

RL78/I1D RENESAS MCU

Datasheet

R01DS0244EJ0220 Rev. 2.20 Feb 20, 2017

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- VDD = 1.6 V to 3.6 V
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.04167 μs: @ 24 MHz operation with high-speed on-chip oscillator) to ultra-low speed (66.6 μs: @ 15 kHz operation with low-speed on-chip oscillator clock)
- Multiply/divide/multiply & accumulate instructions are supported.
- Address space: 1 MB
- General-purpose registers: (8-bit register \times 8) \times 4 banks
- On-chip RAM: 0.7 to 3 KB

Code flash memory

- Code flash memory: 8 to 32 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 2 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD = 1.8 to 3.6 V

High-speed on-chip oscillator

- Select from 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: ±1.0% (VDD = 1.8 to 3.6 V, TA = -20 to +85°C)

Middle-speed on-chip oscillator

• Selectable from 4 MHz, 2 MHz, and 1 MHz.

Operating ambient temperature

• TA = -40 to +105°C (G: Industrial applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 12 levels)

Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources.
- Chain transfer function

Event link controller (ELC)

• Event signals of 20 types can be linked to the specified peripheral function.

Serial interfaces

- CSI: 2 channels
- UART: 1 channel
- I²C/simplified I²C: 2 channels

Timers

- 16-bit timer: 4 channels
- 12-bit interval timer: 1 channel
- 8-bit interval timer: 4 channels
- Real-time clock: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel

A/D converter

- 8/12-bit resolution A/D converter (VDD = 1.6 to 3.6 V)
- Analog input: 6 to 17 channels
- Internal reference voltage (1.45 V) and temperature sensor

Comparator

- 2 channels
- Operating modes: Comparator high-speed mode, comparator low-speed mode, window mode

Operational amplifier

• 4 channels

I/O ports

- I/O port: 14 to 42 (N-ch open drain I/O [withstand voltage of 6 V]: 4, N-ch open drain I/O [VDD withstand voltage]: 3 to 7)
- Can be set to N-ch open drain, TTL input buffer, and onchip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5 V device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller
 Others

Othe

- On-chip BCD (binary-coded decimal) correction circuit
- On-chip data operation circuit

Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

○ ROM, RAM capacities

Flash	Flash ROM Data flash	RAM	RL78/I1D						
ROM			20 pins	24 pins	30 pins	32 pins	48 pins		
32 KB	2 KB	3 KB Note	—	—	R5F117AC	R5F117BC	R5F117GC		
16 KB	2 KB	2 KB	R5F1176A	R5F1177A	R5F117AA	R5F117BA	R5F117GA		
8 KB	2 KB	0.7 KB	R5F11768	R5F11778	R5F117A8	_	—		

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

1.2 Ordering Information

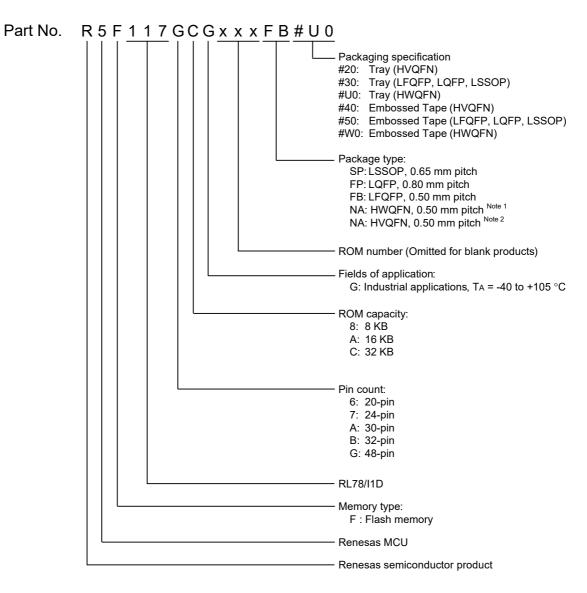


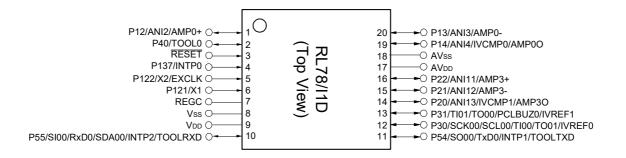
Figure 1 - 1 Part Number, Memory Size, and Package of RL78/I1D

Note 1. 24-pin products

Note 2. 32-pin products

Pin count	Package	Ordering Part Number
20 pins	20-pin plastic LSSOP (4.4 \times 6.5 mm, 0.65 mm pitch)	R5F11768GSP#30, R5F1176AGSP#30, R5F11768GSP#50, R5F1176AGSP#50
24 pins	24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)	R5F11778GNA#U0, R5F1177AGNA#U0, R5F11778GNA#W0, R5F1177AGNA#W0
30 pins	30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)	R5F117A8GSP#30, R5F117AAGSP#30, R5F117ACGSP#30, R5F117A8GSP#50, R5F117AAGSP#50, R5F117ACGSP#50
32 pins	32-pin plastic HVQFN (5 × 5 mm, 0.5 mm pitch)	R5F117BAGNA#20, R5F117BCGNA#20, R5F117BAGNA#40, R5F117BCGNA#40
	32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)	R5F117BAGFP#30, R5F117BCGFP#30, R5F117BAGFP#50, R5F117BCGFP#50
48 pins	48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)	R5F117GAGFB#30, R5F117GCGFB#30, R5F117GAGFB#50, R5F117GCGFB#50

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.



<R>

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)


- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark For pin identification, see 1.4 Pin Identification.

1.3.2 24-pin products

<R>

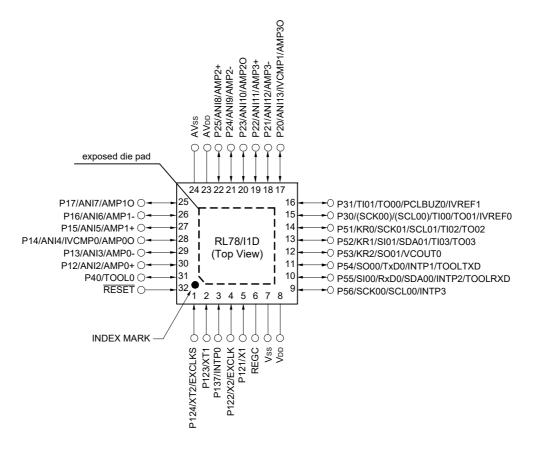
• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. It is recommended to connect an exposed die pad to Vss.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

<R>

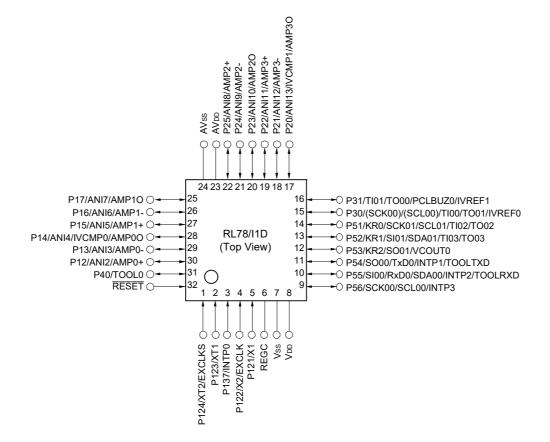
1.3.3 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)


- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

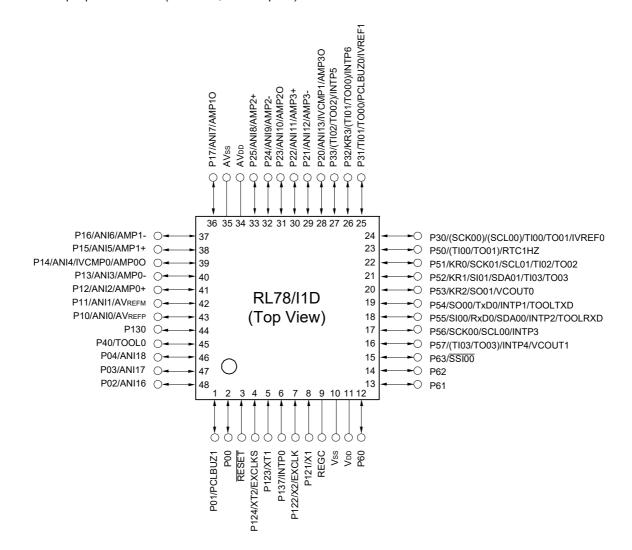
1.3.4 32-pin products

<R>


• 32-pin plastic HVQFN (5 × 5 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)


- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

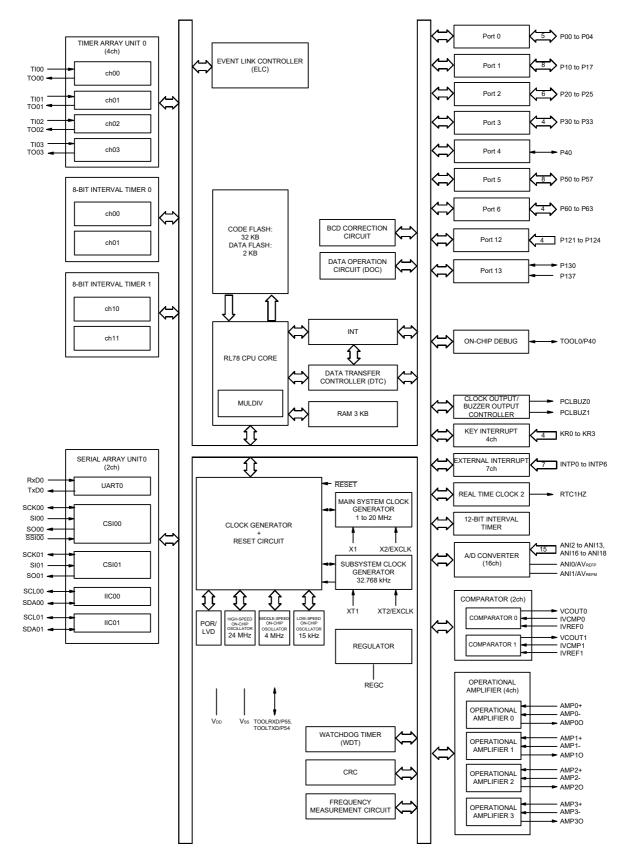
1.3.5 48-pin products

<R>

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AV $\ensuremath{\mathsf{DD}}$ pin the same potential as $\ensuremath{\mathsf{VDD}}$ pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

