DATASHEET

Description

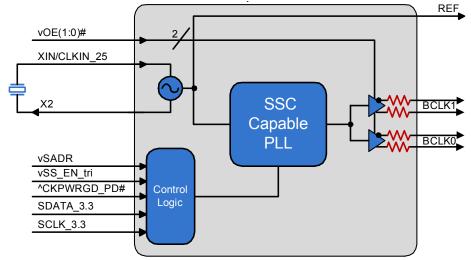
The 9SQL4952 is a member of IDT's 'Lite' family of server clocks. It generates 2 100MHz outputs that exceed the requirements of the CK420BQ CPU/SRC clocks. Each output has its own OE# pin for clock management and supports 2 different spread spectrum levels in addition to spread off. It also provides a copy of the 25MHz internal XO. The 9SQL4952 supports PCIe Common Clock (CC) and Independent Reference Clock (IR) architectures.

Recommended Application

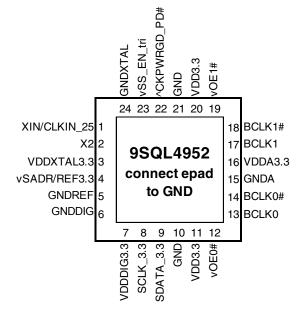
PCle Gen1, Gen2, Gen3, Gen4 Server Clock

Output Features

- 2-100MHz push-pull Low-power (LP) HCSL BCLK pairs
- Integrated terminations for 85Ω Zout
- 1 3.3V 25MHz LVCMOS REF output


Key Specifications

- BCLK outputs:
 - Cycle-to-cycle jitter <50ps
 - Output-to-output skew <50ps
 - PCIe Gen1, Gen2, Gen3, Gen4 CC compliant
 - PCIe Gen2, Gen3 IR compliant
 - QPI/UPI compliant
 - SAS12G compliant (SSC off)
 - 12k-20M phase jitter <2ps rms (SSC off)
- REF output:
 - Phase jitter <200fs rms (SSC off)
- ±50ppm frequency accuracy on all clocks


Block Diagram

Features/Benefits

- Direct connection to 85Ω transmission lines; saves 8 resistors and 14mm² compared to standard HCSL
- 112mW typical power consumption; eases thermal concerns @ 1/10 the power of CK420BQ
- Contains default configuration; SMBus interface not required for device operation
- OE# pins; support BCLK power management
- 25MHz input frequency; standard crystal
- · 25MHz REF output; eliminates XO from board
- Pin/SMBus selectable 0%, -0.25% or -0.5% spread on BCLK outputs; minimize EMI and phase jitter for each application
- BCLK outputs blocked until PLL is locked; clean system start-up
- Two selectable SMBus addresses; multiple devices can easily share an SMBus segment
- Space saving 24-pin 4x4mm VFQFPN; minimal board space

Pin Configuration

24-pin VFQFPN, 4x4 mm, 0.5mm pitch

^ prefix indicates internal 120KOhm pull up resistor v prefix indicates internal 120KOhm pull down resistor

SMBus Address Selection Table

	SADR	Address	+ Read/Write Bit
State of SADR on first application	0	1101000	Х
of CKPWRGD_PD#	1	1101010	Х

Power Management Table ³

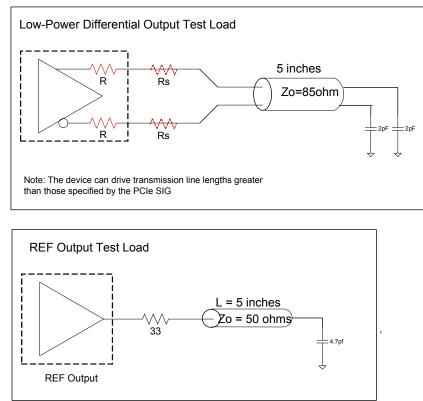
CKPWRGD PD#	SMBus	BC	BCLKx			
	OE bit True		Comp. O/P	REF		
0	Х	Low ¹	Low ¹	Hi-Z ²		
1	1	Running	Running	Running		
1	1	Disabled ¹	Disabled ¹	Running		
1	0	Disabled ¹	Disabled ¹	Disabled ⁴		

1. The output state is set by B11[1:0] (Low/Low default)

2. REF is Hi-Z until the 1st assertion of CKPWRGD_PD# high. After this, when CKPWRG_PD# is low, REF is disabled unless Byte3[5]=1, in which case REF is running..

