

ISL32743E

Isolated 3.3V Half-Duplex 40Mbps RS-485 Transceiver

FN8987
Rev. 1.00
Jul 9, 2018

The [ISL32743E](#) is a galvanically isolated high-speed differential bus transceiver, designed for bidirectional data communication on balanced transmission lines. The device uses Giant Magnetoresistance (GMR) as its isolation technology.

The part is available in a 16 Ld SOICW package providing a true 8mm creepage distance.

A unique ceramic/polymer composite barrier provides excellent isolation and 44000 years of barrier life.

The device is compatible with 3V and 5V input supplies, allowing an interface to standard microcontrollers without additional level shifting.

Current limiting and thermal shutdown features protect against output short-circuits and bus contention that may cause excessive power dissipation. Receiver inputs are a full fail-safe design, ensuring a logic high R-output if A/B are floating or shorted.

Applications

- Factory automation
- Building environmental control systems
- Process control networks
- Equipment covered under IEC 61010-1 Edition 3

Features

- 40Mbps data rate
- 2.5kV_{RMS} isolation/600V_{RMS} working voltage
- 3.3V bus
- 20ns propagation delay
- 5ns pulse skew
- 1/5 unit load allows up to 160 devices on the bus
- 50kV/μs (typical), 30kV/μs (minimum) common-mode transient immunity
- 16.5kV ESD protection
- Low EMC footprint
- Thermal shutdown protection
- Temperature range: -40°C to +85°C
- Meets or exceeds ANSI RS-485 and ISO 8482:1987(E)
- True 8mm 16 Ld SOICW packages
- UL 1577 recognized
- VDE V 0884-11 pending

Related Literature

For a full list of related documents, visit our website

- [ISL32743E](#) product page

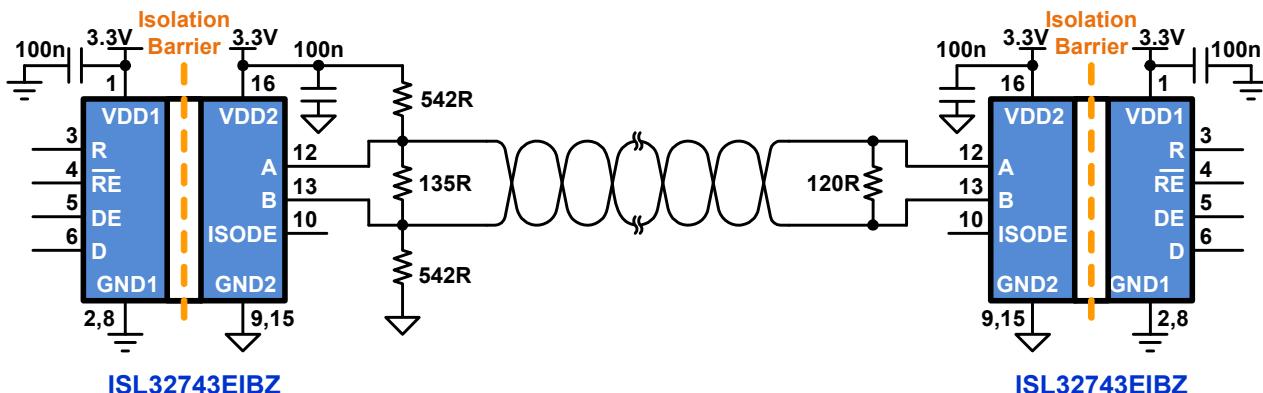
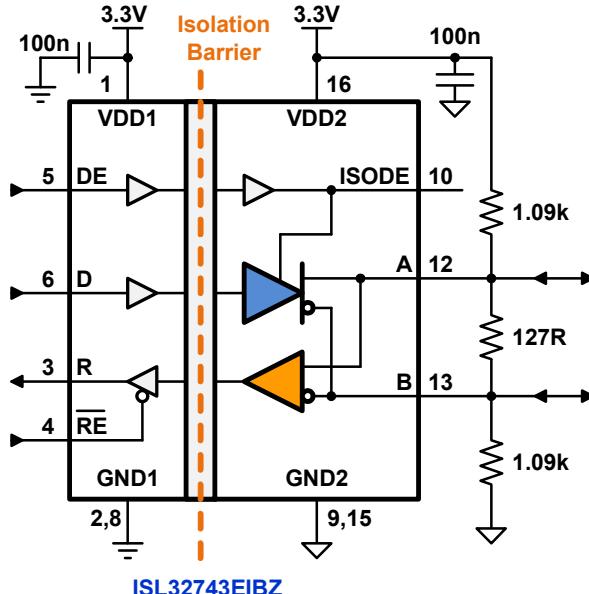



Figure 1. Typical Application

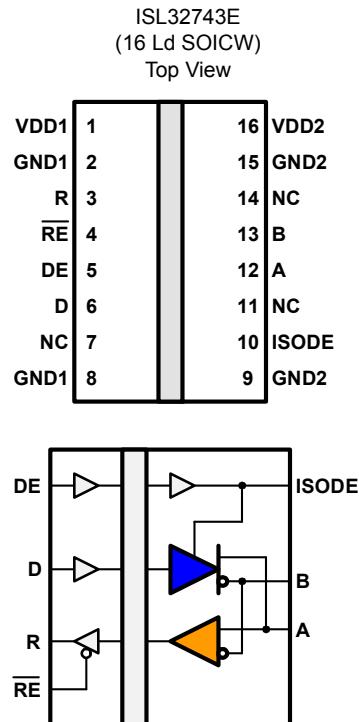
1. Overview

1.1 Typical Operating Circuits

Figure 2. Typical Operating Circuit

1.2 Ordering Information

Part Number <u>(Notes 2, 3)</u>	Part Marking	Temp. Range (°C)	Tape and Reel (Units) <u>(Note 1)</u>	Package (RoHS Compliant)	Pkg. Dwg. #
ISL32743EIBZ	32743EIBZ	-40 to +85	-	16 Ld SOICW	M16.3A
ISL32743EIBZ-T	32743EIBZ	-40 to +85	1k	16 Ld SOICW	M16.3A
ISL32743EIBZ-T7A	32743EIBZ	-40 to +85	250	16 Ld SOICW	M16.3A