Pin Identification 1.4


ANI0 to ANI13,	: Analog input	PCLBUZ0, PCLBUZ1	: Programmable clock output/buzzer
ANI16 to ANI18			output
AVDD	: Analog power supply	REGC	: Regulator capacitance
AVREFM	: A/D converter reference	RESET	: Reset
	potential (- side) input	RTC1HZ	: Real-time clock correction clock (1 Hz)
AVREFP	: A/D converter reference		output
	potential (+ side) input	RxD0	: Receive data
AVss	: Analog ground	SCK00, SCK01	: Serial clock input/output
EXCLK	: External clock input	SCL00, SCL01	: Serial clock input/output
	(main system clock)	SDA00, SDA01	: Serial data input/output
EXCLKS	: External clock input	SI00, SI01	: Serial data input
	(subsystem clock)	SO00, SO01	: Serial data output
INTP0 to INTP6	: External interrupt input	<u>SSI00</u>	: Serial interface chip select input
IVCMP0, IVCMP1	: Comparator input	TI00 to TI03	: Timer input
IVREF0, IVREF1	: Comparator reference input	TO00 to TO03	: Timer output
KR0 to KR3	: Key return	TOOL0	: Data input/output for tool
P00 to P04	: Port 0	TOOLRXD, TOOLTXD	: Data input/output for external device
P10 to P17	: Port 1	TxD0	: Transmit data
P20 to P25	: Port 2	VCOUT0, VCOUT1	: Comparator output
P30 to P33	: Port 3	AMP0+, AMP1+,	: Operational amplifier (+side) input
P40	: Port 4	AMP2+, AMP3+	
P50 to P57	: Port 5	AMP0-, AMP1-,	: Operational amplifier (-side) input
P60 to P63	: Port 6	AMP2-, AMP3-	
P121 to P124	: Port 12	AMP0O, AMP1O,	: Operational amplifier output
P130, P137	: Port 13	AMP2O, AMP3O	
		Vdd	: Power supply
		Vss	: Ground
		X1, X2	: Crystal oscillator (main system clock)
		XT1, XT2	: Crystal oscillator (subsystem clock)

R01DS0244EJ0220 Rev. 2.20 Feb 20, 2017

1.5 Block Diagram

1.5.1 48-pin products

1.6 Outline of Functions

Remark This outline describes the functions at the time when Peripheral I/O redirection register 0 (PIOR0) are set to 00H.

	10 UUH.					(1/2			
		20-pin	24-pin	30-pin	32-pin	48-pin			
	Item	R5F1176x (x = 8, A)	R5F1177x (x = 8, A)	R5F117Ax (x = 8, A, C)	R5F117Bx (x = A, C)	R5F117Gx (x = A, C)			
Code flash me	emory (KB)	8 to 16 KB	8 to 16 KB	8 to 32 KB	16 to 32 KB	16 to 32 KB			
Data flash me	emory (KB)	2 KB	2 KB	2 KB	2 KB	2 KB			
RAM		0.7 to 2.0 KB	0.7 to 2.0 KB	0.7 to 3.0 KB Note	2.0 to 3.0 KB Note	2.0 to 3.0 KB Note			
Address spac	e	1 MB							
Main system clock	High-speed system clock (fмx)	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode:1 to 20 MHz (VDD = 2.7 to 3.6 V), HS (High-speed main) mode:1 to 16 MHz (VDD = 2.4 to 3.6 V), LS (Low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 3.6 V), LV (Low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 3.6 V), LP (Low-power main) mode:1 MHz (VDD = 1.8 to 3.6 V)							
	High-speed on-chip oscillator clock (fiн) Max: 24 MHz	HS (High-speed ma	ain) mode: 1 to 16 N	1Hz (Vdd = 2.7 to 3.6 1Hz (Vdd = 2.4 to 3.6 Hz (Vdd = 1.8 to 3.6 \	V),				
	Middle-speed on-chip oscillator clock (fim) Max: 4 MHz	LV (Low-voltage ma	,	Hz (VDD = 1.6 to 3.6 \					
Subsystem clock	Subsystem clock oscillator (fsx, fsxR)	_	_	XT1 (crystal) oscilla 32.768 kHz (TYP.):					
	Low-speed on-chip oscillator clock (fiL)	15 kHz (TYP.): V _{DD}	= 1.6 to 3.6 V						
General-purpose register		8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)							
Minimum instr	ruction execution time	0.04167 μ s (High-speed on-chip oscillator clock: fiH = 24 MHz operation)							
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)							
		 — 30.5 μs (Subsystem clock oscillator clock: fsx = 32.768 kHz operation) 							
Instruction set	t	 Multiplication (8 b Multiplication and 	ctor/logical operation its \times 8 bits, 16 bits \times Accumulation (16 b	n (8/16 bits) 16 bits), Division (16 its × 16 bits + 32 bits on (Set, reset, test, a)	,			
I/O port	Total	14	18	24	26	42			
	CMOS I/O	11	15	19	21	33			
	CMOS input	3	3	5	5	5			
	N-ch open-drain I/O (6 V tolerance)	—	_	-	_	4			
Timer	16-bit timer	4 channels							
	Watchdog timer	1 channel							
	Real-time clock	1 channel							
	12-bit interval timer	1 channel							
	8/16-bit interval timer	4 channels (8 bit) /	2 channels (16 bit)						
	Timer output	2	4	3	4	4			
	RTC output	-	_	1 channel • 1 Hz (subsystem clock fsx = 32.768 kHz)	generator and RTC	other clock:			

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

(2/2)

			.	;		(2)				
		20-pin	24-pin	30-pin	32-pin	48-pin				
lter	n	R5F1176x (x = 8, A)	R5F1177x (x = 8, A)	R5F117Ax (x = 8, A, C)	R5F117Bx (x = A, C)	R5F117Gx (x = A, C)				
Clock output/buzzer	output	1	1	1	1	2				
		(Main system clock [30-pin, 32-pin, 48-p • 2.44 kHz, 4.88 kHz (Main system clock • 256 Hz, 512 Hz, 1.	z, 9.76 kHz, 1.25 MHz k: fmain = 20 MHz ope in products] z, 9.76 kHz, 1.25 MHz k: fmain = 20 MHz ope	ration) , 2.5 MHz, 5 MHz, 10 ration) 4.096 kHz, 8.192 kHz	MHz , 16.384 kHz, 32.768 l	kHz				
12-bit resolution A/D	converter	6 channels	6 channels	12 channels	12 channels	17 channels				
Comparator (Windov	v Comparator)	2 channels								
Operational amplifier		2 channels		4 channels						
Data Operation Circu	uit (DOC)	Comparison, addition	n, and subtraction of 1	6-bit data						
Serial interface		• CSI: 1 channel/UA [24-pin, 32-pin, 48-p	 [20-pin, 30-pin products] CSI: 1 channel/UART: 1 channel/simplified l²C: 1 channel [24-pin, 32-pin, 48-pin products] CSI: 2 channels/UART: 1 channel/simplified l²C: 2 channels 							
Data transfer control	ler (DTC)	16 sources	20 sources	19 sources	20 sources	22 sources				
Event link controller	(ELC)	Event input: 15 Event trigger output: 5	Event input: 17 Event trigger output: 5	Event input: 17 Event trigger output: 7	Event input: 17 Event trigger output: 7	Event input: 20 Event trigger output: 7				
Vectored interrupt	Internal	22	22	24	24	24				
sources	External	3	5	5	5	8				
Key interrupt		—	3	—	3	4				
Reset		Internal reset by R	atchdog timer ower-on-reset oltage detector egal instruction execu	tion Note						
Power-on-reset circu	it	 Power-on-reset: 1.51 ± 0.04V (T_A = -40 to +85°C) Power-down-reset: 1.50 ± 0.04 V (T_A = -40 to +85°C) 								
Voltage detector	Power on	1.67 V to 3.13 V (12	stages)							
	Power down	1.63 V to 3.06 V (12	stages)							
On-chip debug funct	ion	Provided (Enable to	tracing)							
Power supply voltage	e	V _{DD} = 1.6 to 3.6 V								
Operating ambient te	emperature	T _A = -40 to +105°C								

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/I1D User's Manual.
- Caution 3. Please contact Renesas Electronics sales office for derating of operation under TA = +85 to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- Caution 4. When operating temperature exceeds 85°C, only HS (high-speed main) mode can be used as the flash operation mode. Regulator mode should be used with the normal setting (MCSEL = 0).

2.1 **Absolute Maximum Ratings**

Absolute Maximum Ratings

Absolute Maximum R	atings			(1/2)
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd, AVdd	Vdd = AVdd	-0.3 to + 4.6	V
	AVREFP		0.3 to AVDD + 0.3 Note 2	V
	AVss		-0.5 to + 0.3	V
	AVREFM		-0.3 to AV _{DD} + 0.3 Note 2 and AVREFM ≤ AVREFP	V
REGC pin input voltage	VIREGC	REGC	-0.3 to + 2.8 and -0.3 to V _{DD} + 0.3 ^{Note 1}	V
Input voltage	VI1	P00 to P04, P30 to P33, P40, P50 to P57, P121 to P124, P130, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 Note 2	V
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to + 6.5	V
	Vi3	P10 to P17, P20 to P25	-0.3 to AVDD + 0.3 Note 2	V
Output voltage	Vo1	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130	-0.3 to VDD + 0.3 Note 2	V
	Vo2	P10 to P17, P20 to P25	-0.3 to AVDD + 0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI18	-0.3 to VDD + 0.3 and -0.3 to AVREF(+) + 0.3 ^{Notes 2, 3}	V
	VAI2	ANI0 to ANI13	-0.3 to AV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V
	VAI3	Operational amplifier input pin	-0.3 to AVDD + 0.3 Note 2	V

<R> <R>

> Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 4.6 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

Absolute Maximum Ratings

Absolute Maximum	Ratings				(2/2
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P04, P30 to P33, P40, P50 to P57, P130	-40	mA
		Total of all pins	P00 to P04, P40, P130	-70	mA
		-170 mA	P30 to P33, P50 to P57	-100	mA
	Іон2	Per pin	P10 to P17, P20 to P25	-0.1	mA
		Total of all pins		-1.4	mA
Output current, low	rent, low IOL1 Per pin		P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130	40	mA
		Total of all pins	P00 to P04, P40, P130	70	mA
		170 mA	P30 to P33, P50 to P57, P60 to P63	100	mA
	IOL2	Per pin	P10 to P17, P20 to P25	0.4	mA
		Total of all pins		5.6	mA
Operating ambient	Та	In normal operation mode		-40 to +105	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

(Ta = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V_{DD} \leq 3.6~V$	1.0		20.0	MHz
	crystal resonator	$2.4~\text{V} \leq \text{Vdd} < 2.7~\text{V}$	1.0		16.0	
		$1.8~V \leq V \text{DD} < 2.4~V$	1.0		8.0	
		$1.6~V \leq V \text{DD} < 1.8~V$	1.0		4.0	
XT1 clock oscillation frequency (fxt) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Oscillators	Oscillators Parameters Conditions		onditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator clock frequency accuracy		-20 to +85°C	$1.8~V \leq V_{DD} \leq 3.6~V$	-1.0		+1.0	%
			$1.6~V \leq V_{DD} < 1.8~V$	-5.0		+5.0	
		-40 to -20°C	$1.8~V \leq V_{DD} \leq 3.6~V$	-1.5		+1.5	%
			$1.6~V \leq V_{DD} < 1.8~V$	-5.5		+5.5	
		+85 to +105°C	$2.4~V \leq V_{DD} \leq 3.6~V$	-2.0		+2.0	%
Middle-speed on-chip oscillator oscillation frequency Note 2	fім			1		4	MHz
Middle-speed on-chip oscillator oscillation frequency accuracy		$1.8V \le V_{DD} \le 3.6$	6V	-12		+12	%
Low-speed on-chip oscillator clock frequency Note 2	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 6.4 System Clock Oscillator in the RL78/I1D User's Manual.

