

RL78/L13

RENESAS MCU

R01DS0168EJ0221 Rev.2.21 Sep 9, 2022

Integrated LCD controller/driver, True Low Power Platform (as low as 71 μ A/MHz, and 0.61 μ A for RTC + LVD), 1.6 V to 5.5 V operation, 16 to 128 Kbyte Flash, 31 DMIPS at 24 MHz, for All LCD Based Applications

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- V_{DD} = single power supply voltage of 1.6 to 5.5 V which can operate a 1.8 V device at a low voltage
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.04167 μs: @ 24 MHz operation with highspeed on-chip oscillator) to ultra-low speed (30.5 μs: @ 32.768 kHz operation with subsystem clock)
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 1 to 8 KB

Code flash memory

- Code flash memory: 16 to 128 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 4 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD = 1.8 to 5.5 V

High-speed on-chip oscillator

- Select from 48 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: $\pm 1.0 \%$ (V_{DD} = 1.8 to 5.5 V, T_A = -20 to +85°C)

Operating ambient temperature

- T_A = -40 to +85°C (A: Consumer applications)
- \bullet T_A = -40 to +105°C (G: Industrial applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 14 levels)

DMA (Direct Memory Access) controller

- 4 channels
- Number of clocks during transfer between 8/16-bit SFR and internal RAM: 2 clocks

Multiplier and divider/multiply-accumulator

- 16 bits × 16 bits = 32 bits (Unsigned or signed)
- 32 bits ÷ 32 bits = 32 bits (Unsigned)
- 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)

Serial interface

- CSI: 2 channels
- UART/UART (LIN-bus supported): 3, 4 channels/1 channel
- I²C/Simplified I²C communication: 1 channel/2 channels

Timer

- 16-bit timer: 8 channels (with remote control output function)
- 16-bit timer KB20 (IH): 1 channel

(IH-only PWM output function)

- 12-bit interval timer: 1 channel
- Real-time clock 2: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated lowspeed on- chip oscillator)

A/D converter

- 8/10-bit resolution A/D converter (V_{DD} = 1.6 to 5.5 V)
- Analog input: 9 to 12 channels
- \bullet Internal reference voltage (1.45 V) and temperature sensor $^{\text{Note 1}}$

Comparator

- 2 channels
- Operation mode: Comparator high-speed mode, comparator low-speed mode, or window mode
- External reference voltage and internal reference voltage are selectable

LCD controller/driver

- Segment signal output: 36 (32)^{Note 2} to 51 (47)^{Note 2}
- Common signal output: 4 (8)^{Note 2}
- Internal voltage boosting method, capacitor split method, and external resistance division method are switchable

I/O port

- I/O port: 49 to 65 (N-ch open drain I/O [withstand voltage of 6 V]: 2, N-ch open drain I/O [VDD withstand voltage]: 12 to 18)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3 V device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

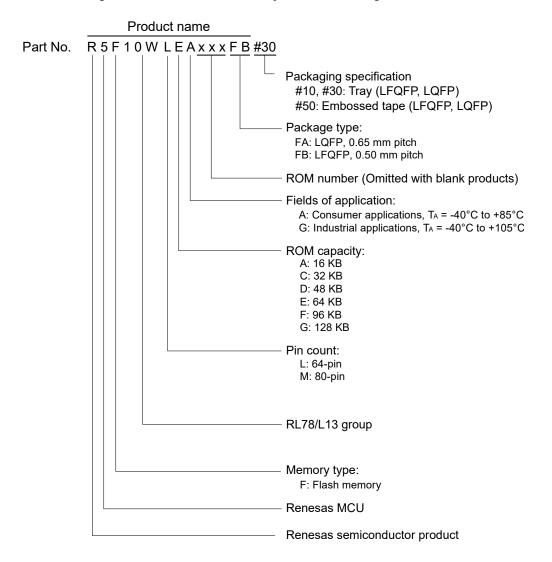
• On-chip BCD (binary-coded decimal) correction circuit

Notes 1. Can be selected only in HS (high-speed main) mode

2. The values in parentheses are the number of signal outputs when 8 com is used.

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

* There are differences in specifications between every product.
Please refer to specification for details.

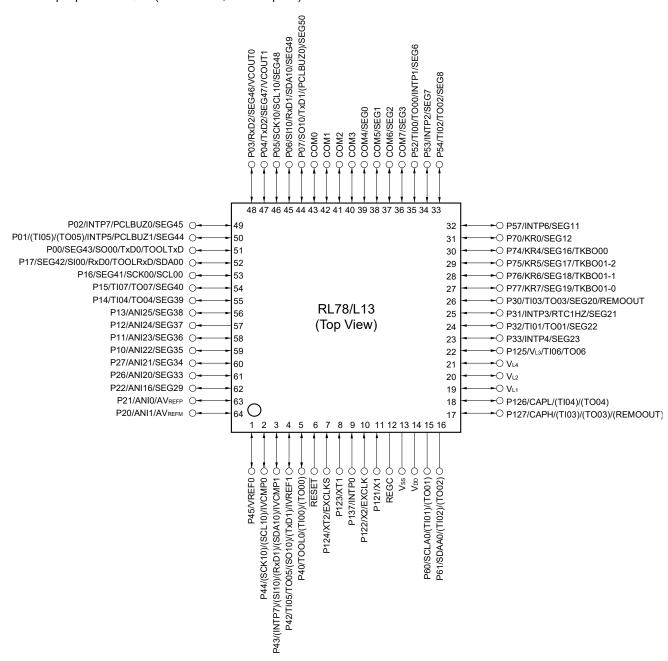

o ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78/L13		
			64 pins	80 pins	
128 KB	4 KB	8 KB ^{Note}	R5F10WLG	R5F10WMG	
96 KB	4 KB	6 KB	R5F10WLF	R5F10WMF	
64 KB	4 KB	4 KB	R5F10WLE	R5F10WME	
48 KB	4 KB	2 KB	R5F10WLD	R5F10WMD	
32 KB	4 KB	1.5 KB	R5F10WLC	R5F10WMC	
16 KB	4 KB	1 KB	R5F10WLA	R5F10WMA	

Note This is about 7 KB when the self-programming function and data flash function are used. (For details, see **CHAPTER 3** in the RL78/L13 User's Manual.)

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/L13

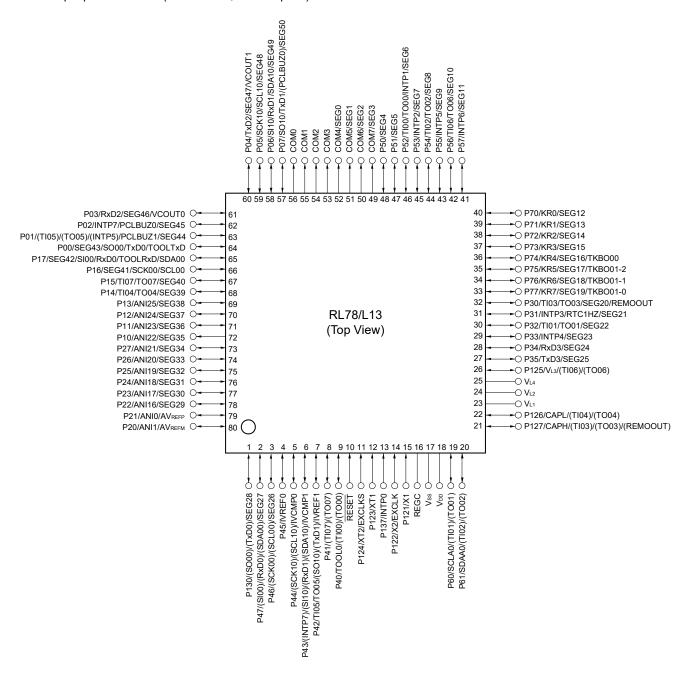

	Pin Count Package Data Flash		Fields of	Ordering Part	RENESAS CODE		
				Application ^{Note}	part number	Packaging specification	
<r></r>	64 pins	64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)	Mounted	А	R5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA, R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA	#10, #30, #50	PLQP0064JA-A PLQP0064JB-A
<r></r>		64-pin plastic LFQFP (10 × 10	Mounted	А	R5F10WLAAFB, R5F10WLCAFB,	#10, #50	PLQP0064KB-C PLQP0064KL-A
<r></r>		mm, 0.5 mm pitch)			R5F10WLDAFB, R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB	#30	PLQP0064KB-C
<r></r>				G	R5F10WLAGFB, R5F10WLCGFB,	#10, #50	PLQP0064KB-C PLQP0064KL-A
<r></r>					R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB	#30	PLQP0064KB-C
<r></r>	80 pins	80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)	Mounted	А	R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA, R5F10WMEAFA, R5F10WMFAFA, R5F10WMGAFA	#10, #30, #50	PLQP0080JB-E
<r></r>		80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	Mounted	A	R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB, R5F10WMEAFB.	#10, #50	PLQP0080KB-B PLQP0080KJ-A
<r></r>					R5F10WMFAFB, R5F10WMGAFB,	#30	PLQP0080KB-B
<r></r>				G	R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB,	#10, #50	PLQP0080KB-B PLQP0080KJ-A
<r></r>					R5F10WMEGFB, R5F10WMFGFB, R5F10WMGGFB	#30	PLQP0080KB-B

Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/L13.

1.3 Pin Configuration (Top View)

1.3.1 64-pin products

- 64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

1.3.2 80-pin products

- 80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

1.4 Pin Identification

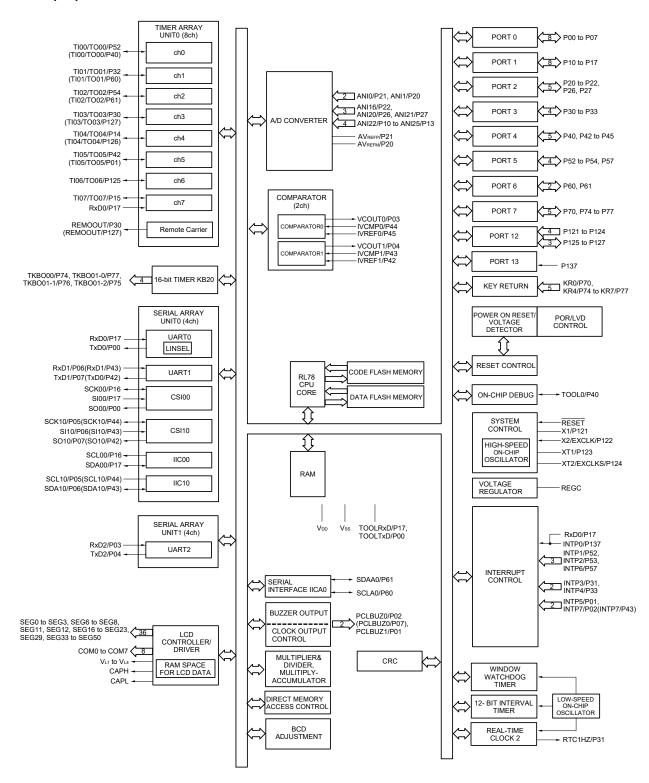
P121 to P127:

P130, P137:

Port 12

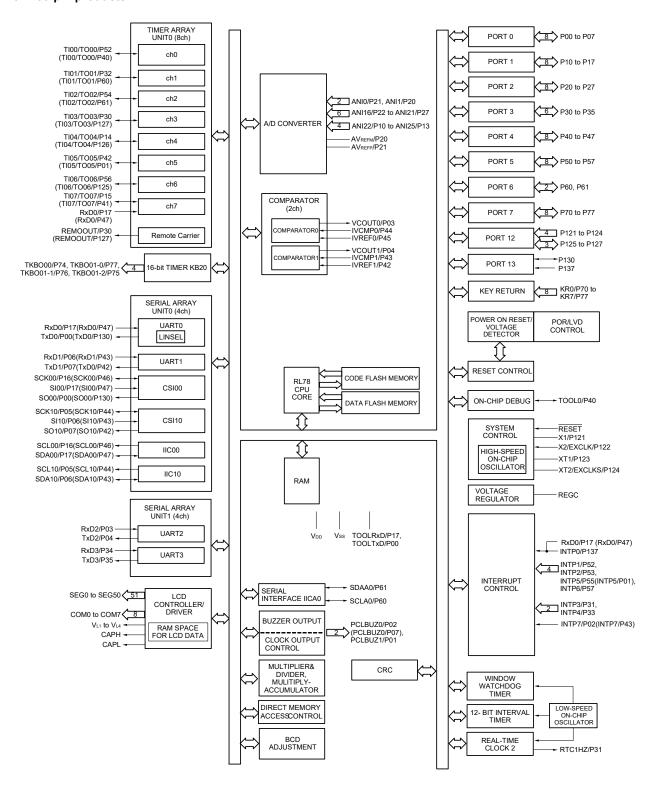
Port 13

ANIO, ANI1, PCLBUZ0, PCLBUZ1: Programmable Clock Output/ ANI16 to ANI25: **Analog Input Buzzer Output** AVREFM: Analog Reference Voltage REGC: Regulator Capacitance Minus REMOOUT: Remote control Output Analog Reference Voltage AVREEP: RESET: Reset Plus RTC1HZ: Real-time Clock 2 Correction Clock CAPH, CAPL: (1 Hz) Output Capacitor for LCD COM0 to COM7: LCD Common Output RxD0 to RxD3: Receive Data EXCLK: **External Clock Input** SCK00, SCK10, SCLA0: Serial Clock Input/Output SCL00, SCL10: Serial Clock Output (Main System Clock) **EXCLKS**: **External Clock Input** SDAA0, SDA00, SDA10: Serial Data Input/Output (Subsystem Clock) SEG0 to SEG50: LCD Segment Output INTP0 to INTP7: **External Interrupt Input** SI00, SI10: Serial Data Input IVCMP0, IVCMP1: Comparator Input SO00, SO10: Serial Data Output IVREF0, IVREF1: Comparator Reference Input TI00 to TI07: Timer Input KR0 to KR7: Key Return TO00 to TO07. P00 to P07: Port 0 TKBO00, TKBO01-0, P10 to P17: Port 1 TKBO01-1, TKBO01-2: Timer Output P20 to P27: Port 2 TOOL0: Data Input/Output for Tool P30 to P35: Port 3 TOOLRxD, TOOLTxD: Data Input/Output for External Device P40 to P47: Port 4 TxD0 to TxD3: Transmit Data P50 to P57: VCOUT0, VCOUT1: Port 5 Comparator Output P60, P61: Port 6 V_{DD}: Power Supply P70 to P77: Port 7 VL1 to VL4: LCD Power Supply


Vss:

X1, X2: Crystal Oscillator (Main System Clock)
XT1, XT2: Crystal Oscillator (Subsystem Clock)

Ground


1.5 Block Diagram

1.5.1 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/L13 User's Manual.

1.5.2 80-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)** in the RL78/L13 User's Manual.

1.6 Outline of Functions

(1/2)

CMOS input 5 5				(' '			
Data flash memory (KB) 16 to 128 16 to 128 Data flash memory (KB) 4 4 4 RAM (KB) 1 to 8		Item	64-pin	80-pin			
Data flash memory (KB) 4 4 RAM (KB) 1 to 8 ^{Note 1} 1 to 8 ^{Note 1} Address space 1 MB 1 to 8 ^{Note 1} 1 to 8 ^{Note 1} Main system clock clock High-speed system clock X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 18 MHz (Vos = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 18 MHz (Vos = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 18 MHz (Vos = 1.6 to 5.5 V) High-speed on-chip oscillator HS (High-speed main) mode: 1 to 14 MHz (Vos = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 16 MHz (Vos = 2.4 to 5.5 V), LS (Low-voltage main) mode: 1 to 16 MHz (Vos = 1.6 to 5.5 V) Clock for 16-bit timer KB20 48 MHz (TYP.) Vos = 2.7 to 5.5 V Subsystem clock X11 (crystal) oscillation, external subsystem clock input (EXCLKS) 3.2.768 kHz (TYP.) Vos = 2.7 to 5.5 V Subsystem clock X11 (crystal) oscillation, external subsystem clock input (EXCLKS) 3.2.768 kHz (TYP.) Vos = 1.6 to 5.5 V Low-speed on-chip oscillator 15 kHz (TYP.) Vos = 1.6 to 5.5 V Low-speed on-chip oscillator 15 kHz (TYP.) Vos = 1.6 to 5.5 V Low-speed on-chip oscillator 15 kHz (TYP.) Vos = 1.6 to 5.5 V Low-speed on-chip oscillator 15 kHz (TYP.) Vos = 1.6 to 5.5 V Instruction set • Child Fall State (State Color State Color State Color State Color State C			R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)			
RAM (KB)	Code flash m	emory (KB)	16 to 128	16 to 128			
Address space	Data flash me	emory (KB)	4	4			
Main system High-speed system clock X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (Voo = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (Voo = 2.8 to 5.5 V), LS (Low-speed main) mode: 1 to 16 MHz (Voo = 1.8 to 5.5 V), LS (Low-speed main) mode: 1 to 4 MHz (Voo = 1.8 to 5.5 V), LS (Low-speed main) mode: 1 to 4 MHz (Voo = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 16 MHz (Voo = 2.4 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (Voo = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 16 MHz (Voo = 1.8 to 5.5 V), LS (Low-speed main) mode: 1 to 16 MHz (Voo = 1.8 to 5.5 V), LS (Low-speed main) mode: 1 to 4 MHz (Voo = 1.8 to 5.5 V), LS (Low-speed main) mode:	RAM (KB)		1 to 8 ^{Note 1}	1 to 8 ^{Note 1}			
HS (High-speed main) mode: 1 to 20 MHz (Voo = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (Voo = 2.7 to 5.5 V), LS (Low-speed main) mode: 1 to 16 MHz (Voo = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (Voo = 2.4 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (Voo = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (Voo = 2.7 to 5.5 V), LS (Low-speed main) mode: 1 to 16 MHz (Voo = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 16 MHz (Voo = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 16 MHz (Voo = 2.4 to 5.5 V), LS (Low-voltage main) mode: 1 to 16 MHz (Voo = 1.8 to 5.5 V), LS (Low-voltage main) mode: 1 to 16 MHz (Voo = 1.8 to 5.5 V), LS (Low-voltage main) mode: 1 to 4 MHz (Voo = 1.8 to 5.5 V), LS (Low-voltage main) mode: 1 to 16 MHz (Voo = 1.8 to 5.5 V), LS (Low-speed on-chip oscillator) at 2.7 to 5.5 V (Voo = 2.7 to 5.5 V) (Voo = 2.7 to 5.5 V), LS (Low-speed on-chip oscillator) at 2.7 to 2.	Address spac	ce	1 MB				
LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V) Clock for 16-bit timer KB20	•	High-speed on-chip	HS (High-speed main) mode: 1 to 20 MHz (V _{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V) HS (High-speed main) mode: 1 to 24 MHz (V _{DD} = 2.7 to 5.5 V),				
All MHz (TYP.): Vop = 2.7 to 5.5 V							
XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz (TYP.): Vbo = 1.6 to 5.5 V	Clock for 16-h	l nit timer KB20	· · · · · · · · · · · · · · · · · · ·	1.0 to 0.0 v)			
General-purpose register (8-bit register × 8) × 4 banks			XT1 (crystal) oscillation, external subsystem clo	ock input (EXCLKS)			
Minimum instruction execution time 0.04167 µs (High-speed on-chip oscillator: fin= 24 MHz operation)	Low-speed or	n-chip oscillator	15 kHz (TYP.)				
0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation) 30.5 μs (Subsystem clock: f _{SUB} = 32.768 kHz operation) 30.5 μs (Subsystem clock: f _{SUB} = 32.768 kHz operation) 30.5 μs (Subsystem clock: f _{SUB} = 32.768 kHz operation) 30.5 μs (Subsystem clock: f _{SUB} = 32.768 kHz operation) 30.5 μs (Subsystem clock: f _{SUB} = 32.768 kHz operation) 30.5 μs (Subsystem clock: f _{SUB} = 32.768 kHz) 30.5 μs (High-speed system clock: f _{SUB} = 32.768 kHz) 30.5 μs (High-speed system clock: f _{SUB} = 32.768 kHz) 30.5 μs (High-speed system clock: f _{SUB} = 32.768 kHz) 30.5 μs (High-speed system clock: f _{SUB} = 32.768 kHz) 30.5 μs (High-speed system clock: f _{SUB} = 32.768 kHz) 30.5 μs (High-speed system clock: f _{SUB} = 32.768 kHz) 30.5 μs (High-speed system clock: f _{SUB} = 32.768 kHz) 30.5 μs (High-speed system clock: f _{SUB} = 32.768 kHz) 30.5 μs (Subsystem clock: f _{SUB} = 32.768 kHz) 30.5	General-purp	ose register	(8-bit register × 8) × 4 banks				
30.5 µs (Subsystem clock: fsus = 32.768 kHz operation)	Minimum inst	ruction execution time	0.04167 μs (High-speed on-chip oscillator: f _{IH} = 24 MHz operation)				
Data transfer (8/16 bits)			0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)				
Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation) VO port			30.5 µs (Subsystem clock: fsuв = 32.768 kHz o	peration)			
CMOS I/O CMOS input CMOS output N-ch O.D I/O [Vob withstand voltage]: 12) CMOS output N-ch O.D I/O (withstand voltage: 6 V) Timer 16-bit timer TAU 16-bit timer KB20 Watchdog timer 12-bit interval timer (IT) Real-time clock 2 RTC2 output 1	Instruction se	t	 Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) 				
(N-ch O.D. I/O [Vbb withstand voltage]: 12) 5 CMOS output — — — N-ch O.D I/O (withstand voltage: 6 V) 2 2 2 Timer 16-bit timer TAU 8 channels 1 channel Watchdog timer 1 channel 1 channel 12-bit interval timer (IT) 1 channel 1 channel RTC2 output 1 • 1 Hz (subsystem clock: fsuB = 32.768 kHz) Timer output 8 channels (PWM outputs: 7 Note 2) (TAU used) 1 channel (timer KB20 used)	I/O port	Total	49	65			
CMOS output		CMOS I/O		58 (N-ch O.D. I/O [V _{DD} withstand voltage]: 18			
N-ch O.D I/O (withstand voltage: 6 V) 2 2		CMOS input	5	5			
(withstand voltage: 6 V) Timer 16-bit timer TAU 8 channels 16-bit timer KB20 1 channel Watchdog timer 1 channel 12-bit interval timer (IT) 1 channel Real-time clock 2 1 channel RTC2 output 1 • 1 Hz (subsystem clock: fsub = 32.768 kHz) Timer output 8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)		CMOS output	_	_			
16-bit timer KB20 1 channel Watchdog timer 1 channel 12-bit interval timer (IT) Real-time clock 2 1 channel RTC2 output 1 ■ 1 Hz (subsystem clock: fsuB = 32.768 kHz) Timer output 8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)			2	2			
Watchdog timer 12-bit interval timer (IT) Real-time clock 2 RTC2 output 1 ■ 1 Hz (subsystem clock: fsuB = 32.768 kHz) Timer output 8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)	Timer	16-bit timer TAU	8 cha	nnels			
12-bit interval timer (IT) Real-time clock 2 1 channel RTC2 output 1 • 1 Hz (subsystem clock: fsuB = 32.768 kHz) Timer output 8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)		16-bit timer KB20	1 cha	nnel			
Real-time clock 2 RTC2 output 1 1 thannel 1 Timer output 8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)		Watchdog timer	1 channel				
RTC2 output 1 ■ 1 Hz (subsystem clock: fsuB = 32.768 kHz) Timer output 8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)		12-bit interval timer (IT)	1 channel				
■ 1 Hz (subsystem clock: fsuB = 32.768 kHz) Timer output 8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)		Real-time clock 2					
1 channel (timer KB20 used)		RTC2 output	1				
D. A. A. A. A. (TAIL II)		Timer output					
function 1 (TAU used)		Remote control output function	1 (TAU used)				

