

RL78/L1C

RENESAS MCU

R01DS0192EJ0220

Rev.2.20

Dec 28, 2017

Integrated LCD controller/driver, 12-bit resolution A/D Converter, USB 2.0 controller (function), True Low Power Platform (as low as 112.5 μA/MHz, and 0.68 μA for RTC2 + LVD), 1.6 V to 3.6 V operation, 64 to 256 Kbyte Flash, 33 DMIPS at 24 MHz, for All LCD Based Applications

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 1.6 to 3.6 V
- HAIT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- · CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.04167 μs: @ 24 MHz operation with high-speed on-chip oscillator clock or PLL clock) to ultra-low speed (30.5 μs: @ 32.768 kHz operation with subsystem clock)
- Multiply/divide and multiply/accumulate instructions are supported.
- · Address space: 1 Mbyte
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 8 to 16 KB

Code flash memory

- · Code flash memory: 64 to 256 KB
- · Block size: 1 KB
- · Prohibition of block erase and rewriting (security function)
- · On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 8 KB
- Background operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD = 1.8 to 3.6 V

High-speed on-chip oscillator

- Select from 48 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: ±1.0% (VDD = 1.8 to 3.6 V, TA = -20 to +85°C)

Operating ambient temperature

- TA = -40 to +85°C (A: Consumer applications)
- TA = -40 to +105°C (G: Industrial applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 12 levels)

Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources (30 to 33 sources).
- · Chain transfer function

Event link controller (ELC)

 Event signals of 30 or 31 types can be linked to the specified peripheral function.

Serial interfaces

- · CSI: 4 channels
- UART/UART (LIN-bus supported): 4 channels
- I²C/simplified I²C: 5 channels

Timers

- · 16-bit timer: 11 channels
- 12-bit interval timer: 1 channel
- Real-time clock 2: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)

LCD controller/driver

- Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.
- Segment signal output: 44 (40) Note 1 to 56 (52) Note 1
- Common signal output: 4 (8) Note 1

USB Note 2

- · USB version 2.0 (function controller)
- Full-speed transfer (12 Mbps) and low-speed transfer (1.5 Mbps) are supported
- Compliant to Battery Charging Specification Revision 1.2

A/D converter

- 8/10-bit resolution A/D converter (VDD = 1.6 to 3.6 V)
- 12-bit resolution A/D converter (VDD = 2.4 to 3.6 V)
- Analog input: 9 to 13 channels
- Internal reference voltage (TYP. 1.45 V) and temperature sensor Note 2

D/A converter

- 8-bit resolution D/A converter (VDD = 1.6 to 3.6 V)
- · Analog output: 2 channels
- Output voltage: 0 V to VDD
- Real-time output function

Comparator

- 2 channel
- Operating modes: Comparator high-speed mode, comparator low-speed mode, window mode
- The external reference voltage or internal reference voltage can be selected as the reference voltage.

I/O ports

- I/O ports: 59 to 77 (N-ch open drain I/O [withstand voltage of 6 V]: 2)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- · On-chip key interrupt function
- On-chip clock output/buzzer output controller

Other

- On-chip BCD (binary-coded decimal) correction circuit
 - **Note 1.** The number in parentheses indicates the number of signal outputs when 8 coms are used.
 - Note 2. Selectable only in HS (high-speed main) mode.
 - Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

○ ROM, RAM capacities

Products with USB

Flash ROM	Data Flash	RAM	RL78/L1C			
Flasii ROW	Data Flasii		80 pins	85 pins	100 pins	
256 KB	8 KB	16 KB Note	R5F110MJ	R5F110NJ	R5F110PJ	
192 KB	8 KB	16 KB Note	R5F110MH	R5F110NH	R5F110PH	
128 KB	8 KB	12 KB	R5F110MG	R5F110NG	R5F110PG	
96 KB	8 KB	10 KB	R5F110MF	R5F110NF	R5F110PF	
64 KB	8 KB	8 KB	R5F110ME	R5F110NE	R5F110PE	

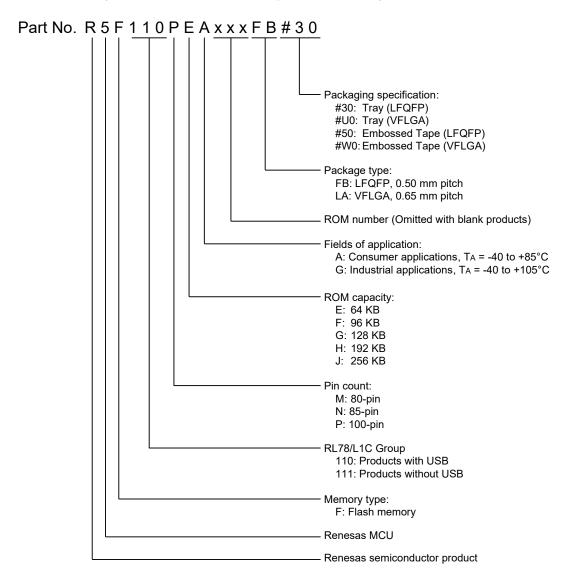
Products without USB

Note

Flash ROM	Data Flash	RAM	RL78/L1C			
Flasii NOW	Data Flasii		80 pins	85 pins	100 pins	
256 KB	8 KB	16 KB Note	R5F111MJ	R5F111NJ	R5F111PJ	
192 KB	8 KB	16 KB Note	R5F111MH	R5F111NH	R5F111PH	
128 KB	8 KB	12 KB	R5F111MG	R5F111NG	R5F111PG	
96 KB	8 KB	10 KB	R5F111MF	R5F111NF	R5F111PF	
64 KB	8 KB	8 KB	R5F111ME	R5F111NE	R5F111PE	

This is about 15 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/L1C User's Manual).

1.2 Ordering Information

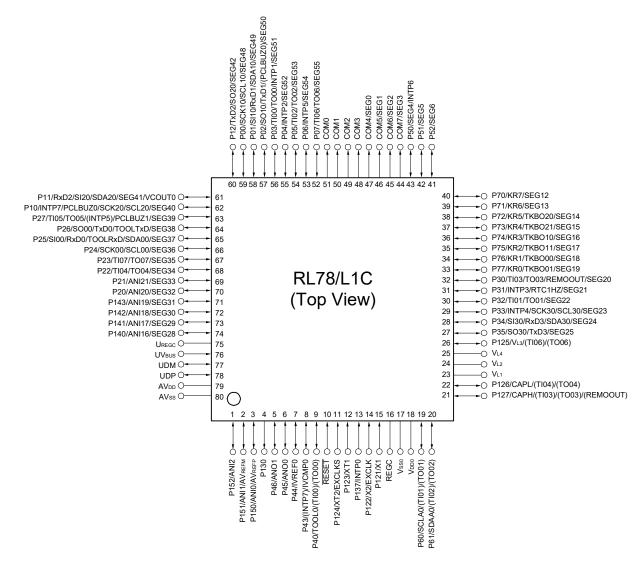

Products with USB

Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	A G	R5F110MEAFB#30, R5F110MFAFB#30, R5F110MGAFB#30, R5F110MHAFB#30, R5F110MJAFB#30 R5F110MEAFB#50, R5F110MFAFB#50, R5F110MGAFB#50, R5F110MHAFB#50, R5F110MJAFB#50 R5F110MEGFB#30, R5F110MFGFB#30, R5F110MGGFB#30, R5F110MHGFB#30, R5F110MJGFB#30 R5F110MEGFB#50, R5F110MFGFB#50, R5F110MGGFB#50, R5F110MHGFB#50, R5F110MJGFB#50
85 pins	85-pin plastic VFLGA (7 × 7 mm, 0.65 mm pitch)	A G	R5F110NEALA#U0, R5F110NFALA#U0, R5F110NGALA#U0, R5F110NHALA#U0, R5F110NJALA#U0 R5F110NEALA#W0, R5F110NFALA#W0, R5F110NGALA#W0, R5F110NHALA#W0, R5F110NJALA#W0 R5F110NEGLA#U0, R5F110NFGLA#U0, R5F110NGGLA#U0, R5F110NHGLA#U0, R5F110NJGLA#U0 R5F110NEGLA#W0, R5F110NFGLA#W0, R5F110NGGLA#W0, R5F110NHGLA#W0, R5F110NJGLA#W0
100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)	A G	R5F110PEAFB#30, R5F110PFAFB#30, R5F110PGAFB#30, R5F110PHAFB#30, R5F110PJAFB#30 R5F110PEAFB#50, R5F110PFAFB#50, R5F110PGAFB#50, R5F110PHAFB#50, R5F110PJAFB#50 R5F110PEGFB#30, R5F110PFGFB#30, R5F110PGGFB#30, R5F110PHGFB#30, R5F110PJGFB#30 R5F110PEGFB#50, R5F110PFGFB#50, R5F110PGGFB#50, R5F110PHGFB#50, R5F110PJGFB#50

Products without USB

Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	A G	R5F111MEAFB#30, R5F111MFAFB#30, R5F111MGAFB#30, R5F111MHAFB#30, R5F111MJAFB#30 R5F111MEAFB#50, R5F111MFAFB#50, R5F111MGAFB#50, R5F111MHAFB#50, R5F111MJAFB#50 R5F111MEGFB#30, R5F111MFGFB#30, R5F111MGGFB#30, R5F111MHGFB#30, R5F111MJGFB#30 R5F111MEGFB#50, R5F111MFGFB#50, R5F111MGGFB#50, R5F111MHGFB#50, R5F111MJGFB#50
85 pins	85-pin plastic VFLGA (7 × 7 mm, 0.65 mm pitch)	A G	R5F111NEALA#U0, R5F111NFALA#U0, R5F111NGALA#U0, R5F111NHALA#U0, R5F111NJALA#U0 R5F111NEALA#W0, R5F111NFALA#W0, R5F111NGALA#W0, R5F111NHALA#W0, R5F111NJALA#W0 R5F111NEGLA#U0, R5F111NFGLA#U0, R5F111NGGLA#U0, R5F111NHGLA#U0, R5F111NJGLA#U0 R5F111NEGLA#W0, R5F111NFGLA#W0, R5F111NGGLA#W0, R5F111NHGLA#W0, R5F111NJGLA#W0
100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)	A G	R5F111PEAFB#30, R5F111PFAFB#30, R5F111PGAFB#30, R5F111PHAFB#30, R5F111PJAFB#30 R5F111PEAFB#50, R5F111PFAFB#50, R5F111PGAFB#50, R5F111PHAFB#50, R5F111PJAFB#50 R5F111PEGFB#30, R5F111PFGFB#30, R5F111PGGFB#30, R5F111PHGFB#30, R5F111PJGFB#30 R5F111PEGFB#50, R5F111PFGFB#50, R5F111PGFB#50, R5F111PHGFB#50, R5F111PJGFB#50

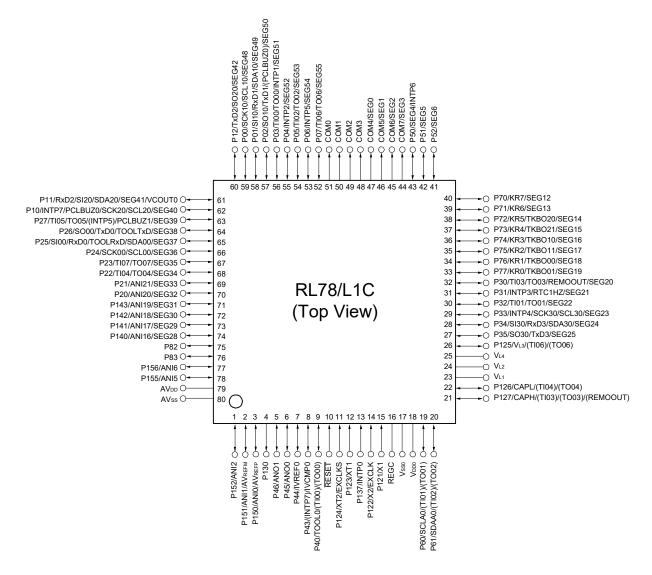
Figure 1 - 1 Part Number, Memory Size, and Package of RL78/L1C


Caution Orderable part numbers are current as of when this manual was published.

Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

1.3 Pin Configuration (Top View)

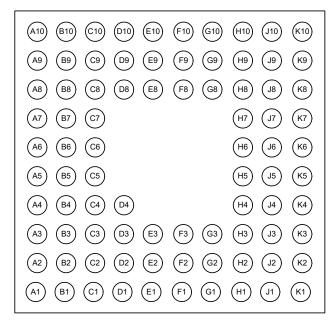
1.3.1 80-pin products (with USB)


• 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Caution 2. Connect the UREGC pin to Vss pin via a capacitor (0.33 µF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

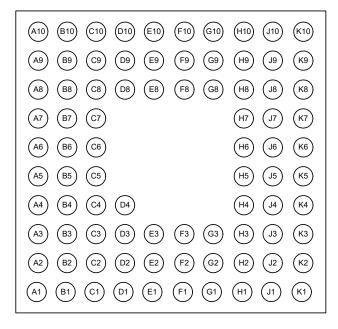
1.3.2 80-pin products (without USB)

• 80-pin plastic LFQFP (fine pitch) (12 × 12 mm, 0.5 mm pitch)



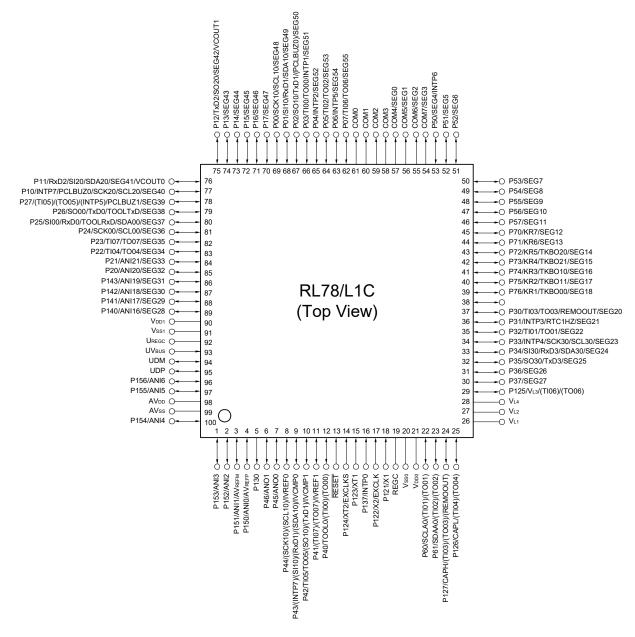
Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.


Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

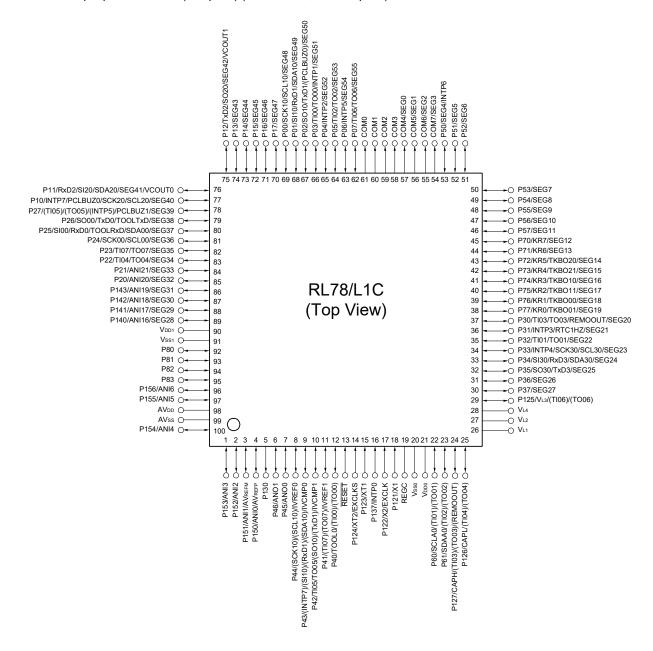
1.3.3 85-pin products (with USB)

Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
A1	COM7/SEG3	C1	COM2	E1	P04/INTP2/SEG52	G1	P00/SCK10/SCL10/ SEG48	J1	Vsso
A2	P51/SEG5	C2	COM5/SEG1	E2	P05/TI02/TO02/SEG53	G2	Vsso	J2	P11/RxD2/SI20/SDA20/ SEG41/VCOUT0
А3	P70/KR7/SEG12	C3	COM6/SEG2	E3	P06/INTP5/SEG54	G3	P12/TxD2/SO20/SEG42/ VCOUT1	J3	P26/SO00/TxD0/ TOOLTxD/SEG38
A4	P73/KR4/TKBO21/SEG15	C4	P71/KR6/SEG13	E4	_	G4	_	J4	P23/TI07/TO07/SEG35
A5	P74/KR3/TKBO10/SEG16	C5	P76/KR1/TKBO00/SEG18	E5	_	G5	_	J5	P20/ANI20/SEG32
A6	P31/INTP3/RTC1HZ/ SEG21	C6	P77/KR0/TKBO01/SEG19	E6	_	G6	_	J6	P141/ANI17/SEG29
A7	P33/INTP4/SCK30/SCL30/ SEG23	C7	P34/SI30/RxD3/SDA30/ SEG24	E7	_	G7	_	J7	UREGC
A8	P35/SO30/TxD3/SEG25	C8	VL1	E8	P40/TOOL0/(TI00)/(TO00)	G8	P44/(SCK10)/(SCL10)/ IVREF0	J8	UVBUS
A9	VL4	C9	P61/SDAA0/(TI02)/(TO02)	E9	P137/INTP0	G9	P45/ANO0	J9	AVDD
A10	P126/CAPL/(TI04)/(TO04)	C10	VDD0	E10	P122/X2/EXCLK	G10	P123/XT1	J10	P150/ANI0/AVREFP
B1	COM4/SEG0	D1	СОМО	F1	P03/TI00/TO00/INTP1/ SEG51	H1	Vsso	K1	Vsso
B2	P50/SEG4/INTP6	D2	COM1	F2	P02/SO10/TxD1/ (PCLBUZ0)/SEG50	H2	Vsso	K2	P27/TI05/TO05/(INTP5)/ PCLBUZ1/SEG39
ВЗ	P52/SEG6	D3	P07/TI06/TO06/SEG55	F3	P01/SI10/RxD1/SDA10/ SEG49	НЗ	P10/INTP7/PCLBUZ0/ SCK20/SCL20/SEG40	K3	P25/SI00/RxD0/ TOOLRxD/SDA00/SEG37
B4	P72/KR5/TKBO20/SEG14	D4	СОМЗ	F4	_	H4	P24/SCK00/SCL00/ SEG36	K4	P22/TI04/TO04/SEG34
В5	P75/KR2/TKBO11/SEG17	D5	_	F5	_	H5	P21/ANI21/SEG33	K5	P143/ANI19/SEG31
В6	P30/TI03/TO03/ REMOOUT/SEG20	D6	_	F6	_	Н6	P140/ANI16/SEG28	K6	P142/ANI18/SEG30
В7	P32/TI01/TO01/SEG22	D7	_	F7	_	H7	P152/ANI2	K7	UDM
В8	P125/VL3/(TI06)/(TO06)	D8	P60/SCLA0/(TI01)/(TO01)	F8	P43/(INTP7)/(SI10)/ (RxD1)/(SDA10)/IVCMP0	Н8	P46/ANO1	K8	UDP
В9	VL2	D9	REGC	F9	RESET	H9	P130	K9	AVss
B10	P127/CAPH/(TI03)/ (TO03)/(REMOOUT)	D10	P121/X1	F10	Vsso	H10	P124/XT2/EXCLKS	K10	P151/ANI1/AVREFM


1.3.4 85-pin products (without USB)

Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
A1	COM7/SEG3	C1	COM2	E1	P04/INTP2/SEG52	G1	P00/SCK10/SCL10/ SEG48	J1	Vsso
A2	P51/SEG5	C2	COM5/SEG1	E2	P05/TI02/TO02/SEG53	G2	Vsso	J2	P11/RxD2/SI20/SDA20/ SEG41/VCOUT0
A3	P70/KR7/SEG12	C3	COM6/SEG2	E3	P06/INTP5/SEG54	G3	P12/TxD2/SO20/SEG42/ VCOUT1	J3	P26/SO00/TxD0/ TOOLTxD/SEG38
A4	P73/KR4/TKBO21/SEG15	C4	P71/KR6/SEG13	E4	_	G4	_	J4	P23/TI07/TO07/SEG35
A5	P74/KR3/TKBO10/SEG16	C5	P76/KR1/TKBO00/SEG18	E5	_	G5	_	J5	P20/ANI20/SEG32
A6	P31/INTP3/RTC1HZ/ SEG21	C6	P77/KR0/TKBO01/ SEG19	E6	_	G6	_	J6	P141/ANI17/SEG29
A7	P33/INTP4/SCK30/ SCL30/SEG23	C7	P34/SI30/RxD3/SDA30/ SEG24	E7	_	G7	_	J7	P82
A8	P35/SO30/TxD3/SEG25	C8	VL1	E8	P40/TOOL0/(TI00)/(TO00)	G8	P44/(SCK10)/(SCL10)/ IVREF0	J8	P83
A9	VL4	C9	P61/SDAA0/(TI02)/(TO02)	E9	P137/INTP0	G9	P45/ANO0	J9	AVDD
A10	P126/CAPL/(TI04)/(TO04)	C10	VDD0	E10	P122/X2/EXCLK	G10	P123/XT1	J10	P150/ANI0/AVREFP
B1	COM4/SEG0	D1	СОМО	F1	P03/TI00/TO00/INTP1/ SEG51	H1	Vsso	K1	Vsso
B2	P50/SEG4/INTP6	D2	COM1	F2	P02/SO10/TxD1/ (PCLBUZ0)/SEG50	H2	Vsso	K2	P27/TI05/TO05/(INTP5)/ PCLBUZ1/SEG39
В3	P52/SEG6	D3	P07/TI06/TO06/SEG55	F3	P01/SI10/RxD1/SDA10/ SEG49	Н3	P10/INTP7/PCLBUZ0/ SCK20/SCL20/SEG40	K3	P25/SI00/RxD0/ TOOLRxD/SDA00/SEG37
B4	P72/KR5/TKBO20/SEG14	D4	СОМЗ	F4	_	H4	P24/SCK00/SCL00/ SEG36	K4	P22/TI04/TO04/SEG34
B5	P75/KR2/TKBO11/SEG17	D5	_	F5	_	H5	P21/ANI21/SEG33	K5	P143/ANI19/SEG31
В6	P30/TI03/TO03/ REMOOUT/SEG20	D6	_	F6	_	H6	P140/ANI16/SEG28	K6	P142/ANI18/SEG30
В7	P32/TI01/TO01/SEG22	D7	_	F7	_	H7	P152/ANI2	K7	P156/ANI6
В8	P125/VL3/(TI06)/(TO06)	D8	P60/SCLA0/(TI01)/(TO01)	F8	P43/(INTP7)/(SI10)/ (RxD1)/(SDA10)/IVCMP0	Н8	P46/ANO1	K8	P155/ANI5
В9	VL2	D9	REGC	F9	RESET	Н9	P130	K9	AVss
B10	P127/CAPH/(TI03)/ (TO03)/(REMOOUT)	D10	P121/X1	F10	Vsso	H10	P124/XT2/EXCLKS	K10	P151/ANI1/AVREFM

1.3.5 100-pin products (with USB)