Notes:

1. Refer to [TB347](#) for details about reel specifications.
2. Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), refer to the [ISL32743E](#) product information page. For more information about MSL, refer to [TB363](#).

Table 1. Key Differences Between Family of Parts

Part Number	Full/Half Duplex	V _{DD1} (V)	V _{DD2} (V)	Data Rate (Mbps)	Isolation Voltage (kV _{RMS})
ISL32704E	Half	3.0 – 5.5	4.5 – 5.5	4	2.5
ISL32705E	Full	3.0 – 5.5	4.5 – 5.5	4	2.5
ISL32740E	Half	3.0 – 5.5	4.5 – 5.5	40	2.5
ISL32741E	Half	3.0 – 5.5	4.5 – 5.5	40	6
ISL32743E	Half	3.0 – 5.5	3.0 – 3.6	40	2.5
ISL32745E	Full	3.0 – 5.5	4.5 – 5.5	40	6

1.3 Pin Configurations

1.4 Truth Tables

Transmitting				
Inputs		Outputs		
DE	D	ISODE	B	A
1	1	1	0	1
1	0	1	1	0
0	X	0	High-Z	High-Z

Receiving		
Inputs		Output
RE	A-B	RO
0	$V_{AB} \geq -0.05V$	1
0	$-0.05 > V_{AB} > -0.2V$	Undetermined
0	$V_{AB} \leq -0.2V$	0
0	Inputs Open/Shorted	1
1	X	High-Z

1.5 Pin Descriptions

Pin Number	Pin Name	Function
1	VDD1	Input power supply.
2, 8	GND1	Input power supply ground return. Pin 2 is internally connected to Pin 8 (for SOIC package).
3	R	Receiver output: If A-B \geq -50mV, R is high; If A-B \leq -200mV, R is low; R = High if A and B are unconnected (floating) or shorted, or connected to a terminated bus that is not driven.
4	\overline{RE}	Receiver output enable. R is enabled when \overline{RE} is low; R is high impedance when \overline{RE} is high. If the Rx enable function is not required, connect RE directly to GND1.
5	DE	Driver output enable. The driver outputs, A and B, are enabled by bringing DE high. They are high impedance when DE is low. If the Tx enable function is not required, connect DE to VDD1 through a 1k Ω or greater resistor.
6	D	Driver input. A low on D forces output A low and output B high. Similarly, a high on D forces output A high and output B low.
7, 11, 14	NC	No internal connection.
9, 15	GND2	Output power supply ground return. Dual ground pins are connected internally.
10	ISODE	Isolated DE output for use in applications in which the state of the isolated drive enable node needs to be monitored.
12	A	\pm 16.5kV IEC61000 ESD protected RS-485/RS422 level, noninverting receiver input if DE = 0 and noninverting driver output if DE = 1.
13	B	\pm 16.5kV IEC61000 ESD protected RS-485/RS422 level, inverting receiver input if DE = 0 and inverting driver output if DE = 1.
16	VDD2	Output power supply.

2. Specifications

2.1 Absolute Maximum Ratings

Parameter (Note 4)	Minimum	Maximum	Unit
Supply Voltages (Note 7)			
VDD1 to GND1	-0.5	+7	V
VDD2 to GND2		7	V
Input Voltages D, DE, \overline{RE}	-0.5	VDD1 + 0.5	V
Input/Output Voltages			
A, B	-9	+13	V
R	-0.5	VDD1 + 1	V
Short-Circuit Duration A, B	Continuous		V
ESD Rating	See "Electrical Specifications" on page 7		

Note:

4. Absolute Maximum specifications mean the device will not be damaged if operated under these conditions. It does not guarantee performance.

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

2.2 Thermal Information

Thermal Resistance (Typical)	θ_{JA} (°C/W)	θ_{JC} (°C/W)
16 Ld SOICW Package (Notes 5, 6)	43	20

Notes:

5. θ_{JA} is measured in free air with the component soldered to a double-sided board.
 6. For θ_{JC} , the "case temp" location is the center of the package top side.