In the case of the 8 KB, this is about 7 KB when the self-programming function and data flash function are Notes 1.

2. The number of outputs varies depending on the setting of the channels in use and the number of master channels (see 6.9.3 Operation as multiple PWM output function in the RL78/L13 User's Manual).

(2/2)

Item		64-pin	80-pin			
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)			
Clock output/buzzer output controller		2				
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.9 (Main system clock: fmain = 20 MHz operatio 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09 (Subsystem clock: fsub = 32.768 kHz operation) 	n) 96 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz			
8/10-bit reso	lution A/D converter	9 channels	12 channels			
Comparator		2 channels				
Serial interface		 [64-pin] CSI: 1 channel/UART (UART supporting LIN CSI: 1 channel/UART: 1 channel/simplified UART: 1 channel [80-pin] CSI: 1 channel/UART (UART supporting LIN 	l ² C: 1 channel N-bus): 1 channel/simplified l ² C: 1 channel			
		 CSI: 1 channel/UART: 1 channel/simplified UART: 2 channels 	CSI: 1 channel/UART: 1 channel/simplified I ² C: 1 channel UART: 2 channels			
	I ² C bus	1 channel				
LCD controll	er/driver	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.				
S	egment signal output	36 (32) ^{Note 1}	51 (47) ^{Note 1}			
С	ommon signal output	4 (8	3) ^{Note 1}			
Multiplier an	d divider/multiply-	• 16 bits × 16 bits = 32 bits (Unsigned or signed)				
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)				
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)				
DMA control	ler	4 channels				
Vectored	Internal	32	35			
interrupt sou	External	11	11			
Key interrup	t	5	8			
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Internal reset by RAM parity error Internal reset by illegal-memory access 	Note 2			
Power-on-re	set circuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset:1.50 V (TYP.)				
Voltage dete	ector	Rising edge: 1.67 V to 4.06 V (14 steps) Falling edge: 1.63 V to 3.98 V (14 steps)				
On-chip deb	ug function	Provided				
Power suppl	y voltage	V _{DD} = 1.6 to 5.5 V (TA = -40 to +85°C)				
		V _{DD} = 2.4 to 5.5 V (TA = -40 to +105°C)				
Operating ar	mbient temperature	Consumer applications: $T_A = -40$ to $+85^{\circ}$ C Industrial applications: $T_A = -40$ to $+105^{\circ}$ C				

- **Notes 1.** The values in parentheses are the number of signal outputs when 8 com is used.
 - This reset occurs when instruction code FFH is executed.
 This reset does not occur during emulation using an in-circuit emulator or an on-chip debugging emulator.

2. ELECTRICAL SPECIFICATIONS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Target products A: Consumer applications; $T_A = -40 \text{ to } +85^{\circ}\text{C}$

R5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA, R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA, R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB, R5F10WLEAFB, R5F10WLFAFB, R5F10WMDAFA, R5F10WMAAFA, R5F10WMCAFA, R5F10WMGAFA, R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA, R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB, R5F10WMEAFB, R5F10WMGAFB

G: Industrial applications; when using T_A = -40 to +105°C specification products at T_A = -40 to +85°C R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WMFGFB, R5F10WMGGFB

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	Vıı	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	V ₁₂	P60 and P61 (N-ch open-drain)	-0.3 to +6.5	٧
	Vı3	EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo ₁	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	V _{Al1}	ANI0, ANI1, ANI16 to ANI26	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF(+)} +0.3 ^{Notes 2, 3}	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)}$ + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AVREF (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (2/3)

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V _{L1} voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	V
	V _{L2}	V _{L2} voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	V _{L3}	V _{L3} voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	
	V _{L4}	V _{L4} voltage ^{Note 1}		-0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	-0.3 to V _{L4} +0.3 ^{Note 2}	V
	Vouт	COM0 to COM7	External resistance division method	-0.3 to V _{DD} +0.3 ^{Note 2}	V
		SEG0 to SEG50	Capacitor split method	-0.3 to V_{DD} +0.3 $^{Note 2}$	V
	output voltage		Internal voltage boosting method	-0.3 to V _{L4} +0.3 ^{Note 2}	V

- Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μF ± 30%) and connect a capacitor (0.47 μF ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

Absolute Maximum Ratings (3/3)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
		Total of all pins –170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	–170	mA
	І он2	Per pin	P20, P21	-0.5	mA
		Total of all pins		– 1	mA
Output current, low	lo _{L1}	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
	Total of all p	Total of all pins	P40 to P47, P130	70	mA
		170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
	lo _{L2}	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	In flash memory programming mode		
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1 and XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	crystal resonator	2.7 V ≤ V _{DD} ≤ 5.5 V	1.0		20.0	MHz
		2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
		1.8 V ≤ V _{DD} < 2.4 V	1.0		8.0	
		1.6 V ≤ V _{DD} < 1.8 V	1.0		4.0	
XT1 clock oscillation frequency (fxt) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/L13 User's Manual.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fıн			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	1.8 V ≤ V _{DD} ≤ 5.5 V	-1.0		+1.0	%
clock frequency accuracy			1.6 V ≤ V _{DD} < 1.8 V	-5.0		+5.0	%
		–40 to –20°C	1.8 V ≤ V _{DD} ≤ 5.5 V	-1.5		+1.5	%
			1.6 V ≤ V _{DD} < 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - **2.** This indicates the oscillator characteristics only. Refer to **AC Characteristics** for the instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	1.6 V ≤ V _{DD} ≤ 5.5 V			-10.0 ^{Note 2}	mA
		Total of P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	4.0 V ≤ V _{DD} ≤ 5.5 V			-90.0	mA
			2.7 V ≤ V _{DD} < 4.0 V			-15.0	mA
			1.8 V ≤ V _{DD} < 2.7 V			-7.0	mA
		(When duty = 70% ^{Note 3})	1.6 V ≤ V _{DD} < 1.8 V			-3.0	mA
		Per pin for P20 and P21	1.6 V ≤ V _{DD} ≤ 5.5 V			-0.1 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	1.6 V ≤ V _{DD} ≤ 5.5 V			-0.2	mA

- **Notes 1**. Value of the current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor ≤ 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and loh = -90.0 mA

Total output current of pins = $(-90.0 \times 0.7)/(80 \times 0.01) \approx -78.75$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _{L1}	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130				20.0 ^{Note 2}	mA
		Per pin for P60 and P61				15.0 ^{Note 2}	mA
		Total of P40 to P47, P130	4.0 V ≤ V _{DD} ≤ 5.5 V			70.0	mA
		(When duty = 70%Note 3)	2.7 V ≤ V _{DD} < 4.0 V			15.0	mA
		Total of P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P70 to P77, P125 to P127 (When duty = 70%Note 3)	1.8 V ≤ V _{DD} < 2.7 V			9.0	mA
			1.6 V ≤ V _{DD} < 1.8 V			4.5	mA
			4.0 V ≤ V _{DD} ≤ 5.5 V			90.0	mA
			2.7 V ≤ V _{DD} < 4.0 V			35.0	mA
			1.8 V ≤ V _{DD} < 2.7 V			20.0	mA
			1.6 V ≤ V _{DD} < 1.8 V			10.0	mA
		Total of all pins (When duty = 70%Note 3)				160.0	mA
	lo _{L2}	Per pin for P20 and P21				0.4 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	1.6 V ≤ V _{DD} ≤ 5.5 V			0.8	mA

- **Notes 1**. Value of the current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0.8V _{DD}		V _{DD}	>
			TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	2.2		V _{DD}	V
			TTL input buffer 3.3 V ≤ V _{DD} < 4.0 V	2.0		V _{DD}	V
			TTL input buffer 1.6 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	V _{IH3}	P20, P21		0.7V _{DD}		V _{DD}	V
	V _{IH4}	P60, P61		0.7V _{DD}		6.0	V
	V _{IH5}	P121 to P124, P137, EXCLK, EXCLKS	0.8V _{DD}		V _{DD}	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0		0.2V _{DD}	V
	V _{IL2}	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.8	V
			TTL input buffer 3.3 V ≤ V _{DD} < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ V _{DD} < 3.3 V	0		0.32	V
	V _{IL3}	P20, P21	0		0.3V _{DD}	V	
	V _{IL4}	P60, P61		0		0.3V _{DD}	V
	V _{IL5}	P121 to P124, P137, EXCLK, EXCLKS	S, RESET	0		0.2V _{DD}	V

Caution The maximum value of V_{IH} of pins P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 is V_{DD}, even in the N-ch open-drain mode.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{ОН1}	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -10.0 \text{ mA}$	V _{DD} – 1.5			V
		P70 to P77, P125 to P127, P130	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} - 0.7			٧
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	V _{DD} - 0.6			V
			1.8 V \leq V _{DD} \leq 5.5 V, Іон1 = -1.5 mA	V _{DD} - 0.5			V
			$1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.0 \text{ mA}$	V _{DD} - 0.5			V
	V _{OH2}	P20 and P21	$1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH2} = -100 \mu\text{A}$	V _{DD} - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 20 \text{ mA}$			1.3	V
		P70 to P77, P125 to P127, P130	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 8.5 \text{ mA}$			0.7	V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $\text{I}_{OL1} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 1.5 \text{ mA}$			0.4	V
			$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 0.6 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V},$ $I_{OL1} = 0.3 \text{ mA}$			0.4	V
	V _{OL2}	P20 and P21	$1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL2} = 400 \mu\text{A}$			0.4	V
	V _{OL3}	P60 and P61	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 15.0 \text{ mA}$			2.0	V
			$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 5.0 \text{ mA}$			0.4	V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 3.0 \text{ mA}$			0.4	V
			$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 2.0 \text{ mA}$			0.4	V
		$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V},$ $I_{OL3} = 1.0 \text{ mA}$			0.4	V	

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130, P137	$V_i = V_{DD}$				1	μА
	ILIH2	P20 and P21, RESET	VI = VDD				1	μΑ
	Ішнз	P121 to P124				1	μΑ	
				Resonator connected			10	μΑ
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130, P137	VI = Vss				-1	μА
	ILIL2	P20 and P21, RESET	Vı = Vss				-1	μΑ
	Ішз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port mode and when external clock is input			-1	μА
				Resonator connected			-10	μΑ
On-chip pull-up	Ru1	P00 to P07, P10 to P17,	Vı = Vss	2.4 V ≤ V _{DD} < 5.5 V	10	20	100	kΩ
resistance	P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130			1.6 V ≤ V _{DD} < 2.4 V	10	30	100	kΩ
	Ru2	P40 to P44	Vı = Vss		10	20	100	kΩ

2.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

DD1	Operating mode	HS (high- speed main) mode ^{Note 5}	$f_{\text{HOCO}} = 48 \text{ MHz}^{\text{Note 3}},$ $f_{\text{IH}} = 24 \text{ MHz}^{\text{Note 3}}$	Basic operation	V _{DD} = 5.0 V V _{DD} = 3.0 V		2.0		mA
	mode		$f_{IH} = 24 \text{ MHz}^{\text{Note 3}}$		V _{DD} = 3.0 V		2.0		-
		mode ^{Note 5}		Mamaaal			2.0		mA
				Normal	V _{DD} = 5.0 V		3.8	6.5	mA
				operation	V _{DD} = 3.0 V		3.8	6.5	mA
			f _{HOCO} = 24 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		1.7		mA
			f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA
				Normal	V _{DD} = 5.0 V		3.6	6.1	mA
				operation	V _{DD} = 3.0 V		3.6	6.1	mA
			f _{HOCO} = 16 MHz ^{Note 3} ,	Normal	V _{DD} = 5.0 V		2.7	4.7	mA
			f _{IH} = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	4.7	mA
		LS (low-	f _{HOCO} = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	2.1	mA
		speed main) mode ^{Note 5}	fin = 8 MHz ^{Note 3}	operation	V _{DD} = 2.0 V		1.2	2.1	mA
		LV (low-	f _{HOCO} = 4 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
		voltage main) mode ^{Note 5}	f _{IH} = 4 MHz ^{Note 3}	operation	V _{DD} = 2.0 V		1.2	1.8	mA
		HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	5.1	mA
		speed main)	$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		3.2	5.2	mA
		mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.9	5.1	mA
			$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		3.2	5.2	mA
			f _{MX} = 16 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal	Square wave input		2.5	4.4	mA
				operation	Resonator connection		2.7	4.5	mA
			$f_{MX} = 16 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	4.4	mA
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Resonator connection		2.7	4.5	mA
					Square wave input		1.9	3.0	mA
			V _{DD} = 5.0 V	operation	Resonator connection		1.9	3.0	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	3.0	mA
				operation	Resonator connection		1.9	3.0	mA
		LS (low-	,	Normal	Square wave input		1.1		mA
		mode ^{Note 5}			Resonator connection				mA
				Normal	Square wave input		1.1	2.0	mA
									mA
		,			· · · · · · · · · · · · · · · · · · ·				μA
		operation							μA
									μA
									μΑ
				Normal operation	· ·				μΑ
				'					μΑ
			$T_A = +70^{\circ}C$	operation	· · · · · · · · · · · · · · · · · · ·				μΑ
									μΑ
			$T_A = +85^{\circ}C$		· · · · · · · · · · · · · · · · · · ·				μA μA
			LS (low-speed main) mode ^{Note 5} LS (low-speed main) mode ^{Note 5} LS (low-speed main) mode ^{Note 5} Subsystem clock	Toda Toda	LV (low-voltage main) mode Note 5	Thode Note 5 LV (low-voltage main) mode Note 5 LV (low-speed main) mode Note 5 LS (low-speed main) mode Note 5 Normal Note 1 Normal Note 1 Normal Note 2 Normal Note 2 Normal Note 2 Normal Normal Note 2 Normal Nor	The process of the pr	The content of the	The content of the

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, onchip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz to 16 MHz}$

LS (low-speed main) mode: 1.8 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsua: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Un	
Supply	I _{DD2} Note 2	HALT	HS (high-speed	fHOCO = 48 MHzNote 4,	V _{DD} = 5.0 V		0.71	1.95	m/	
current ^{Note 1}		mode	main) mode	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	1.95		
				fHOCO = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.64	m <i>P</i>	
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.64		
				fHOCO = 16 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.43	1.11	m/	
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.11		
			LS (low-speed	fHOCO = 8 MHz Note 4,	V _{DD} = 3.0 V		280	770	μA	
			main) mode	f _{IH} = 8 MHz Note 4	V _{DD} = 2.0 V		280	770		
			LV (low-voltage	fHOCO = 4 MHz ^{Note 4} ,	V _{DD} = 3.0 V		430	700	700 µA	
			main) mode ^{Note 7}	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 2.0 V		430	700		
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.42	m	
			main) mode	V _{DD} = 5.0 V	Resonator connection		0.48	1.42		
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.42	m	
				$V_{DD} = 3.0 V$	Resonator connection		0.48	1.42		
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.26	0.86	m	
				V _{DD} = 5.0 V	Resonator connection		0.45	1.15		
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.25	0.86	m	
				V _{DD} = 3.0 V	Resonator connection		0.44	1.15		
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.63	m	
				$V_{DD} = 5.0 \text{ V}$	Resonator connection		0.28	0.71		
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.63	m	
				V _{DD} = 3.0 V	Resonator connection		0.28	0.71		
			LS (low-speed main) mode ^{Note 7}	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μ	
				$V_{DD} = 3.0 V$	Resonator connection		160	560		
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μ	
				$V_{DD} = 2.0 \text{ V}$	Resonator connection		160 560			
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μ	
			clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.51	0.80		
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.62	μ	
				T _A = +25°C	Resonator connection		0.57	0.80		
				fsuB = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μ	
				T _A = +50°C	Resonator connection		0.67	2.49		
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μ	
				T _A = +70°C	Resonator connection		0.91	4.22		
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μ	
				T _A = +85°C	Resonator connection		1.31	8.23		
	I _{DD3} Note 6	STOP	T _A = -40°C				0.18	0.52	μ	
		mode ^{Note 8}	T _A = +25°C				0.24	0.52		
			T _A = +50°C				0.33	2.21		
			T _A = +70°C				0.53	3.94		
			T _A = +85°C				0.93	7.95		

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into Vop, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, onchip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. However, not including the current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - 6. Not including the current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ VDD ≤ 5.5 V@1 MHz to 24 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$

LS (low-speed main) mode: 1.8 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 4 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditio	าร		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	_{FIL} Note 1						0.20		μА
RTC2 operating current	_{RTC} Notes 1, 2, 3	fsuв = 32.768 kHz					0.02		μΑ
12-bit interval timer operating current	I _{TMKA} Notes 1, 2,						0.04		μΑ
Watchdog timer operating current	_{WDT} Notes 1, 2, 5	f∟ = 15 kHz					0.22		μΑ
A/D converter operating current	ADC Notes 1, 6	When conversion at maximum speed	Normal mode	$_{DD} = 5.0 \text{ V}$ = $V_{DD} = 3.0 \text{ V}$		1.3 0.5	1.7 0.7	mA mA	
A/D converter reference voltage current	ADREFNote 1		3		75.0		μА		
Temperature sensor operating current	TMPS Note 1						75.0		μА
LVD operating current	_{LVD} Notes 1, 7						0.08		μΑ
Comparator	ICMPNotes 1, 11	V _{DD} = 5.0 V,	Window mode	Э			12.5		μΑ
operating current		Regulator output	Comparator h	igh-speed m	ode		6.5		μΑ
		voltage = 2.1 V	Comparator lo	ow-speed mo	de		1.7		μΑ
		$V_{DD} = 5.0 V,$	Window mode				8.0		μΑ
		Regulator output	Comparator h	igh-speed m	ode		4.0		μΑ
		voltage = 1.8 V	Comparator lo	ow-speed mo	de		1.3		μΑ
Self- programming operating current	IFSPNotes 1, 9						2.00	12.20	mA
BGO operating current	BGO ^{Notes 1, 8}						2.00	12.20	mA
SNOOZE	ISNOZ ^{Note 1}	ADC operation	While the mod	de is shifting ^N	lote 10		0.50	0.60	mA
operating current			During A/D co	•	J		1.20	1.44	mA
		CSI/UART operation	1				0.70	0.84	mA
LCD operating current	_{LCD1} Notes 1, 12,	External resistance division method	fLCD = fsuB LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 5.0 V, V _{L4} = 5.0 V		0.04	0.20	μА
	I _{LCD2} Note 1, 12	Internal voltage boosting method	fLCD = fsuB LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V (V _{LCD} = 04H)		0.85	2.20	μА
1					V _{DD} = 5.0 V, V _{L4} = 5.1 V (V _{LCD} = 12H)		1.55	3.70	μА
	I _{LCD3} Note 1, 12	Capacitor split method	fLCD = fsuB LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V		0.20	0.50	μА

(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to VDD.