• 100-pin plastic LFQFP (fine pitch) (14 × 14 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Caution 2. Connect the UREGC pin to Vss pin via a capacitor (0.33 $\mu\text{F}).$
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.6 100-pin products (without USB)

• 100-pin plastic LFQFP (fine pitch) (14 × 14 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

ANI0 to ANI6, SCL00, SCL10, SCL20, SCL30 : Serial Clock Output : Analog Input

ANI16 to ANI21

ANO0, ANO1 SDA20, SDA30 : Analog Output

AVDD : Analog Power Supply **AV**REFM : Analog Reference Voltage SI00, SI10, SI20, SI30 : Serial Data Input

Minus

(Main System Clock)

AVREFP : Analog Reference Voltage

Plus

AVss : Analog Ground CAPH, CAPL : Capacitor for LCD

COM0 to COM7 : LCD Common Output **EXCLK** : External Clock Input

EXCLKS : External Clock Input

(Subsystem Clock)

INTP0 to INTP7 : External Interrupt Input IVCMP0, IVCMP1 : Comparator Input

IVREF0, IVREF1 : Comparator Reference Input

KR0 to KR7 : Key Return

P00 to P07 : Port 0 P10 to P17 : Port 1

P20 to P27 : Port 2 P30 to P37 : Port 3

P40 to P46 : Port 4

P50 to P57 : Port 5 P60 to P62 : Port 6 P70 to P77 : Port 7 P80 to P83 : Port 8 P121 to P127 : Port 12 P130, P137 : Port 13 P140 to P143 : Port 14

: Port 15 PCLBUZ0, PCLBUZ1 : Programmable Clock Output/

Buzzer Output

REGC : Regulator Capacitance **REMOOUT** : Remote Control Output

RESET Reset

RTC1HZ : Real-time Clock Correction

Clock (1 Hz) Output

RxD0 to RxD3 : Receive Data

SCK00, SCK10, : Serial Clock Input/Output

SCK20, SCK30

P150 to P156

SCLA0 : Serial Clock Input/Output SDAA0, SDA00, SDA10, : Serial Data Input/Output

SEG0 to SEG55 : LCD Segment Output

SO00, SO10, SO20, SO30 : Serial Data Output

TI00 to TI07 : Timer Input TO00 to TO07 : Timer Output

TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21

TOOLO : Data Input/Output for Tool

TOOLRXD, TOOLTXD : Data Input/Output for

External Device

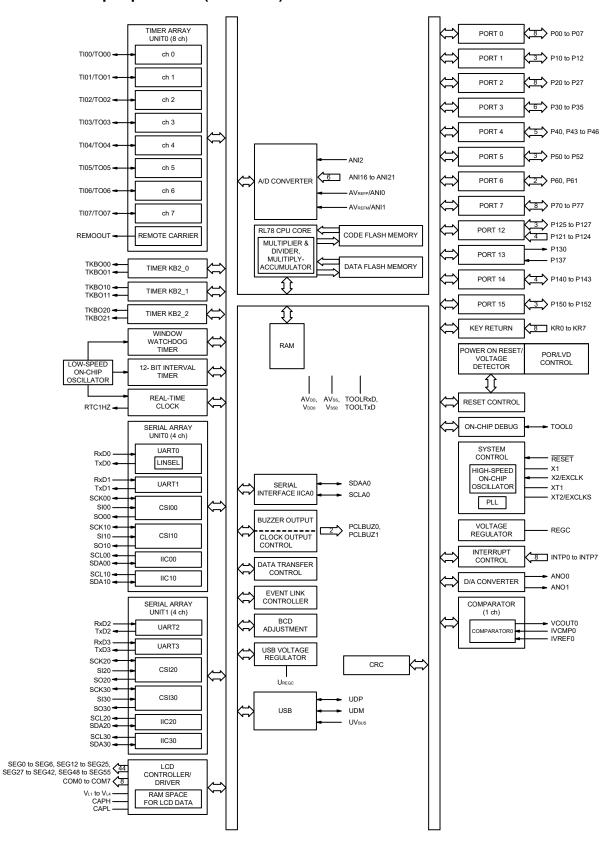
UDM, UDP : USB Input/Output

UREGC : USB Regulator Capacitance **UV**BUS : USB Input/USB Power Supply

TxD0 to TxD3 : Transmit Data VCOUT0, VCOUT1 : Comparator Output VDD0, VDD1 : Power Supply VL1 to VL4 : LCD Power Supply

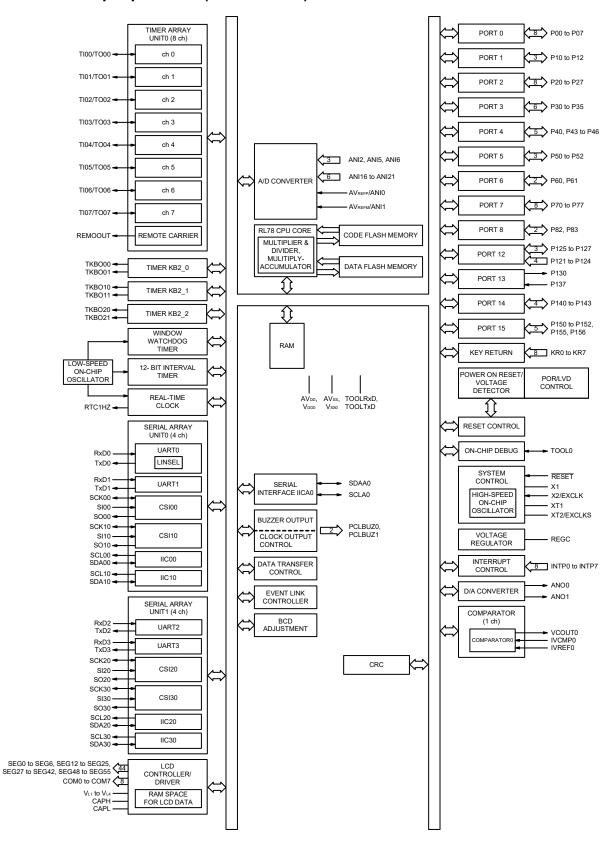
Vsso, Vss1 : Ground

X1, X2 : Crystal Oscillator

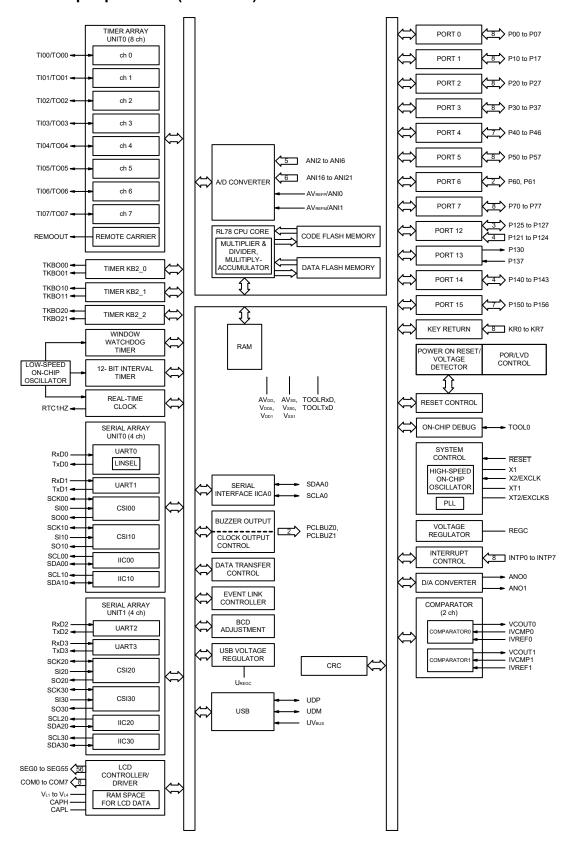

(Main System Clock)

XT1, XT2 : Crystal Oscillator

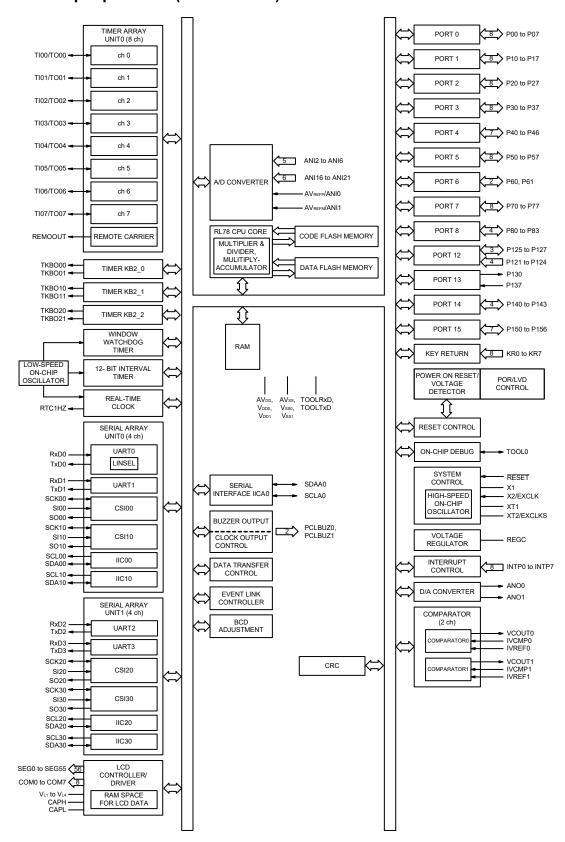
(Subsystem Clock)


1.5 Block Diagram

1.5.1 80/85-pin products (with USB)



1.5.2 80/85-pin products (without USB)


<R>

1.5.3 100-pin products (with USB)

1.5.4 100-pin products (without USB)

1.6 Outline of Functions

[80/85-pin, 100-pin products (with USB)]

(1/2)

		-				
	Item	80/85-pin	100-pin			
item		R5F110Mx/R5F110Nx (x = E to H, J)	R5F110Px ($x = E \text{ to H}, J$)			
Code flash memory	(KB)	64 to 256	64 to 256			
Data flash memory (KB)	8	8			
RAM (KB)		8 to 16 ^{Note 1}	8 to 16 ^{Note 1}			
Memory space		1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 1 to 20 MHz: VDD = 2.7 to 3.6 V, 1 to 8 MHz: VDD = 1.8 to 2.7 V, 1 to 4 MHz: VDD = 1.6 to 1.8				
	High-speed on-chip oscillator clock	HS (high-speed main) operation mode: 1 to 24 MHz (VDD = 2.7 to 3.6 V), HS (high-speed main) operation mode: 1 to 16 MHz (VDD = 2.4 to 3.6 V), LS (low-speed main) operation mode: 1 to 8 MHz (VDD = 1.8 to 3.6 V), LV (low-voltage main) operation mode: 1 to 4 MHz (VDD = 1.6 to 3.6 V)				
	PLL clock	6, 12, 24 MHz Note 2: VDD = 2.4 to 3.6 V				
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock i 32.768 kHz (TYP.): VDD = 1.6 to 3.6 V	nput (EXCLKS)			
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD = 1.6 to 3.6 V				
General-purpose reg	gister	8 bits × 32 registers (8 bits × 8 registers × 4 banks)				
Minimum instruction	execution time	0.04167 μs (High-speed on-chip oscillator clock: fHOCO = fiH = 24 MHz operation)				
		0.04167 μs (PLL clock: fPLL = 48 MHz/fiн = 24 MHz Note 2 operation)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)				
		30.5 μs (Subsystem clock: fsuB = 32.768 kHz operation)				
Instruction set		Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.				
I/O port	Total	59	77			
	CMOS I/O	51	69			
	CMOS input	5	5			
	CMOS output	1	1			
	N-ch open-drain I/O (6 V tolerance)	2	2			
Timer	16-bit timer TAU	8 channels (with 1 channel remote control output fu	nction) (Timer outputs: 8, PWM outputs: 7 Note			
	16-bit timer KB2	3 channels (PWM outputs: 6)				
	Watchdog timer	1 channel				
	12-bit interval timer	1 channel				
	Real-time clock 2	1 channel				
	RTC output	1 1 Hz (subsystem clock: fsub = 32.768 kHz)				

Note 1. In the case of the 16 KB, this is about 15 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/L1C User's Manual).

Note 2. In the PLL clock 48 MHz operation, the system clock is 2/4/8 dividing ratio.

Note 3. The number of outputs varies, depending on the setting of channels in use and the number of the master.

(2/2)

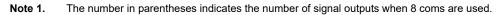
				(2/2)		
	Item		80/85-pin	100-pin		
Clock output/buzzer output			R5F110Mx/R5F110Nx (x = E to H, J)	R5F110Px (x = E to H, J)		
Clock outp	put/buzzer o	output	2	2		
			 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 M (Main system clock: fMaIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 k (Subsystem clock: fSUB = 32.768 kHz operation)) kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz		
8/12-bit re	esolution A/I	D converter	9 channels	13 channels		
D/A conve	erter		2 channels	2 channels		
Comparat	tor		1 channel	2 channels		
Serial interface			CSI: 1 channel/UART (UART supporting LIN-b CSI: 1 channel/UART: 1 channel/simplified I ² C CSI: 1 channel/UART: 1 channel/simplified I ² C CSI: 1 channel/UART: 1 channel/simplified I ² C	: 1 channel : 1 channel		
		I ² C bus	1 channel	1 channel		
USB		Function	1 cha	I annel		
LCD contr	roller/driver	1	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.			
	Segment	signal output	44 (40) Note 1	56 (52) Note 1		
	Common	signal output	4 (8) Note 1			
Data trans	sfer controll	er (DTC)	32 sources	33 sources		
Event link	controller (ELC)	Event input: 30, Event trigger output: 22	Event input: 31, Event trigger output: 22		
Vectored i	interrupt	Internal	36	37		
sources		External	9	9		
Key interre	upt	1	8	8		
Reset			Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note 2 Internal reset by RAM parity error Internal reset by illegal-memory access			
Power-on-	-reset circui	it	Power-on-reset: 1.51 ± 0.03 V Power-down-reset: 1.50 ± 0.03 V	• Power-on-reset: 1.51 ± 0.03 V		
Voltage detector			Rising edge: 1.67 V to 3.13 V (12 stages) Falling edge: 1.63 V to 3.06 V (12 stages)			
On-chip debug function		on	Provided			
Power sup	pply voltage	•	VDD = 1.6 to 3.6 V (TA = -40 to +85°C) VDD = 2.4 to 3.6 V (TA = -40 to +105°C)			
Operating	ambient te	mperature	TA = -40 to +85°C (A: Consumer applications), T.	TA = -40 to +85°C (A: Consumer applications), TA = -40 to +105°C (G: Industrial applications)		
			•			

- Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.
- Note 2. The illegal instruction is generated when instruction code FFH is executed.

 Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

[80/85-pin, 100-pin products (without USB)]

(1/2)


	Item	80/85-pin	100-pin			
	nom	R5F111Mx/R5F111Nx (x = E to H, J)	R5F111Px (x = E to H, J)			
Code flash memory	(KB)	64 to 256	64 to 256			
Data flash memory (KB)	8	8			
RAM (KB)		8 to 16 Note 1	8 to 16 Note 1			
Memory space		1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main sys 1 to 20 MHz: VDD = 2.7 to 3.6 V, 1 to 8 MHz: VD				
	High-speed on-chip oscillator clock	HS (high-speed main) operation mode: 1 to 24 MHz (VDD = 2.7 to 3.6 V), HS (high-speed main) operation mode: 1 to 16 MHz (VDD = 2.4 to 3.6 V, LS (low-speed main) operation mode: 1 to 8 MHz (VDD = 1.8 to 3.6 V), LV (low-voltage main) operation mode: 1 to 4 MHz (VDD = 1.6 to 3.6 V)				
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock 32.768 kHz (TYP.): VDD = 1.6 to 3.6 V	k input (EXCLKS)			
Low-speed on-chip of	oscillator clock	15 kHz (TYP.): VDD = 1.6 to 3.6 V				
General-purpose reg	jister	8 bits × 32 registers (8 bits × 8 registers × 4 banks)				
Minimum instruction	execution time	0.04167 μs (High-speed on-chip oscillator clock: fHOCO = fIH = 24 MHz operation)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)				
		30.5 μs (Subsystem clock: fsuB = 32.768 kHz operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 				
I/O port	Total	63	81			
	CMOS I/O	55	73			
	CMOS input	5	5			
	CMOS output	1	1			
	N-ch open-drain I/O (6 V tolerance)	2	2			
Timer	16-bit timer TAU	8 channels (with 1 channel remote control output	function) (Timer outputs: 8, PWM outputs: 7 ^{Note 2})			
	16-bit timer KB2	3 channels (PWM outputs: 6)				
	Watchdog timer	1 channel	1 channel			
	12-bit interval timer	1 channel				
	Real-time clock 2	1 channel				
	RTC output	1 1 Hz (subsystem clock: fsub = 32.768 kHz)				

Note 1. In the case of the 16 KB, this is about 15 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/L1C User's Manual).

Note 2. The number of outputs varies, depending on the setting of channels in use and the number of the master.

(2/2)

			(2/2)		
	Itom	80/85-pin	100-pin		
	Item	R5F111Mx/R5F111Nx (x = E to H, J)	R5F111Px (x = E to H, J)		
Clock output/buzzer	output	2	2		
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 W (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 k (Subsystem clock: fsub = 32.768 kHz operation) 	: :Hz, 8.192 kHz, 16.384 kHz, 32.768 kHz		
8/12-bit resolution A	/D converter	11 channels	13 channels		
D/A converter		2 channels	2 channels		
Comparator		1 channel	2 channels		
Serial interface		CSI: 1 channel/UART (UART supporting LIN-bi CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C:	1 channel		
	I ² C bus	1 channel	1 channel		
LCD controller/drive	r	Internal voltage boosting method, capacitor split are switchable.	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.		
Segment	signal output	44 (40) Note 1	56 (52) Note 1		
Common	signal output	4 (8)	Note 1		
Data transfer contro	ller (DTC)	30 sources	31 sources		
Event link controller	(ELC)	Event input: 30, Event trigger output: 22	Event input: 31, Event trigger output: 22		
Vectored interrupt	Internal	32	33		
sources	External	9	9		
Key interrupt	•	8	8		
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution No Internal reset by RAM parity error Internal reset by illegal-memory access	te 2		
Power-on-reset circuit		 Power-on-reset: 1.51 ± 0.03 V Power-down-reset: 1.50 ± 0.03 V 	• Power-on-reset: 1.51 ± 0.03 V		
Voltage detector		• Rising edge: 1.67 V to 3.13 V (12 stages) • Falling edge: 1.63 V to 3.06 V (12 stages)			
On-chip debug function		Provided	Provided		
Power supply voltag	je	VDD = 1.6 to 3.6 V (TA = -40 to +85°C) VDD = 2.4 to 3.6 V (TA = -40 to +105°C)			
Operating ambient t	emperature	TA = -40 to +85°C (A: Consumer applications), TA	TA = -40 to +85°C (A: Consumer applications), TA = -40 to +105°C (G: Industrial applications)		

Note 2. The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the electrical specifications for the products A: Consumer applications (TA = -40 to +85°C) and G: Industrial applications (when used in the range of TA = -40 to +85°C).

- Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L1C User's Manual.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

(1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to + 6.5	V
	UVBUS		-0.5 to + 6.5	V
	AVDD	AVDD ≤ VDD	-0.5 to + 4.6	V
REGC pin input voltage	VIREGC	REGC	-0.3 to + 2.8	V
			and -0.3 to V _{DD} + 0.3 Note 1	
UREGC pin input voltage	Viuregc	UREGC	-0.3 to UVBUS + 0.3 Note 2	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P37,	-0.3 to V _{DD} + 0.3 Note 3	V
		P40 to P46, P50 to P57, P70 to P77, P80 to P83,		
		P125 to P127, P137, P140 to P143, EXCLK, EXCLKS, RESET		
	VI2	P60, P61 (N-ch open-drain)	-0.3 to + 6.5	V
	VI2	UDP, UDM	-0.3 to + 6.5	V
		,		
	VI4	P150 to P156	-0.3 to AVDD + 0.3 Note 4	V
Output voltage	V01	P00 to P07, P10 to P17, P20 to P27, P30 to P37,	-0.3 to V _{DD} + 0.3 Note 3	V
		P40 to P46, P50 to P57, P60, P61, P70 to P77,		
		P80 to P83, P125 to P127, P130, P140 to P143		
	Vo2	P150 to P156	-0.3 to AVDD + 0.3 Note 3	V
	Vo ₃	UDP, UDM	-0.3 to + 3.8	V
Analog input voltage	VAI1	ANI16 to ANI21	-0.3 to VDD + 0.3	V
			and AVREF(+) + 0.3 Notes 3, 5	
	VAI2	ANI0 to ANI6	-0.3 to AVDD + 0.3	V
			and AVREF(+) + 0.3 Notes 3, 5	

- Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- Note 2. Connect the UREGC pin to Vss via a capacitor (0.33 μ F). This value regulates the absolute maximum rating of the UREGC pin. Do not use this pin with voltage applied to it.
- Note 3. Must be 6.5 V or lower.
- Note 4. Must be 4.6 V or lower.
- **Note 5.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- Remark 2. AVREF (+): + side reference voltage of the A/D converter.
- Remark 3. Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C)

(2/3)

Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VLI1	V _{L1} input voltage [§]	Note 1	-0.3 to +2.8	V
	VLI2	VL2 input voltage ¹	Note 1	-0.3 to +6.5	V
	VLI3	VL3 input voltage	Note 1	-0.3 to +6.5	V
	VLI4	VL4 input voltage	Note 1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH inpu	ıt voltage ^{Note 1}	-0.3 to +6.5	V
	VLO1	V _L 1 output voltage		-0.3 to +2.8	V
	VLO2	VL2 output voltage		-0.3 to +6.5	V
	VLO3	VL3 output voltage		-0.3 to +6.5	V
	VLO4	V _L 4 output voltage		-0.3 to +6.5	V
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V
	VLO6	COM0 to COM7	External resistance division method	-0.3 to VDD + 0.3 Note 2	V
	SEG0 to SEG55 output voltage	SEG0 to SEG55	Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
		output voltage	Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

- Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 ± 30%) and connect a capacitor (0.47 ± 30%) between the CAPL and CAPH pins.
- Note 2. Must be 6.5 V or lower.

Caution

Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings (TA = 25°C)

(3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-40	mA
		Total of all	P40 to P46	-70	mA
		pins -170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-100	mA
	Іон2	Per pin	P150 to P156	-0.1	mA
		Total of all pins		-0.7	mA
	Іонз	Per pin	UDP, UDM	-3	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	40	mA
		Total of all	P40 to P46	70	mA
		pins 170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	100	mA
	IOL2	Per pin	P150 to P156	0.4	mA
		Total of all pins		2.8	mA
	IOL3	Per pin	UDP, UDM	3	mA
Operating ambient temperature	ТА		pperation mode	-40 to +85	°C
Storage temperature	Tstg		· · · · · · · · · · · · · · · · · · ·	-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1 and XT1 oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx)	Ceramic resonator/crystal resonator	2.7 V ≤ VDD ≤ 3.6 V	1.0		20.0	MHz
Note		2.4 V ≤ VDD < 2.7 V	1.0		16.0	
		1.8 V ≤ VDD < 2.4 V	1.0		8.0	
		1.6 V ≤ VDD < 1.8 V	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/L1C User's Manual.