2.3 DC Characteristics

2.3.1 Pin characteristics

(Ta = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (Ta = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/5)

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output current, high Note 1	Іон1	Per pin for P00 to P04, P30 to P33, P40, T P50 to P57, P130	TA = -40 to +85°C			-10.0 Note 2	mA
			TA = +85 to +105°C			-3.0 Note 2	mA
		Total of P00 to P04, P40, P130	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			-10.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$			-5.0	mA
			$1.6 \text{ V} \le \text{VDD} < 1.8 \text{ V}$			-2.5	mA
		Total of P30 to P33, P50 to P57	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			-19.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$			-10.0	mA
			$1.6 \text{ V} \le \text{VDD} < 1.8 \text{ V}$			-5.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				-29.0	mA
	Іон2	Per pin for P10 to P17, P20 to P25				-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			-1.4	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P30 and P51 to P56 do not output high level in N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P04, P30 to P33, P40, P50 to P57, P130	TA = -40 to +85°C			20.0 Note 2	mA
			TA = +85 to +105°C			8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40, P130	$2.7~V \leq V \text{DD} \leq 3.6~V$			15.0	mA
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			4.5	mA
		Total of P30 to P33, P50 to P57, P60 to P63	$2.7~V \leq V\text{DD} \leq 3.6~V$			35.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				50.0	mA
-	IOL2	Per pin for P10 to P17, P20 to P25				0.4 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			5.6	mA

(Ta = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (Ta = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

(TA = +85 to +105°	C, 2.4 V ≤	AVDD = VDD \leq 3.6 V, Vss = A	Vss = 0 V)				(3/5)
Items	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Input voltage, high	VIH1	P00 to P04, P30 to P33, P40, P50 to P57, P130	Normal input buffer	0.8 Vdd		Vdd	V
	VIH2	P30, P32, P33, P51, P52, P54 to P57	TTL input buffer $3.3 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$	2.0		Vdd	V
			TTL input buffer $1.6 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	1.5		Vdd	V
	Vінз	P10 to P17, P20 to P25	0.7 AVdd		AVdd	V	
	VIH4	P60 to P63	0.7 Vdd		6.0	V	
	Vih5	P121 to P124, P137, EXCLK, E	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P04, P30 to P33, P40, Normal input buffer P50 to P57, P130		0		0.2 Vdd	V
	VIL2	P30, P32, P33, P51, P52, P54 to P57	TTL input buffer $3.3 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V ≤ Vpp < 3.3 V	0		0.32	V
	VIL3	P10 to P17, P20 to P25	- 1	0		0.3 AVDD	V
	VIL4	P60 to P63		0		0.3 Vdd	V
	VIL5	P121 to P124, P137, EXCLK, E	XCLKS, RESET	0		0.2 Vdd	V

$(TA = -40 \ to \ +85^{\circ}C, \ 1.6 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V) \\ (TA = +85 \ to \ +105^{\circ}C, \ 2.4 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V)$

Caution The maximum value of VIH of pins P30 and P51 to P56 is VDD, even in the N-ch open-drain mode.

<R>

Items	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P04, P30 to P33, P40, P50 to P57, P130	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ IOH = -2.0 mA	Vdd - 0.6			V
			1.8 V \leq V _{DD} \leq 3.6 V ^{Note 3} , Іон = -1.5 mA	Vdd - 0.5			V
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{\text{Note 1}},$ IOH = -1.0 mA	Vdd - 0.5			V
	Voh2	P10 to P17, P20 to P25	$\begin{array}{l} 1.6 \ V \leq AV_{DD} \leq 3.6 \ V \ ^{Note \ 2}, \\ I_{OH} = -100 \ \mu A \end{array}$	AVDD - 0.5			V
Output voltage, low	VOL1	P00 to P04, P30 to P33, P40, P50 to P57, P130	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ \text{I}_{\text{OL}} = 3.0 \ \text{mA} \end{array}$			0.6	V
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$ $\text{I}_{\text{OL}} = 1.5 \text{ mA}$			0.4	V
			$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V} \ \text{Note} \ 3, \\ \text{IoL} = 0.6 \ \text{mA} \end{array}$			0.4	V
			$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}^{\text{Note 1}},$ $\text{IOL} = 0.3 \text{ mA}$			0.4	V
	Vol2	P10 to P17, P20 to P25	$\begin{array}{l} 1.6 \ \text{V} \leq \text{AV}_{\text{DD}} \leq 3.6 \ \text{V} \ \text{Note} \ 2, \\ \text{IOL} = 400 \ \mu\text{A} \end{array}$			0.4	V
	Vol3	P60 to P63	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$ $\text{IOL} = 3.0 \text{ mA}$			0.4	V
			$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V} \ ^{\text{Note 3}}, \\ \\ \text{IoL} = 2.0 \ \text{mA} \end{array}$			0.4	V
			$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}^{\text{Note 1}},$ $\text{IOL} = 1.0 \text{ mA}$			0.4	V

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(4/5)

Note 1. Only $T_A = -40$ to $+85^{\circ}C$ is guaranteed.

Note 2. The condition that 2.4 V \leq AV_DD \leq 3.6 V is guaranteed when +85°C < TA \leq +105°C.

Note 3. The condition that 2.4 V \leq VDD \leq 3.6 V is guaranteed when +85°C < TA \leq +105°C.

Caution P30 and P51 to P56 do not output high level in N-ch open-drain mode.

Items	Symbol	Con	ditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130, P137	, VI = VDD				1	μA
	ILIH2	RESET	VI = VDD				1	μA
	Ілнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P10 to P17, P20 to P25	VI = AVDD				1	μA
Input leakage current, low	ILIL1	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130, P137	Vi = Vss				-1	μA
	ILIL2	RESET	VI = Vss	VI = Vss			-1	μA
	Ilil3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μΑ
	ILIL4	P10 to P17, P20 to P25	VI = AVss				-1	μA
On-chip pull-up resistance	Ru	P00 to P04, P30 to P33, P40, P50 to P57, P130	Vı = Vss, In	input port	10	20	100	kΩ

$(TA = -40 \text{ to } +85^{\circ}C, \ 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \ \text{Vss} = \text{AVss} = 0 \text{ V}) \\ (TA = +85 \text{ to } +105^{\circ}C, \ 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \ \text{Vss} = \text{AVss} = 0 \text{ V}) \\$

(5/5)

<R> <R> <R>

<R>

<R>

2.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/4)

Parameter	Symbol			Conditions				MIN.	TYP.	MAX.	Uni
Supply current Note 1	IDD1	Operating mode	HS (high-speed main) mode	f _{IH} = 24 MHz ^{Note 3} , T _A = -40 to +105°C	Basic operation	V _{DD} = 3.0 V			1.4		mA
			HS (high-speed main) mode	$f_{IH} = 24 \text{ MHz Note 3},$ $T_A = -40 \text{ to } +85^{\circ}\text{C}$	Normal operation	V _{DD} = 3.0 V			3.2	6.3	mA
				f _{IH} = 24 MHz ^{Note 3} , T _A = +85 to +105°C	Normal operation	V _{DD} = 3.0 V				6.7	
				f_{IH} = 16 MHz Note 3, T _A = -40 to +85°C	Normal operation	V _{DD} = 3.0 V			2.4	4.6	
				f _{IH} = 16 MHz ^{Note 3} , T _A = +85 to +105°C	Normal operation	V _{DD} = 3.0 V				4.9	
			LS (low-speed main)	fiн = 8 MHz Note 3,	Normal	V _{DD} = 3.0 V			1.1	2.0	m
			mode (MCSEL = 0)	T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			1.1	2.0	
			LS (low-speed main) mode	f _{IH} = 4 MHz ^{Note 3} , T _A = -40 to +85°C	Normal operation	V _{DD} = 3.0 V			0.72	1.30	m
			(MCSEL = 1)			V _{DD} = 2.0 V			0.72	1.30 1.10	-
				$f_{IM} = 4 \text{ MHz }^{Note 7},$ T _A = -40 to +85°C	Normal operation	V _{DD} = 3.0 V			0.58	1.10	
					Newsel	V _{DD} = 2.0 V					
			LV (low-voltage main) mode	$f_{IH} = 3 \text{ MHz }^{\text{Note 3}},$ $T_A = -40 \text{ to } +85^{\circ}\text{C}$	Normal operation	V _{DD} = 3.0 V V _{DD} = 2.0 V			1.2 1.2	1.8 1.8	m
			LP (low-power main)	fi⊢ = 1 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V			290	480	μ
		mode Note 5	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$	operation	V _{DD} = 2.0 V			290	480		
			(MCSEL = 1)	fi⊨ = 1 MHz ^{Note 5} ,	Normal	V _{DD} = 3.0 V			124	230	Ì
				T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			124	230	
			HS (high-speed main)	f _{MX} = 20 MHz Note 2,	Normal	V _{DD} = 3.0 V	Square wave input		2.7	5.3	m
			mode	T _A = -40 to +85°C	operation	Resonator connection	2.8	5.5			
				$f_{MX} = 20 \text{ MHz} \text{ Note 2},$	Normal	V _{DD} = 3.0 V	Square wave input			5.7	
				T _A = +85 to +105°C	operation		Resonator connection			5.8	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input		1.8	3.1	
				T _A = -40 to +85°C	operation		Resonator connection		1.9	3.2	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input			3.4	
				T _A = +85 to +105°C	operation		Resonator connection			3.5	
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	V _{DD} = 3.0 V	Square wave input		0.9	1.9	n
			(MCSEL = 0)	T _A = -40 to +85°C	operation		Resonator connection		1.0	2.0	
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	V _{DD} = 2.0 V	Square wave input		0.9	1.9	
				T _A = -40 to +85°C	operation		Resonator connection		1.0	2.0	
			LS (low-speed main)	f _{MX} = 4 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input		0.6	1.1	n
		mode (MCSEL = 1)	T _A = -40 to +85°C	operation		Resonator connection		0.6	1.2		
			(MOSEL - T)	f _{MX} = 4 MHz ^{Note 2} ,	Normal	V _{DD} = 2.0 V	Square wave input		0.6	1.1	
				T _A = -40 to +85°C	operation		Resonator connection		0.6	1.2	
			LP (low-power main) mode	$f_{MX} = 1 \text{ MHz }^{Note 2}$,	Normal operation	V _{DD} = 3.0 V	Square wave input		100	190	μ
			(MCSEL = 1)	T _A = -40 to +85°C	operation		Resonator connection		136	250	ļ
				f _{MX} = 1 MHz ^{Note 2} , T _A = -40 to +85°C	Normal operation	V _{DD} = 2.0 V	Square wave input		100	190	
	1			1A = -40 10 +85 °C	operation		Resonator connection		136	250	1

(Notes and Remarks are listed on the next page.)