3. Input polarities defined at default SMBus values.

4. See SMBus description for Byte 3, bit 4


Power Connections

Pin Number		Description
VDD	GND	Description
3	5,24	XTAL, REF
7	6	Digital Power
11,20	10,21,25	BCLK outputs
16	15	PLL Analog

Pin Descriptions

Pin#	Pin Name	Туре	Pin Description
1	XIN/CLKIN_25	IN	Crystal input or Reference Clock input. Nominally 25MHz.
2	X2	OUT	Crystal output.
3	VDDXTAL3.3	PWR	Power supply for XTAL, nominal 3.3V
4	vSADR/REF3.3	LATCHED I/O	Latch to select SMBus Address/3.3V LVCMOS copy of X1/REFIN pin
5	GNDREF	GND	Ground pin for the REF outputs.
6	GNDDIG	GND	Ground pin for digital circuitry
7	VDDDIG3.3	PWR	3.3V digital power (dirty power)
8	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
9	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
10	GND	GND	Ground pin.
11	VDD3.3	PWR	Power supply, nominal 3.3V
12	vOE0#	IN	Active low input for enabling output 0. This pin has an internal 120kohm pull-down. 1 =disable outputs, $0 =$ enable outputs
13	BCLK0	OUT	True output of differential BCLK.
14	BCLK0#	OUT	Complement output of differential BCLK.
15	GNDA	GND	Ground pin for the PLL core.
16	VDDA3.3	PWR	3.3V power for the PLL core.
17	BCLK1	OUT	True output of differential BCLK.
18	BCLK1#	OUT	Complement output of differential BCLK.
19	vOE1#	IN	Active low input for enabling output 1. This pin has an internal 120kohm pull-down. 1 =disable outputs, 0 = enable outputs
20	VDD3.3	PWR	Power supply, nominal 3.3V
21	GND	GND	Ground pin.
22	^CKPWRGD_PD#	IN	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal 120kohm pull-up resistor.
23	vSS_EN_tri	LATCHED IN	Latched select input to select spread spectrum amount at initial power up : 1 = -0.5% spread, M = -0.25%, 0 = Spread Off
24	GNDXTAL	GND	GND for XTAL
25	ePAD	GND	Connect to ground

Test Loads

Alternate Terminations

The 9SQL family can easily drive LVPECL, LVDS, and CML logic. See <u>"AN-891 Driving LVPECL, LVDS, and CML Logic with</u> <u>IDT's "Universal" Low-Power HCSL Outputs</u>" for details.

Terminations

Ζο (Ω)	Rs (Ω)
85	0
100	7.5

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9SQL4952. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS	NOTES
3.3V Supply Voltage	VDDxxx	Applies to all VDD pins	-0.5		3.9	V	1,2
Input Voltage	V _{IN}		-0.5		V _{DD} + 0.5V	V	1, 3
Input High Voltage, SMBus	VIHSMB	SMBus clock and data pins			3.9	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2500			v	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 4.5V.

Electrical Characteristics-SMBus Parameters

TA = T_{AMB:} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS	NOTES
SMBus Input Low Voltage	VILSMB	$V_{DDSMB} = 3.3V$			0.8	V	
SMBus Input High Voltage	VIHSMB	$V_{DDSMB} = 3.3V$	2.1		3.6	V	
SMBus Output Low Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	V _{DDSMB}		2.7		3.6	V	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{SMBMAX}	Maximum SMBus operating frequency			500	kHz	

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics–Input/Supply/Common Parameters–Normal Operating Conditions

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS	NOTES
Supply Voltage	VDDxxx	Supply voltage for core, analog and single-ended LVCMOS outputs.	3.135	3.3	3.465	V	
Ambient Operating Temperature	T _{AMB}	Industrial range	-40	25	85	°C	
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus	$0.75 V_{DD}$		V _{DD} +0.3	V	
Input Mid Voltage	V _{IM}	Single-ended tri-level inputs ('_tri' suffix)	$0.4 V_{DD}$	$0.5 V_{DD}$	$0.6 V_{DD}$	V	
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus	-0.3		$0.25 V_{DD}$	V	
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	
Input Current	I _{INP}	Single-ended inputs $V_{IN} = 0 V$; Inputs with internal pull-up resistors $V_{IN} = VDD$; Inputs with internal pull-down resistors	-200		200	uA	
Input Frequency	F _{in}	XTAL, or X1 input		25		MHz	
Pin Inductance	L _{pin}				7	nH	1
Conseitones	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.35	1.8	ms	1,2
SS Modulation Frequency	f _{MOD}	Allowable Frequency (Triangular Modulation)	30	31.6	33	kHz	1
OE# Latency	BCLK start after OF# assertion		1		3	clocks	1,3
Tdrive_PD#	t _{DRVPD}	BCLK output enable after PD# de-assertion		28	300	us	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	1,2
Trise	t _R	Rise time of single-ended control inputs			5	ns	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Control input must be monotonic from 20% to 80% of input swing.