Parameter	Minimum	Maximum	Unit
Maximum Junction Temperature (Plastic Package)	-55	+150	°C
Maximum Storage Temperature Range	-55	+150	°C
Maximum Power Dissipation		800	mW
Pb-Free Reflow Profile	see TB493		

2.3 Recommended Operation Conditions

Parameter	Minimum	Maximum	Unit
Supply Voltages			
V _{DD1}	3.0	5.5	V
V _{DD2}	3.0	3.6	V
High-Level Digital Input Voltage, V_{IH}			
V _{DD1} = 3.3V	2.4	V _{DD1}	V
V _{DD1} = 5.0V	3.0	V _{DD1}	V
Low-Level Digital Input Voltage, V_{IL}			
V _{DD1}	0	0.8	V
Differential Input Voltage, V _{ID} (Note 8)	-7	12	V

Parameter	Minimum	Maximum	Unit
High-Level Output Current (Driver), I_{OH}		60	mA
High-Level Digital Output Current (Receiver), I_{OL}		8	mA
Low-Level Output Current (Driver), I_{OL}		-60	mA
Low-Level Digital Output Current (Receiver), I_{OL}		-8	mA
Junction Temperature, T_J	-40	+110	°C
Ambient Operating Temperature, T_A	-40	+85	°C
Digital Input Signal Rise and Fall Times, t_{IR}, t_{IF}		DC Stable	

2.4 Electrical Specifications

Test conditions: T_{min} to T_{max} , $V_{DD2} = 3.0V$ to $3.6V$; unless otherwise stated ([Note 7](#)).

Parameter	Symbol	Test Conditions		Min	Typ (Note 11)	Max	Unit
DC Characteristics							
Driver Line Output Voltage (V_A, V_B) (Note 7)	V_O	No load		-	-	V_{DD2}	V
Driver Differential Output Voltage (Note 8)	V_{OD1}	No load		-	-	V_{DD2}	V
Driver Differential Output Voltage (Note 8)	V_{OD2}	$R_L = 54\Omega$		1.5	2.1	V_{DD2}	V
Driver Differential Output Voltage (Notes 8, 12)	V_{OD3}	$R_L = 60\Omega$		1.5	2.0	-	V
Change in Magnitude of Differential Output Voltage (Note 13)	ΔV_{OD}	$R_L = 54\Omega$ or 100Ω		-	0.01	0.20	V
Driver Common-Mode Output Voltage	V_{OC}	$R_L = 54\Omega$ or 100Ω		-	2	2.5	V
Change in Magnitude of Driver Common-Mode Output Voltage (Note 13)	ΔV_{OC}	$R_L = 54\Omega$ or 100Ω		-	0.02	0.20	V
Bus Input Current (A, B) (Notes 10, 14)	I_{IN2}	DE = 0V	$V_{IN} = 12V$		-	220	μA
			$V_{IN} = -7V$	-160			μA
High-Level Input Current (DI, DE, \overline{RE})	I_{IH}	$V_I = 3.5V$		-	-	10	μA
Low-Level Input Current (DI, DE, \overline{RE})	I_{IL}	$V_I = 0.4V$		-10	-	-	μA
Absolute Short-Circuit Output Current	I_{OS}	DE = V_{DD1} , $-7V \leq V_A \text{ or } V_B \leq 12V$		-	-	± 250	mA
Supply Current	I_{DD1}	$V_{DD1} = 5V$		-	4	6	mA
		$V_{DD1} = 3.3V$		-	3	4	mA
Positive-Going Input Threshold Voltage	V_{TH+}	$-7V \leq V_{CM} \leq 12V$		-	-	-50	mV
Negative-Going Input Threshold Voltage	V_{TH-}	$-7V \leq V_{CM} \leq 12V$		-200	-	-	mV
Receiver Input Hysteresis	V_{HYS}	$V_{CM} = 0V$		-	28	-	mV
Differential Bus Input Capacitance	C_D			-	9	12	pF
Receiver Output High Voltage	V_{OH}	$I_O = -20\mu A, V_{ID} = -50mV$		$V_{DD2} - 0.2$	-	-	V
Receiver Output Low Voltage	V_{OL}	$I_O = +20\mu A, V_{ID} = -200mV$		-	-	0.2	V
High impedance Output Current	I_{OZ}	$0.4V \leq V_O \leq (V_{DD2} - 0.5)$		-1	-	1	μA
Receiver Input Resistance	R_{IN}	$-7V \leq V_{CM} \leq 12V$		54	80	-	k Ω
Supply Current	I_{DD2}	DE = V_{DD1} , no load		-	5	16	mA

Test conditions: T_{min} to T_{max} , $V_{DD2} = 3.0V$ to $3.6V$; unless otherwise stated [\(Note 7\)](#). **(Continued)**

