

R1RW0408D Series

4M High Speed SRAM (512-kword × 8-bit)

R10DS0286EJ0100 Rev.1.00 Nov.18.19

Description

The R1RW0408D is a 4-Mbit high speed static RAM organized 512-kword \times 8-bit. It has realized high speed access time by employing CMOS process (6-transistor memory cell) and high speed circuit designing technology. It is most appropriate for the application which requires high speed, high density memory and wide bit width configuration, such as cache and buffer memory in system. The R1RW0408D is packaged in 400-mil 36-pin SOJ for high density surface mounting.

Features

Single 3.3V supply: 3.3V ± 0.3V

Access time: 12ns (max)Completely static memory

No clock or timing strobe required

• Equal access and cycle times

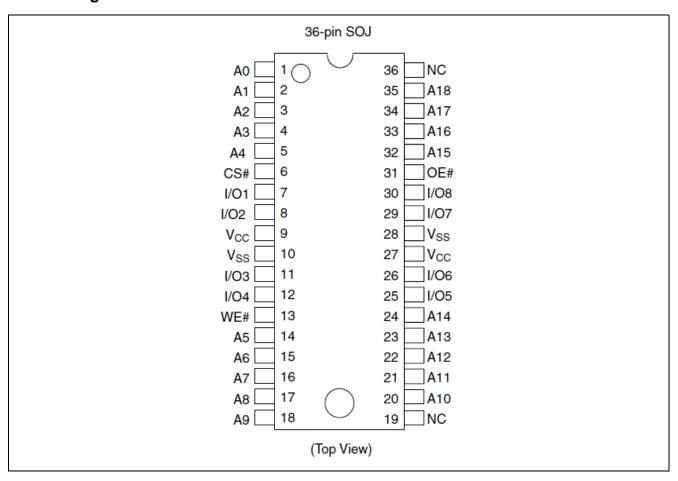
• Directly TTL compatible

All inputs and outputs

Operating current: 100mA (max)TTL standby current: 40mA (max)

• CMOS standby current : 5mA (max)

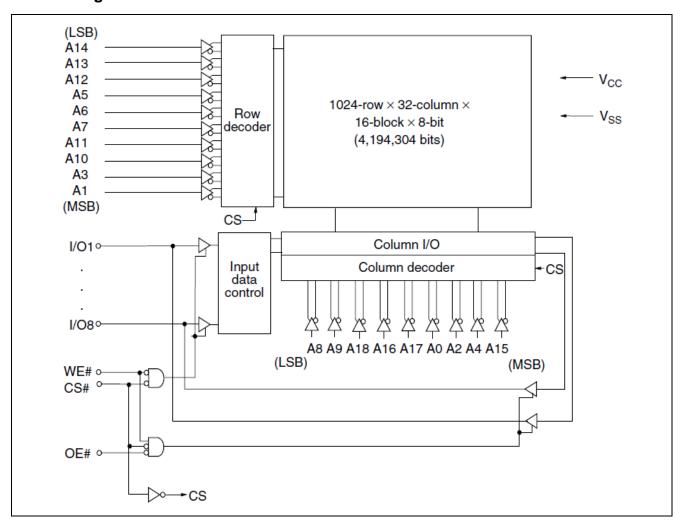
: 0.8mA (max) (L-version)


Data retention current : 0.4mA (max) (L-version)
 Data retention voltage: 2.0V (min) (L-version)

• Center Vcc and Vss type pin out

Ordering Information

Type No.	Access time	Version	Package
R1RW0408DGE-2PR	12ns	Normal	400 mil 20 min mlantin CO I
R1RW0408DGE-2LR	12ns	L-Version	400-mil 36-pin plastic SOJ


Pin Arrangement

Pin Description

Pin name	Function
A0 to A18	Address input
I/O1 to I/O8	Data input/output
CS#	Chip select
OE#	Output enable
WE#	Write enable
Vcc	Power supply
Vss	Ground
NC	No connection

Block Diagram

Operation Table

CS#	OE#	WE#	Mode	V _{CC} current	I/O	Ref. cycle
Н	×	×	Standby	I _{SB} , I _{SB1}	High-Z	_
L	Н	Н	Output disable	Icc	High-Z	_
L	L	Н	Read	Icc	DOUT	Read cycle (1) to (3)
L	Н	L	Write	Icc	DIN	Write cycle (1)
L	L	L	Write	Icc	DIN	Write cycle (2)

