RENESAS

RE01B Group Product with 1.5-Mbyte Flash Memory

Renesas Microcomputer

Oct 07, 2020 64 MHz, 32-bit Arm[®] Cortex[®]-M0+, 1.5-Mbyte flash memory supporting background operation, 256-Kbyte SRAM, energy harvesting control circuit, 2D graphic engine, 14-bit ultra-low power A/D converter, reference voltage generation circuit, RTC, sub-clock correction circuit (theoretical regulation), security function,

SPI, Bluetooth® 5.0

Features

■ Arm[®] Cortex[®]-M0+ core

- Maximum operating frequency: 64 MHz (in boost mode) ARM[®] Memory Protection Unit (MPU)
 CoreSight[™] debug port: SW-DP

Power-saving functions

- Back-bias control function based on silicon-on-thin-buried-oxide (SOTB™) process technology
- Operation at ultra-low power-supply voltages (from 1.62 V to 3.6 V)
- Four power control modes based on the operating frequency Four low power consumption modes
- Three power supply mode

On-chip code flash memory

1.5-Mbyte code flash memory

- Background programming/erasing
- No cycles of waiting for access in operation at or below 32 MHz; one cycle of waiting at frequencies above 32 MHz
- Function for area protection prevents erroneous overwriting or tampering

On-chip SRAM

· 256-Kbyte SRAM with no access wait cycles

Data transfer

- Four DMA controllers
- Single data transfer controller (DTC)

Reset and supply management

Power-on reset circuit (POR)

• Low voltage detection (LVD) can be set.

Multiple clock sources

- External crystal oscillator (main clock): 8 to 32 MHz
- External crystal oscillator (sub-clock): 32.768 kHz Clock oscillator for Bluetooth: 32 MHz
- High-speed on-chip oscillator (HOCO): 24, 32, 48, or 64 MHz
- Middle-speed on-chip oscillator (MOĆO): 2 MHz Low-speed on-chip oscillator (LOCO): 32 kHz
- Independent watchdog timer on-chip oscillator: 16 kHz
- · PLL frequency synthesizer

Energy harvesting control

- A power generation element is directly connectable.
- High-speed startup is possible without having to wait for a secondary battery to be charged. Protection of a secondary battery against overcharging
- Independent watchdog timer
 - 14-bit counter, 16-kHz (1/2 LOCO clock frequency) operation

Sub-clock correction circuit (CCC)

- · The CCC corrects the accuracy of oscillation every 16 seconds
- (theoretical regulation). • Events can be generated per second in deep software standby mode.

Communication functions

- Single serial peripheral interface
- Single 32-bit buffer for which one command can be specified
- Single I2C bus interface
- Two serial communications interfaces (SCIg) Asynchronous, clock-synchronous, simple I²C, simple SPI, and smart card interfaces
- Single Bluetooth Low Energy module Includes an RF transceiver and link layer compliant with the Bluetooth 5.0 Low Energy specification Supports LE IM PHY, LE 2M PHY, LE Coded PHY (125 kbps and 500 kbps), and the LE advertising extensions Includes a dedicated AES-CCM (128 bits) encryption circuit

Various analog circuits

- Single 14-bit successive approximation A/D converter High precision: 4 channels, standard precision: 3 channels Single temperature sensor for measuring the internal temperature of the
- chip
 Reference voltage generation circuit for the 14-bit A/D converter

Various timer circuits

- Two general PWM timers (GPT) Single 32-bit counter Single 16-bit counter
- Two asynchronous general-purpose timers (AGT) that can be used in standby mode Two 8-bit timers (TMR)
- Single realtime clock (RTC)
- Single watchdog timer (WDT) Single low-speed timer (LST) that operates at 1 kHz A circuit for converting hexadecimal numbers to decimal numbers for

use as a stopwatch Human machine interfaces

• Single 2D graphics data conversion circuit (GDT)

Security functions

- Single Trusted Secure IP Lite (TSIP-Lite)
 - AES (128- or 256-bit key length, supporting ECB, CBC, CMAC, GCM, and others)
 - Key wrapping protects against the leakage of the encryption keys of users.
 - An access management circuit disables illicit access to the encryption engine.
 - Using the other security functions together with area protection enables secure booting and secure over-the-air (OTA) software updates.

Operating voltage and temperature range

- VCC = IOVCC = 1.62 V to 3.6 V IOVCCn and AVCCn can each be independently set to a voltage within the range between 1.62 V and 3.6 V. T_a: -40 to +85°C

Datasheet

R01DS0384EJ0100

Rev.1.00

1. Overview

1.1 Outline of Specifications

 Table 1.1 shows the specifications in outline.

Table 1.1	Outline of Specifications	(1/8)
-----------	---------------------------	-------

Classification	Feature	Description
CPU	Central processing unit	 Maximum operating frequency: 64 MHz Arm[®] Cortex[®]-M0+ Revision: r0p1-00rel0 Arm[®]v6-M architecture profile Single-cycle integer multiplier Arm[®] Memory Protection Units (MPUs) Arm[®]v6 Protected Memory System Architecture Eight protected memory areas SysTick timer Driven by SYSTICCLK (LOCO clock) or ICLK
Memory	Code flash memory	 Maximum 1.5 Mbytes No cycles of waiting for access in operation at or below 32 MHz; one cycle of waiting at frequencies above 32 MHz Prefetch function On-board programming (three types): Programming in serial programming mode (SCI boot mode) Programming in on-chip debug mode Programming by a routine for code flash memory programming within a user program
	SRAM	 Maximum 256 Kbytes SRAM0: 2000 0000h to 2000 7FFFh SRAM1: 2000 8000h to 2003 FFFFh Both areas are available during low leakage current mode. 64 MHz, No cycles of waiting for access
Startup modes		Three startup modes: • Normal startup mode • Energy harvesting startup mode • SCI boot mode
Reset		The LSI chip supports 12 system resets and one power shutdown reset. [System resets] • RES# pin reset • Power-on reset • Independent watchdog timer reset • Watchdog timer reset • Voltage monitor 0 reset • Voltage monitor 1 reset • Voltage monitor BAT reset • Bus master MPU error reset • Bus slave MPU error reset • Stack pointer error reset • Software reset • Deep software standby reset [Power shutdown reset] • MINPWON mode reset

Classification	Feature	Description
Low-voltage detect	tion circuits (LVD)	 The low-voltage detection circuits (LVD) monitors the voltage level input to the VCC pin or VBAT_EHC pin. The detection level can be selected using a program. Voltage detection circuit 0 Target for monitoring: VCC pin Capable of generating an internal reset The option-setting memory can be used to enable or disable the low-voltage detection circuit. Selectable from four different voltage detection levels (1.67 V, 1.92 V, 2.17 V, and 2.42 V) Voltage detection circuit 1 Target for monitoring: VCC pin The register setting can be used to enable or disable the low-voltage detection circuit. Selectable from eight different voltage detection levels (1.67 V, 1.92 V, 2.17 V, and 2.42 V) Voltage detection circuit 1 Target for monitoring: VCC pin The register setting can be used to enable or disable the low-voltage detection circuit. Selectable from eight different voltage detection levels (1.67 V, 1.84 V, 2.00 V, 2.17 V, 2.33 V, 2.50 V, 2.66 V, and 2.83 V) Digital filtering is available (1/2, 1/4, 1/8, and 1/16 LOCO frequency). Detection of voltage rising above and falling below thresholds is selectable. Capable of generating an internal reset Two types of timing are selectable for release from reset. An internal interrupt can be requested. A maskable or non-maskable interrupt is selectable. Voltage detection circuit BAT Target for monitoring: VBAT_EHC pin The register setting can be used to enable or disable the low-voltage detection circuit. Selectable from five different voltage detection levels (1.67 V, 1.84 V, 2.00 V, 2.17 V, and 2.33 V) Digital filtering is available. Voltage detection ricuit BAT Target for monitoring: valiable (1/2, 1/4, 1/8, and 1/16 LOCO frequency). Detection of voltage rising above and falling below thresholds is selectable
Clock		 The LSI chip has the following clock generation circuits. Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) PLL frequency synthesizer IWDT-dedicated on-chip oscillator (IWDTLOCO) Bluetooth-dedicated clock oscillator Bluetooth-dedicated low-speed on-chip oscillator Clock output support CLKOUT32K pin (capable of the output of the SOSC clock signal)

Table 1.1Outline of Specifications (2/8)

Classification	Feature	Description
Clock frequency a circuit (CAC)	ccuracy measurement	The CAC checks the system clock frequency with a reference clock signal by counting the number of pulses of the system clock to be measured. Event signals can be generated when the frequency does not match or measurement ends. This function is particularly useful in implementing a fail-safe mechanism for home and industrial automation applications. • Target clocks for measurement • Main clock • Sub-clock • HOCO clock • HOCO clock • LOCO clock • CCC2K clock • IWDT-dedicated clock • Sub-clock • Sub-clock • Reference clocks for measurement • Main clock • Sub-clock • HOCO clock • LOCO clock • LOCO clock • HOCO clock • HOCO clock • HOCO clock • LOCO clock • IWDT-dedicated clock • IWDT-dedicated clock • Peripheral module clock B (PCLKB) • Digital filtering is selectable.
Low power consumption	Power-saving functions	 The LSI chip has several functions for power saving, such as setting clock dividers, stopping modules, selecting power control mode in operating mode, transitioning to low power consumption mode, and power supply mode per domain. Three power control modes based on the operating frequency Boost mode (up to 64 MHz) Normal mode High-speed mode (up to 32 MHz) Low-speed mode (up to 2 MHz) Subosc-speed mode (this LSI chip can be placed in the low leakage current mode at 32.768 kHz.) Low leakage current mode (32.768 kHz) Five low-power consumption modes Operating mode Sleep mode Software standby mode Three power supply mode (ALLPWON) Flash-excluded power supply mode (MINPWON)
	Back-bias voltage control ^{*1} (VBBC) function	Program control of the back bias voltage enables low leakage current operation in the low leakage current mode.
Energy harvesting	control circuit (EHC)	Starting up of this LSI chip in the power-saving mode is possible by controlling the power generating element, storage capacitor, and secondary battery.
Register write prot	ection (RWP)	The register write protection function protects important registers from rewrites caused by software errors.
Memory protection units (MPUs) and stack pointer monitors		 Illicit memory access CPU (attempt at access to an undefined address space) CPU stack pointer monitors: Two regions Memory protection Arm® MPU: Eight areas Bus master MPU: Four areas Bus slave MPU Security Security Security MPU: Two secure program areas Three secure data areas (code flash memory, SRAM, and TSIP-Lite)

Table 1.1Outline of Specifications (3/8)

RENESAS

Classification	Feature	Description
Interrupt	Interrupt controller unit (ICU)	 Peripheral function interrupts: 103 sources External interrupts: Five sources (IRQ0, IRQ1, and IRQ5 to IRQ7) Non-maskable interrupts: Eight sources DMAC and DTC control: The DMAC and DTC can be activated by interrupt sources. Interrupts for NVIC: 29 sources
Key interrupt func	tion (KINT)	An interrupt can be generated by inputting a rising or falling edge to the key interrupt input pins.
DMA	Data transfer controller (DTC)	 Transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: External interrupts and interrupt requests from peripheral functions Transfer channels: Multiple data units can be transferred on a single activation source (chain transfer).
	DMA controller (DMAC)	 A 4-channel DMA controller (DMAC) module is incorporated for transferring data without CPU intervention. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address. Transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Software trigger, external interrupts, and interrupt requests from peripheral functions
Event link control	ler (ELC)	The ELC uses the interrupt requests generated by various peripheral modules as event signals and connects them to different modules. This enables modules to function in combination with each other without CPU intervention.
Timers	General PWM timer (GPT)	 Single 32-bit counter (GPT32), and single 16-bit counter (GPT16) Up-counting or down-counting (saw waves) or up-counting or down-counting (triangle waves) is selectable for each counter. Two input/output pins per channel Two output compare/input capture registers per channel For the two output compare/input capture registers of each channel, four buffer registers are provided and are capable of operating as comparison registers when buffering is not in use. In output compare operation, buffer switching can be at crests or troughs, enabling the generation of laterally asymmetric PWM waveforms. Registers for setting up frame cycles in each channel (with capability for generating interrupts at overflow or underflow) Generation of dead times in PWM operation Synchronous starting, stopping and clearing counters for arbitrary channels Based on the ELC settings, up to four ELC events can start or stop counting, clear the counter, drive counting up or down, or trigger input capture. Up to two external triggers can start or stop counting, clear the counter, drive counting up or down, or trigger input capture. Output pin disable function in response to detecting short-circuits between output pins Compare match A to D events, and overflow or underflow events can be output to the ELC. A noise filter can be used for input capture input.
	Port output enable for GPT (POE)	 Output disabling in response to detection of the input level on the GTETRGn pin Output disabling in response to a request from the GPT. Output disabling in response to detection of stopped oscillation. Output disabling in response to software register settings. The GTETRGn signals can be output to the GPT as external trigger signals after polarity and filter selection. An input filter can be used for the GTETRGn pin.

Table 1.1Outline of Specifications (4/8)

RE01B Group Produc	t with 1.5-Mbyte	Flash Memory
--------------------	------------------	--------------

Classification	Feature	Description
Timers	Asynchronous general- purpose timer (AGT)	 The asynchronous general-purpose timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. Two channels Timer mode The AGT supports the interrupt and event link functions for three sources, and the chip can return from software standby mode. Underflow event signal/measurement complete event signal Compare match A event signal Compare match B event signal
	8-bit timers (TMR)	 (8 bits × 2 channels) × 1 unit Select from among seven internal clock signals (PCLKB/1, PCLKB/2, PCLKB/8, PCLKB/32, PCLKB/64, PCLKB/1024, PCLKB/8192) and one external clock signal. Capable of output of pulse with desired duty cycles or of PWM signals The two channels can be cascaded to create a 16-bit timer. Conversion start trigger for the 14-bit A/D converter can be generated. Support of function for event linking by the ELC
	Realtime clock (RTC)	 The RTC has two counting modes: a calendar count mode and a binary count mode. These modes are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (western) calendar. Clock source: Sub-clock oscillator Counting by either clock counters or 32-bit binary counters in second units is selectable. Clock and calendar functions Interrupt sources: Alarm interrupt, periodic interrupt, and carry interrupt Time capture function Support of function for event linking by the ELC
	Clock correction circuit (CCC)	 The CCC corrects the oscillation accuracy every 16 seconds for the sub-clock (32.768 kHz). Clock output after correction: 2.048 kHz or 512 Hz Signal output (CCCOUT): Selectable from 512 Hz, 1 Hz, and RTC output (1 Hz or 64 Hz) Support of function for event linking by the ELC
	Watchdog timer (WDT)	 The WDT can be used to reset the LSI chip when the system runs out of control. A non-maskable interrupt or interrupt can be generated by an underflow of the counter. 14 bits × 1 channel Count clock (WDTCLK): Selectable from PCLKB and CCC_2K Selectable counter clock signal: 6 types (WDTCLK/4, WDTCLK/64, WDTCLK/128, WDTCLK/512, WDTCLK/2048, WDTCLK/8192).
	Independent watchdog timer (IWDT)	 The IWDT is a 14-bit down-counter and operates with the clock (IWDTCLK) that is independent of the clock used by the system. It can reset the LSI chip if the system runs out of control. The IWDT provides functionality to reset the LSI chip or to generate a non-maskable interrupt or interrupt on a counter underflow. 14 bits × 1 channel Counter-input clock: IWDTLOCO IWDTLOCO/1, IWDTLOCO/16, IWDTLOCO/32, IWDTLOCO/64, IWDTLOCO/128, IWDTLOCO/256 Window function: The positions where the window starts and ends are specifiable (the window defines the timing with which refreshing is enabled and disabled). Support of function for event linking by the ELC
	Low-speed clock timer (LST)	 The low-speed clock timer (LST) is a 13-bit timer that consists of a 1-kHz timer-counter and a circuit for converting hexadecimal numbers to decimal numbers. The LST can be used to indicate a count that needs to be displayed in decimal. Capable of counting from 0.000 to 1.999 seconds (in units of 0.001 seconds) The counted value can be directly stored in a register in decimal notation.

Table 1.1Outline of Specifications (5/8)

Classification	Feature	Description
Communications interfaces	Serial communications interfaces (SCIg)	 Without FIFO (SCIg) × 2 channels The SCI is configurable for five asynchronous and synchronous serial interfaces. Asynchronous interfaces (UART and asynchronous communications interface adapter (ACIA)) 8-bit clock-synchronous interface Simple I²C (master-only) Simple SPI Smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. The data transfer speed can be configured independently using an on-chip baud rate generator. Selectable as LSB-first or MSB-first transfer Support of function for event linking by the ELC (SCI2 only)
	I ² C bus interface (RIIC)	 The RIIC conforms with and provides a subset of the NXP I²C bus (Inter-Integrated Circuit bus) interface functions. I²C bus format or SMBus format Master or slave selectable Automatic securing of the setup times, hold times, and bus-free times for the multimaster transfer rate Support of function for event linking by the ELC
	Serial peripheral interface (SPI)	 The SPI can handle high-speed and full-duplex synchronous serial communications with multiple processors and peripheral devices. One command/32-bit buffer × 1 channel Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (SPI clock) signals allows serial communications through SPI operation (four-wire method) or clock synchronous operation (three-wire method). Transmit-only operation is available. Switching of RSPCK polarity Switching of RSPCK phase MSB-first or LSB-first selectable Transmit and receive buffers Up to one frame can be transferred in one round of transmission or reception (a frame consisting of up to 32 bits). Double buffer configuration for the transmission and reception buffers
	Bluetooth Low Energy (BLE)	 Includes an RF transceiver and link layer compliant with the Bluetooth 5.0 Low Energy specification Supports LE 1M PHY, LE 2M PHY, LE Coded PHY (125 kbps and 500 kbps), and the LE advertising extensions Includes a dedicated AES-CCM (128 bits) encryption circuit

Table 1.1Outline of Specifications (6/8)

Classification	Feature	Description
Analog	14-bit A/D converter (S14AD)	A 14-bit successive approximation A/D converter incorporated Up to seven analog input channels are selectable. The analog input channels and the temperature sensor output are selectable for conversion. The A/D conversion accuracy is selectable between 12-bit and 14-bit conversion making it possible to optimize the tradeoff between speed and resolution in generating a digital value. • 14 bits × up to seven channels (four for high accuracy and three for standard) • Resolution: 14 bits (14-bit or 12-bit conversion selectable) • Operating mode: Scan mode (single-scan mode, continuous-scan mode, or group-scan mode) • Group A priority control (only for group-scan mode) • Variable sampling state count • A/D-converted value addition mode or average mode selectable • Disconnection detection assist function • Double-trigger mode (duplication of A/D conversion data) • Support of function for event linking by the ELC • Automatic clear function of A/D data registers • Compare function for window A and window B • Digital compare function Comparison of values in the comparison register and the data register, and comparison between values in the data registers
	Temperature sensor (TEMPS)	The temperature sensor outputs the voltage that is directly proportional to the die temperature. The output voltage is converted to a digital value by the S14AD for conversion and can be further used by the end application.
	Reference voltage generation circuit (VREF)	The circuit generates two types (1.25 V/2.5 V) of reference voltage. The generated voltage can be used as the reference voltage for the ADC.
Human machine interfaces (HMI)	2D graphics data conversion circuit (GDT)	 A graphic accelerator circuit that handles 2D image processing incorporated Handling of up to 32-byte image data. Up to 63 × 64 bits for conversion of glyph data into image data. Rotations of 90-degree clockwise, 90-degree counterclockwise, vertical flip, and horizontal flip Scaling down to 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, or 7/8 by pixel averaging and to 1/2 by pixel skipping Inversion allows bit-wise inversion of images; 1 is inverted to 0, and vice versa. Monochrome compositing of a foreground image, background image, and trimming image Color compositing of a foreground image and background image, and setting of priority color and transparent color Scrolling of an image in 1-bit units Conversion of glyph data into image data Colorization of monochrome images by RGB values Color data sorting allows separate R, G, and B images in memory to be sorted into a single area in order of R, G, and B.
Data processing	Cyclic redundancy check (CRC) calculator	 The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communications. Additionally, various CRC generation polynomials are available. CRC code generated for any data in 8-bit/32-bit units 8-bit data: One of three polynomials selectable [8-bit CRC] X8 + X² + X + 1 (CRC-8) [16-bit CRC] X16 + X1² + X⁵ + 1 (CRC-16) X16 + X1² + X⁵ + 1 (CRC-16-CCITT) 32-bit data: One of two polynomials selectable [32-bit CRC] X3² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰ + X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1 (CRC-32) X³² + X²⁸ + X²⁷ + X²⁶ + X²⁵ + X²³ + X²² + X²⁰ + X¹⁹ + X¹⁸ + X¹⁴ + X¹³ + X¹¹ + X¹⁰ + X⁹ + X⁸ + X⁶ + 1 (CRC-32C) The bit order of CRC calculation results can be switched for LSB- or MSB-first communications.

Table 1.1Outline of Specifications (7/8)

RENESAS

Classification	Feature	Description
Data processing	Data operation circuit (DOC)	The DOC compares, adds, and subtracts 16-bit data.
	Divider (DIV)	A circuit for handling high-speed division for signed 32-bit fixed point data • Dividend: Signed 32-bit data • Divisor: Signed 32-bit data
	Data inversion circuit (DIL)	A circuit for inverting the values of input data is integrated.
Security	Trusted secure IP lite (TSIP-Lite)	 Access management circuit available Security algorithms: Common key cryptosystem (symmetrical cryptography): AES key length: 128 bits/256 bits Encryption usage modes: GCM, ECB, CBC, CMAC, XTS, CTR, GCTR, CCM Other support features: TRNG (true random number generation circuit) Hash value generation: GHASH Support for unique IDs (128-bit unique IDs)
Operating frequen	су	Up to 32 MHz (normal mode) Up to 64 MHz (boost mode) Up to 32 kHz (low leakage current mode)
Power supply voltages		VCC = IOVCC = 1.62 to 3.6 V, IOVCC0 = 1.62 to 3.6 V, IOVCC1 = 1.62 to 3.6 V, IOVCC2 = 1.62 to 3.6 V, IOVCC3 = 1.62 to 3.6 V, AVCC0 = 1.62 to 3.6 V, VCC_RF = 1.8 to 3.6 V, AVCC_RF = 1.8 to 3.6 V, 1.62 V \leq VREFH0 \leq AVCC0
Operating ambient temperature		-40 to +85°C
Package		64-pin QFN (PVQN0064LE-A)
On-chip debugging system		 Debug and trace: DWT, BPU, CoreSight™ MTB-M0+ CoreSight debug port: SW-DP

Table 1.1Outline of Specifications (8/8)

Note 1. Voltage for charging the VBP and VBN pins

1.2 Block Diagram

Figure 1.1 is a block diagram of this chip.