Parameter	Symbol	Test Conditions	Min	Typ (Note 11)	Max	Unit
ESD Performance						
RS-485 Bus Pins (A, B)		IEC61000-4-2, air-gap discharge to GND2	-	± 16.5	-	kV
		IEC61000-4-2, contact discharge to GND2	-	± 9	-	kV
		Human Body Model discharge (HBM) to GND2	-	± 16.5	-	kV
All Pins (R, \overline{RE} , D, DE)		Human Body Model discharge (HBM) to GND1	-	± 2	-	kV
Switching Characteristics						
$V_{DD1} = 5V, V_{DD2} = 3.3V$						
Data Rate	DR	$R_L = 54\Omega, C_L = 50pF$	40	-	-	Mbps
Propagation Delay (Notes 8, 15)	t_{PD}	$V_O = -1.5V$ to $1.5V, C_L = 15pF$	-	20	30	ns
Pulse Skew (Notes 8, 16)	$t_{SK}(P)$	$V_O = -1.5V$ to $1.5V, C_L = 15pF$	-	1	5	ns
Skew Limit (Note 9)	$t_{SK}(LIM)$	$R_L = 54\Omega, C_L = 50pF$	-	2	10	ns
Output Enable Time to High Level	t_{PZH}	$C_L = 15pF$	-	15	30	ns
Output Enable Time to Low Level	t_{PZL}	$C_L = 15pF$	-	15	30	ns
Output Disable Time from High Level	t_{PHZ}	$C_L = 15pF$	-	15	30	ns
Output Disable Time from Low Level	t_{PLZ}	$C_L = 15pF$	-	15	30	ns
Common-Mode Transient Immunity	CMTI	$V_{CM} = 1500 V_{DC}, t_{TRANSIENT} = 25ns$	30	50	-	kV/ μ s
$V_{DD1} = 3.3V, V_{DD2} = 3.3V$						
Data Rate	DR	$R_L = 54\Omega, C_L = 50pF$	40	-	-	Mbps
Propagation Delay (Notes 8, 9)	t_{PD}	$V_O = -1.5V$ to $1.5V, C_L = 15pF$	-	25	35	ns
Pulse Skew (Notes 8, 9)	$t_{SK}(P)$	$V_O = -1.5V$ to $1.5V, C_L = 15pF$	-	2	5	ns
Skew Limit (Note 9)	$t_{SK}(LIM)$	$R_L = 54\Omega, C_L = 50pF$	-	4	10	ns
Output Enable Time to High Level	t_{PZH}	$C_L = 15pF$	-	17	30	ns
Output Enable Time to Low Level	t_{PZL}	$C_L = 15pF$	-	17	30	ns
Output Disable Time from High Level	t_{PHZ}	$C_L = 15pF$	-	17	30	ns
Output Disable Time from Low Level	t_{PLZ}	$C_L = 15pF$	-	17	30	ns
Common-Mode Transient Immunity	CMTI	$V_{CM} = 1500 V_{DC}, t_{TRANSIENT} = 25ns$	30	50	-	kV/ μ s

Notes: (Apply to both driver and receiver sections)

7. All voltages on the isolator primary side are with respect to GND1. All line voltages and common-mode voltages on the isolator secondary or bus side are with respect to GND2.
8. Differential I/O voltage is measured at the noninverting bus Terminal A with respect to the inverting Terminal B.
9. Skew limit is the maximum propagation delay difference between any two devices at $+25^\circ C$.
10. The power-off measurement in ANSI Standard EIA/TIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs.
11. All typical values are at $V_{DD1}, V_{DD2} = 5V$ or $V_{DD1} = 3.3V$ and $T_A = +25^\circ C$.
12. $-7V < V_{CM} < 12V$; $4.5 < V_{DD} < 5.5V$.
13. ΔV_{OD} and ΔV_{OC} are the changes in magnitude of ΔV_{OD} and ΔV_{OC} respectively, that occur when the input is changed from one logic state to the other.
14. This applies for both power-on and power-off; refer to ANSI standard RS-485 for the exact condition. The EIA/TIA-422-B limit does not apply for a combined driver and receiver terminal.
15. Includes 10ns read enable time. Maximum propagation delay is 25ns after read assertion.
16. Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel.

2.5 Insulation Specifications

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Creepage Distance (External)		Per IEC 60601	8.03	8.3	-	mm
Total Barrier Thickness (Internal)			-	13	-	µm
Barrier Resistance	R_{IO}	500V	-	$>10^{14}$	-	Ω
Barrier Capacitance	C_{IO}	$f = 1\text{MHz}$	-	7	-	pF
Leakage Current		240V _{RMS} , 60Hz	-	0.2	-	µA _{RMS}
Comparative Tracking Index	CTI	Per IEC 60112	≥ 600	-	-	V _{RMS}
High Voltage Endurance (Maximum Barrier Voltage for Indefinite Life)	V_{IO}	At maximum operating temperature	1000	-	-	V _{RMS}
			1500	-	-	V _{DC}
Barrier Life		100°C, 1000V _{RMS} , 60% CL activation energy	-	44000	-	Years

2.6 Magnetic Field Immunity

Parameter (Note 17)	Symbol	Test Conditions	Min	Typ	Max	Unit
$V_{DD1} = 5\text{V}$, $V_{DD2} = 3.3\text{V}$						
Power Frequency Magnetic Immunity	H _{PF}	50Hz/60Hz	-	3500	-	A/m
Pulse Magnetic Field Immunity	H _{PM}	$t_P = 8\mu\text{s}$	-	4500	-	A/m
Damped Oscillatory Magnetic Field	H _{OSC}	0.1Hz to 1MHz	-	4500	-	A/m
Cross-Axis Immunity Multiplier (Note 18)	K _X		-	2.5	-	
$V_{DD1} = 3.3\text{V}$, $V_{DD2} = 3.3\text{V}$						
Power Frequency Magnetic Immunity	H _{PF}	50Hz/60Hz	-	1500	-	A/m
Pulse Magnetic Field Immunity	H _{PM}	$t_P = 8\mu\text{s}$	-	2000	-	A/m
Damped Oscillatory Magnetic Field	H _{OSC}	0.1Hz to 1MHz	-	2000	-	A/m
Cross-Axis Immunity Multiplier (Note 18)	K _X		-	2.5	-	

Notes:

17. The relevant test and measurement methods are given in ["Electromagnetic Compatibility" on page 10](#).
18. External magnetic field immunity is improved by this factor if the field direction is "end-to-end" rather than "pin-to-pin". See ["Electromagnetic Compatibility" on page 10](#).