TA = +85 t	o +105	°C, 2.4 V	$I \leq AVDD = V$	dd \leq 3.6 V, Vss = AVss				(2/4)		
Parameter	Symbol	ol Conditions							MAX.	Unit
Supply current	IDD1	Operating	Subsystem clock	fsx = 32.768 kHz,	Normal operation	Square wave input		3.2	6.1	μA
Note 1		mode	operation	T _A = -40°C Note 4		Resonator connection		3.3	6.1	
					Normal operation	Square wave input		3.4	6.1	
				$T_A = +25^{\circ}C$ Note 4		Resonator connection		3.6	6.1	
				fsx = 32.768 kHz,	Normal operation	Square wave input		3.5	6.7	
				$T_A = +50^{\circ}C$ Note 4		Resonator connection		3.7	6.7	
				fsx = 32.768 kHz,	Normal operation	Square wave input		3.7	7.5	
		$T_A = +70^{\circ}C$ Note 4		Resonator connection		3.9	7.5			
				fsx = 32.768 kHz,	Normal operation	Square wave input		4.0	8.9	
				$T_A = +85^{\circ}C$ Note 4		Resonator connection		4.2	8.9	
				fsx = 32.768 kHz,	Normal operation	Square wave input		4.5	21.0	
				T _A = +105°C Note 4		Resonator connection		4.7	21.1	
				fiL = 15 kHz, TA = -40°C Note 6	Normal operation			1.8	5.9	
				fı∟ = 15 kHz, T _A = +25°C ^{Note 6}	Normal operation			1.9	5.9	1
				fı∟ = 15 kHz, T _A = +85°C ^{Note 6}	Normal operation			2.3	8.7	1
				fi∟ = 15 kHz, T _A = +105°C ^{Note 6}	Normal operation			3.0	20.9	1

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

<R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.

- Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Note 4. When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped. When ultra-low-power consumption oscillation is set (AMPHS1, AMPHS0) = (1, 0). The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.
- Note 5. When the high-speed system clock, high-speed on-chip oscillator clock, sub clock, and low-speed on-chip oscillator clock are stopped. The MAX values include the current of peripheral operation except BGO operation, and the STOP leakage current. However, the real time clock, watchdog timer, LVD circuit, and A/D converter are stopped.
- Note 6. When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and sub clock are stopped.
- Note 7. When the high-speed system clock, high-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2 file High-speed on-chip oscillator clock frequency (24 MHz max.)
- Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
- Remark 4. fill: Low-speed on-chip oscillator clock frequency
- Remark 5. fsx Sub clock frequency (XT1 clock oscillation frequency)
- Remark 6. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or low-speed on-chip oscillator clock frequency)
- Remark 7. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

<R>

<R>

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V	, Vss = AVss = 0 V)
---	---------------------

(3/4)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Un
Supply current	IDD2	HALT	HS (high-speed main) mode	$f_{\rm IH} = 24 \text{ MHz} \text{ Note } 4,$	VDD = 3.0 V			0.37	1.83	m/
Note 1	Note 2	mode		T _A = -40 to +85°C						
				fiH = 24 MHz Note 4,	V _{DD} = 3.0 V				2.85	
				T _A = +85 to +105°C						
				fiH = 16 MHz Note 4,	V _{DD} = 3.0 V			0.36	1.38	
				T _A = -40 to +85°C						
				fiH = 16 MHz Note 4,	V _{DD} = 3.0 V				2.08	
				T _A = +85 to +105°C						
			LS (low-speed main) mode	fiH = 8 MHz Note 4,	V _{DD} = 3.0 V			250	710	μA
			(MCSEL = 0)	T _A = -40 to +85°C	V _{DD} = 2.0 V			250	710	
			LS (low-speed main) mode	fiH = 4 MHz Note 4,	V _{DD} = 3.0 V			204	400	μ
			(MCSEL = 1)	T _A = -40 to +85°C	Vdd = 2.0 V			204	400	
				fim = 4 MHz Note 7,	V _{DD} = 3.0 V			40	250	
				T _A = -40 to +85°C	Vdd = 2.0 V			40	250	
			LV (low-voltage main) mode	fin = 3 MHz Note 4,	V _{DD} = 3.0 V			425	800	μ/
				T _A = -40 to +85°C	VDD = 2.0 V			425	800	
			LP (low-power main) mode	fiH = 1 MHz Note 4,	VDD = 3.0 V			192	400	μ/
			(MCSEL = 1)	T _A = -40 to +85°C	VDD = 2.0 V			192	400	
				fim = 1 MHz Note 7,	VDD = 3.0 V			27	100	
				$T_{\rm A} = -40$ to +85°C	VDD = 2.0 V			27	100	
			HS (high-speed main) mode	f _{MX} = 20 MHz ^{Note 3} .	Vpp = 3.0 V	Square wave input		0.20	1.55	m
			ne (mgn opeen man) meas	$T_A = -40 \text{ to } +85^{\circ}\text{C}$		Resonator connection		0.40	1.74	
				$f_{MX} = 20 \text{ MHz} \text{ Note } 3.$	$V_{DD} = 3.0 V$	Square wave input		0.40	2.45	
				$T_A = +85 \text{ to } +105^{\circ}\text{C}$	VDD - 3.0 V	Resonator connection		-	2.43	
				$f_{MX} = 10 \text{ MHz} \text{ Note 3},$	$V_{DD} = 3.0 V$	Square wave input		0.15	0.86	
				$T_A = -40 \text{ to } +85^{\circ}\text{C}$	VDD - 3.0 V	Resonator connection		0.13	0.00	
				$f_{MX} = 10 \text{ MHz}^{Note 3}$	Voo = 3.0 V	Square wave input		0.30	1.28	-
				$T_A = +85 \text{ to } +105^{\circ}\text{C}$	VDD - 3.0 V	Resonator connection			1.20	
			I S (low apood main) made	_	Vec = 2.0.V			69		
			LS (low-speed main) mode (MCSEL = 0)	$f_{MX} = 8 \text{ MHz } Note 3$,	VDD = 3.0 V	Square wave input		68 120	550 590	μ
				$T_A = -40 \text{ to } +85^{\circ}\text{C}$	V	Resonator connection				
				$f_{MX} = 8 \text{ MHz Note 3},$	VDD = 2.0 V	Square wave input		68	550	
			LC (law anotad main) made	$T_A = -40 \text{ to } +85^{\circ}\text{C}$	V	Resonator connection		120	590	
			LS (low-speed main) mode	$f_{MX} = 4 \text{ MHz Note 3},$	VDD = 3.0 V	Square wave input		23	128	μ
			(MCSEL = 1)	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$		Resonator connection		65	200	
				$f_{MX} = 1 \text{ MHz Note 3},$	VDD = 2.0 V	Square wave input		23	128	
				T _A = -40 to +85°C		Resonator connection		65	200	
			LP (low-power main) mode	$f_{MX} = 4 \text{ MHz} \text{ Note 3},$	VDD = 3.0 V	Square wave input		10	64	μ
			(MCSEL = 1)	T _A = -40 to +85°C		Resonator connection		48	150	
				$f_{MX} = 1 \text{ MHz} \text{ Note } 3,$	VDD = 2.0 V	Square wave input		10	64	
				$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$		Resonator connection		48	150	
			Subsystem clock operation	fsx = 32.768 kHz,		Square wave input		0.24	0.57	μ
				$T_A = -40^{\circ}C$ Note 5		Resonator connection		0.42	0.76	
				fsx = 32.768 kHz,		Square wave input		0.30	0.57	
				T _A = +25°C Note 5		Resonator connection		0.54	0.76	
				fsx = 32.768 kHz,		Square wave input		0.35	1.17	
				T _A = +50°C Note 5		Resonator connection		0.60	1.36	
				fsx = 32.768 kHz,		Square wave input		0.42	1.97	
				T _A = +70°C Note 5		Resonator connection		0.70	2.16	
				fsx = 32.768 kHz,		Square wave input		0.80	3.37	
				T _A = +85°C Note 5		Resonator connection		0.95	3.56	
				fsx = 32.768 kHz,		Square wave input		1.80	17.10	
				T _A = +105°C Note 5		Resonator connection		2.20	17.50	
				fı∟ = 15 kHz, T _A = -40°0	Note 6			0.40	1.22	μ
				fı∟ = 15 kHz, T₄ = +25°	C Note 6			0.47	1.22	1
				fı∟ = 15 kHz, T _A = +85°				0.80	3.30	1
		1	i i i i i i i i i i i i i i i i i i i							

(Notes and Remarks are listed on the next page.)

RL	78/I	1D
----	------	----

<r></r>	Note 1.		urrent flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or
			ne MAX values include the peripheral operating current. However, these values do not include the current flowing
			A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors,
			e current flowing during data flash rewrite.
	Note 2.	When t	the HALT instruction is executed in the flash memory.
	Note 3.		the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, b clock are stopped.
	Note 4.		the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub re stopped.
	Note 5.	speed (AMPH	the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and high- on-chip oscillator clock are stopped. When RTCLPC = 1 and ultra-low-power consumption oscillation is set IS1, AMPHS0) = (1, 0). The values include the current flowing into the real-time clock. However, the values do not the current flowing into the 12-bit interval timer and watchdog timer.
	Note 6.		the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, high-speed system clock, and sub
	Note 6.		re stopped.
	Note 7.	When t are sto	the high-speed system clock, high-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock pped.
	Remark 1.	fмх:	High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
	Remark 2.	fiн:	High-speed on-chip oscillator clock frequency (24 MHz max.)
	Remark 3.	fıм:	Middle-speed on-chip oscillator clock frequency (4 MHz max.)
	Remark 4.	fı∟:	Low-speed on-chip oscillator clock frequency
	Remark 5.	fsx:	Sub clock frequency (XT1 clock oscillation frequency)
	Remark 6.	fsue:	Subsystem clock frequency (XT1 clock oscillation frequency or low-speed on-chip oscillator clock frequency)
	Remark 7.	Except	subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +10	$TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V}) $ (4/-						
Parameter	Symbol		Conditions		TYP.	MAX.	Unit
Supply current	IDD3	STOP mode	TA = -40°C		0.16	0.51	μA
Note 1	Note 2	Note 3	TA = +25°C		0.22	0.51	
			TA = +50°C		0.27	1.10	
			TA = +70°C		0.37	1.90	
			TA = +85°C		0.60	3.30	
			TA = +105°C		1.50	17.00	

<R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.