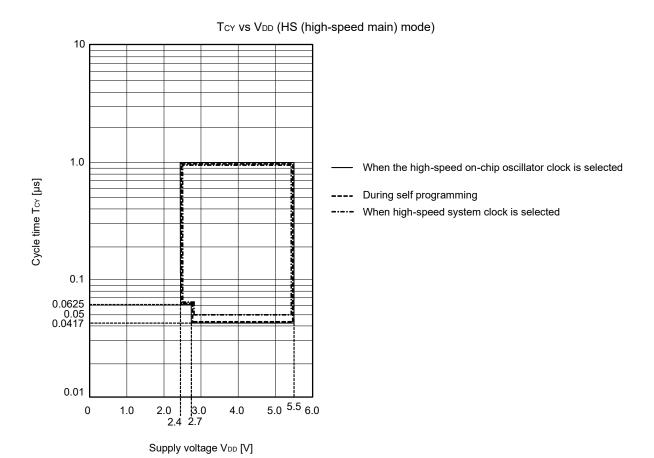
- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
- **4.** Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **6.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 21.3.3 SNOOZE mode in the RL78/L13 User's Manual.
- **11.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.
- 12. Current flowing only to the LCD controller/driver. The value of the current for the RL78 microcontrollers is the sum of the supply current (IDD1 or IDD2) and LCD operating current (ILCD1, ILCD2, or ILCD3), when the LCD controller/driver operates in operation mode or HALT mode. However, not including the current flowing into the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
 - Setting 20 pins as the segment function and blinking all
 - Selecting fsub for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
 - Setting four time slices and 1/3 bias
- 13. Not including the current flowing into the external division resistor when using the external resistance division method.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** The temperature condition for the TYP. value is $T_A = 25$ °C.

2.4 AC Characteristics

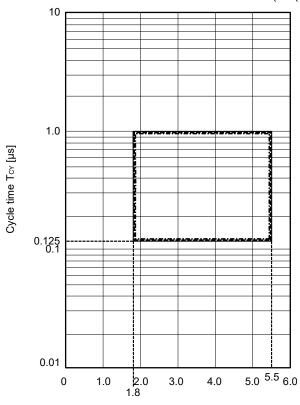
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Condit	ions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (high-sp		$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.0417		1	μs
instruction execution time)		clock (fmain) operation	main) mode	_	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
		operation	LS (low-spe main) mode		1.8 V ≤ V _{DD} ≤ 5.5 V	0.125		1	μs
			LV (low-voltage main) mode		1.6 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μs
		Subsystem clock (fsub) $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ operation operation		28.5	30.5	31.3	μs		
		In the self	HS (high-sp		$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.0417		1	μs
		programming mode	main) mode		$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.0625		1	μs
			LS (low-spe main) mode		$1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-volta main) mode		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fex	2.7 V ≤ V _{DD} ≤	5.5 V			1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} < 1	2.7 V			1.0		16.0	MHz
		1.8 V ≤ V _{DD} < 3	2.4 V			1.0		8.0	MHz
		1.6 V ≤ V _{DD} <	1.8 V			1.0		4.0	MHz
	fexs					32		35	kHz
External system clock input	t _{EXH} ,	2.7 V ≤ V _{DD} ≤	5.5 V			24			ns
high-level width, low-level width	texL	2.4 V ≤ V _{DD} < 1				30			ns
Widti		1.8 V ≤ V _{DD} < 2	2.4 V			60			ns
		1.6 V ≤ V _{DD} <	1.8 V			120			ns
	texhs, texhs					13.7			μs
TI00 to TI07 input high-level width, low-level width	tтін, tтіL		1/fмск+10			ns			
TO00 to TO07, TKBO00,	fто			4.0 \	/ ≤ V _{DD} ≤ 5.5 V			12	MHz
TKBO01-0 to TKBO01-2 output frequency				2.7 V ≤ V _{DD} < 4.0 V				8	MHz
output inequency				2.4 \	/ ≤ V _{DD} < 2.7 V			4	MHz
		LV (low-voltag mode	LV (low-voltage main) 1.6 V ≤ V _{DD} ≤ 5.5 V mode				2	MHz	
		LS (low-speed mode	l main)) 1.8 V ≤ V _{DD} ≤ 5.5 V				4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spee	ed main)	4.0 \	/ ≤ V _{DD} ≤ 5.5 V			16	MHz
frequency		mode		2.7 \	/ ≤ V _{DD} < 4.0 V			8	MHz
				2.4 \	V ≤ V _{DD} < 2.7 V			4	MHz
		LV (low-voltag	je main)	1.8	V ≤ V _{DD} ≤ 5.5 V			4	MHz
		mode		1.6	/ ≤ V _{DD} < 1.8 V			2	MHz
		LS (low-speed mode	l main)	1.8 \	V ≤ V _{DD} ≤ 5.5 V			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTF	P7	1.6 \	V ≤ V _{DD} ≤ 5.5 V	1			μs
Key interrupt input high-level	tkrh, tkrl	KR0 to KR7		1.8	V ≤ V _{DD} ≤ 5.5 V	250			ns
width, low-level width				1.6	/ ≤ V _{DD} < 1.8 V	1			μs
IH-PWM output restart input high-level width	tihr	INTP0 to INTF	P7			2			fclk
TMKB2 forced output stop input high-level width	tihr	INTP0 to INTF	P2			2			fськ
RESET low-level width	trsl					10			μs

(Note and Remark are listed on the next page.)

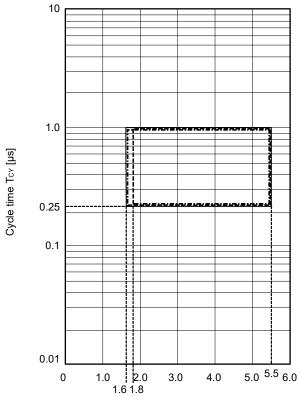

Note Operation is not possible if 1.6 V \leq V_{DD} < 1.8 V in LV (low-voltage main) mode while the system is operating on the subsystem clock.

Remark fmck: Timer array unit operation clock frequency

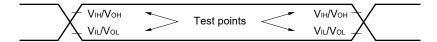

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn)

m: Unit number (m = 0), n: Channel number (n = 0 to 7))

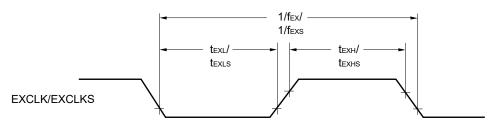
Minimum Instruction Execution Time during Main System Clock Operation



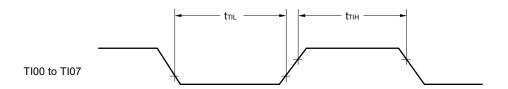
- When the high-speed on-chip oscillator clock is selected
- --- During self programming
- ---- When high-speed system clock is selected

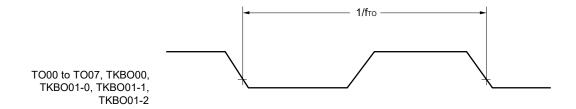

Supply voltage VDD [V]

Tcy vs Vdd (LV (low-voltage main) mode)

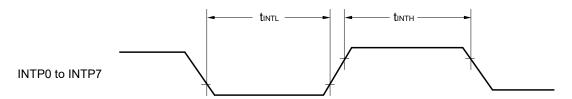


- When the high-speed on-chip oscillator clock is selected
- ---- During self programming
- ---- When high-speed system clock is selected

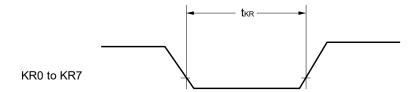

AC Timing Test Points

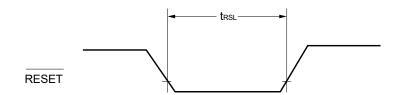


External System Clock Timing

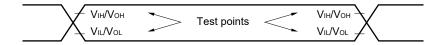


TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing



RESET Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

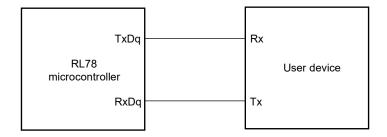
(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

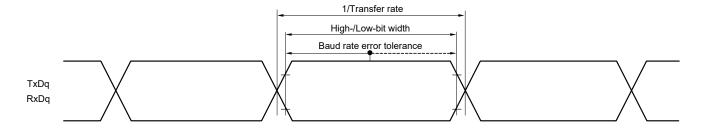
Parameter	Symbol	Conditions	` `	h-speed Mode	,	v-speed Mode	`	r-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rateNote 1		2.4 V≤ V _{DD} ≤ 5.5 V		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		4.0		1.3		0.6	Mbps
		1.8 V ≤ V _{DD} ≤ 5.5 V		_		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 2}$		_		1.3		0.6	Mbps
		1.6 V ≤ V _{DD} ≤ 5.5 V		_		_		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		-		-		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V ≤ V_{DD} ≤ 5.5 V)

16 MHz $(2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$


LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$ LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

- **Remarks 1.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

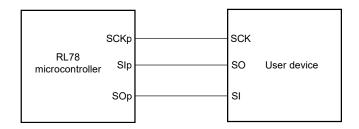
Parameter	Symbol	Co	onditions	HS (high- main) N	•	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	2.7 V ≤ V _{DD} ≤ 5.	5 V	167 ^{Note 1}		500 ^{Note 1}		1000 ^{Note 1}		ns
		2.4 V ≤ V _{DD} ≤ 5.	5 V	250 ^{Note 1}		500 ^{Note 1}		1000 ^{Note 1}		ns
		1.8 V ≤ V _{DD} ≤ 5.	5 V	-		500 ^{Note 1}		1000 ^{Note 1}		ns
		1.6 V ≤ V _{DD} ≤ 5.	5 V	-		-		1000 ^{Note 1}		ns
SCKp high-/low-level	tĸнı,	4.0 V ≤ V _{DD} ≤ 5.	5 V	tkcy1/2-12		tkcy1/2-50		tkcy1/2-50		ns
width	t _{KL1}	2.7 V ≤ V _{DD} ≤ 5.	5 V	tkcy1/2-18		tkcy1/2-50		tkcy1/2-50		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V		tkcy1/2-38		tkcy1/2-50		tkcy1/2-50		ns
		1.8 V ≤ V _{DD} ≤ 5.5 V		_		tkcy1/2-50		tkcy1/2-50		ns
		1.6 V ≤ V _{DD} ≤ 5.	5 V	_		_		tkcy1/2-100		ns
SIp setup time	tsıĸ1	2.7 V ≤ V _{DD} ≤ 5.	5 V	44		110		110		ns
(to SCKp↑) ^{Note 2}		2.4 V ≤ V _{DD} ≤ 5.	5 V	75		110		110		ns
		1.8 V ≤ V _{DD} ≤ 5.	5 V	_		110		110		ns
		1.8 V ≤ V _{DD} ≤ 5.	5 V	_		_		220		ns
SIp hold time	t _{KSI1}	2.4 V ≤ V _{DD} ≤ 5.	5 V	19		19		19		ns
(from SCKp↑) ^{Note 3}		1.8 V ≤ V _{DD} ≤ 5.	5 V	1		19		19		ns
		1.6 V ≤ V _{DD} ≤ 5.5 V		-		_		19		ns
Delay time from	tkso1	C = 30 pF ^{Note 5}	2.4 V ≤ V _{DD} ≤ 5.5 V		25		25		25	ns
SCKp↓ to			1.8 V ≤ V _{DD} ≤ 5.5 V		_		25		25	ns
SOp output ^{Note 4}			1.6 V ≤ V _{DD} ≤ 5.5 V		_		_		25	ns

- Notes 1. The value must also be equal to or more than 2/fclk for CSI00 and equal to or more than 4/fclk for CSI10.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. C is the load capacitance of the SCKp and SOp output lines.

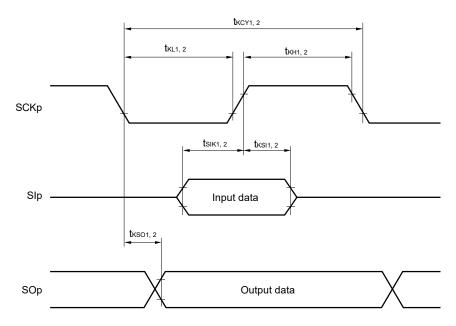
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM and POM numbers (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

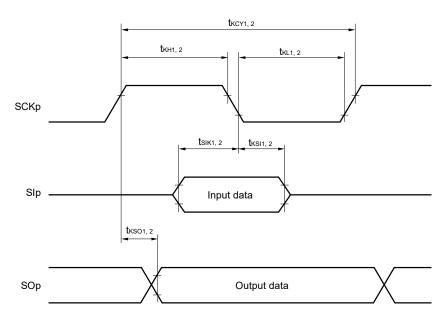
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Con	ditions	` `	h-speed Mode	`	v-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkcy2	4.0 V ≤ V _{DD} ≤ 5.5	V f _{MCK} > 20 MHz	8/fмск		_		_		ns
time ^{Note 5}			f _{MCK} ≤ 20 MHz	6/fмск		6/fмск		6/ƒмск		ns
		2.7 V ≤ V _{DD} ≤ 5.5	V f _{MCK} > 16 MHz	8/fмск		_		_		ns
			f _{MCK} ≤ 16 MHz	6/fмск		6/fмск		6/ƒмск		ns
		2.4 V ≤ V _{DD} ≤ 5.5	V	6/fмск and 500		6/ƒмск		6/ƒмск		ns
		1.8 V ≤ V _{DD} ≤ 5.5	V	_		6/fмск		6/ƒмск		ns
		1.6 V ≤ V _{DD} ≤ 5.5	V	_		_		6/ƒмск		ns
SCKp high-/low-	t кн2,	4.0 V ≤ V _{DD} ≤ 5.5	V	tkcy2/2-7		tkcy2/2-7		tkcy2/2-7		ns
level width	t _{KL2}	2.7 V ≤ V _{DD} ≤ 5.5	V	tkcy2/2-8		tkcy2/2-8		tkcy2/2-8		ns
		2.4 V ≤ V _{DD} ≤ 5.5	V	tkcy2/2-18		tkcy2/2-18		tксү2/2-18		ns
		1.8 V ≤ V _{DD} ≤ 5.5	V	_		tkcy2/2-18		tkcy2/2-18		ns
		1.6 V ≤ V _{DD} ≤ 5.5	V	_		_		tkcy2/2-66		ns
SIp setup time	tsık2	2.7 V ≤ V _{DD} ≤ 5.5	V	1/fмск+20		1/fмск+30		1/fмск+30		ns
(to SCKp↑) ^{Note 1}		2.4 V ≤ V _{DD} ≤ 5.5	V	1/fмск+30		1/fмск+30		1/fмск+30		ns
		1.8 V ≤ V _{DD} ≤ 5.5	V	_		1/fмск+30		1/fмск+30		ns
		1.6 V ≤ V _{DD} ≤ 5.5	V	_		_		1/fмск+40		ns
SIp hold time	tksi2	2.4 V ≤ V _{DD} ≤ 5.5	V	1/fмск+31		1/fмск+31		1/fмск+31		ns
(from SCKp↑) ^{Note 2}		1.8 V ≤ V _{DD} ≤ 5.5	V	_		1/fмск+31		1/fмск+31		ns
SCKP)****		1.6 V ≤ V _{DD} ≤ 5.5	V	-		_		1/fмск+250		ns
Delay time from	tkso2	C = 30 pF ^{Note 4}	2.7 V ≤ V _{DD} ≤ 5.5 V		2/fмск+44		2/fмск+110		2/fмск+110	ns
SCKp↓ to SOp output ^{Note 3}			2.4 V ≤ V _{DD} ≤ 5.5 V		2/fмск+75		2/fмск+110		2/fмск+110	ns
output			1.8 V ≤ V _{DD} ≤ 5.5 V		-		2/fмск+110		2/fмск+110	ns
			$1.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		_		_		2/fмск+220	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

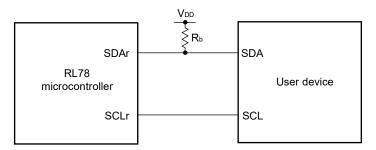
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 10)

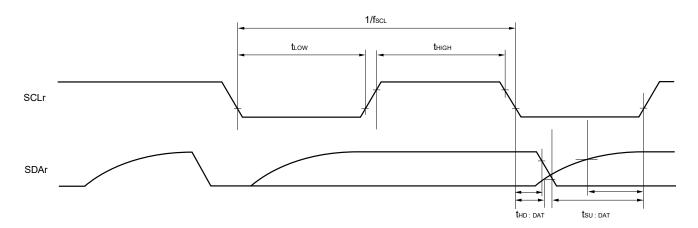
2. m: Unit number, n: Channel number (mn = 00, 02)

(4) During communication at same potential (simplified I²C mode)

(T_A = -40 to +85°C, 1.6 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)


Parameter	Symbol	Conditions		h-speed Mode	1	v-speed Mode	,	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 ^{Note 1}		400 ^{Note 1}		400 ^{Note 1}	kHz
		1.8 V (2.4 V ^{Note 3}) \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ		400 ^{Note 1}		400 ^{Note 1}		400 ^{Note 1}	kHz
		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ		-		_		250 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		1.8 V (2.4 V ^{Note 3}) \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		1150		1150		ns
		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	1		_		1850		ns
Hold time when SCLr = "H"	tніgн	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		1.8 V (2.4 V ^{Note 3}) \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		1150		1150		ns
		1.8 V (2.4 V ^{Note 3}) \leq V _{DD} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-		_		1850		ns
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/f _{MCK} + 85 ^{Note 2}		1/f _{MCK} + 145 ^{Note 2}		1/f _{MCK} + 145 ^{Note 2}		ns
		1.8 V (2.4 V ^{Note 3}) \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1/f _{MCK} + 145 ^{Note 2}		1/f _{MCK} + 145 ^{Note 2}		1/f _{MCK} + 145 ^{Note 2}		ns
		1.8 V (2.4 V ^{Note 3}) \leq V _{DD} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1/f _{MCK} + 230 ^{Note 2}		1/f _{MCK} + 230 ^{Note 2}		1/f _{MCK} + 230 ^{Note 2}		ns
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-		_		1/f _{MCK} + 290 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	ns
		1.8 V (2.4 V ^{Note 3}) \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	0	355	0	355	0	355	ns
		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	0	405	0	405	0	405	ns
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-	_	_	_	0	405	ns

(Notes, Caution, and Remarks are listed on the next page.)


- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
 - 3. Condition in the HS (high-speed main) mode

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** $R_b[\Omega]$: Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol			Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode			w-voltage ı) Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception) V ≤ V _{DD} ≤ 5.5 V, V V ≤ V _b ≤ 4.0 V		fмск/6 ^{Note 1}		fmck/6 ^{Note 1}		fмск/6 ^{Note 1}	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 3		4.0		1.3		0.6	Mbps
				$V \le V_{DD} < 4.0 \text{ V},$ $V \le V_{b} \le 2.7 \text{ V}$		fмск/6 ^{Note 1}		fmck/6 ^{Note 1}		fmck/6 ^{Note 1}	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 3		4.0		1.3		0.6	Mbps
			٧,	$3 \text{ V } (2.4 \text{ V}^{\text{Note 4}}) \le \text{V}_{\text{DD}} < 3.3$ $3 \text{ V } \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		fMCK/6 Note s1, 2		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps

Notes 1. Transfer rate in SNOOZE mode is 4800 bps only.