 3 Time from deassertion until outputs are >200 mV

Electrical Characteristics–BCLK Low-Power HCSL Outputs

TA = T_{AMB}: Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS	NOTES
Slew rate	Trf	Scope averaging on, fast setting	2	3.1	4	V/ns	2,3
Slew fale	111	Scope averaging, slow setting	1	2.2	3	V/ns	2,3
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	376.5	550	mV	1,4,5
Crossing Voltage (var)	∆-Vcross	Scope averaging off		13.8	140	mV	1,4,9
Avg. Clock Period Accuracy	T _{PERIOD_AVG}		-50		+2550	ppm	2,10,13
Absolute Period	T _{PERIOD_ABS}	Includes jitter and Spread Spectrum Modulation	9.9491	10.0	10.1011	ns	2,6
Jitter, Cycle to cycle	t _{jcyc-cyc}			23	50	ps	2
Voltage High	V _{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	797	850	mV	1
Voltage Low	V_{LOW}	averaging on)	-150	10	150	111 V	1
Absolute Max Voltage	Vmax	Measurement on single ended signal using		822	1150	mV	1,7,15
Absolute Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-101		IIIV	1,8,15
Duty Cycle	t _{DC}		45	50	55	%	2
Slew rate matching	∆Trf			6	20	%	1,14
Skew, Output to Output	t _{sk3}	Averaging on, $V_T = 50\%$		24	50	ps	2

¹ Measured from single-ended waveform.

² Measured from differential waveform.

³ Measured from -150 mV to +150 mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.

⁴ Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.

⁵ Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

⁶ Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative PPM tolerance, and spread spectrum modulation.

⁷ Defined as the maximum instantaneous voltage including overshoot.

⁸ Defined as the minimum instantaneous voltage including undershoot.

⁹ Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in V_{CROSS} for any particular system.

¹⁰ Refer to Section 4.3.7.1.1 of the PCI Express Base Specification, Revision 3.0 for information regarding PPM considerations.

¹¹ System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. Test load CL = 2 pF.

¹² T_{STABLE} is the time the differential clock must maintain a minimum ±150 mV differential voltage after rising/falling edges before it is allowed to droop back into the VRB ±100 mV differential range.

¹³ PPM refers to parts per million and is a DC absolute period accuracy specification. 1 PPM is 1/1,000,000th of 100.000000 MHz exactly or 100 Hz. For 300 PPM, then we have an error budget of 100 Hz/PPM * 300 PPM = 30 kHz. The period is to be measured with a frequency counter with measurement window set to 100 ms or greater. The ±300 PPM applies to systems that do not employ Spread Spectrum Clocking, or that use common clock source. For systems employing Spread Spectrum Clocking, there is an additional 2,500 PPM nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of +2,800 PPM.

¹⁴ Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75 mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.

¹⁵ At default SMBus amplitude settings.

Electrical Characteristics–Filtered Phase Jitter Parameters - PCIe Common Clocked (CC) Architectures^{1, 2, 5}

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	SPECIFICATION LIMIT	UNITS	NOTES
	t _{jphPCleG1-CC}	PCIe Gen 1		17	30	86	ps (p-p)	3
		PCIe Gen 2 Low Band 10kHz < f < 1.5MHz (PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)		0.4	0.6	3	ps (rms)	
Phase Jitter, PLL Mode	IjphPCleG2-CC	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz) (PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)		1.1	1.7	3.1	ps (rms)	
	t _{jphPCleG3-CC}	PCIe Gen 3 (PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)		0.29	0.42	1	ps (rms)	
	t _{jphPCleG4-CC}	PCIe Gen 4 (PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)		0.29	0.42	0.5	ps (rms)	