Figure 1.1 Block Diagram

1.3 List of Products

Table 1.2List of Products

Part Number	Packago	Code Flash Memory Capacity	SPAM Capacity	Support Status
Fait Number	Fackage			TSIP-Lite
R7F0E01BD2DNB	PVQN0064LE-A	1.5 Mbytes	256 Kbytes	Supported

1.4 Function Comparison

 Table 1.3 lists the functions of this product.

Table 1.3 List of Functions

Part Number			R7F0E01BD2DNB		
Total pin count			64		
Number of	hose I/O port pins Input port pin		27		
general-purpose I/O port pins			1		
Package			QFN		
Code flash memory	/		1.5 Mbytes		
SRAM			256 Kbytes		
CPU operating free	luency		32 MHz (normal mode) 64 MHz (boost mode) 32 kHz (low leakage current mode)		
Interrupt control		ICU	Yes		
		IRQ	Channels 0, 1, and 5 to 7		
Key interrupt		KINT	2 channels		
DMA		DTC	Yes		
		DMAC	Channels 0 to 3		
Event control		ELC	Yes		
Energy harvesting		EHC	Yes		
Back-bias voltage	control	VBBC	Yes		
Timers	GPT32		Channel 0		
	GPT16		Channel 3		
		POE	Yes		
	AGT		Channels 0 and 1		
	TMR		Channels 0 and 1		
-	RTC		Yes		
	ССС		Yes		
WDT			Yes		
	IWDT		Yes		
	LST		Yes		
Communications	SClg	w/o FIFO	Channels 2 and 3		
function	RIIC		Channel 1		
	SPI	32-bit buffer	Channel 1		
	Bluetooth	Low Energy	Yes		
Analog	S14AD	High precision	4 channels		
		Standard precision	3 channels		
	TEMPS		Yes (1 channel)		
	VREF		Yes (1 channel)		
HMI graphics	GDT		Yes		
Data processing	CRC		Yes		
	DOC		Yes		
	DIV		Yes		
	DIL		Yes		
Security	TSIP-Lite		Yes		

1.5 Pin Functions

Table 1.4 lists the pin functions. For details on how to connect smoothing capacitors, refer to examples of their connection shown and described in Appendix B.

Function	Pir	Name	I/O	Description
Power supply	VCC/ IOVCC	Normal startup mode	Input	Power supply pin. Connect it to the system power supply. Connect to VSS through a $0.1-\mu$ F smoothing capacitor. Place the smoothing capacitor close to the pin. ^{*2} Apply the voltage to this pin before the voltage for the IOVCCn pin.
		Energy harvesting startup mode	Input	Power supply pin. Connect it to the system power supply. Connect to VSS through 0.1- μ F smoothing capacitor (1). Place the smoothing capacitor close to the pin. In addition, connect to VSS through smoothing capacitor (2) having capacity of 1/10 of capacity of a storage capacitor connected to the VCC_SU pin to improve robustness against external noise and obtain stable operation of the circuit. For instance, connect a 4.7- μ F smoothing capacitor in the case where a 47- μ F storage capacitor is connected to the VCC_SU pin. If placing the smoothing capacitor (2) close to this pin is possible, the smoothing capacitor (1) is not required. For more details, see Appendix B. Connecting the Capacitors to the Power Supply Pins.
	VSS		Input	Ground pin. Connect it to the system power supply (0 V).
	VCL		Input	Internal power supply stabilization pin. Connect the pin to VSS through a 4.7 - μ F smoothing capacitor. Place the smoothing capacitor close to the pin.
	VCLH		Input	Internal power supply stabilization pin. Separately from the VCL pin, connect the VCLH pin to VSS through a 4.7-µF smoothing capacitor. Place the smoothing capacitor close to the pin.
	VBN		_	Back-bias voltage stabilization pins. Connect the respective pins to
	VBP		—	VSS through a 1.0- μ F smoothing capacitor. Place the smoothing capacitor close to the pin.
	VSC_VCC	Normal startup mode	Input	Power supply pin supplied from a power generation element. Connect it to the system power supply (0 V) in normal startup mode.
		Energy harvesting startup mode	Input	Power supply pin supplied from a power generation element. Connect this pin to VSC_GND through a smoothing capacitor in parallel with the power generation element. Place the smoothing capacitor close to the pin. While a smoothing capacitor with a capacitance value of 4.7-nF to 47- nF is recommended, select a capacity value suitably in accordance with stability of a power generating element or the like.
	VCC_SU	Normal startup mode	I/O	Power supply pin supplied from a storage capacitor. Short it to VCC/ IOVCC in normal startup mode.
		Energy harvesting startup mode	I/O	Power supply pin supplied from a storage capacitor. When using a photovoltaic cell as a power generating element, connect a storage capacitor with a capacitance value in accordance with an operating temperature, and with a value of at least 10 times VCC. A capacitance value of 47 μ F is required at 25°C. As a temperature becomes higher, a larger capacitance value is required. See the EHC characteristics in section 6.9, EHC Characteristics. Connect this pin to a 100- μ F storage capacitor in the case where other power generating elements are used.
	VSC_GND		Input	VSC_VCC ground pin. Connect it to the system power supply (0 V).
	VBAT_EHC	Normal startup mode	Input	Power supply pin supplied from a secondary battery. Connect it to VCC/IOVCC in normal startup mode.
		Energy harvesting startup mode	Input	Power supply pin supplied from a secondary battery. Connect a 2.6-V or 3.0-V secondary battery or a super capacitor in energy harvesting startup mode.

Table 1.4Pin Functions (1/4)

Table 1.4Pin Functions (2/4)

Function	Pin Name	I/O	Description	
Power supply	IOVCCn (n = 0 to 3)	Input	Power supply pin for input/output. Connect the pin to VSS through a 0.1- μ F smoothing capacitor. Place the smoothing capacitor close to the pin. ^{*2, *3} This pin can be left open-circuit when not in use. When the pin is to be used, set the corresponding bit in the power supply open control register (VOCR) described in section 12.2.23 in the User's Manual: Hardware.	
Clock	XTAL	Input	Pins for connecting the MOSC resonator	
	EXTAL	Output		
	XCIN	Input	Pins for connecting the SOSC resonator	
	XCOUT	Output		
	XTAL1_RF	Input	Pins for connecting the Bluetooth-dedicated clock oscillator. Connect a 32-MHz oscillator to these pins	
	XTAL2_RF	Output		
	CLKOUT32K	Output	SOSC clock output pin	
Startup mode control	MD	Input	Pin for setting the startup mode. The signal level on this pin must not be changed during transition to the specified startup mode after release from the reset state.	
	EHMD	Input	Pin for setting the energy harvesting mode	
System control	RES#	Input	Reset signal input pin. The LSI chip enters the reset state when this signal goes low.	
Interrupts	NMI	Input	Non-maskable interrupt request pin	
	IRQ0, IRQ1, IRQ5 to IRQ7, IRQ0_A_DS, IRQ1_A_DS	Input	Maskable interrupt request pins Pins that have"_DS" appended to their names can be used as triggers for release from deep software standby.	
KINT	KRM02, KRM07	Input	A key interrupt can be generated by inputting a falling edge to the key interrupt input pins.	
On-chip debugger	SWDIO	I/O	SWD data input/output pin	
	SWCLK	Input	SWD clock input pin	
GPT, POE	GTIOC0A, GTIOC3A, GTIOC0B, GTIOC3B	I/O	Input capture, output compare, or PWM output pins	
	GTETRGA, GTETRGB	Input	External trigger input pins	
AGT	AGTOB1	Output	Compare match B output pin	
TMR	TMCI0, TMCI1	Input	Input pins for external clocks to be input to the counter	
	TMRI0, TMRI1	Input	Input pins for the counter reset	
	TMO0, TMO1	Output	Compare match output pins	
RTC	RTCIC2	Input	Time capture event input pin	
	RTCOUT	Output	Output pin for 1-Hz or 64-Hz clock	
CCC	CCCOUT	Output	CCC clock output pin	
SCIg	[Asynchronous mode/clock sy	nchronous	s mode]	
	SCK2, SCK3	I/O	Input/output pins for the clock (clock synchronous mode)	
	RXD2, RXD3	Input	Input pins for received data (asynchronous mode/clock synchronous mode)	
	TXD2, TXD3	Output	Output pins for transmit data (asynchronous mode/clock synchronous mode)	
	CTS2, CTS3	Input	Input pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode)	
	RTS2, RTS3	Output	Output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode)	
	[Simple I ² C mode]			
	SSCL2, SSCL3	I/O	Input/output pins for the I ² C clock (simple I ² C mode)	
	SSDA2, SSDA3	I/O	Input/output pins for the I ² C data (simple I ² C mode)	

Function	Pin Name	I/O	Description			
SClg	[Simple SPI mode]					
	SCK2, SCK3	I/O	Input/output pins for the clock (simple SPI mode)			
	MISO2, MISO3	I/O	Input/output pins for slave transmission of data (simple SPI mode)			
	MOSI2, MOSI3	I/O	Input/output pins for master transmission of data (simple SPI mode)			
	SS2, SS3	Input	Chip-select input pins (simple SPI mode)			
RIIC	SCL1	I/O	Input/output pin for clock			
	SDA1	I/O	Input/output pin for data			
SPI	RSPCKB	I/O	Clock input/output pin			
	MOSIB	I/O	Input/output pin for data output from the master			
	MISOB	I/O	Input/output pin for data output from the slave			
	SSLB2, SSLB3	Output	Output pins for slave selection			
Analog power supply	AVCC0	Input	Analog power supply pin for the 14-bit A/D converter, reference voltage generation circuit, and temperature sensor. Connect the pin to AVSS0 through a 1.0 -µF smoothing capacitor. Place the smoothing capacitor close to the pin. ^{*4} This pin can be left open-circuit when not in use. When the pin is to be used, set the corresponding bit in the power supply open control register (VOCR) described in section 12.2.23 in the User's Manual: Hardware.			
	AVSS0 Inp		Analog ground pin for the 14-bit A/D converter, reference voltage generation circuit, and temperature sensor. This pin can be left open-circuit when not in use. When the pin is to be used, set the corresponding bit in the power supply open control register (VOCR) described in section 12.2.23 in the User's Manual: Hardware.			
	VREFH0 Inpu		Analog reference voltage pin for the 14-bit A/D converter. Connect the pin to VREFL0 through a 1.0-µF smoothing capacitor. Place the smoothing capacitor close to the pin.*5 Connect this pin to AVCC0 when not using the A/D converter. Leave this pin open-circuit if AVCC0 is not to be supplied.			
	AVTRO O		When using the output from the reference voltage generation circuit (VREF) as the reference voltage, connect this to VREFL0 through a 10-µF smoothing capacitor.			
	VREFL0	Input	Analog reference ground pin for the 14-bit A/D converter. Connect this pin to AVSS0 when not using the A/D converter. Leave this pin open-circuit if AVCC0 is not to be supplied.			
S14AD	AN000 to AN003, AN022, AN027, AN028	Input	Input pins for the analog signals to be processed by the A/D converter			
	ADTRG0	Input	Input pin for the external trigger signal that starts A/D conversion			
BLE	ANT	I/O	RF single input and output pin for the RF transceiver Set the impedance of the signal line to 50 Ω .			
	DCLOUT	Output	RF transceiver power-supply output pin			
	DCLIN_A	Input	RF transceiver power-supply output connection pin			
	DCLIN_D	Input	RF transceiver power-supply output connection pin			
	VCC_RF	Input	RF transceiver power-supply pin			
	AVCC_RF	Input	RF transceiver power-supply pin			
	VSS RF	Input	RF transceiver ground pin			

Table 1.4Pin Functions (3/4)

Table 1.4Pin Functions (4/4)

Function	Pin Name	I/O	Description
I/O ports	P000 to P003, P012	I/O	5-bit input/output pins
	P102, P107, P112, P113	I/O	4-bit input/output pins
	P200	Input	1-bit input-only pin. Multiplexed with the NMI pin function.
	P201, P207	I/O	2-bit input/output pins
	P300, P301, P305	I/O	3-bit input/output pins
	P411	I/O	1-bit input/output pin
	P412, P413	I/O	2-bit input/output pins. Multiplexed with the EXTAL and XTAL pin functions.
	P500, P505, P506	I/O	3-bit input/output pins
	P606 to P609	I/O	4-bit input/output pins
	P700, P701, P704	I/O	3-bit input/output pins

Note: Use a laminated ceramic capacitor as a smoothing capacitor.

Note 1. For the SCIg interfaces, each communications pin has multiple functions that work differently depending on the mode as follows: RXDn/SCLn/MISOn, TXDn/SDAn/MOSIn, CTSn/RTSn/SSn

Note 2. In an environment where there is much external noise, optionally connect these pins to VSS through a 10-pF smoothing capacitor close to the respective current sources to improve robustness against external noise and obtain stable operation of the circuit.

Note 3. When some of the IOVCC0, IOVCC1, IOVCC2, and IOVCC3 pins are connected at the same voltage, a 10-µF smoothing capacitor can be shared. In the case where the pin is connected to VCC/IOVCC, a 10-µF smoothing capacitor is not necessary.

Note 4. In an environment where there is much external noise, optionally connect this pin to AVSS0 through a 10-pF smoothing capacitor close to the current source to improve robustness against external noise and obtain stable operation of the circuit.

Note 5. In an environment where there is much external noise, optionally connect this pin to VREFL0 through a 10-pF smoothing capacitor close to the current source to improve robustness against external noise and obtain stable operation of the circuit.

1.6 Pin Arrangement

Figure 1.2 shows pin arrangement.

Figure 1.2 Pin Arrangement for 64-Pin QFN

1.7 List of Pins

.

 Table 1.5 is list of the pins and multiplexed pin functions.

Table 1.5	l ist of the Pins and Multiplexed Pin Functions (64-Pin QEN) (1/2)

Pin Number 64QFN	Power Supply, Clock, System Control	I/O Port	Timers (CAC, GPT, POE, AGT, TMR, RTC)	Communications (SCI, SPI, RIIC)	Interrupts (IRQ, KINT)	Analog (S14AD)	Applicable Power Supply	Communi- cations (BLE)
1	VSS							
2	IOVCC0							
3	VCLH							
4	XCOUT						IOVCC	
5	XCIN						IOVCC	
6	VSS							
7	XTAL	P413	GTETRGA_A/GTIOC0A_A	TXD3_A/SSDA3_A/ MOSI3_A			IOVCC	
8	EXTAL	P412	GTETRGB_A/GTIOC0B_A	RXD3_A/SSCL3_A/ MISO3_A			IOVCC	
9	VCC/IOVCC							
10	VCL							
11	CLKOUT32K_ A/SWCLK	P411	TMCI0_A	SCK3_A/TXDSP	IRQ0_A_DS		IOVCC	
12	EHMD						IOVCC	
13	VBN							
14	VBP							
15	SWDIO	P207		CTS3_A/RTS3_A/ SS3_A/RXDSP	IRQ1_A_DS		IOVCC	
16	RES#						IOVCC	
17	MD	P201	TMRI0_A				IOVCC	
18		P200	TMO0_A		NMI		IOVCC	
19	VSS							
20	VCC_SU							
21	VBAT_EHC							
22	VSC_VCC							
23	VSC_GND							
24		P704	TMCI1				IOVCC1	
25		P701	TMRI1/RTCIC2_B	SCL1			IOVCC1	
26		P700	TMO1	SDA1			IOVCC1	
27		P305					IOVCC1	
28	IOVCC1							
29	VSS							
30		P301	TMRI0_B/CCCOUT_A/ RTCOUT_A				IOVCC1	
31		P300	TMO0_B				IOVCC1	
32								VSS_RF
33		P609		TXD2_C/SSDA2_C/ MOSI2_C/MOSIB_B			IOVCC1	
34		P608	GTETRGA_C	RXD2_C/SSCL2_C/ MISO2_C/MISOB_B			IOVCC1	
35		P607	GTETRGB_C	CTS2_C/RTS2_C/ SS2_C/RSPCKB_B			IOVCC1	
36		P606		SCK2_C/SSLB2_B			IOVCC1	
37								ANT
38		P113	GTIOC3A_A	SSLB2_A	IRQ5_A		IOVCC2	
39		P112	GTIOC3B_A	SSLB3_A	IRQ6_A		IOVCC2	

Pin Number 64QFN	Power Supply, Clock, System Control	I/O Port	Timers (CAC, GPT, POE, AGT, TMR, RTC)	Communications (SCI, SPI, RIIC)	Interrupts (IRQ, KINT)	Analog (S14AD)	Applicable Power Supply	Communi- cations (BLE)
40	IOVCC2							
41	VSS							
42		P107	AGTOB1_A		IRQ7_A/ KRM07_A		IOVCC2	
43		P102		TXD2_A/SSDA2_A/ MOSI2_A	KRM02_A		IOVCC2	
44								XTAL2_RF
45								XTAL1_RF
46								AVCC_RF
47								DCLOUT
48								VCC_RF
49								DCLIN_D
50								DCLIN_A
51		P506			IRQ0_C	AN028	IOVCC3	
52		P505			IRQ1_C	AN027	IOVCC3	
53		P500	ADTRG0_B/AGTOB1_B			AN022	IOVCC3	
54	IOVCC3							
55	VSS							
56		P012					IOVCC3	
57		P003				AN003	AVCC0	
58		P002				AN002	AVCC0	
59	VREFL0							
60		P001				AN001	AVCC0	
61		P000				AN000	AVCC0	
62	VREFH0/ AVTRO							
63	AVCC0							
64	AVSS0							
Note [.]	Note the following points with regard to pin names.							

Table 1.5 List of the Pins and Multiplexed Pin Functions (64-Pin QFN) (2/2)

Note the following points with regard to pin names.

- For the SCIg interfaces, each communications pin has multiple functions that work differently depending on the mode as follows:

RXDn/SCLn/MISOn, TXDn/SDAn/MOSIn, CTSn/RTSn/SSn

- We recommend using the sets of pins that have the same letter ("_A", "_B", "_C" to indicate group membership) appended to their names.

For the SPI and SCI interfaces, the AC portion of the electrical characteristics is measured per group.

- Pin functions that have"_DS" appended to their names can be used as inputs for trigger signals for release from deep software standby.

2. CPU

This LSI chip is based on the $Arm^{\textcircled{R}}$ Cortex R-M0+ CPU core.

2.1 Overview

2.1.1 CPU

- Arm[®] Cortex-M0+
 - Revision: r0p1-00rel0
 - Arm®v6-M architecture profile
 - Single-cycle integer multiplier
- Memory Protection Units (MPU)
 - Arm®v6 Protected Memory System Architecture
 - Eight protected regions
- SysTick timer
 - Driven by LOCO clock (32.768 kHz \pm 30%)

For details, see reference 1. and reference 2. in section 2.8.

2.1.2 Debug

- Arm[®] CoreSightTM MTB-M0+
 - Revision: r0p1-00rel0
 - Buffer size: 32-Kbyte MTB RAM
- Data Watchpoint Unit (DWT)
 Two comparators for watchpoints
- Breakpoint Unit (BPU)
 - Four instruction comparators
- CoreSight Debug Access Port (DAP)
 Serial Wire Debug Port (SW-DP)
- Debug Register Module (DBGREG)
 - Reset control
 - Stop control

For details, see reference 1. and reference 2. in section 2.8.

2.1.3 Operating Frequency

- CPU core: maximum 64 MHz
- Serial Wire Data (SWD) interface: maximum 12.5 MHz

Figure 2.1 shows the block diagram of the Cortex-M0+ CPU.

Figure 2.1 Cortex-M0+ CPU Block Diagram

2.2 Implementation Options

Option	Implementation
MPU	Included, 8 memory protection regions
Single-cycle multiplier	Included
Number of interrupts	32
Sleep mode power saving	Sleep mode and other low power consumption modes are supported. For details, see section 12, Power-Saving Functions in the User's Manual: Hardware. Note: SCB.SCR.SLEEPDEEP is ignored.
Endianness	Little endian
SysTick timer	See reference 3. in section 2.8.
System reset request output	The SYSRESETREQ bit in the application interrupt and reset control register causes a CPU reset.
Vector table offset register	Included

For details, see reference 3. in section 2.8.

2.3 SWD Interface

The LSI chip supports the SWD interface as a debug interface. Table 2.2 lists the SWD pins.

Table 2.2 SWD Pins

Pin Name	I/O	Function	When not in Use
SWCLK	Input	Serial wire clock input pin	Pull-up
SWDIO	I/O	Serial wire data I/O pin	Pull-up

2.4 Debug Mode

2.4.1 Debug Mode Definition

 Table 2.3 shows the debug modes and conditions.

Table 2.3	Debug Modes and Conditions
-----------	----------------------------

Cond	litions	Mode		
Connection with the Emulator SWD Authentication		Debug Mode Debug Authenticatio		
Not connected	—	User mode	Disabled	
Connected	Failed	User mode	Disabled	
Connected	Passed	On-chip debug (OCD) mode	Enabled	

 Note:
 Whether the emulator is connected or not can be determined from the value of the CDBGPWRUPREQ bit in the SWJ-DP register. The bit can only be written by the emulator. Read the DBGSTR.CDBGPWRUPREQ bit to confirm the value of this bit.

 Note:
 Debug authentication is defined by the Arm®v6-M architecture. Enabled means that both invasive and non-invasive CPU debugging are permitted. Disabled means that both of them are not permitted.

2.4.2 Effects of Debug Mode

The debug mode effects occur both internal and external to the CPU. This section describes the effects of the debug mode.

2.4.2.1 Low Power Consumption Mode

All CoreSight debug components can store the register settings even when the CPU enters software standby, snooze, or deep software standby mode. However, AHB-AP cannot respond to on-chip debug (OCD) access in these low power consumption modes. It means the emulator must wait for cancellation of the low power consumption mode to access the CoreSight debug components. In this case, the emulator can request low power consumption mode cancellation by using the DBIRQ bit in the MCUCTRL register. For details, see section 2.5.6.3, MCU Control Register (MCUCTRL).

2.4.2.2 Resets

In OCD mode, the effectiveness of some types of reset depends on the state of the CPU at the time and the settings of bits of the DBGSTOPCR register.