2. Use it with $V_{DD} \ge V_b$.

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: $24 \text{ MHz} (2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

16 MHz $(2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

4. Condition in the HS (high-speed main) mode

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	, ,	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Trans mission	4.0 V ≤ V _{DD} ≤ 5.5 V, 2.7 V ≤ V _b ≤ 4.0 V		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V})$		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
			2.7 V ≤ V _{DD} < 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V})$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
			$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 8}}) \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $(C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V})$		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V ≤ V_{DD} ≤ 5.5 V and 2.7 V ≤ V_b ≤ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 1** above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

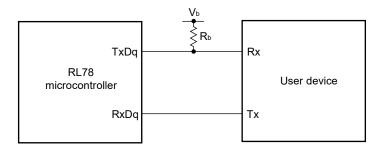
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

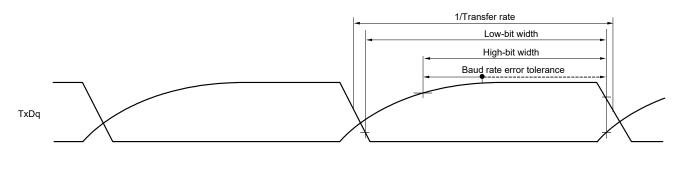
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.

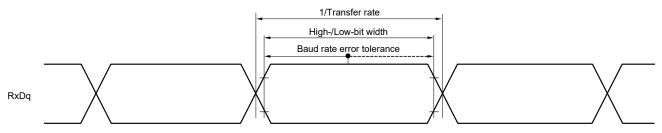
Notes 6. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V (2.4 $V^{Note~8}$) \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{1.5}{V_b})\} \times 3} [bps]$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- 8. Condition in the HS (high-speed main) mode


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** $R_b[\Omega]$: Communication line (TxDq) pull-up resistance, $C_b[F]$: Communication line (TxDq) load capacitance, $V_b[V]$: Communication line voltage
 - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	, -	h-speed Mode	,	/-speed Mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 2/fclk	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ $C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$	200		1150		1150		ns
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	300		1150		1150		ns
SCKp high-level width	tкн1	$4.0 \text{ V} \le \text{V}_{DD} \le 8$ $C_b = 20 \text{ pF}, R_b$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ = 1.4 kΩ	tkcy1/2 – 50		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 20 \text{ C}_{b} = 20 \text{ pF}, \text{ R}_{b}$	$1.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ = 2.7 kΩ	tkcy1/2 – 120		tксү1/2 — 120		tkcy1/2 — 120		ns
SCKp low-level width	t _{KL1}	$4.0 \text{ V} \le \text{V}_{DD} \le 8$ $C_b = 20 \text{ pF}, R_b$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ = 1.4 kΩ	tkcy1/2 - 7		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 2$ $C_b = 20 \text{ pF}, R_b$	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ = 2.7 kΩ	tkcy1/2 – 10		tксү1/2 — 50		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$4.0 \text{ V} \le \text{V}_{DD} \le 8$ $C_b = 20 \text{ pF}, R_b$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	58		479		479		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 2$ $C_b = 20 \text{ pF}, \text{ Rb}$	$1.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	t _{KSI1}	4.0 V ≤ V _{DD} ≤ { C _b = 20 pF, R _b	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ = 1.4 kΩ	10		10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 20 \text{ C}_{b} = 20 \text{ pF}, \text{ R}_{b}$	1.0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to	t _{KSO1}	$4.0 \text{ V} \le \text{V}_{DD} \le 8$ $C_b = 20 \text{ pF}, R_b$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		$2.7 \text{ V} \le \text{V}_{DD} < 20 \text{ C}_{b} = 20 \text{ pF}, \text{ R}_{b}$	1.0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$4.0 \text{ V} \le \text{V}_{DD} \le 3$ $C_b = 20 \text{ pF}, \text{ Rb}$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ = 1.4 kΩ	23		110		110		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 20 \text{ C}_{b} = 20 \text{ pF}, \text{ R}_{b}$	$1.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	t KSI1	4.0 V ≤ V _{DD} ≤ { C _b = 20 pF, R _b	5.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	10		10		10		ns
		2.7 V ≤ V _{DD} < 4 C _b = 20 pF, R _b	1.0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	4.0 V ≤ V _{DD} ≤ { C _b = 20 pF, R _b	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ = 1.4 kΩ		10		10		10	ns
SOp output ^{Note 2}		2.7 V ≤ V _{DD} < 2 C _b = 20 pF, R _b	1.0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10		10	ns

(Notes, Caution and Remarks are listed on the next page.)

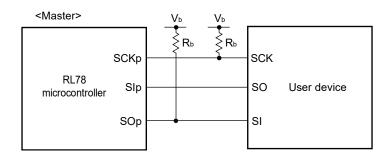
- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM number (g = 1)
 - 3. fмcк: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00))
 - **4.** This specification is valid only when CSI00's peripheral I/O redirect function is not used.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

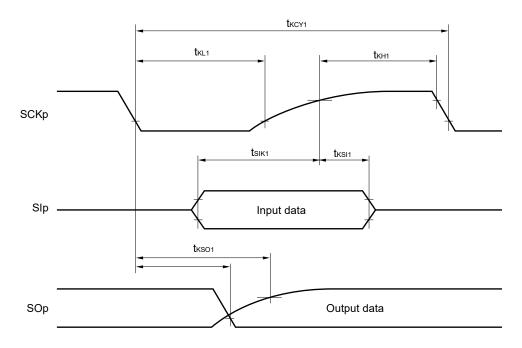
Parameter	Symbol		Conditions		h-speed Mode	LS (low main)	/-speed Mode	-	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fcLk	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega$	300		1150		1150		ns
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	500		1150		1150		ns
			$\begin{split} 1.8 \ V \ & (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \\ V, \\ 1.6 \ & V \leq V_{\text{b}} \leq 1.8 \ V^{\text{Note 2}}, \\ C_{\text{b}} = 30 \ & \text{pF}, \ R_{\text{b}} = 5.5 \ k\Omega \end{split}$	1150		1150		1150		ns
SCKp high-level width	tкн1	$4.0 \text{ V} \le \text{V}_{DD} \le$ $C_b = 30 \text{ pF, R}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, l _b = 1.4 kΩ	tkcy1/2 – 75		tксү1/2 — 75		tксү1/2 — 75		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le C_b = 30 \text{ pF, R}$	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $l_b = 2.7 \text{ k}\Omega$	tксу1/2 — 170		tксү1/2 — 170		tксү1/2 — 170		ns
		1.8 V (2.4 V ^{No} 1.6 V \leq V _b \leq 2 C _b = 30 pF, R	•	tkcy1/2 – 458		tксү1/2 — 458		tkcy1/2 458		ns
SCKp low-level width	t _{KL1}	$4.0 \text{ V} \le \text{V}_{DD} \le$ $C_b = 30 \text{ pF, R}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, l _b = 1.4 kΩ	tkcy1/2 – 12		tксү1/2 — 50		tkcy1/2 - 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le C_b = 30 \text{ pF, R}$	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $k_b = 2.7 \text{ k}Ω$	tkcy1/2 – 18		tксү1/2 — 50		tkcy1/2 - 50		ns
		1.8 V (2.4 V ^{NO} 1.6 V \leq V _b \leq 2 C _b = 30 pF, R		tkcy1/2 - 50		tkcy1/2 - 50		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsıĸ1	4.0 V ≤ V _{DD} ≤ C _b = 30 pF, R	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $\text{c}_{\text{b}} = 1.4 \text{ k}\Omega$	81		479		479		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le C_b = 30 \text{ pF, R}$	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $k_b = 2.7 \text{ k}Ω$	177		479		479		ns
		1.8 V (2.4 V ^{NO} 1.6 V \leq V _b \leq 2 C _b = 30 pF, R		479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 3}	t _{KSI1}	4.0 V ≤ V _{DD} ≤ C _b = 30 pF, R	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ $c_b = 1.4 \text{ k}\Omega$	19		19		19		ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, R	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $k_b = 2.7 \text{ k}Ω$	19		19		19		ns
		1.8 V (2.4 V ^{NO} 1.6 V \leq V _b \leq 2 C _b = 30 pF, R	·	19		19		19		ns
Delay time from SCKp↓ to	tkso1	4.0 V ≤ V _{DD} ≤ C _b = 30 pF, R	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $\text{L}_{\text{b}} = 1.4 \text{ k}\Omega$		100		100		100	ns
SOp output ^{Note 3}		2.7 V ≤ V _{DD} < C _b = 30 pF, R	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $k_b = 2.7 \text{ k}Ω$		195		195		195	ns
		1.6 V ≤ V _b ≤ 2	·		483		483		483	ns
		C _b = 30 pF, R	l _b = 5.5 kΩ							

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

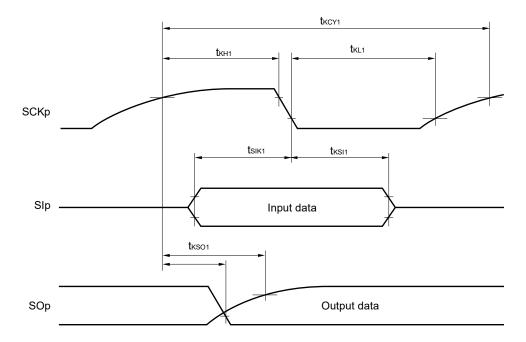
(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) (T_A = −40 to +85°C, 1.8 V ≤ V_{DD} ≤ 5.5 V, V_{SS} = 0 V)


Parameter	Symbol	Conditions	, ,	h-speed Mode	`	v-speed Mode	, ,		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 4}	tsıĸ1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 1.4 \text{ k}\Omega$	44		110		110		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	44		110		110		ns
		$\begin{split} 1.8 \ V \ & (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ & V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 4}	t _{KSI1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 1.4 \text{ k}\Omega$	19		19		19		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	19		19		19		ns
		$\begin{split} 1.8 \ V \ & (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ & V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ C_{\text{b}} & = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	19		19		19		ns
Delay time from SCKp↑ to	tkso1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 1.4 \text{ k}\Omega$		25		25		25	ns
SOp output ^{Note 4}		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		25		25		25	ns
		$\begin{split} 1.8 \ V \ & (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ & V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$		25		25		25	ns

Notes 1. Condition in HS (high-speed main) mode


- 2. Use it with $V_{DD} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 4. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


CSI mode connection diagram (during communication at different potential)

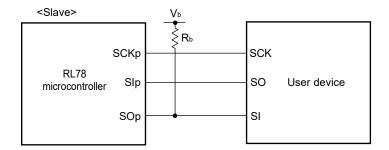
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

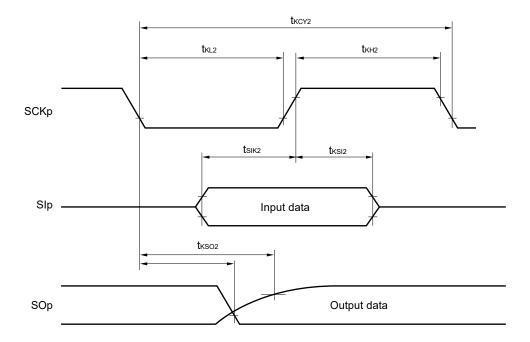
Remarks 1. R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage

- 2. p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)

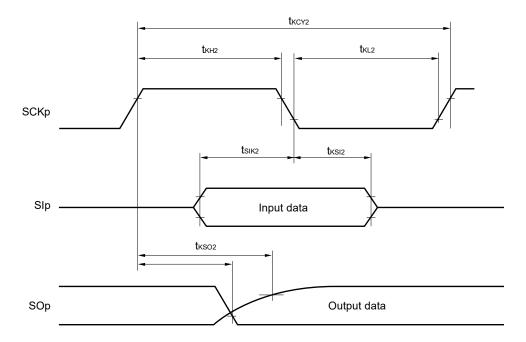
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Сог	nditions	HS (hig main)	h-speed Mode	,	/-speed Mode	LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkcy2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$	20 MHz < fмск	12/fмск		_		-		ns
time ^{Note 1}		2.7 V ≤ V _b ≤	8 MHz < f _{MCK} ≤ 20 MHz	10/fмск		_		-		ns
		4.0 V	4 MHz < f _{MCK} ≤ 8 MHz	8/fмск		16/fмск		-		ns
			fмck ≤ 4 MHz	6/ƒмск		10/fмск		10/fмск		ns
		2.7 V ≤ V _{DD} < 4.0 V,	20 MHz < fмск	16/fмск		_		_		ns
		2.3 V ≤ V _b ≤	16 MHz < fмск ≤ 20 MHz	14/fмск		_		-		ns
		2.7 V	8 MHz < f _{MCK} ≤ 16 MHz	12/fмск		_		_		ns
			4 MHz < f _{MCK} ≤ 8 MHz	8/fмск		16/fмск		-		ns
			fмck ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		1.8 V (2.4 V ^{Note 2}) ≤	20 MHz < fmck	36/fмск		_		-		ns
		V _{DD} < 3.3 V,	16 MHz < fмск ≤ 20 MHz	32/fмск		_		_		ns
		1.6 $V \le V_b \le$ 2.0 $V^{\text{Note 3}}$	8 MHz < f _{MCK} ≤ 16 MHz	26/fмск		_		_		ns
		2.0 0	4 MHz < f _{MCK} ≤ 8 MHz	16/fмск		16/fмск		_		ns
			fmck ≤ 4 MHz	10/fмск		10/fмск		10/f мск		ns
SCKp high- /low-level width	tkH2,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	tксү2/2 - 12		tксү2/2 - 50		tксу2/2 - 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2$	2.3 V ≤ V _b ≤ 2.7 V	tkcy2/2 - 18		tkcy2/2 - 50		tkcy2/2 - 50		ns
		1.8 V $(2.4 \text{ V}^{\text{Note 2}}) \le V$ 1.6 V $\le V_b \le 2.0 \text{ V}^{\text{Note}}$		tксү2/2 - 50		tксү2/2 - 50		tkcy2/2 - 50		ns
SIp setup time (to SCKp↑)Note 4	tsık2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2$	2.7 V ≤ V _b ≤ 4.0 V	1/fмск + 20		1/fмск + 30		1/fмcк + 30		ns
		2.7 V ≤ V _{DD} < 4.0 V, 2	2.3 V ≤ V _b ≤ 2.7 V	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \le \text{V}$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from	tksi2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
SCKp↑) ^{Note 5}		2.7 V ≤ V _{DD} < 4.0 V, 2	$2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		1.8 V $(2.4 \text{ V}^{\text{Note 2}}) \le V$ 1.6 V $\le V_b \le 2.0 \text{ V}^{\text{Note}}$	•	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tkso2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2$ $C_b = 30 \text{ pF}, R_b = 1.4$	•		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
SOp output ^{Note 6}		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7$	·		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{aligned} 1.8 \ V \ & (2.4 \ V^{\text{Note 2}}) \leq V \\ 1.6 \ & V \leq V_b \leq 2.0 \ V^{\text{Note}} \\ C_b = 30 \ pF, \ & R_b = 5.5 \end{aligned}$	3,		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)


- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. Condition in HS (high-speed main) mode
 - **3.** Use it with $V_{DD} \ge V_b$.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


CSI mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. $R_b[\Omega]$: Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage

- 2. p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn) m: Unit number, n: Channel number (mn = 00, 02))

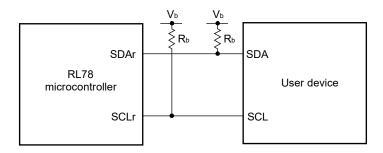
(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	1	gh-speed n) Mode	-	v-speed Mode	-	/-voltage) Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		1000 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}\Omega$		400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		400 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
		$\begin{aligned} &1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ &C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned}$		300 ^{Note 1}		300 ^{Note 1}		300 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	475		1550		1550		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	475		1550		1550		ns
		$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.8 \text{ k}\Omega$	1150		1550		1550		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	1150		1550		1550		ns
		$\begin{array}{l} 1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 5.5 \text{ k}\Omega \end{array}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tнідн	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	245		610		610		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	200		610		610		ns
		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}\Omega$	675		610		610		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	600		610		610		ns
		$\begin{array}{l} 1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{array}$	610		610		610		ns

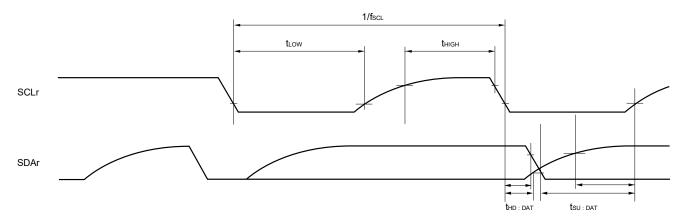
(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high main)		LS (low main)	•	LV (low- main)	-	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ 4.0 \ V \le V_{DD} \le 5.5 \ V, $ $ 2.7 \ V \le V_b \le 4.0 \ V, $ $ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega $	1/f _{MCK} + 135 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	1/f _{MCK} + 135 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.8 \text{ k}\Omega$	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
		$ \begin{aligned} &1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		1/f _{MCK} + 190 ^{Note 4}		ns
Data hold time (transmission)	thd:dat	$ 4.0 \ V \le V_{DD} \le 5.5 \ V, $ $ 2.7 \ V \le V_b \le 4.0 \ V, $ $ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega $	0	305	0	305	0	305	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	ns
		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.8 \text{ k}\Omega$	0	355	0	355	0	355	ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega $	0	355	0	355	0	355	ns
		$ \begin{aligned} &1.8 \text{ V } (2.4 \text{ V}^{\text{Note 2}}) \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ &C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	0	405	0	405	0	405	ns

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - 4. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 02)

2.5.2 Serial interface IICA

(1) I²C standard mode (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		, ,	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscL	Normal	2.7 V ≤ V _{DD} ≤ 5.5 V	0	100	0	100	0	100	kHz
frequency		mode: fc∟к ≥ 1 MHz	$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le V_{\text{DD}} \le 5.5 \text{ V}$	0	100	0	100	0	100	kHz
			1.6 V ≤ V _{DD} ≤ 5.5 V	_	_	_	_	0	100	kHz
Setup time of	tsu:sta	2.7 V ≤ V _{DD} :	≤ 5.5 V	4.7		4.7		4.7		μs
restart condition		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		4.7		4.7		4.7		μs
		1.6 V ≤ V _{DD} :	≤ 5.5 V	_	_	_	_	4.7		μs
Hold time ^{Note 1}	thd:STA	2.7 V ≤ V _{DD} :	≤ 5.5 V	4.0		4.0		4.0		μs
		1.8 V (2.4 V	Note 3) \leq V _{DD} \leq 5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ V _{DD} :	≤ 5.5 V	_	_	_	_	4.0		μs
Hold time when	t Low	2.7 V ≤ V _{DD} :	≤ 5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V (2.4 V	Note 3) ≤ V _{DD} ≤ 5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ V _{DD} :	≤ 5.5 V	_	_	_	_	4.7		μs
Hold time when	t HIGH	2.7 V ≤ V _{DD} :	≤ 5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		1.8 V (2.4 V	Note 3) \leq V _{DD} \leq 5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ V _{DD} :	≤ 5.5 V	_	_	_	_	4.0		μs

(Notes, Caution and Remark are listed on the next page.)