2.2.2 On-chip oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fHOCO			1		48	MHz
High-speed on-chip oscillator		-20 to +85°C	1.8 V ≤ VDD ≤ 3.6 V	-1.0		+1.0	%
clock frequency accuracy			1.6 V ≤ VDD ≤ 1.8 V	-5.0		+5.0	%
		-40 to -20°C	1.8 V ≤ VDD < 3.6 V	-1.5		+1.5	%
			1.6 V ≤ VDD ≤ 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

2.2.3 PLL oscillator characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fPLLIN	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fPLL			48.00		MHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				-10.0 Note 2	mA
		Total of P00 to P07, P10 to P17, P20 to P27,	2.7 V ≤ VDD ≤ 3.6 V			-15.0	mA
		P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130.	1.8 V ≤ V _{DD} < 2.7 V			-7.0	mA
		P140 to P143 (When duty ≤ 70% Note 3)	1.6 V ≤ VDD < 1.8 V			-3.0	mA
	IOH2	Per pin for P150 to P156	1.6 V ≤ VDD ≤ 3.6 V			-0.1 Note 2	mA
		Total of all pins	1.6 V ≤ VDD ≤ 3.6 V			-0.7	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. However, do not exceed the total current value.

Note 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R>

<R>

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

<R>

<R>

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				20.0 Note 2	mA
		Per pin for P60 and P61				15.0 Note 2	mA
		Total of P40 to P46, P130	2.7 V ≤ VDD ≤ 3.6 V			15.0	mA
		(When duty ≤ 70% Note 3)	1.8 V ≤ VDD < 2.7 V			9.0	mA
			1.6 V ≤ VDD < 1.8 V			4.5	mA
		Total of P00 to P07, P10 to P17, P20 to P27,	2.7 V ≤ VDD ≤ 3.6 V			35.0	mA
		P30 to P37, P50 to P57, P60, P61,	1.8 V ≤ VDD < 2.7 V			20.0	mA
		P70 to P77, P80 to P83, P125 to P127, P140 to P143 (When duty ≤ 70% Note 3)	1.6 V ≤ VDD < 1.8 V			10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				50.0	mA
	lOL2	Per pin for P150 to P156				0.4 Note 2	mA
		Total of all pins	1.6 V ≤ VDD ≤ 3.6 V			2.8	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
- **Note 2.** However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression

(when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL \times 0.7)/(n \times 0.01)
 - <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0.8 VDD		VDD	V
	VIH2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	2.0		VDD	V
			TTL input buffer 1.6 V ≤ V _{DD} < 3.3 V	1.50		VDD	V
	VIH3	P150 to P156	0.7 AVDD		AVDD	V	
	VIH4	P60, P61		0.7 Vdd		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS,	0.8 VDD		VDD	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0		0.2 VDD	V
	VIL2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	0		0.5	V
			TTL input buffer 1.6 V ≤ V _{DD} < 3.3 V	0		0.32	V
	VIL3	P150 to P156		0		0.3 AVDD	V
	VIL4	P60, P61		0		0.3 VDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS,	RESET	0		0.2 VDD	٧

Caution The maximum value of VIH of pins P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 is VDD, even in the N-ch open-drain mode.

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
Output voltage, high	Voн1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127,	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ $10\text{H1} = -2.0 \text{ mA}$ $1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$	VDD - 0.6			V V	
		P130, P140 to P143	IOH1 = -1.5 mA					
			$1.6 \text{ V} \le \text{VDD} < 3.6 \text{ V},$ 10H1 = -1.0 mA	VDD - 0.5			V	
	VOH2	P150 to P156	1.6 V ≤ VDD ≤ 3.6 V, IOH2 = -100 μA	AVDD - 0.5			V	
Output voltage, low	VOL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57,	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 3.0 mA			0.6	>	
		D400 D440 to D440	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 1.5 mA			0.4	V	
					$1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 0.6 mA			0.4
			1.6 V ≤ VDD < 1.8 V, IOL1 = 0.3 mA			0.4	V	
	VOL2	P150 to P156	1.6 V ≤ VDD ≤ 3.6 V, IOL2 = 400 μA			0.4	٧	
	VOL3	P60, P61	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 3.0 mA			0.4	V	
			1.8 V ≤ VDD ≤ 3.6 V, IOL3 = 2.0 mA			0.4	V	
			1.6 V ≤ VDD ≤ 1.8 V, IOL3 = 1.0 mA			0.4	V	

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VDD				1	μА
	ILIH2	P20, P21, P140 to P143	VI = VDD				1	μΑ
	ILIH3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P150 to P156	Vı = AVDI)			1	μΑ
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	Vi = Vss				-1	μА
	ILIL2	P20, P21, P140 to P143	Vı = Vss				-1	μΑ
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
	ILIL4	P150 to P156	VI = AVs	5			-1	μΑ
On-chip pull-up	Ru1	P00 to P07, P10 to P17, P20 to P27,	Vı = Vss	2.4 V ≤ V _{DD} ≤ 3.6 V	10	20	100	kΩ
resistance		P30 to P37, P50 to P57, P70 to P77, P140 to P143, P125 to P127		1.6 V ≤ VDD ≤ 2.4 V	10	30	100	
	Ru2	P40 to P46, P80 to P83	Vı = Vss		10	20	100	kΩ

2.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

(1/2)

Parameter	Symbol			Conditions	_		MIN.	TYP.	MAX.	Unit	
Supply	IDD1	Operating	HS	fHOCO = 48 MHz Note 3,	Basic	VDD = 3.6 V		2.2	2.8	mA	
current Note 1		mode	(high-speed main) mode Note 5	fih = 24 MHz Note 3	operation	VDD = 3.0 V		2.2	2.8		
			mode Note 3		Normal	VDD = 3.6 V		4.4	8.5		
					operation	VDD = 3.0 V		4.4	8.5		
				fHOCO = 24 MHz Note 3,	Basic	VDD = 3.6 V		2.0	2.6		
				fih = 24 MHz Note 3	operation	VDD = 3.0 V		2.0	2.6		
					Normal	VDD = 3.6 V		4.2	6.8		
					operation	VDD = 3.0 V		4.2	6.8		
				fHOCO = 16 MHz Note 3,	Normal	VDD = 3.6 V		3.1	4.9		
				fih = 16 MHz Note 3	operation	VDD = 3.0 V		3.1	4.9		
			LS	fHOCO = 8 MHz Note 3,	Normal	VDD = 3.0 V		1.4	2.2	mA	
			(low-speed main) mode Note 5	fih = 8 MHz Note 3	operation	VDD = 2.0 V		1.4	2.2		
				LV	fHOCO = 4 MHz Note 3,	Normal	VDD = 3.0 V		1.3	1.8	mA
					(low-voltage main) mode Note 5	fiH = 4 MHz Note 3	operation	VDD = 2.0 V		1.3	1.8
			HS (high-speed main)	, ,	Normal	Square wave input		3.5	5.5	mA	
		(high-speed main)	, ,	operation	Resonator connection		3.6	5.7			
	mode Note 5	,	Normal	Square wave input		3.5	5.5				
		VDD = 3.0 V	operation	Resonator connection		3.6	5.7				
		, , ,	Normal	Square wave input		2.9	4.5				
			VDD = 3.6 V	operation	Resonator connection		3.1	4.6			
				, ,	Normal	Square wave input		2.9	4.5		
					operation	Resonator connection		3.1	4.6		
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.1	3.2		
				VDD = 3.6 V	operation	Resonator connection		2.2	3.2		
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.1	3.2		
				VDD = 3.0 V	operation	Resonator connection		2.2	3.2		
			LS	fmx = 8 MHz Note 2,	Normal	Square wave input		1.2	2.0	mA	
			(low-speed main)	VDD = 3.6 V	operation	Resonator connection		1.3	2.0		
			mode Note 5	fmx = 8 MHz Note 2,	Normal	Square wave input		1.2	2.1		
				VDD = 3.0 V	operation	Resonator connection		1.3	2.2		
			HS	fPLL = 48 MHz,	Normal	VDD = 3.6 V		4.7	7.5	mA	
			(High-speed main)	fCLK = 24 MHz Note 2	operation	V _{DD} = 3.0 V		4.7	7.5		
			mode	fPLL = 48 MHz,	Normal	VDD = 3.6 V		3.1	5.1		
			(PLL operation)	fCLK = 12 MHz Note 2	operation	VDD = 3.0 V		3.1	5.1		
				fPLL = 48 MHz,	Normal	VDD = 3.6 V		2.3	3.9		
				fCLK = 6 MHz Note 2	operation	V _{DD} = 3.0 V		2.3	3.9		
			Subsystem clock	fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.6	6.9	μA	
			operation	TA = -40°C	operation	Resonator connection		4.7	6.9	P/ t	
				fsuB = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.9	7.0		
				TA = +25°C	operation	Resonator connection		5.0	7.0		
				fsuB = 32.768 kHzNote 4	Normal	Square wave input		5.0	7.6		
				TA = +50°C	operation	Resonator connection		5.2	7.7		
					Normal	Square wave input		5.5	9.3		
				TA = +70°C	operation			1 5 6	Ω 4		
				TA = +70°C fsub = 32.768 kHz ^{Note 4}	operation Normal	Resonator connection Square wave input		5.6 6.2	9.4		

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz

 $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V@1 MHz}$ to 16 MHz

LS (low-speed main) mode: 1.8 V \leq VDD \leq 3.6 V@1 MHz to 8 MHz LV (low-voltage main) mode 1.6 V \leq VDD \leq 3.6 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL

clock divided by 2, 4, or 8 is selected (24 MHz max.)

- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

(2/2)

		,	10 2 3.0 V, V33 - U	- ,					(2)
Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT mode	HS (high-speed main)	fHOCO = 48 MHz Note 4,	VDD = 3.6 V		0.77	2.70	mA
urrent ote 1	Note 2		mode Note 7	fih = 24 MHz Note 4	VDD = 3.0 V		0.77	2.70	
ote i				fHOCO = 24 MHz Note 4,	VDD = 3.6 V		0.55	1.91	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.55	1.90	
				fHOCO = 16 MHz Note 4,	VDD = 3.6 V		0.48	1.41	
				fih = 16 MHz Note 4	VDD = 3.0 V		0.47	1.41	
			LS (low-speed main)	fHOCO = 8 MHz Note 4,	VDD = 3.0 V		300	770	μA
			mode Note 7	fih = 8 MHz Note 4	VDD = 2.0 V		300	770	
			LV (low-voltage main)	fHOCO = 4 MHz Note 4,	VDD = 3.0 V		440	770	μΑ
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		440	770	
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.35	1.63	m/
			mode Note 7	VDD = 3.6 V	Resonator connection		0.51	1.68	
				fmx = 20 MHz Note 3,	Square wave input		0.34	1.63	
				VDD = 3.0 V	Resonator connection		0.51	1.68	
				fmx = 16 MHz Note 3,	Square wave input		0.30	1.22	
				VDD = 3.6 V	Resonator connection		0.45	1.39	
		fmx = 16 MHz Note 3,	Square wave input		0.29	1.20			
		VDD = 3.0 V	Resonator connection		0.45	1.38			
			fmx = 10 MHz Note 3,	Square wave input		0.23	0.82		
		VDD = 3.6 V	Resonator connection		0.30	0.90			
				fmx = 10 MHz Note 3,	Square wave input		0.22	0.81	
				VDD = 3.0 V	Resonator connection		0.30	0.89	
			LS (low-speed main)	VDD = 3.0 V F fMX = 8 MHz Note 3, S	Square wave input		120	510	μA
					Resonator connection		170	560	•
					Square wave input		130	520	
					Resonator connection		170	570	
			HS	fmx = 48 MHz,	VDD = 3.6 V		0.99	2.89	m/
			(High-speed main)	form = 0.4 MALL= Note 3	VDD = 3.0 V		0.99	2.88	
			mode	fmx = 48 MHz,	VDD = 3.6 V		0.89	2.48	
			(PLL operation)	fCLK = 12 MHz Note 3	VDD = 3.0 V			2.47	
				fmx = 48 MHz, VDD = 3.6 V			0.84	2.27	
				fCLK = 6 MHz Note 3	VDD = 3.0 V		0.84	2.27	
			Subsystem clock	four = 32 768 kHz Note 5	Square wave input		0.32	0.61	μ/
			operation	fsub = 32.768 kHz Note 5 TA = -40°C	Resonator connection		0.52	0.80	μ/
				fsub = 32.768 kHz Note 5			0.31	0.80	
				TA = +25°C	Resonator connection		0.62	0.74	
				fsuB = 32.768 kHz Note 5			0.52	2.30	!
				TA = +50°C	Resonator connection		0.32	2.30	1
				fsuB = 32.768 kHz Note 5			0.73	4.03	
				TA = +70°C					
					Resonator connection		1.08	4.22	!
			fsub = 32.768 kHz Note 5 TA = +85°C			1.38	8.04		
	lan:	CTOD !	T 40°C	100 0	Resonator connection		1.62	8.23	 .
IDD3 Note 6	STOP mode Note 8	T _A = -40°C				0.18	0.52	μA	
			T _A = +25°C				0.25	0.52	
			T _A = +50°C				0.34	2.21	
		T _A = +70°C		·		0.64	3.94		
			T _A = +85°C				1.18	7.95	ł

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz

 $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V@1 MHz}$ to 16 MHz

LS (low-speed main) mode: 1.8 V \leq VDD \leq 3.6 V@1 MHz to 8 MHz LV (low-voltage main) mode 1.6 V \leq VDD \leq 3.6 V@1 MHz to 4 MHz

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fil: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Condition	าร		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1						0.20		μA
RTC2 operating current	IRTC Notes 1, 3						0.02		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4						0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fiL = 15 kHz					0.22		μA
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, whe	D = 3.0 V, when conversion at maximum speed				422	720	μA
AVREF (+) current	lavref	AVDD = 3.0 V, ADF	= 3.0 V, ADREFP1 = 0, ADREFP0 = 0 Note 7				14.0	25.0	μA
	Note 8	AVREFP = 3.0 V, Al	DREFP1 = 0, ADREFP0	= 1 Note 10			14.0	25.0	
		ADREFP1 = 1, AD	REFP0 = 0 Note 1				14.0	25.0	
A/D converter reference voltage current	IADREF Notes 1, 9	VDD = 3.0 V					75.0		μА
Temperature sensor operating current	ITMPS Note 1						78		μА
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter	channel				0.53	1.5	mA
Comparator	ІСМР	VDD = 3.6 V,	Window mode				12.5		μA
operating current	Notes 1, 12	Regulator output	Comparator high-spee	d mode			4.5		μA
		voltage = 2.1 V	Comparator low-speed	mode			1.2		μA
		V _{DD} = 3.6 V,	Window mode				7.05		μA
		Regulator output voltage = 1.8 V	Comparator high-spee	d mode			2.2		μA
		Voltage – 1.6 V	Comparator low-speed	mode			0.9		μA
LVD operating current	ILVI Notes 1, 13		,				0.06		μА
Self-programming operating current	IFSP Notes 1, 14						2.50	12.20	mA
BGO operating current	IBGO Notes 1, 15						1.68	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed	Note 16			0.34	1.10	mA
operating current			The A/D conversion op voltage mode, AVREFP				0.53	2.04	
		CSI/UART operation	on				0.70	1.54	mA
LCD operating current	ILCD1 Notes 17, 18	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, LV4 = 3.6 V		0.14		μА
	ILCD2 Note 17	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V (VLCD = 04H)		0.61		μА
	ILCD3 Note 17	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V		0.12		μА
USB current	IUSB Note 20	Operating current during USB communication					4.88		mA
Note 19	IUSB Note 21	Operating current i	n the USB suspended st	tate			0.04		mA

(Notes and Remarks are listed on the next page.)

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing to the AVDD.
- Note 8. Current flowing from the reference voltage source of A/D converter.
- **Note 9.** Operation current flowing to the internal reference voltage.
- Note 10. Current flowing to the AVREFP.
- **Note 11.** Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDA when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 14. Current flowing only during self-programming.
- Note 15. Current flowing only during data flash rewrite.
- Note 16. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual.
- Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 18. Not including the current that flows through the external divider resistor divider resistor.
- Note 19. Current flowing to the UVBUS.
- **Note 20.** Including the operating current when fPLL = 48 MHz.
- Note 21. Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

2.4 AC Characteristics

2.4.1 Basic operation

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

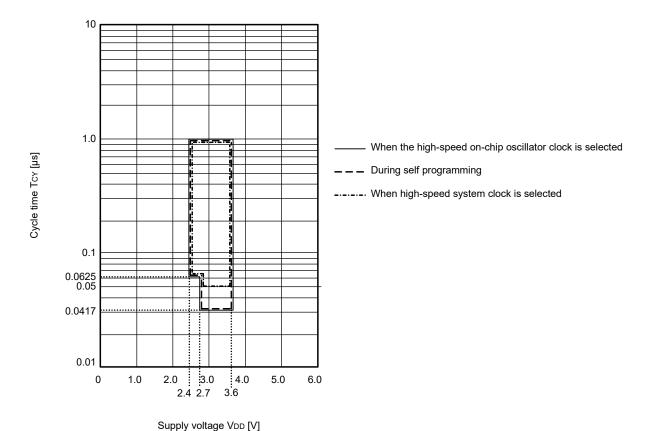
(1/2)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle	Tcy	Main system	HS (high-speed main)	2.7 V ≤ VDD ≤ 3.6 V	0.0417		1	μs
(minimum instruction		clock (fMAIN)	mode	2.4 V ≤ VDD < 2.7 V	0.0625		1	μs
execution time)		operation	LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V	0.125		1	μs
			LV (low-voltage main) mode	1.6 V ≤ VDD ≤ 3.6 V	0.25		1	μs
		Subsystem clo	ock (fSUB) operation	1.8 V ≤ VDD ≤ 3.6 V	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	2.7 V ≤ VDD ≤ 3.6 V	0.0417		1	μs
		programming	mode	2.4 V ≤ VDD < 2.7 V	0.0625		1	μs
		mode	LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V	0.125		1	μs
			LV (low-voltage main) mode	1.8 V ≤ VDD ≤ 3.6 V	0.25		1	μs
External main system	fEX	2.7 V ≤ VDD ≤	3.6 V		1.0		20.0	MHz
clock frequency		2.4 V ≤ V _{DD} <	2.7 V		1.0		16.0	MHz
		1.8 V ≤ V _{DD} <	2.4 V		1.0		8.0	MHz
		1.6 V ≤ VDD <	1.8 V		1.0		4.0	MHz
	fEXT				32		35	kHz
External main system	texH,	2.7 V ≤ VDD ≤	3.6 V		24			ns
clock input high-level	texl	2.4 V ≤ V _{DD} <	2.7 V		30			ns
width, low-level width		1.8 V ≤ V _{DD} <	2.4 V		60			ns
		1.6 V ≤ VDD <	1.8 V		120			ns
	texhs, texhs				13.7			μs
TI00 to TI07 input high-level width, low-level width	ttih, ttil				1/fмск + 10			ns

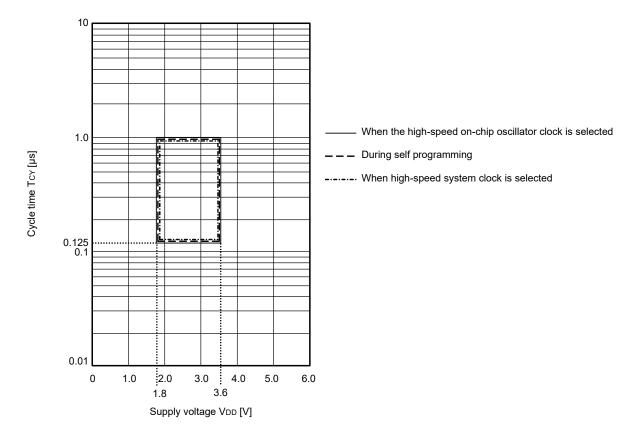
Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0),

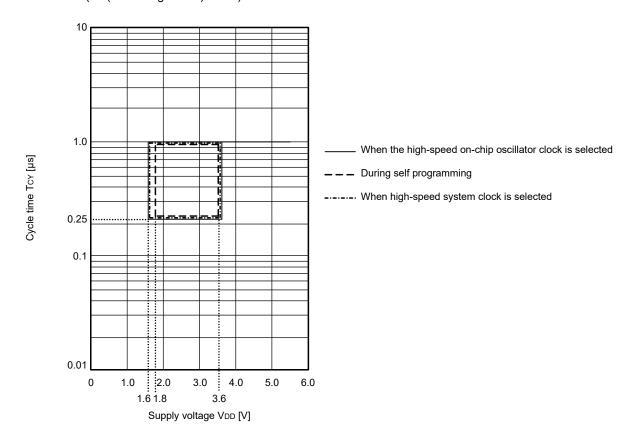
n: Channel number (n = 0 to 7))

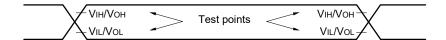

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

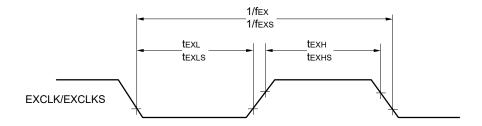
(2/2)

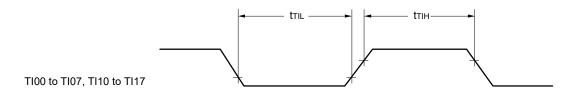

Items	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
TO00 to TO07, TKBO00,	fto	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
TKBO01, TKBO10, TKBO11,			2.4 V ≤ VDD < 2.7 V			8	MHz
TKBO20, TKBO21 output frequency		LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V			4	MHz
output inequality		LV (low-voltage main) mode	1.6 V ≤ VDD ≤ 3.6 V			2	MHz
PCLBUZ0, PCLBUZ1 output	fPCL	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
frequency			2.4 V ≤ VDD < 2.7 V			8	MHz
		LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V			4	MHz
		LV (low-voltage main) mode	1.8 V ≤ VDD ≤ 3.6 V			2	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTP7	1.6 V ≤ VDD ≤ 3.6 V	1			μs
Key interrupt input low-level	tkr	1.8 V ≤ VDD ≤ 3.6 V		250			ns
width		1.6 V ≤ VDD < 1.8 V		1			μs
TMKB2 forced output stop input	tihr	INTP0 to INTP7	fclk > 16 MHz	125			ns
high-level width			fclk ≤ 16 MHz	2			fclk
RESET low-level width	trsl		•	10			μs

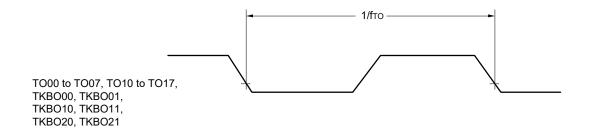
Minimum Instruction Execution Time during Main System Clock Operation


Tcy vs VDD (HS (high-speed main) mode)

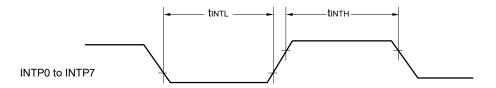

Tcy vs VDD (LS (low-speed main) mode)


Tcy vs Vdd (LV (low-voltage main) mode)

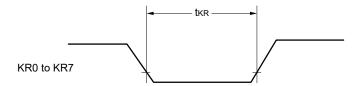

AC Timing Test Points

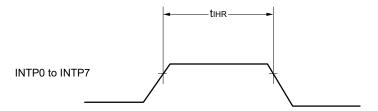


External System Clock Timing



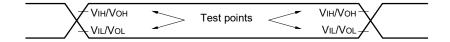
TI/TO Timing




Interrupt Request Input Timing


Key Interrupt Input Timing

Timer KB2 Input Timing



RESET Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

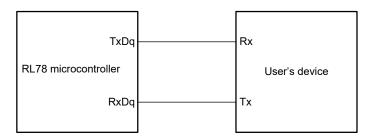
 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		n-speed main) Mode		r-speed main) Mode	`	tage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer		2.7 V ≤ VDD ≤ 3.6 V		fMCK/6 Note 2		fмск/6		fмск/6	bps
rate Note 1		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3		0.6	Mbps
		2.4 V ≤ VDD ≤ 3.6 V		fMCK/6 Note 2		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.6		1.3		0.6	Mbps
		1.8 V ≤ VDD ≤ 3.6 V		_		fMCK/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		_		1.3		0.6	Mbps
		1.6 V ≤ VDD ≤ 3.6 V		_		_		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		_		_		0.6	Mbps

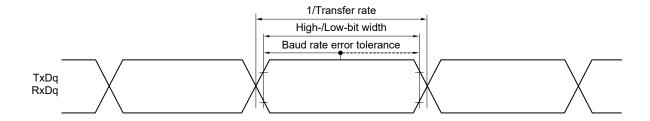
Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The following conditions are required for low voltage interface.