Table 2.4	Reset or Interrupt and Mode Setting
-----------	-------------------------------------

Poset or Interrupt Name	Control ir	n On-chip Debug (OCD) Mode			
Reset of interrupt Name	OCD Break Mode	OCD Run Mode			
RES# pin reset	Same as user mode				
Power-on reset	Same as user mode				
Independent watchdog timer reset/interrupt	Does not occur ^{*1}	Depends on the settings of bits of the DBGSTOPCR register.			
Watchdog timer reset/interrupt	Does not occur ^{*1}	Depends on the settings of bits of the DBGSTOPCR register.			
Voltage monitor 0 reset	Depends on the settings of bits of the DBGSTOPCR register.				
Voltage monitor 1 reset/interrupt	Depends on the settings of bits of the DBGSTOPCR register.				
Voltage monitor BAT reset/interrupt	Depends on the settings of	bits of the DBGSTOPCR register.			
Bus master MPU reset/interrupt	Same as user mode				
Bus slave MPU reset/interrupt	Same as user mode				
Stack pointer error reset/interrupt	Same as user mode				
Deep software standby reset	Same as user mode				
MINPWON mode reset	Same as user mode				
Software reset	Same as user mode				

Note: OCD break mode means that the CPU is halted, and OCD run mode means that the CPU is not halted. Note 1. The IWDT and WDT always stop in OCD break mode.

2.5 Programmers Model

2.5.1 Address Spaces

The debugging system in this LSI chip has two CoreSight Access Ports (AP):

- AHB-AP, which is connected to the CPU bus matrix and has the same access to the system address space as the CPU
- APB-AP, which has a dedicated address space (OCD address space) and is connected to the OCD-dedicated registers.

Figure 2.2 shows the block diagram of the AP connection and address spaces.

Figure 2.2 Block Diagram of the AP Connection and Address Spaces

For debugging purposes, there are two register modules, DBGREG and OCDREG. DBGREG is located in the system address space and can be accessed from the emulator, the CPU, and other bus masters in the chip. OCDREG is located in the OCD address space and can be accessed only from the emulator. The CPU and other bus masters cannot access the OCD-dedicated registers.

2.5.2 Cortex-M0+ Peripheral Address Map

In system address space, the Cortex-M0+ has a Private Peripheral Bus (PPB), which can be accessed only from the CPU and emulator. Table 2.5 shows the Cortex-M0+ peripheral address map.

Component Name	Start Address	End Address	Note
DWT	E000 1000h	E000 1FFFh	See reference 2. in section 2.8.
BPU	E000 2000h	E000 2FFFh	See reference 2. in section 2.8.
SCS	E000 E000h	E000 EEFFh	See reference 2. in section 2.8.
ROM table	E00F F000h	E00F FFFFh	See section 2.5.4, CoreSight ROM Table and reference 5. in section 2.8.

Table 2.5Peripheral Address Map

2.5.3 External Debug Address Map

In the system address space, the Cortex-M0+ core has external debug components. These components can be accessed from the CPU and other bus masters through the system bus. Table 2.6 shows the address map of the Cortex-M0+ external debug components.

Table 2.6 Address Map of External Debug Components

Component Name	Start Address	End Address	Note
MTB (RAM area)	2000 0000h	2000 7FFFh	The Micro Trace Buffer (MTB) has 32 Kbytes of available RAM. See reference 6. in section 2.8.
MTB (SFR area)	4001 9000h	4001 9FFFh	See reference 6. in section 2.8.
ROM table	4001 A000h	4001 AFFFh	See reference 6. in section 2.8.

2.5.4 CoreSight ROM Table

This LSI chip has two CoreSight ROM tables. One ROM table holds a list of external debug components and a pointer to Arm[®] components. The other ROM table holds a list of Arm[®] components.

2.5.4.1 ROM Entries

Table 2.7 shows the ROM table which contains the pointers to the $\operatorname{Arm}^{\mathbb{R}}$ system area and user area component information.

Table 2.8 shows the ROM table which contains Arm[®] system area component information. For details, see references 5. and 6. in section 2.8.

Address	Access Size	R/W	Value	Target Component
4001 A000h	32 bits	R	A00E 5003h	Arm [®] Cortex-M0+ processor
4001 A004h	32 bits	R	FFFF F003h	МТВ
4001 A008h	32 bits	R	0000 0000h	(End marker for the ROM tables)

Table 2.8ROM Table (2)

Address	Access Size	R/W	Value	Target Component
E00F F000h	32 bits	R	FFF0 F003h	The SCS is mounted here.
E00F F004h	32 bits	R	FFF0 2003h	The DWT is mounted here.
E00F F008h	32 bits	R	FFF0 3003h	The BPU is mounted here.
E00F F00Ch	32 bits	R	0000 0000h	(End marker for the ROM tables)

2.5.4.2 CoreSight Registers

The CoreSight ROM table has CoreSight registers defined in the Arm[®] CoreSight architecture. Table 2.9 and Table 2.10 show the registers. See reference 5. in section 2.8 for details on each register.

Name	Address	Access Size	R/W	Initial Value
Arm [®] CM0+	4001 A000h	32 bits	R	A00E 5003h
MTB	4001 A004h	32 bits	R	FFFF F003h
PID4	4001 AFD0h	32 bits	R	0000 0004h
PID5	4001 AFD4h	32 bits	R	0000 0000h
PID6	4001 AFD8h	32 bits	R	0000 0000h
PID7	4001 AFDCh	32 bits	R	0000 0000h
PID0	4001 AFE0h	32 bits	R	0000 002Ah
PID1	4001 AFE4h	32 bits	R	0000 0030h
PID2	4001 AFE8h	32 bits	R	0000 000Ah
PID3	4001 AFECh	32 bits	R	0000 0000h
CID0	4001 AFF0h	32 bits	R	0000 000Dh
CID1	4001 AFF4h	32 bits	R	0000 0010h
CID2	4001 AFF8h	32 bits	R	0000 0005h
CID3	4001 AFFCh	32 bits	R	0000 00B1h

 Table 2.9
 CoreSight Registers in the CoreSight ROM Table (Renesas Unique ID)

Table 2 10	CoreSight Registers in	the CoreSight ROM Table (CoreSight ID)
Table 2.10	Coleolynii Registers in	The Coleolynic ROW Table (Coreorgini-iD)

Name	Address	Access Size	R/W	Initial Value
SCS	E00F F000h	32 bits	R	FFF0 F003h
DWT	E00F F004h	32 bits	R	FFF0 2003h
BPU	E00F F008h	32 bits	R	FFF0 3003h
PID4	E00F FFD0h	32 bits	R	0000 0004h
PID5	E00F FFD4h	32 bits	R	0000 0000h
PID6	E00F FFD8h	32 bits	R	0000 0000h
PID7	E00F FFDCh	32 bits	R	0000 0000h
PID0	E00F FFE0h	32 bits	R	0000 00C0h
PID1	E00F FFE4h	32 bits	R	0000 00B4h
PID2	E00F FFE8h	32 bits	R	0000 000Bh
PID3	E00F FFECh	32 bits	R	0000 0000h
CID0	E00F FFF0h	32 bits	R	0000 000Dh
CID1	E00F FFF4h	32 bits	R	0000 0010h
CID2	E00F FFF8h	32 bits	R	0000 0005h
CID3	E00F FFFCh	32 bits	R	0000 00B1h

2.5.5 DBGREG

DBGREG is a register module that controls the debug functions. DBGREG is implemented as a CoreSight-compliant component.

 Table 2.11 lists the DBGREG registers excluding the CoreSight registers.

Table 2.11 DBGREG Registers Other than CoreSight

Name		DAP Port	Address	Access Size	R/W
Debug status register	Port 0	4001 B000h	32 bits	R	
Debug stop control register	DBGSTOPCR	Port 0	4001 B010h	32 bits	R/W

2.5.5.1 Debug Status Register (DBGSTR)

Address(es): DBG.DBGSTR 4001 B000h

_	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
			CDBGPW RUPACK	CDBGPW RUPREQ	_									_		—
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_		_	—			_	-	-	-	-	_	-	_	-	—
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b27 to b0	—	Reserved	These bits are read as 0.	R
b28	CDBGPWRU PREQ	Debug Power-up Request	0: The emulator is not requesting debug power-up.1: The emulator is requesting debug power-up.	R
b29	CDBGPWRU PACK	Debug Power-up Acknowledge	0: A debug power-up request is being received. 1: A debug power-up request is not being received.	R
b31, b30	_	Reserved	These bits are read as 0.	R

This register is a status register which indicates the state of the debug power-up request to the chip from the emulator.

2.5.5.2 Debug Stop Control Register (DBGSTOPCR)

	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_	_	_	_	_	_	_	_	_	_	_	_	DBGSTOP _LVDBAT	DBGSTOP _LVD1	DBGSTOP _LVD0
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
ĺ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	DBGSTOP _WDT	DBGSTOP _IWDT
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

Address(es): DBG.DBGSTOPCR 4001 B010h

Bit	Symbol	Bit Name	Description	R/W
b0	DBGSTOP_I WDT	Mask Bit for IWDT Reset/Interrupt	0: Enable IWDT reset/interrupt. 1: Mask IWDT reset/interrupt and stop IWDT count.	R/W
b1	DBGSTOP_ WDT	Mask Bit for WDT Reset/Interrupt	0: Enable WDT reset/interrupt. 1: Mask WDT reset/interrupt and stop WDT count.	R/W
b15 to b2	—	Reserved	These bits are read as 0. The write value should be 0.	R/W
b16	DBGSTOP_L VD0	Mask Bit for LVD0 Reset	0: Enable LVD0 reset. 1: Mask LVD0 reset.	R/W
b17	DBGSTOP_L VD1	Mask Bit for LVD1 Reset/Interrupt	0: Enable LVD1 reset/interrupt. 1: Mask LVD1 reset/interrupt.	R/W
b18	DBGSTOP_L VDBAT	Mask Bit for LVDBAT Reset/Interrupt	0: Enable LVDBAT reset/interrupt. 1: Mask LVDBAT reset/interrupt.	R/W
b31 to b19	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The debug stop control register (DBGSTOPCR) controls certain resets and interrupts in the OCD mode. In user mode, the settings of the bits in this register do not affect the operation of the chip.

2.5.5.3 DBGREG CoreSight Registers

DBGREG has CoreSight registers defined in the Arm[®] CoreSight architecture. Table 2.12 lists these registers. See reference 5. in section 2.8 for details on each register.

Name	Address	Access Size	R/W	Initial Value
PID4	4001 BFD0h	32 bits	R	0000 0004h
PID5	4001 BFD4h	32 bits	R	0000 0000h
PID6	4001 BFD8h	32 bits	R	0000 0000h
PID7	4001 BFDCh	32 bits	R	0000 0000h
PID0	4001 BFE0h	32 bits	R	0000 0005h
PID1	4001 BFE4h	32 bits	R	0000 0030h
PID2	4001 BFE8h	32 bits	R	0000 001Ah
PID3	4001 BFECh	32 bits	R	0000 0000h
CID0	4001 BFF0h	32 bits	R	0000 000Dh
CID1	4001 BFF4h	32 bits	R	0000 00F0h
CID2	4001 BFF8h	32 bits	R	0000 0005h
CID3	4001 BFFCh	32 bits	R	0000 00B1h

Table 2.12 DBGREG CoreSight Registers

2.5.6 OCDREG

The OCDREG registers are only accessible by the emulator. OCDREG is implemented as a CoreSight-compliant component.

Table 2.13 lists the OCDREG registers.

Table 2.13 OCDREG Registers

Name		DAP Port	Address	Access Size	R/W
ID authentication code register 0	IAUTH0	Port 1	8000 0000h	32 bits	W
ID authentication code register 1	IAUTH1	Port 1	8000 0100h	32 bits	W
ID authentication code register 2	IAUTH2	Port 1	8000 0200h	32 bits	W
ID authentication code register 3	IAUTH3	Port 1	8000 0300h	32 bits	W
MCU status register	MCUSTAT	Port 1	8000 0400h	32 bits	R
MCU control register	MCUCTRL	Port 1	8000 0410h	32 bits	R/W

Note: OCDREG is located in dedicated OCD address space. This address space is independent of the system address space.

2.5.6.1 ID Authentication Code Register (IAUTH0 to IAUTH3)

These registers are authentication registers used for the writing of a 128-bit key. These registers must be written in sequential order from IAUTH0 register to IAUTH3 register.

The initial value of the registers is all FFFF FFFFh. This means that SWD access is initially permitted when ID code in the OSIS register has the initial value. See section 2.7.1, Unlock ID Code.

2.5.6.2 MCU Status Register (MCUSTAT)

_	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	_						_		_	_	l		_		—
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_				-	-	_		_	_			CPUST OPCLK	CPUSL EEP	AUTH
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	1/0 *1	1/0 *1	0

Address(es): MCUSTAT 8000 0400h

Bit	Symbol	Bit Name	Description	R/W
b0	AUTH	Debugger Authentication Flag	0: Authentication failed. 1: Authentication succeeded.	R
b1	CPUSLEEP	Sleep Status Flag	0: CPU is not in sleep mode. 1: CPU is in sleep mode.	R
b2	CPUSTOPCLK	Stop Status Flag	0: The clock is being supplied to the CPU. 1: Supply of the clock to the CPU is stopped.	R
b31 to b3	—	Reserved	These bits are read as 0.	R

Note 1. Depends on the state of this chip.

2.5.6.3 MCU Control Register (MCUCTRL)

	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	_	-	I	_		_		-	—					I	_	—
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	_	_	_	_	DBIRQ	_	_	_	_	_	_	_	EDBGR Q
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address(es): MCUCTRL 8000 0410h

Bit	Symbol	Bit Name	Description	R/W
ь0	EDBGRQ	External Debug Request	 0: Debug event not requested. 1: Debug event requested. Writing 1 to this bit causes a CPU halt. This bit is cleared by either of the following conditions. Writing 0 to the EDBGRQ bit CPU is halted. 	R/W
b7 to b1	—	Reserved	These bits are read as 0.	R
b8	DBIRQ	Debug Interrupt Request	0: Debug interrupt not requested.1: Debug interrupt requested.Writing 1 to this bit wakes up the chip from low power consumption mode.	R/W
b31 to b9	—	Reserved	These bits are read as 0.	R

Note: Set the DBIRQ and EDBGRQ bits to the same value.

2.5.6.4 OCDREG CoreSight Registers

OCDREG has CoreSight registers defined in the Arm[®] CoreSight architecture. Table 2.14 lists these registers. See reference 5. in section 2.8 for details on each register.

Table 2.14 OCDREG CoreSight Registers

Name	Address	Access Size	R/W	Initial Value
PID4	8000 0FD0h	32 bits	R	0000 0004h
PID5	8000 0FD4h	32 bits	R	0000 0000h
PID6	8000 0FD8h	32 bits	R	0000 0000h
PID7	8000 0FDCh	32 bits	R	0000 0000h
PID0	8000 0FE0h	32 bits	R	0000 0004h
PID1	8000 0FE4h	32 bits	R	0000 0030h
PID2	8000 0FE8h	32 bits	R	0000 000Ah
PID3	8000 0FECh	32 bits	R	0000 0000h
CID0	8000 0FF0h	32 bits	R	0000 000Dh
CID1	8000 0FF4h	32 bits	R	0000 00F0h
CID2	8000 0FF8h	32 bits	R	0000 0005h
CID3	8000 0FFCh	32 bits	R	0000 00B1h

2.6 SysTick Timer

This LSI chip has a SysTick timer that provides a simple 24-bit down counter. The timer can select ICLK or SYSTICCLK reference clock.

For details, see section 9, Clock Generation Circuit in the User's Manual: Hardware and reference 1. in section 2.8.

2.7 Connection with the Emulator

This LSI chip has an SWD authentication mechanism to check permission for access to chip resources for debugging. Permission for full debug functionality requires passing the authentication process.

Figure 2.3 shows the block diagram of the authentication mechanism.

Figure 2.3 SWD Authentication Mechanism Block Diagram

The LSI chip includes an ID comparator for use in SWD authentication. The comparator compares the 128-bit IAUTH output value from the given registers in the OCDREG space with the 128-bit unlock ID code written in the OCD/serial programmer ID setting register (OSIS) in the option-setting memory. The two outputs being identical represents a pass in SWD authentication and use of the CPU debug functions and system bus access from the emulator are permitted. After passing SWD authentication, the emulator must set the DBGEN bit in the system control OCD control register (SYOCDCR). In addition, the emulator must clear the DBGEN bit before disconnection. See the description of the SYOCDCR register in section 12, Power-Saving Functions in the User's Manual: Hardware.

2.7.1 Unlock ID Code

2.7.2 Restrictions on Connecting an Emulator

To start a SWD connection from an emulator, the chip must be able to enter OCD mode. To do so, however, there are some restrictions depending on the current chip state. Table 2.15 lists in which mode and power consumption state the chip can transition to OCD mode.

Since the chip cannot transition to OCD mode while in EXFPWON and normal modes, MINPWON and normal modes, or VBB mode, change the chip to OCD mode while in ALLPWON and normal modes, and then change it to EXFPWON and normal modes, MINPWON and normal modes, or VBB mode in order to carry out debugging in EXFPWON and normal modes, MINPWON and normal modes, or VBB mode. For details, see section 12, Power-Saving Functions in the User's Manual: Hardware.

Current Op	erating Mode before Transitionin	g to OCD Mode	Transition to OCD Made
Power Control Mode	Power Supply Mode	Low Power Consumption Modes	
Boost mode	—	Operating mode	Possible ^{*1}
		Sleep mode	Possible ^{*1}
Normal mode	ALLPWON mode	Operating mode	Possible ^{*1}
		Sleep mode	Possible ^{*1}
		Snooze mode	Impossible
		Software standby mode	Impossible
		Deep software standby mode	Impossible
	EXFPWON mode MINPWON mode	All modes	Impossible
VBB mode	ALLPWON mode EXFPWON mode MINPWON mode	All modes	Impossible
Mode transition period			Impossible

Table 2.15 State of the LSI Chip That can Transition to OCD Mode

Note 1. After transition to the OCD mode, set 1 to the SYOCDCR.DBGEN bit (on-chip debugger enable). For details on the SYOCDCR.DBGEN bit, see section 12.2.22, System Control OCD Control Register (SYOCDCR) in the User's Manual: Hardware.

2.7.2.1 Mode Transitions while in OCD Mode

Some restrictions apply to mode transitions while in OCD mode. Table 2.16 lists availability of mode transitions between the power control modes.

Current Power Control Mode	Power Control Mode to Transition to	Availability of Mode Transitions between the Power Control Modes
Boost mode	Normal mode	Impossible
Normal mode	Boost mode	Impossible
	VBB mode	Possible ^{*1, *2}
VBB mode	Normal mode	Possible ^{*1}

Table 2.16 Availability of Mode Transitions between the Power Control Modes while in OCD Mode

Note 1. Although power control mode transition between normal and VBB modes is possible, the state of the power in normal mode is maintained in order to continue debugging. Functions such as state flagging can be emulated.

Note 2. After transition to the OCD mode while in ALLPWON and normal modes, set the SYOCDCR.DBGEN bit to 1 (on-chip debugger enable) before transition to the VBB mode. For details on the SYOCDCR.DBGEN bit, see section 12.2.22, System Control OCD Control Register (SYOCDCR) in the User's Manual: Hardware.

After transition to the OCD mode while in ALLPWON and normal modes, set the SYOCDCR.DBGEN bit to 1 (on-chip debugger enable) before transition to EXFPWON or MINPWON mode. For details on the SYOCDCR.DBGEN bit, see section 12.2.22, System Control OCD Control Register (SYOCDCR) in the User's Manual: Hardware.

2.7.2.2 Entering Low Power Consumption Mode while in OCD Mode

The chip can enter low power consumption mode even while it is in OCD mode.

After transition to the OCD mode, set the SYOCDCR.DBGEN bit to 1 (on-chip debugger enable) before transition to low power consumption mode. For details on the SYOCDCR.DBGEN bit, see section 12.2.22, System Control OCD Control Register (SYOCDCR) in the User's Manual: Hardware.

If system bus access is required and the chip is in software standby, snooze, or deep software standby mode, set the MCUCTRL.DBIRQ bit in OCDREG to 1 to wake the chip up from the low power consumption mode. Simultaneously, using the MCUCTRL.EDBGRQ bit in OCDREG, the emulator can wake up the chip without starting CPU execution. Table 2.17 lists availability of access to system bus while in OCD mode.

Current Mode	Current Low Power Consumption Mode	Access to System Bus
Boost mode	Operating mode	Possible
	Sleep mode	Possible
Normal mode	Operating mode	Possible
	Sleep mode	Possible
	Snooze mode	Impossible
	Software standby mode	Impossible
	Deep software standby mode	Impossible
VBB mode	Operating mode	Possible
	Sleep mode	Possible
	Snooze mode	Impossible
	Software standby mode	Impossible
	Deep software standby mode	Impossible
Mode transition period		Impossible

Table 2.17 Availability of Access to System Bus while in OCD Mode

2.7.2.3 Modifying the Unlock ID Code in the OSIS Register

Modifying the unlock ID code in the OSIS register requires placing the chip in the reset state by asserting the signal on the RES# pin or setting the SYSRESETREQ bit of the application interrupt and reset control register in the system control block to 1. The modified unlock ID code is reflected after the reset. For the system control block, see reference 2. listed in section 2.8.

The emulator must set the modified unlock ID code in the IAUTH0 to IAUTH3 registers immediately before the chip is placed in the reset state. When the IAUTH0 to IAUTH3 registers have been overwritten, writing to the SYSRESETREQ bit is not possible. Place the chip in the reset state by asserting the signal on the RES# pin.

2.7.2.4 Connecting Sequence and SWD Authentication

Protection of the connection with the emulator by the SWD authentication mechanism means that input of an unlock ID code to the SWD authentication registers will be required in some cases. The value for the OSIS register in the option-setting memory decides whether the input of an unlock ID code is required or not. After de-asserting the signal on the RES# pin, a waiting time is required before comparison with the OSIS register value following cold start. For the waiting time after de-assertion of the signal on the RES# pin, see section 6.3.3, Reset Timing in section 6, Electrical Characteristics.

The SWD authentication process is described in detail below.
- (1) When MSB of the OSIS register is 0 (bit 127 = 0)
- The ID code is always mismatching, and the connection to the emulator is prohibited.
- (2) When bits in the OSIS register are all 1s (the initial value)

ID authentication is not required and the emulator can use AHB-AP without the authentication.