3. Safety and Approvals

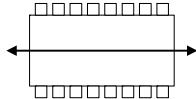
3.1 VDE V 0884-11 (Certification Pending)

Basic Isolation; File Number: Certifications pending

- Working voltage (V_{IORM}) 600V_{RMS} (848V_{PK}); Basic insulation, Pollution degree 2
- Transient overvoltage (V_{IOTM}) 4000V_{PK}
- Each part tested at 1590V_{PK} for 1s, 5pC partial discharge limit
- Samples tested at 4000V_{PK} for 60s, then 1358V_{PK} for 10s with 5pC partial discharge limit

Symbol	Safety-Limiting Values	Value	Unit
T_S	Safety Rating Ambient Temperature	180	°C
P_S	Safety Rating Power (+180°C)	270	mW
I_S	Supply Current Safety Rating (Total of supplies)	54	mA

3.2 UL 1577


Component Recognition Program File Number: E483309

- Working voltage (V_{IORM}) 600V_{RMS} (848V_{PK}); basic insulation, Pollution degree 2
- Transient overvoltage (V_{IOTM}) 4000V_{PK}
- Each part tested at 3000V_{RMS} (4243V_{PK}) for 1s
- Each lot of samples tested at 2500V_{RMS} (3536V_{PK}) for 60s

4. Electromagnetic Compatibility

The ISL32743E is fully compliant with generic EMC standards EN50081, EN50082-1, and the umbrella line-voltage standard for Information Technology Equipment (ITE) EN61000. The isolator's Wheatstone bridge configuration and differential magnetic field signaling ensure excellent EMC performance against all relevant standards. Compliance tests have been conducted in the following categories:

Table 2. Compliance Test Categories

EN50081-1	EN50082-2	EN50204
Residential, Commercial, and Light Industrial: Methods EN55022, EN55014	Industrial Environment EN61000-4-2 (ESD) EN61000-4-3 (Electromagnetic Field Immunity) EN61000-4-4 (EFT) EN61000-4-6 (RFI Immunity) EN61000-4-8 (Power Frequency Magnetic Field immunity) EN61000-4-9 (Pulsed Magnetic Field) EN61000-4-10 (Damped Oscillatory Magnetic Field)	Radiated field from digital telephones
Immunity to external magnetic fields is even higher if the field direction is "end-to-end" rather than "pin-to-pin" as shown on the right.		

5. Application Information

The ISL32743E is an isolated half-duplex RS-485 transceiver designed for low bus voltage, high-speed data networks.

5.1 RS-485 and Isolation

RS-485 is a differential (balanced) data transmission standard for use in long haul networks or noisy environments. It is a true multipoint standard, which allows up to 32 one-unit load devices (any combination of drivers and receivers) on a bus. To allow for multipoint operation, the RS-485 specification requires that drivers must handle bus contention without sustaining any damage.

An important advantage of RS-485 is its wide common-mode range, which specifies that the driver outputs and the receiver inputs withstand signals ranging from +12V to -7V. This common-mode range is the sum of the ground potential difference between driver and receiver, V_{GPD} , the driver output common-mode offset, V_{OC} , and the longitudinally coupled noise along the bus lines, V_n : $V_{CM} = V_{GPD} + V_{OC} + V_n$.

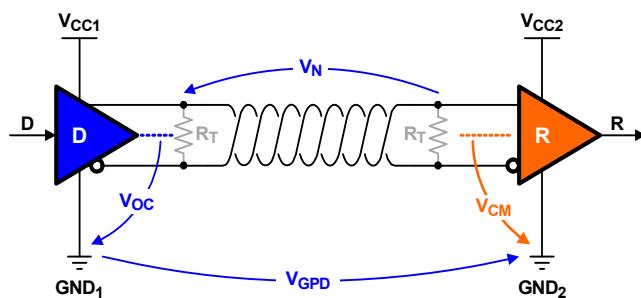


Figure 3. Common-Mode Voltages in a Non-Isolated Data Link

However, in networks using isolated transceivers, such as the ISL32743E, the supply and signal paths of the driver and receiver bus circuits are galvanically isolated from their local mains supplies and signal sources.

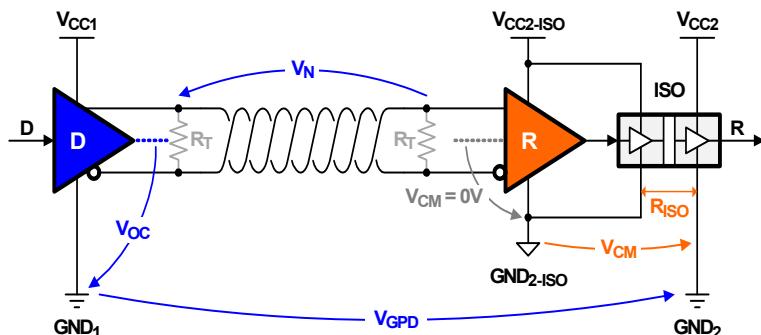
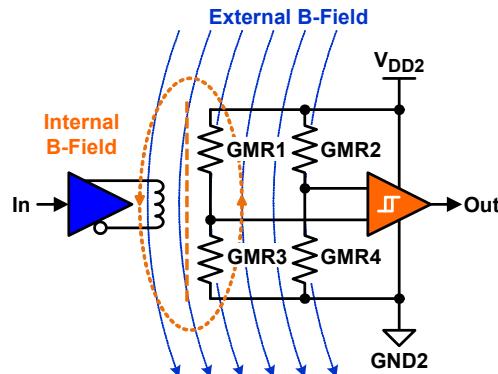



Figure 4. Common-Mode Voltages in an Isolated Data Link

Because the ground potentials of isolated bus nodes are isolated from each other, the common-mode voltage of one node's output has no effect on the bus inputs of another node. This is because the common-mode voltage is dropping across the high-resistance isolation barrier of $10^{14}\Omega$. Thus, galvanic isolation extends the maximum allowable common-mode range of a data link to the maximum working voltage of the isolation barrier, which is 600V_{RMS} for the ISL32743E.