(1) I²C standard mode (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	` `	h-speed Mode	LS (low-speed main) Mode		LV (low- main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time	tsu:dat	2.7 V ≤ V _{DD} ≤ 5.5 V	250		250		250		ns
(reception)		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	250		250		250		ns
		1.6 V ≤ V _{DD} ≤ 5.5 V	ı	_	_	_	250		ns
Data hold time	thd:dat	2.7 V ≤ V _{DD} ≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
(transmission)Note 2		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		1.6 V ≤ V _{DD} ≤ 5.5 V	1	_	_	_	0	3.45	μs
Setup time of stop	tsu:sto	2.7 V ≤ V _{DD} ≤ 5.5 V	4.0		4.0		4.0		μs
condition		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	4.0		4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤ 5.5 V	1	_	_	_	4.0		μs
Bus-free time	t BUF	2.7 V ≤ V _{DD} ≤ 5.5 V	4.7		4.7		4.7		μs
		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	4.7		4.7		4.7		μs
		1.6 V ≤ V _{DD} ≤ 5.5 V	-	_	_	_	4.7		μs

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
 - 3. Condition in HS (high-speed main) mode

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(2) I2C fast mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		` `	h-speed Mode	`	v-speed Mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk	2.7 V ≤ V _{DD} ≤ 5.5 V	0	400	0	400	0	400	kHz
	≥ 3.5 MHz	1.8 V (2.4 V ^{Note 3}) ≤ V _{DD} ≤ 5.5 V	0	400	0	400	0	400	kHz	
Setup time of	tsu:sta	2.7 V ≤ V _{DD}	≤ 5.5 V	0.6		0.6		0.6		μs
restart condition		1.8 V (2.4 V	$^{\text{Note 3}}$) \leq V _{DD} \leq 5.5 V	0.6		0.6		0.6		μs
Hold time ^{Note 1}	thd:STA	2.7 V ≤ V _{DD}	2.7 V ≤ V _{DD} ≤ 5.5 V			0.6		0.6		μs
1.8 V		1.8 V (2.4 V	$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			0.6		0.6		μs
Hold time when	tLOW	2.7 V ≤ V _{DD} ≤ 5.5 V		1.3		1.3		1.3		μs
SCLA0 ="L"		1.8 V (2.4 V	$^{\text{Note }3}$) \leq $^{\text{V}}$ DD \leq 5.5 $^{\text{V}}$	1.3		1.3		1.3		μs
Hold time when	t HIGH	2.7 V ≤ V _{DD}	≤ 5.5 V	0.6		0.6		0.6		μs
SCLA0 ="H"		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		0.6		0.6		0.6		μs
Data setup time	tsu:dat	2.7 V ≤ V _{DD}	≤ 5.5 V	100		100		100		ns
(reception)		1.8 V (2.4 V	$^{\text{Note }3}$) \leq $V_{\text{DD}} \leq 5.5 \text{ V}$	100		100		100		ns
Data hold time	thd:dat	2.7 V ≤ V _{DD}	≤ 5.5 V	0	0.9	0	0.9	0	0.9	μs
(transmission)Note 2		1.8 V (2.4 V	$^{\text{Note 3}}$) \leq $^{\text{V}}$ DD \leq 5.5 $^{\text{V}}$	0	0.9	0	0.9	0	0.9	μs
Setup time of stop	tsu:sto	2.7 V ≤ V _{DD}	≤ 5.5 V	0.6		0.6		0.6		μs
condition		1.8 V (2.4 V	1.8 V (2.4 V ^{Note 3}) ≤ V _{DD} ≤ 5.5 V			0.6		0.6		μs
Bus-free time	t BUF	2.7 V ≤ V _{DD}	≤ 5.5 V	1.3		1.3		1.3		μs
		1.8 V (2.4 V	$^{\text{(Note 3)}} \le V_{\text{DD}} \le 5.5 \text{ V}$	1.3		1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

3. Condition in HS (high-speed main) mode

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

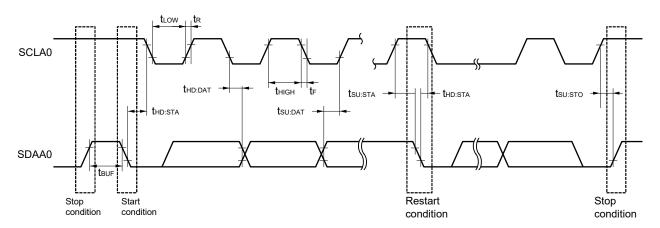
^{2.} The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

(3) I2C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	Conditions		h-speed Mode		v-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fcLk ≥ 10 MHz	2.7 V ≤ V _{DD} ≤ 5.5 V	0	1000		-	-	-	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ V _{DD} ≤ 5.5 V		0.26		_		-	-	μs
Hold time ^{Note 1}	thd:sta	2.7 V ≤ V _{DD} ≤	≤ 5.5 V	0.26			_	-	-	μs
Hold time when SCLA0 ="L"	tLOW	2.7 V ≤ V _{DD} ≤ 5.5 V		0.5			-	-	-	μs
Hold time when SCLA0 ="H"	tніgн	2.7 V ≤ V _{DD} ≤	≤ 5.5 V	0.26			-	-	-	μs
Data setup time (reception)	tsu:dat	2.7 V ≤ V _{DD} ≤	≤ 5.5 V	50			_	-	-	ns
Data hold time (transmission)Note 2	thd:dat	2.7 V ≤ V _{DD} ≤	≤ 5.5 V	0	0.45		_	-	-	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ V _{DD} ≤	5.5 V	0.26			_	-	-	μs
Bus-free time	t BUF	2.7 V ≤ V _{DD} ≤	≤ 5.5 V	0.5			_	_	-	μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

IICA serial transfer timing

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (–) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (–) = AVREFM
ANI0, ANI1	_	See 2.6.1 (2) .	See 2.6.1 (3).
ANI16 to ANI25	See 2.6.1 (1) .		
Internal reference voltage Temperature sensor output voltage	See 2.6.1 (1) .		-

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	C	conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±5.0	LSB
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 5.5 V ^{Note 4}		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.125		39	μs
		Target pin:	2.7 V ≤ V _{DD} ≤ 5.5 V	3.1875		39	μs
		ANI16 to ANI25	1.8 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
			1.6 V ≤ V _{DD} ≤ 5.5 V	57		95	μs
		10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.375		39	μs
		Target pin: Internal	2.7 V ≤ V _{DD} ≤ 5.5 V	3.5625		39	μs
	ar se vo (H m	reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μѕ
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 5.5 V ^{Note 4}			±0.60	%FSR
Full-scale errorNotes 1, 2	Ers	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 5.5 V ^{Note 4}			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±3.5	LSB
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 5.5 V ^{Note 4}			±6.0	LSB
Differential linearity errorNote 1	DLE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±2.0	LSB
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 5.5 V ^{Note 4}			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI25		0		AVREFP	V
		Internal reference volta (2.4 V ≤ V _{DD} ≤ 5.5 V, I	tage HS (high-speed main) mode))		V _{BGR} Note 5		V
		Temperature sensor of (2.4 V ≤ V _{DD} ≤ 5.5 V,	output voltage HS (high-speed main) mode))	,	V _{TMPS25} Note 9	5	V

(Notes are listed on the next page.)

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add $\pm 0.2\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ± 2 LSB to the MAX. value when AV_{REFP} = V_{DD}.

- **4.** Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pins: ANI0, ANI1, ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = V_{DD}, \text{Reference voltage (-)} = V_{SS})$

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution	1.8 V ≤ V _{DD} ≤ 5.5 V		1.2	±7.0	LSB
			$1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}^{\text{Note 3}}$		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.125		39	μs
		Target pin:	2.7 V ≤ V _{DD} ≤ 5.5 V	3.1875		39	μs
		ANI0, ANI1, ANI16 to ANI25 ^{Note 3}	1.8 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
		7 4 4 7 6 7 4 4 2 6	1.6 V ≤ V _{DD} ≤ 5.5 V	57		95	μs
		10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.375		39	μs
		Target pin: Internal	2.7 V ≤ V _{DD} ≤ 5.5 V	3.5625		39	μs
		reference voltage, an temperature sensor output voltage (HS (high-speed main mode)	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Zero-3daie error	L23		$1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}^{\text{Note 3}}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	1.8 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
			1.6 V ≤ V _{DD} ≤ 5.5 V ^{Note 3}			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	1.8 V ≤ V _{DD} ≤ 5.5 V			±4.0	LSB
			1.6 V ≤ V _{DD} ≤ 5.5 V ^{Note 3}			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	1.8 V ≤ V _{DD} ≤ 5.5 V			±2.0	LSB
			1.6 V ≤ V _{DD} ≤ 5.5 V ^{Note 3}			±2.5	LSB
Analog input voltage	Vain	ANI0, ANI1, ANI16 to A	NI25	0		VDD	V
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS	ge S (high-speed main) mode))		V _{BGR} Note 4		V
		Temperature sensor ou (2.4 V ≤ V _{DD} ≤ 5.5 V, HS	tput voltage S (high-speed main) mode))	\	/ _{TMPS25} Note	4	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Integral linearity errorNote 1	ILE	8-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (–) = V_{SS} , the MAX. values are as follows. Zero-scale error: Add $\pm 0.35\%$ FSR to the AV_{REFM} MAX. value. Integral linearity error: Add ± 0.5 LSB to the AV_{REFM} MAX. value. Differential linearity error: Add ± 0.2 LSB to the AV_{REFM} MAX. value.

2.6.2 Temperature sensor /internal reference voltage characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference output voltage	V _{BGR}	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvтмps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs

2.6.3 Comparator characteristics

(T_A = -40 to +85°C, 1.6 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref					V _{DD} – 1.4	٧
	Ivcmp			-0.3		V _{DD} + 0.3	٧
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/μs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mod window mode	le,	0.66V _{DD}	0.76V _{DD}	0.86V _{DD}	٧
Low-electric-potential reference voltage	VTW-	Comparator high-speed mod window mode	Comparator high-speed mode,		0.24V _{DD}	0.34V _{DD}	V
Operation stabilization wait time	tсмР			100			μs
Internal reference output voltage ^{Note}	V _B GR	2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high	n-speed main) mode	1.38	1.45	1.50	V

Note Cannot be used in LS (low-speed main) mode, LV (low-voltage main) mode, subsystem clock operation, and STOP mode.

2.6.4 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POR}	The power supply voltage is rising.	1.47	1.51	1.55	V
	V _{PDR}	The power supply voltage is falling.	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	T _{PW}		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

2.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +85°C, $V_{PDR} \le V_{DD} \le 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	11,		When power supply rises	3.98	4.06	4.14	V
voltage			When power supply falls	3.90	3.98	4.06	V
		V _{LVD1}	When power supply rises	3.68	3.75	3.82	V
			When power supply falls	3.60	3.67	3.74	>
		V _{LVD2}	When power supply rises	3.07	3.13	3.19	>
			When power supply falls	3.00	3.06	3.12	٧
		V _{LVD3}	When power supply rises	2.96	3.02	3.08	V
			When power supply falls	2.90	2.96	3.02	V
		V _{LVD4}	When power supply rises	2.86	2.92	2.97	٧
			When power supply falls	2.80	2.86	2.91	٧
		V _{LVD5}	When power supply rises	2.76	2.81	2.87	V
			When power supply falls	2.70	2.75	2.81	٧
		V _{LVD6}	When power supply rises	2.66	2.71	2.76	٧
			When power supply falls	2.60	2.65	2.70	٧
		V _{LVD7}	When power supply rises	2.56	2.61	2.66	٧
			When power supply falls	2.50	2.55	2.60	٧
		V _{LVD8}	When power supply rises	2.45	2.50	2.55	V
			When power supply falls	2.40	2.45	2.50	٧
		V _{LVD9}	When power supply rises	2.05	2.09	2.13	V
			When power supply falls	2.00	2.04	2.08	٧
		VLVD10	When power supply rises	1.94	1.98	2.02	V
			When power supply falls	1.90	1.94	1.98	٧
		VLVD11	When power supply rises	1.84	1.88	1.91	٧
			When power supply falls	1.80	1.84	1.87	V
		VLVD12	When power supply rises	1.74	1.77	1.81	V
			When power supply falls	1.70	1.73	1.77	V
		VLVD13	When power supply rises	1.64	1.67	1.70	V
			When power supply falls	1.60	1.63	1.66	V
Minimum pu	linimum pulse width			300	-	-	μs
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol		Cond	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVD13}	VPOC2,	V_{POC1} , $V_{POC0} = 0$, 0, 0,	falling reset voltage	1.60	1.63	1.66	V
mode	V _{LVD12}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	V _{LVD11}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	V _{LVD4}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVD11}	VPOC2,	VPOC1, VPOC0 = 0, 0, 1,	falling reset voltage	1.80	1.84	1.87	V
	V _{LVD10}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	V _{LVD9}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	V _{LVD2}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVD8}	VPOC2,	V _{POC1} , V _{POC0} = 0, 1, 0,	falling reset voltage	2.40	2.45	2.50	V
	V _{LVD7}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	V _{LVD6}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	V _{LVD1}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVD5}	VPOC2,	VPOC1, VPOC0 = 0, 1, 1,	falling reset voltage	2.70	2.75	2.81	V
	V _{LVD4}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVD3}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V	
	V _{LVD0}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.6 Supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} rising slope	SV _{DD}				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 LCD Characteristics

2.7.1 External resistance division method

(1) Static display mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.0		V _{DD}	V

(2) 1/2 bias method, 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.7		V _{DD}	V

(3) 1/3 bias method

(Ta = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.5		V _{DD}	V

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1} = 0.47 µF ^{Note 2}	VLCD = 04H	0.90	1.00	1.08	V
			VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} =	0.47 μF	2 V _{L1} – 0.10	2 VL1	2 VL1	V
Tripler output voltage	V _{L4}	C1 to C4 ^{Note 1} = 0.47 µF		3 V _{L1} – 0.15	3 VL1	3 VL1	V
Reference voltage setup timeNote 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} = 0.47 µF		500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between V_{L4} and GND

$$C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30 \%$$

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	V _{L2}	C1 to C5 ^{Note 1} = 0.47 µF		2 VL1-0.08	2 V _{L1}	2 V _{L1}	V
Tripler output voltage	V _{L3}	C1 to C5 ^{Note 1} = 0.47 µF		3 VL1-0.12	3 V _{L1}	3 V _{L1}	V
Quadruply output voltage	V _{L4}	C1 to C5 ^{Note 1} =	0.47 μF	4 VL1-0.16	4 V _{L1}	4 V _{L1}	V
Reference voltage setup timeNote 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} = 0.47 µF		500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between VL3 and GND
- C5: A capacitor connected between VL4 and GND
- $C1 = C2 = C3 = C4 = C5 = 0.47 \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.7.3 Capacitor split method

(1) 1/3 bias method

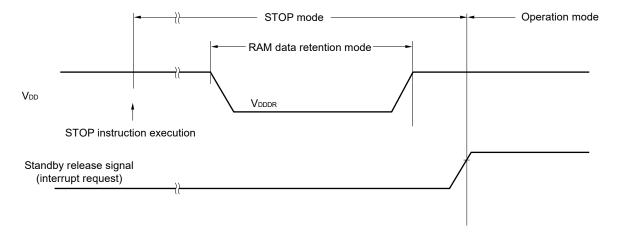
(T_A = -40 to +85°C, 2.2 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{L4} voltage	VL4	C1 to C4 = 0.47 µF ^{Note 2}		V _{DD}		V
V _{L2} voltage	V _{L2}	C1 to C4 = 0.47 µF ^{Note 2}	2/3 V _{L4} – 0.1	2/3 V _{L4}	2/3 V _{L4} + 0.1	V
V _{L1} voltage	V _{L1}	C1 to C4 = 0.47 µF ^{Note 2}	1/3 V _{L4} – 0.1	1/3 V _{L4}	1/3 V _{L4} + 0.1	V
Capacitor split wait timeNote 1	tvwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

- 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between V_{L1} and GND
 - C3: A capacitor connected between $V_{\text{\tiny L2}}$ and GND
 - C4: A capacitor connected between V_{L4} and GND
 - $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

2.8 RAM Data Retention Characteristics


$(T_A = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

Caution Data in RAM are not retained if the CPU operates outside the specified operating voltage range.

Therefore, place the CPU in STOP mode before the operating voltage drops below the specified range.

2.9 Flash Memory Programming Characteristics

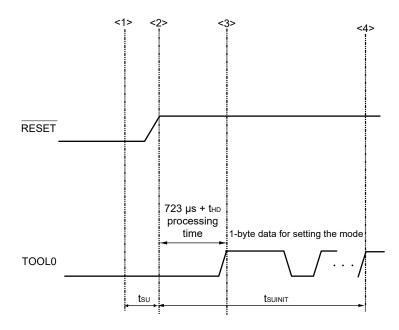
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	1.8 V ≤ VDD ≤ 5.5 V	1		24	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years T _A = 85°C	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 year T _A = 25°C		1,000,000		
		Retained for 5 years T _A = 85°C	100,000			
		Retained for 20 years T _A = 85°C	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.11 Timing Specifications for Switching Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS ($T_A = -40 \text{ to } +105^{\circ}\text{C}$)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to +105°C

R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WMCGFB, R5F10WMDGFB, R5WMDGFB, R5WMDGFB,

R5F10WMEGFB, R5F10WMFGFB, R5F10WMGGFB

- Cautions 1. The RL78/L13 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.
 - Consult Renesas salesperson and distributor for derating when the product is used at T_A = +85°C to +105°C. Note that derating means "systematically lowering the load from the rated value to improve reliability".

Remark When RL78/L13 is used in the range of T_A = -40 to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS (T_A = -40 to +85°C).

"G: Industrial applications ($T_A = -40 \text{ to } +105$ °C) differ from "A: Consumer applications" in function as follows:

Fields of Application	A: Consumer applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	TA = -40 to +105°C
Operation mode operating voltage range	HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz to } 24 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz to } 4 \text{ MHz}$	HS (high-speed main) mode only: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz to } 24 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$
High-speed on-chip oscillator clock accuracy	1.8 V ≤ VDD ≤ 5.5 V: ±1.0 % @ TA = -20 to +85°C ±1.5 % @ TA = -40 to -20°C 1.6 V ≤ VDD < 1.8 V: ±5.0 % @ TA = -20 to +85°C ±5.5 % @ TA = -40 to -20°C	2.4 V ≤ V _{DD} ≤ 5.5 V: ±2.0 % @ T _A = +85 to +105°C ±1.0 % @ T _A = -20 to +85°C ±1.5 % @ T _A = -40 to -20°C
Serial array unit	UART CSI: fcLk/2 (16 Mbps supported), fcLk/4 Simplified I ² C	UART CSI: fclk/4 Simplified I ² C
IICA	Standard mode Fast mode Fast mode plus	Standard mode Fase mode
Voltage detector	• Rising: 1.67 V to 4.06 V (14 levels) • Falling: 1.63 V to 3.98 V (14 levels)	Rising: 2.61 V to 4.06 V (8 levels)Falling: 2.55 V to 3.98 V (8 levels)

Remark Electrical specifications of G: Industrial applications (TA = -40 to +105°C) differ from "A: Consumer applications". For details, see 3.1 to 3.11 below.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (1/3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	Vii	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	V ₁₂	P60 and P61 (N-ch open-drain) EXCLK, EXCLKS, RESET	-0.3 to +6.5 -0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo1	P00 to P07, P10 to P17, P20 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P121 to P127, P130, P137	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	Vai1	ANI0, ANI1, ANI16 to ANI26	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF(+)} +0.3 ^{Notes 2, 3}	V

- Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)} + 0.3 V$ in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AV_{REF (+)}: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (2/3)

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V _{L1} voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	٧
	V _{L2}	V _{L2} voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	V _{L3}	V _{L3} voltage ^{Note 1}	-0.3 to V _{L4} +0.3 ^{Note 2}	V	
	V _{L4}	V _{L4} voltage ^{Note 1}		-0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	-0.3 to V _{L4} +0.3 ^{Note 2}	V
	Vouт	COM0 to COM7	External resistance division method	-0.3 to V _{DD} +0.3 ^{Note 2}	V
		SEG0 to SEG50	Capacitor split method	-0.3 to V _{DD} +0.3 ^{Note 2}	V
		output voltage	Internal voltage boosting method	-0.3 to V _{L4} +0.3 ^{Note 2}	V

- Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μF ± 30%) and connect a capacitor (0.47 μF ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C) (3/3)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
		Total of all pins –170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	–170	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		–1	mA
Output current, low	I _{OL1}	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
		Total of all pins	P40 to P47, P130	70	mA
		170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
	lo _{L2}	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operation	on mode	-40 to +105	°C
temperature		In flash memory p	programming mode		°C
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.2 Oscillator Characteristics

3.2.1 X1 and XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	2.7 V ≤ V _{DD} ≤ 5.5 V	1.0		20.0	MHz
frequency (fx) ^{Note} crystal resonator		2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/L13 User's Manual.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		+85 to +105°C	2.4 V ≤ V _{DD} ≤ 5.5 V	-2		+2	%
clock frequency accuracy		–20 to +85°C	2.4 V ≤ V _{DD} ≤ 5.5 V	-1		+1	%
		-40 to -20°C	2.4 V ≤ V _{DD} ≤ 5.5 V	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- Notes 1. The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for the instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, IOH1		Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	2.4 V ≤ V _{DD} ≤ 5.5 V			-3.0 ^{Note 2}	mA
		Total of P00 to P07, P10 to P17,	4.0 V ≤ V _{DD} ≤ 5.5 V			-45.0	mA
		P22 to P27, P30 to P35, P40 to P47, P50	2.7 V ≤ V _{DD} < 4.0 V			-15.0	mA
		to P57, P70 to P77, P125 to P127, P130 (When duty = 70% ^{Note 3})	2.4 V ≤ V _{DD} < 2.7 V			-7.0	mA
	І он2	Per pin for P20 and P21	2.4 V ≤ V _{DD} ≤ 5.5 V			-0.1 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	2.4 V ≤ V _{DD} ≤ 5.5 V			-0.2	mA