- For details of the settings for using the AHB-AP, see reference 4. in section 2.8.
- 1. Connect the emulator to the chip through the SWD interface.
- 2. Set up SWJ-DP to access the DAP bus. In the setup, the emulator must assert CDBGPWRUPREQ in the SWJ-DP control status register, then must wait until CSDBGPWRUPACK in the same register is asserted.
- 3. Set up AHB-AP to access the system address space. AHB-AP is connected to the DAP bus port 0.
- 4. Start accessing the system bus using AHB-AP.
- (3) When the value in the OSIS register becomes "ALeRASE" in ASCII code

Data in the flash memory are deleted. For details, see section 48, Flash Memory in the User's Manual: Hardware.

- 1. Set the ASCII code "ALeRASE" (414C 6552 4153 45FF FFFF FFFF FFFF FFFF) in the IAUTH0 to IAUTH3 registers.
- 2. Place the chip in the reset state.
- 3. Wait until MCUSTAT.CPUSTOPCLK = 1 (deletion completed).
- 4. Reset the chip then release it from the reset state so that it enters the OCD mode.
- (4) When bits in the OSIS register are not all 1s

ID authentication is required and the emulator must write the 128-bit unlock ID code to the IAUTH0 to IAUTH3 registers in OCDREG before using AHB-AP.

- 1. Connect the emulator to the chip through the SWD interface.
- 2. Set up the SWJ-DP to access the DAP bus. In the setup, the emulator must assert CDBGPWRUPREQ in the SWJ-DP control status register, then wait until CSDBGPWRUPACK in the same register is asserted.
- 3. Set up APB-AP to access OCDREG. APB-AP is connected to the DAP bus port 1.
- 4. Write the 128-bit unlock ID code to the IAUTH0 to IAUTH3 registers in OCDREG using APB-AP.
- 5. If the 128-bit unlock ID code matches the OSIS register value, AHB-AP is authorized to issue an AHB transaction. The authentication result can be confirmed in the AUTH bit in the MCUSTAT register or the DbgStatus bit in the AHB-AP control status word register.
 - When the DbgStatus bit is 1, the 128-bit ID code is a match with the OSIS value. AHB transfers are permitted.
 - When the DbgStatus bit is 0, the 128-bit ID code is not a match with the OSIS value. AHB transfers are not permitted.
- 6. Set up AHB-AP to access the system address space. AHB-AP is connected to the DAP bus port 0.
- 7. Start accessing the CPU debug resources using AHB-AP.

2.8 References

- 1. ARM[®] v6-M Architecture Reference Manual (ARM DDI 0419E)
- 2. CortexTM-M0+ Technical Reference Manual (ARM DDI 0484C)
- 3. CortexTM-M0+ Devices Generic User Guide (ARM DUI 0662B)
- 4. Arm[®] CoreSight[™] SoC-400 Technical Reference Manual (ARM DDI 0480G)
- 5. Arm[®] CoreSightTM Architecture Specification (ARM IHI 0029E)
- 6. CoreSight[™] MTB-M0+ Technical Reference Manual (ARM DDI 0486B)

3. Startup Modes

3.1 Types and Selection of Startup Mode

Table 3.1 shows the startup modes selected by the levels on the mode setting pins (MD and EHMD). For details on each of the startup modes, see section 3.2, Details of Startup Modes.

Table 3.1 Types of Startup Mode Selected by the Levels on the Startup Mode Setting Pin and Energy Harvesting Mode Setting Pin

Mode Setting Pins		Startup Mode
MD	EHMD	Startup Mode
High	High	Energy harvesting startup mode
	Low	Normal startup mode
Low	—	SCI boot mode

3.2 Details of Startup Modes

3.2.1 Normal Startup and Energy Harvesting Startup Modes

In normal startup and energy harvesting startup modes, all input and output pins are available for use as input or output ports, inputs or outputs for peripheral functions, or as interrupt inputs. When release from the reset state proceeds while the MD pin is high, the LSI chip starts in normal startup or energy harvesting startup mode and starts running the program in the code flash memory. The EHMD pin can be used to select normal startup or energy harvesting startup. For details, see section 3.3.2, Power-up Sequence.

3.2.2 Serial Programming Mode

3.2.2.1 SCI Boot Mode

In this mode, the code flash memory modifying program (boot program) stored in a dedicated area within the chip is started up. The code flash memory can be modified from outside the chip by using the asynchronous interface. For details, see section 48, Flash Memory in the User's Manual: Hardware.

The LSI chip starts in the serial programming mode if the MD pin is held low on release from the reset state. After the LSI chip has been started up in the serial programming mode, the boot program starts up the asynchronous interface.

3.2.3 On-chip Debug Mode

In this mode, the chip can be externally controlled by connecting an external emulator or flash memory programmer through the SWD interface.

3.3 Startup Mode Transitions

3.3.1 Startup Mode Determined by the Mode Setting Pins

Figure 3.1 shows startup mode transitions determined by the settings of the MD pin and the EHMD pin.

1 111

3.3.2 Power-up Sequence

The normal startup or energy harvesting startup mode is selected by the state of the EHMD pin on release from the reset state as shown in Table 3.2.

Table 3.2	Types of Startup	Mode Selected by	the State of the EHMD Pir

EHMD Pin State	Startup Mode
Low	Normal startup mode
High	Energy harvesting startup mode

The procedure for using the low leakage current mode as one of power control modes depends on the selected startup mode.

In the normal startup mode, the LSI chip starts with the back bias voltage control (VBBC) circuit disabled. Using the low leakage current mode after normal startup requires waiting for completion of the startup setting and initial setup of the VBBC circuit after release from the internal reset state. The initial setup of the VBBC circuit is the operation of charging an external capacitor connected between VBP and VBN. Setting the back bias voltage control (VBBC) enable bit (VBBCR.VBBEN) to 1 starts this initial setup. When the initial setup is completed, the back bias voltage control (VBBC) initial setup completion flag (VBBST.VBBSTUP) is set to 1. Transition to the low leakage current mode becomes possible when the VBBST.VBBSTUP flag is 1.

In the energy harvesting startup mode, the initial setup of the VBBC circuit starts and is completed during the internal reset period. Consequently, the chip can enter the low leakage current mode immediately, since the VBBCR.VBBEN bit and the VBBST.VBBSTUP flag will be 1 at the time of release from the internal reset state. Although the internal reset period for the energy harvesting startup mode is longer than that for the normal startup mode, the amount of current drawn is reduced during the initial setup of the VBBC circuit.

For details on the low leakage current mode, see section 12, Power-Saving Functions in the User's Manual: Hardware.

4. Address Space

4.1 Address Space

This LSI chip supports a 4-Gbyte linear address space from 0000 0000h to FFFF FFFFh, that can contain both programs and data.

Figure 4.1 shows the memory map.

Figure 4.1 Memory Map

5. I/O Registers

This section describes I/O register addresses and access cycles by function.

5.1 Address Information

Table 5.1 lists the address information for I/O registers in this product.

Table 5 1	I/O Register	Address	(1/2)	
Table 5.1	I/O Register	Address	(1/2)	

Start Address	End Address	Module Symbol	Description
4000 0000h	4000 4FFFh	MPU, MMF, BUS	Memory Protection Unit, memory mirror function, bus control
4000 5000h	4000 5FFFh	DMAC, DTC	DMA controller, data transfer controller
4000 6000h	4000 6FFFh	ICU	Interrupt controller
4001 9000h	4001 9FFFh	МТВ	Debug function (MTB)
4001 A000h	4001 AFFFh	FLASH	Flash memory
4001 B000h	4001 BFFFh	DBG	Debug function
4001 E000h	4001 EFFFh	SYSTEM	System control
4004 0000h	4004 001Fh	PORT0	Port 0 control register
4004 0020h	4004 003Fh	PORT1	Port 1 control register
4004 0040h	4004 005Fh	PORT2	Port 2 control register
4004 0060h	4004 007Fh	PORT3	Port 3 control register
4004 0080h	4004 009Fh	PORT4	Port 4 control register
4004 00A0h	4004 00BFh	PORT5	Port 5 control register
4004 00C0h	4004 00DFh	PORT6	Port 6 control register
4004 00E0h	4004 00FFh	PORT7	Port 7 control register
4004 0800h	4004 0CFFh	PFS	Port mn pin function select register
4004 0D00h	4004 0FFFh	PMISC	Miscellaneous port control register
4004 1000h	4004 10FFh	ELC	Event link controller
4004 1240h	4004 125Fh	SCI2	Serial communication interface 2
4004 1260h	4004 127Fh	SCI3	Serial communication interface 3
4004 2000h	4004 20FFh	POE0	Port output enable 0
4004 2100h	4004 21FFh	POE1	Port output enable 1
4004 4000h	4004 40FFh	RTC	Realtime clock
4004 4200h	4004 42FFh	WDT	Watchdog timer
4004 4400h	4004 44FFh	IWDT	Independent watchdog timer
4004 4600h	4004 46FFh	CAC	Clock frequency accuracy measurement circuit
4004 7000h	4004 70FFh	MSTP	Module stop control registers B, C, D
4005 2000h	4005 207Fh	TMR	8-bit timer
4005 3100h	4005 31FFh	RIIC1	I ² C bus interface 1
4005 4100h	4005 41FFh	DOC	Data operation circuit
4005 5000h	4005 50FFh	GPT320	General PWM timer 0 (32 bits)
4005 5300h	4005 53FFh	GPT163	General PWM timer 3 (16 bits)
4005 C000h	4005 C1FFh	S14AD	14-bit A/D converter
4005 D000h	4005 D0FFh	TEMPS	Temperature sensor
4007 0800h	4007 0DFFh	GDT	2D graphics data conversion circuit
4007 2100h	4007 21FFh	SPI1	Serial peripheral interface 1 (32 bits)
4007 4000h	4007 40FFh	CRC	CRC calculator
4008 0000h	4008 00FFh	KINT	Key interrupt function

Start Address	End Address	Module Symbol	Description
4008 0400h	4008 04FFh	CCC	Clock correction circuit
4008 4000h	4008 40FFh	AGT0	Asynchronous general-purpose timer 0
4008 4100h	4008 41FFh	AGT1	Asynchronous general-purpose timer 1
4008 4400h	4008 44FFh	LST	Low-speed clock timer
4008 4500h	4008 457Fh	DIL	Data inversion circuit
4008 4680h	4008 46FFh	DIV	Divider
4008 6A80h	4008 6AFFh	VREF	Reference voltage generation circuit
400C 0000h	400C 01FFh	TSIP-Lite	Security function

Table 5.1 I/O Register Address (2/2)

5.2 Access Cycle

Table 5.2 lists the access cycle information of the I/O registers in this LSI chip. The following statements apply to Table5.2:

- Registers are grouped by corresponding modules.
- The number of access cycles indicates the number of cycles based on the specified reference clock.
- In the I/O register area, reserved addresses that are not allocated to registers must not accessed. If access is attempted, further operation cannot be guaranteed.
- The number of access cycles for I/O registers depends on bus cycles of the internal peripheral bus, divided clock synchronization cycles, and wait cycles of each module. Divided clock synchronization cycles differ depending on the frequency between ICLK and PCLK. "PCLK" refers to both PCLKA and PCLKB. For the internal peripheral bus, see section 18, Buses in the User's Manual: Hardware.
- When the frequency of ICLK is equal to that of PCLK, the number of divided clock synchronization cycles is always constant.
- When the frequency of ICLK is greater than that of PCLK, 1 cycle of PCLK is added to the divided clock synchronization cycles.
- The numbers of cycles are applicable when access by the CPU does not conflict with bus access by another bus master (the DMAC or DTC).

E	Function Other Adda . Fund		ICLK = PCLK		ICLK > PCLK ^{*1}		Quala Linit	Deleted Function	
Function	Start Address	End Address	Read	Write	Read	Write	Cycle Unit	Related Function	
CPU, MPU,	4000 0000h	4000 6FFFh	3	3	_	—	ICLK	CPU, Memory Protection Unit,	
MMF, Bus, DMAC, DTC, ICU, FLASH, DBG		4001 BFFFh				_		memory mirror function, bus control, DMA controller, data transfer controller, interrupt controller, flash memory, debug function	
MTB	4001 9000h	4001 9FFFh	2	2	_	—	ICLK	Debug function (MTB)	
System	4001 E000h	4001 E3FFh	3	3	_	—	ICLK	Low power consumption function,	
control 3	4001 E400h	4001 E412h	5	5		_		resets, clock generation function, register write protection function.	
	4001 E413h	4001 E413h	3	3		_		low voltage detection, energy	
	4001 E414h	4001 E420h	5	5		_		harvesting control circuit	
	4001 E421h	4001 E421h	3	3	_	—			
	4001 E422h	4001 E4E0h	5	5	_	—			
	4001 E4E1h	4001 E4E1h	3	3		—			
	4001 E4E2h	4001 E4FFh	5	5	_	—			
	4001 E500h	4001 EFFFh	3	3	_	—			
GPIO ^{*4}	4004 0000h	4004 10FFh	3	3	2-3	2-3	PCLKB	I/O ports, event link controller	
SCI2 and SCI3	4004 1240h	4004 127Fh	3	3	2-3 ^{*2}	2-3 ^{*2}	PCLKB	Serial communications interface	
POE0 and POE1	4004 2000h	4004 21FFh	3	3	2-3	2-3	PCLKB	Port output enable	
RTC, WDT, IWDT, CAC, MSTP	4004 4000h	4004 70FFh	3	3	2-3	2-3	PCLKB	Realtime clock, watchdog timer, independent watchdog timer, clock frequency accuracy measurement circuit, module stop control	
TMR	4005 2000h	4005 207Fh	3	3	2-3	2-3	PCLKB	8-bit timer	
RIIC1	4005 3100h	4005 31FFh	3	3	2-3	2-3	PCLKB	I ² C bus interface	
DOC	4005 4100h	4005 41FFh	3	3	2-3	2-3	PCLKB	Data operation circuit	
GPT0 ^{*5}	4005 5000h	4005 50FFh	6	4	5-6	3-4	PCLKB	General PWM timer 0	

Table 5.2 I/O Register Access Cycle (1/2)

Eurotion	Start Address	End Addroso	ICLK =	PCLK	ICLK >	ICLK > PCLK ^{*1}		Deleted Eurotion	
FUNCTION	Start Address	End Address	Read	Write	Read	Write		Related FullCtion	
GPT3 ^{*6}	4005 5300h	4005 53FFh	6	4	5-6	3-4	PCLKB	General PWM timer 3	
S14AD	4005 C000h	4005 C1FFh	3	3	2-3	2-3	PCLKB	14-bit A/D converter	
TEMPS	4005 D000h	4005 D0FFh	3	3	2-3	2-3	PCLKB	Temperature sensor	
GDT	4007 0800h	4007 0DFFh	3	3	—	—	PCLKA	2D graphics data conversion circuit	
SPI1	4007 2100h	4007 21FFh	3	3	—	_	PCLKA	Serial peripheral interface	
CRC	4007 4000h	4007 40FFh	3	3	—	—	PCLKA	CRC calculator	
KINT	4008 0000h	4008 00FFh	3	3	2-3	2-3	PCLKB	Key interrupt function	
CCC	4008 0400h	4008 04FFh	4	4	3-4	3-4	PCLKB	Clock correction circuit	
AGT0 and AGT1	4008 4000h	4008 41FFh	4	4	3-4	3-4	PCLKB	Asynchronous general-purpose timer	
LST	4008 4400h	4008 44FFh	4	4	3-4	3-4	PCLKB	Low-speed clock timer	
DIL	4008 4500h	4008 457Fh	4	4	3-4	3-4	PCLKB	Data inversion circuit	
DIV	4008 4680h	4008 46FFh	4	4	3-4	3-4	PCLKB	Divider	
VREF	4008 6A80h	4008 6AFFh	4	4	3-4	3-4	PCLKB	Reference voltage generation circuit	
TSIP-Lite	400C 0000h	400C 01FFh	3	3	_		PCLKA	Security function	

Table 5.2 I/O Register Access Cycle (2/2)

Note 1. If the number of PCLK cycles is a non-integer (for example 1.5), the minimum value is rounded down to an integer, and the maximum value is rounded off to an integer. For example, 1.5 to 2.5 is 1 to 3.

Note 2. When accessing a 16-bit register (CDR), the time required to access is 2 cycles more than the value shown in Table 5.2. These values indicate the minimum numbers of cycles for access by the CPU. They do not include the cycles required for Note 3. changes in the source of the ICLK clock and frequency after changes to the SCKSCR and SCKDIVCR registers.

Note 4. GPIO indicates PORT0 to PORT7, PFS, PMISC, and the ELC.

Note 5.GPT0 refers to GPT320.Note 6.GPT3 refers to GPT163.

6. Electrical Characteristics

The electrical characteristics of the LSI chip are defined under the following conditions unless otherwise specified:

$$\label{eq:VCC} \begin{split} VCC &= AVCC0 = IOVCC0 = IOVCC1 = IOVCC2 = IOVCC3 = 1.62 \text{ to } 3.6 \text{ V} \\ 1.62 \text{ V} \leq \text{VREFH0} \leq \text{AVCC0} \\ \text{VSS} &= \text{AVSS0} = \text{VREFL0} = 0 \text{ V} \\ \text{T}_a &= \text{T}_{opr} \end{split}$$

The load capacitance of each I/O pin is 30 pF.

When measuring the power consumption, low CL4 (SOMCR.SODRV = 1 and SOMCR.SODRV0 = 0) was selected for the driving ability of the sub-clock oscillator.

6.1 Absolute Maximum Ratings

	Item	Symbol	Value	Unit
Power supply voltage Power supply voltage		VCC	-0.3 to 4.0	V
	Input voltage for EHC	VSC_VCC	-0.3 to 4.0	V
	Secondary battery input voltage for EHC	VBAT_EHC	-0.3 to 4.0	V
	Power supply voltage for I/O pins	IOVCC, IOVCC0 to IOVCC3	-0.3 to 4.0	V
Input voltage	ANT	V _{in}	-1.0 to +1.4	V
	XTAL1_RF, XTAL2_RF	-	-0.3 to +1.4	V
	DCLIN_A, DCLIN_D	-	-0.3 to +2.2	V
	Other than above	-	-0.3 to VCC + 0.3 (max. 4.0 V)	V
Reference power supp	ly voltage	VREFH0	-0.3 to AVCC0 + 0.3 (max. 4.0 V)	V
		VREFL0	-0.3 to AVSS0 + 0.3	V
Analog power supply voltage		AVCC0	-0.3 to 4.0	V
Junction temperature		Tj	-40 to +95	°C
Storage temperature		T _{stg}	-55 to +125	°C

Table 6.1Absolute Maximum Ratings

Caution: Permanent damage to the LSI chip might result if absolute maximum ratings are exceeded.

Item	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	VCC	1.62	—	3.6	V
	VSS	—	0	—	V
Input voltage for EHC	VSC_VCC	1.62	—	3.6	V
Secondary battery input voltage for EHC	VBAT_EHC*1	1.62	—	3.6	V
Analog power supply voltage	AVCC0	1.62	—	3.6	V
	AVSS0	—	0	—	V
	VREFH0	1.62	—	AVCC0	V
	VREFL0	—	0	—	V
Power supply voltage for I/O pins	IOVCC, IOVCC0, IOVCC1, IOVCC2, IOVCC3	1.62	—	3.6	V
BLE power supply voltage	VCC_RF, AVCC_RF	1.8	—	3.6	V
	VSS_RF	—	0	—	V
Operating temperature	T _{opr}	-40	—	85	°C

 Table 6.2
 Recommended Operating Conditions

Note 1. The voltage of the secondary battery to be connected to VBAT_EHC is 2.6 V or 3.0 V.

6.2 DC Characteristics

6.2.1 Input Characteristics of I/O Pins (V_{IH} and V_{IL})

Table 6.3 Input Characteristics of I/O Pins (V_{IH} and V_{IL})

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger	chmitt trigger put voltage RES#, NMI, and IRQ pins and input pins of on-chip peripheral functions other than those of the RIIC RIIC	V _{IH}	VCC × 0.8	_	_	V	—
input voltage		V _{IL}		_	VCC × 0.2		
		ΔV_T	0.3	—	—		
		V _{IH}	VCC × 0.7	—	_	VCC = 3.0 3.6 V	VCC = 3.0 to
		V _{IL}		—	VCC × 0.3		3.6 V
		ΔV_T	VCC × 0.05	—	_		
Input voltage other	EXTAL, MD, EHMD, and	V_{IH}	VCC × 0.8	—	_		—
than that for the general-purpose I/O ports Schmitt trigger input pins		V _{IL}	_	_	VCC × 0.2		

6.2.2 Output Characteristics of I/O Pins (V_{OH} and V_{OL}) (1)

Table 6.4	Output Characteristics of I/O Pins (Vou and Vou)

ltem	Setting of the Register	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Output	Low driving ability (PmnPFS.DSCR[1:0] = 00b)	V _{OH}	VCC - 0.5	_	_	V	I _{OH} = 10 μA
high- level	Middle driving ability (PmnPFS.DSCR[1:0] = 01b)		VCC - 0.5	_	_		I _{OH} = 10 μA
voltage	Standard driving ability (PmnPFS.DSCR[1:0] = 10b)		VCC-0.6	_	_		I _{OH} = 2 mA
	High driving ability (PmnPFS.DSCR[1:0] = 11b)		VCC - 0.5	_	_		I _{OH} = 2 mA
Output	Low driving ability (PmnPFS.DSCR[1:0] = 00b)	V _{OL}	_	_	0.5		I _{OL} = 2 mA
low-level N voltage	Middle driving ability (PmnPFS.DSCR[1:0] = 01b)		_	_	0.5		I _{OL} = 2 mA
	Standard driving ability (PmnPFS.DSCR[1:0] = 10b)		_	_	0.6		I _{OL} = 2 mA
	High driving ability (PmnPFS.DSCR[1:0] = 11b)		_	_	0.5		I _{OL} = 2 mA

Table 6.5	Conditions for Testing I/O Characteristics
-----------	--

	Тур. 33	Тур. 18	Min.	Unit
VCC	3.3	1.8	1.6	V
Temperature	25	25	125	°C

Figure 6.2 V_{OH} vs. I_{OH} Characteristics (Low Driving Ability)

Figure 6.3 V_{OL} vs. I_{OL} Characteristics (Middle Driving Ability)

Figure 6.4 V_{OH} vs. I_{OH} Characteristics (Middle Driving Ability)

Figure 6.5 V_{OL} vs. I_{OL} Characteristics (Standard Driving Ability)

Figure 6.6 V_{OH} vs. I_{OH} Characteristics (Standard Driving Ability)

6.2.3 Output Characteristics of I/O Pins (V_{OL}) (2)

Table 6.6Output Characteristics of I/O Pins (V_{OL})Conditions:VCC = 3.0 to 3.6 V

	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Output low-level	RIIC	V _{OL}		_	0.4	V	I _{OL} = 3 mA
voltage				_	0.6		I _{OL} = 6 mA

6.2.4 Pull-up and Pull-down Resistors

Table 6.7 Pull-up and Pull-down Resistors

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Pull-up resistor	I _P	120	200	—	kΩ	VCC = 2.5 V
Pull-down resistor	I _P	120	200	—		VCC = 2.5 V

6.2.5 Pin Capacitance

Table 6.8Pin Capacitance

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RIIC-related pins	C _{in}	—	_	8	pF	—	
EXTAL, XTAL	P412, P413						
All other pins			_	_	16		

Note: For details, see Table 1.4, Pin Functions in section 1, Overview.