Note 3. For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.

Peripheral Functions (Common to all products)

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	I _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3	fsx = 32.768 kHz			0.02		μΑ
12-bit interval timer operating current	ITMKA Notes 1, 2, 4	fsx = 32.768 kHz			0.04		μΑ
8-bit interval timer operating current	ITMT Notes 1, 9	fsx = 32.768 kHz	8-bit counter mode \times 2-channel operation		0.12		μΑ
		fmain stopped (per unit)	16-bit counter mode operation		0.10		μA
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μΑ
A/D converter operating current	J _{ADC} Notes 6, 10	During maximum-speed conversion	AV _{DD} = 3.0 V		420	720	μA
Avref(+) current	IAVREF Note 11	AVREFP = 3.0 V, ADREFP1	= 0, ADREFP0 = 1		14.0	25.0	μΑ
Internal reference voltage (1.45 V) current	ADREF Notes 1, 12				85.0		μA
Temperature sensor operating current	ITMPS Note 1				85.0		μA
Comparator operating current	I _{CMP} Notes 8, 10	AV _{DD} = 3.6 V, Regulator output voltage	Comparator high-speed mode Window mode		12.5		μΑ
		= 2.1 V	Comparator low-speed mode Window mode		3.0		
			Comparator high-speed mode Standard mode		6.5		
			Comparator low-speed mode Standard mode		1.7		
		AV _{DD} = 3.6 V, Regulator output voltage = 1.8 V	Comparator high-speed mode Window mode		8.0		
			Comparator low-speed mode Window mode		2.2		
			Comparator high-speed mode Standard mode		4.0		
			Comparator low-speed mode Standard mode		1.3		
Operational amplifier operating current	IAMP Notes 10, 13	Low-power consumption	One operational amplifier unit operates Note 14		2.5	4.0	μΑ
		mode	Two operational amplifier units operate Note 14		4.5	8.0	
			Three operational amplifier units operate Note 14		6.5	11.0	
			Four operational amplifier units operate Note 14		8.5	14.0	1
		High-speed mode	One operational amplifier unit operates Note 14		140	220	1
			Two operational amplifier units operate Note 14		280	410	1
			Three operational amplifier units operate Note 14	te Note 14 420 6		600	
			Four operational amplifier units operate Note 14		560	780	1
LVD operating current	ILVD Notes 1, 7				0.10		μA

(Notes and Remarks are listed on the next page.)

Note 1.

Current flowing to VDD.

Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and high-speed system clock are stopped.

- <R> Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
 - **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.

Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.

- **Note 8.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 9. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Note 10. Current flowing to AVDD.
- Note 11. Current flowing into AVREFP.
- **Note 12.** Current consumed by generating the internal reference voltage (1.45 V).
- **Note 13.** Current flowing only to the operational amplifier. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IAMP when the operational amplifier is operating in operating mode, HALT mode, or STOP mode.
- Note 14. The values include the operating current of the operational amplifier reference current circuit.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

TA = +85 to +105°C, 2.4 V \leq AV		u v, voo - Avoo - U	•)			1	(2/2)
Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Self-programming operating current	IFSP Notes 1, 3				2.0	12.20	mA
BGO current	IBGO Notes 1, 2				2.0	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation AVREFP = VDD =3.0 V	The mode is performed Note 5		0.50	0.60	mA
			The A/D conversion operations are performed Note 1		0.60	0.75	mA
			The A/D conversion operations are performed Note 4		420	720	μA
		ADC operation AVREFP = VDD =3.0 V	The mode is performed Note 5		0.50	1.10	mA
		TA = +85 to +105°C	The A/D conversion operations are performed Note 1		0.60	1.34	mA
			The A/D conversion operations are performed Note 4		420	720	μA
		CSI/UART operation	TA = -40 to +85°C		0.70	0.84	mA
			TA = +85 to +105°C	1	0.70	1.54	mA

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. Current flowing to VDD.

Note 2. Current flowing during programming of the data flash.

Note 3. Current flowing during self-programming.

Note 4. Current flowing to AVDD.

<R>

Note 5. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/I1D User's Manual.

Remark 1. fil: Low-speed on-chip oscillator clock frequency

Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 3. fcLK: CPU/peripheral hardware clock frequency

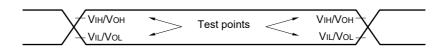
Remark 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

2.4 AC Characteristics

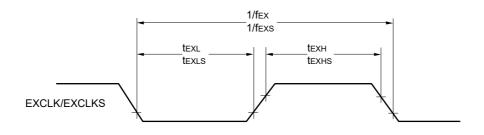
(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss	; = 0 V)
(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AV	ss = 0 V)

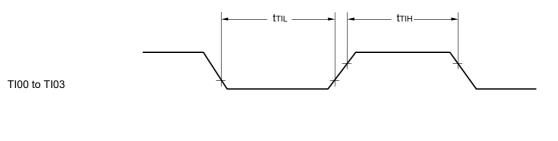
Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle	Тсү	Main system clockHS (high-speed main) $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$		0.04167	-	1	μs	
(minimum instruction execution time)		(fmAIN) operation	mode	$2.4 \text{ V} \le \text{VDD} \le 2.7 \text{ V}$	0.0625		1	μs
			LS (low-speed main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ PMMC. MCSEL = 0	0.125		1	μs
				$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ PMMC. MCSEL = 1	0.25		1	
			LP (low-power main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1		μs
			LV (low-voltage main)	$1.8~V \le V \text{DD} \le 3.6~V$	0.25		1	μs
			mode	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	0.34		1	
		Subsystem clock	fsx	$1.8~V \le V_{DD} \le 3.6~V$	28.5	30.5	31.3	μs
		(fsub) operation	fı∟	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		66.7		
		In the self- programming mode	HS (high-speed main) mode	$2.7~V \leq V \text{DD} \leq 3.6~V$	0.04167		1	μs
				$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
			LS (low-speed main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$	0.25		1	μs
External system		$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	/		1.0		20.0	MHz
clock frequency		$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$			1.0		16.0	MHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$			1		8	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			1		4	MHz
	fexs				32		35	kHz
External system clock input high-level width, low-level width	texн,	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	/		24			ns
	texL	$2.4 \text{ V} \le \text{Vdd} < 2.7 \text{ V}$		30			ns	
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$			60			ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			120			ns
	texhs, texls				13.7			μs
TI00 to TI03 input high-level width, low-level width	ttiH, tti∟				1/fмск + 10			ns

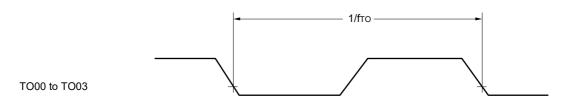
Remark fMCK: Timer array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3))

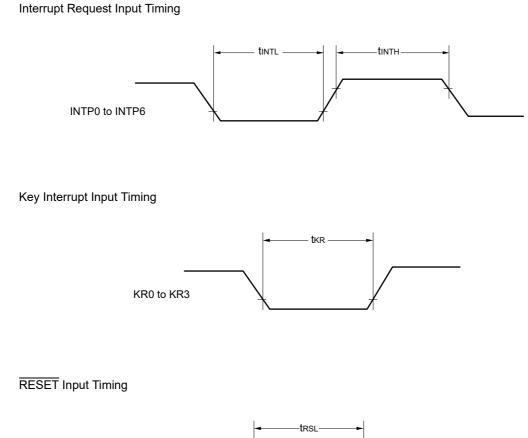
Items	Symbol fto	Conditions		MIN.	TYP.	MAX.	Unit
TO00 to TO03 output frequency		HS (high-speed main) mode	$2.7~V \le V \text{DD} \le 3.6~V$			8	MHz
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			4	
		LS (low-speed main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			4	
		LP (low-power main) mode	$1.8~V \le V \text{DD} \le 3.6~V$			0.5	
		LV (low-voltage main) mode	$1.6~V \le V \text{DD} \le 3.6~V$			2	
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$2.7~V \leq V_{DD} \leq 3.6~V$			8	MHz
frequency			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			4	-
		LS (low-speed main) mode	$1.8~V \le V \text{DD} \le 3.6~V$			4	
		LP (low-power main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			1	
		LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			4	
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			2	
Interrupt input high-level width,	tinth,	INTP0 to INTP6	$1.6 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1			μs
low-level width	t INTL						
Key interrupt input low-level width	tĸĸ	KR0 to KR3	$1.8 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$	250			ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	1			μs
RESET low-level width	trsl			10			μs

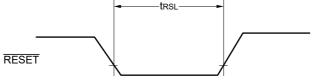

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)


AC Timing Test Points



External System Clock Timing




TI/TO Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

Viн/Voн VIH/VOH Test points VIL/VOL VIL/VOL .

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Parameter	Symbol	Conditions		speed main) ode	· ·	oeed main) ode	· ·	ower main) ode	-	ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$2.4~V \leq V_{DD} \leq 3.6~V$		fмск/6		fмск/6		fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		4.0		1.3		0.1		0.6	Mbps
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2		_		1.3		0.1		0.6	Mbps
		$1.7~V \leq V_{DD} \leq 3.6~V$		_	-	_	-	_		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2			-	_	-	_		0.6	Mbps
		$1.6~V \leq V_{DD} \leq 3.6~V$		_	-	_	-	_		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		_	-	_	-	_		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

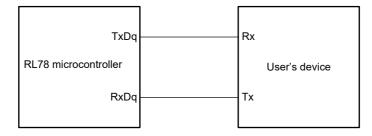
Note 2.The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:
HS (high-speed main) mode: $24 \text{ MHz} (2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$
 $16 \text{ MHz} (2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$
LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$
LP (low-power main) mode: $1 \text{ MHz} (1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$
LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
Faranielei	Symbol	Conditions	MIN.	MAX.	Onit
Transfer rate Note 1		$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		fмск/12	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		2.0	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.


Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V)


16 MHz (2.4 V \leq VDD \leq 3.6 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions	HS (high-s	peed main)	LS (low-sp	beed main)	LP (Low-po	ower main)	LV (low-vol	tage main)	Unit
			Mo	ode	Mo	ode	mo	ode	Mc	de	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1≥fc∟к/2	83.3		250		2000		500		ns
SCKp high-/low-level width	tĸ∟1		tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsiĸ1		33		110		110		110		ns
SIp hold time (from SCKp↑) Note 2	tksi1		10		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF Note 4		10		20		20		20	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	С	onditions	HS (higl main)	•		/-speed Mode		v-power mode	LV (low- main)	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү1	tксү1 ≥ fc∟к/4	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	167		500		4000		1000		ns
time			$2.4~V \leq V_{DD} \leq 3.6~V$	250								
			$1.8~V \leq V_{\text{DD}} \leq 3.6~V$	_								
			$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	—		—		—				
			$1.6~V \leq V_{\text{DD}} \leq 3.6~V$	—		—		—				
SCKp high-/ low-level	tкн1, tкL1	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	3.6 V	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
width		$2.4~V \leq V_{DD} \leq$	3.6 V	tксү1/2 - 38								
		$1.8~V \leq V_{DD} \leq$	3.6 V	_								
		$1.7~V \leq V_{DD} \leq$	3.6 V	_		—		—		tксү1/2 -		1
		$1.6~V \leq V_{DD} \leq$	3.6 V	_		—		_		100		
SIp setup	tsik1	$2.7~V \leq V_{DD} \leq$	3.6 V	58		110		110		110		ns
time (to SCKp↑)		$2.4~V \leq V_{DD} \leq$	3.6 V	75								
Note 1		$1.8~V \leq V_{DD} \leq$	3.6 V	—								
		$1.7~V \leq V_{DD} \leq$	3.6 V	—		—		—		220		1
		$1.6~V \leq V_{DD} \leq$	3.6 V	—		—		—				
SIp hold	tksi1	$2.4~V \leq V_{DD} \leq$	3.6 V	19		19		19		19		ns
time (from SCKp↑)		$1.8~V \leq V_{DD} \leq$	3.6 V	—								
Note 2		$1.6~V \leq V_{DD} \leq$	3.6 V	—		-		_				
Delay time	tkso1	C = 30 pF	$2.4~V \leq V_{DD} \leq 3.6~V$		33.4		33.4		33.4		33.4	ns
from SCKp↓ to SOp		Note 4	$1.8~V \leq V_{DD} \leq 3.6~V$		_	1						
output Note 3			$1.6~V \leq V_{DD} \leq 3.6~V$		_		—		_			1

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sympol		Conditions	HS (high-spee	d main) Mode	Unit	
Parameter	Symbol		Conditions	MIN.	MAX.	Offic	
SCKp cycle time	tKCY1	tксү1 ≥ fcLк/4	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	250		ns	
			$2.4~V \leq V_{DD} \leq 3.6~V$	500		ns	
SCKp high-/low-level width	tĸнı, tĸ∟ı	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$.6 V	tксү1/2 - 36		ns	
		$2.4~V \leq V_{DD} \leq 3$.6 V	tkcy1/2 - 76		ns	
SIp setup time (to SCKp↑) ^{Note 1}	tsiĸ1	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3$.6 V	66		ns	
		$2.4~V \leq V_{DD} \leq 3$.6 V	133		ns	
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns	
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF Note 4	1		50	ns	

(TA = +85 to +105°C, 2.7 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(1/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cond	litions		peed main) ode		oeed main) ode		v-power mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	fмск > 16 MHz	8/fмск		—	—	—	—	-	—	ns
Note 5			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		6/fмск		1
		$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		6/fмск and 500		6/fмск		6/fмск		6/fмск		
		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		_		6/fмск		6/fмск		6/fмск		1
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		—		—		—				
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		—		—		—				
SCKp high-/ low-level width	tкн2, tкL2	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		ns
		$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		
		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		_								
		$1.7~V \leq V_{DD} \leq 3.6~V$		_		—		—		tксү2/2		1
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		—		—		—		- 66		
Slp setup time (to SCKp↑)	tsık2	$2.7~V \leq V_{DD} \leq 3.6~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
Note 1		$2.4~V \leq V_{DD} \leq 3.6~V$		1/fмск + 30								
		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		—								
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		_		1/fмск		
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		—		+ 40		
SIp hold time (from SCKp↑)	tĸsı2	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Note 2		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		—								
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		_		1/fмск		
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		_		+ 250		
Delay time from SCKp↓ to SOp	tĸso2	C = 30 pF Note 4	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$		2/fмск + 44		2/fмск + 110		2/fмск + 110		2/fмск + 110	ns
output Note 3			$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		2/fмск + 75							
			$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		—	1						
			$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		—		—		—		2/fмск]
			$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		_		_		_	Ţ	+ 220	

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

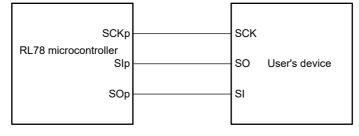
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

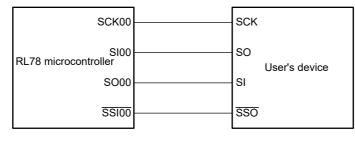
Remark 2. fMCK: Serial array unit operation clock frequency

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

	,-		,			-,						(
Parameter	Symbol		Conditions		peed main) ode	• •	beed main) bde	• •	ower main) ode	LV (low-vol Mo	• /	Uni
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SI00 setup time	tssik	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	200		200		200		200		
			$1.8 \text{ V} \leq V_{\text{DD}} < 2.4 \text{ V}$	_								
			$1.6~\text{V} \leq \text{V}_\text{DD} < 1.8~\text{V}$	-		_		_		400		
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск		1/fмск		1/fмск		1/fмск		n
				+ 120		+ 120		+ 120		+ 120		
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	-								
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-		—		—		1/fмск + 400		
SI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		1/fмск + 120		n
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$	_								
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-		—		—		1/fмск + 400		
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		n
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	200		200		200		200		1
			$1.8~V \leq V_{\text{DD}} < 2.4~V$	-								
	1		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	_		_		_		400		1


(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/2)


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01)

Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

(1/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cond	itiana	HS (high-speed	main) Mode	Unit
Parameter	Symbol	Cond	luons	MIN.	MAX.	Unit
SCKp cycle time Note 5	tксү2	$2.7~V \leq V_{\text{DD}} < 3.6~V$	fмск > 16 MHz	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} < 2.7~V$		12/fмск and 1000		ns
SCKp high-/low-level width	tkh2, tkl2	$2.7~V \leq V_{DD} \leq 3.6~V$		tkcy2/2 - 16		ns
		$2.4~V \leq V_{\text{DD}} < 2.7~V$		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) Note 1	tsik2	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$		1/fмск + 40		ns
		$2.4~V \leq V_{DD} < 2.7~V$		1/fмск + 60		ns
SIp hold time (from SCKp [↑]) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 3.6~V$		2/fмск + 66	ns
			$2.4~V \leq V_{DD} < 2.7~V$		2/fмск + 113	ns

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

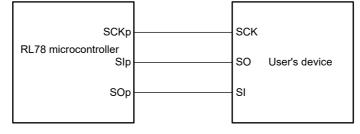
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

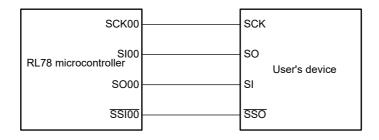
Remark 2. fMCK: Serial array unit operation clock frequency

(2/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

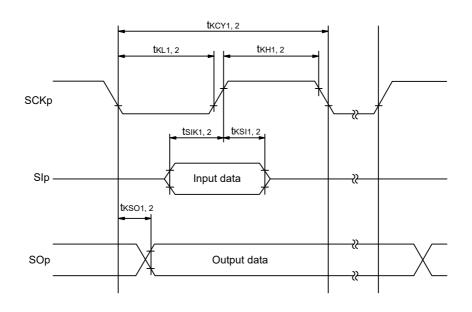

Parameter	Symbol		Conditions	HS (high-speed	l main) Mode	Unit
Falameter	Symbol		Conditions	MIN.	MAX.	Unit
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq V_{DD} \leq 3.6~V$	240		ns
			$2.4~\text{V} \leq \text{V}\text{DD} < 2.7~\text{V}$	400		ns
		DAPmn = 1	$2.7~V \leq V_{DD} \leq 3.6~V$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{V}\text{DD} < 2.7~\text{V}$	1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq V_{DD} \leq 3.6~V$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{V}\text{DD} < 2.7~\text{V}$	1/fмск + 400		ns
		DAPmn = 1	$2.7~V \leq V \text{DD} \leq 3.6~V$	240		ns
			$2.4~\text{V} \leq \text{V}\text{DD} < 2.7~\text{V}$	400		ns

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

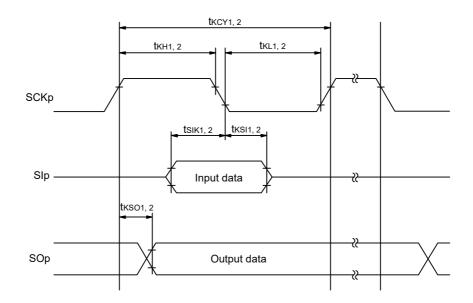

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

CSI mode connection diagram (during communication at same potential)


CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01)


Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01) Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

(5) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions		peed main) ode		peed main) ode	-	w-power mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		1000 Note 1		400 Note 1		250 Note 1		400 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$		_							
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		_		300 Note 1		250 Note 1		300 Note 1	
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-				-		250 Note 1	
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-		-		-			
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ C_b = 50 \ \text{pF}, \ \text{R}_b = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 k\Omega \end{array}$	_		—		—		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		_		_				
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	-		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	-		_		_		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		_				
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-								
		$\label{eq:def-loss} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 k\Omega \end{array}$	-		1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		_		1/fмск + 290		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		-		Note 2		
Data hold time (transmission)	thd: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{DD} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-	-		355		355		355	
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-	-							
		$\label{eq:def_def_def} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	—	_	-	_	—	-		405	
		$\label{eq:VDD} \begin{array}{l} 1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega \end{array}$	_	_	_	-	—	—			

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

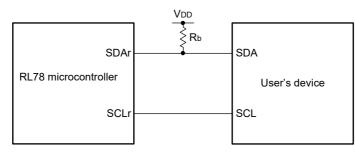
(Notes and Caution are listed on the next page.)