5.2 Digital Isolator Principle

The ISL32743E uses a Giant Magnetoresistance (GMR) isolation. [Figure 5](#) shows the principle operation of a single channel GMR isolator.

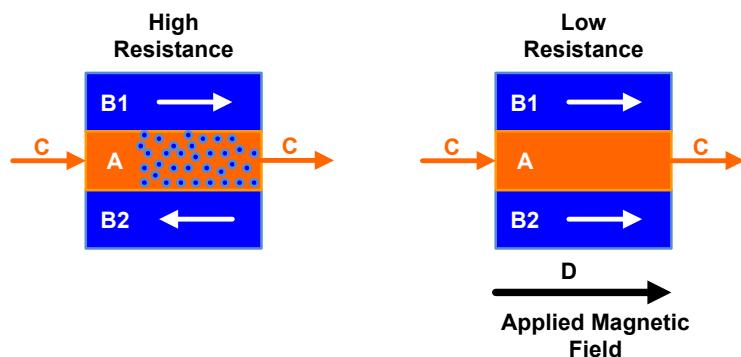


Figure 5. Single Channel GMR Isolator

The input signal is buffered and drives a primary coil, which creates a magnetic field that changes the resistance of the GMR resistors 1 to 4. GMR1 to GMR4 form a Wheatstone bridge to create a bridge output voltage that reacts only to magnetic field changes from the primary coil. However, large external magnetic fields are treated as common-mode fields, and are therefore suppressed by the bridge configuration. The bridge output is fed into a comparator with an output signal that is identical in phase and shape to the input signal.

5.3 GMR Resistor in Detail

[Figure 6](#) shows a GMR resistor consisting of ferromagnetic alloy layers, B1 and B2, sandwiched around an ultra thin, nonmagnetic conducting middle layer A, typically copper. The GMR structure is designed so that the magnetic moments in B1 and B2 face opposite directions in the absence of a magnetic field, thus causing heavy electron scattering across layer A, which increases its resistance for current C drastically. When a magnetic field D is applied, the magnetic moments in B1 and B2 are aligned and electron scattering is reduced. This lowers the resistance of layer A and increases current C.

Figure 6. Multilayer GMR Resistor

5.4 Low Emissions

Because GMR isolators do not use complex encoding schemes, such as RF carriers or high-frequency clocks, and do not include power transfer coils or transformers, their radiated emission spectrum is practically undetectable.

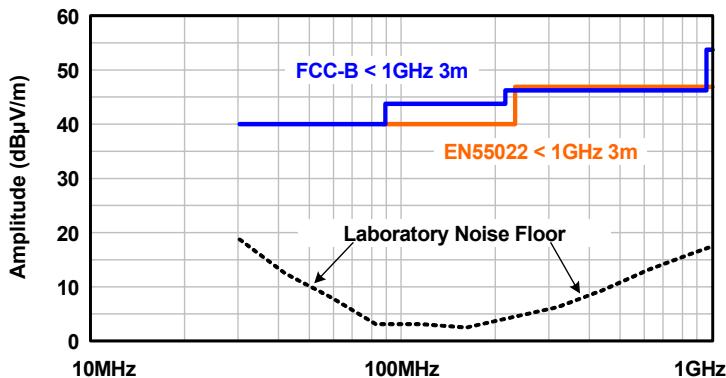


Figure 7. Undetectable Emissions of GMR Isolators

5.5 Low EMI Susceptibility

Because GMR isolators have no pulse trains or carriers to interfere with, they also have very low EMI susceptibility.

For the list of compliance tests conducted on GMR isolators, refer to [“Electromagnetic Compatibility” on page 10](#).

5.6 Receiver (Rx) Features

This transceiver uses a differential input receiver for maximum noise immunity and common-mode rejection. The input sensitivity range is from -50mV to -200mV.

The receiver input resistance is about five times higher than the RS-485 Unit Load (UL) requirement of 12kΩ. The receiver includes a “fail-safe if open or shorted” function that guarantees a high level receiver output if the receiver inputs are unconnected (floating), shorted, or connected to an undriven, terminated bus. The receiver output is tri-statable through the active low \overline{RE} input.

5.7 Driver (Tx) Features

The 3.3V RS-485 driver is a differential output device that delivers at least 1.5V across a 54Ω purely differential load. The driver features low propagation delay skew to maximize bit width and to minimize EMI.

The ISL32743E driver is tri-statable through the active high DE input. The ISL32743E driver outputs are not slew rate limited, so faster output transition times allow data rates of at least 40Mbps.

5.8 Built-In Driver Overload Protection

As stated previously, the RS-485 specification requires that drivers survive worst-case bus contentions undamaged. The ISL32743E transmitter meets this requirement through driver output short-circuit current limits and on-chip thermal shutdown circuitry.

The driver output stage incorporates short-circuit current limiting circuitry, which ensures that the output current never exceeds the RS-485 specification. In the event of a major short-circuit condition, the device’s thermal shutdown feature disables the driver whenever the die temperature becomes excessive. This eliminates the power dissipation, allowing the die to cool. The driver automatically re-enables after the die temperature drops about 15°C. If the condition persists, the thermal shutdown/re-enable cycle repeats until the fault is cleared. The receiver stays operational during thermal shutdown.