- **Notes 1**. Value of the current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoH × 0.7)/(n × 0.01)

<Example> Where n = 80% and $I_{OH} = -45.0$ mA

Total output current of pins = $(-45.0 \times 0.7)/(80 \times 0.01) = -39.375 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _{L1}	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130				8.5 ^{Note 2}	mA
		Per pin for P60 and P61				15.0 ^{Note 2}	mA
		Total of P40 to P47, P130	4.0 V ≤ V _{DD} ≤ 5.5 V			40.0	mA
		(When duty = 70% ^{Note 3})	2.7 V ≤ V _{DD} < 4.0 V			15.0	mA
			2.4 V ≤ V _{DD} < 2.7 V			9.0	mA
		Total of P00 to P07, P10 to P17,	4.0 V ≤ V _{DD} ≤ 5.5 V			60.0	mA
		P22 to P27, P30 to P35, P50 to P57, P70 to P77, P125 to P127	2.7 V ≤ V _{DD} < 4.0 V			35.0	mA
		(When duty = $70\%^{\text{Note 3}}$)	2.4 V ≤ V _{DD} < 2.7 V			20.0	mA
		Total of all pins (When duty = 70%Note 3)				100.0	mA
	lo _{L2}	Per pin for P20 and P21				0.4 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3})	2.4 V ≤ V _{DD} ≤ 5.5 V			0.8	mA

- **Notes 1**. Value of the current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin
 - 2. Do not exceed the total current value.
 - 3. Output current value under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 40.0 mA

Total output current of pins = $(40.0 \times 0.7)/(80 \times 0.01) = 35.0 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0.8V _{DD}		V _{DD}	>
	V _{IH2}	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	2.2		V _{DD}	V
			TTL input buffer 3.3 V ≤ V _{DD} < 4.0 V	2.0		V _{DD}	V
			TTL input buffer 2.4 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	V _{IH3}	P20, P21		0.7V _{DD}		V_{DD}	V
	V _{IH4}	P60, P61		0.7V _{DD}		6.0	V
	V _{IH5}	P121 to P124, P137, EXCLK, EXCLKS	s, RESET	0.8V _{DD}		V_{DD}	V
Input voltage, low	V _{IL1}	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0		0.2V _{DD}	>
	V _{IL2}	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.8	V
			TTL input buffer 3.3 V ≤ V _{DD} < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V ≤ V _{DD} < 3.3 V	0		0.32	V
	V _{IL3}	P20, P21		0		0.3V _{DD}	V
	V _{IL4}	P60, P61		0		0.3V _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	, RESET	0		0.2V _{DD}	V

Caution The maximum value of V_{IH} of pins P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 is V_{DD}, even in the N-ch open-drain mode.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} - 0.7			V
		P70 to P77, P125 to P127, P130	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	V _{DD} - 0.6			V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} - 0.5			V
	Voн2	P20 and P21	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH2} = -100 \mu\text{A}$	V _{DD} - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 8.5 \text{ mA}$			0.7	V
	P70 to P77, P125 to P127, P130	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.6	V	
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 1.5 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 0.6 \text{ mA}$			0.4	V
	V _{OL2}	P20 and P21	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $I_{OL2} = 400 \mu\text{A}$			0.4	V
	Vol3	P60 and P61	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $\text{I}_{OL3} = 15.0 \text{ mA}$			2.0	V
		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 5.0 \text{ mA}$			0.4	V	
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 3.0 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 2.0 \text{ mA}$			0.4	V

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Condition	าร		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	$V_1 = V_{DD}$				1	μА
	I _{LIH2}	P20 and P21, RESET	VI = VDD				1	μA
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	V _I = V _{DD}	In input port mode and when external clock is input			1	μА
				Resonator connected			10	μА
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	j, ',				-1	μА
	ILIL2	P20 and P21, RESET	Vı = Vss				-1	μΑ
	Ішз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port mode and when external clock is input			-1	μА
				Resonator connected			-10	μA
On-chip pull-up resistance	Ru1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130	V _I = V _{SS}		10	20	100	kΩ
	Ru2	P40 to P44	Vı = Vss		10	20	100	kΩ

3.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1} Note 1	Operating	HS (high-	fHOCO = 48 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		2.0		mA
current		mode	speed main)	f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.0		mA
			mode ^{Note 5}		Normal	V _{DD} = 5.0 V		3.8	7.0	mA
					operation	V _{DD} = 3.0 V		3.8	7.0	mA
				fHOCO = 24 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		1.7		mA
				f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA
					Normal	V _{DD} = 5.0 V		3.6	6.5	mA
					operation	V _{DD} = 3.0 V		3.6	6.5	mA
				fHOCO = 16 MHz ^{Note 3} ,	Normal	V _{DD} = 5.0 V		2.7	5.0	mA
				f _{IH} = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	5.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	5.4	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.6	mA
	mode***	mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.9	5.4	mA	
			V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.6	mA	
		$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	3.2	mA		
				V _{DD} = 5.0 V	operation	Resonator connection		1.9	3.2	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	3.2	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	3.2	mA
			Subsystem	fsuB =	Normal	Square wave input		4.0	5.4	μΑ
			clock operation	32.768 kHz ^{Note 4} , T _A = -40°C	operation	Resonator connection		4.3	5.4	μΑ
				fsub =	Normal	Square wave input		4.0	5.4	μΑ
				32.768 kHz Note 4, T _A = +25°C	operation	Resonator connection		4.3	5.4	μΑ
				f _{SUB} =	Normal	Square wave input		4.1	7.1	μΑ
				32.768 kHz ^{Note 4} , T _A = +50°C	operation	Resonator connection		4.4	7.1	μΑ
				fsuB =	Normal	Square wave input		4.3	8.7	μA
				32.768 kHz ^{Note 4} , T _A = +70°C	operation	Resonator connection		4.7	8.7	μА
				fsub =	Normal	Square wave input		4.7	12.0	μΑ
			32.768 kHz ^{Note 4} , T _A = +85°C	operation	Resonator connection		5.2	12.0	μΑ	
				fsub =	Normal	Square wave input		6.4	35.0	μΑ
				32.768 kHz ^{Note 4} , T _A = +105°C	operation	Resonator connection		6.6	35.0	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low power consumption oscillation (AMPHS1 = 1). The current flowing into the LCD controller/driver, 16-bit timer KB20, real-time clock 2, 12-bit interval timer, and watchdog timer is not included.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz 2.4 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 16 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2} Note 2	HALT	HS (high-	fHOCO = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	2.55	mA
current Note 1		mode	speed main) mode ^{Note 7}	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	2.55	mA
				fHOCO = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.95	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.95	mA
				fHOCO = 16 MHzNote 4,	V _{DD} = 5.0 V		0.43	1.50	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.50	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.76	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.48	1.92	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.76	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.92	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.96	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	1.07	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.96	mA
			Subsystem for clock	V _{DD} = 3.0 V	Resonator connection		0.28	1.07	mA
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μΑ
				T _A = -40°C	Resonator connection		0.51	0.80	μΑ
			operation	fsuB = 32.768 kHz ^{Note 5} , S	Square wave input		0.38	0.62	μΑ
					Resonator connection		0.57	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μΑ
				T _A = +50°C	Resonator connection		0.67	2.49	μΑ
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μΑ
				T _A = +70°C	Resonator connection		0.91	4.22	μΑ
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μΑ
				T _A = +85°C	Resonator connection		1.31	8.23	μΑ
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		3.05	27.00	μΑ
				T _A = +105°C	Resonator connection		3.24	27.00	μA
	I _{DD3} Note 6	STOP	T _A = -40°C				0.18	0.52	μΑ
	mode ^{Note 8} $T_A = +25^{\circ}C$ $T_A = +50^{\circ}C$				0.24	0.52	μΑ		
					0.33	2.21	μΑ		
			T _A = +70°C				0.53	3.94	μA
			T _A = +85°C				0.93	7.95	μΑ
			T _A = +105°C				2.91	25.00	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into Vop, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, onchip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. The current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 6. The current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz

 $2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V@1 MHz to 16 MHz}$

8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsua: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Condition	ons		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FILNote 1						0.20		μΑ
RTC2 operating current	I _{RTC} Notes 1, 2, 3	f _{SUB} = 32.768 kHz	ыв = 32.768 kHz				0.02		μA
12-bit interval timer operating current	_{TMKA} Notes 1, 2, 4						0.04		μА
Watchdog timer operating current	Notes 1, 2, 5	f∟ = 15 kHz					0.22		μΑ
A/D converter operating current	ADC Notes 1, 6	When conversion at maximum speed		e, AV _{REFP} = V _I	DD = 5.0 V DD = VDD = 3.0 V		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current			<u> </u>	,			75.0		μА
Temperature sensor operating current	_{TMPS} Note 1						75.0		μА
LVD operating current	I _{LVD} Notes 1, 7						0.08		μΑ
Comparator	I _{CMP} Notes 1, 11	V _{DD} = 5.0 V,	Window mod	le			12.5		μA
operating current		Regulator output	Comparator	high-speed m	node		6.5		μΑ
		voltage = 2.1 V	Comparator	low-speed mo	ode		1.7		μΑ
		$V_{DD} = 5.0 V,$	Window mod	le			8.0		μΑ
		Regulator output voltage = 1.8 V	Comparator	high-speed m	node		4.0		μΑ
		voltage = 1.0 v	Comparator	low-speed mo	ode		1.3		μΑ
Self- programming operating current	FSP ^{Notes 1, 9}						2.00	12.20	mA
BGO operating current	I _{BGO} Notes 1, 8						2.00	12.20	mA
SNOOZE	I _{SNOZ} Note 1	ADC operation	While the mo	ode is shifting	Note 10		0.50	0.60	mA
operating current			_	conversion, in P = V _{DD} = 3.0	•		1.20	1.44	mA
		CSI/UART operation					0.70	0.84	mA
LCD operating current		External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 5.0 V, V _{L4} = 5.0 V		0.04	0.20.	μА
	ILCD2 ^{Note 1, 12} Internal voltage boosting method	_	fLCD = fSUB LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V (V _{LCD} = 04H)		0.85	2.20	μА
					$V_{DD} = 5.0 \text{ V},$ $V_{L4} = 5.1 \text{ V}$ $(V_{LCD} = 12\text{H})$		1.55	3.70	μА
	I _{LCD3} Note 1, 12	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V		0.20	0.50	μА

(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to VDD.

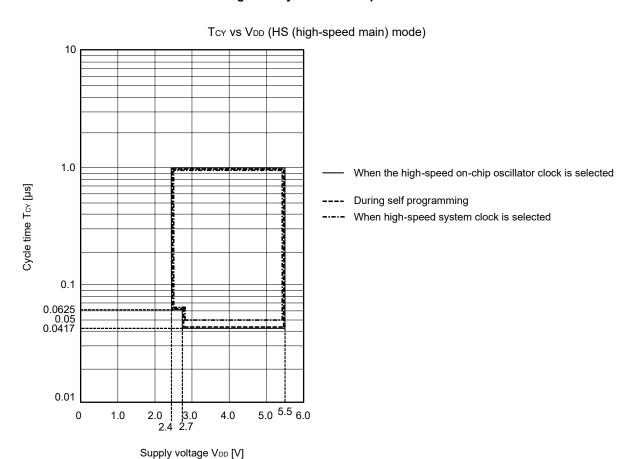
- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **6.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 21.3.3 SNOOZE mode in the RL78/L13 User's Manual.
- **11.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.
- 12. Current flowing only to the LCD controller/driver. The value of the current for the RL78 microcontrollers is the sum of the supply current (IDD1 or IDD2) and LCD operating current (ILCD1, ILCD2, or ILCD3), when the LCD controller/driver operates in operation mode or HALT mode. However, not including the current flowing into the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
 - Setting 20 pins as the segment function and blinking all
 - Selecting fsub for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
 - Setting four time slices and 1/3 bias
- 13. Not including the current flowing into the external division resistor when using the external resistance division method.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** The temperature condition for the TYP. value is $T_A = 25$ °C.

3.4 AC Characteristics

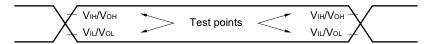
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Сог	nditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (high		2.7 V ≤ V _{DD} ≤ 5.5 V	0.0417		1	μs
instruction execution time)		clock (f _{MAIN}) operation	main) m	ode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
		Subsystem clo	ock (fsua)		2.4 V ≤ V _{DD} ≤ 5.5 V	28.5	30.5	31.3	μs
		In the self	HS (high	-speed	2.7 V ≤ V _{DD} ≤ 5.5 V	0.0417		1	μs
		programming mode	main) m	ode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
External system clock	fex	2.7 V ≤ V _{DD} ≤ 5	5.5 V			1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} < 2	2.7 V			1.0		16.0	MHz
	fexs					32		35	kHz
External system clock input	texh, texl	2.7 V ≤ V _{DD} ≤ 5	5.5 V			24			ns
high-level width, low-level		2.4 V ≤ V _{DD} < 2	2.7 V			30			ns
width	texhs, texhs					13.7			μs
TI00 to TI07 input high-level width, low-level width	tтін, tті∟					1/fмск+ 10			ns
TO00 to TO07, TKBO00 ^{Note} ,	fто	HS (high-spee	d main)	4.0 V ≤	V _{DD} ≤ 5.5 V			12	MHz
TKBO01-0 to TKBO01-2 ^{Note}		mode		2.7 V ≤	V _{DD} < 4.0 V			8	MHz
output frequency				2.4 V ≤	V _{DD} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spee	d main)	4.0 V ≤	V _{DD} ≤ 5.5 V			16	MHz
frequency		mode		2.7 V ≤	V _{DD} < 4.0 V			8	MHz
				2.4 V ≤	V _{DD} < 2.7 V			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTP	77	2.4 V ≤	V _{DD} ≤ 5.5 V	1			μs
Key interrupt input high-level width, low-level width	tkrh, tkrl	KR0 to KR7		2.4 V ≤	V _{DD} ≤ 5.5 V	250			ns
IH-PWM output restart input high-level width	tihr	INTP0 to INTP	77			2			fськ
TMKB2 forced output stop input high-level width	tihr	INTP0 to INTP	22			2			fськ
RESET low-level width	trsl					10			μs

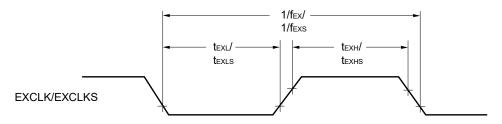
(Note and Remark are listed on the next page.)

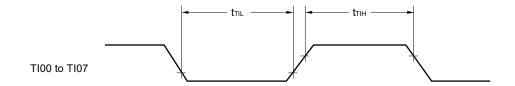

Note Specification under conditions where the duty factor is 50%.

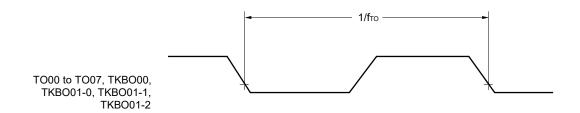
Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn)

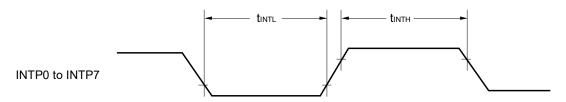
m: Unit number (m = 0), n: Channel number (n = 0 to 7))


Minimum Instruction Execution Time during Main System Clock Operation

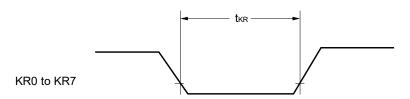

AC Timing Test Points

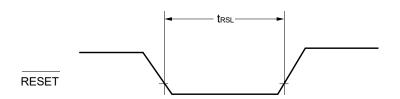


External System Clock Timing

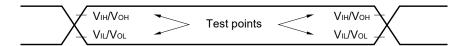


TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing



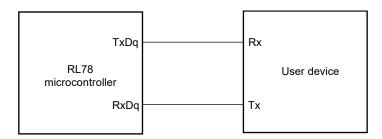
RESET Input Timing

3.5 Peripheral Functions Characteristics

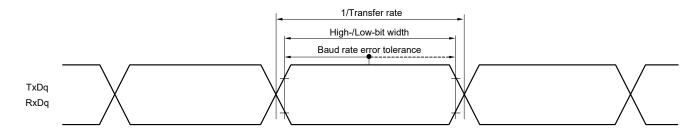
AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
Transfer rate ^{Note}				fмск/12	bps
		Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps


Note Transfer rate in the SNOOZE mode is 4800 bps only.

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed	d main) Mode	Unit
			MIN.	MAX.	
SCKp cycle time	tkcy1	2.7 V ≤ V _{DD} ≤ 5.5 V	334 ^{Note 1}		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V	500 ^{Note 1}		ns
SCKp high-/low-level width	tкн1,	4.0 V ≤ V _{DD} ≤ 5.5 V	tkcy1/2 - 24		ns
	t _{KL1}	2.7 V ≤ V _{DD} ≤ 5.5 V	tkcy1/2 - 36		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V	tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) ^{Note 2}	tsıĸ1	4.0 V ≤ V _{DD} ≤ 5.5 V	66		ns
		2.7 V ≤ V _{DD} ≤ 5.5 V	66		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V	113		ns
SIp hold time (from SCKp↑)Note 3	t _{KSI1}		38		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	t _{KSO1}	C = 30 pF ^{Note 5}		50	ns

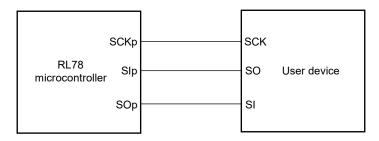
- Notes 1. The value must also be equal to or more than 4/fclk.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

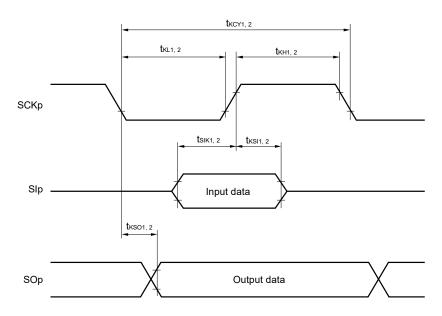
Remarks 1. p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM and POM numbers (g = 0, 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

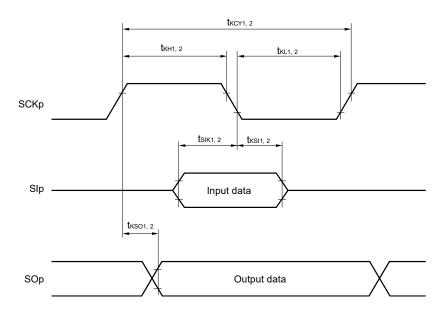
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$


Parameter	Symbol	Cond	ditions	HS (high-speed	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time ^{Note 5}	tkcy2	4.0 V ≤ V _{DD} ≤ 5.5 V	fmck > 20 MHz	16/fмск		ns
			f _{MCK} ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ V _{DD} ≤ 5.5 V	fmck > 16 MHz	16/fмск		ns
			f _{MCK} ≤ 16 MHz	12/fмск		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V		12/fмск and 1000		ns
SCKp high-/low-level width	tkH2, tkL2	4.0 V ≤ V _{DD} ≤ 5.5 V		tксү2/2-14		ns
		2.7 V ≤ V _{DD} ≤ 5.5 V		tkcy2/2-16		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V		tkcy2/2-36		ns
SIp setup time	tsik2	2.7 V ≤ V _{DD} ≤ 5.5 V		1/fмск+40		ns
(to SCKp↑) ^{Note 1}		2.4 V ≤ V _{DD} ≤ 5.5 V		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	t _{KSI2}			1/fмск+62		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note 4}	2.7 V ≤ V _{DD} ≤ 5.5 V		2/fмск+66	ns
SOp output ^{Note 3}			2.4 V ≤ V _{DD} ≤ 5.5 V		2/fмск+113	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

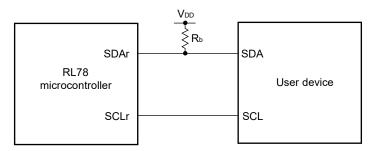
Remarks 1. p: CSI number (p = 00, 10)

2. m: Unit number, n: Channel number (mn = 00, 02)