Electrical Characteristics–Filtered Phase Jitter Parameters - PCIe Independent Reference (IR) Architectures^{1, 5, 6}

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	INDUSTRY LIMIT	UNITS	NOTES
	t _{jphPCleG1} . SRIS	PCle Gen 1		n/a		None	ps (rms)	2, 7
	t _{jphPCleG2} . SRIS	PCIe Gen 2 (PLL BW of 16MHz,CDR = 5MHz)		0.8	1.2	2	ps (rms)	2
Phase Jitter, PLL Mode	t _{jphPCleG3-} SRIS	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.4	0.5	0.7	ps (rms)	2
	t _{jphPCleG4-} SRIS	PCIe Gen 4 (PLL BW of 2-4MHz, CDR = 10MHz)		n/a		None	ps (rms)	2, 7

Notes on PCIe Filter Phase Jitter Tables

¹ Applies to all differential outputs, guaranteed by design and characterization.

² Based on PCIe Base Specification Rev4.0 version 0.7draft. See http://www.pcisig.com for latest specifications.

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Additive jitter for RMS values is calculated by solving for b where $[b=sqrt(c^2-a^2)]$, a is rms input jitter and c is rms total jitter.

⁵ Driven by 9FGL0841 or equivalent

⁶ IR is the new name for Separate Reference Independent Spread (SRIS) and Separate Reference no Spread (SRNS) PCIe clock architectures.

⁷ According to the PCIe Base Specification Rev4.0 version 0.7 draft, the jitter transfer functions and corresponding jitter limits are not defined for the IR clock architecture. Widely accepted *industry* limits using widely accepted *industry* filters are used to populate this table. There are no accepted filters or limits for IR clock architectures at PCIe Gen1 or Gen4 data rates

Electrical Characteristics–Filtered Phase Jitter Parameters - QPI/UPI, SAS^{1, 2}

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	SPECIFICATION LIMIT	UNITS	NOTES
		QPI & UPI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.11	0.15	0.5	ps (rms)	
Phase Jitter, PLL Mode	t _{jphQPI_UPI}	QPI & UPI (100MHz, 8.0Gb/s, 12UI)		0.08	0.11	0.3	ps (rms)	
		QPI & UPI (100MHz, ?9.6Gb/s, 12UI)		0.07	0.1	0.2	ps (rms)	
Phase Jitter, SAS12G BCLK Outputs	t _{jphSAS12G}	100MHz, SSC Off, REF output enabled		0.40	0.45	1.2	ps (rms)	1,2

Notes

¹ Applies to all differential outputs, guaranteed by design and characterization.

² Calculated from Intel-supplied Clock Jitter Tool

³ For RMS values additive jitter is calculated by solving for b where $[b=sqrt(c^2-a^2)]$, a is rms input jitter and c is rms total jitter.

Electrical Characteristics-12kHz-20MHz Phase Jitter

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	SPECIFICATION LIMIT	UNITS	NOTES
Phase Jitter, 12kHz-20MHz BCLK Outputs	t _{jph12k-20M}	100MHz, SSC Off, REF output enabled		1.5	2	n/a	ps (rms)	1

Notes

¹ Applies to all differential outputs, guaranteed by design and characterization.

Electrical Characteristics–Current Consumption

 $TA = T_{AMB}$; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS	NOTES
	I _{DDAOP}	VDDA, All outputs active @100MHz		13	16	mA	
Operating Supply Current	I _{DDOP}	All VDD, except VDDA, All outputs active @100MHz		21	30	mA	
Wake-on-LAN Current	I _{DDAPD}	VDDA, DIF outputs off, REF output running		0.70	1	mA	1
(Power down state and Byte 3, bit 5 = '1')	I _{DDPD}	All VDD, except VDDA, BCLK outputs off, REF output running		9.4	12	mA	1
Powerdown Current	I _{DDAPD}	VDDA, all outputs off		0.72	1	mA	
(Power down state and Byte 3, bit 5 = '0')	I _{DDPD}	All VDD, except VDDA, all outputs off		3.9	8	mA	

¹ This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1)