 $2.4 \text{ V} \le \text{VDD} < 2.7 \text{ V}$: MAX. 2.6 Mbps $1.8 \text{ V} \le \text{VDD} < 2.4 \text{ V}$: MAX. 1.3 Mbps $1.6 \text{ V} \le \text{VDD} < 1.8 \text{ V}$: MAX. 0.6 Mbps


Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V) 16 MHz (2.4 V \leq VDD \leq 3.6 V)


LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 3.6 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 3.6 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol			` • •	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ fclk/2	$2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$	167		250		500		ns
SCKp high-/ low-level width	tKL1	2.7 V ≤ V _{DD} ≤	3.6 V	tKCY1/2 - 10		tKCY1/2 - 50		tKCY1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsik1	2.7 V ≤ V _{DD} ≤	3.6 V	33		110		110		ns
SIp hold time (from SCKp↑) Note 2	tKSI1	2.7 V ≤ V _{DD} ≤	3.6 V	10		10		10		ns
Delay time from SCKp↓ to SOp output Note 3	tKSO1	C = 20 pF Note	ı		10		10		10	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 2)
- Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

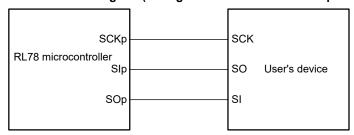
n: Channel number (mn = 00))

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Sym	C	onditions	HS (high-spee Mode	HS (high-speed main) Mode		d main)	LV (low-voltage main) Mode		Unit
	DOI			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ fclk/4	2.7 V ≤ VDD ≤ 3.6 V	167		500		1000		ns
			2.4 V ≤ VDD ≤ 3.6 V	250		500		1000		ns
			1.8 V ≤ VDD ≤ 3.6 V	_		500		1000		ns
			1.6 V ≤ VDD ≤ 3.6 V	_		_		1000		ns
SCKp high-/	tKH1,	2.7 V ≤ VDD ≤ 3	5.6 V	tKCY1/2 - 18		tKCY1/2 - 50		tKCY1/2 - 50		ns
low-level width	tKL1	2.4 V ≤ VDD ≤ 3	5.6 V	tKCY1/2 - 38		tKCY1/2 - 50		tKCY1/2 - 50		ns
		1.8 V ≤ VDD ≤ 3	5.6 V	_		tKCY1/2 - 50		tKCY1/2 - 50		ns
		1.6 V ≤ VDD ≤ 3	5.6 V	_		_		tKCY1/2 - 100		ns
SIp setup time	tsik1	2.7 V ≤ VDD ≤ 3	5.6 V	44		110		110		ns
(to SCKp↑) Note 1		2.4 V ≤ VDD ≤ 3	5.6 V	75		110		110		ns
		1.8 V ≤ VDD ≤ 3	5.6 V	_		110		110		ns
		1.6 V ≤ VDD ≤ 3	5.6 V	_		_		220		ns
Slp hold time	tKSI1	2.4 V ≤ VDD ≤ 3	5.6 V	19		19		19		ns
(from SCKp↑) Note 2		1.8 V ≤ VDD ≤ 3	5.6 V	_		19		19		ns
		1.6 V ≤ VDD ≤ 3	5.6 V	_		_		19		ns
Delay time from	tKSO1	C = 30 pF	2.7 V ≤ VDD ≤ 3.6 V		25		50		50	ns
SCKp↓ to SOp output Note 3		Note 4	2.4 V ≤ VDD ≤ 3.6 V		25		50		50	ns
NOTE 3			1.8 V ≤ VDD ≤ 3.6 V		_		50		50	ns
			1.6 V ≤ VDD ≤ 3.6 V		_		_		50	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)
- Remark 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

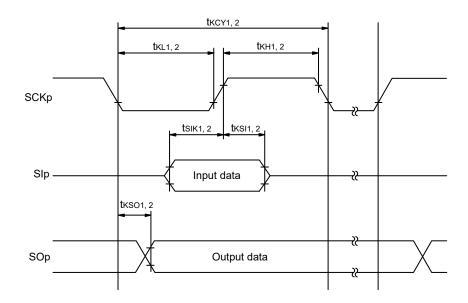

n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, $1.6 \text{ V} \leq \text{VdD} \leq 3.6 \text{ V}$, Vss = 0 V)

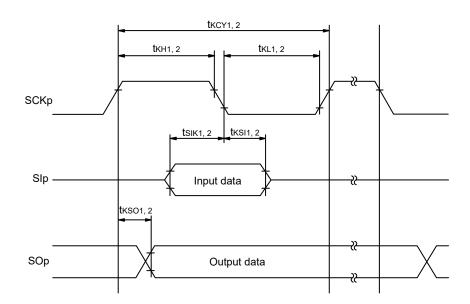
Parameter	Symbol	Conc	litions	HS (high- main) M		LS (low-spee	,	LV (low-voltag Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tKCY2	2.7 V ≤ VDD < 3.6 V	fMCK > 16 MHz	8/fmck		_		_		ns
time Note 5			fMCK ≤ 16 MHz	6/fmck		6/fmck		6/fmck		ns
		2.4 V ≤ VDD < 3.6 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ VDD < 3.6 V		_		6/fмск and 750		6/fмск and 750		ns
		1.6 V ≤ VDD < 3.6 V		_		_		6/fмск and 1500		ns
SCKp high-/	tkh2, tkl2	2.7 V ≤ VDD ≤ 3.6 V		tKCY2/2 - 8		tKCY2/2 - 8		tKCY2/2 - 8		ns
low-level width		1.8 V ≤ VDD ≤ 3.6 V		_		tkcy2/2 - 18		tKCY2/2 - 18		ns
		1.6 V ≤ VDD ≤ 3.6 V		_		_		tKCY1/2 - 66		ns
SIp setup time	tsik2	2.7 V ≤ VDD ≤ 3.6 V		1/fмcк + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		2.4 V ≤ VDD ≤ 3.6 V		1/fмcк + 30		1/fмск + 30		1/fmck + 30		ns
Note 1		1.8 V ≤ VDD < 3.6 V		_		1/fмск + 30		1/fmck + 30		ns
		1.6 V ≤ VDD < 3.6 V		_		_		1/fмск + 40		ns
SIp hold time	tKSI2	2.4 V ≤ VDD < 3.6 V		1/fмcк + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		1.8 V ≤ VDD < 3.6 V		_		1/fмск + 31		1/fмск + 31		ns
Note 2		1.6 V ≤ VDD < 3.6 V		_		_		1/fмск + 250		ns
Delay time from SCKp↓ to	tKSO2	C = 30 pF Note 4	2.7 V ≤ VDD ≤ 3.6 V		2/fмcк + 44		2/fмск + 110		2/fмcк + 110	ns
SOp output Note 3			2.4 V ≤ VDD < 3.6 V		2/fмcк + 75		2/fмск + 110		2/fмcк + 110	ns
			1.8 V ≤ VDD < 3.6 V		_		2/fмск + 110		2/fмск + 110	ns
			1.6 V ≤ VDD < 3.6 V		_		_		2/fмск + 220	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)
- Remark 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)



Remark 1. p: CSI number (p = 00, 10, 20, 30)


Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

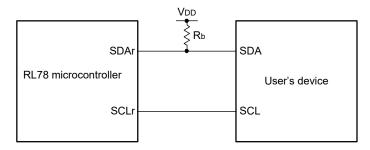
Remark 1. p: CSI number (p = 00, 10, 20, 30)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

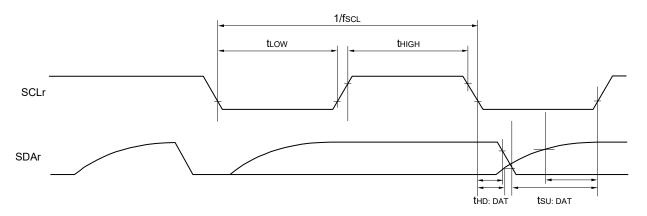
(5) During communication at same potential (simplified I²C mode)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spee Mode	,	LS (low-spee Mode		LV (low-voltag Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω		1000 Note 1		400 Note 1		400 Note 1	kHz
		1.8 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ		400 Note 1		400 Note 1		400 Note 1	kHz
		1.8 V \leq VDD $<$ 2.7 V, Cb = 100 pF, Rb = 5 kΩ		300 Note 1		300 Note 1		300 Note 1	kHz
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ		l		l		250	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ Cb = 50 pF, Rb = 2.7 kΩ	475		1150		1150		ns
		1.8 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns
		1.8 V \leq V _{DD} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	_		_		1850		ns
Hold time when SCLr = "H"	tHIGH	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ Cb = 50 pF, Rb = 2.7 kΩ	475		1150		1150		ns
		1.8 V ≤ V _{DD} ≤ 3.6 V, C _b = 100 pF, R _b = 3 kΩ	1150		1150		1150		ns
		1.8 V \leq V _{DD} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	_		_		1850		ns
Data setup time (reception)	tsu: DAT	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	1/fMCK + 85 Note 2		1/fMCK + 145 Note 2		1/fMCK + 145 Note 2		ns
		1.8 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	1/fMCK + 145 Note 2		1/fMCK + 145 Note 2		1/fMCK + 145 Note 2		ns
		1.8 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1/fMCK + 230 Note 2		1/fMCK + 230 Note 2		1/fMCK + 230 Note 2		ns
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	_		_		1/fMCK + 290 Note 2		ns
Data hold time (transmission)	thd: dat	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	0	305	0	305	0	305	ns
		1.8 V ≤ VDD ≤ 3.6 V, Cb = 100 pF, Rb = 3 kΩ	0	355	0	355	0	355	ns
		1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	_		_		0	405	ns


Note 1. The value must be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remark 1. $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3), h: POM number (h = 0 to 3)

h: POM number (h = 0 to 3)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode)

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol	'mbol	Conditions	` ` `	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Transfer rate Notes 1, 2		reception	2.7 V ≤ VDD ≤ 3.6 V, 2.3 V ≤ Vb ≤ 2.7 V		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps	
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0		1.3		0.6	Mbps	
			1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V		fMCK/6 Notes 1, 2, 3		fMCK/6 Notes 1, 2, 3		fMCK/6 Notes 1, 2, 3	bps	
			Theoretical value of the maximum transfer rate fmck = fCLK Note 4		4.0		1.3		0.6	Mbps	

- **Note 1.** Transfer rate in the SNOOZE mode is 4,800 bps only.
- **Note 2.** Use it with $VDD \ge Vb$.
- Note 3. The following conditions are required for low voltage interface.

 $2.4 \text{ V} \le \text{VDD} < 2.7 \text{ V}$: MAX. 2.6 Mbps $1.8 \text{ V} \le \text{VDD} < 2.4 \text{ V}$: MAX. 1.3 Mbps $1.6 \text{ V} \le \text{VDD} < 1.8 \text{ V}$: MAX. 0.6 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V)

16 MHz (2.4 V \leq VDD \leq 3.6 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 3.6 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 3.6 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Remark 1. Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(6) Communication at different potential (1.8 V, 2.5V) (UART mode)

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \le VDD \le 3.6 \text{ V}, Vss = 0 \text{ V})$

(2/2)

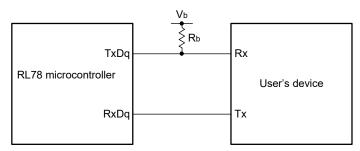
Parameter	Parameter Symbol		Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		voltage main) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 2		transmission	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 2.7$ k Ω , $V_b = 2.3$ V		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps
			$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 5.5$ k Ω , $V_b = 1.6$ V		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{VDD} < 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$

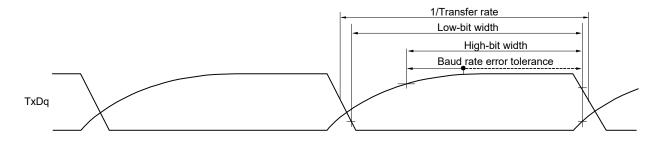
Maximum transfer rate =
$$\frac{1}{\left\{-C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b}\right)\right\} \times 3}$$

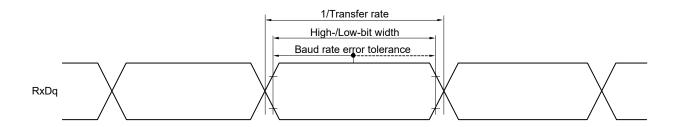
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **Note 2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** Use it with $VDD \ge Vb$.
- Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **Note 5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remark 1.** Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00 to 03, 10 to 13))

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol			HS (high-spee	d main)	LS (low-speed Mode	d main)	LV (low-voltage Mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkCY1 ≥ fCLK/2	$2.7V \le V_{DD} < 3.6 \text{ V},$ $2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	300		1150		1150		ns
SCKp high-level width	tKH1	2.7 V ≤ V _{DD} < 2.3 V ≤ V _b ≤ 2 C _b = 20 pF, R _b	7 V,	tkCY1/2 - 120		tkCY1/2 - 120		tKCY1/2 - 120		ns
SCKp low-level width	tKL1	2.7 V ≤ V _{DD} < 2.3 V ≤ V _b ≤ 2 C _b = 20 pF, R _b	.7 V,	tксү1/2 - 10		tKCY1/2 - 50		tKCY1/2 - 50		ns
Slp setup time (to SCKp↑) Note 1	tsiK1	2.7 V ≤ V _{DD} < 2.3 V ≤ V _b ≤ 2 C _b = 20 pF, R _b	.7 V,	121		479		479		ns
SIp hold time (from SCKp↑) Note 1	tKSI1	2.7 V ≤ V _{DD} < 2.3 V ≤ V _b ≤ 2 C _b = 20 pF, R _b	.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tKSO1	2.7 V ≤ V _{DD} < 2.3 V ≤ V _b ≤ 2 C _b = 20 pF, R _b	.7 V,		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsiĸ1	2.7 V ≤ V _{DD} < 2.3 V ≤ V _b ≤ 2. C _b = 20 pF, R _b	7 V,	33		110		110		ns
SIp hold time (from SCKp↓) Note 2	tKSI1	2.7 V ≤ V _{DD} < 2.3 V ≤ V _b ≤ 2. C _b = 20 pF, R _b	7 V,	10		10		10		ns
Delay time from SCKp↑ to SOp output Note 2	tKSO1	2.7 V ≤ VDD < 2.3 V ≤ Vb ≤ 2. Cb = 20 pF, Rb	7 V,		10		10		10	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $Rb[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0),

n: Channel number (n = 0), g: PIM and POM number (g = 2)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol	bol Conditions			HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ fclk/4	$2.7V \le VDD < 3.6 \text{ V}, 2.3 \text{ V} \le Vb \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	500 Note		1150		1150		ns
			1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 1.8 V, Cb = 30 pF, Rb = 5.5 kΩ	1150 Note		1150		1150		ns
SCKp high- level width	tKH1	2.7 V ≤ V _{DD} ≤ C _b = 30 pF, R _b	$3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $c = 2.7 \text{ k}Ω$	tkcy1/2 - 170		tKCY1/2 - 170		tKCY1/2 - 170		ns
		1.8 V ≤ V _{DD} < C _b = 30 pF, R _b	3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, $0.5 = 5.5 \text{ k}\Omega$	tKCY1/2 - 458		tKCY1/2 - 458		tKCY1/2 - 458		ns
SCKp low- level width	tKL1	2.7 V ≤ V _{DD} ≤ C _b = 30 pF, R _b	$3.6 \text{ V}, 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V},$ $p = 2.7 \text{ k}\Omega$	tKCY1/2 - 18		tKCY1/2 - 50		tKCY1/2 - 50		ns
		1.8 V ≤ V _{DD} < C _b = 30 pF, R _b	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V, $0 = 5.5 \text{ k}\Omega$	tKCY1/2 - 50		tKCY1/2 - 50		tKCY1/2 - 50		ns

Note Use it with $VDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

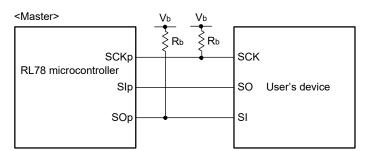
(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

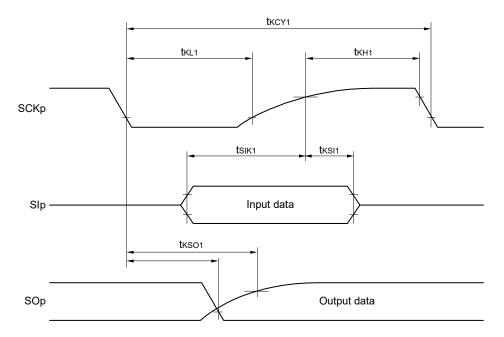
Parameter	Symbol	Conditions	٠	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsik1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	177		479		479		ns
		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 3, C _b = 30 pF, R _b = 5.5 kΩ	479		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	19		19		19		ns
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 3, Cb = 30 pF, Rb = 5.5 kΩ	19		19		19		ns
Delay time from SCKp↓ to SOp	tKSO1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω		195		195		195	ns
output Note 1		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 3, C _b = 30 pF, R _b = 5.5 kΩ		483		483		483	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	44		110		110		ns
		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 3, C _b = 30 pF, R _b = 5.5 kΩ	110		110		110		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	19		19		19		ns
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 3, Cb = 30 pF, Rb = 5.5 kΩ	19		19		19		ns
Delay time from SCKp↑ to SOp	tKSO1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω		25		25		25	ns
output Note 2		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 3, C _b = 30 pF, R _b = 5.5 kΩ		25		25		25	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

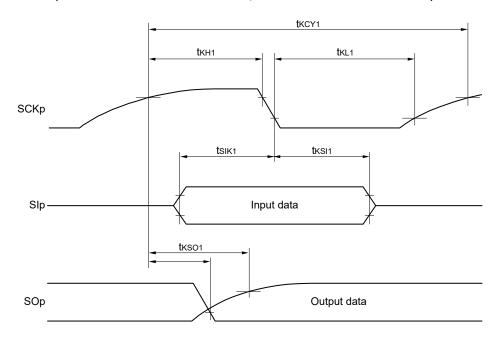

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Note 3. Use it with $VDD \ge Vb$.

CSI mode connection diagram (during communication at different potential)



- Remark 1. $Rb[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

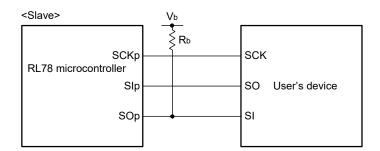
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

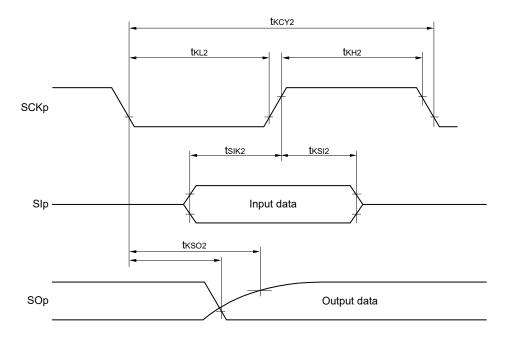
(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

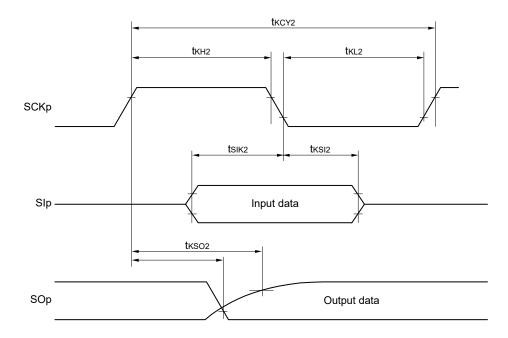

Parameter	Symbol	Con	ditions	HS (high main)	•	LS (low main)		LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tKCY2	2.7 V ≤ VDD ≤ 3.6 V,	20 MHz < fмcк ≤ 24 MHz	16/fмск		_		_		ns
time Note 1		2.3 V ≤ Vb ≤ 2.7 V	16 MHz < fмcк ≤ 20 MHz	14/fmck		_		_		ns
			8 MHz < fmck ≤ 16 MHz	12/fмск		_		_		ns
			4 MHz < fmck ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fMCK ≤ 4 MHz	6/fmck		10/fмск		10/fmck		ns
		1.8 V ≤ VDD < 3.3 V,	20 MHz < fмcк ≤ 24 MHz	36/fмск		_		_		ns
		1.6 V ≤ V _b ≤ 2.0 V Note 2	16 MHz < fмcк ≤ 20 MHz	32/fмск		_		_		ns
			8 MHz < fmck ≤ 16 MHz	26/fмск		_		_		ns
			4 MHz < fmck ≤ 8 MHz	16/fмск		16/fмск		_		ns
		fMCK ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns	
SCKp high-/ low-level width	tkH2, 2.7 V ≤ VDD ≤ 3.6 V, 2.3 ° tkL2	/ ≤ Vb ≤ 2.7 V	tKCY2/2 - 18		tKCY2/2 - 50		tkcy2/2 - 50		ns	
		1.8 V ≤ VDD < 3.3 V, 1.6 V	/ ≤ Vb ≤ 2.0 V Note 2	tKCY2/2 - 50		tKCY2/2 - 50		tkcy2/2 - 50		ns
SIp setup time (to SCKp↑)	tsık2	2.7 V ≤ VDD ≤ 3.6 V		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
Note 3		1.8 V ≤ VDD < 3.3 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tKSI2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tKSO2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V}$ Cb = 30 pF, Rb = 2.7 k Ω	/ ≤ Vb ≤ 2.7 V		2/fмcк + 214		2/fмск + 573		2/fмск + 573	ns
output Note 5		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 2 Cb = 30 pF, Rb = 5.5 kΩ			2/fмcк + 573		2/fмск + 573		2/fмск + 573	ns

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Note 2.** Use it with $VDD \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)



CSI mode connection diagram (during communication at different potential)



- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

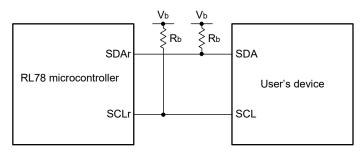
(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

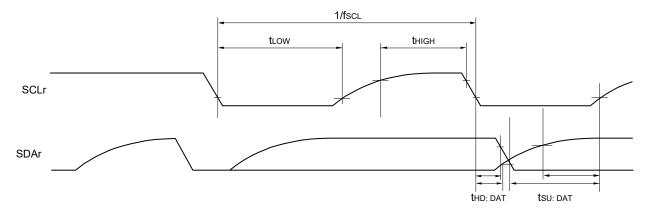
Parameter	Symbol	Conditions	HS (high-s	oeed main) ode	LS (low-sp Mo	peed main) ode	LV (low-vol	tage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscl	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω		1000 Note 1		300 Note 1		300 Note 1	kHz
		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω		400 Note 1		300 Note 1		300 Note 1	kHz
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 2, Cb = 100 pF, Rb = 5.5 kΩ		400 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr	tLOW	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	475		1550		1550		ns
= "L"		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω	1150		1550		1550		ns
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 2, Cb = 100 pF, Rb = 5.5 kΩ	1550		1550		1550		ns
Hold time when SCLr			610		610		ns		
= "H"		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω	600		610		610		ns
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 2, Cb = 100 pF, Rb = 5.5 kΩ	610		610		610		ns
Data setup time	tsu:dat	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	1/fмск + 135 Note 3		1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
(reception)		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 kΩ	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
		$1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \text{ Note 2},$ $C_b = 100 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
Data hold time	thd:dat	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	0	305	0	305	0	305	ns
(transmission)		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω	0	355	0	355	0	355	ns
		$1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ Note 2, Cb = 100 pF, Rb = 5.5 kΩ	0	405	0	405	0	405	ns

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Use it with $VDD \ge Vb$.


Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. $Rb[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM, POM number (g = 0 to 3)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0, 2), mn = 00, 02, 10, 12)

2.5.2 Serial interface IICA

(1) I²C standard mode

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Co	nditions		peed main) ode	, ,	peed main) ode	,	oltage main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fSCL	Standard mode:	2.7 V ≤ VDD ≤ 3.6 V	0	100	0	100	0	100	kHz
frequency		fclk ≥ 1 MHz	1.8 V ≤ VDD ≤ 3.6 V	_	_	0	100	0	100	kHz
			1.6 V ≤ VDD ≤ 3.6 V	_	_	_	_	0	100	kHz
Setup time of	tsu: sta	2.7 V ≤ VDD ≤ 3.6	V	4.7		4.7		4.7		μs
restart condition		1.8 V ≤ VDD ≤ 3.6	5 V	_	_	4.7		4.7		μs
		1.6 V ≤ VDD ≤ 3.6	5 V	_	_	-	_	4.7		μs
Hold time Note 1	thd: Sta	2.7 V ≤ VDD ≤ 3.6	5 V	4.0		4.0		4.0		μs
		1.8 V ≤ VDD ≤ 3.6	5 V	_	_	4.0		4.0		μs
		1.6 V ≤ VDD ≤ 3.6	S V	-	_	-	_	4.0		μs
Hold time when	tLOW	2.7 V ≤ VDD ≤ 3.6	5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V ≤ VDD ≤ 3.6	S V	-	_	4.7		4.7		μs
		1.6 V ≤ VDD ≤ 3.6	S V	-	_	-	_	4.7		μs
Hold time when	thigh	2.7 V ≤ VDD ≤ 3.6	S V	4.0		4.0		4.0		μs
SCLA0 = "H"		1.8 V ≤ VDD ≤ 3.6	S V	-	_	4.0		4.0		μs
		1.6 V ≤ VDD ≤ 3.6	S V	-	_	-	_	4.0		μs
Data setup time	tsu: dat	2.7 V ≤ VDD ≤ 3.6	S V	250		250		250		ns
(reception)		1.8 V ≤ VDD ≤ 3.6	S V	-	_	250		250		ns
		1.6 V ≤ VDD ≤ 3.6	S V	-	_	-	_	250		ns
Data hold time	thd: dat	2.7 V ≤ VDD ≤ 3.6	S V	0	3.45	0	3.45	0	3.45	μs
(transmission) Note 2		1.8 V ≤ VDD ≤ 3.6	S V	_	_	0	3.45	0	3.45	μs
		1.6 V ≤ VDD ≤ 3.6	S V	_	_	_	_	0	3.45	μs
Setup time of stop	tsu: sto	2.7 V ≤ VDD ≤ 3.6	6 V	4.0		4.0		4.0		μs
condition		1.8 V ≤ VDD ≤ 3.6	6 V	-	_	4.0		4.0		μs
		1.6 V ≤ VDD ≤ 3.6	S V	-		-	_	4.0		μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 3.6	S V	4.7		4.7		4.7		μs
		1.8 V ≤ VDD ≤ 3.6	S V	-	_	4.7		4.7		μs
		1.6 V ≤ VDD ≤ 3.6	5 V	_	_	_	_	4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) I²C fast mode

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-s	peed main) ode		peed main) ode	`	ltage main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscL	Fast mode:	2.7 V ≤ VDD ≤ 3.6 V	0	400	0	400	0	400	kHz
frequency		fclk ≥ 3.5 MHz	1.8 V ≤ VDD ≤ 3.6 V	0	400	0	400	0	400	kHz
Setup time of restart	tsu: sta	2.7 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
condition		1.8 V ≤ VDD ≤ 3.	1.8 V ≤ VDD ≤ 3.6 V			0.6		0.6		μs
Hold time Note 1	thd: STA	2.7 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
		1.8 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
Hold time when	tLOW	2.7 V ≤ VDD ≤ 3.	6 V	1.3		1.3		1.3		μs
SCLA0 = "L"		1.8 V ≤ VDD ≤ 3.6	6 V	1.3		1.3		1.3		μs
Hold time when	tHIGH	2.7 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
SCLA0 = "H"		1.8 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
Data setup time	tsu: DAT	2.7 V ≤ VDD ≤ 3.	6 V	100		100		100		ns
(reception)		1.8 V ≤ VDD ≤ 3.	6 V	100		100		100		ns
Data hold time	thd: dat	2.7 V ≤ VDD ≤ 3.	6 V	0	0.9	0	0.9	0	0.9	μs
(transmission) Note 2		1.8 V ≤ VDD ≤ 3.	6 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop	tsu: sto	2.7 V ≤ VDD ≤ 3.	2.7 V ≤ VDD ≤ 3.6 V			0.6		0.6		μs
condition		1.8 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
Bus-free time	tBUF 2.7 V ≤ VDD ≤ 3.6 V		6 V	1.3		1.3		1.3		μs
		1.8 V ≤ VDD ≤ 3.	6 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thd: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

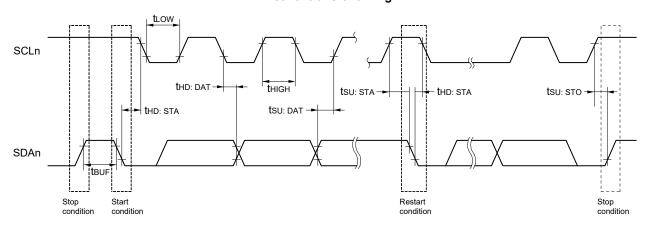
Remark

The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb = 320 pF, Rb = 1.1 k Ω

(3) I²C fast mode plus

$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions		HS (high-s _l Mo	peed main) ode	LS (low-sp Mo	,	LV (low-vol	,	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode plus: fcLK ≥ 10 MHz	CLK ≥ 10 MHz		1000	_		_		kHz
Setup time of restart condition	tsu: sta	2.7 V ≤ VDD ≤ 3.6	V ≤ VDD ≤ 3.6 V			_		-	_	μs
Hold time Note 1	thd: sta	2.7 V ≤ VDD ≤ 3.6	V ≤ VDD ≤ 3.6 V			_		_		μs
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ VDD ≤ 3.6	7 V ≤ VDD ≤ 3.6 V			_	_	_	_	μs
Hold time when SCLA0 = "H"	tHIGH	2.7 V ≤ VDD ≤ 3.6	S V	0.26		_	_	_	_	μs
Data setup time (reception)	tsu: dat	2.7 V ≤ VDD ≤ 3.6	S V	50		_		_	_	ns
Data hold time (transmission) Note 2	thd: dat	2.7 V ≤ VDD ≤ 3.6	7 V ≤ VDD ≤ 3.6 V		0.45	_		_	_	μs
Setup time of stop condition	tsu: sto	2.7 V ≤ VDD ≤ 3.6	7 V ≤ VDD ≤ 3.6 V			_		_	_	μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 3.6	7 V ≤ VDD ≤ 3.6 V					_		μs

- Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
- Note 2. The maximum value (MAX.) of thd: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: Cb = 120 pF, Rb = 1.1 k Ω

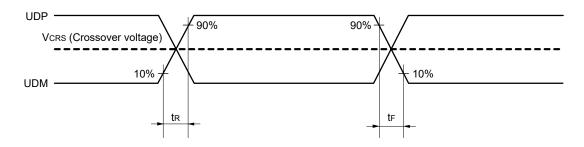
IICA serial transfer timing

2.5.3 USB

(1) Electrical specifications

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V, HS (High-speed main) mode only)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UREGC	UREGC output voltage characteristic	UREGC	UVBUS = 4.0 to 5.5 V, PXXCON = VDDUSBE = 1	3.0	3.3	3.6	V
UVBUS	UVBUS input voltage characteristic	UVBUS	Function	4.35 (4.02 ^{Note})	5.00	5.25	V


Note Value of instantaneous voltage

(TA = -40 to +85°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Input voltag	ge	ViH		2.0			V
characteristic			VIL				0.8	V
(FS/LS receiver)	Difference sensitivity	input	VDI	UDP voltage - UDM voltage	0.2	2.0 0.8 0.8 0.2 0.8 0.8 0.2 0.8 0.3 0.3 0.4 0.9 0.11.1 0.3 0.2 0.3	V	
	Difference mode range		Vсм		0.8		2.5 3.6 0.3 20 20 111.1 2.0 44 3.6 0.3 300 300 125 2.0 24.80 1.575	V
Output	Output volt	age	Vон	IOH = -200 μA	2.8		2.5 3.6 0.3 20 211.1 2.0 44 3.6 0.3 300 300 125 2.0 24.80 1.575 3.09	V
characteristic			VoL	IoL = 2 mA	0	0 0.8 0.8 0.8 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	V	
(FS driver)	Transition	Rising	tFR	Rising: From 10% to 90% of amplitude,	4		20	ns
	time	Falling	tFF	Falling: From 90% to 10% of amplitude,	4		20	ns
	Matching (TFR/TFF)	VFRFM	CL = 50 pF	90		111.1	%
	Crossover	voltage	VFCRS		1.3		2.0	V
	Output Imp	edance	ZDRV		28		2.0 44 3.6 0.3	Ω
Output	Output Output voltage VOH 2.8	3.6	V					
characteristic			VoL		0		0.3	V
(LS driver)	Transition	Rising	tLR	Rising: From 10% to 90% of amplitude,	75		300	ns
	time	Falling	tLF	Falling: From 90% to 10% of amplitude,	75		300	ns
	Matching (TFR/TFF)	VLTFM	CL = 250 pF to 750 pF The UDP and UDM pins are individually pulled	80		125	%
	Crossover	voltage ^{Note}	VLCRS	down via 15 k Ω	1.3		2.0	V
Pull-up,	Pull-down	esistor	RPD		14.25		24.80	kΩ
Pull-down	Pull-up	Idle	Rpui		0.9		1.575	kΩ
	resistor	Reception	RPUA		1.425		3.09	kΩ
UVBUS	UVBUS pull resistor	-down	Rvbus	UVBus voltage = 5.5 V		1000	2.0 24.80 1.575 3.09	kΩ
	UVBUS input voltage	ut voltage	VIH		3.20			V
			VIL				2.5 3.6 0.3 20 20 111.1 2.0 44 3.6 0.3 300 125 2.0 24.80 1.575 3.09	V

Note Excludes the first signal transition from the idle state.

Timing of UDP and UDM

(2) BC standard

(TA = -40 to +85°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB	UDP sink current	IDP_SINK		25	100	175	μΑ
standard	UDM sink current	IDM_SINK		25	100	175	μΑ
BC1.2	DCD source current	IDP_SRC		7	10	13	μΑ
	Data detection voltage	VDAT_REF		0.25	0.325	0.4	V
	UDP source voltage	VDP_SRC	Output current 250 μA	0.5	0.6	0.7	V
	UDM source voltage	VDM_SRC	Output current 250 μA	0.5	0.6	0.7	V

(3) BC option standard

(TA = -40 to +85°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V, HS (High-speed main) mode only)

Para	meter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit							
UDP/UDM input reference	VDSELi [3: 0]	0000	VDDET0		27	32	37	%UVBUS							
voltage	(i = 0, 1)	0001	VDDET1		29	34	39	%UVBUS							
(UVBus divider ratio)		0010	VDDET2		32	37	42	%UVBUS							
(Function)		0011	VDDET3		35	40	45	%UVBUS							
		0100	VDDET4		38	43	48	%UVBUS							
		0101	VDDET5		41	46	51	%UVBUS							
		0110	VDDET6		44	49	54	%UVBUS							
		0111	VDDET7		47	52	57	%UVBUS							
		1000	VDDET8		51	56	61	%UVBUS							
		1001	VDDET9		55	60	65	%UVBUS							
		1010	VDDET10		59	64	69	%UVBUS							
		1011	VDDET11		63	68	73	%UVBUS							
		1100	VDDET12		67	72	73	%UVBUS							
		1101	VDDET13		71	76	81	%UVBUS							
	1	1	1	,		1	1		1110	VDDET14		75	80	85	%UVBUS
		1111	VDDET15		79	84	89	%UVBUS							

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input Channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = AVDD Reference voltage (-) = AVSS	Reference voltage (+) = Internal reference voltage Reference voltage (-) = AVss
High-accuracy channel; ANI0 to ANI6 (input buffer power supply: AVDD)	Refer to 2.6.1 (1) . Refer to 2.6.1 (2) .	Refer to 2.6.1 (3) .	Refer to 2.6.1 (6) .
Standard channel; ANI16 to ANI21 (input buffer power supply: VDD)	Refer to 2.6.1 (4) .	Refer to 2.6.1 (5) .	
Internal reference voltage, Temperature sensor output voltage	Refer to 2.6.1 (4) .	Refer to 2.6.1 (5) .	_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI6

(TA = -40 to +85°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, reference voltage (+) = AVREFP, reference voltage (-) = AVREFM = 0 V, HALT mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES				12	bit
Overall error Notes 1, 2, 3	AINL	12-bit resolution		±1.7	±3.3	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	3.375			μs
Zero-scale error Notes 1, 2, 3	Ezs	12-bit resolution		±1.3	±3.2	LSB
Full-scale error Notes 1, 2, 3	EFS	12-bit resolution		±0.7	±2.9	LSB
Integral linearity error Notes 1, 2, 3	ILE	12-bit resolution		±1.0	±1.4	LSB
Differential linearity error Notes 1, 2, 3	DLE	12-bit resolution		±0.9	±1.2	LSB
Analog input voltage	VAIN		0		AVREFP	V

- Note 1. TYP. Value is the average value at AVDD = AVREFP = 3 V and TA = 25°C. MAX. value is the average value ±3σ at normalized distribution.
- Note 2. These values are the results of characteristic evaluation and are not checked for shipment.
- Note 3. Excludes quantization error (±1/2 LSB).
- Caution 1. Route the wiring so that noise will not be superimposed on each power line and ground line, and insert a capacitor to suppress noise.
 - In addition, separate the reference voltage line of AVREFP from the other power lines to keep it free from the influences of noise.
- Caution 2. During A/D conversion, keep a pulse, such as a digital signal, that abruptly changes its level from being input to or output from the pins adjacent to the converter pins and P150 to P156.

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	8		12	bit
			1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V		8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.5	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	3.375			μs
		ADTYP = 0, 10-bit resolution Note 1	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	6.75			
		ADTYP = 0, 8-bit resolution Note 2	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	13.5			
		ADTYP = 1,	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	2.5625			
		8-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	5.125			
			1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±4.5	LSB
		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±4.5	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	
Full-scale error Note 3	EFS	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±4.5	LSB
		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±4.5	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	
Integral linearity error	ILE	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.5	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.0	
Differential linearity error	DLE	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.5	LSB
Note 3		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.5	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.0	
Analog input voltage	VAIN			0		AVREFP	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(3) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVSS (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AVDD ≤ 3.6 V	8		12	bit
			1.8 V ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±7.5	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0	
Conversion time tCONV	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V	3.375			μs
		ADTYP = 0, 10-bit resolution Note 1	1.8 V ≤ AVDD ≤ 3.6 V	6.75			
		ADTYP = 0, 8-bit resolution Note 2	1.6 V ≤ AVDD ≤ 3.6 V	13.5			
		ADTYP = 1,	2.4 V ≤ AVDD ≤ 3.6 V	2.5625			
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	5.125			
			1.6 V ≤ AVDD ≤ 3.6 V	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Full-scale error Note 3	EFS	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Integral linearity error	ILE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±3.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±2.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Analog input voltage	VAIN	ANI0 to ANI6		0		AVDD	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(4) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	8		12	bit
			1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V		8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±7.0	LSB
		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±3.0	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	4.125			μs
		ADTYP = 0, 10-bit resolution Note 1	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	9.5			
		ADTYP = 0, 8-bit resolution Note 2	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	57.5			
		ADTYP = 1,	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	3.3125			
		8-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	7.875			
			1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±5.0	LSB
		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.5	
Full-scale error Note 3	EFS	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±5.0	LSB
		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.5	
Integral linearity error	ILE	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±3.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.5	
Analog input voltage	VAIN			0		AVREFP	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 3.6 V, HS (high-speed main) mode)		,	VBGR Note	e 4	
		Temperature sensor ou (2.4 V ≤ VDD ≤ 3.6 V, H	itput voltage S (high-speed main) mode)	V	TMP25 No	te 4	

Note 1. Cannot be used for lower 2 bits of ADCR register

Caution Always use AVDD pin with the same potential as the VDD pin.

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(5) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AVDD ≤ 3.6 V	8		12	bit
			1.8 V ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.5	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±6.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.5	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V	4.125			μs
		ADTYP = 0, 10-bit resolution Note 1	1.8 V ≤ AVDD ≤ 3.6 V	9.5			
		ADTYP = 0, 8-bit resolution Note 2	1.6 V ≤ AVDD ≤ 3.6 V	57.5			
		ADTYP = 1,	2.4 V ≤ AVDD ≤ 3.6 V	3.3125			
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	7.875			
			1.6 V ≤ AVDD ≤ 3.6 V	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0	
Full-scale error Note 3	EFS	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0	
Integral linearity error	ILE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±3.5	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±2.5	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.0	
Analog input voltage	VAIN		•	0		AVDD	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 3.6 V, HS (high-speed main) mode)		VBGR Note 4			
		Temperature sensor out (2.4 V ≤ VDD ≤ 3.6 V, HS	put voltage 6 (high-speed main) mode)	٧	TMP25 Note	: 4	

Note 1. Cannot be used for lower 2 bits of ADCR register

 ${\bf Caution} \qquad {\bf Always} \ {\bf use} \ {\bf AVDD} \ {\bf pin} \ {\bf with} \ {\bf the} \ {\bf same} \ {\bf potential} \ {\bf as} \ {\bf the} \ {\bf VDD} \ {\bf pin}.$

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(6) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 3.6 V, 1.6 V \leq VDD, 1.6 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		8		bit	
Conversion time	tconv	8-bit resolution	16			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	Vain		0		VBGR	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.2 Temperature sensor, internal reference voltage output characteristics

(TA = -40 to +85°C, 2.4 V ≤ VDD ≤ 3.6 V, Vss = 0 V (HS (high-speed main) mode))

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

2.6.3 D/A converter characteristics

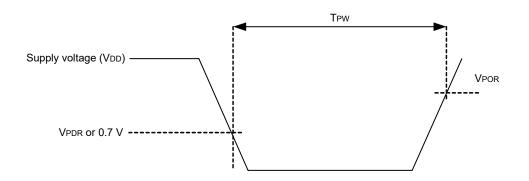
 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 MΩ	1.8 V ≤ VDD ≤ 3.6 V			±2.5	LSB
		Rload = 8 MΩ	1.8 V ≤ VDD ≤ 3.6 V			±2.5	LSB
Settling time	tset	Cload = 20 pF	2.7 V ≤ VDD ≤ 3.6 V			3	μs
			1.6 V ≤ V _{DD} < 2.7 V			6	μs

2.6.4 Comparator

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Col	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		VDD - 1.4	V
	Ivcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/µs	standard mode			1.2	μs
			High-speed comparator mode, window mode			2.0	μs
			Low-speed comparator mode, standard mode		3	5.0	μs
High-electric-potential judgment voltage	VTW+	High-speed comparator mod	de, window mode		0.76 VDD		V
Low-electric-potential judgment voltage	VTW-	High-speed comparator mod	de, window mode		0.24 VDD		V
Operation stabilization wait time	tCMP			100			μs
Internal reference voltage ^{Note}	VBGR			1.38	1.45	1.50	V


Note Stope Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.