5.9 Dynamic Power Consumption

The ISL32743E isolator achieves its low power consumption from the way it transmits data across the barrier. By detecting the edge transitions of the input logic signal and converting these to narrow current pulses, a magnetic field is created around the GMR Wheatstone bridge. Depending on the direction of the magnetic field, the bridge causes the output comparator to switch following the input signal. Because the current pulses are narrow (about 2.5ns), the power consumption is independent of the mark-to-space ratio and depends solely on frequency.

Table 3. Supply Current Increase with Data Rate

Data Rate (Mbps)	I _{DD1} (mA)	I _{DD2} (mA)
1	0.15	0.15
10	1.5	1.5
20	3	3
40	6	6

5.10 Power Supply Decoupling

Bypass both supplies, V_{DD1} and V_{DD2}, with 100nF ceramic capacitors. Place the capacitors as close as possible to the supply pins for proper operation.

5.11 DC Correctness

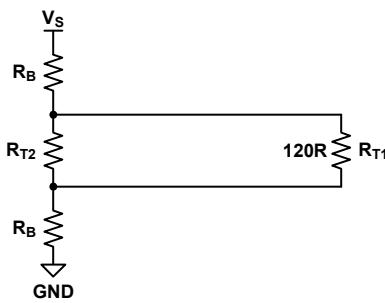
The ISL32743E incorporates a patented refresh circuit to maintain the correct output state with respect to data input. At power-up, the bus outputs follow the truth tables on [page 3](#). Hold the DE input low during power-up to prevent false drive data pulses on the bus.

5.12 Data Rate, Cables, and Terminations

RS-485 is intended for network lengths up to 4000 feet, but the maximum system data rate decreases as the transmission length increases. Devices operating at 40Mbps are typically limited to lengths less than 50 feet, but are capable of driving up to 100 feet of cable when allowing for some jitter of 5%.

Twisted pair is the cable of choice for RS-485 networks. Twisted pair cables tend to pick up noise and other electromagnetically induced voltages as common-mode signals, which are effectively rejected by the differential receivers in these ICs.

To minimize reflections, proper termination is imperative when using this high data rate transceiver. In multipoint (multiple driver) networks, terminate the main cable in its characteristic impedance (typically 120Ω for RS-485) at both cable ends. Keep stubs connecting the transceivers to the main cable as short as possible.


A useful guideline for determining the maximum stub lengths is given with [Equation 1](#).

$$(EQ. 1) \quad L_S \leq \frac{t_r}{10} \times v \times c$$

where:

- L_S is the stub length (ft)
- t_r is the driver rise time (s)
- c is the speed of light (9.8 x 10⁸ ft/s)
- v is the signal velocity as a percentage of c.

To ensure the receiver outputs of all bus transceivers are high when the bus is not actively driven, Renesas recommends fail-safe biasing of the bus lines. [Figure 8 on page 15](#) shows the proper termination of a high-speed data link with fail-safe biasing.

Figure 8. Failsafe Biasing for a High-speed Data Link

In this example, the termination resistor value at the cable end without fail-safe biasing matches the characteristic cable impedance: $R_{T1} = Z_0$. The values for R_B and R_{T2} are calculated using [Equations 2](#) and [3](#).

$$(EQ. 2) \quad R_B = \frac{V_S/V_{AB} + 1}{0.036}$$

$$(EQ. 3) \quad R_{T2} = \frac{R_B \cdot 120\Omega}{R_B - 60\Omega}$$

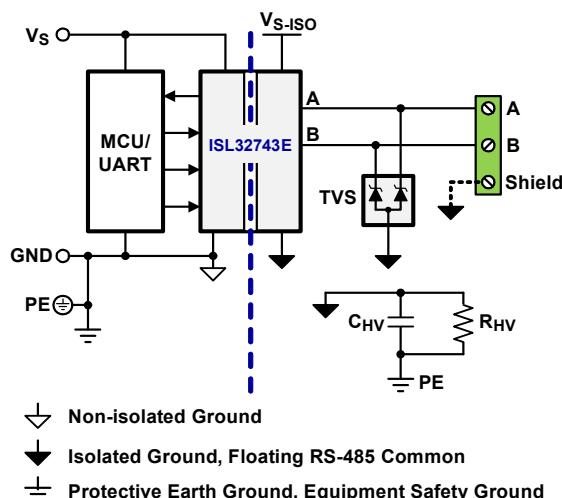
where:

- R_B is the value of the biasing resistors
- R_T is the value of the termination resistors
- V_S is the minimum transceiver supply voltage
- V_{AB} is the minimum bus voltage during bus idling
- Z_0 is the characteristic cable impedance of 120Ω

5.13 Transient Protection

Protecting the ISL32743E against transients exceeding the device's transient immunity requires the addition of an external TVS. For this purpose, Semtech's RClamp0512TQ was chosen due to its high transient protection levels, low junction capacitance, and small form factor.

Table 4. RClamp0512TQ TVS Features


Parameter	Symbol	Value	Unit
ESD (IEC61000-4-2)	V_{ESD}	± 30	kV
	V_{ESD}	± 30	kV
EFT (IEC61000-4-4)	V_{EFT}	± 4	kV
Surge (IEC61000-4-5)	V_{SURGE}	± 1.3	kV
Junction Capacitance	C_J	3	pF
Form Factor	-	1×0.6	mm

The TVS is implemented between the bus lines and isolated ground (GND2).