Electrical Characteristics- REF

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values		0		ppm	1,2
Clock period	T _{period}	25 MHz output		40		ns	2
Output High Voltage	V _{IH}	I _{OH} = -2mA	0.8x V _{DDREF}			V	
Output Low Voltage	V _{IL}	$I_{OL} = 2mA$			0.2x V _{DDREF}	V	
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 1F, V_{OH} = VDD-0.45V, V_{OL} = 0.45V	0.5	0.8	1.5	V/ns	1
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 5F, V_{OH} = VDD-0.45V, V_{OL} = 0.45V	1.0	1.5	2.5	V/ns	1,3
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 9F, V_{OH} = VDD-0.45V, V_{OL} = 0.45V	1.5	2.2	2.9	V/ns	1
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = DF, V_{OH} = VDD-0.45V, V_{OL} = 0.45V	2.2	2.9	3.9	V/ns	1
Duty Cycle	d _{t1X}	$V_T = VDD/2 V$	45	49.8	55	%	1,4
Duty Cycle Distortion	d _{tcd}	$V_T = VDD/2 V$	-0.5	0.0	+0.5	%	1,5
Jitter, cycle to cycle	t _{icyc-cyc}	$V_T = VDD/2 V$		81	250	ps	1,4
Noise floor	t _{jdBc1k}	1kHz offset			-120	dBc	1,4
Noise floor	t _{jdBc10k}	10kHz offset to Nyquist			-130	dBc	1,4
Jitter, phase	t _{jphREF}	12kHz to 5MHz, DIF SSC Off			0.3	ps (rms)	1,4
Jitter, phase	t _{iphREF}	12kHz to 5MHz, DIF SSC On			1	ps (rms)	1,4

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00 MHz

³ Default SMBus Value

⁴ When driven by a crystal.

⁵ When driven by an external oscillator via the X1 pin, X2 should be floating.

How to Write

DT

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will **acknowledge**
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Bl	ock \	Write Operation
Controll	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave A	Address		
WR	WRite		
			ACK
Beginning	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnin	ig Byte N		
			ACK
0		\times	
0		X Byte	0
0		Ö	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

Note: SMBus Read/Write Address is Latched on SADR pin.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block F	Read O	peration
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address	_	
WR	WRite	_	
		_	ACK
Begi	nning Byte = N		
			ACK
RT	RT Repeat starT		
SI	ave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		e	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

I

Byte 0 Name **Control Function** Туре 0 1 Default Bit 7 Reserved Х Bit 6 Reserved Х Х Reserved Bit 5 Х Reserved Bit 4 Bit 3 Reserved Х BCLK OE1 Output Enable RW Enabled Bit 2 Low/Low 1 BCLK OE0 Bit 1 Output Enable RW Low/Low Enabled 1 Bit 0 Reserved Х

SMBus Table: Output Enable Register

1. A low on these bits will overide the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default).

SMBus Table: SS Readback and Vhigh Control Register

Byte 1	Name	Control Function	Туре	0	1	Default
Bit 7	SSENRB1	SS Enable Readback Bit1	R	00' for SS_EN_tri =	0, '01' for SS_EN_tri	Latch
Bit 6	SSENRB1	SS Enable Readback Bit0	R	= 'M', '11 for S	S_EN_tri = '1'	Latch
Bit 5	SSEN_SWCNTRL	Enable SW control of SS	RW	SS control locked	Values in B1[4:3] control SS amount.	0
Bit 4	SSENSW1	SS Enable Software Ctl Bit1	RW ¹	00' = SS Off, '01' = -0.25% SS,		0
Bit 3	SSENSW0	SS Enable Software Ctl Bit0	RW ¹	'10' = Reserved,	, '11'= -0.5% SS	0
Bit 2		Reserved	•	•		Х
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.6V	01= 0.68V	1
Bit 0	AMPLITUDE 0	Controls Output Amplitude	RW	10 = 0.75V	11 = 0.85V	0

1. Spread must be selected OFF or ON with the hardware latch pin. These bits should not be used to turn spread ON or OFF after power up. These bits can be used to change the spread amount, and B1[5] must be set to a 1 for these bits to have any effect on the part. If These bits are used to turn spread OFF or ON, the system will need to be reset.

SMBus Table: BCLK Slew Rate Control Register

Byte 2	Name	Control Function	Туре	0	1	Default	
Bit 7		Reserved					
Bit 6		Reserved				Х	
Bit 5		Reserved				Х	
Bit 4		Reserved				Х	
Bit 3		Reserved				Х	
Bit 2	SLEWRATESEL BCLK1	Adjust Slew Rate of BCLK1	RW	Slow Setting	Fast Setting	1	
Bit 1	SLEWRATESEL BCLK0	Adjust Slew Rate of BCLK0	RW	Slow Setting	Fast Setting	1	
Bit 0		Reserved	•			Х	

Note: See "Low-Power HCSL Outputs" table for slew rates.