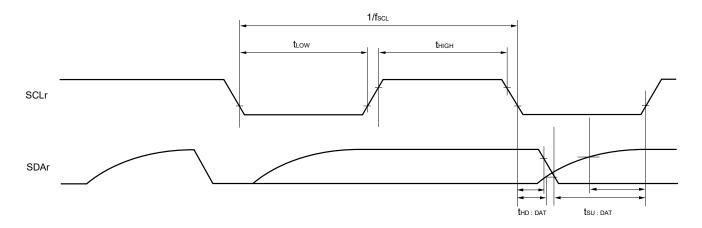
(4) During communication at same potential (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed	d main) Mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		400 ^{Note 1}	kHz
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1200		ns
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	4600		ns
Hold time when SCLr = "H"	tнібн	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1200		ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	4600		ns
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/f _{MCK} + 220 ^{Note 2}		ns
		2.4 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1/f _{MCK} + 580 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	770	ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	0	1420	ns


Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remarks 1. R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - 2. r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate		Reception	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		fmck/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		fmck/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		fmck/12 ^{Note}	bps
			Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps

Note Transfer rate in SNOOZE mode is 4800 bps only.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate	ransfer rate Transmiss		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 1.4$ k Ω , $V_b = 2.7$ V		2.0 ^{Note 2}	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 ^{Note 4}	Mbps
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		Note 5	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 ^{Note 6}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V ≤ V_{DD} ≤ 5.5 V and 2.7 V ≤ V_D ≤ 4.0 V

$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times ln\ (1-\frac{2.2}{V_b})\} \times 3} \ [bps] \end{aligned}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 1** above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V ≤ V_{DD} < 4.0 V and 2.3 V ≤ V_b ≤ 2.7 V

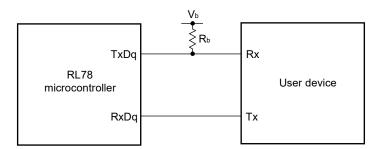
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln \ (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \text{ln } (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

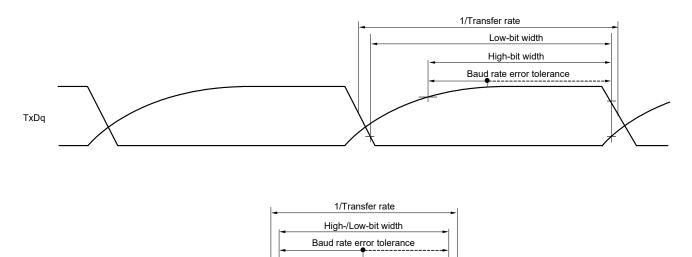
Notes 5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{1.5}{V_b})\} \times 3} \text{[bps]}$$

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

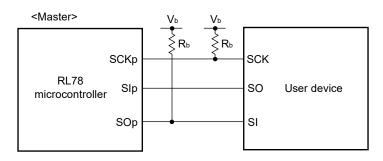
RxDq

UART mode bit width (during communication at different potential) (reference)

Remarks 1. R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage

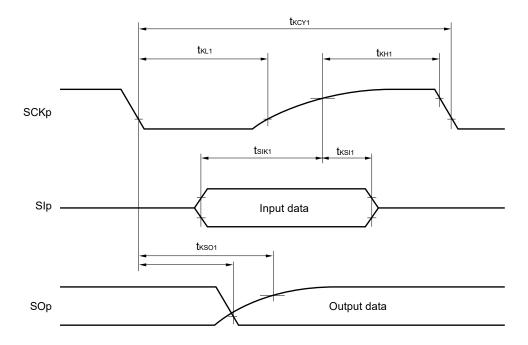
- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

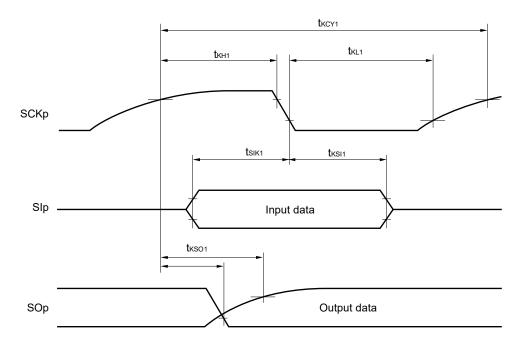

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcY1	tkcy1 ≥ 4/fclk	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$	600		ns
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	1000		ns
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_b \le 1.8 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	2300		ns
SCKp high-level width	t кн1	4.0 V ≤ V _{DD} ≤ C _b = 30 pF, F	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V},$ $R_b = 1.4 \text{ k}\Omega$	tkcy1/2 - 150		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		tkcy1/2 - 340		ns
		2.4 V ≤ V _{DD} < C _b = 30 pF, F	$< 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $R_b = 5.5 \text{ k}Ω$	tксү1/2 — 916		ns
SCKp low-level width	t _{KL1}	4.0 V ≤ V _{DD} ≤ C _b = 30 pF, F	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V},$ $R_b = 1.4 \text{ k}\Omega$	tkcy1/2 - 24		ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, F	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $R_b = 2.7 \text{ k}Ω$	tkcy1/2 - 36		ns
		2.4 V ≤ V _{DD} < C _b = 30 pF, F	$< 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $R_b = 5.5 \text{ k}Ω$	tkcy1/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	4.0 V ≤ V _{DD} ≤ C _b = 30 pF, F	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V},$ $R_b = 1.4 \text{ k}\Omega$	162		ns
		$2.7 \text{ V} \leq \text{V}_{DD} \leq \text{C}_b = 30 \text{ pF, F}$	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $R_b = 2.7 \text{ k}\Omega$	354		ns
		2.4 V ≤ V _{DD} < C _b = 30 pF, F	$< 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $R_b = 5.5 \text{ k}Ω$	958		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksii	$4.0 \text{ V} \le \text{V}_{DD} \le C_b = 30 \text{ pF, F}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V},$ $\text{R}_b = 1.4 \text{ k}\Omega$	38		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		38		ns
		2.4 V ≤ V _{DD} < C _b = 30 pF, F	$< 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $R_b = 5.5 \text{ k}\Omega$	38		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$4.0 \text{ V} \le \text{V}_{DD} \le C_b = 30 \text{ pF, F}$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V},$ $R_b = 1.4 \text{ k}\Omega$		200	ns
		$2.7 \text{ V} \leq \text{V}_{DD} \leq \text{C}_{b} = 30 \text{ pF, F}$	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $R_b = 2.7 \text{ k}\Omega$		390	ns
		$2.4 \text{ V} \leq \text{V}_{DD} \leq C_b = 30 \text{ pF, F}$	$< 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $R_b = 5.5 \text{ k}Ω$		966	ns

(Note, ${\bf Caution}$ and ${\bf Remark}$ are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) (T_A = −40 to +105°C, 2.4 V ≤ V_{DD} ≤ 5.5 V, V_{SS} = 0 V)


Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, $ $ C_{b} = 20 \text{ pF}, \ R_{b} = 1.4 \text{ k}\Omega $	88		ns
			88		ns
		$ 2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}, \\ C_{b} = 30 \text{ pF}, \ R_{b} = 5.5 \text{ k}\Omega $	220		ns
SIp hold time (from SCKp↓) ^{Note 2}	t _{KSI1}	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, $ $ C_{b} = 20 \text{ pF}, R_{b} = 1.4 \text{ k}\Omega $	38		ns
			38		ns
			38		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, $ $ C_{b} = 20 \text{ pF}, R_{b} = 1.4 \text{ k}\Omega $		50	ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		50	ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$		50	ns

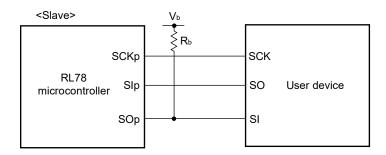
CSI mode connection diagram (during communication at different potential)



- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

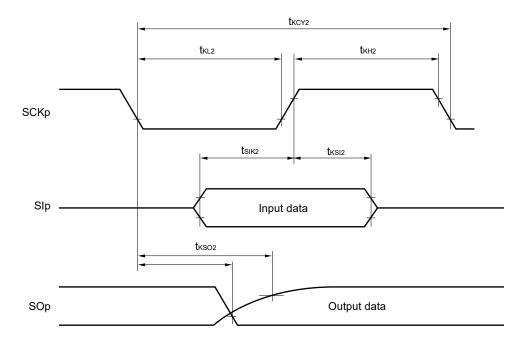
CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

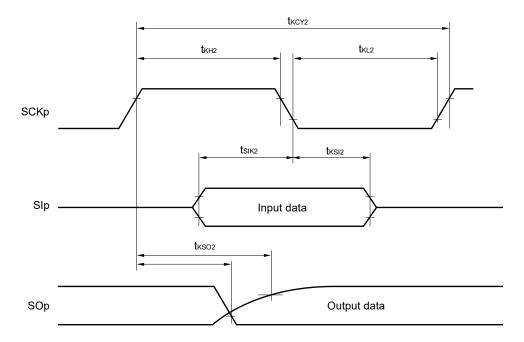

Remark p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	(Conditions	HS (high-spec	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	4.0 V ≤ V _{DD} ≤ 5.5 V,	20 MHz < f _{MCK}	24/fмск		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмcк ≤ 20 MHz	20/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск		ns
			f _{MCK} ≤ 4 MHz	12/fмск		ns
		2.7 V ≤ V _{DD} < 4.0 V,	20 MHz < fmck	32/fмск		ns
		$2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$	16 MHz < f _{MCK} ≤ 20 MHz	28/fмск		ns
			8 MHz < f _{MCK} ≤ 16 MHz	24/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск		ns
			f _{MCK} ≤ 4 MHz	12/fмск		ns
		2.4 V ≤ V _{DD} < 3.3 V,	20 MHz < fmck	72/fмск		ns
		$1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}$	16 MHz < fмck ≤ 20 MHz	64/ƒмск		ns
			8 MHz < f _{MCK} ≤ 16 MHz	52/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	32/fмск		ns
			f _{MCK} ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	t кн2, t кL2	4.0 V ≤ V _{DD} ≤ 5.5 V	, $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	tkcy2/2 - 24		ns
		2.7 V ≤ V _{DD} < 4.0 V	$1, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	tkcy2/2 - 36		ns
		2.4 V ≤ V _{DD} < 3.3 V	$1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$	tkcy2/2 - 100		ns
SIp setup time	tsik2	4.0 V ≤ V _{DD} ≤ 5.5 V	, $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		2.7 V ≤ V _{DD} < 4.0 V	$1, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$	1/f _{MCK} + 40		ns
		2.4 V ≤ V _{DD} < 3.3 V	$1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$	1/fмск + 60		ns
SIp hold time	t _{KSI2}	4.0 V ≤ V _{DD} ≤ 5.5 V	, $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	1/fmck + 62		ns
(from SCKp↑) ^{Note 3}		2.7 V ≤ V _{DD} ≤ 4.0 V	, $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$	1/fmck + 62		ns
		2.4 V ≤ V _{DD} ≤ 3.3 V	, $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$	1/fmck + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 1.4$, 2.7 V \leq V _b \leq 4.0 V, 4 k Ω		2/fмск + 240	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ C}$	$V_{b} \le 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$ $V_{b} \le 2.7 \text{ V},$		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 5.3 \text{ N}$, 1.6 V ≤ V _b ≤ 2.0 V, 5 kΩ		2/fмск + 1146	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)


CSI mode connection diagram (during communication at different potential)


- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. $R_b[\Omega]$: Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage

- 2. p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn) m: Unit number, n: Channel number (mn = 00, 02))

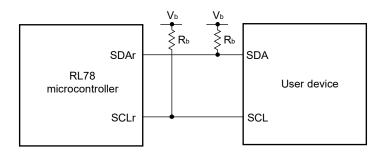
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	HS (high-spe	eed main) Mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, $ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega $		400 ^{Note 1}	kHz
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		400 ^{Note 1}	kHz
		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.8 \text{ k}Ω$		100 ^{Note 1}	kHz
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		100 ^{Note 1}	kHz
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLOW	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, $ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega $	1200		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1200		ns
		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.8 \text{ k}Ω$	4600		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	4600		ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$	4650		ns
Hold time when SCLr = "H"	tнідн	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, $ $ C_b = 50 \text{ pF}, \ R_b = 2.7 \text{ k}\Omega $	620		ns
			500		ns
		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.8 \text{ k}\Omega$	2700		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	2400		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.3 \text{ V}, 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	1830		ns

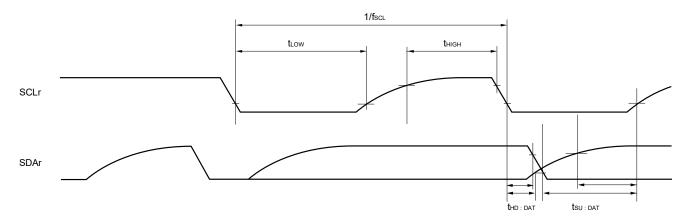
(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	d main) Mode	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ 4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, $ $ C_{\text{b}} = 50 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega $	1/f _{MCK} + 340 ^{Note 2}		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	1/f _{MCK} + 340 ^{Note 2}		ns
		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.8 \text{ k}Ω$	1/f _{MCK} + 760 ^{Note 2}		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	1/f _{MCK} + 760 ^{Note 2}		ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$	1/f _{MCK} + 570 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	770	ns
			0	770	ns
		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.8 \text{ k}Ω$	0	1420	ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	0	1420	ns
		$ 2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega $	0	1215	ns


Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

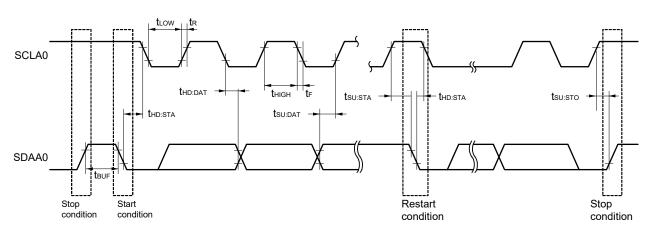
Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02)

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS	(high-spee	ed main) M	lode	Unit
			Standar	d Mode	Fast		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fcLK≥ 3.5 MHz	_	_	0	400	kHz
		Normal mode: fc∟k≥ 1 MHz	0	100	_	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	tLow		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

 $\label{eq:cb} \begin{aligned} \text{Standard mode:} \quad & C_b = 400 \text{ pF}, \, R_b = 2.7 \text{ k}\Omega \\ \text{Fast mode:} \quad & C_b = 320 \text{ pF}, \, R_b = 1.1 \text{ k}\Omega \end{aligned}$

IICA serial transfer timing

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AV _{REFP} Reference voltage (–) = AV _{REFM}	Reference voltage (+) = V _{DD} Reference voltage (–) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (–) = AV _{REFM}
ANI0, ANI1	_	See 3.6.1 (2) .	See 3.6.1 (3) .
ANI16 to ANI25	See 3.6.1 (1) .		
Internal reference voltage Temperature sensor output voltage	See 3.6.1 (1) .		-

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ V _{DD} ≤ 5.5 V		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.125		39	μs
		Target pin: ANI16 to ANI25	2.7 V ≤ V _{DD} ≤ 5.5 V	3.1875		39	μs
			2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
		10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.375		39	μs
		Target pin: Internal reference	2.7 V ≤ V _{DD} ≤ 5.5 V	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	E _F s	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	2.4 V ≤ V _{DD} ≤ 5.5 V			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	2.4 V ≤ V _{DD} ≤ 5.5 V			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI25		0		AVREFP	V
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode))		V _{BGR} Note 4			V
		Temperature sensor output vol (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-	· ·	,	V _{TMPS25} Note 4		V

(Notes are listed on the next page.)

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add $\pm 0.2\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ± 2 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pins: ANI0, ANI1, ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = V_{DD}, \text{ Reference voltage (-)} = V_{SS})$

Parameter	Symbol	Condition	ıs	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.125		39	μs
		Target pin:	2.7 V ≤ V _{DD} ≤ 5.5 V	3.1875		39	μs
		ANI0, ANI1, ANI16 to ANI25	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
		10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.375		39	μs
			2.7 V ≤ V _{DD} ≤ 5.5 V	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Full-scale errorNotes 1, 2	Ers	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±4.0	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±2.0	LSB
Analog input voltage	Vain	ANI0, ANI1, ANI16 to ANI25		0		VDD	V
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode))			V _{BGR} Note 3		
		Temperature sensor output vo (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high	· ·	V _{TMPS25} Note 3			V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

(3) When reference voltage (+) = internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

(T_A = -40 to +105°C, 2.4 V ≤ V_{DD} ≤ 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}Note 3,

Reference voltage (-) = AVREFMNote 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Integral linearity errorNote 1	ILE	8-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±2.0	LSB
Differential linearity errorNote 1	DLE	8-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the AVREFM MAX. value. Integral linearity error: Add ±0.5 LSB to the AVREFM MAX. value.

Differential linearity error: Add ±0.2 LSB to the AVREFM MAX. value.

3.6.2 Temperature sensor/internal reference voltage characteristics

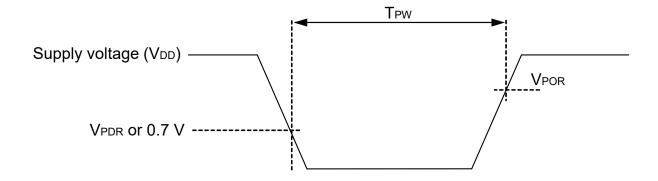
(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference output voltage	V _{BGR}	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvтмрs	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs

3.6.3 Comparator

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		V _{DD} – 1.4	V
	Ivcmp			-0.3		V _{DD} + 0.3	٧
Output delay	td	VDD = 3.0 V Input slew rate > 50 mV/µs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode window mode),	0.66V _{DD}	0.76V _{DD}	0.86V _{DD}	>
Low-electric-potential reference voltage	VTW-	Comparator high-speed mode window mode),	0.14V _{DD}	0.24V _{DD}	0.34V _{DD}	٧
Operation stabilization wait time	tсмр			100			μs
Internal reference output voltage ^{Note}	V _{BGR}	2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-	speed main) mode	1.38	1.45	1.50	V


Note Cannot be used in subsystem clock operation and STOP mode.

3.6.4 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POR}	The power supply voltage is rising.	1.45	1.51	1.57	V
	V _{PDR}	The power supply voltage is falling.	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	T _{PW}		300			μs

Note This is the time required for the POR circuit to execute a reset operation when VDD falls below VPDR. When the microcontroller enters STOP mode and when the main system clock (fmain) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when VDD falls below 0.7 V and when VDD rises to VPOR or higher.

RENESAS

3.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	When power supply rises	3.90	4.06	4.22	V
voltage			When power supply falls	3.83	3.98	4.13	V
		V _{LVD1}	When power supply rises	3.60	3.75	3.90	V
			When power supply falls	3.53	3.67	3.81	V
		V _{LVD2}	When power supply rises	3.01	3.13	3.25	V
			When power supply falls	2.94	3.06	3.18	V
		V _{LVD3}	When power supply rises	2.90	3.02	3.14	٧
			When power supply falls	2.85	2.96	3.07	V
		V _{LVD4}	When power supply rises	2.81	2.92	3.03	V
			When power supply falls	2.75	2.86	2.97	>
		V _{LVD5}	When power supply rises	2.71	2.81	2.92	V
			When power supply falls	2.64	2.75	2.86	V
		V _{LVD6}	When power supply rises	2.61	2.71	2.81	٧
			When power supply falls	2.55	2.65	2.75	V
		V _{LVD7}	When power supply rises	2.51	2.61	2.71	V
			When power supply falls	2.45	2.55	2.65	V
Minimum pu	lse width	t _L w		300			μs
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVD5}	VPOC2, VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.64	2.75	2.86	V
mode	V _{LVD4}	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	٧
	V _{LVD3}	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	V _{LVD0}	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

3.6.6 Supply voltage rise time

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} rise slope	SV _{DD}				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 LCD Characteristics

3.7.1 External resistance division method

(1) Static display mode

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.0		V _{DD}	V

(2) 1/2 bias method, 1/4 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.7		V _{DD}	V

(3) 1/3 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.5		V _{DD}	V

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} =	0.47 μF	2 VL1 – 0.10	2 V _{L1}	2 VL1	V
Tripler output voltage	V _{L4}	C1 to C4 ^{Note 1} =	0.47 μF	3 V _{L1} – 0.15	3 V _{L1}	3 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between V_{L4} and GND

$$C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$$

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	٧
		= 0.47 µF ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	٧
			VLCD = 08H	1.10	1.20	1.28	٧
			VLCD = 09H	1.15	1.25	1.33	٧
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	V _{L2}	C1 to C5 ^{Note 1} =	0.47 μF	2 V _{L1} – 0.08	2 V _{L1}	2 V _{L1}	٧
Tripler output voltage	V _{L3}	C1 to C5 ^{Note 1} =	0.47 μF	3 V _{L1} – 0.12	3 V _{L1}	3 V _{L1}	٧
Quadruply output voltage	V _{L4}	C1 to C5 ^{Note 1} =	0.47 μF	4 V _{L1} – 0.16	4 V _{L1}	4 V _{L1}	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between VL3 and GND
- C5: A capacitor connected between V_{L4} and GND
- $C1 = C2 = C3 = C4 = C5 = 0.47 \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

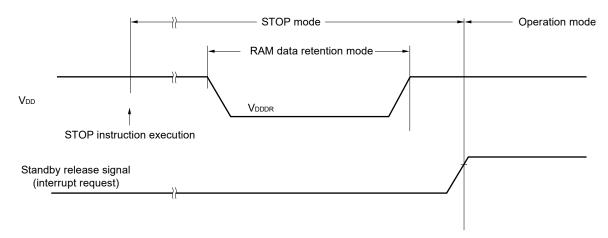
3.7.3 Capacitor split method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{L4} voltage	V _{L4}	C1 to C4 = 0.47 µF ^{Note 2}		V _{DD}		V
V _{L2} voltage	V _{L2}	C1 to C4 = 0.47 µF ^{Note 2}	2/3 VL4 -	2/3 V _{L4}	2/3 V _{L4} +	V
			0.1		0.1	
V _{L1} voltage	V _{L1}	C1 to C4 = 0.47 µF ^{Note 2}	1/3 VL4 -	1/3 V _{L4}	1/3 V _{L4} +	V
			0.1		0.1	
Capacitor split wait timeNote 1	towait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).