Because transient voltages on the bus lines are referenced to Earth potential, also known as Protective Earth (PE), a high-voltage capacitor (C_{HV}) is inserted between GND2 and PE, providing a low-impedance path for high-frequency transients.

Note that the connection from the PE point on the isolated side to the PE point on the non-isolated side (Earth) is usually made using the metal chassis of the equipment, or through a short, thick low inductance wire.

A high-voltage resistor (R_{HV}) is added in parallel to C_{HV} to prevent the build-up of static charges on floating grounds (GND2) and cable shields. The bill of materials for the circuit in [Figure 9](#) is listed in [Table 5](#).

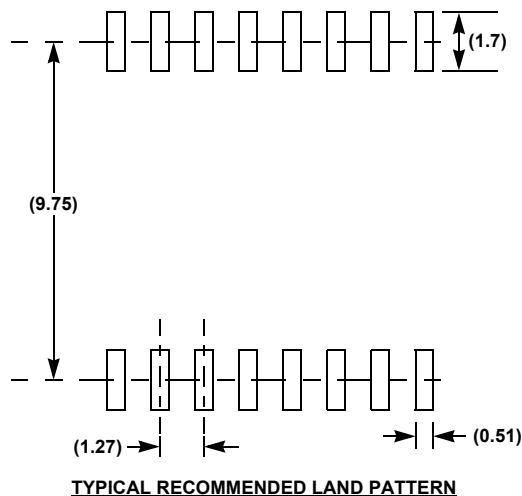
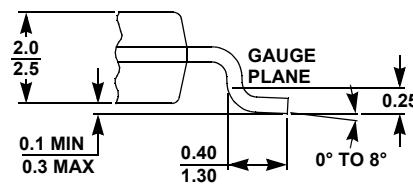
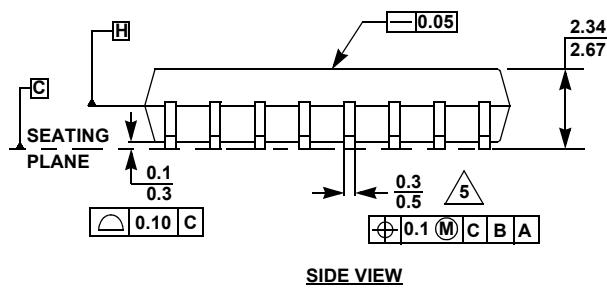
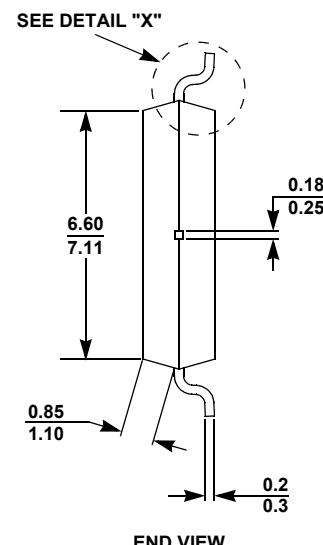
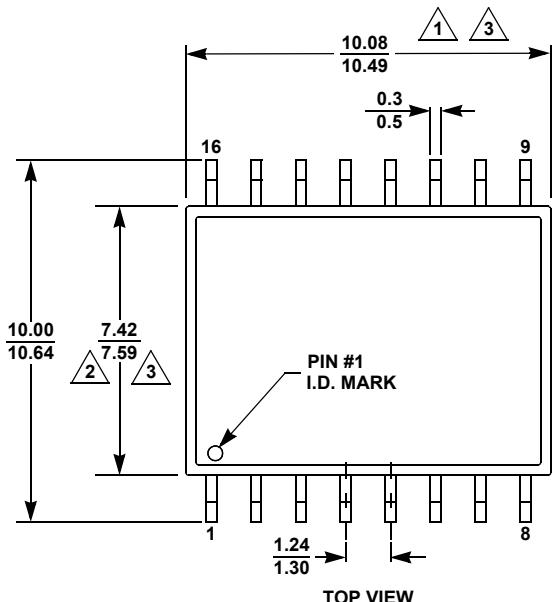
Figure 9. Transient Protection for the ISL32743E

Table 5. BOM for Circuit in [Figure 9](#)

Name	Function	Order No.	Vendor
TVS	170W (8, 20μs) 2-LINE PROTECTOR	RCLAMP0512TQ	Semtech
C_{HV}	4.7nF, 2kV, 10% CAPACITOR	1812B472K202NT	Novacap
R_{HV}	1MΩ, 2kV, 5% RESISTOR	HVC12061M0JT3	TT-Electronics

6. Revision History

Rev.	Date	Description
1.00	Jul 9, 2018	Updated Ordering Information table by adding column for tape and reel and updating Note 1. Corrected the ESD Rating specification cross reference on page 5.
0.00	Nov 30, 2017	Initial release.






7. Package Outline Drawing

For the most recent package outline drawing, see [M16.3A](#).

M16.3A

16 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE (SOICW)

Rev 1, 6/17

NOTES:

1. Dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per side.
2. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side.
3. Dimensions are measured at datum plane H.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Dimension does not include dambar protrusion.
6. Dimension in () are for reference only.
7. Pin spacing is a BASIC dimension; tolerances do not accumulate.
8. Dimensions are in mm.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implants; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

<http://www.renesas.com>

Refer to "<http://www.renesas.com/>" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2226-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Renesas Electronics:](#)

[ISL32743EIBZ-T7A](#) [ISL32743EIBZ](#) [ISL32743EIBZ-T](#)