2.6.5 POR circuit characteristics

(TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time Note	1.46	1.50	1.54	V
Minimum pulse width	Tpw		300			μs

Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.6 LVD circuit characteristics

(TA = -40 to +85°C, VPDR \leq VDD \leq 3.6 V \leq VSS = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V
voltage			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pul	se width	tLW		300			μs
Detection de	lay time					300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

VDD = 2.4 to 3.6 V at 1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 3.6 V at 1 MHz to 8 MHz LV (low-voltage main) mode: VDD = 1.6 to 3.6 V at 1 MHz to 4 MHz

LVD Detection Voltage of Interrupt & Reset Mode (TA = -40 to +85°C, VPDR \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Condit	tions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC0, VPOC1, VPOC2 = 0, 0, 0, fal	lling reset voltage: 1.6 V	1.60	1.63	1.66	V
mode	VLVDA1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC0, VPOC1, VPOC2 = 0, 0, 1, fal	lling reset voltage: 1.8 V	1.80	1.84	1.87	V
	VLVDB1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC0, VPOC1, VPOC2 = 0, 1, 0, fal	lling reset voltage: 2.4 V	2.40	2.45	2.50	V
	VLVDC1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC0, VPOC1, VPOC2 = 0, 1, 1, fal	lling reset voltage: 2.7 V	2.70	2.75	2.81	V
	VLVDD1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V

2.7 Power supply voltage rising slope characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD			54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

2.8 LCD Characteristics

2.8.1 Resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		VDD	V

(2) 1/2 bias method, 1/4 bias method

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		VDD	V

2.8.2 Internal voltage boosting method

(1) 1/3 bias method

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 μF	2 V _{L1} - 0.1	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 ^{Note 1} =	0.47 μF	3 V _{L1} - 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C4 ^{Note 1} =	0.47µF	500			ms

- Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between V_{L1} and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	= 0.47 µF	2 V _{L1} - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 Note 1 =	= 0.47 µF	3 V _{L1} - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note 1 =	= 0.47 µF	4 V _{L1} - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	= 0.47µF	500			ms

- Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between VL1 and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL3 and GND
 - C5: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- **Note 2.** This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.8.3 Capacitor split method

(1) 1/3 bias method

 $(TA = -40 \text{ to } +85^{\circ}C, 2.2 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 µF Note 2		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 µF Note 2	2/3 VL4 - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
VL1 voltage	VL1	C1 to C4 = 0.47 µF Note 2	1/3 VL4 - 0.1	1/3 VL4	1/3 VL4 + 0.1	V
Capacitor split wait time Note 1	tvwait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

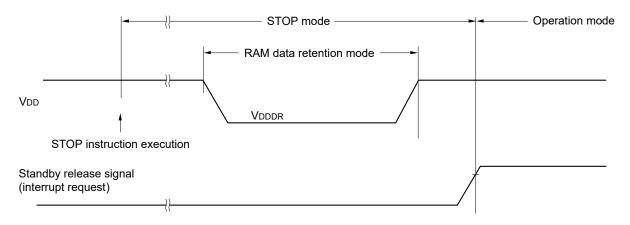
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND


 $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

2.9 RAM Data Retention Characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		3.6	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.10 Flash Memory Programming Characteristics

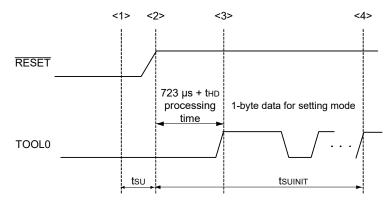
$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fCLK	2.4 V ≤ VDD ≤ 3.6 V	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3	-	Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

- Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
- Note 2. When using flash memory programmer and Renesas Electronics self programming library
- **Note 3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.11 Dedicated Flash Memory Programmer Communication (UART)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.12 Timing of Entry to Flash Memory Programming Modes

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
Time to hold the TOOL0 pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends.).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until a external reset ends

thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft

processing time)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = - 40 to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications TA = -40 to +105°C

R5F110xxGxx, R5F111xxGxx

- Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L1C User's Manual.
- Caution 3. Please contact Renesas Electronics sales office for derating of operation under TA = +85°C to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- Remark When the RL78 microcontroller is used in the range of TA = -40 to +85°C, see 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C).

The following functions differ between the products "G: Industrial applications ($TA = -40 \text{ to } +105^{\circ}\text{C}$)" and the products "A: Consumer applications and G: Industrial applications (when used in the range of $TA = -40 \text{ to } +85^{\circ}\text{C}$)".

Parameter	A: Consumer applications	G: Industrial applications
Operating ambient temperature	TA = -40 to +85°C	TA = -40 to +105°C
Operating mode Operating voltage range	HS (high-speed main) mode: 2.7 V ≤ V _{DD} ≤ 3.6 V@1 MHz to 24 MHz 2.4 V ≤ V _{DD} ≤ 3.6 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V ≤ V _{DD} ≤ 3.6 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V ≤ V _{DD} ≤ 3.6 V@1 MHz to 4 MHz	HS (high-speed main) mode only: 2.7 V ≤ V _{DD} ≤ 3.6 V@1 MHz to 24 MHz 2.4 V ≤ V _{DD} ≤ 3.6 V@1 MHz to 16 MHz
High-speed on-chip oscillator clock accuracy	1.8 V \leq VDD \leq 3.6 V: ±1.0% @ TA = -20 to +85°C ±1.5% @ TA = -40 to -20°C 1.6 V \leq VDD \leq 1.8 V: ±5.0% @ TA = -20 to +85°C ±5.5% @ TA = -40 to -20°C	2.4 V \leq VDD \leq 3.6 V: ±2.0% @ TA = +85 to +105°C ±1.0% @ TA = -20 to +85°C ±1.5% @ TA = -40 to -20°C
Serial array unit	UART CSI: fcLk/4 Simplified I ² C communication	UART CSI: fcLk/4 Simplified I ² C communication
IICA	Normal mode Fast mode Fast mode plus	Normal mode Fast mode
Voltage detector	• Rise detection: 1.67 V to 3.13 V (12 levels) • Fall detection: 1.63 V to 3.06 V (12 levels)	Rise detection: 2.61 V to 3.13 V (6 levels) Fall detection: 2.55 V to 3.06 V (6 levels)

Remark The electrical characteristics of the products G: Industrial applications (TA = -40 to +105°C) are different from those of the products "A: Consumer applications". For details, refer to **3.1** to **3.12**.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

(1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to + 6.5	V
	UVBUS		-0.5 to + 6.5	V
	AVDD	AVDD ≤ VDD	-0.5 to + 4.6	V
REGC pin input voltage	VIREGC	REGC	-0.3 to + 2.8	V
			and -0.3 to V _{DD} + 0.3 Note 1	
UREGC pin input voltage	Viuregc	UREGC	-0.3 to UVBUS + 0.3 Note 2	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, EXCLK, EXCLKS, RESET	-0.3 to VDD + 0.3 Note 3	V
	VI2	P60, P61 (N-ch open-drain)	-0.3 to + 6.5	V
	Vıз	UDP, UDM	-0.3 to + 6.5	V
	VI4	P150 to P156	-0.3 to AVDD + 0.3 Note 4	V
Output voltage	Vo1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-0.3 to VDD + 0.3 Note 3	V
	VO2	P150 to P156	-0.3 to AVDD + 0.3 Note 3	V
	Vo ₃	UDP, UDM	-0.3 to + 3.8	V
Analog input voltage	VAI1	ANI16 to ANI21	-0.3 to VDD + 0.3 and AVREF(+) + 0.3 Notes 3, 5	V
	VAI2	ANI0 to ANI6	-0.3 to AVDD + 0.3 and AVREF(+) + 0.3 Notes 3, 5	V

- Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- **Note 2.** Connect the UREGC pin to Vss via a capacitor (0.33 μF). This value regulates the absolute maximum rating of the UREGC pin. Do not use this pin with voltage applied to it.
- Note 3. Must be 6.5 V or lower.
- Note 4. Must be 4.6 V or lower.
- **Note 5.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

 That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- **Remark 2.** AVREF (+): + side reference voltage of the A/D converter.
- Remark 3. Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C)

(2/3)

Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	CD voltage VLI1 V		Note 1	-0.3 to +2.8	V
	VLI2	VL2 input voltage ¹	Note 1	-0.3 to +6.5	V
	VLI3	VL3 input voltage ¹	Note 1	-0.3 to +6.5	V
	VLI4	V _L 4 input voltage ¹	Note 1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH inpu	ıt voltage ^{Note 1}	-0.3 to +6.5	V
	VLO1	V _L 1 output voltage		-0.3 to +2.8	V
	VLO2	VL2 output voltage		-0.3 to +6.5	V
	VLO3	VL3 output voltage		-0.3 to +6.5	V
	VLO4	V _L 4 output voltage		-0.3 to +6.5	V
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V
	VLO6	COM0 to COM7	External resistance division method	-0.3 to VDD + 0.3 Note 2	V
		SEG0 to SEG55	Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
		output voltage	Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

- Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 ± 30%) and connect a capacitor (0.47 ± 30%) between the CAPL and CAPH pins.
- Note 2. Must be 6.5 V or lower.

Caution

Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings (TA = 25°C)

(3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-40	mA
		Total of all	P40 to P46	-70	mA
		pins -170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-100	mA
	Іон2	Per pin	P150 to P156	-0.1	mA
		Total of all pins		-0.7	mA
	Іонз	Per pin	UDP, UDM	-3	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	40	mA
		Total of all	P40 to P46	70	mA
		pins 170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	100	mA
	IOL2	Per pin	P150 to P156	0.4	mA
		Total of all pins		2.8	mA
	IOL3	Per pin	UDP, UDM	3	mA
Operating ambient	TA	In normal o	pperation mode	-40 to +105	°C
temperature		In flash me	mory programming mode	-40 to +105	
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.2 Oscillator Characteristics

3.2.1 X1 and XT1 oscillator characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx)	Ceramic resonator/crystal resonator	2.7 V ≤ VDD ≤ 3.6 V	1.0		20.0	MHz
Note		2.4 V ≤ VDD < 2.7 V	1.0		16.0	
XT1 clock oscillation frequency	Crystal resonator		32	32.768	35	kHz
(fxr) Note						

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/L1C User's Manual.

3.2.2 On-chip oscillator characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fHOCO		1		24	MHz
High-speed on-chip oscillator		-20 to +85°C	-1.0		+1.0	%
clock frequency accuracy		-40 to -20°C	-1.5		+1.5	%
		+85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fiL			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

3.2.3 PLL oscillator characteristics

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note fPLLIN		High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fPLL			48.00		MHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	IOH1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				-3.0 Note 2	mA
		Total of P00 to P07, P10 to P17, P20 to P27,	2.7 V ≤ VDD ≤ 3.6 V			-15.0	mA
		P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143 (When duty \leq 70% Note 3)	2.4 V ≤ VDD < 2.7 V			-7.0	mA
	Юн2	Per pin for P150 to P156				-0.1 Note 2	mA
		Total of all pins	2.4 V ≤ VDD ≤ 3.6 V			-0.7	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.
- **Note 2.** However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R>

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

<R>

<R>

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				8.5 Note 2	mA
		Per pin for P60 and P61				15.0 Note 2	mA
		Total of P40 to P46, P130	2.7 V ≤ VDD ≤ 3.6 V			15.0	mA
	(When duty ≤ 70% Note 3)	2.4 V ≤ VDD < 2.7 V			9.0	mA	
	Total of P00 to P07, P10 to P17, P20 to P27,	2.7 V ≤ VDD ≤ 3.6 V			35.0	mA	
		P30 to P37, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P140 to P143 (When duty ≤ 70% Note 3)	2.4 V ≤ VDD < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				50.0	mA
	IOL2	Per pin for P150 to P156				0.4 Note 2	mA
		Total of all pins	2.4 V ≤ VDD ≤ 3.6 V			2.8	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
- **Note 2.** However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression

(when changing the duty factor from 70% to n%).

- Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0.8 VDD		VDD	V
	VIH2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	2.0		VDD	V
			TTL input buffer 2.4 V ≤ V _{DD} < 3.3 V	1.50		VDD	V
	VIH3	P150 to P156	0.7 AVDD		AVDD	V	
	VIH4	P60, P61	0.7 VDD		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLKS,	0.8 VDD		VDD	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0		0.2 VDD	V
	VIL2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	0		0.5	V
			TTL input buffer 2.4 V ≤ V _{DD} < 3.3 V	0		0.32	V
	VIL3	P150 to P156	•	0		0.3 AVDD	V
	VIL4	P60, P61		0		0.3 VDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS,	RESET	0		0.2 VDD	V

Caution The maximum value of VIH of pins P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 is VDD, even in the N-ch open-drain mode.

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voн1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57,	2.7 V ≤ VDD ≤ 3.6 V, IOH1 = -2.0 mA	VDD - 0.6			V
		P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	2.4 V ≤ VDD ≤ 3.6 V, IOH1 = -1.5 mA	VDD - 0.5			V
	VOH2	P150 to P156	2.4 V ≤ VDD ≤ 3.6 V, IOH2 = -100 µA	AVDD - 0.5			V
Output voltage, low	VOL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57,	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 3.0 mA			0.6	V
		P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	2.4 V ≤ VDD ≤ 3.6 V, IOL1 = 1.5 mA			0.4	V
			$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 0.6 mA			0.4	V
	VOL2	P150 to P156	2.4 V ≤ VDD ≤ 3.6 V, IOL2 = 400 µA			0.4	V
	Vol3 P60, P61	P60, P61	2.7 V ≤ VDD ≤ 3.6 V, IOL3 = 3.0 mA			0.4	V
			$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 2.0 mA			0.4	V

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VDD				1	μА
	ILIH2	P20, P21, P140 to P143	Vı = VDD				1	μΑ
	ILIH3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P150 to P156	Vı = AVDI)			1	μΑ
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	Vı = Vss				-1	μА
	ILIL2	P20, P21, P140 to P143	Vı = Vss				-1	μΑ
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
	ILIL4	P150 to P156	VI = AVs	5			-1	μΑ
On-chip pull-up resistance	Ru1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P140 to P143, P125 to P127	Vı = Vss	2.4 V ≤ VDD ≤ 3.6 V	10	20	100	kΩ
	Ru2	P40 to P46, P80 to P83	Vı = Vss		10	20	100	kΩ

3.3.2 Supply current characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS	fHOCO = 48 MHz Note 3,	Basic	VDD = 3.6 V		2.2	2.9	mA
current Note 1		mode	(high-speed main)	fih = 24 MHz Note 3	operation	VDD = 3.0 V		2.2	2.9	
			mode Note 5		Normal	VDD = 3.6 V		4.4	9.2	
					operation	VDD = 3.0 V		4.4	9.2	
				fHOCO = 24 MHz Note 3,	Basic	VDD = 3.6 V		2.0	2.6	
				fih = 24 MHz Note 3	operation	VDD = 3.0 V		2.0	2.6	
					Normal	VDD = 3.6 V		4.2	7.0	
					operation	VDD = 3.0 V		4.2	7.0	
				fHOCO = 16 MHz Note 3,	Normal	VDD = 3.6 V		3.1	5.0	
				fih = 16 MHz Note 3	operation	VDD = 3.0 V		3.1	5.0	
			HS	fmx = 20 MHz Note 2,	Normal	Square wave input		3.5	5.9	mA
			(high-speed main)	VDD = 3.6 V	operation	Resonator connection		3.6	6.0	
			mode Note 5	fmx = 20 MHz Note 2,	Normal	Square wave input		3.5	5.9	
				VDD = 3.0 V	operation	Resonator connection		3.6	6.0	
				fmx = 16 MHz Note 2,	Normal	Square wave input		2.9	4.5	
				VDD = 3.6 V	operation	Resonator connection		3.1	4.6	
				fmx = 16 MHz Note 2,	Normal	Square wave input		2.9	4.5	
			VDD = 3.0 V	operation	Resonator connection		3.1	4.6		
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.1	3.5	
			VDD = 3.6 V	operation	Resonator connection		2.2	3.5		
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.1	3.5	
				VDD = 3.0 V	operation	Resonator connection		2.2	3.5	
			HS	fPLL = 48 MHz,	Normal	VDD = 3.6 V		4.7	7.6	mA
			(High-speed main)	fCLK = 24 MHz Note 2	operation	VDD = 3.0 V		4.7	7.6	
			mode (PLL operation)	fPLL = 48 MHz,	Normal	VDD = 3.6 V		3.1	5.2	
			,	fCLK = 12 MHz Note 2	operation	VDD = 3.0 V		3.1	5.1	
				fPLL = 48 MHz,	Normal	VDD = 3.6 V		2.3	3.9	
				fCLK = 6 MHz Note 2	operation	VDD = 3.0 V		2.3	3.9	
			Subsystem clock	fsub = 32.768 kHz Note 4	Normal	Square wave input		4.6	6.9	μΑ
			operation	TA = -40°C	operation	Resonator connection		4.7	6.9	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		4.9	7.0	
				TA = +25°C	operation	Resonator connection		5.0	7.2	
				fsub = 32.768 kHz Note 4		Square wave input		5.2	7.6	
	TA = +50°C fsuB = 32.768 kHz No TA = +70°C fsuB = 32.768 kHz No TA = +85°C	TA = +50°C	operation	Resonator connection		5.2	7.7			
		fsub = 32.768 kHz Note 4	Normal	Square wave input		5.5	9.3			
			TA = +70°C	operation	Resonator connection	·	5.6	9.4		
				Normal	Square wave input		6.2	13.3		
				operation	Resonator connection		6.2	13.4		
		fs		Normal	Square wave input	·	8.3	46.0		
				TA = +105°C	operation	Resonator connection		8.4	46.0	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 HS (high-speed main) mode: 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz

 2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fin: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT mode	HS (high-speed main)	fHOCO = 48 MHz Note 4,	VDD = 3.6 V		0.77	3.4	mA
current	Note 2		mode Note 7	fih = 24 MHz Note 4	VDD = 3.0 V		0.77	3.4	
Note 1				fHOCO = 24 MHz Note 4,	VDD = 3.6 V		0.55	2.7	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.55	2.7	
				fHOCO = 16 MHz Note 4,	VDD = 3.6 V		0.48	1.9	
				fiH = 16 MHz Note 4	VDD = 3.0 V		0.47	1.9	
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.35	2.10	mA
			mode Note 7	VDD = 3.6 V	Resonator connection		0.51	2.20	
				fmx = 20 MHz Note 3,	Square wave input		0.34	2.10	
				VDD = 3.0 V	Resonator connection		0.51	2.20	
				fmx = 16 MHz Note 3,	Square wave input		0.30	1.25	
				VDD = 3.6 V	Resonator connection		0.45	1.41	
				fmx = 16 MHz Note 3,	Square wave input		0.29	1.23	
				VDD = 3.0 V	Resonator connection		0.45	1.41	
				fmx = 10 MHz Note 3,	Square wave input		0.23	1.10	
				VDD = 3.6 V	Resonator connection		0.30	1.20	
				fmx = 10 MHz Note 3,	Square wave input		0.22	1.10	
				VDD = 3.0 V	Resonator connection		0.30	1.20	
			HS	fmx = 48 MHz,	VDD = 3.6 V		0.99	2.93	mA
		(High-speed main)		V	VDD = 3.0 V		0.99	2.92	
			mode (PLL operation) fMX = 48 MHz, VDD = 3.6 V	VDD = 3.6 V		0.89	2.51		
			(i LL operation)	PLL operation)	VDD = 3.0 V		0.89	2.50	
				fmx = 48 MHz,	VDD = 3.6 V		0.84	2.30	
				fCLK = 6 MHz Note 3	VDD = 3.0 V		0.84	2.29	
			Subsystem clock	fsuB = 32.768 kHz Note 5	Square wave input		0.32	0.61	μA
			operation	TA = -40°C	Resonator connection		0.51	0.80	
				fsuB = 32.768 kHz Note 5	Square wave input		0.41	0.74	
				TA = +25°C	Resonator connection		0.62	0.91	
				fsuB = 32.768 kHz Note 5	Square wave input		0.52	2.30	
				TA = +50°C	Resonator connection		0.75	2.49	
				fsuB = 32.768 kHz Note 5	Square wave input		0.82	4.03	
				TA = +70°C	Resonator connection		1.08	4.22	
				fsuB = 32.768 kHz Note 5	Square wave input		1.38	8.04	
				TA = +85°C	Resonator connection		1.62	8.23	
				fsuB = 32.768 kHz Note 5	Square wave input		3.29	41.00	
				TA = +105°C	Resonator connection		3.63	41.00	
	IDD3	STOP mode	T _A = -40°C				0.18	0.52	μA
	Note 6	Note 8	T _A = +25°C				0.25	0.52	
			T _A = +50°C				0.34	2.21	
	$T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$					0.64	3.94		
					1.18	7.95			
			T _A = +105°C			1	2.92	40.00	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 HS (high-speed main) mode: 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz
 - $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V@1 MHz}$ to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fil: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	<u> </u>	Condition	ne		MIN.	TYP.	MAX.	Unit
Low-speed	Symbol IFIL Note 1		Conditio	פות		IVIIIN.	0.20	IVIAA.	
on-chip oscillator operating current	IEIT More I								μA
RTC2 operating current	IRTC Notes 1, 3						0.02		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4						0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fiL = 15 kHz					0.22		μA
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, whe	n conversion at maximu	m speed			422	720	μA
AVREF (+) current	IAVREF Note 8	AVDD = 3.0 V, ADF	REFP1 = 0, ADREFP0 =	0 Note 7			14.0	25.0	μA
		AVREFP = 3.0 V, AI	DREFP1 = 0, ADREFP0	= 1 Note 10			14.0	25.0	
		ADREFP1 = 1, AD	REFP0 = 0 Note 1				14.0	25.0	
A/D converter reference voltage current	IADREF Notes 1, 9	VDD = 3.0 V	3.0 V				75.0		μА
Temperature sensor operating current	ITMPS Note 1						78		μΑ
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter	er channel				0.53	1.5	mA
Comparator	ICMP	VDD = 3.6 V,	Window mode				12.5		μΑ
operating current	Notes 1, 12	Regulator output voltage = 2.1 V	Comparator high-spee	ed mode			4.5		μΑ
		_	Comparator low-speed	d mode			1.2		μA
LVD operating current	ILVD Notes 1, 13						0.06		μA
Self-programming operating current	IFSP Notes 1, 14						2.50	12.20	mA
BGO operating current	IBGO Notes 1, 15						1.68	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performe	d Note 16			0.34	1.10	mA
operating current			The A/D conversion opmode, AVREFP = VDD		erformed, Low voltage		0.53	2.04	
		CSI/UART operation	on				0.70	1.54	mA
LCD operating current	ILCD1 Notes 17, 18	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, LV4 = 3.6 V		0.14		μА
	ILCD2 Note 17	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V (VLCD = 04H)		0.61		μА
	ILCD3 Note 17	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V		0.12		μA
USB current	IUSB Note 20	Operating current during USB communication					4.88		mA
Note 19	IUSB Note 21	Operating current i	Operating current in the USB suspended state				0.04		mA

(Notes and Remarks are listed on the next page.)