SMBus Table: REF Control Register

Byte 3	Name	Control Function	Туре	0	1	Default
Bit 7	REF	Slew Rate Control	RW	00 = Slowest	01 = Slow	0
Bit 6			RW 10 = Fast 11 = Fa	11 = Faster	1	
Bit 5	REF Power Down Function	Wake-on-Lan Enable for REF	RW	REF disabled in Power Down	REF runs in Power Down	0
Bit 4	REF OE	REF Output Enable	RW	Disabled ¹	Enabled	1
Bit 3		Reserved				Х
Bit 2	Reserved					Х
Bit 1	Reserved					
Bit 0		Reserved				Х

1. The disabled state depends on Byte11[1:0]. '00' = Low, '01'=HiZ, '10'=Low, '11'=Hlgh

Byte 4 is Reserved

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Туре	0	1	Default	
Bit 7	RID3		R				
Bit 6	RID2	Revision ID	R	B rev :	0		
Bit 5	RID1		R	D IEV-	0		
Bit 4	RID0		R		1		
Bit 3	VID3		R			0	
Bit 2	VID2	VENDOR ID	R	0001	0001 = IDT		
Bit 1	VID1	VENDORID	R	- 1000 - 1010		0	
Bit 0	VID0		R			1	

SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Туре	0	1	Default
Bit 7	Device Type1	Device Type	R	00 - 00	00 = 9SQL49xx	
Bit 6	Device Type0	Device Type	R	00 = 95QL49XX		0
Bit 5	Device ID5		R	R R		0
Bit 4	Device ID4	F	R			0
Bit 3	Device ID3	Device ID	R	00010 bipa	v or 02 boy	0
Bit 2	Device ID2	Device ID	R		00010 binary or 02 hex	
Bit 1	Device ID1		R			1
Bit 0	Device ID0		R			0

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Туре	0	1	Default	
Bit 7		Reserved				Х	
Bit 6		Reserved					
Bit 5		Reserved				Х	
Bit 4	BC4		RW			0	
Bit 3	BC3		RW	Writing to this regist	er will configure how	1	
Bit 2	BC2	Byte Count Programming	RW	many bytes will be r	ead back, default is	0	
Bit 1	BC1		RW	= 8 b	ytes.	0	
Bit 0	BC0		RW			0	

Bytes 8 and 9 are Reserved.

SMBus Table: PLL MN Enable, PD_Restore

Byte 10	Name	Control Function	Туре	0	1	Default
Bit 7	PLL M/N En	M/N Programming Enable	RW	M/N Prog. Disabled	M/N Prog. Enabled	0
Bit 6	Power-Down (PD) Restore	Restore Default Config. In PD	RW	Clear Config in PD	Keep Config in PD	1
Bit 5		Reserved				Х
Bit 4		Reserved				Х
Bit 3		Reserved				Х
Bit 2	Reserved					Х
Bit 1	Reserved					X
Bit 0		Reserved				Х

SMBus Table: Stop State Control

Byte 11	Name	ame Control Function		0	1	Default		
Bit 7	Reserved							
Bit 6		Reserved				Х		
Bit 5		Reserved						
Bit 4	Reserved							
Bit 3		Reserved				Х		
Bit 2	Reserved							
Bit 1	STP[1]	STP[1] True/Complement BCLK Output RW 00 = Low/Low 10 = High/Low						
Bit 0	STP[0]	Disable State	RW	01 = HiZ/HiZ	11 = Low/High	0		

SMBus Table: Impedance Control

Byte 12	Name			0	1	Default	
Bit 7	BCLK0_imp[1]	BCLK0_imp[1] BCLK0 Zout		00=33 _Ω Zout	10=100 _Ω Zout	0	
Bit 6	BCLK0_imp[0]	BCLK0 Zout	RW	01=85 _Ω Zout	11 = Reserved	1	
Bit 5		Reserved					
Bit 4		Reserved				Х	
Bit 3		Reserved				Х	
Bit 2		Reserved					
Bit 1	Reserved						
Bit 0	Reserved						