6.2.6 Operating Current and Standby Current

Table 6.9Operating Current and Standby Current (1/6)Maximum test conditions: VCC = AVCC0 = VREFH0 = 3.6 V, $T_a = T_{opr} = 85^{\circ}\text{C}$ Typical test conditions: VCC = AVCC0 = VREFH0 = 3.3 V, $T_a = T_{opr} = 25^{\circ}\text{C}$ Condition:The FLFSTP bit in the function stop control register is set to 0 (stopping the flash memory function).

Power Supply Mode	Power Co	ontrol Mode and Low	Power Consumption Mode	Specified Operating Frequency	Clock Source	Тур.	Max.	unit
All power supply mode	BOOST	Maximum operation'	*1	ICLK/PCLKB = 64/32 MHz	HOCO	-	18	mA
(ALLPWON) The code is				ICLK/PCLKB = 32/16 MHz	HOCO	-	11 ^{*3}	
executed from within the flash		while(1) operation (peripheral clock sig	nal supplied)	ICLK/PCLKB = 64/32 MHz	MOSC + PLL	7.4	—	
momory.				ICLK/PCLKB = 32/16 MHz	MOSC	4.1	—	
				ICLK/PCLKB = 64/32 MHz	HOCO	8.2	-	
				ICLK/PCLKB = 32/16 MHz		4.4	—	
		CoreMark (peripheral clock signal stopped*2)		ICLK/PCLKB = 64/1 MHz	HOCO	3.5	—	
				ICLK/PCLKB = 32/0.5 MHz	HOCO	2.0	—	
		while(1) operation (peripheral clock sig	nal stopped ^{*2})	ICLK/PCLKB = 64/1 MHz	HOCO	3.0	—	
				ICLK/PCLKB = 32/0.5 MHz	HOCO	1.7	—	
		Sleep mode (periphe	eral clock signal stopped ^{*2})	ICLK/PCLKB = 64/1 MHz	HOCO	1.2	—	
				ICLK/PCLKB = 32/0.5 MHz	HOCO	1.0	-	
		Increases with	During programming			0.24	—	
-		operation (BGO)	During erasure			0.23	—	
	NORMAL	ORMAL High-Speed mode	Maximum operation ^{*1}	ICLK/PCLKB = 32/32 MHz	MOSC	-	10	mA
				ICLK/PCLKB = 16/16 MHz		_	8.0*3	1
			while(1) operation (peripheral clock signal supplied)	ICLK/PCLKB = 32/32 MHz	MOSC	3.9	9.0	
				ICLK/PCLKB = 16/16 MHz		2.0	7.0*3	
				ICLK/PCLKB = 32/32 MHz	HOCO	4.3	9.0	
				ICLK/PCLKB = 16/16 MHz		2.4	7.0 ^{*3}	
			CoreMark (peripheral clock signal stoppod*2)	ICLK/PCLKB = 32/0.5 MHz	MOSC	1.5	—	
			slopped -)	ICLK/PCLKB = 16/0.25 MHz		0.83	—	
			while(1) operation (peripheral clock signal	ICLK/PCLKB = 32/0.5 MHz	MOSC	1.1	6.0	
			stopped 2)	ICLK/PCLKB = 16/0.25 MHz		0.65	-	
	SI (p	Sleep mode (peripheral clock signal	ICLK/PCLKB = 32/0.5 MHz		0.64	_		
		s Ir	stopped ^{*2})	ICLK/PCLKB = 16/0.25 MHz		0.41	_]
			Increases with background operation (BGO) during programming			0.23	—	
			Increases with background	d operation (BGO) during er	asure	0.15		

Table 6.9Operating Current and Standby Current (2/6)Maximum test conditions: VCC = AVCC0 = VREFH0 = 3.6 V, Ta -

10010-0.0	oporating out	Tonic and Otana		_/ U /	
Maximum test	conditions: VCC	= AVCC0 = VR	EFH0 = 3.6 V	, T _a = T	opr = 85°C
Typical test co	nditions: $VCC = i$	$\Delta VCC0 = VREE$	H0 = 33VT	= T	= 25°C

Typical test conditions: VCC = AVCC0 = VREFH0 = 3.3 V, $T_a = T_{opr} = 25^{\circ}\text{C}$ Condition: The FLFSTP bit in the function stop control register is set to 0 (stopping the flash memory function).

Power Supply Mode	Power Co	ontrol Mode and Low F	Power Consumption Mode	Specified Operating Frequency	Clock Source	Тур.	Max.	unit
All power supply	NORMAL	Low-Speed mode	Maximum operation*1	ICLK/PCLKB = 2/2 MHz	MOSC	_	5.0	mA
mode (ALLPWON)				ICLK/PCLKB = 1/1 MHz			5.0* ³	
The code is			while(1) operation	ICLK/PCLKB = 2/2 MHz	MOSC	0.36	5.0 ^{*3}	
executed from			(peripheral clock signal supplied)	ICLK/PCLKB = 1/1 MHz		0.24	—	
memory.				ICLK/PCLKB = 2/2 MHz	MOCO	0.36	—	
				ICLK/PCLKB = 1/1 MHz		0.24	—	
			CoreMark (peripheral clock signal	ICLK/PCLKB = 2000/ 31.25 kHz	MOSC	0.20	—	
			stopped ^{*2})	ICLK/PCLKB = 1000/ 31.25 kHz		0.15	—	
			while(1) operation (peripheral clock signal stopped*2)	ICLK/PCLKB = 2000/ 31.25 kHz		0.18	—	
				ICLK/PCLKB = 1000/ 31.25 kHz		0.15	—	
			Sleep mode (peripheral clock signal stopped ^{*2})	ICLK/PCLKB = 2000/ 31.25 kHz		0.15 —	—	μΑ
				ICLK/PCLKB = 1000/ 31.25 kHz		0.13	—	
		Subosc-Speed mode	while(1) operation (peripheral clock signal supplied)	ICLK/PCLKB = 32.7/ 32.7 kHz	LOCO	93	4700 *3	
				ICLK/PCLKB = 32.7/ 0.51 kHz		92	—	
			while(1) operation (peripheral clock signal stopped* ²)	ICLK/PCLKB = 32.7/ 0.51 kHz		91	_	-
			Sleep mode (peripheral clock signal stopped* ²)	ICLK/PCLKB = 32.7/ 0.51 kHz		90	—	
	VBB	Maximum operation*	1	ICLK/PCLKB = 32.7/ 32.7 kHz	LOCO	_	200*3	μA
		while(1) operation (peripheral clock sign	nal supplied)	ICLK/PCLKB = 32.7/ 32.7 kHz		38	—	
		Sleep mode (peripheral clock sign	nal stopped ^{*2})	ICLK/PCLKB = 32.7/ 0.51 kHz		34	—	-
		while(1) operation (peripheral clock sign	nal supplied)	ICLK/PCLKB = 32.768/ 32.768 kHz	SOSC (standard	38	—	
		Sleep mode (peripheral clock sign	nal stopped ^{*2})	ICLK/PCLKB = 32.768/ 0.512 kHz	CL)	34	_	
		while(1) operation (peripheral clock signa Sleep mode (peripheral clock signa	nal supplied)	ICLK/PCLKB = 32.768/ 32.768 kHz	SOSC (low CL)	37	_	
			nal stopped ^{*2})	ICLK/PCLKB = 32.768/ 0.512 kHz		33	—	

Table 6.9Operating Current and Standby Current (3/6)Maximum test conditions: VCC = AVCC0 = VREFH0 = 3.6 V, $T_a = T_{opr} = 85^{\circ}C$ Typical test conditions: VCC = AVCC0 = VREFH0 = 3.3 V, $T_a = T_{opr} = 25^{\circ}C$ Condition:The FLFSTP bit in the function stop control register is set to 0 (stopping the flash memory function).

Power Supply Mode	Power Co	ontrol Mode and Low F	Power Consumption Mode	Specified Operating Frequency	Clock Source	Тур.	Max.	unit
Flash excluded power supply	NORMAL	High-Speed mode	Maximum operation ^{*1}	ICLK/PCLKB = 32/32 MHz	MOSC	—	9.8 ^{*3}	mA
mode (EXFPWON)				ICLK/PCLKB = 16/16 MHz		_	7.8 ^{*3}	
The code is executed from SRAM			while(1) operation (peripheral clock signal	ICLK/PCLKB = 32/32 MHz		3.9	—	
			supplied)	ICLK/PCLKB = 16/16 MHz		2.0	—	
				ICLK/PCLKB = 32/32 MHz	HOCO	4.3	—	
				ICLK/PCLKB = 16/16 MHz		2.4	—	
			while(1) operation (peripheral clock signal stopped*2)	ICLK/PCLKB = 32/0.5 MHz	MOSC	1.1	—	
				ICLK/PCLKB = 16/0.25 MHz		0.61	—	
			Sleep mode (peripheral clock signal stopped ^{*2})	ICLK/PCLKB = 32/0.5 MHz	MOSC	0.59	—	-
				ICLK/PCLKB = 16/0.25 MHz		0.36	—	
		Low-Speed mode	Maximum operation*1	ICLK/PCLKB = 2/2 MHz	MOSC	—	4.8*3	
				ICLK/PCLKB = 1/1 MHz		—	4.8*3	
		while(1) operation	ICLK/PCLKB = 2/2 MHz	MOSC	0.29	—		
			(peripheral clock signal supplied)	ICLK/PCLKB = 1/1 MHz		0.18	—	-
				ICLK/PCLKB = 2/2 MHz	MOCO	0.29	—	
				ICLK/PCLKB = 1/1 MHz		0.18	—	
			while(1) operation (peripheral clock signal	ICLK/PCLKB = 2000/ 31.25 kHz	MOSC	0.13	—	
			stopped 2)	ICLK/PCLKB = 1000/ 31.25 kHz		0.10	—	
			Sleep mode (peripheral clock signal	ICLK/PCLKB = 2000/ 31.25 kHz		0.09	—	
			stopped ²)	ICLK/PCLKB = 1000/ 31.25 kHz		0.08	—	
	Subosc-Speed mode	Subosc-Speed mode	while(1) operation (peripheral clock signal	ICLK/PCLKB = 32.7/ 32.7 kHz	LOCO	52	4500 *3	μA
	suppliea)	ICLK/PCLKB = 32.7/ 0.51 kHz		51	_			
		V (5 (5 (5	while(1) operation (peripheral clock signal stopped ^{*2})	ICLK/PCLKB = 32.7/ 0.51 kHz		50	_	
			Sleep mode (peripheral clock signal stopped ^{*2})	ICLK/PCLKB = 32.7/ 0.51 kHz		49	_	

Table 6.9Operating Current and Standby Current (4/6)Maximum test conditions: VCC = AVCC0 = VREFH0 = 3.6 V, $T_a = T_{opr} = 85^{\circ}C$ Typical test conditions: VCC = AVCC0 = VREFH0 = 3.3 V, $T_a = T_{opr} = 25^{\circ}C$ Condition:The FLFSTP bit in the function stop control register is set to 0 (stopping the flash memory function).

Power Supply Mode	Power Co	ontrol Mode and Low F	Power Consumption Mode	Specified Operating Frequency	Clock Source	Тур.	Max.	unit
Flash excluded	NORMAL	Software standby	VCC = 3.3 V		LOCO	29	—	μA
power supply mode		mode 4	VCC = 1.8 V			29	—	
(EXFPWON)			VCC = 3.3 V		SOSC	29	_	
The code is			VCC = 1.8 V		(standard CL)	29		
SRAM.			VCC = 3.3 V		SOSC	28		
			VCC = 1.8 V		(low CL)	28		
	VBB	Maximum operation*	1	ICLK/PCLKB = 32.7/ 32.7 kHz	LOCO	_	30 ^{*3}	
		while(1) operation (peripheral clock sign	nile(1) operation I eripheral clock signal supplied)			6.8	_	
		Sleep mode (periphe	eral clock signal stopped ^{*2})	ICLK/PCLKB = 32.7/ 0.51 kHz		3.1	_	
		Software standby mode ^{*4}	VCC = 3.3 V/3.6 V	·		2.1	25 ^{*3}	-
			VCC = 1.8 V			1.9	_	
		while(1) operation (p supplied)	eripheral clock signal	ICLK/PCLKB = 32.768/ 32.768 kHz	SOSC (standard	6.5		
		Sleep mode (peripher	eral clock signal stopped ^{*2})	ICLK/PCLKB = 32.768/ 0.512 kHz	CL)	2.9	_	
		Software standby mode ^{*4}	VCC = 3.3 V			2.0	-	
			VCC = 1.8 V			1.9	—	
		while(1) operation (peripheral clock sign	nal supplied)	ICLK/PCLKB = 32.768/ 32.768 kHz	SOSC (low CL)	5.8	_	
		Sleep mode (peripheral clock sigr	nal stopped ^{*2})	ICLK/PCLKB = 32.768/ 0.512 kHz		2.2	_	
		Software standby	VCC = 3.3 V	•		1.3	—	
		mode 4	VCC = 1.8 V			1.2	—	
Minimum power supply mode	NORMAL	High-Speed mode	Maximum operation ^{*1}	ICLK/PCLKB = 32/32 MHz	MOSC	-	7.0 ^{*3}	mA
(MINPWON) The code is				ICLK/PCLKB = 16/16 MHz		_	5.5 ^{*3}	
executed from SRAM			while(1) operation (peripheral clock signal	ICLK/PCLKB = 32/0.5 MHz	MOSC	1.1	4.6 ^{*3}	
		s S (i s	stopped <)	ICLK/PCLKB = 16/0.5 MHz		0.8	—	
			Sleep mode (peripheral clock signal stopped ^{*2})	ICLK/PCLKB = 32/0.5 MHz	MOSC	0.58	—	
				ICLK/PCLKB = 16/0.5 MHz		0.42	_	

Table 6.9 Operating Current and Standby Current (5/6)

Maximum test conditions: VCC = AVCC0 = VREFH0 = 3.6 V, $T_a = T_{opr} = 85^{\circ}\text{C}$ Typical test conditions: VCC = AVCC0 = VREFH0 = 3.3 V, $T_a = T_{opr} = 25^{\circ}\text{C}$ Condition: The FLFSTP bit in the function stop control register is set to 0 (stopping the flash memory function).

Power Supply Mode	Power Co	ontrol Mode and Low F	Power Consumption Mode	Specified Operating Frequency	Clock Source	Тур.	Max.	unit
Minimum power supply mode	NORMAL	Low-Speed mode	Maximum operation*1	ICLK/PCLKB = 2/2 MHz	MOSC	—	3700 *3	μA
(MINPWON) The code is				ICLK/PCLKB = 1/1 MHz		_	3700 *3	
executed from SRAM			while(1) operation (peripheral clock signal	ICLK/PCLKB = 2000/ 31.25 kHz	MOSC	110	_	
			stopped ^{*2})	ICLK/PCLKB = 1000/ 31.25 kHz		80	—	
				ICLK/PCLKB = 2000/ 31.25 kHz	MOCO	105	_	
				ICLK/PCLKB = 1000/ 31.25 kHz		75	_	
			Sleep mode (peripheral clock signal	ICLK/PCLKB = 2000/ 31.25 kHz	MOCO	70		
			stopped 2)	ICLK/PCLKB = 1000/ 31.25 kHz		60		
		Subosc-Speed (mode (while(1) operation (peripheral clock signal	ICLK/PCLKB = 32.7/ 32.7 kHz	LOCO	40	3500 *3	μΑ
			stopped 2)	ICLK/PCLKB = 32.7/ 0.51 kHz		40		
			Sleep mode (peripheral clock signal stoppod ^{*2})	ICLK/PCLKB = 32.7/ 32.7 kHz		39	_	
			stopped ~)	ICLK/PCLKB = 32.7/ 0.51 kHz		39	_	
		Software standby	VCC = 3.3 V		LOCO	20		
		mode .	VCC = 1.8 V			19	_	
			VCC = 3.3 V		SOSC	20		
			VCC = 1.8 V		(standard CL)	20	-	
			VCC = 3.3 V VCC = 1.8 V		SOSC	19	_]
					(low CL)	19	_	
	VBB	while(1) operation (peripheral clock sign	nal supplied) ICLK/PCLKB = 32.768/ 32.768 kHz		SOSC (standard	3.3	22 ^{*3}	μA
		Sleep mode (periphe	eral clock signal stopped ^{*2})	ICLK/PCLKB = 32.768/ 0.512 kHz	CL)	1.8	_	-
		Software standby	VCC = 3.3 V			1.4	—	
		mode 4	VCC = 1.8 V			1.2	—	
		while(1) operation (peripheral clock sign	nal supplied)	ICLK/PCLKB = 32.7/ 32.7 kHz	LOCO	3.3	15 ^{*3}	μA
		Sleep mode (peripheral clock sign	nal stopped*2)	ICLK/PCLKB = 32.7/ 0.51 kHz		1.8	14 ^{*3}	
		Software standby	VCC = 3.3 V (typ.)/3.6 V (n	nax.)		1.4	12	
		mode 4	VCC = 1.8 V			1.2	10 ^{*3}	
		while(1) operation (peripheral clock sign	nal supplied)	ICLK/PCLKB = 32.768/ 32.768 kHz	SOSC (low CL)	2.6		μA
		Sleep mode (peripheral clock sigr	nal stopped ^{*2})	ICLK/PCLKB = 32.768/ 0.512 kHz		1.1	_	
		Software standby	VCC = 3.3 V			0.7	—	
		mode ^{"4}	VCC = 1.8 V			0.5	—	
Minimum power	VBB	Software standby	Increase for using the IWD	T (OFS0.IWDTSTRT = 0)		81	—	nA
supply mode (MINPWON)		mode Increases when	Increase for using the AGT	(AGTCR.TSTART = 1)		43	_	-
(MINPWON) The code is executed from SRAM		peripheral modules are in use (independent of VCC)	Increase for each 32 Kbytes of SRAM in use (set by the RAMSDCR register)			12	_	

Table 6.9 Operating Current and Standby Current (6/6) Maximum test conditions: VCC = AVCC0 = VREFH0 = 3.6 V, $T_a = T_{opr} = 85^{\circ}C$ Typical test conditions: VCC = AVCC0 = VREFH0 = 3.3 V, $T_a = T_{opr} = 25^{\circ}C$

Condition: The FLFSTP bit in the function stop control register is set to 0 (stopping the flash memory function).

Power Supply Mode	Power Control Mode and Low F	Power Consumption Mode	Specified Operating Frequency	Clock Source	Тур.	Max.	unit
Deep software standby mode		VCC = 3.3 V (typ.)/3.6 V (max.)	-	—	140	2000 *3	nA
		VCC = 1.8 V	—	—	120	500 ^{*3}	
		Increase for using the SOSC (VCC = 3.3 V)	_	SOSC (low CL)	160	—	
		Increase for using the SOSC (VCC = 1.8 V)	_		100	—	
Increases when peri	ipheral modules are in use in	Increase for using the LVD	48	—	nA		
standby mode (independent of VCC)	Increase for using the LVD		66	—			
		Increase for using the LVD	= 1)	66	—		
		Increase for using the CCC	35	—			

Note 1. The value for current in a "Maximum operation" row is for a case where the DMAC is handling transfer in every cycle and the CPU is repeatedly executing a multiply instruction while all modules are released from the module-stop state. The value does not include the current during background operation (BGO) and the supply of current for the pins.

The value for current in a row with a label that includes "peripheral clock signal stopped" is for a case where the peripheral Note 2. circuits have been placed in the module-stop state following the settings for frequency-division of ICLK and PCLKB.

Note 3. We do not inspect this value before shipment. The values presented in this manual are only for reference.

Note 4. The supply of the clock signals is stopped in this mode regardless of the operating frequency settings.

Table 6.10Analog Operating Current (AVCC0) and Standby CurrentMaximum test conditions: VCC = AVCC0 = 3.6 V, $T_a = T_{opr} = 85^{\circ}\text{C}$ Typical test conditions: VCC = AVCC0 = VREFH0 = 3.3 V, $T_a = T_{opr} = 25^{\circ}\text{C}$ (when the VREF is not in use)Typical test conditions: VCC = AVCC0 = 3.3 V, AVTRO = 1.25 V, $T_a = T_{opr} = 25^{\circ}\text{C}$ (when the VREF is in use)

	Operating Circuit								
ltem	A/D	Temperature Sensor	VREF	Symbol	Тур.	Max.	Unit	Test Conditions	
AVCC0 power supply	During conversion	During operation	During operation	I _{AVCC0}	81	—	μΑ	PCLKB = 16 MHz Sampling interval is 1 µs.	
current		Stopped	During operation		77	—		(ADSSTRN.SST[7:0] = 100)	
		During operation	Stopped		69	—			
		Stopped	Stopped		53	—			
		Stopped	Stopped		0.19	_		PCLKB = 32.768 kHz Sampling interval is 61 µs. (ADSSTRn.SST[7:0] = 02h)	
	Waiting for conversion	Stopped	Stopped		22	—	nA	PCLKB = 16 MHz*1	
		On standby			22	1900		Clock supply is stopped.	
Reference	During	Stopped	Stopped	I _{REFH0}	18	—	μA	PCLKB = 16 MHz	
power supply current	conversion				0.08	—		PCLKB = 32.768 kHz	
	Waiting for conversion	Stopped	Stopped		22	—	nA	PCLKB = 16 MHz ^{*1}	
		On standby	•		22	—		Clock supply is stopped.	