- **Note 1.** The value must also be equal to or less than fMCK/4.
- Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

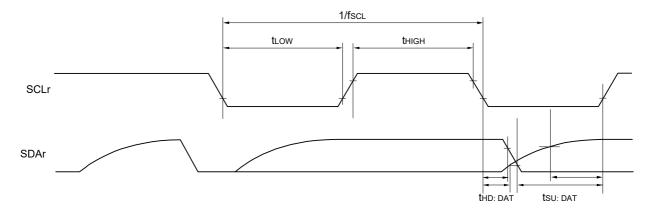
(5) During communication at same potential (simplified I²C mode)

Parameter	Queen had	Conditions	HS (high-speed	main) Mode	L Incit
Parameter	Symbol	Conditions	MIN.	MAX.	— Unit
SCLr clock frequency	fscl	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$		400 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tнigн	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ k}\Omega \end{array}$	1/fмск + 220 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	1/fMCK + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	0	770	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	0	1420	ns

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)


Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- Remark 2. r: IIC number (r = 00, 01), g: PIM number (g = 5), h: POM number (h = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter	Symbol		Conditions		gh-speed) Mode	•	w-speed) Mode	•	w-power) mode		v-voltage) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
Notes 1, 2			Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		4.0		1.3		0.1		0.6	Mbps
			$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		fмск/6 Notes 1, 2	bps						
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3		0.1		0.6	Mbps

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

(1/2)

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $V_{DD} \ge Vb$.

 $\label{eq:Note 3.} \qquad \mbox{The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:}$

 $\begin{array}{ll} \text{HS (high-speed main) mode:} & 24 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LP (low-power main) mode:} & 1 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \end{array}$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01)

(2/2)

(6) Communication at different potential (1.8 V, 2.5V) (UART mode) (dedicated baud rate generator output)

Parameter Symbol			Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		w-power) mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 2}		Transmission	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 1		Note 1		Note 1		Note 1	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega, \\ V_b = 2.3 \mbox{ V} \end{array}$		1.2 Note 2		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps
			$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Notes 3, 4		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \ pF, \ R_b = 5.5 \ k\Omega, \\ V_b = 1.6 \ V \end{array}$		0.43 Note 5		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1.The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$

Maximum transfer rate =
$$\frac{}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

$$Baud rate error (theoretical value) = \frac{1}{(\frac{1}{Transfer rate \times 2} - {-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})} \times 100 [\%]} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

1

1

- Note 3. Use it with $V_{DD} \ge V_b$.
- Note 4. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$

Baud rate error (theoretical value) =
$$\frac{1}{-\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\} \times 100 [\%]$$

$$\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter	Symbol		Conditions	HS (high-	speed main) Mode	Unit
i didineter	Gymbol		Conditions	MIN.	MAX.	Offic
Transfer rate Notes 1, 2		Reception	$ \begin{array}{l} V \leq V_{DD} \leq 3.6 \; V, \\ V \leq V_{b} \leq 2.7 \; V \end{array} $		f _{MCK} /12 Note 1	bps
			Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} $^{Note\ 3}$		2.0	Mbps
			$ V \le V_{DD} < 3.3 \text{ V}, \\ V \le V_b \le 2.0 \text{ V} $		fMCK/12 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} $^{\text{Note 3}}$		0.66	Mbps

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

(1/2)

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $VDD \ge Vb$.

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V)

16 MHz (2.4 V \leq VDD \leq 3.6 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(2/2)

(6) Communication at different potential (1.8 V, 2.5V) (UART mode) (dedicated baud rate generator output)

Parameter	Symbol		Conditions	HS (high-	speed main) Mode	Unit
rarameter	Cymbol		Conditions	MIN.	MAX.	Onic
Transfer rate Note 2		Transmission	$ V \leq V_{DD} \leq 3.6 \text{ V}, \\ V \leq V_b \leq 2.7 \text{ V} $		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R _b = 2.7 kΩ, V _b = 2.3 V		1.2 Note 2	Mbps
			$V \leq V_{DD} < 3.3 \text{ V},$ $V \leq V_b \leq 2.0 \text{ V}$		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V _b = 1.6 V		0.43 Note 5	Mbps

$(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{V}\text{DD} \le 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{V}\text{b} \le 2.7 \text{ V}$

Baud rate error (theoretical value) =

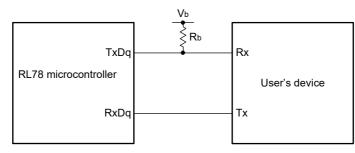
$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

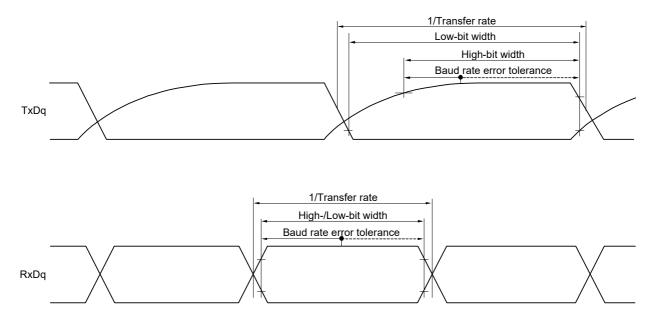
20

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** Use it with $V_{DD} \ge V_b$.
- Note 4. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{Transfer rate}) \times 100 [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides


- Note 5.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

RENESAS

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Sym bol		Conditions	HS (hig main)		· ·	/-speed Mode	`	v-power mode	``	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ fc∟к/2	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300		1500		1500		1500		ns
SCKp high-level width	t кн1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ 2.3 \ V \leq V_b \leq 2. \\ C_b = 20 \ pF, \ R_b \end{array}$	7 V,	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3\\ 2.3 \ V \leq V_b \leq 2.\\ C_b = 20 \ pF, \ R_b \end{array}$	7 V,	tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ 2.3 \ V \leq V_b \leq 2. \\ C_b = 20 \ pF, \ R_b \end{array}$	7 V,	121		479		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3\\ 2.3 \ V \leq V_b \leq 2.\\ C_b = 20 \ pF, \ R_b \end{array}$	7 V,	10		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ 2.3 \ V \leq V_b \leq 2. \\ C_b = 20 \ pF, \ R_b \end{array}$	7 V,		130		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq \\ 2.3 \ V \leq V_b \leq 2 \\ C_b = 20 \ pF, \ R \end{array}$	7 V,	33		110		110		110		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq \\ 2.3 \ V \leq V_b \leq 2 \\ C_b = 20 \ pF, \ R \end{array}$	7 V,	10		10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$2.3~V \leq V_b \leq 2$	$ \begin{array}{l} 7 \; V \leq {\sf V}_{\sf DD} \leq 3.6 \; {\sf V}, \\ 3 \; V \leq {\sf V}_{\sf b} \leq 2.7 \; {\sf V}, \\ = 20 \; {\sf pF}, \; {\sf R}_{\sf b} = 2.7 \; {\sf k}\Omega \end{array} $		10		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Rb[i]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(1/2)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sym bol		Conditions					w-speed LP (Low-power n) Mode main) mode		`	-voltage Mode	Unit
	DOI			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ fc∟к/4	$ \label{eq:clk} \begin{array}{l} \geq f_{CLK}/4 & 2.7V \leq V_{DD} \leq 3.6 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array} $			1150		1150		1150		ns
			$\begin{split} 1.8 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1150		1150		1150		1150		ns
SCKp high- level width	tĸн1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ C_b = 30 \ pF, \ R_b \end{array}$	3.6 V, 2.3 V ≤ Vb ≤ 2.7 V, = 2.7 kΩ	tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3 \\ C_b = 30 \ pF, \ R_b \end{array}$.3 V, 1.6 V \leq Vb \leq 2.0 V $^{Note},$ = 5.5 k Ω	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ C_b = 30 \ pF, \ R_b \end{array}$	3.6 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3 \\ C_b = 30 \ pF, \ R_b \end{array}$	5.3 V, 1.6 V \leq Vb \leq 2.0 V $^{Note},$ = 5.5 k Ω	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(2/2)

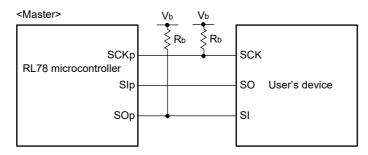
(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sym bol	Conditions		h-speed Mode	· ·	v-speed Mode	· ·	v-power mode	· ·	-voltage Mode	Unit
	501		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time	tsıĸı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		479		ns
(to SCKp↑) Note 1		$\begin{array}{l} 1.8 \ V \leq V_{DD} \mbox{ < } 3.3 \ V \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b \mbox{ = } 30 \ \mbox{pF}, \ R_b \mbox{ = } 5.5 \ \mbox{k} \Omega \end{array}$	479		479		479		479		ns
SIp hold time (from SCKp↑)	tĸsıı	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	19		19		19		19		ns
Note 1		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note } 3, \\ C_b = 30 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↓	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k \Omega \end{array}$		195		195		195		195	ns
to SOp output ^{Note 1}		$\begin{array}{l} 1.8 \ V \leq V_{DD} \mbox{ < } 3.3 \ V \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b \mbox{ = } 30 \ pF, \ R_b \mbox{ = } 5.5 \ k\Omega \end{array}$		483		483		483		483	ns
SIp setup time	tsıĸ1	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ \text{C}_{b} = 30 \ \text{pF}, \ \text{R}_{b} = 2.7 \ \text{k}\Omega \end{array}$	44		110		110		110		ns
(to SCKp↓) Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} \mbox{ < } 3.3 \ V \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b \mbox{ = } 30 \ pF, \ R_b \mbox{ = } 5.5 \ k\Omega \end{array}$	110		110		110		110		ns
SIp hold time (from SCKp↓)	tĸsı1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		19		ns
Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b = 30 \ \mbox{pF}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↑	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 30 \; pF, \; R_{b} = 2.7 \; k \Omega \end{array}$		25		25		25		25	ns
to SOp output ^{Note 2}		$\begin{array}{l} 1.8 \ V \leq V_{DD} \mbox{ < } 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b \mbox{ = } 30 \ pF, \ R_b \mbox{ = } 5.5 \ k\Omega \end{array}$		25		25		25		25	ns

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

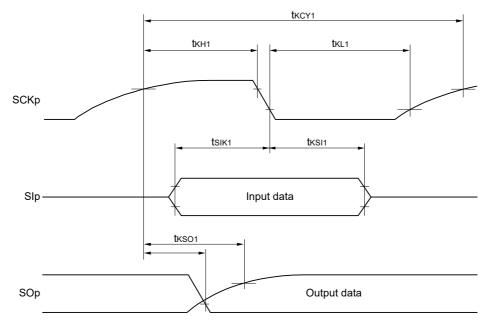

Note 3. Use it with $V_{DD} \ge V_b$.