Note: H: V_{IH} , L: V_{IL} , \times : V_{IH} or V_{IL}

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage relative to Vss	Vcc	-0.5 to +4.6	V
Voltage on any pin relative to Vss	VT	-0.5^{*1} to V _{CC} + 0.5^{*2}	V
Power dissipation	PT	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	−55 to +125	°C
Storage temperature under bias	Tbias	−10 to +85	°C

Notes: 1. V_T (min) = -2.0V for pulse width (under shoot) \leq 6ns.

2. V_T (max) = V_{CC} + 2.0V for pulse width (over shoot) \leq 6ns.

Recommended DC Operating Conditions

 $(Ta = 0 \text{ to } +70^{\circ}C)$

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc*3	3.0	3.3	3.6	V
	V _{SS} *4	0	0	0	V
Input voltage	V _{IH}	2.0	_	V _{CC} + 0.5*2	V
	V _{IL}	-0.5* ¹	_	0.8	V

Notes: 1. V_{IL} (min) = -2.0V for pulse width (under shoot) \leq 6ns.

- 2. V_{IH} (max) = V_{CC} + 2.0V for pulse width (over shoot) \leq 6ns.
- 3. The supply voltage with all V_{CC} pins must be on the same level.
- 4. The supply voltage with all $V_{\mbox{\footnotesize SS}}$ pins must be on the same level.

DC Characteristics

 $(Ta = 0 \text{ to } +70^{\circ}\text{C}, \ V_{CC} = 3.3\text{V} \pm 0.3\text{V}, \ V_{SS} = 0\text{V})$

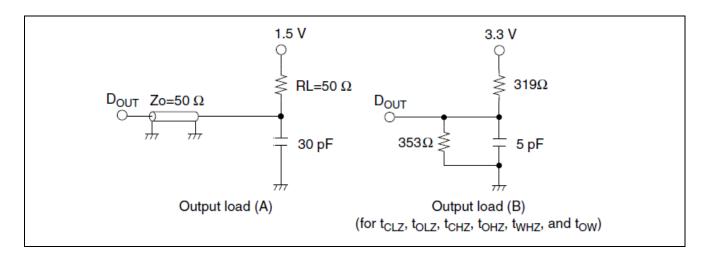
Parameter	Symbol	Min	Max	Unit	Test conditions
Input leakage current	I _{LI}	_	2	μΑ	$V_{IN} = V_{SS}$ to V_{CC}
Output leakage current	I _{LO}	_	2	μΑ	$V_{IN} = V_{SS}$ to V_{CC}
Operating power supply current	Icc	_	100	mA	Min cycle $CS\# = V_{IL}, I_{OUT} = 0mA$ Other inputs = V_{IH}/V_{IL}
Standby power supply current	I _{SB}	_	40	mA	Min cycle, CS# = V _{IH} , Other inputs = V _{IH} /V _{IL}
	I _{SB1}		5	mA	$ f = 0 MHz \\ V_{CC} \geq CS\# \geq V_{CC} - 0.2V, $
		*1	0.8*1	mA	(1) $0V \le V_{IN} \le 0.2V$ or (2) $V_{CC} \ge V_{IN} \ge V_{CC} - 0.2V$
Output voltage	V_{OL}	_	0.4	V	$I_{OL} = 8mA$
	Vон	2.4		V	$I_{OH} = -4mA$

Note: 1. This characteristics is guaranteed only for L-version.

Capacitance

 $(Ta = +25^{\circ}C, f = 1.0MHz)$

Parameter	Symbol	Min	Max	Unit	Test conditions
Input capacitance*1	Cin	_	6	pF	V _{IN} = 0V
Input/output capacitance*1	C _{I/O}	_	8	pF	$V_{I/O} = 0V$


Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics

Test Conditions (Ta = 0 to +70°C, VCC = $3.3V \pm 0.3V$, unless otherwise noted.)