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing to the AVDD.
- Note 8. Current flowing from the reference voltage source of A/D converter.
- **Note 9.** Operation current flowing to the internal reference voltage.
- Note 10. Current flowing to the AVREFP.
- **Note 11.** Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDA when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 14. Current flowing only during self-programming.
- Note 15. Current flowing only during data flash rewrite.
- Note 16. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual...
- Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 18. Not including the current that flows through the external divider resistor divider resistor.
- Note 19. Current flowing to the UVBUS.
- **Note 20.** Including the operating current when fPLL = 48 MHz.
- Note 21. Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
- Remark 1. flL: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

3.4 AC Characteristics

3.4.1 Basic operation

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le AVDD = VDD \le 3.6 \text{ V}, Vss = 0 \text{ V})$

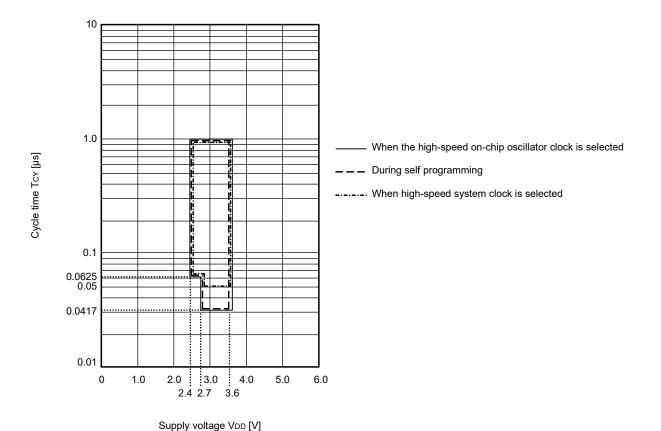
(1/2)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fMAIN) operation	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V	0.0417		1	μs
				2.4 V ≤ VDD < 2.7 V	0.0625		1	μs
		Subsystem clock (fsub) operation		2.4 V ≤ VDD ≤ 3.6 V	28.5	30.5	31.3	μs
		In the self- programming mode	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V	0.0417		1	μs
				2.4 V ≤ VDD < 2.7 V	0.0625		1	μs
External main system clock frequency		2.7 V ≤ VDD ≤ 3.6 V			1.0		20.0	MHz
		2.4 V ≤ VDD < 2.7 V			1.0		16.0	MHz
	fEXT				32		35	kHz
External main system clock input high-level width, low-level width	1	2.7 V ≤ VDD ≤	3.6 V		24			ns
		2.4 V ≤ V _{DD} <	2.7 V		30			ns
	texhs, texhs				13.7			μs
TI00 to TI07 input	tтıн,				1/fмск +			ns
high-level width, low-level width	tTIL				10			

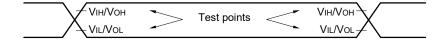
Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0),

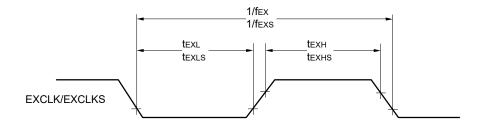
n: Channel number (n = 0 to 7))

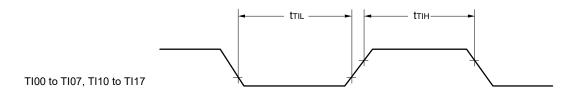

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

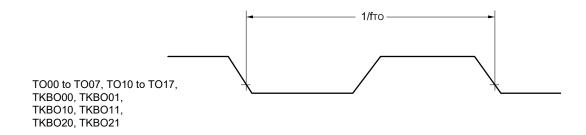
(2/2)


Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
TO00 to TO07, TKBO00,	fтo	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
TKBO01, TKBO10, TKBO11,			2.4 V ≤ VDD < 2.7 V			8	MHz
TKBO20, TKBO21							
output frequency							
PCLBUZ0, PCLBUZ1 output	fPCL	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
frequency			2.4 V ≤ VDD < 2.7 V			8	MHz
Interrupt input high-level width,	tinth,	INTP0 to INTP7	2.4 V ≤ VDD ≤ 3.6 V	1			μs
low-level width	tintl						
Key interrupt input low-level	tkr	2.4 V ≤ VDD ≤ 3.6 V		250			ns
width							
TMKB2 forced output stop input	tihr	INTP0 to INTP7	fclk > 16 MHz	125			ns
high-level width			fclk ≤ 16 MHz	2			fclk
RESET low-level width	trsl		•	10			μs

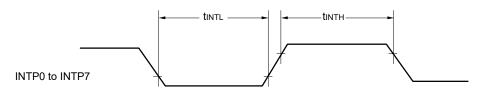
Minimum Instruction Execution Time during Main System Clock Operation


Tcy vs VDD (HS (high-speed main) mode)

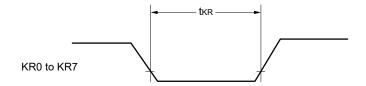

AC Timing Test Points

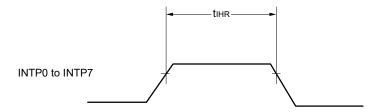


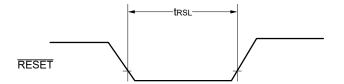
External System Clock Timing



TI/TO Timing




Interrupt Request Input Timing


Key Interrupt Input Timing


Timer KB2 Input Timing

RESET Input Timing

3.5 Peripheral Functions Characteristics

3.5.1 Serial array unit

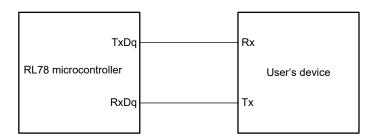
(1) During communication at same potential (UART mode)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter S	Symbol	Conditions	HS (high-spee	Unit	
		Conditions	MIN.	MAX.	Offic
Transfer rate Note 1		2.4 V ≤ VDD ≤ 3.6 V		fMCK/12 Note 2	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.0	Mbps

- Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
- Note 2. The following conditions are required for low voltage interface.

 $2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$: MAX. 1.3 Mbps


Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V)

16 MHz $(2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

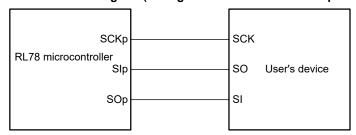
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Cumbal	Conditions		HS (high-spee	HS (high-speed main) Mode		
Parameter	Symbol			MIN.	MAX.	Unit	
SCKp cycle time	tKCY1	tkcy1 ≥ fclk/4	2.7 V ≤ VDD ≤ 3.6 V	250		ns	
			2.4 V ≤ VDD ≤ 3.6 V	500		ns	
SCKp high-/low-level width	tkh1, tkl1	2.7 V ≤ VDD ≤ 3.6 V		tkcy1/2 - 36		ns	
		2.4 V ≤ VDD ≤ 3.6 V		tkcy1/2 - 76		ns	
SIp setup time (to SCKp↑) Note 1	tsik1	2.7 V ≤ VDD ≤ 3.6	6 V	66		ns	
		2.4 V ≤ VDD ≤ 3.6 V		133		ns	
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns	
Delay time from SCKp↓ to SOp output Note 3	tKSO1	C = 30 pF Note 4			50	ns	

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **Note 4.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)
- Remark 2. fMCK: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

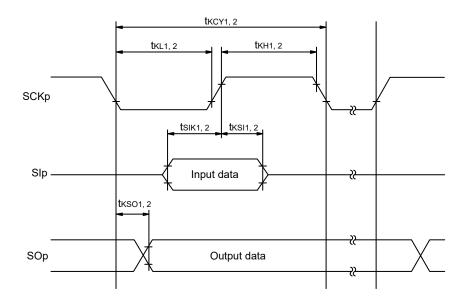

Parameter	Cymahal	Cond	litions	HS (high-speed	main) Mode	Unit	
Parameter	Symbol	Cond	itions	MIN.	MAX.]	
SCKp cycle time Note 5	tKCY2	2.7 V ≤ V _{DD} < 3.6 V	fMCK > 16 MHz	16/fмck		ns	
			fMCK ≤ 16 MHz	12/fмck		ns	
		2.4 V ≤ VDD < 3.6 V		12/fмск and 1000		ns	
SCKp high-/low-level width	tkh2, tkl2	2.7 V ≤ VDD ≤ 3.6 V	2.7 V ≤ VDD ≤ 3.6 V			ns	
		2.4 V ≤ VDD ≤ 3.6 V		tKCY2/2 - 36		ns	
SIp setup time (to SCKp↑) Note 1	tsik2	2.7 V ≤ VDD ≤ 3.6 V		1/fмcк + 40		ns	
		2.4 V ≤ VDD ≤ 3.6 V		1/fмск + 60		ns	
SIp hold time (from SCKp↑) Note 2	tKSI2			1/fмск + 62		ns	
Delay time from SCKp↓ to SOp output Note 3	tKSO2	C = 30 pF Note 4	2.7 V ≤ VDD ≤ 3.6 V		2/fмск + 66	ns	
			2.4 V ≤ VDD < 3.6 V		2/fmck + 113	ns	

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)
- Remark 2. fMCK: Serial array unit operation clock frequency

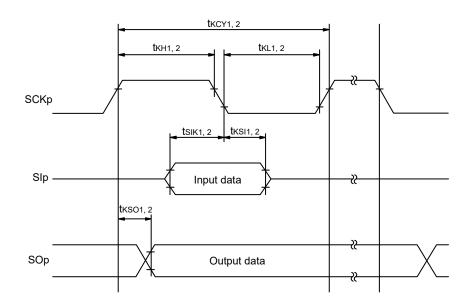
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)



Remark 1. p: CSI number (p = 00, 10, 20, 30)


Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

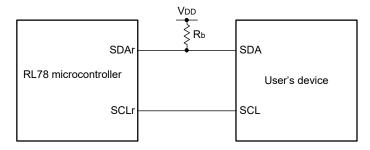
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 10, 20, 30)

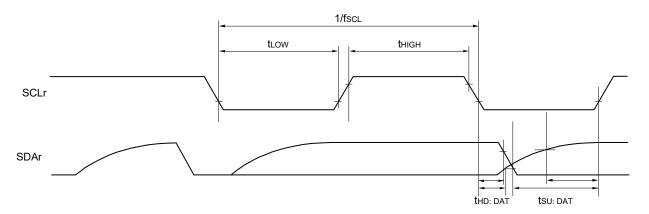
Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(4) During communication at same potential (simplified I²C mode)

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$


Danamatan	Comple at	O and distance	HS (high-speed	main) Mode	Unit
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscl	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ		400 Note 1	kHz
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1200		ns
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	4600		ns
Hold time when SCLr = "H"	thigh	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1200		ns
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	4600		ns
Data setup time (reception)	tsu: dat	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1/fMCK + 200 Note 2		ns
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	1/fMCK + 580 Note 2		ns
Data hold time (transmission)	thd: dat	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	0	770	ns
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	0	1420	ns

Note 1. The value must be equal to or less than fMCK/4.


Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remark 1. $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- **Remark 2.** r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3), h: POM number (h = 0 to 3)
- Remark 3. fmcK: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

 n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V) (UART mode)

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions	HS (high-	Unit	
Falametei	Symbol			Conditions	MIN.	MAX.	Offic
Transfer rate Notes 1, 2		Reception		V ≤ VDD ≤ 3.6 V, V ≤ Vb ≤ 2.7 V		fMCK/12 Note 1	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 4		2.0	Mbps
				V ≤ VDD < 3.3 V, V ≤ Vb ≤ 2.0 V		fMCK/12 Notes 1, 2, 3	bps
		Theoretical value of the maximum transfer rate fmck = fclk Note 4		1.3	Mbps		

- **Note 1.** Transfer rate in the SNOOZE mode is 4,800 bps only.
- Note 2. Use it with $VDD \ge Vb$.
- **Note 3.** The following conditions are required for low voltage interface.

 $2.4 \text{ V} \le \text{VDD} < 2.7 \text{ V}$: MAX. 2.6 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V)

16 MHz (2.4 V \leq VDD \leq 3.6 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Remark 1. Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5V) (UART mode)

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \le VDD \le 3.6 \text{ V}, Vss = 0 \text{ V})$

(2/2)

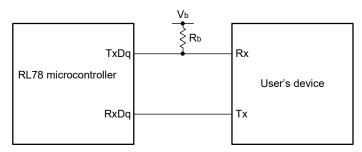
Parameter	Symbol		Conditions	HS (high-	Unit	
raiailletei	Gyrribor		Conditions	MIN.	MAX.	Offic
Transfer rate Note 2		Transmission	$V \le VDD \le 3.6 \text{ V},$ $V \le Vb \le 2.7 \text{ V}$		Note 1	bps
			Theoretical value of the maximum transfer rate Cb = 50 pF, Rb = 2.7 k Ω , Vb = 2.3 V		1.2 Note 2	Mbps
			V ≤ V _{DD} < 3.3 V, V ≤ V _b ≤ 2.0 V		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 5.5$ k Ω , $V_b = 1.6$ V		0.43 Note 5	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{VDD} < 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$

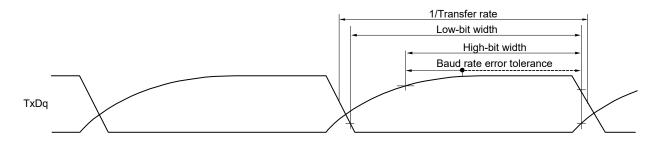
$$\frac{1}{ \left\{ -C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b} \right) \right\} \times 3} \ [bps]$$

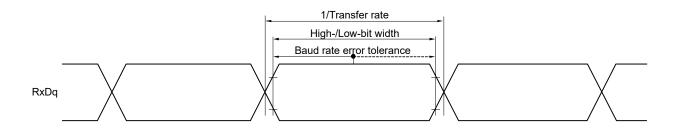
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b}\right)\}}{\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **Note 2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** Use it with $VDD \ge Vb$.
- Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


$$\frac{1}{\text{{-Cb}} \times \text{{Rb}} \times \text{{In } (1 - } \frac{1.5}{\text{{Vb}}} \text{)}} \times 3}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **Note 5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remark 1.** Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00 to 03, 10 to 13))

(6) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

(1/2)

Parameter	Symbol		Conditions	HS (high-speed	d main) Mode	Unit
Farameter	Syllibol	Conditions		MIN.	MAX.	Onit
SCKp cycle time	tKCY1	tkcy1 ≥ fclk/4	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 kΩ	1000 Note		ns
			$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 1.8 \text{ V},$ Cb = 30 pF, Rb = 5.5 kΩ	2300 Note		ns
SCKp high-level width	tKH1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		tKCY1/2 - 340		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$		tKCY1/2 - 916		ns
SCKp low-level width	tKL1		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 30 \text{ pF}, Rb = 2.7 \text{ k}\Omega$			ns
		2.4 V ≤ V _{DD} < 3 C _b = 30 pF, R _b	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V, = 5.5 kΩ	tKCY1/2 - 100		ns

Note Use it with $VDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

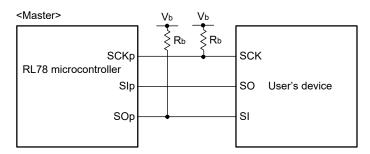
(6) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

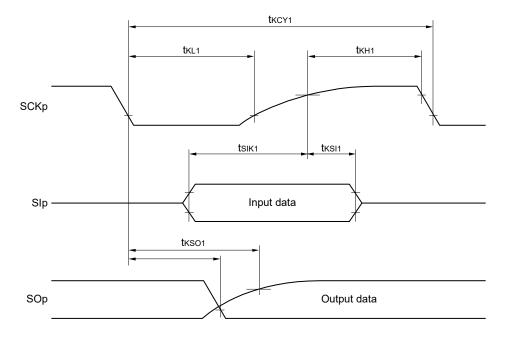
Parameter	Symbol	Conditions	HS (high-s	Unit	
			MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsık1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	354		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 3, $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	958		ns
SIp hold time (from SCKp↑) Note 1	tKSI1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	38		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 3, Cb = 30 pF, Rb = 5.5 kΩ	38		ns
Delay time from SCKp↓ to SOp output Note 1	tKSO1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		390	ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$ Note 3, $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$		966	ns
SIp setup time (to SCKp↓) Note 2	tsik1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	88		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$ Note 3, $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	220		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	38		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$ Note 3, $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	38		ns
Delay time from SCKp† to SOp output Note 2	tKSO1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		50	ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 3, Cb = 30 pF, Rb = 5.5 kΩ		50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

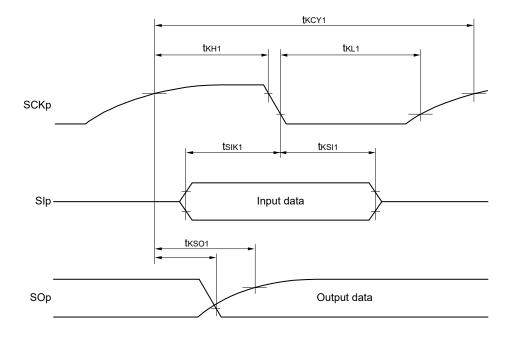

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Note 3. Use it with $VDD \ge Vb$.

CSI mode connection diagram (during communication at different potential)



- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

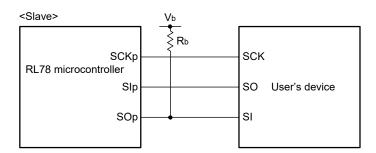
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

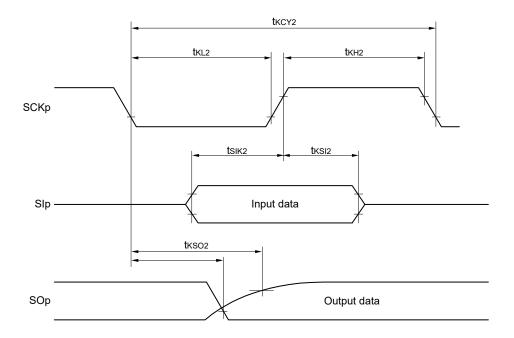
(7) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

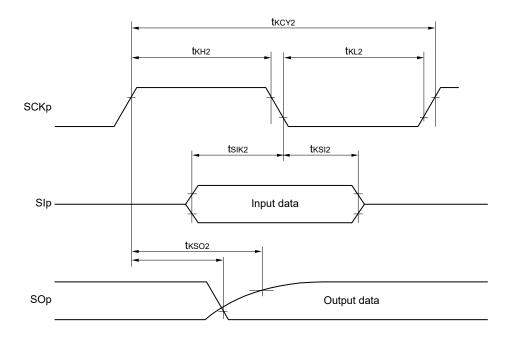

Dozemstor	Cumphal	Con	ditions	HS (high-spe	ed main) Mode	Limit	
Parameter	Symbol	Con	ditions	MIN.	MAX.	Unit	
SCKp cycle time Note 1	tKCY2	2.7 V ≤ VDD ≤ 3.6 V,	20 MHz < fMcK ≤ 24 MHz	32/fMCK		ns	
		2.3 V ≤ Vb ≤ 2.7 V	16 MHz < fMCK ≤ 20 MHz	28/fmck		ns	
			8 MHz < fмcк ≤ 16 MHz	24/fmck		ns	
			4 MHz < fмcк ≤ 8 MHz	16/fмck		ns	
			fMCK ≤ 4 MHz	12/fmck		ns	
		2.4 V ≤ VDD < 3.3 V,	20 MHz < fMck ≤ 24 MHz	72/fmck		ns	
		1.6 V ≤ V _b ≤ 2.0 V Note 2	16 MHz < fMCK ≤ 20 MHz	64/fmck		ns	
			8 MHz < fмcк ≤ 16 MHz	52/fmck		ns	
				4 MHz < fMCK ≤ 8 MHz	32/fmck		ns
			fMCK ≤ 4 MHz	20/fmck		ns	
SCKp high-/low-level width	tKH2, tKL2	2.7 V ≤ VDD ≤ 3.6 V, 2.3 V	tkcy2/2 - 36		ns		
		2.4 V ≤ VDD < 3.3 V, 1.6 V	D < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V Note 2			ns	
SIp setup time (to SCKp↑) Note 3	tsik2	2.7 V ≤ VDD ≤ 3.6 V		1/fмск + 40		ns	
		2.4 V ≤ VDD < 3.3 V		1/fмск + 60		ns	
SIp hold time (from SCKp↑) Note 4	tKSI2			1/fмск + 62		ns	
Delay time from SCKp↓ to SOp output Note 5	tKSO2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$ Cb = 30 pF, Rb = 2.7 k Ω			2/fмск + 428	ns	
		2.4 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 2 Cb = 30 pF, Rb = 5.5 kΩ			2/fмск + 1146	ns	

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Note 2.** Use it with $VDD \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)



CSI mode connection diagram (during communication at different potential)



- Remark 1. $Rb[\Omega]$: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

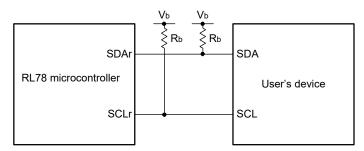
(8) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

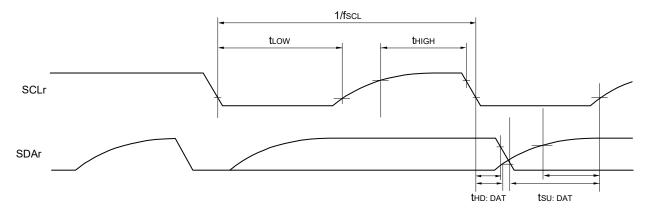
Danamatan	Cumphal	Conditions	HS (high-speed	main) Mode	1.114
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fSCL	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω		400 Note 1	kHz
		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω		100 Note 1	kHz
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 2, Cb = 100 pF, Rb = 5.5 kΩ		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	1200		ns
		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 kΩ	4600		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 2, Cb = 100 pF, Rb = 5.5 kΩ	4650		ns
Hold time when SCLr = "H"	thigh	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	500		ns
		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 k Ω	2400		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 2, Cb = 100 pF, Rb = 5.5 kΩ	1830		ns
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	1/fMCK + 340 Note 3		ns
		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 kΩ	1/fMCK + 760 Note 3		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 2, Cb = 100 pF, Rb = 5.5 kΩ	1/fMCK + 570 Note 3		ns
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	0	770	ns
		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 kΩ	0	1420	ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 2, Cb = 100 pF, Rb = 5.5 kΩ	0	1215	ns

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Use it with $VDD \ge Vb$.


Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. $Rb[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM, POM number (g = 0 to 3)

Remark 3. fmck: Serial array unit operation clock frequency

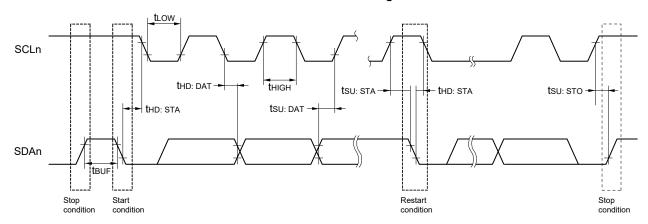
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00, 02, 10, 12)

3.5.2 Serial interface IICA

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

			HS	S (high-spee	ed main) Mo	de	
Parameter	Symbol	Conditions	Standar	d mode	Fast	Unit	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: fclk ≥ 3.5 MHz	_	_	0	400	kHz
		Standard mode: fc∟κ ≥ 1 MHz	0	100	_	_	kHz
Setup time of restart condition	tsu: sta		4.7		0.6		μs
Hold time Note 1	thd: STA		4.0		0.6		μs
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μs
Data setup time (reception)	tsu: dat		250		100		ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu: sto		4.0		0.6		μs
Bus-free time	tBUF		4.7		1.3		μs


Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thd:Dat is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

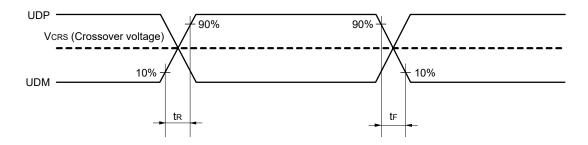
IICA serial transfer timing

3.5.3 USB

(1) Electrical specifications

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UREGC	UREGC output voltage characteristic	UREGC	UVBUS = 4.0 to 5.5 V, PXXCON = VDDUSBE = 1	3.0	3.3	3.6	V
UVBUS	UVBUS input voltage characteristic	UVBUS	Function	4.35 (4.02 ^{Note})	5.00	5.25	V


Note Value of instantaneous voltage

(TA = -40 to +105°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V)

	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Input voltag	де	VIH		2.0			V
characteristic			VIL				0.8	V
(FS/LS receiver)	Difference sensitivity	Difference input sensitivity		UDP voltage - UDM voltage	0.2			V
		Difference common mode range			0.8		2.5	V
Output	Output volt	Output voltage		Іон = -200 μΑ	2.8		3.6	V
characteristic				IoL = 2 mA	0		0.3	V
(FS driver)	Transition	Rising	tFR	Rising: From 10% to 90% of amplitude,	4		20	ns
	time	Falling	tFF	Falling: From 90% to 10% of amplitude,	4		20	ns
	Matching (Matching (TFR/TFF)		CL = 50 pF	90		111.1	%
	Crossover	Crossover voltage					2.0	V
	Output Imp	Output Impedance			28		44	Ω
	Output volt	Output voltage			2.8		3.6	V
characteristic			Vol		0		0.3	V
(LS driver)	Transition	Rising	tLR	Rising: From 10% to 90% of amplitude,	75		300	ns
	time	Falling	tLF	Falling: From 90% to 10% of amplitude,	75		300	ns
	Matching (TFR/TFF)	VLTFM	CL = 250 pF to 750 pF	80		125	%
	Note			The UDP and UDM pins are individually pulled				
	Crossover	voltage ^{Note}	VLCRS	down via 15 kΩ	1.3		2.0	V
Pull-up,	Pull-down i	esistor	RPD		14.25		24.80	kΩ
Pull-down	Pull-up	Idle	Rpui		0.9		1.575	kΩ
	resistor	Reception	RPUA		1.425		3.09	kΩ
UVBUS	UVBUS pull resistor	UVBUS pull-down resistor		UVBus voltage = 5.5 V		1000		kΩ
	UVBUS inpu	UVBUS input voltage			3.20			V
			VIL				0.8	V

Note Excludes the first signal transition from the idle state.