SMBus Table: Impedance Control

Byte 13	Name			0	1	Default	
Bit 7		Reserved				Х	
Bit 6		Reserved				Х	
Bit 5		Reserved					
Bit 4	Reserved						
Bit 3	BCLK1_imp[1]	BCLK1 Zout	RW	00=33 _Ω Zout	10=100 _Ω Zout	0	
Bit 2	BCLK1_imp[0]	BCLK1 Zout	RW	01=85 _Ω Zout	11 = Reserved	1	
Bit 1	Reserved					Х	
Bit 0		Reserved				X	

SMBus Table: Pull-up Pull-down Control

Byte 14	Name			0	1	Default	
Bit 7	OE0_pu/pd[1]	OE0 Pull-up(PuP)/	RW	00=None	10=Pup	0	
Bit 6	OE0_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1	
Bit 5	Reserved						
Bit 4	Reserved						
Bit 3		Reserved				Х	
Bit 2	Reserved						
Bit 1	Reserved						
Bit 0		Reserved					

SMBus Table: Pull-up Pull-down Control

Byte 15	Name	Name Control Function		0	1	Default	
Bit 7	Reserved						
Bit 6		Reserved					
Bit 5	Reserved						
Bit 4	Reserved					1	
Bit 3	OE1_pu/pd[1]	OE1 Pull-up(PuP)/	RW	00=None	10=Pup	0	
Bit 2	OE1_pu/pd[0] Pull-down(Pdwn) control RW 01=Pdwn 11 = Pup+Pdwn						
Bit 1	Reserved						
Bit 0		Reserved				1	

SMBus Table: Pull-up Pull-down Control

Byte 16	Name	me Control Function		0	1	Default		
Bit 7	Reserved							
Bit 6		Reserved						
Bit 5		Reserved						
Bit 4	Reserved							
Bit 3		Reserved				0		
Bit 2	Reserved							
Bit 1	CKPWRGD_PD_pu/pd[1] CKPWRGD_PD Pull-up(PuP)/ RW 00=None 10=Pup							
Bit 0	CKPWRGD_PD_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	0		

Byte 17 is Reserved

SMBus Table: Polarity Control

Byte 18	Name Control Function		Туре	0	1	Default	
Bit 7		Reserved				0	
Bit 6		Reserved				0	
Bit 5	OE1_polarity	OE1_polarity Sets OE1 polarity RW Enabled when Low Enabled when High					
Bit 4		Reserved				0	
Bit 3	OE0_polarity	Sets OE0 polarity	RW	Enabled when Low	Enabled when High	0	
Bit 2		Reserved				0	
Bit 1	Reserved						
Bit 0		Reserved				0	


SMBus Table: Polarity Control

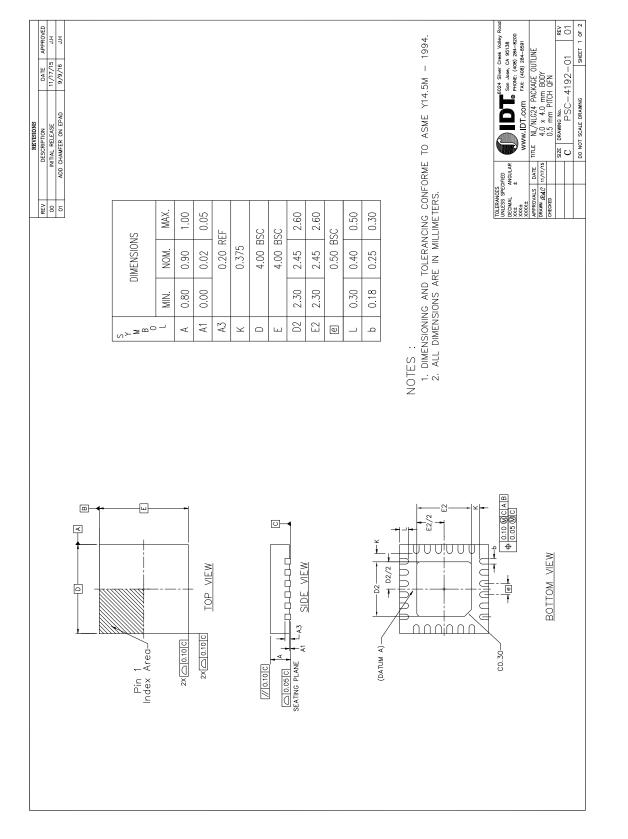
Byte 19	Name	Control Function		0	1	Default		
Bit 7	Reserved							
Bit 6	Reserved							
Bit 5		Reserved						
Bit 4	Reserved							
Bit 3	Reserved							
Bit 2		Reserved				0		
Bit 1	Reserved							
Bit 0	CKPWRGD_PD	Determines RW Power Down when Power CKPWRGD_PD polarity Low				0		