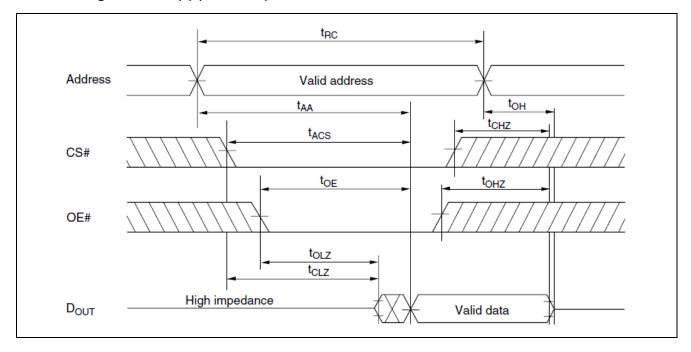
Input pulse levels: 3.0V/0.0VInput rise and fall time: 3ns

Input and output timing reference levels: 1.5V
Output load: See figures (Including scope and jig)

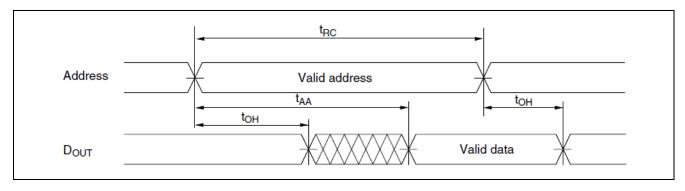
Read Cycle

		R1RW0408D				
Parameter	Symbol	Min	Max	Unit	Notes	
Read cycle time	t _{RC}	12	_	ns		
Address access time	t _{AA}	_	12	ns		
Chip select access time	tacs	_	12	ns		
Output enable to output valid	toe	_	6	ns		
Output hold from address change	tон	3	_	ns		
Chip select to output in low-Z	tclz	3	_	ns	1	
Output enable to output in low-Z	tolz	0	_	ns	1	
Chip deselect to output in high-Z	tснz	_	6	ns	1	
Output disable to output in high-Z	tонz	_	6	ns	1	

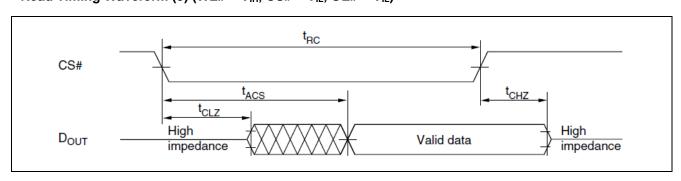
Write Cycle

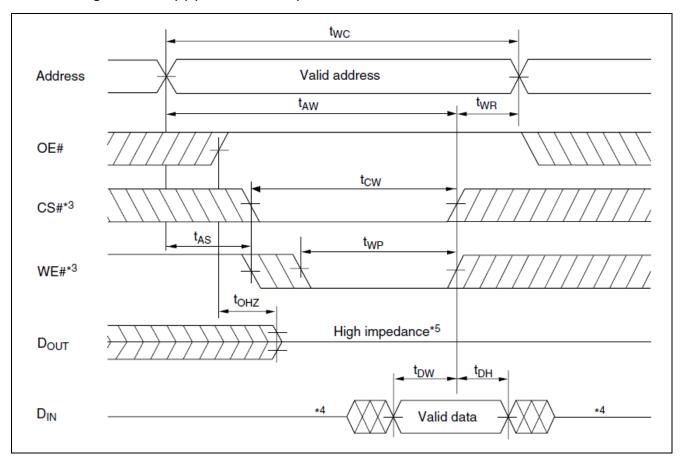

		R1RW0408D			
Parameter	Symbol	Min	Max	Unit	Notes
Write cycle time	t _{WC}	12	_	ns	
Address valid to end of write	t _{AW}	8	_	ns	
Chip select to end of write	tcw	8	_	ns	9
Write pulse width	twp	8	_	ns	8
Address setup time	tas	0	_	ns	6
Write recovery time	twR	0	_	ns	7
Data to write time overlap	t _{DW}	6	_	ns	
Data hold from write time	tон	0	_	ns	
Write disable to output in low-Z	tow	3	_	ns	1
Output disable to output in high-Z	tонz	_	6	ns	1
Write enable to output in high-Z	t _{WHZ}	_	6	ns	1