Note 1. This indicates that the clock signal is being supplied to the A/D converter but A/D conversion is not in progress.

Тур.					
Item	Symbol	Transmit o	utput power	Unit	Test Conditions
		0 dBm	4 dBm		
BLE operating current	ldd_tx	4.3	8.7	mA	Transmit mode, 2 Mbps
(when the DC-to-DC converter is					Transmit mode, 1 Mbps
		4.5	8.7		Transmit mode, 500 kbps
					Transmit mode, 125 kbps
	ldd_rx	3.0	3.5	mA	Receive mode, 2 Mbps Prf = –67 dBm
		3.0	3.4		Receive mode, 1 Mbps Prf = –67 dBm
		3.2	3.5		Receive mode, 500 kbps Prf = –72 dBm
		3.3	3.5		Receive mode, 125 kbps Prf = –79 dBm
	ldd_idle	0.5		mA	Idle mode
	Idd_slp	1.5		μA	Deep sleep mode
	ldd_down	0	.1	μA	Power down mode
BLE operating current	ldd_tx	10.2	18.1	mA	Transmit mode, 2 Mbps
(when the linear regulator is selected)					Transmit mode, 1 Mbps
					Transmit mode, 500 kbps
					Transmit mode, 125 kbps
	ldd_rx	6	.9	mA	Receive mode, 2 Mbps Prf = –67 dBm
		6	.9		Receive mode, 1 Mbps Prf = –67 dBm
		6	.9		Receive mode, 500 kbps Prf = –72 dBm
		7.1		1	Receive mode, 125 kbps Prf = –79 dBm
	ldd_idle	0	.7	mA	Idle mode
	ldd_slp	1	.5	μA	Deep sleep mode
	ldd_down	0	.1	μA	Power down mode

Table 6.11BLE Operating Current and Standby CurrentConditions:VCC = AVCC0 = VCC_RF = AVCC_RF = 3.3 V, VSS = AVSS0 = VSS_RF = 0 V, Ta = +25°C

Table 6.12IOVCC Waiting CurrentMaximum test conditions: VCC = IOVCCn = 3.6 V, $T_a = T_{opr} = 85^{\circ}C$ Typical test conditions: VCC = IOVCCn = 3.3 V, $T_a = T_{opr} = 25^{\circ}C$

ltem	Symbol	Тур.	Max.	Unit	Test Conditions
IOVCC0 waiting current	I _{IOVCC0ST}	8.6	—	nA	—
IOVCC1 waiting current	I _{IOVCC1ST}	16	_		-
IOVCC2 waiting current	I _{IOVCC2ST}	9.2	_		-
IOVCC3 waiting current	I _{IOVCC3ST}	21	_		_
IOVCC0 to IOVCC3 waiting current (total)	I _{IOVCCST}	_	900		

6.2.7 Gradients of VCC Rising and Falling

Table 6.13	Characteristics for Gradients	s of VCC Rising and Falling
------------	-------------------------------	-----------------------------

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Range of gradients for VCC rising at the time power is supplied	SrVCC	0.02		20	ms/V	—
Allowable range of fluctuations in the gradients for the voltage rising and falling	dt/dVCC	2		20	ms/V	—

6.2.8 On-chip Linear Regulator Characteristics

Table 6.14	On-chip	Linear	Regulator	Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
LDO startup time	t _{LDO}	3000	-	-	μs	Figure 6.9
LDO stabilization time	t _{LDOWT}	300	-	-	μs	Figure 6.9

Note: To ensure stable operation of the LSI chip, avoid operations that draw large amounts of current during the LDO stabilization time and the LDO stabilization period after no externally applied voltage is being supplied.

Switching from the external po	wer supply to the LDC)		
Externally applied voltage	Provided		Not provided	
On-chip regulator (LDO)	Stopped		Operating	
LDOCR.LDOCUT bit		• • • •		
Switching from the LDO to the	external power supply	(LDO (LUGWT	
Externally applied voltage	Not provided		Provided	
On-chip regulator (LDO)	Operating		Stopped	
LDOCR.LDOCUT bit				
	De the ch	etermine the timi e external power aracteristics of th	ng of switching between supply according to the ne external power supply	the LDO and electrical /.

6.3 AC Characteristics

6.3.1 Operating Frequency

Table 6 15	Operating Frequencies in the Various Modes
	operating requencies in the various modes

Power C	Control Mode	Clock Source	Symbol	Min.	Тур.	Max.	Unit
BOOST		System clock (ICLK)	f	_	_	64	MHz
		Peripheral module clock A (PCLKA)		_	_	64	
		Peripheral module clock B (PCLKB)				32	
NORMAL	High-speed	System clock (ICLK)				32	
		Peripheral module clock A (PCLKA)				32	
		Peripheral module clock B (PCLKB)				32	
	Low-speed	System clock (ICLK)			*1	2.3	
		Peripheral module clock A (PCLKA)		—		*1	2.3
		Peripheral module clock B (PCLKB)			*1	2.3	
	Subosc-speed	System clock (ICLK)			*2	37.6	kHz
		Peripheral module clock A (PCLKA)			*2	37.6	
		Peripheral module clock B (PCLKB)			*2	37.6	
VBB		System clock (ICLK)			*2	37.6	
		Peripheral module clock A (PCLKA)		_	*2	37.6	
		Peripheral module clock B (PCLKB)		—	*2	37.6	

Note: Reading, programming, and erasing the code flash memory requires that operation be within a specific range of frequencies. See Table 48.3 in section 48, Flash Memory in the User's Manual: Hardware.

Note: For the required relationships between the frequencies of clock signals, see the note under Table 9.2 in section 9, Clock Generation Circuit in the User's Manual: Hardware.

Note 1. The value is 2.0 MHz when the MOCO is selected as the clock source and the frequency is not being divided.

Note 2. The value is 32.768 kHz when the sub-clock oscillator is selected as the clock source and the frequency is not being divided.

6.3.2 Clock Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
EXTAL external clock input cycle time	t _{EXcyc}	35	—	—	ns	Figure 6.10
EXTAL external clock input high pulse width	t _{EXH}	14	-	—	ns	
EXTAL external clock input low pulse width	t _{EXL}	14	—	—	ns	
EXTAL external clock input rising time	t _{EXr}	—	—	3.5	ns	
EXTAL external clock input falling time	t _{EXf}	—	—	3.5	ns	
Main clock oscillator frequency	f _{MAIN}	8	—	32	MHz	—
Waiting time till the main clock oscillation is stable (crystal) ^{*1}	t _{MAINOSCWT}	—	—	*1	ms	Figure 6.11
LOCO clock oscillation frequency	f _{LOCO}	27.8	32.7	37.6	kHz	—
Waiting time till the LOCO clock oscillation is stable	t _{LOCOWT}	—	—	130	μs	Figure 6.12
IWDT-dedicated clock oscillation frequency	f _{IWDTLOCO}	13.9	16.35	18.8	kHz	_
Bluetooth-dedicated clock oscillation frequency	f _{BLECK}	—	32	—	MHz	_
Bluetooth-dedicated low-speed on-chip oscillator oscillation frequency	f _{BLELOCO}	—	32.768	—	kHz	_
MOCO clock oscillation frequency	f _{MOCO}	1.4	2	2.3	MHz	_
Waiting time till the MOCO clock oscillation is stable	t _{MOCOWT}	—	—	16	μs	_
HOCO clock oscillation frequency*3	f _{HOCO24}	23.52	24	24.96	MHz	$0^{\circ}C \leq T_a \leq +85^{\circ}C$
	f _{HOCO32}	31.36	32	33.28		
	f _{HOCO48}	47.04	48	49.92		
	f _{HOCO64}	62.72	64	66.56		
	f _{HOCO24}	22.80	24	24.96		$-40^\circ C \leq T_a \leq 85^\circ C$
	f _{HOCO32}	30.40	32	33.28		
	f _{HOCO48}	45.60	48	49.92		
	f _{HOCO64}	60.80	64	66.56		
HOCO clock oscillation stabilization wait time*2	tносоwт	—	—	700	μs	—
PLL output clock frequency	f _{PLL}	32	—	64	MHz	PLLCCR.FSEL0 = 1
		32	—	48		PLLCCR.FSEL0 = 0
Waiting time till the PLL output clock oscillation is stable	t _{PLLWT}	_	_	1020	μs	Figure 6.13 Includes the stabilization waiting time for LOCO clock oscillation

 Table 6.16
 Timing of the Clock Signals other than the Sub-clock Oscillator

Note 1. For setting up the main clock oscillator, we recommend consulting the oscillator manufacturer regarding the results of oscillation evaluation and use the results for the oscillation stabilization time. The value of the MOSCWTCR register should correspond to at least that value.

After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm that it is 1, and then start using the main clock oscillator.

Note 2. This is the time period between when HOCOCR.HCSTP is changed to 0 and when OSCSF.HOCOSF is changed to 1.

Note 3. The guaranteed values stated for this item apply to products in packages. Note that these characteristics will deteriorate due to fluctuations in stress when the sample device has been mounted on your system.

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Sub-clock frequency	f _{SUB}	-	32.768	—	kHz	
Sub-clock oscillation stabilization wait time	t _{SUBOSCWT}	_	_	*1	s	Figure 6.14

Table 6.17 Timing of the Sub-clock Oscillator

Note 1. For setting up the sub-clock oscillator, we recommend consulting the oscillator manufacturer regarding the results of oscillation evaluation and use the results for the oscillation stabilization time. After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization time elapses with an adequate margin. We recommend using two times the value of the results of oscillation evaluation by the oscillator manufacturer.

Figure 6.11 Main Clock Oscillation Start Timing

Figure 6.13 PLL Clock Oscillation Start Timing

Note: Start the PLL after the main clock oscillation is stabilized.

Figure 6.14 Sub-clock Oscillation Start Timing

6.3.3 Reset Timing

Table 6.18 Reset Timing

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RES# pulse	pulse Power-on (in the normal startup mode)			44			ms	Figure 6.15
width	Deep software	Deep software standby mode (in the normal startup mode)			_	_	ms	Figure 6.16
	Software stand	t _{RESWS}	7.0			ms		
	ALLPWON	Operation in boost mode	t _{RESW}	0.9			ms	
		Operation in normal mode	t _{RESW}	0.6			ms	
		Operation in low leakage current mode	t _{RESW}	1.6			ms	
		Transition from boost mode to normal mode in progress	t _{RESW}	0.6	—	—	ms	
		Transition from normal mode to boost mode in progress	t _{RESW}	1.8	—	—	ms	
		Transition from normal mode to low leakage current mode in progress	t _{RESW}	2.1	—	—	ms	
		Transition from low leakage current mode to normal mode in progress	t _{RESW}	1.2	—	—	ms	
	EXFPWON	Operation in normal mode	t _{RESW}	1.9			ms	
		Operation in low leakage current mode	t _{RESW}	2.0			ms	
		Transition from normal mode to low leakage current mode in progress	t _{RESW}	2.4	—	—	ms	
		Transition from low leakage current mode to normal mode in progress	t _{RESW}	2.1	—	—	ms	
	MINPWON	Operation in normal mode	t _{RESW}	2.3	_	_	ms	
		Operation in low leakage current mode	t _{RESW}	2.5	_		ms	
		Transition from normal mode to low leakage current mode in progress	t _{RESW}	6.1	—	—	ms	
		Transition from low leakage current mode to normal mode in progress	t _{RESW}	2.6	—	—	ms	
	Transition between ALLPWON and EXFPWON modes in normal mode in progress		t _{RESW}	2.5	—	—	ms	
	Transition betw normal mode i	ween EXFPWON and MINPWON modes in in progress	t _{RESW}	2.0	_	_	ms	
	Transition between ALLPWON and EXFPWON modes in VBB mode in progress		t _{RESW}	3.0	_	_	ms	
	Transition betw VBB mode in p	t _{RESW}	6.5	—	—	ms		
Waiting time	Waiting time after release from the RES# pin reset			—	19	22	ms	Figure 6.15, Figure 6.16

6.3.4 Wakeup Timing

ltem	Power Control Mode before and after the Mode Transition	System Clock Source	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Time to return to operating mode	VBB	SOSC	t _{SBYSC}			6.0	ms	All oscillators have
(ALLPWON) from software standby (EXFPWON) ^{*1}		LOCO	t _{SBYLO}	_	_	6.2	ms	the same frequency divisor of 1. Measurement was in the ALLPWON power supply mode.
Time to return to operating mode	VBB	SOSC	t _{SBYSC}	—	—	1.2	ms	All oscillators have
(EXFPWON) from software standby (EXFPWON) ^{*1}		LOCO	t _{SBYLO}	_	_	1.1	ms	the same frequency divisor of 1. Measurement was in the EXFPWON power supply mode.
Time to return to operating mode	VBB	SOSC	t _{SBYSC}	_	_	1.2	ms	All oscillators have
(MINPWON) from software standby (MINPWON) ^{*1}		LOCO	t _{SBYLO}	_	_	1.1	ms	the same frequency divisor of 1. Measurement was in the MINPWON power supply mode.
Time to return from deep software standby (in normal startup mode)				—		9	ms	Figure 6.17
Waiting time following release from	/	t _{DSBYWT}		_	22	ms		

Table 6.19 Timing of Return from Low Power Consumption (Standby) Mode

Note 1. The system clock source determines the time return takes. If multiple oscillators are started, the time return takes can be calculated from the following expression. Total time for return = time for return of the oscillator that serves as the system source clock + maximum oscillation stabilization time of an oscillator that requires more stabilization time than the system source clock + 2 cycles of LOCO (if LOCO is to operate) + 3 cycles of SOSC (if the sub-clock oscillator is to operate and MSTPCRC.MSTPC0 = 0 (releasing the CAC from the module-stop state)).

6.3.5 Interrupt Input Timing

Table 6.20Interrupt Input Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions			
NMI pulse width	t _{NMIW}	6000	—	—	ns	Software standby in low leakage current mode			
		1000	—	—		Software standby when not in low leakage current mode			
		300	—	—		In deep software standby mode			
		4	—	—	t _{Pcyc} *1	Other than above			
IRQn pulse width	t _{IRQW}	6000	—	—	ns	Software standby in low leakage current mode			
		1000	—	—		Software standby when not in low leakage current mode			
		300	—	—		In deep software standby mode			
		4	—	—	t _{Pcyc} *1	Other than above IRQCRi.IRQMD[1:0] = 00b, 01b			
		5	—	—		Other than above IRQCRi.IRQMD[1:0] = 10b			
KINT pulse width	t _{kintw}	6000	—	—	ns	Software standby in low leakage current mode			
		1000	—	—		Software standby when not in low leakage current mode			
		4	_		t _{Pcvc} *1	In deep software standby mode			

Note 1. t_{Pcyc} refers to the period of a cycle of PCLKB.

Figure 6.18 NMI Interrupt Input Timing

Figure 6.19 IRQn Interrupt Input Timing

6.3.6 I/O Ports, POE, GPT, and S14AD Trigger Timing

Table 6.21 I/O Ports, POE, GPT, and S14AD Trigger Timing

Item			Symbol	Min.	Тур.	Max.	Unit ^{*1}	Test Conditions
I/O ports	Input data pulse width		t _{PRW}	2.5	—	_	t _{Pcyc}	Figure 6.21
	ELC event pulse input width			4	—	_		
POE	POE input trigger pulse width		t _{POEW}	1.5	—	_	t _{Pcyc}	Figure 6.22
GPT	Input capture pulse width	Single edge	t _{GTICW}	1.5	—	_	t _{Pcyc}	Figure 6.23
		Both edges		2.5	—	_		
S14AD	14AD 14-bit A/D converter trigger input pulse width		t _{TRGW}	1.5	_	_	t _{Pcyc}	Figure 6.24

Note 1. t_{Pcyc} refers to the period of a cycle of PCLKA for the GPT, and that of PCLKB for the I/O ports, POE, and S14AD.

Figure 6.21 I/O Port Input Data Pulse Width

Figure 6.23 GPT Input Capture Pulse Width

Figure 6.24 S14AD Trigger Input Timing

6.3.7 SCI Timing

Table 6.22 SCI Timing (1)

Conditions:	High driving ability	output is selected	by the port drive	capability bit in	the PmnPFS	register.

Item			Symbol	Min.	Max.	Unit ^{*1}	Test Conditions
SCI	Frequency		pclkfmax	—	32	MHz	—
	Input clock cycle	Asynchronous	t _{Scyc}	4	—	t _{Pcyc}	Figure 6.25
		Clock synchronous		6	—		
	Input clock pulse width	·	t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock rise time	Input clock rise time			1 × t _{Pcyc}	ns	
	Input clock fall time		t _{SCKf}	—	1 × t _{Pcyc}	ns	
	Output clock cycle	Asynchronous	t _{Scyc}	6	—	t _{Pcyc}	
		Clock synchronous		4	—		
	Output clock pulse width	Output clock pulse width			0.6	t _{Scyc}	
	Output clock rise time	Output clock rise time			1 × t _{Pcyc}	ns	
	Output clock fall time	Output clock fall time			1 × t _{Pcyc}	ns	
	Transmit data delay time	Master	t _{TXD}	—	40	ns	Figure 6.26
		Slave		_	55		
	Receive data setup time	Master	t _{RXS}	45	—	ns	
		Slave		27	—		
	Receive data hold time	Master	t _{RXH}	5	—	ns	1
		Slave		40	_]	

Note 1. t_{Pcyc} refers to the period of a cycle of PCLKB.

Table 6.23SCI Timing (2)Conditions:High driving ability output is selected by the port drive capability bit in the PmnPFS register.

Item			Symbol	Min.	Max.	Unit ^{*1}	Test Conditions
Simple SPI	Frequency			—	32	MHz	—
	SCK clock cycle	Master	t _{SPcyc}	4	65536	t _{Pcyc}	Figure 6.27
		Slave		6	—		
	SCK clock high pulse width			0.4	0.6	t _{SPcyc}	
	SCK clock low pulse width			0.4	0.6	t _{SPcyc}	
	SCK clock rise/fall time			—	1 × t _{Pcyc}	ns	
	Data input setup time	Master	t _{SU}	45	—	ns	Figure 6.28 to Figure 6.31
		Slave		27	—		
	Data input hold time	Master	t _H	33.3	—	ns	
		Slave		40	—		
	SS input setup time	t _{LEAD}	1	—	t _{SPcyc}		
	SS input hold time	t _{LAG}	1	—	t _{SPcyc}		
	Data output delay time	Master	t _{OD}	—	40	ns	1
		Slave		—	65		
	Data output hold time	Master	t _{ОН}	-10	—	ns	
		Slave		-10	—		
	Data rise/fall time		t _{Dr} , t _{Df}	—	1 × t _{Pcyc}	ns	
	Slave access time	BOOST	t _{SA}	—	8	t _{Pcyc}	Figure 6.30,
		NORMAL		—	6		Figure 6.31
	Slave output release time	BOOST	t _{REL}	—	8	t _{Pcyc}	
		NORMAL		—	6		

Note 1. t_{Pcyc} refers to the period of a cycle of PCLKB.

Figure 6.27 SCK Clock Input and Output Timing (Simple SPI Mode)

Figure 6.28 SCK Input and Output Timing (Simple SPI Mode) (Master, SPMR.CKPH = 1)

Figure 6.29 SCK Input and Output Timing (Simple SPI Mode) (Master, SPMR.CKPH = 0)

Figure 6.30 SCK Input and Output Timing (Simple SPI Mode) (Slave, SPMR.CKPH = 1)

Figure 6.31 SCK Input and Output Timing (Simple SPI Mode) (Slave, SPMR.CKPH = 0)

	Item	Symbol	Min.	Max.*2	Unit	Test Conditions
Simple IIC	Frequency	pclkfmax		32	MHz	—
(standard mode)	SDA input rise time	t _{Sr}	—	1000	ns	Figure 6.32
	SDA input fall time	t _{Sf}	—	300	ns	
	SCL and SDA input spike pulse removal time	t _{SP}	0	4	t _{Pcyc}	Figure 6.32 SMR.CKS[1:0] = 00b, SNFR.NFCS[2:0] = 001b
				1024		Figure 6.32 SMR.CKS[1:0] = 11b, SNFR.NFCS[2:0] = 100b
	Data input setup time	t _{SDAS}	250	_	ns	Figure 6.32
	Data input hold time	t _{SDAH}	0	_	ns	-
	SCI and SDA load capacitance	C _b *1	—	400	pF	
Simple IIC	Frequency	pclkfmax	—	32	MHz	—
(fast mode)	SCL and SDA input rise time	t _{Sr}	—	300	ns	Figure 6.32
	SCL and SDA input fall time	t _{Sf}	—	300	ns	
	SCL and SDA input spike pulse removal time	t _{SP}	0	4	t _{Pcyc}	Figure 6.32 SMR.CKS[1:0] = 00b, SNFR.NFCS[2:0] = 001b
				1024		Figure 6.32 SMR.CKS[1:0] = 11b, SNFR.NFCS[2:0] = 100b
	Data input setup time	t _{SDAS}	100	_	ns	Figure 6.32
	Data input hold time	t _{SDAH}	0	—	ns	
	SCI and SDA load capacitance	C _h *1	_	400	pF	

Table 6.24 SCI Timing (3)

Conditions: High driving ability output is selected by the port drive capability bit in the PmnPFS register.

Note 1. Cb refers to the total capacitance of the bus line.

Note 2. t_{Pcyc} refers to the period of a cycle of PCLKB.

6.3.8 **SPI** Timing

Conditions: High driving ability output is selected by the port drive capability in the PmnPFS register.