Timing of UDP and UDM

(2) BC standard

(TA = -40 to +105°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB	UDP sink current	IDP_SINK		25	100	175	μΑ
standard	UDM sink current	IDM_SINK		25	100	175	μΑ
BC1.2	DCD source current	IDP_SRC		7	10	13	μΑ
	Data detection voltage	VDAT_REF		0.25	0.325	0.4	V
	UDP source voltage	VDP_SRC	Output current 250 µA	0.5	0.6	0.7	V
	UDM source voltage	VDM_SRC	Output current 250 µA	0.5	0.6	0.7	V

(3) BC option standard

(TA = -40 to +105°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6, VSS = 0 V)

Para	meter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit		
UDP/UDM input reference	VDSELi [3: 0]	0000	VDDET0		27	32	37	%UVBUS		
voltage	(i = 0, 1)	0001	VDDET1		29	34	39	%UVBUS		
(UVBus divider ratio)		İ		0010	VDDET2		32	37	42	%UVBUS
(Function)		0011	VDDET3		35	40	45	%UVBUS		
,		0100	VDDET4		38	43	48	%UVBUS		
		0101	VDDET5		41	46	51	%UVBUS		
		0110	VDDET6		44	49	54	%UVBUS		
		0111	VDDET7		47	52	57	%UVBUS		
		1000	VDDET8		51	56	61	%UVBUS		
		1001	VDDET9		55	60	65	%UVBUS		
		1010	VDDET10		59	64	69	%UVBUS		
		1011	VDDET11		63	68	73	%UVBUS		
		1100	VDDET12		67	72	73	%UVBUS		
		1101	VDDET13		71	76	81	%UVBUS		
		1110	VDDET14		75	80	85	%UVBUS		
		1111	VDDET15		79	84	89	%UVBUS		

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input Channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = AVDD Reference voltage (-) = AVSS	Reference voltage (+) = Internal reference voltage Reference voltage (-) = AVss
High-accuracy channel; ANI0 to ANI6 (input buffer power supply: AVDD)	Refer to 3.6.1 (1) .	Refer to 3.6.1 (2) .	Refer to 3.6.1 (5) .
Standard channel; ANI16 to ANI21 (input buffer power supply: VDD)	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .	
Internal reference voltage, Temperature sensor output voltage	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .	_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	8		12	bit
Overall error Note	AINL	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±6.0	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±4.5	LSB
Full-scale error Note	EFS	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±4.5	LSB
Integral linearity error Note	ILE	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	LSB
Differential linearity error Note	DLE	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.5	LSB
Analog input voltage	VAIN			0		AVREFP	V

Note Excludes quantization error (±1/2 LSB).

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	С	onditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AVDD ≤ 3.6 V	8		12	bit
Overall error Note	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±7.5	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±6.0	LSB
Full-scale error Note	EFS	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±2.0	LSB
Analog input voltage	Vain		•	0		AVDD	V

Note Excludes quantization error (±1/2 LSB).

(3) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	8		12	bit
Overall error Note 1	AINL	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±7.0	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±5.0	LSB
Full-scale error Note 1	Ers	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±5.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±3.0	LSB
Differential linearity error Note 1	DLE	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	LSB
Analog input voltage	VAIN		1	0		AVREFP	V
		Internal reference (2.4 V ≤ V _{DD} ≤ 3.6	٧	BGR Note	2		
		Temperature sens (2.4 V ≤ V _{DD} ≤ 3.6	or output voltage s V, HS (high-speed main) mode)	Vī	ΓMP25 Not	e 2	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. Refer to 3.6.2 Temperature sensor, internal reference voltage output characteristics.

(4) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVSS (ADREFM = 0), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AVDD ≤ 3.6 V	8		12	bit
Overall error Note 1	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.0	LSB
Full-scale error Note 1	EFS	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±3.5	LSB
Differential linearity error Note 1	DLE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±2.5	LSB
Analog input voltage	VAIN		1	0		AVDD	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 3.6 V, HS	\	/BGR Note	2		
		Temperature sensor outp (2.4 V ≤ VDD ≤ 3.6 V, HS	ut voltage (high-speed main) mode)	V	TMP25 Note	2	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. Refer to 3.6.2 Temperature sensor, internal reference voltage output characteristics.

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		VBGR	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

3.6.2 Temperature sensor, internal reference voltage output characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V (HS (high-speed main) mode))

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

3.6.3 D/A converter characteristics

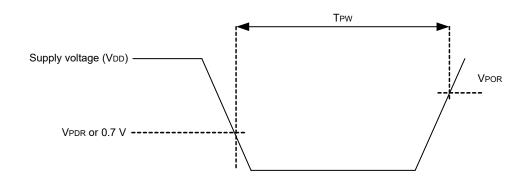
 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Со	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 MΩ	2.4 V ≤ VDD ≤ 3.6 V			±2.5	LSB
		Rload = 8 MΩ	2.4 V ≤ VDD ≤ 3.6 V			±2.5	LSB
Settling time	tset	Cload = 20 pF	2.7 V ≤ VDD ≤ 3.6 V			3	μs
			2.4 V ≤ V _{DD} < 2.7 V			6	μs

3.6.4 Comparator

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		VDD - 1.4	V
	Ivcmp			-0.3		VDD + 0.3	V
Output delay	td	VDD = 3.0 V Input slew rate > 50 mV/µs	High-speed comparator mode, standard mode			1.2	μs
			High-speed comparator mode, window mode			2.0	μs
			Low-speed comparator mode, standard mode		3	5.0	μs
High-electric-potential judgment voltage	VTW+	High-speed comparator mod	de, window mode		0.76 VDD		V
Low-electric-potential judgment voltage	VTW-	High-speed comparator mod	de, window mode		0.24 VDD		V
Operation stabilization wait time	tcmp			100			μs
Internal reference voltage ^{Note}	VBGR	2.4 V ≤ VDD ≤ 3.6 V, HS (hig	gh-speed main) mode	1.38	1.45	1.50	V


Note Not usable in sub-clock operation or STOP mode.

3.6.5 POR circuit characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time Note	1.44	1.50	1.56	V
Minimum pulse width	TPW		300			μs

Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.6 LVD circuit characteristics

(TA = -40 to +105°C, VPDR \leq VDD \leq 3.6 V \leq Vss = 0 V)

Pa	rameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse wid	dth	tLW		300			μs
Detection delay tim	ne					300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

VDD = 2.4 to 3.6 V at 1 MHz to 16 MHz

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol		Cor	nditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	VLVDD0	VPOC0,	VPOC0, VPOC1, VPOC2 = 0, 1, 1, falling reset voltage: 2.7 V			2.75	2.86	V
	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V

3.7 Power supply voltage rising slope characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD			54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

3.8 LCD Characteristics

3.8.1 Resistance division method

(1) Static display mode

(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 3.6 V, VSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		VDD	V

(2) 1/2 bias method, 1/4 bias method

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) 1/3 bias method

(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		VDD	V

3.8.2 Internal voltage boosting method

(1) 1/3 bias method

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 µF	2 V _{L1} - 0.1	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 ^{Note 1} = 0.47 µF		3 VL1 - 0.15	3 VL1	3 VL1	٧
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C4 ^{Note 1} =	0.47µF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between VL4 and GND
- $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	= 0.47 µF	2 V _{L1} - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 Note 1 =	= 0.47 µF	3 V _{L1} - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note 1 =	= 0.47 µF	4 VL1 - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	= 0.47µF	500			ms

- Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between VL1 and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL3 and GND
 - C5: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- **Note 2.** This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.8.3 Capacitor split method

(1) 1/3 bias method

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 µF Note 2		VDD		V
VL2 voltage	V _{L2}	C1 to C4 = 0.47 µF Note 2	2/3 V _{L4} - 0.07	2/3 VL4	2/3 V _{L4} + 0.07	V
V _L 1 voltage	V _L 1	C1 to C4 = 0.47 µF Note 2	1/3 VL4 - 0.08	1/3 VL4	1/3 VL4 + 0.08	V
Capacitor split wait time Note 1	tvwait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

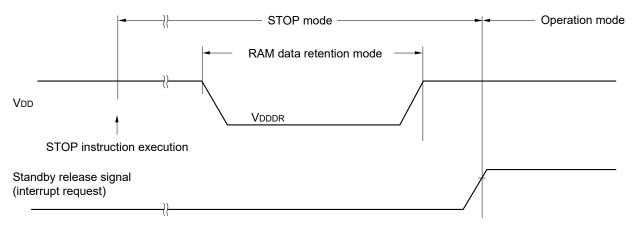
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND


 $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

3.9 RAM Data Retention Characteristics

$(TA = -40 \text{ to } +105^{\circ}C, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 Note		3.6	٧

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

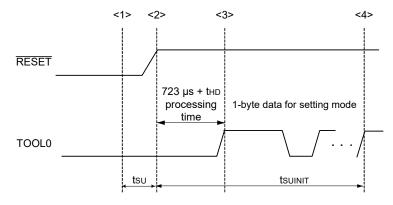
3.10 Flash Memory Programming Characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fCLK	2.4 V ≤ VDD ≤ 3.6 V	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°CNote 4	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°CNote 4	100,000			
		Retained for 20 years TA = 85°CNote 4	10,000			

- Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
- Note 2. When using flash memory programmer and Renesas Electronics self programming library
- **Note 3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- Note 4. This temperature is the average value at which data are retained.

3.11 Dedicated Flash Memory Programmer Communication (UART)


$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.12 Timing of Entry to Flash Memory Programming Modes

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
Time to hold the TOOL0 pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends.).

<3> The TOOL0 pin is set to the high level.

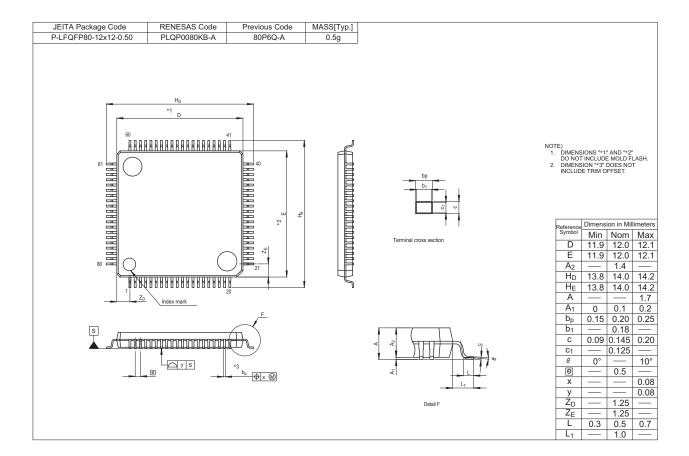
<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from

tsu: How long from when the TOOL0 pin is placed at the low level until a external reset ends

 $\hbox{thd:} \qquad \hbox{How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft)}$

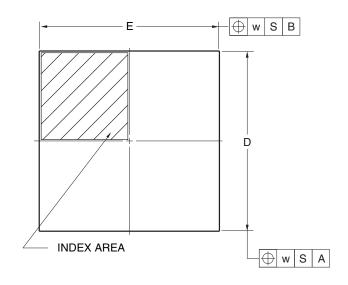
processing time)

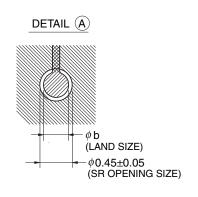


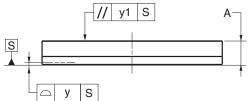
RL78/L1C 4. PACKAGE DRAWINGS

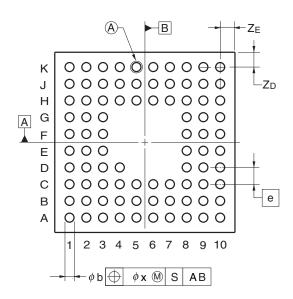
4. PACKAGE DRAWINGS

4.1 80-pin products

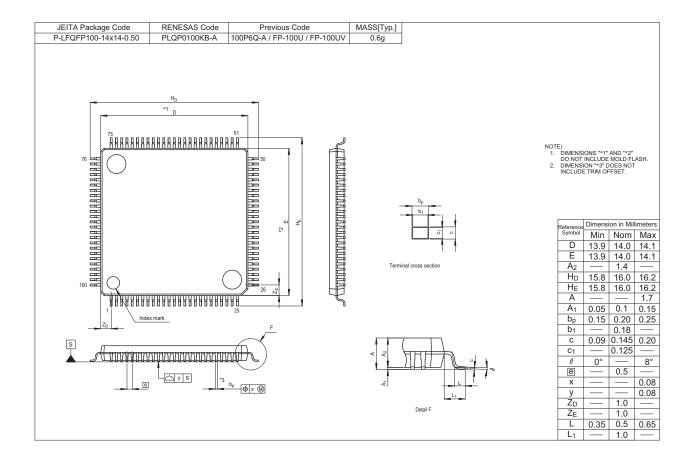

R5F110MEAFB, R5F110MFAFB, R5F110MGAFB, R5F110MHAFB, R5F110MJAFB R5F111MEAFB, R5F111MFAFB, R5F111MGAFB, R5F111MHAFB, R5F111MJAFB R5F110MEGFB, R5F110MFGFB, R5F110MGGFB, R5F110MHGFB, R5F111MFGFB, R5F111MGGFB, R5F111MHGFB, R5F111MJGFB




4.2 85-pin products


R5F110NEALA, R5F110NFALA, R5F110NGALA, R5F110NHALA, R5F110NJALA R5F111NEALA, R5F111NFALA, R5F111NGALA, R5F111NHALA, R5F111NJALA R5F110NEGLA, R5F110NFGLA, R5F110NGGLA, R5F110NHGLA, R5F111NGGLA, R5F111NHGLA, R5F111NJGLA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-VFLGA85-7x7-0.65	PVLG0085JA-A	P85FC-65-BN4	0.1


Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	6.90	7.00	7.10		
Е	6.90	7.00	7.10		
Α			1.00		
е		0.65			
b	0.30	0.35	0.40		
х	_		0.08		
у		_	0.10		
У1			0.20		
Z_D		0.575			
Z _E		0.575			
W			0.20		

©2013 Renesas Electronics Corporation. All rights reserved.

RL78/L1C 4. PACKAGE DRAWINGS

4.3 100-pin products

R5F110PEAFB, R5F110PFAFB, R5F110PGAFB, R5F110PHAFB, R5F110PJAFB R5F111PEAFB, R5F111PFAFB, R5F111PGAFB, R5F111PHAFB, R5F111PJAFB R5F110PEGFB, R5F110PFGFB, R5F110PGGFB, R5F110PHGFB, R5F111PJGFB R5F111PEGFB, R5F111PGGFB, R5F111PGFB

RF\	/ISI	ON	HIST	TORY
17-	\mathbf{v}	\mathbf{v}	1110	

RL78/L1C Datasheet

Davi	Dete		Description
Rev.	Date	Page	Summary
0.01	Oct 15, 2012	_	First Edition issued
1.00	Nov 18, 2013	1, 2	Modification of 1.1 Features
		3, 4	Modification of 1.2 Ordering Information
		5 to 8	Modification of package type in 1.3 Pin Configuration (Top View)
		14 to 17	Modification of vectored interrupt sources in 1.6 Outline of Functions
		14 to 17	Modification of operating ambient temperature in 1.6 Outline of Functions
		19 to 21	Modification of description in tables in 2.1 Absolute Maximum Ratings
		22, 23	Modification of description in 2.2 Oscillator Characteristics
		25	Modification of low-level output current in 2.3.1 Pin characteristics
		26	Modification of error of high-level input voltage conditions in 2.3.1 Pin characteristics
		26	Modification of error of low-level input voltage conditions in 2.3.1 Pin characteristics
		27	Modification of low-level output voltage in 2.3.1 Pin characteristics
		28	Modification of error of internal pull-up resistor conditions in 2.3.1 Pin characteristics
		29 to 34	Modification of 2.3.2 Supply current characteristics
		35, 36	Modification of 2.4 AC Characteristics
		37, 38	Addition of minimum instruction execution time during main system clock operation
		41 to 63	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit
		64 to 66	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA
		67, 68	Modification of conditions in 2.5.3 USB
		69	Addition of (3) BC option standard in 2.5.3 USB
		70 to 75	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics
		76	Addition of characteristic in 2.6.4 Comparator
		76	Deletion of detection delay in 2.6.5 POR circuit characteristics
		78	Modification of 2.7 Power supply voltage rising slope characteristics
		79 to 82	Modification of 2.8 LCD Characteristics
		83	Modification of 2.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics
		83	Modification of 2.10 Flash Memory Programming Characteristics
		84	Addition of 2.12 Timing Specs for Switching Modes
		85 to 144	Addition of 3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)
2.00	Feb 21, 2014	All	Addition of 85-pin product information
		All	Modification from 80-pin to 80/85-pin
		All	Modification from $x = M$, P to $x = M$, N, P
		All	Modification from high-accuracy real-time clock to real-time clock 2
		All	Modification from RTC to RTC2
		1	Modification of 1.1 Features
		3	Modification of 1.2 Ordering Information

RF\	/ISI	ON	HIST	TORY
11	, 101	\mathbf{v}	1110	$I \cup I \setminus I$

RL78/L1C Datasheet

D	Dete		Description
Rev.	Date	Page	Summary
2.00	Feb 21, 2014	4	Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/L1C
		69	Modification of (1) Electrical specifications in 2.5.3 USB
		82	Modification of note 1 in (1) 1/3 bias method in 2.8.2 Internal voltage boosting method
		130	Modification of (1) Electrical specifications in 3.5.3 USB
		142	Modification of note 1 in (1) 1/3 bias method in 3.8.2 Internal voltage boosting method
2.10	Aug 12, 2016	5	Addition of product name (RL78/L1C) and description (Top View) in 1.3.1 80-pin products (with USB)
		6	Addition of product name (RL78/L1C) and description (Top View) in 1.3.2 80-pin products (without USB)
		9	Addition of product name (RL78/L1C) and description (Top View) in 1.3.5 100-pin products (with USB)
		10	Addition of product name (RL78/L1C) and description (Top View) in 1.3.6 100-pin products (without USB)
		17, 19	Modification of 1.6 Outline of Functions
		23	Modification of description in Absolute Maximum Ratings (TA = 25°C)
		26, 27	Modification of description in 2.3.1 Pin characteristics
		39, 40	Modification of the graph for Minimum Instruction Execution Time during Main System Clock Operation
		72	Modification of conditions in (1) of 2.6.1 A/D converter characteristics
		85	Modification of the title and note in 2.9 RAM Data Retention Characteristics
		85	Modification of conditions in 2.10 Flash Memory Programming Characteristics
		87	Modification of description in 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS T _A = -40 to +105 °C)
		88, 90	Modification of description in Absolute Maximum Ratings (TA = 25°C)
		93, 94, 96	Modification of description in 3.3.1 Pin characteristics
		106	Modification of the graph for Minimum Instruction Execution Time during Main System Clock Operation
		144	Modification of the title and note in 3.9 RAM Data Retention Characteristics
		145	Modification of conditions and addition of note 4 in 3.10 Flash Memory Programming Characteristics
2.20	Dec 28, 2017	13	Modification of figure in 1.5.2 80/85-pin products (without USB)
		17, 19	Modification of tables in 1.6 Outline of Functions
		26, 27	Modification of table and note 3 in 2.3.1 Pin characteristics
		85	Modification of figure in 2.12 Timing of Entry to Flash Memory Programming Modes
		89	Modification of table in 3.1 Absolute Maximum Ratings
		92, 93	Modification of table and note 3 in 3.3.1 Pin characteristics
		144	Modification of figure in 3.12 Timing of Entry to Flash Memory Programming Modes

REVISION HISTORY RL78/L1C Datasheet

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

- 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the
- 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.3.0-1 November 2016)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

and Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Unit 1601-1611, 16/F., Tower 2, Grand Cent Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 p Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

```
R5F111NHALA#U0 R5F110PFAFB#30 R5F110PHAFB#30 R5F111NEALA#U0 R5F110NFALA#U0
R5F111NFALA#U0 R5F110NEALA#U0 R5F111PHAFB#30 R5F110NHALA#U0 R5F110MJGFB#30
R5F110MFAFB#30 R5F110PJAFB#30 R5F110PEAFB#30 R5F110PGAFB#30 R5F110NGALA#U0
R5F111PFAFB#30 R5F110MEGFB#30 R5F110MGAFB#30 R5F111MFAFB#30 R5F111NGALA#U0
R5F110MFGFB#30 R5F111MHAFB#30 R5F110NJALA#U0 R5F110MEAFB#30 R5F111PGAFB#30
R5F110MHAFB#30 R5F111NJGLA#U0 R5F111MEAFB#30 R5F110MHGFB#30 R5F110MJAFB#30
R5F111PEAFB#30 R5F111MJAFB#30 R5F111PJAFB#30 R5F111MGAFB#30 R5F110MGGFB#30
R5F111NJALA#U0 R5F111NJALA#W0 R5F111MJGFB#30 R5F110MEAFB#50 R5F110MEGFB#50
R5F110MFAFB#50 R5F110MFGFB#50 R5F110MGAFB#50 R5F111PHGFB#50
R5F111PJAFB#50 R5F111PJGFB#30 R5F111PJGFB#50 R5F111PFGFB#50 R5F111PGAFB#50
R5F111PGGFB#30 R5F111PGGFB#50 R5F111PHAFB#50 R5F111PHGFB#30 R5F111NJGLA#W0
R5F111PEAFB#50 R5F111PEGFB#30 R5F111PEGFB#50 R5F111PFAFB#50 R5F111PFGFB#30
R5F111NGALA#W0 R5F111NGGLA#U0 R5F111NGGLA#W0 R5F111NHALA#W0 R5F111NHGLA#U0
R5F111NHGLA#W0 R5F111NEALA#W0 R5F111NEGLA#U0 R5F111NEGLA#W0 R5F111NFALA#W0
R5F111NFGLA#U0 R5F111NFGLA#W0 R5F111MGGFB#50 R5F111MHAFB#50 R5F111MHGFB#30
R5F111MHGFB#50 R5F111MJAFB#50 R5F111MJGFB#50 R5F111MEGFB#50 R5F111MFAFB#50
R5F111MFGFB#30 R5F111MFGFB#50 R5F111MGAFB#50 R5F111MGGFB#30 R5F110PHGFB#50
R5F110PJAFB#50 R5F110PJGFB#30 R5F110PJGFB#50 R5F111MEAFB#50 R5F111MEGFB#30
R5F110PFGFB#50 R5F110PGAFB#50 R5F110PGGFB#30 R5F110PGGFB#50 R5F110PHAFB#50
R5F110PHGFB#30 R5F110NJGLA#W0 R5F110PEAFB#50 R5F110PEGFB#30 R5F110PEGFB#50
```