- 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between V_{L1} and GND
 - C3: A capacitor connected between V_{L2} and GND
 - C4: A capacitor connected between V_{L4} and GND
 - C1 = C2 = C3 = C4 = 0.47 pF±30 %

3.8 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.9 Flash Memory Programming Characteristics

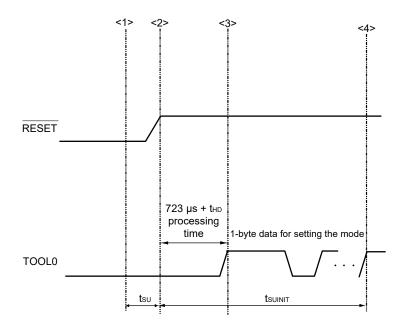
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	2.4 V ≤ VDD ≤ 5.5 V	1		24	MHz
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years TA = 85°C Note 4	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C Note 4	100,000			
		Retained for 20 years T _A = 85°C Note 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.
 - **4.** This temperature is the average value at which data are retained.

Remark When updating data multiple times, use the flash memory as one for updating data.

3.10 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.11 Timing Specifications for Switching Flash Memory Programming Modes

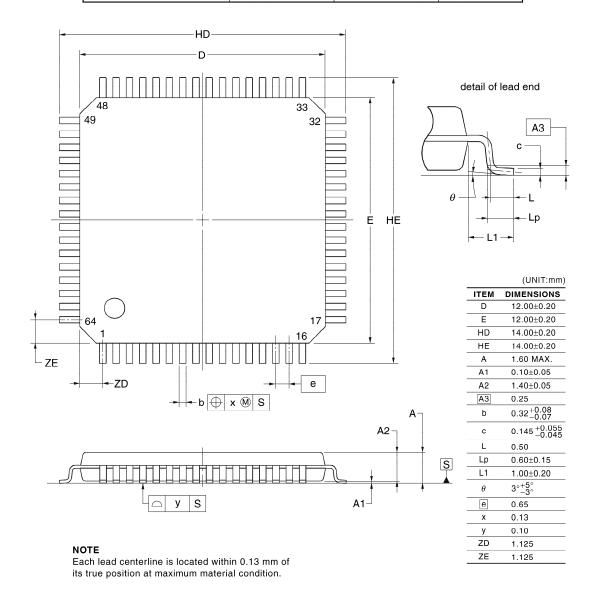
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

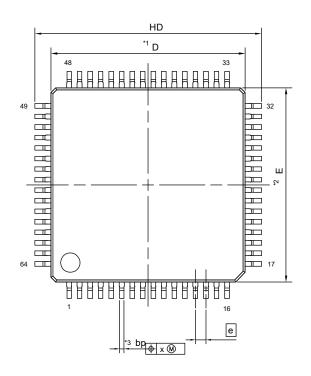
tsu: Time to release the external reset after the TOOL0 pin is set to the low level

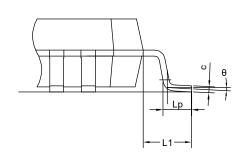

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

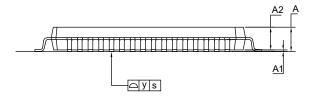
4. PACKAGE DRAWINGS

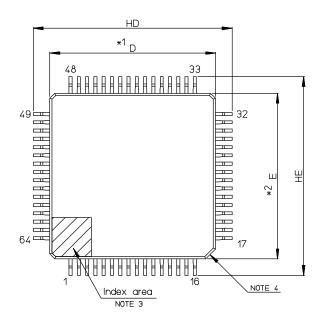
4.1 64-pin Products

R5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA, R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA

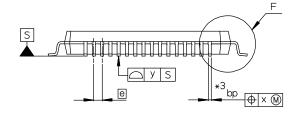

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51


©2012 Renesas Electronics Corporation. All rights reserved.


JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP64-12x12-0.65	PLQP0064JB-A	0.50

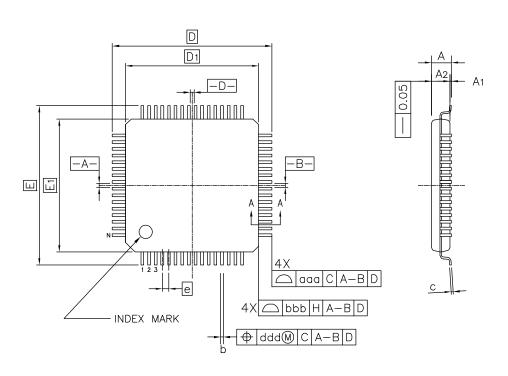

NOTE
1.DIMENSIONS "*1" AND "*2"DO NOT INCLUDE MOLD FLASH.
2.DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.

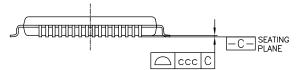
Reference Symbol	Dimension in Millimeters			
	Min.	Nom.	Max.	
Е	11.90	12.00	12.10	
D	11.90	12.00	12.10	
A ₂	_	1.40	_	
H _D	13.80	14.00	14.20	
H _E	13.80	14.00	14.20	
Α	_	_	1.70	
A ₁	0.05	_	0.15	
Lp	0.45	0.60	0.75	
L1	_	1.00	_	
b _p	0.27	0.32	0.37	
С	0.09	_	0.20	
е	_	0.65	_	
	0.00	3.50	8.00	
Х	_	_	0.08	
у	_	_	0.08	

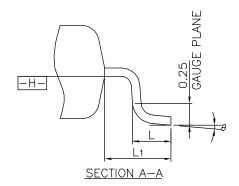

R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB, R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB, R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB

	JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
Γ	P-LFQFP64-10×10-0.50	PLQP0064KB-C		0.3g

<R>

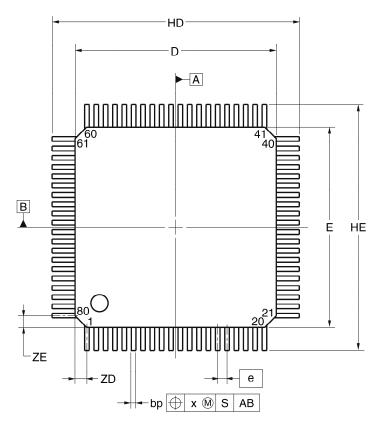

- DIMENSIONS '*1' AND '*2' DO NOT INCLUDE MOLD FLASH.
 DIMENSION '*3' DOES NOT INCLUDE TRIM OFFSET.
 PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
 LOCATED WITHIN THE HATCHED AREA.
 CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. 2. 3.

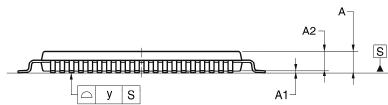

∀	A2			0.25	0
	A			1	7,7
				_ Lp	
				L1_	_
		Deta	il F		

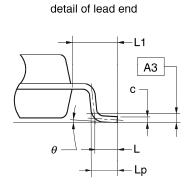

Reference	Dimens	ion in Mil	limeters
Symbol	Min	Nom	Max
D	9.9	10.0	10.1
Е	9.9	10.0	10.1
A2		1.4	_
HD	11.8	12.0	12.2
HE	11.8	12.0	12.2
А		_	1.7
A1	0.05		0.15
bp	0.15	0.20	0.27
С	0.09		0.20
θ	0 "	3.5	8 "
е		0.5	
×			0.08
У			0.08
Lp	0.45	0.6	0.75
L1		1.0	

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP064-10x10-0.50	PLQP0064KL-A	0.36

<R>

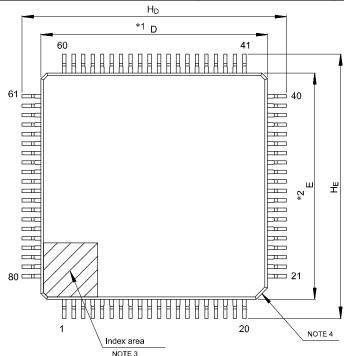



	Dimension in Millimeters			
Reference Symbol	Difficition		IIIIC CCI 3	
Syllibol	Min.	Nom.	Max.	
А	_	-	1.60	
A ₁	0.05	ı	0.15	
A_2	1.35	1.40	1.45	
D	_	12.00	-	
D_1	1	10.00	1	
Е	_	12.00	-	
E ₁	_	10.00	-	
Ν	-	64	-	
е	_	0.50	-	
b	0.17	0.22	0.27	
С	0.09	-	0.20	
θ	0,	3.5°	7°	
L	0.45	0.60	0.75	
L1	_	1.00	-	
aaa	_	_	0.20	
ррр	_	_	0.20	
ССС	_	-	0.08	
ddd	_	_	0.08	


4.2 80-pin Products

R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA, R5F10WMEAFA, R5F10WMFAFA, R5F10WMGAFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

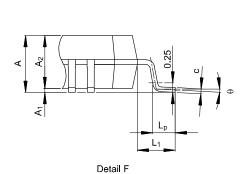


Dimens	sion in Mill	imeters
Min	Nom	Max
13.80	14.00	14.20
13.80	14.00	14.20
17.00	17.20	17.40
17.00	17.20	17.40
		1.70
0.05	0.125	0.20
1.35	1.40	1.45
	0.25	
0.26	0.32	0.38
0.10	0.145	0.20
	0.80	
0.736	0.886	1.036
1.40	1.60	1.80
0°	3°	8°
	0.65	
		0.13
		0.10
	0.825	
	0.825	
	Min 13.80 13.80 17.00 17.00 0.05 1.35 0.26 0.10 0.736 1.40	13.80 14.00 13.80 14.00 17.00 17.20 17.00 17.20

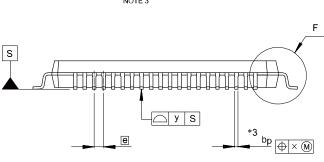
<R>

R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB, R5F10WMEAFB, R5F10WMFAFB, R5F10WMGAFB, R5F10WMAGFB, R5F10WMCGFB, R5F10WMCGFB, R5F10WMGGFB, R5WMGGFB, R5WM

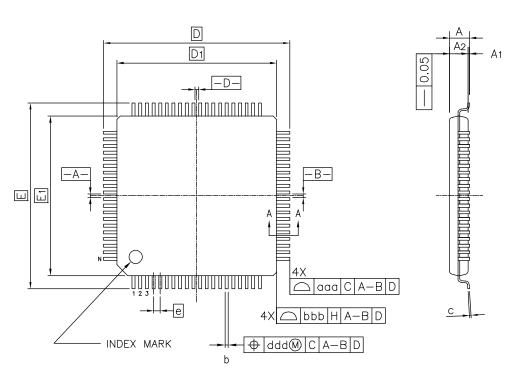
JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-LFQFP80-12x12-0.50	PLQP0080KB-B	<u> </u>	0.5

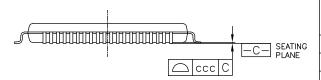


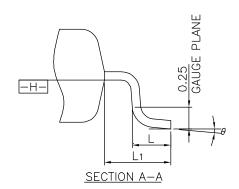
Unit: mm



- 1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH.
- 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.
- 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA.
- 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.


Reference	Dimensions in millimeters			
Symbol	Min	Nom	Max	
D	11.9	12.0	12.1	
E	11.9	12.0	12.1	
A ₂	_	1.4	_	
H _D	13.8	14.0	14.2	
HE	13.8	14.0	14.2	
Α	_	_	1.7	
A ₁	0.05	_	0.15	
bp	0.15	0.20	0.27	
С	0.09	_	0.20	
θ	0°	3.5°	8°	
е	_	0.5	_	
х	_	_	0.08	
у	_	_	0.08	
Lp	0.45	0.6	0.75	
L ₁	_	1.0	_	


© 2017 Renesas Electronics Corporation. All rights reserved.



JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP80-12x12-0.50	PLQP0080KJ-A	0.49

<R>

Reference Symbol	Dimension in Millimeters			
	Min.	Nom.	Max.	
А	_	_	1.60	
A ₁	0.05	_	0.15	
A ₂	1.35	1.40	1.45	
D	_	14.00	-	
D ₁	_	12.00	-	
Е	_	14.00	1	
E ₁	_	12.00	-	
N	_	80	1	
е	_	0.50	_	
b	0.17	0.22	0.27	
С	0.09	_	0.20	
θ	0°	3.5°	7°	
L	0.45	0.60	0.75	
L	-	1.00	1	
aaa	_	_	0.20	
bbb		_	0.20	
ccc	_	_	0.08	
ddd	_	_	0.08	

RL78/L13 Data Sheet

		Description		
Rev.	Date	Page	Summary	
0.01	Apr 13, 2012	-	First Edition issued	
0.02	Oct 31, 2012	-	Change of the number of segment pins	
			• 64-pin products: 36 pins	
2.10	Aug 12, 2016	1	80-pin products: 51 pins Multiplication of 60 physics of 40 bit times and 40 bit times (RD00 (III)) in 4.4. Find the second of 40 bi	
2.10	Aug 12, 2010	5	Modification of features of 16-bit timer and 16-bit timer KB20 (IH) in 1.1 Features	
			Addition of product name (RL78/L13) and description (Top View) in 1.3.1 64-pin products	
		6	Addition of product name (RL78/L13) and description (Top View) in 1.3.2 80-pin products	
		10	Modification of functional overview of main system clock in 1.6 Outline of Functions	
		15	Modification of description in Absolute Maximum Ratings (3/3)	
		17, 18	Modification of description in 2.3.1 Pin characteristics	
	38	Modification of remark 3 in 2.5.1 (4) During communication at same potential (simplified I ² C mode)		
		68	Modification of the title and note, and addition of caution in 2.8 RAM Data Retention Characteristics	
		70	Addition of Remark	
		74	Modification of description in Absolute Maximum Ratings (T _A = 25 °C) (3/3)	
		76	Modification of description in 3.3.1 Pin characteristics	
		95	Modification of remark 3 in 3.5.1 (4) During communication at same potential (simplified I ² C mode)	
		118	Modification of the title and note, and addition of caution in 3.8 RAM Data Retention Characteristics	
2.20	Sep 17, 2021	3 and 4	Modification of Figure 1-1. Part Number, Memory Size, and Package of RL78/L13	
		22	Modification of 2.3.1 Pin characteristics, ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, 1.6 V \leq V _{DD} \leq 5.5 V, V _{SS} = 0 V)	
		61	Modification of 2.6.1 A/D converter characteristics ($T_A = -40$ to +85°C, 1.6 V \leq AV _{REFP} \leq V _{DD} \leq 5.5 V, V _{SS} = 0 V, Reference voltage (+) = AV _{REFP} , Reference voltage (-) = AV _{REFM} = 0 V)	
		74	Modification of 2.11 Timing Specifications for Switching Flash Memory Programming Modes	
		75	Deletion of G: INDUSTRIAL APPLICATIONS from the title of CHAPTER 3	
		115	3. 5. 2 Serial Interface IICA (T_A = -40 to +105°C, 2.4 V ≤ V_{DD} ≤ 5.5 V, V_{SS} = 0 V): Deletion of Note 3 in the table	
	116	Modification of 3.6.1 A/D converter characteristics ($T_A = -40$ to +105°C, 2.4 V \leq AV _{REFP} \leq V _{DD} \leq 5.5 V, V _{SS} = 0 V, Reference voltage (+) = AV _{REFP} , Reference voltage (–) = AV _{REFM} = 0 V)		
		129	Modification of 3.11 Timing Specifications for Switching Flash Memory Programming Modes	
2.21	Sep 9, 2022	4	Modification of Figure 1-1. Part Number, Memory Size, and Package of RL78/L13	
		131	Addition of package drawing (PLQP0064JB-A).	
		132	Modification of package drawing (PLQP0064KB-C).	
		133	Addition of package drawing (PLQP0064KL-A).	
		135	Modification of package drawing (PLQP0080KB-B).	
		136	Addition of package drawing (PLQP0080KJ-A).	
		l		

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

- 1. Precaution against Electrostatic Discharge (ESD)
 - A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
- 2. Processing at power-on
 - The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
- 3. Input of signal during power-off state
 - Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
- 4. Handling of unused pins
 - Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
- 5. Clock signals
 - After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses
 - Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
- 8. Differences between products
 - Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

```
R5F10WLCGFB#30 R5F10WMDAFB#30 R5F10WMFAFB#50 R5F10WMFAFB#30 R5F10WMGAFB#50
R5F10WLEGFB#50 R5F10WLDAFB#30 R5F10WLGAFA#30 R5F10WLDAFA#30 R5F10WLCAFB#30
R5F10WMFAFA#30 R5F10WLAAFA#30 R5F10WLDAFB#50 R5F10WMDAFA#30 R5F10WMGAFA#30
R5F10WMEAFA#30 R5F10WLFAFA#30 R5F10WLCAFA#30 R5F10WLFAFB#30 R5F10WMGAFB#30
R5F10WMAAFB#30 R5F10WMAAFB#50 R5F10WMAGFB#30 R5F10WMEAFB#30 R5F10WMCAFA#30
R5F10WLAAFB#50 R5F10WLCAFB#50 R5F10WLEAFB#50 R5F10WMAAFA#50 R5F10WLGAFB#50
R5F10WLCGFB#50 R5F10WLGAFB#30 R5F10WMAAFA#30 R5F10WLAAFB#30 R5F10WLEAFA#30
R5F10WLEGFB#30 R5F10WLEAFA#50 R5F10WLGGFB#30 R5F10WMCAFA#50 R5F10WMCAFB#30
R5F10WLEAFB#30 R5F10WMEAFB#50 R5F10WLAAFA#50 R5F10WMCAFB#50 R5F10WLFAFA#50
R5F10WLFGFB#30 R5F10WLFGFB#50 R5F10WLAGFB#30 R5F10WLAGFB#50 R5F10WLCAFA#50
R5F10WLDAFA#50 R5F10WLDGFB#30 R5F10WLDGFB#50 R5F10WMGGFB#50 R5F10WMEGFB#50
R5F10WMFAFA#50 R5F10WMFGFB#30 R5F10WMFGFB#50 R5F10WMGAFA#50 R5F10WMGGFB#30
R5F10WMDAFA#50 R5F10WMDAFB#50 R5F10WMDGFB#30 R5F10WMDGFB#50 R5F10WMEAFA#50
R5F10WMEGFB#30 R5F10WLFAFB#50 R5F10WLGAFA#50 R5F10WLGGFB#50 R5F10WMAGFB#50
R5F10WMCGFB#30 R5F10WMCGFB#50 R5F10WLAAFB#10 R5F10WLCAFA#10 R5F10WLCAFB#10
R5F10WLCGFB#10 R5F10WLDAFA#10 R5F10WMCAFB#10 R5F10WMCAFA#10 R5F10WMCAFB#10
R5F10WMFAFB#10 R5F10WMFGFB#10 R5F10WMGAFA#10 R5F10WMGAFB#10 R5F10WMGGFB#10
R5F10WMAAFA#10 R5F10WMDAFB#10 R5F10WMDGFB#10 R5F10WMEAFA#10 R5F10WMEAFB#10
R5F10WMEGFB#10 R5F10WMFAFA#10 R5F10WLFAFB#10 R5F10WLFGFB#10 R5F10WLGAFA#10
R5F10WLGAFB#10 R5F10WLGGFB#10 R5F10WMDAFA#10 R5F10WLDAFB#10 R5F10WLDGFB#10
```