Item			Symbol	Min.	Max.	Unit	Test Conditions
Frequency		BOOST	pclkfmax	—	64	MHz	—
		NORMAL		_	32		
RSPCK clock cycle	Master	BOOST	t _{SPcyc}	4	4096	t _{Pcyc}	Figure 6.33
		NORMAL		2	4096		
	Slave			6	4096		
RSPCK clock high pulse width	Master		t _{SPCKWH}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2 – 3	_	ns	-
	Slave			3 × t _{Pcyc}	—		
RSPCK clock low pulse width	Master		t _{SPCKWL}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2 – 3	_	ns	-
	Slave			3 × t _{Pcyc}	—		
RSPCK clock rise and fall time	Output		t _{SPCKr} ,	_	10	ns	Figure 6.33
	Input		t _{SPCKf}	_	1	μs	- IOVCCn ≥ 2.7 V
Data input setup time	Master	BOOST	t _{SU}	25	_	ns	Figure 6.34 to
		NORMAL		15	_		Figure 6.39
	Slave	1		10	_		
Data input hold time	Master		t _{HF}	0	_	ns	Figure 6.34 to Figure 6.37 The PCLKA division ratio is set to 1/2.
			t _H	1	_	t _{Pcyc}	Figure 6.34 to Figure 6.39 The PCLKA division ratio is set to any value other than 1/2.
	Slave			20	—	ns	Figure 6.34 to
SSL setup time	Master		t _{LEAD}	-30 + N × t _{SPcyc} *1	—	ns	Figure 6.37
SSL hold time	Master		t _{LAG}	−30 + N × t _{SPcyc} *2	—	ns	
Data output delay time	Master		t _{OD}	—	14	ns	Figure 6.34 to
	Slave			—	50		IOVCCn ≥ 2.7 V
Data output hold time	Master		t _{он}	0	—	ns	Figure 6.34 to
	Slave			0	—	_	Figure 6.39
Successive transmission delay time	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	Figure 6.34 to Figure 6.37
MOSI and MISO rise/fall time	Output		t _{Dr} , t _{Df}	—	10	ns	Figure 6.34 to Figure 6.39 IOVCCn ≥ 2.7 V
	Input			_	1	μs	Figure 6.34 to Figure 6.39
SSL rise and fall time	Output		t _{SSLr} , t _{SSLf}	—	10	ns	Figure 6.34 to Figure 6.37 IOVCCn \ge 2.7 V
	Input			—	1	μs	Figure 6.34 to Figure 6.37

Note:tpcyc refers to the period of a cycle of PCLKA.Note 1.N indicates the RSPCK delay set in the SPCKD register.

Note 2. N indicates the RSPCK delay set in the SSLND register.

Figure 6.34 SPI Timing (Master, CPHA = 0) (Bit Rate: PCLKA Division Ratio is Set to Any Value Other than 1/2)

Figure 6.36 SPI Timing (Master, CPHA = 1) (Bit Rate: PCLKA Division Ratio is Set to Any Value Other than 1/2)

Figure 6.38 SPI Timing (Slave, CPHA = 0)

Figure 6.39 SPI Timing (Slave, CPHA = 1)

6.3.9 RIIC Timing

Table 6.26 RIIC Timing

Conditions: VCC = 3.0 to 3.6 V, V_{IH} = VCC × 0.7, V_{IL} = VCC × 0.3, V_{OL} = 0.6 V, I_{OL} = 6 mA Standard driving ability output is selected in the port drive capability bit in the PmnPFS register.

	Item	Symbol	Min.*1	Max.	Unit	Test Conditions
RIIC	SCL input cycle time	t _{SCL}	6(12) × t _{IICcyc} + 1300	—	ns	Figure 6.40
(standard mode)	SCL input high pulse width	t _{SCLH}	$3(6) \times t_{IICcyc} + 300$	—	ns	
	SCL input low pulse width	t _{SCLL}	$3(6) \times t_{IICcyc} + 300$	—	ns	
	SCL and SDA input rise time	t _{Sr}	—	1000	ns	
	SCL and SDA input fall time	t _{Sf}	—	300	ns	
	SCL and SDA input spike pulse removal time	t _{SP}	0	1(4) × t _{IICcyc}	ns	
	SDA input bus free time	t _{BUF}	3(6) × t _{IICcyc} + 300	—	ns	
	Start condition input hold time	t _{STAH}	t _{IICcyc} + 300	—	ns	
	Restart condition input setup time	t _{STAS}	1000	—	ns	
	Stop condition input setup time	t _{STOS}	1000	—	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	—	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SCL and SDA load capacitance ^{*2}	Cb	—	400	pF	
RIIC	SCL input cycle time	t _{SCL}	6(12) × t _{IICcyc} + 1300	—	ns	Figure 6.40
(fast mode)	SCL input high pulse width	t _{SCLH}	$3(6) \times t_{IICcyc} + 300$	—	ns	
	SCL input low pulse width	t _{SCLL}	$3(6) \times t_{IICcyc} + 300$	—	ns	
	SCL and SDA input rise time	t _{Sr}	—	300	ns	
	SCL and SDA input fall time	t _{Sf}	—	300	ns	
	SCL and SDA input spike pulse removal time	t _{SP}	0	1(4) × t _{IICcyc}	ns	
	SDA input bus free time	t _{BUF}	$3(6) \times t_{IICcyc} + 300$	—	ns	
	Start condition input hold time	t _{STAH}	t _{IICcyc} + 300	—	ns	
	Restart condition input setup time	t _{STAS}	300	—	ns	
	Stop condition input setup time	t _{STOS}	300	_	ns]
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	—	ns	
	Data input hold time	t _{SDAH}	0	—	ns	1
	SCL and SDA load capacitance*2	Cb	—	400	pF	

Note: t_{IICcyc} refers to the period of a cycle of RIIC internal reference clock (IIC ϕ).

Note 1. The values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled by setting the ICFER.NFE bit to 1.

Note 2. C_b refers to the total capacitance of the bus line.

6.3.10 CLKOUT Timing

Table 6.27 CLKOUT Timing

	Item	Symbol	Min.	Max.	Unit	Test Conditions
CLKOUT32	CLKOUT32K pin output cycle	t _{Ccyc}	30.5	_	μs	Figure 6.41

Figure 6.41 CLKOUT Output Timing

6.3.11 TMR Timing

Table 6.28 TMR Timing

Item			Symbol	Min.	Тур.	Max.	Unit ^{*1}	Test Conditions
TMR	Pulse width of the timer clock	Single edge specified	t _{TMCWH,} t _{TMCWL}	1.5	-	_	t _{Pcyc}	Figure 6.42
		Both edges specified		2.5		_		

Note 1. t_{Pcyc} refers to the period of a cycle of PCLKB.

6.4 A/D Conversion Characteristics

Figure 6.43 Terminology for Characteristics of an A/D Converter

Absolute accuracy

Absolute accuracy is a measure of the difference between the output codes which would be produced by an ideal A/D converter and the codes output by the actual A/D converter. Absolute accuracy is measured by the differences between the codes at the central points (within 1 LSB) of the ranges of analog input voltage for which given digital codes would be expected in ideal A/D conversion. For example, when the resolution is 14 bits and the reference voltage (VREFH0) is 3.276 V, the width of 1 LSB is 0.2 mV, and analog inputs including 0, 0.2, 0.4 mV, and so on, can be used. An absolute accuracy of \pm 5 LSB means that where an ideal A/D converter would output 0008h when the analog input voltage is 1.6 mV, the result from the actual A/D converter can be any value in the range from 0003h to 000Dh.

Integral nonlinearity error (INL)

Integral nonlinearity error is a measure of the maximum deviation between the ideal linear variation in output values with voltage and the actual measured output codes when the measured offset error and full-scale error are 0.

Differential nonlinearity error (DNL)

Differential nonlinearity error is a measure of the difference between the width of 1 LSB in an ideal A/D converter and the actual measured output codes.

Offset error

Offset error is a measure of the difference between the point at which the first ideal output code changes and the first actual measured output code.

Full-scale error

Full-scale error is a measure of the difference between the point at which the ideal output code changes to the last code and the last actual measured code.

We do not inspect the characteristics of the A/D converter before shipment unless otherwise stated. The values presented in this manual are only for reference. The electrical characteristics values that are given are categorized into the following seven groups.

(1) AVCC0 = VREFH0 = 2.7 to 3.6 V

Note that the values in the column "Max." in Table 6.29 only apply in the case of a normal distribution with $\pm 3\sigma$ variation from the mean.

- (2) AVCC0 = VREFH0 = 2.7 to 3.6 V
- (3) AVCC0 = VREFH0 = 2.4 to 3.6 V
- (4) AVCC0 = VREFH0 = 1.8 to 3.6 V
- (5) AVCC0 = VREFH0 = 1.62 to 3.6 V
- (6) AVCC0 = 3.3 V, AVTRO = 2.5 V (the output of the reference voltage generator is used for reference)
- (7) AVCC0 = 1.8 V, AVTRO = 1.25 V (the output of the reference voltage generator is used for reference)

Some points to note regarding the electrical characteristics of the A/D converter are listed below.

- (1) The characteristics do not include the quantization error (± 0.5 LSB).
- (2) The characteristics are the values after offset calibration.
- (3) The characteristics only apply when the 14-bit A/D converter pins are in use for A/D conversion, and not for any other functions.
- (4) The conversion time (t_{CONV}) is the sum of the sampling time (t_{SPL}) and time for conversion by successive approximation (t_{SAM}) .

The values in parentheses in the conversion time indicate the sampling time.

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	—	32 ^{*3}	MHz	ADSCLKCR.SCLKEN = 0
		_	32.768	—	kHz	ADSCLKCR.SCLKEN = 1
Dynamic range	A _{in}	0	_	VREFH0	V	—
Resolution		12	_	14	Bit	—
Conversion time	Permissible signal source impedance Max. = 0.5 kΩ	1.0 (0.46875)	_	_	μs	High-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 0Fh
		1.5 (0.96875)	_	_	μs	Standard-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 1Fh
		593.75 (60.98)	_	—	μs	ADSCLKCR.SCLKEN = 1 ADSSTRn.SST[7:0] = 02h
Offset error*1		-1.2	_	1.2	mV	High-precision channel
Full-scale error*1		-1.2	_	1.2	mV	High-precision channel
Absolute accuracy ^{*1}		_	±4.0*2	±11	LSB	High-precision channel
DNL differential nonlinearity error*1		_	±1.0*2	±1.5	LSB	High-precision channel
INL integral nonlinearity error*1		—	±2.5	±4.0	LSB	High-precision channel
ENOB (effective nu	mber of bits) error ^{*1, *2}	_	13	_	Bit	High-precision channel

Table 6.29A/D Conversion Characteristics (1)Conditions:AVCC0 = VREFH0 = 2.7 to 3.6 V

Note 1. The values apply when the averaging mode is enabled, averaging of 16 results of conversion is selected (ADADC = 85h), and the conversion resolution is set to 14 bits (ADCER.ADPRC[1:0] = 11b).

Note 2. The value applies when AVCC0 = VREFH0 = 3.3 V.

Note 3. If AVCC0 \neq VREFH0, the condition AVCC0 \geq VREFH0 \geq 2.7 V applies.

Table 6.30	A/D Conversion Characteristics (2)
Conditions:	AVCC0 = VREFH0 = 2.7 to 3.6 V

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	32 ^{*3}	MHz	ADSCLKCR.SCLKEN = 0
		_	32.768	_	kHz	ADSCLKCR.SCLKEN = 1
Dynamic range	A _{in}	0	—	VREFH0	V	—
Resolution		12	—	14	Bit	—
Conversion time	Permissible signal source impedance Max. = 0.5 kΩ	1.0 (0.46875)	_	_	μs	High-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 0Fh
		1.5 (0.96875)			μs	Standard-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 1Fh
		593.75 (60.98)	—	—	μs	ADSCLKCR.SCLKEN = 1 ADSSTRn.SST[7:0] = 02h
Offset error*1		-1.7	_	1.7	LSB	High-precision channel
Full-scale error*1		-1.7	—	1.7	LSB	High-precision channel
Absolute accuracy*1		_	±4.0*2	±14	LSB	High-precision channel
DNL differential nonl	inearity error ^{*1}	_	±1.0*2	±1.7	LSB	High-precision channel
INL integral nonlinea	rity error ^{*1}	_	±2.5	±5.0	LSB	High-precision channel
ENOB (effective num	nber of bits) error ^{*1, *2}	_	13	_	Bit	High-precision channel

Note 1. The values apply when the averaging mode is enabled, averaging of 16 results of conversion is selected (ADADC = 85h), and the conversion resolution is set to 14 bits (ADCER.ADPRC[1:0] = 11b).

Note 2. The value applies when AVCC0 = VREFH0 = 3.3 V.

Note 3. If AVCC0 \neq VREFH0, the condition AVCC0 \geq VREFH0 \geq 2.7 V applies.

Table 6.31A/D Conversion Characteristics (3)Conditions:AVCC0 = VREFH0 = 2.4 to 3.6 V

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	16 ^{*3}	MHz	ADSCLKCR.SCLKEN = 0
			32.768	—	kHz	ADSCLKCR.SCLKEN = 1
Dynamic range	A _{in}	0		VREFH0	V	—
Resolution		12		14	Bit	—
Conversion time	Permissible signal source impedance Max. = 0.5 kΩ	2.0 (0.9375)		_	μs	High-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 0Fh
		3.0 (1.9375)	_	_	μs	Standard-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 1Fh
		593.75 (60.98)	_	—	μs	ADSCLKCR.SCLKEN = 1 ADSSTRn.SST[7:0] = 02h
Offset error*1		-1.7	_	1.7	mV	High-precision channel
Full-scale error*1		-1.7		1.7	mV	High-precision channel
Absolute accuracy*	1		±4.0*2	±14	LSB	High-precision channel
DNL differential nor	nlinearity error ^{*1}		±1.0*2	±1.7	LSB	High-precision channel
INL integral nonline	arity error ^{*1}	—	±2.5	±5.0	LSB	High-precision channel
ENOB (effective nu	mber of bits) error ^{*1, *2}		13	_	Bit	High-precision channel

Note 1. The values apply when the averaging mode is enabled, averaging of 16 results of conversion is selected (ADADC = 85h), and the conversion resolution is set to 14 bits (ADCER.ADPRC[1:0] = 11b).

Note 2. The value applies when AVCC0 = VREFH0 = 3.3 V.

Note 3. If AVCC0 \neq VREFH0, the condition AVCC0 \geq VREFH0 \geq 2.4 V applies.

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	—	8 ^{*2}	MHz	ADSCLKCR.SCLKEN = 0
		—	32.768	_	kHz	ADSCLKCR.SCLKEN = 1
Dynamic range	A _{in}	0	_	VREFH0	V	—
Resolution		_	_	12	Bit	—
Conversion time	Permissible signal source impedance Max. = 0.5 kΩ	3.75 (1.875)			μs	High-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 0Fh
		5.75 (3.875)	_	_	μs	Standard-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 1Fh
		531.25 (60.98)	_	—	μs	ADSCLKCR.SCLKEN = 1 ADSSTRn.SST[7:0] = 02h
Offset error*1		-1.7	_	1.7	mV	High-precision channel
Full-scale error ^{*1}		-1.7	_	1.7	mV	High-precision channel
Absolute accuracy ^{*1}		_	±2.0	±7.0	LSB	High-precision channel
DNL differential non	linearity error*1	_	±1.0	±2.0	LSB	High-precision channel
INL integral nonlinea	arity error ^{*1}		±1.0	±3.0	LSB	High-precision channel

Table 6.32A/D Conversion Characteristics (4)

Conditions: AVCC0 = VREFH0 = 1.8 to 3.6 V

Note 1. The values apply when the averaging mode is disabled and the conversion resolution is set to 12 bits (ADCER.ADPRC[1:0] = 00h).

Note 2. If AVCC0 \neq VREFH0, the condition AVCC0 \geq VREFH0 \geq 1.8 V applies.

Table 6.33A/D Conversion Characteristics (5)Conditions:AVCC0 = VREFH0 = 1.62 to 3.6 V

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	8* ³	MHz	ADSCLKCR.SCLKEN = 0
		_	32.768	—	kHz	ADSCLKCR.SCLKEN = 1
Dynamic range	A _{in}	0	_	VREFH0	V	—
Resolution*1		—		10	Bit	—
Conversion time	Permissible signal source impedance Max. = 0.5 kΩ	3.75 (1.875)	_	_	μs	High-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 0Fh
		5.75 (3.875)	_	—	μs	Standard-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 1Fh
		531.25 (60.98)	_	—	μs	ADSCLKCR.SCLKEN = 1 ADSSTRn.SST[7:0] = 02h
Offset error*2		-1.7	_	1.7	mV	High-precision channel
Full-scale error*2		-1.7	_	1.7	mV	High-precision channel
Absolute accuracy*2		—	±0.5	±2.5	LSB	High-precision channel
DNL differential nor	nlinearity error*2	—	±0.5	±1.5	LSB	High-precision channel
INL integral nonline	earity error ^{*2}	_	±0.5	±1.5	LSB	High-precision channel

Note 1. Due to selection of the 12-bit resolution, ignore the two lower-order bits of the 14-bit result of A/D conversion (in the ADDRy registers).

Note 2. The values apply when the averaging mode is disabled and the conversion resolution is set to 12 bits (ADCER.ADPRC[1:0] = 00h).

Note 3. If AVCC0 \neq VREFH0, the condition AVCC0 \geq VREFH0 \geq 1.62 V applies.

 Table 6.34
 Characteristics of A/D Conversion when the Output Value from the Reference Voltage Generation Circuit is in Use as the Reference Voltage (1)

 Conditions:
 AVCC0 = 3.3 V, AVTRO = 2.50 V

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	—	16	MHz	ADSCLKCR.SCLKEN = 0
		_	32.768	—	kHz	ADSCLKCR.SCLKEN = 1
Dynamic range A _{in}		0	—	VREFH0	V	—
Resolution	-	12	—	14	Bit	—
Conversion time	Permissible signal source impedance Max. = 0.5 kΩ	2.0 (0.9375)	—	—	μs	High-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 0Fh
		3.0 (1.9375)	—	_	μs	Standard-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 1Fh
		593.75 (60.98)	_	_	μs	ADSCLKCR.SCLKEN = 1 ADSSTRn.SST[7:0] = 02h
Offset error*1		-1.7	—	1.7	mV	High-precision channel
DNL differential nonlinearity error*1		—	±1.5	—	LSB	High-precision channel
INL integral nonline	arity error ^{*1}	—	±3.0	—	LSB	High-precision channel

Note 1. The values apply when the averaging mode is enabled, averaging of 16 results of conversion is selected (ADADC = 85h), and the conversion resolution is set to 14 bits (ADCER.ADPRC[1:0] = 11b).

 Table 6.35
 Characteristics of A/D Conversion when the Output Value from the Reference Voltage Generation Circuit is in Use as the Reference Voltage (2)

 Conditions:
 AVCC0 = 1.8 V, AVTRO = 1.25 V

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	8	MHz	ADSCLKCR.SCLKEN = 0
		_	32.768	—	kHz	ADSCLKCR.SCLKEN = 1
Dynamic range A _{in}		0	_	VREFH0	V	—
Resolution	·	_	_	12	Bit	—
Conversion time	Permissible signal source impedance Max. = 0.5 kΩ	3.75 (1.875)	_	—	μs	High-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 0Fh
		5.75 (3.875)	_	_	μs	Standard-precision channel ADSCLKCR.SCLKEN = 0 ADSSTRn.SST[7:0] = 1Fh
		531.25 (60.98)	_	_	μs	ADSCLKCR.SCLKEN = 1 ADSSTRn.SST[7:0] = 02h
Offset error*1	·	-1.7	_	1.7	mV	High-precision channel
DNL differential nonlinearity error*1		—	±1.0	—	LSB	High-precision channel
INL integral nonlinea	arity error ^{*1}	_	±1.0	—	LSB	High-precision channel

Note 1. The values apply when the averaging mode is disabled and the conversion resolution is set to 12 bits (ADCER.ADPRC[1:0] = 00h).

6.5 Temperature Sensor Characteristics

Table 6.36	Temperature	Sensor	Characteristics
10010 0.00	romporataro	0011001	onaraotonotioo

Item	Min.	Тур.	Max.	Unit	Test Conditions
Relative accuracy	—	±5	—	°C	$AVCC0 \geq 2.6 \text{ V}$
	—	±6	—	°C	AVCC0 < 2.6 V
Temperature gradient	—	1.6	—	mV/°C	—
Temperature sensor activation time	—	30	120	μs	—
Sampling time	—	2	7	μs	—

Note: We do not inspect the characteristics of the temperature sensor before shipment. The values presented in this manual are only for reference.

6.6 VREF Characteristics

Table 6.37VREF Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Output voltage	AVTRO	1.17	1.25	1.33	V	AVCC0 ≥ 2.8 V VREF.AVCR.AVSEL = 0
	AVTRO	2.34	2.50	2.66	V	AVCC0 ≥ 2.8 V VREF.AVCR.AVSEL = 1
	AVTRO	1.17	1.25	1.33	V	AVCC0 < 2.8 V VREF.AVCR.AVSEL = 0
Waiting time till the circuit activates and operation is stable	t _{VRSTUP}	_	_	50	ms	—

Note: We do not inspect the VREF characteristics before shipment. The values presented in this manual are only for reference.

6.7 Oscillation Stop Detection Circuit Characteristics

Table 6.38 Oscillation Stop Detection Circuit Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Detection time	t _{dr}			30	μs	Figure 6.44

Figure 6.44 Oscillation Stop Detection Timing

6.8 Characteristics of Power-on Reset Circuit and Low Voltage Detection Circuit

	Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection	Power-on reset circuit (POR)	Rising	V _{POR}	1.40	1.50	1.60	V	Figure 6.45
level		Falling	V _{PORL}	1.30	1.40	1.50		
	Voltage monitoring 0 circuit (LVD0)		V _{det0_0}	2.34	2.42	2.50	V	Figure 6.46
			V _{det0_1}	2.10	2.17	2.24		
			V _{det0_2}	1.86	1.92	1.98		
			V _{det0_3}	1.62	1.67	1.72		
	Voltage monitoring 1 circuit (LVD1)		V _{det1_0}	2.74	2.83	2.92	V	Figure 6.47
			V _{det1_1}	2.58	2.66	2.74		
			V _{det1_3}	2.42	2.50	2.58		
			V _{det1_5}	2.26	2.33	2.40		
			V _{det1_7}	2.10	2.17	2.24		
			V _{det1_9}	1.94	2.00	2.06		
			V _{det1_B}	1.78	1.84	1.90		
			V _{det1_D}	1.62	1.67	1.72		
	Voltage monitoring BAT circuit (LVDBAT)		V _{detBAT_5}	2.26	2.33	2.40	V	Figure 6.48
			V _{detBAT_7}	2.10	2.17	2.24		
			V _{detBAT_9}	1.94	2.00	2.06		
			V _{detBAT_B}	1.78	1.84	1.90		
			V _{detBAT_D}	1.62	1.67	1.72	1	
Internal reset	LVD0 reset time		t _{LVD0}		3.10	—	ms	Figure 6.46
ume	LVD1 reset time		t _{LVD1}	-	1.38	—	ms	Figure 6.47
	LVDBAT reset time		t _{LVDBAT}		1.38	—	ms	Figure 6.48
Minimum VCC do	wn time ^{*1}		t _{VOFF}	4	—	—	ms	Figure 6.45 to Figure 6.48
LVD0 response de	elay time		t _{det}	-	150	300	μs	Figure 6.46 to
LVD1 response de	elay time		t _{det}		150	300	μs	Figure 6.48
LVDBAT response (when the VCC ar	e delay time nd VBAT_EHC pins are connected)		t _{det}	_	150	300	μs	
LVDBAT response (when the VCC ar	e delay time nd VBAT_EHC pins are not connected)		t _{det}	_	400	800	μs	
LVD1 operation st	abilization time (after the LVD circuit is en	abled)	t _{d(E-A)}	_	—	600	μs	Figure 6.47,
LVDBAT operation (when the VCC ar	n stabilization time nd VBAT_EHC pins are connected)		t _{d(E-A)}	_	—	600	μs	Figure 6.48
LVDBAT operation stabilization time (when the VCC and VBAT_EHC pins are not connected)		t _{d(E-A)}	_	_	1000	μs		
Hysteresis width (LVD1)			V _{LVH} *2	_	60	—	mV	
Hysteresis width (LVD1)			V _{LVH} *3	—	55	—	mV	1
Hysteresis width (LVD1)			V _{LVH} *4	—	50	—	mV	1
Hysteresis width (LVD1)			V _{LVH} *5	_	45	—	mV	1
Hysteresis width (LVD1)		V _{LVH} *6	—	40	—	mV	1
Hysteresis width (LVD1)		V _{LVH} *7	—	35	—	mV	

Table 6.39 Characteristics of Power-on Reset Circuit and Low Voltage Detection Circuit

Note 1. The minimum VCC down time indicates the time when VCC is below the lowest value among voltage detection levels V_{POR}, $V_{det1},$ and V_{detBAT} for the power-on reset circuit and low-voltage detection circuit.