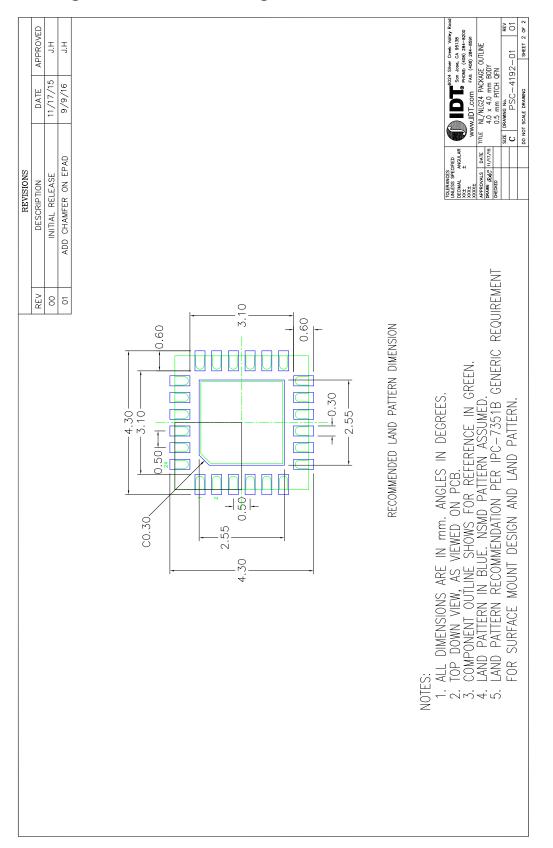
Recommended Crystal Characteristics (3225 package)

PARAMETER	VALUE	UNITS	NOTES
Frequency	25	MHz	
Resonance Mode	Fundamental	-	
Frequency Tolerance @ 25°C	±20	PPM Max	
Frequency Stability, ref @ 25°C Over Operating Temperature Range	<u>+</u> 20	PPM Max	
Temperature Range (commerical)	0~70	°C	
Temperature Range (industrial)	-40~85	°C	
Equivalent Series Resistance (ESR)	50	Ω Max	
Shunt Capacitance (C _O)	7	pF Max	
Load Capacitance (CL)	8	pF Max	
Drive Level	0.3	mW Max	
Aging per year	±5	PPM Max	

Marking Diagram

Notes:


- 1. Line 1: truncated part number
- 2. "I" denotes industrial temperature range device.
- 3. "YYWW" is the last two digits of the year and week that the part was assembled.
- 4. "\$" denotes mark code.
- 5. "LOT" is the lot sequence number.


Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	θ _{JC}	Junction to Case		62	°C/W	1
	θ_{Jb}	Junction to Base		5.4	°C/W	1
Thermal Resistance	θ _{JA0}	Junction to Air, still air	NLG24	50	°C/W	1
memai nesistance	θ _{JA1}	Junction to Air, 1 m/s air flow	NLG24	43	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		39	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		38	°C/W	1

¹ePad soldered to board

Package Outline and Package Dimensions (NLG24)

Package Outline and Package Dimensions (NLG24), cont.

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9SQL4952BNLGI	Trays	24-pin VFQFPN	-40° to +85° C
9SQL4952BNLGI8	Tape and Reel	24-pin VFQFPN	-40° to +85° C

"G" suffix to the part number are the Pb-Free configuration and are RoHS compliant. "B" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Issue Date	Intiator	Description	Page #
F	11/4/2016	RDW	 Updated test loads diagrams Added typical Tdrive_PD# value Slight adjustments to max REF slew rates Added default impedance settings to Byte 12 and 13 	4, 6, 10, 14
G	12/8/2016	RDW	1. Corrected impedance of differential test load from 100ohms to 85ohms	4

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com

Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales

Tech Support www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2016 Integrated Device Technology, Inc.. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics: 9SQL4952BNLGI 9SQL4952BNLGI8