin products	
		5	Modification of Pin configuration in 1.3.2 32-pin products	
		6	Modification of Pin configuration in 1.3.3 44-pin products	
		63	Change of Note in 2.8 RAM Data Retention Characteristics	
1.31 Mar 20, 2023 All "CSI" was modified to "simplified SPI (CSI)".		"CSI" was modified to "simplified SPI (CSI)".		
		1	1.1 Features: Note 1 was added.	
		3	1.2 List of Part Numbers: Ordering part numbers were added.	
1.40	Apr 26, 2024	3	Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1G	
		3	Modification of Table 1 - 1 Orderable Part Numbers	

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

 R5F11EFAAFP#50
 R5F11EAAASP#30
 R5F11EAAASP#30
 R5F11EBAAFP#30
 R5F11EBAAFP#30
 R5F11EBAAFP#30
 R5F11EF8AFP#50
 R5F11EFAAFP#30

 R5F11EB8AFP#50
 R5F11EBAAFP#50
 R5F11EBAAFP#10
 R5F11EFAAFP#10
 R5F11EAAFP#10
 R5F11EBAAFP#10