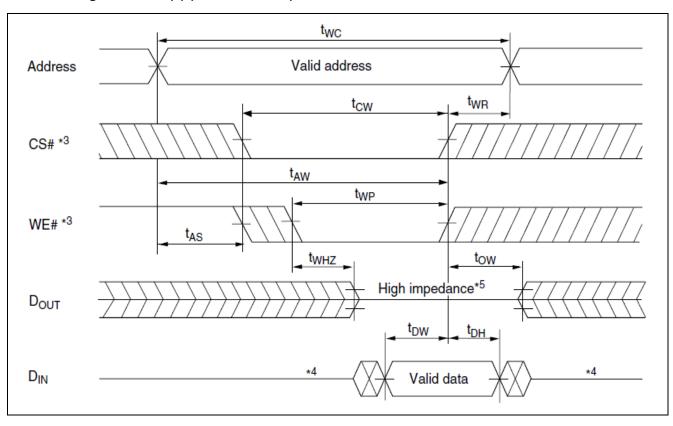
Notes: 1. Transition is measured ± 200 mV from steady voltage with output load (B). This parameter is sampled and not 100% tested.


- 2. Address should be valid prior to or coincident with CS# transition low.
- 3. WE# and/or CS# must be high during address transition time.
- 4. If CS# and OE# are low during this period, I/O pins are in the output state. Then, the data input signals of opposite phase to the outputs must not be applied to them.
- 5. If the CS# low transition occurs simultaneously with the WE# low transition or after the WE# transition, output remains a high impedance state.
- 6. t_{AS} is measured from the latest address transition to the later of CS# or WE# going low.
- 7. twR is measured from the earlier of CS# or WE# going high to the first address transition.
- 8. A write occurs during the overlap of a low CS# and a low WE#. A write begins at the latest transition among CS# going low and WE# going low. A write ends at the earliest transition among CS# going high and WE# going high. twp is measured from the beginning of write to the end of write.
- 9. t_{CW} is measured from the later of CS# going low to the end of write.

Timing Waveforms

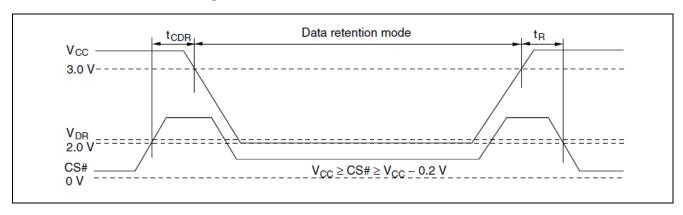

Read Timing Waveform (1) (WE# = VIH)


Read Timing Waveform (2) (WE# = V_{IH} , LB# = V_{IL} , UB# = V_{IL})


Read Timing Waveform (3) (WE# = V_{IH} , CS# = V_{IL} , OE# = V_{IL})*2

Write Timing Waveform (1) (WE# Controlled)

Write Timing Waveform (2) (CS# Controlled)


Low Vcc Data Retention Characteristics

 $(Ta = 0 \text{ to } +70^{\circ}C)$

This characteristics is guaranteed only for L-version.

Parameter	Symbol	Min	Max	Unit	Test conditions
V _{CC} for data retention	V _{DR}	2.0	_	V	$V_{CC} \ge CS\# \ge V_{CC} - 0.2V,$ (1) $0V \le V_{IN} \le 0.2V$ or (2) $V_{CC} \ge V_{IN} \ge V_{CC} - 0.2V$
Data retention current	ICCDR	_	400	μА	$V_{CC} = 3V$ $V_{CC} \ge CS\# \ge V_{CC} - 0.2V$, (1) $0V \le V_{IN} \le 0.2V$ or (2) $V_{CC} \ge V_{IN} \ge V_{CC} - 0.2V$
Chip deselect to data retention time	tcdr	0	_	ns	See retention waveform
Operation recovery time	t _R	5	_	ms	

Low V_{CC} Data Retention Timing Waveform

Revision History

			Description					
Rev.	Date	Page	Summary					
1.00	Nov.18.19	-	First Edition issued					

All documents should contain the following section break and paragraph as the last item. The footers of this document refer to the paragraph in order to reference the last page of the document.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

R1RW0408DGE-2LR#B1 R1RW0408DGE-2PR#B1