Note 2. When V_{det1_0} is selected.

Note 2. When V_{det1_0} is belowed. Note 3. When V_{det1_1} and V_{det1_3} are selected. Note 4. When V_{det1_5} is selected. Note 5. When V_{det1_7} is selected. Note 6. When V_{det1_9} and V_{det1_B} are selected.

Note 7. When $V_{det1 D}$ is selected.

Figure 6.47 Timing of Voltage Detection by Voltage Monitoring Circuit 1 (V_{det1})

Figure 6.48 Timing of Voltage Detection by Voltage Monitoring BAT Circuit (V_{detBAT})

6.9 EHC Characteristics

Table 6.40	EHC Characteristics
------------	---------------------

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Current during reset	ICCEHC	—	0.02	-	μA	VCC = VSC_VCC = 0 V, VCC_SU = VBAT_EHC = $2.5 V$ T _a = 25° C
Capacitance of the storage capacitor connected to VCC_SU ^{*1, *3}	C _{VCCSU}	_	100	-	μF	EHMD = 1 $T_a = -40$ to 60°C
		_	47	-		$\begin{array}{l} EHMD = 0 \\ T_{a} = -40 \text{ to } 50^{\circ}C \end{array}$
		_	150	-		EHMD = 1 T _a = -40 to 85°C
Capacitance of the smoothing capacitor connected to VCC*1	C _{VCC}	_	10	-		T _a = -40 to 85°C
Current that can flow from VSC_VCC into LSI chip (when the secondary battery of 2.6 V is used)	I _{SC}	—	_	10	mA	VSC_VCC ≤ 3.6 V
Current that can flow from VSC_VCC into LSI chip (when the secondary battery of 3.0 V is used)		_	_	6	mA	VSC_VCC ≤ 3.6 V
Current that can flow from VBAT_EHC to IOVCCn ^{*2}	I _{VBAT}		—	30	mA	-
Current that can flow from VCC/IOVCC to IOVCCn ^{*2}	IVCC		—	30	mA	_
Permissible value of output impedance on the VBAT_EHC side	R _{VBAT}	_	-	10	Ω	VSC_VCC ≤ 3.6 V
VBAT threshold voltage for secondary battery overcharging protection (when a 2.6-V secondary battery is in use)	VBAT_CHG	2.535	2.585	2.635	V	I _{SC} = 3 μA to 10 mA, VSC_VCC = VBAT_EHC
VBAT threshold voltage for secondary battery overcharging protection (when a 3.0-V secondary battery is in use)	VBAT_CHG	2.925	2.975	3.025	V	I _{SC} = 3 μA to 6 mA, VSC_VCC = VBAT_EHC
VCC threshold voltage for secondary battery overcharging protection	VCC_CHG	2.925	2.975	3.025	V	I _{SC} = 3 μA to 10 mA, VSC_VCC = VCC
High threshold voltage in high-speed activation of the LSI chip by using EHC capacitor charging (when a 2.6-V secondary voltage is in use)	VCC_SU_H	_	2.62	_	V	Value at VCC rise when VSC_VCC = VCC
Low threshold voltage in high-speed activation of the LSI chip by using EHC capacitor charging (when a 2.6-V secondary voltage is in use)	VCC_SU_L	-	2.32	_	V	Value at VCC fall when VSC_VCC = VCC
High threshold voltage in high-speed activation of the LSI chip by using EHC capacitor charging (when a 3.0-V secondary voltage is in use)	VCC_SU_H	_	2.83	_	V	Value at VCC rise when VSC_VCC = VCC
Low threshold voltage in high-speed activation of the LSI chip by using EHC capacitor charging (when a 3.0-V secondary voltage is in use)	VCC_SU_L		2.51	_	V	Value at VCC fall when VSC_VCC = VCC
Threshold voltage in activation of the LSI chip in the energy harvesting mode	VCC_SU_H	—	2.62	-	V	I _{SC} = 3 μA to 10 mA
Threshold voltage for the power generating element status flag	V _{ENOUT}	—	0.5	—	V	VCC_SU = 2.5 V
Minimum activating current required in energy harvesting startup mode	I _{SC}	_	3	—	μA	Ta = 25° C, VCC_SU and VCC are connected to 100-µF and 10-µF capacitors, respectively.

Note 1. See Figure 13.1 in the User's Manual: Hardware.

Note 2. IOVCCn refers to IOVCC0, IOVCC1, IOVCC2, and IOVCC3.

Note 3. Figure 6.50 shows the relation between the upper limit on temperature and the capacitance of the storage capacitor connected to VCC_SU. When the capacitance becomes insufficient for the temperature at which the capacitor is to be used, an activation current is required shown in Figure 6.51.

Figure 6.49 Charging Operations for the VBAT_EHC Pin in High-speed Activation of the LSI chip by Using EHC Capacitor Charging

Figure 6.50 Relation between the Upper Limit on Temperature and Capacitance of the Storage Capacitor Connected to VCC_SU

6.10 Back Bias Voltage Control (VBBC) Circuit Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
VBBC initial setup time ^{*1}	t _{VBBSTUP}	—	300 ^{*2}	600 ^{*2, *3}	ms	Figure 6.52
Internal voltage discharge time	t _{VBBDIS}	1	—	—	ms	Figure 6.53

Table 6.41 VBBC Initial Setup Time

Note 1. This is the time period between when 1 is written to VBBCR.VBBEN and when VBBST.VBBSTUP is changed to 1.

Note 2. This is the time when the value of the smoothing capacitor connected between the VBP and VBN pins is $1.0 \text{ F} \pm 20\%$.

Note 3. We do not inspect the characteristics of the back-bias voltage control circuit before shipment. The values presented in this manual are only for reference.

6.11 Flash Memory Characteristics

6.11.1 Code Flash Memory Characteristics

 Table 6.42
 Code Flash Memory Characteristics (1)

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Cycles of reprogramming and erasure ^{*1}	N _{PEC}	10000	—	—	Times	Tested in accord with
Data retention time	t _{DRP}	10	—	—	Year	the conditions defined by JEDEC

Note 1. The number of cycles of reprogramming and erasure defines the number of times a block can be erased. When the number of cycles of reprogramming and erasure is n, a block can be erased n times. For instance, if 8 bytes of data are written to the 256 different addresses on 8-byte boundaries within a 2-Kbyte block, erasing the whole block is counted as a single cycle of reprogramming and erasure. Note that programming of the same address is only allowed once; that is, overwriting is prohibited.

Table 6.43 Code Flash Memory Characteristics (2)

ltom		Symbol	IC	ICLK = 1 MHz			ICLK = 32 MHz			
nem		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Offic	
Programming time	8 bytes	t _{P8}	—	5.0	6.0	—	5.0	6.0	ms	
	256 bytes	t _{P256}	_	5.0	6.0	_	5.0	6.0	ms	
Erasure time	4 Kbytes	t _{E4K}		10.0	12.0	_	10.0	12.0	ms	
Delay until first suspension during programming		t _{SPD1}	-	-	0.2	-	-	0.1	ms	
Delay after second suspension during programming		t _{SPD2}	_	_	2.4	_	_	2.0	ms	
Delay until first suspension during erasure		t _{SED1}	_	_	0.2	_	_	0.1	ms	
Delay after second suspension during erasure		t _{SED2}	—	—	2.4	—	—	2.0	ms	
Forced stop command		t _{FD}	—		0.2	—	—	0.1	ms	

Figure 6.54 Timing of Suspension during Programming and Erasure and Timing of Forced Stop of the Flash Memory

6.12 BLE Characteristics

6.12.1 Transmission Characteristics

Table 6.44Transmission Characteristics

Conditions: VCC = VCC_RF = AVCC_RF = 3.3 V, VSS = VSS_RF = 0 V, T_a = +25°C

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Range of frequency	RF _{CF}	2402	—	2480	MHz	
Data rate	RF _{DATA_2M}	—	2	—	Mbps	
	RF _{DATA_1M}	—	1	—	Mbps	
	RF _{DATA_500k}	—	500	—	kbps	
	RF _{DATA_125k}	—	125	—	kbps	
Maximum transmitted output	RF _{POWER}	—	0	2	dBm	0 dBm output mode
power		_	4	6	dBm	4 dBm output mode
Output frequency error	RF _{TXFERR}	-10	_	10	ppm	*1

Note: The characteristics are based on pins and functions other than those for the BLE interface not being in use.

Note 1. This does not take frequency errors due to manufacturing irregularities, drift with temperature, or deterioration of the crystal over time into account.

6.12.2 Reception Characteristics (2 Mbps)

Table 6.45 Reception Characteristics

Conditions: VCC = VCC_RF = AVCC_RF = 3.3 V, VSS = VSS_RF = 0 V, T_a = $+25^{\circ}$ C

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions			
Input frequency	RF _{RXFIN_2M}	2402	_	2480	MHz				
Maximum input level	RF _{LEVL_2M}	-10	4	—	dBm	*1			
Receiver sensitivity	RF _{STY_2M}	_	-92	—	dBm	*1			
Secondary emission strength	RF _{RXSP_2M}	_	-72	-57	dBm	30 MHz to 1 GHz			
		_	-54	-47	dBm	1 GHz to 12 GHz			
Co-channel rejection ratio	RF _{CCR_2M}	_	-8	—	dB	$Prf = -67 \text{ dBm}^{*1}$			
Adjacent channel rejection	RF _{ADCR_2M}	_	2	—	dB	Prf = -67 dBm*1	±2 MHz		
ratio		_	35	—	dB		±4 MHz		
		_	39	—	dB		±6 MHz		
Blocking	RF _{BLK_2M}	_	-1	—	dBm	$Prf = -67 \text{ dBm}^{*1}$	30 MHz to 2000 MHz		
		_	-25	—	dBm		2000 MHz to 2399 MHz		
		_	-21	—	dBm		2484 MHz to 3000 MHz		
		_	-10	—	dBm		> 3000 MHz		
Allowable frequency deviation*2	RF _{RXFER_2M}	-120	_	120	ppm	*1			
RSSI accuracy	RF _{RSSIS_2M}	_	±4	_	dB	$-70 \text{ dBm} \le \text{Prf} \le -10 \text{ dBm}$			

Note: The characteristics are based on pins and functions other than those for the BLE interface not being in use.

Note 1. $PER \le 30.8\%$, and a 37-byte payload

Note 2. Allowable range of difference between the center frequency for the RF input signals and the carrier frequency generated within the chip

6.12.3 Reception Characteristics (1 Mbps)

Item	Symbol	Min.	Тур.	Max.	Unit	Tes	Test Conditions			
Input frequency	RF _{RXFIN_1M}	2402	—	2480	MHz					
Maximum input level	RF _{LEVL_1M}	-10	4	—	dBm	*1				
Receiver sensitivity	RF _{STY_1M}	—	-95	_	dBm	*1				
Secondary emission strength	RF _{RXSP_1M}	—	-72	-57	dBm	30 MHz to 1 GHz				
		_	-54	-47	dBm	1 GHz to 12 GHz				
Co-channel rejection ratio	RF _{CCR_1M}	—	-7	—	dB	$Prf = -67 \text{ dBm}^{*1}$				
Adjacent channel rejection ratio	RF _{ADCR_1M}	—	-1	—	dB	$Prf = -67 \text{ dBm}^{*1}$	±1 MHz			
		_	34	—	dB		±2 MHz			
		_	35	—	dB	±3 MHz				
Blocking	RF _{BLK_1M}	—	0	—	dBm	$Prf = -67 \text{ dBm}^{*1}$	30 MHz to 2000 MHz			
		_	-24	—	dBm		2000 MHz to 2399 MHz			
		_	-20	—	dBm		2484 MHz to 3000 MHz			
		_	-4	—	dBm		> 3000 MHz			
Allowable frequency deviation*2	RF _{RXFER_1M}	-120	—	120	ppm	*1				
RSSI accuracy	RF _{RSSIS_1M}	—	±4	_	dB	$-70 \text{ dBm} \le \text{Prf} \le -10 \text{ dBm}$				

Table 6.46 Reception Characteristics

Conditions: VCC = VCC_RF = AVCC_RF = 3.3 V, VSS = VSS_RF = 0 V, T_a = +25°C

Note: The characteristics are based on pins and functions other than those for the BLE interface not being in use.

Note 1. PER ≤ 30.8%, and a 37-byte payload

Note 2. Allowable range of difference between the center frequency for the RF input signals and the carrier frequency generated within the chip

6.12.4 Reception Characteristics (500 kbps)

Table 6.47 Reception Characteristics

Conditions:	VCC = VCC_	RF = AVCC	_RF = 3.3 V,	VSS = VSS_	_RF = 0 V, T _a = +25°C
-------------	------------	-----------	--------------	------------	-----------------------------------

Item	Symbol	Min.	Тур.	Max.	Unit	Test	Test Conditions		
Input frequency	RF _{RXFIN_500k}	2402		2480	MHz				
Maximum input level	RF _{LEVL_500k}	-10	4	—	dBm	*1			
Receiver sensitivity	RF _{STY_500k}	_	-100	—	dBm	*1			
Secondary emission strength	RF _{RXSP_500k}	_	-72	-57	dBm	30 MHz to 1 GHz			
	Í Í	_	-54	-47	dBm	1 GHz to 12 GHz			
Co-channel rejection ratio	RF _{CCR_500k}	_	-4		dB	Prf = -72 dBm ^{*1}			
Adjacent channel rejection ratio	RF _{ADCR_500k}	—	6		dB	$Prf = -72 \text{ dBm}^{*1} \pm 1 \text{ MHz}$			
		_	36		dB		±2 MHz		
		—	42	_	dB		±3 MHz		
Blocking	RF _{BLK_500k}	_	0		dBm	Prf = -72 dBm*1	30 MHz to 2000 MHz		
		—	-23	_	dBm		2000 MHz to 2399 MHz		
		—	-20		dBm	2484 MHz to 3000 N			
		—	-7	_	dBm		> 3000 MHz		
Allowable frequency deviation*2	RF _{RXFER_500k}	-120		120	ppm	*1			
RSSI accuracy	RF _{RSSIS_500k}	—	±4	_	dB	$-70 \text{ dBm} \le \text{Prf} \le -10 \text{ dBm}$			

Note: The characteristics are based on pins and functions other than those for the BLE interface not being in use.

Note 1. $PER \le 30.8\%$, and a 37-byte payload

Note 2. Allowable range of difference between the center frequency for the RF input signals and the carrier frequency generated within the chip

6.12.5 Reception Characteristics (125 kbps)

Item	Symbol	Min.	Тур.	Max.	Unit	Tes	l est Conditions		
Input frequency	RF _{RXFIN_125k}	2402	—	2480	MHz				
Maximum input level	RF _{LEVL_125k}	-10	4	—	dBm	*1			
Receiver sensitivity	RF _{STY_125k}		-105	—	dBm	*1			
Secondary emission strength	RF _{RXSP_125k}		-72	-57	dBm	30 MHz to 1 GHz	30 MHz to 1 GHz		
			-54	-47	dBm	1 GHz to 12 GHz	1 GHz to 12 GHz		
Co-channel rejection ratio	RF _{CCR_125k}		-2	—	dB	Prf = -79 dBm ^{*1}			
Adjacent channel rejection ratio	RF _{ADCR_125k}		12	—	dB	$Prf = -79 \text{ dBm}^{*1} \pm 1 \text{ MHz}$			
			39	—	dB		±2 MHz		
		_	45	—	dB	±3 MHz			
Blocking	RF _{BLK_125k}	_	0	—	dBm	Prf = -79 dBm ^{*1}	30 MHz to 2000 MHz		
			-23	—	dBm		2000 MHz to 2399 MHz		
		_	-20	—	dBm	2484 MHz to 3000 M			
			-1	—	dBm		> 3000 MHz		
Allowable frequency deviation*2	RF _{RXFER_125k}	-120	—	120	ppm	*1			
RSSI accuracy	RF _{RSSIS_125k}		±4	_	dB	$T_a = +25^{\circ}C$, -70 dBm \leq Prf \leq -10 dBm			

Table 6.48Reception CharacteristicsConditions:VCC = VCC_RF = AVCC_RF = 3.3 V, VSS = VSS_RF = 0 V, T_a = +25°C

Note: The characteristics are based on pins and functions other than those for the BLE interface not being in use.

Note: The characteristics are based on pins Note 1. $PER \le 30.8\%$, and a 37-byte payload

Note 2. Allowable range of difference between the center frequency for the RF input signals and the carrier frequency generated within the chip

6.13 Serial Wire Debug (SWD) Characteristics

Table 6.49	SWD Characteristics
Conditions:	VCC = AVCC0 = 1.62 to 3.6 V

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
NORMAL	SWCLK clock cycle time	t _{SWCKcyc}	80	_	—	ns	Figure 6.55
	SWCLK clock high-level pulse width	t _{swcкн}	t _{SWCKcyc} × 0.5 – t _{SWCKr}	_	—	ns	
	SWCLK clock low-level pulse width	t _{SWCKL}	t _{SWCKcyc} × 0.5 – t _{SWCKf}		—	ns	
	SWCLK clock rise time	t _{SWCKr}	—	-	7	ns	
	SWCLK clock fall time	t _{SWCKf}	—		7	ns	
	SWDIO setup time	t _{SWDS}	t _{SWCKcyc} × 0.2		—	ns	Figure 6.56
	SWDIO hold time	t _{SWDH}	t _{SWCKcyc} × 0.2	-	—	ns	
	SWDIO data delay time	t _{SWDD}	2		50	ns	
VBB	SWCLK clock cycle time	t _{SWCKcyc}	30000		—	ns	Figure 6.55
	SWCLK clock high-level pulse width	t _{SWCKH}	t _{SWCKcyc} × 0.5 – t _{SWCKr}	-	—	ns	
	SWCLK clock low-level pulse width	t _{SWCKL}	t _{SWCKcyc} × 0.5 – t _{SWCKf}	-	—	ns	
	SWCLK clock rise time	t _{SWCKr}	—		7	ns	
	SWCLK clock fall time	t _{SWCKf}	—		7	ns	
	SWDIO setup time t _{SW}		1000	-	—	ns	Figure 6.56
	SWDIO hold time	t _{SWDH}	1000	_	—	ns	
	SWDIO data delay time	t _{SWDD}	2	_	1000	ns	

Figure 6.55 SWD SWCLK Timing

Appendix A. Package Dimensions

For the latest information on package dimensions and mounting, see "Packaging Information" on the Renesas website.

Appendix B. Connecting the Capacitors to the Power Supply Pins

The power supply pins must be connected to the ground via smoothing capacitors placed close to each of the power supply pins. This appendix shows representative examples of connections.

Setting the power supply open control register (VOCR) enables the external supply of power. In an environment where much external noise is present, place a 10-µF capacitor close to each of the power supply pins as required, as well as the capacitors in the relevant example, to improve robustness against external noise and obtain stable operation of the circuit. For more details, see Table 1.4 in section 1.5, Pin Functions of section 1, Overview.

B.1 Example of Connections for Normal Startup Mode

Figure B.1 shows an example of connections for normal startup mode with two external power sources and the EHC not in use.

RENESAS

B.2 Example of Connections in Energy Harvesting Startup Mode (1)

Figure B.2 shows an example of connections in energy harvesting startup mode with the EHC and VREF in use, and no external power supplies. Figure B.3 shows an example where AVCC0 is the reference voltage.

B.3 Example of Connections in Energy Harvesting Startup Mode (2)

Figure B.4 shows an example of connections in energy harvesting startup mode with the EHC in use and no external power supplies.

B.4 Example of Connections in Energy Harvesting Startup Mode (3)

Figure B.5 shows an example of connections in energy harvesting startup mode with the EHC in use and separate power sources for the analog circuits and RF circuit. Figure B.6 shows an example with no analog circuits in use.

REVISION HISTORY	RE01B Group Product with 1.5-Mbyte Flash Memory
	Datasheet

Rev.	Date -		Description	
		Page	Summary	
1.00	Oct 07, 2020		First edition, issued	

Arm[®] and Cortex[®] are registered trademarks of Arm Limited. All trademarks and registered trademarks are the property of their respective owners. **Bluetooth**[®] is a trademark of the Bluetooth SIG, Inc.

Caution: The use of **Bluetooth**® in this product is under license from the Bluetooth SIG, Inc.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits. software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for velucating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan (Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. Milpitas Campus 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics America Inc. San Jose Campus 6024 Silver Creek Valley Road, San Jose, CA 95138, USA Tel: +1-408-284-8200, Fax: +1-408-284-2775 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 101-T01, Floor 1, Building 7, Yard No. 7, Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Hong Kong Limited Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, #06-02 Singapore 339 Tel: +65-6213-0200, Fax: +65-6213-0300 339949 Renesas Electronics Malaysia Sdn.Bhd. Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia Tel: +60-3-5022-1288, Fax: +60-3-5022-1290 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics: R7F0E01BD2DNB#AA1