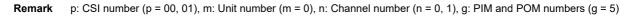
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)



CSI mode connection diagram (during communication at different potential)


- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/2)

Parameter	Symbol		Conditions	HS (high-spee	d main) Mode	Unit
Farameter	Symbol		Conditions	MIN.	MAX.	Onic
SCKp cycle time	tксү1	tксү1 ≥ fc∟к/4	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns
			$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	2300		ns
SCKp high-level width	tкн1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$ Cb = 30 pF, Rb	3.6 V, 2.3 V \leq V _b \leq 2.7 V, $_{0} = 2.7 \text{ k}\Omega$	tĸcy1/2 - 340		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} <$ Cb = 30 pF, Rb	3.3 V, 1.6 V \leq Vb \leq 2.0 V, $_{0}$ = 5.5 k Ω	tксү1/2 - 916		ns
SCKp low-level width	tĸL1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$ Cb = 30 pF, Rb	$\begin{array}{l} 3.6 \text{ V}, 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ _{o} = 2.7 \text{ k}\Omega \end{array}$	tkcy1/2 - 36		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} <$ Cb = 30 pF, Rb	3.3 V, 1.6 V \leq Vb \leq 2.0 V, $_{0}$ = 5.5 k $_{\Omega}$	tĸcy1/2 - 100		ns

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

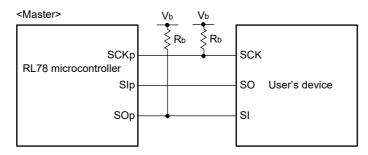
(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/2)

Parameter	Symbol	Conditions		speed main) ode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	354		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V , 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 3}, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	958		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V\!\!\!, 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 3}, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, \; 2.3 \; V \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 30 \; \text{pF}, \; R_b = 2.7 \; \text{k}\Omega \end{array}$		390	ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 3}, \\ C_b \; = \; 30 \; pF, \; R_b \; = \; 5.5 \; k\Omega \end{array}$		966	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsiĸ1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, 2.3 \; V \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 30 \; \text{pF}, \; R_b = 2.7 \; \text{k}\Omega \end{array}$	88		ns
		$\label{eq:VDD} \begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	220		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, 2.3 \; V \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 30 \; pF, \; R_b = 2.7 \; \text{k}\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; \text{V}, \; 1.6 \; \text{V} \leq V_b \leq 2.0 \; \text{V} \; \text{Note 3}, \\ C_b = 30 \; \text{pF}, \; R_b = 5.5 \; \text{k}\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, 2.3 \; V \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 30 \; p\text{F}, \text{R}_b = 2.7 \; \text{k}\Omega \end{array}$		50	ns
		$\label{eq:VDD} \begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{split}$		50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

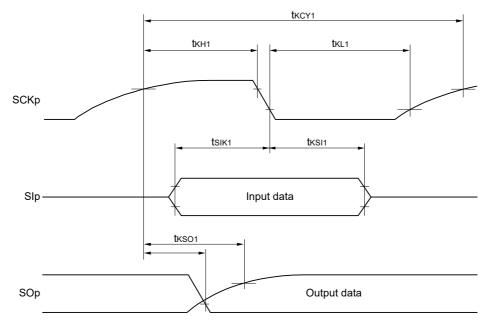

Note 3. Use it with $V_{DD} \ge V_b$.

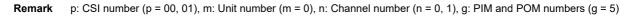
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)



CSI mode connection diagram (during communication at different potential)


- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

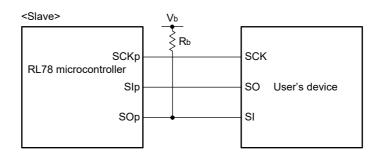
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symb	Co	onditions		h-speed Mode		/-speed Mode		v-power mode	LV (low main)	-voltage Mode	Unit
	OI			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү2	$2.7~V \leq V\text{DD} \leq 3.6~V,~2.3$	20 MHz < fmck \leq 24 MHz	16/fмск		—		—		-		ns
time Note 1		$V \leq Vb \leq 2.7 \ V$	16 MHz < fмск ≤ 20 MHz	14/fмск		-		_		—		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		—		—		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		—		—		ns
			fMCK ≤ 4 MHz	6/fмск		10/fмск		10/fмск		10/fмск		ns
		$1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6$	20 MHz < fмск ≤ 24 MHz	36/fмск		—		—		-		ns
		V ≤ Vb ≤ 2.0 V Note 2	16 MHz < fмск ≤ 20 MHz	32/fмск		-		—		—		ns
			8 MHz < fмск ≤ 16 MHz	26/fмск		—		—		—		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		—		—		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level	tкн2, tкL2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}$	$V \le Vb \le 2.7 V$	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
width		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V	$V \le Vb \le 2.0 V$ Note 2	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to	tsık2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}$	$V \leq Vb \leq 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SCKp↑) Note 3		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V	$V \le Vb \le 2.0 V$ Note 2	1/fмск + 30		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tĸsı2			1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓	tĸso2	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	$V \leq Vb \leq 2.7 V$,		2/fмск + 214		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
to SOp output ^{Note 5}		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{DD} < 3.3 \mbox{ V}, \mbox{ 1.6 } \mbox{ V} \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 5.5 \mbox{ k}\Omega \end{array}$	$^{\prime} \leq Vb \leq 2.0 \text{ V}$ Note 2,		2/fмск + 573		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

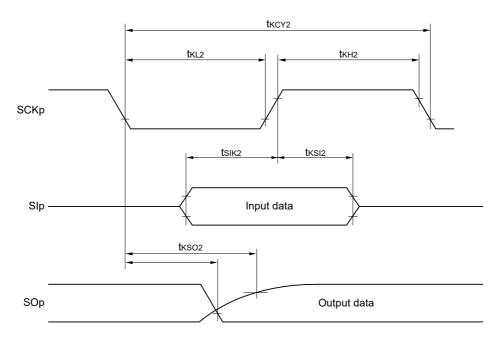
(Notes and Caution are listed on the next page. Remarks are listed on the page after the next page.)



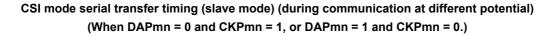
- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- $\label{eq:Note 2.} \qquad \text{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

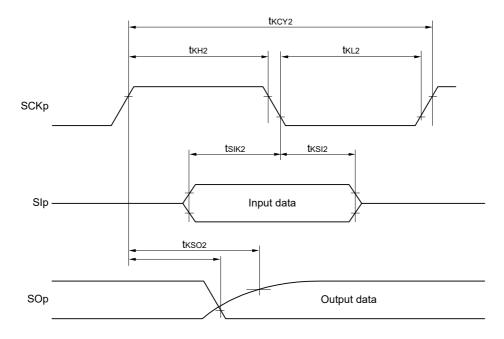
(**Remarks** are listed on the next page.)

CSI mode connection diagram (during communication at different potential)



Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage


Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)


Remark 3. fMCK: Serial array unit operation clock frequency

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

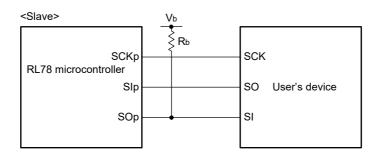
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Com	ditions	HS (high-spe	ed main) Mode	Unit
Parameter	Symbol	Con	Iditions	MIN.	MAX.	Unit
SCKp cycle time Note 1	tксү2	$2.7~V \leq V_{DD} \leq 3.6~V,$	20 MHz < fmck \leq 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	$16 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
		$1.6~V \leq V_b \leq 2.0~V~Note~2$	16 MHz < fмск ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkh2, tkl2	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V$	$I \leq V_b \leq 2.7 V$	tксү2/2 - 36		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V	$/ \le V_b \le 2.0 \text{ V}$ Note 2	tксү2/2 - 100		ns
SIp setup time (to SCKp↑) Note 3	tsıĸ2	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V$	$l \leq V_b \leq 2.7 V$	1/fмск + 40		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V	$V \le V_b \le 2.0 \text{ V Note 2}$	1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 4	tĸsı2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 5	tĸso2	$\begin{array}{l} 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}\\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega \end{array}$	$l \leq V_b \leq 2.7 V$		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V_{D} Cb = 30 pF, Rb = $5.5 \text{ k}\Omega$	$V \le V_b \le 2.0 \text{ V}$ Note 2		2/fмск + 1146	ns

(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

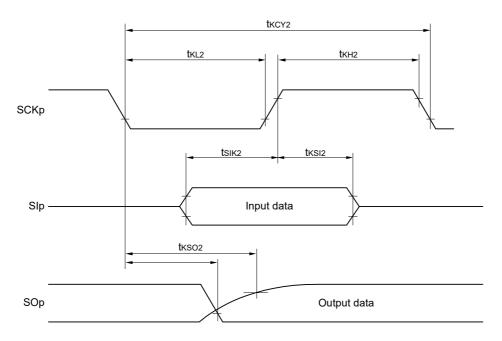
(Notes and Caution are listed on the next page. Remarks are listed on the page after the next page.)



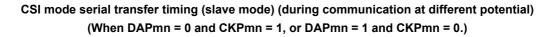
- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- $\label{eq:Note 2.} \qquad \text{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

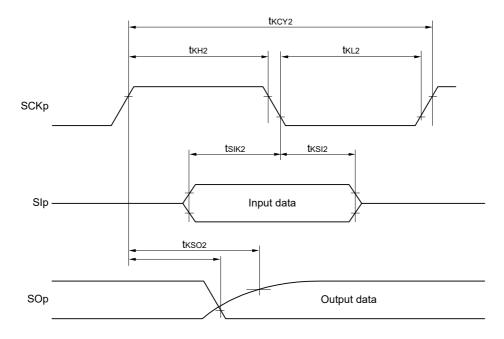
(**Remarks** are listed on the next page.)

CSI mode connection diagram (during communication at different potential)



Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage


Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)


Remark 3. fMCK: Serial array unit operation clock frequency

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

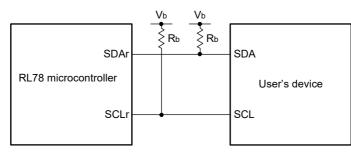
(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Parameter	Sym bol	Conditions	、 U	h-speed Mode	``	v-speed Mode	``	v-power mode	LV (low-voltage main) Mode		Unit
	DOI		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$		300 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
Hold time when SCLr	tLOW	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		1550		ns
	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		1550		ns	
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 100 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$	1550		1550		1550		1550		ns
Hold time thigh when SCLr	tнıgн	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		610		ns
= "H"		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		610		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	610		610		610		610		ns
Data setup time (reception)	tsu: DAT	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 Note 3		1/fмск + 190 Note 2		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\label{eq:2.7} \begin{split} & 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\label{eq:VDD} \begin{split} 2.7 \ V \leq V_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq V_{\text{b}} \leq 2.7 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{split}$	0	355	0	355	0	355	0	355	ns
		$\begin{array}{l} 1.8 \; V \leq V_{\text{DD}} < 3.3 \; V, \; 1.6 \; V \leq V_{\text{b}} \leq 2.0 \; V \; \text{Note 2}, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5.5 \; k\Omega \end{array}$	0	405	0	405	0	405	0	405	ns

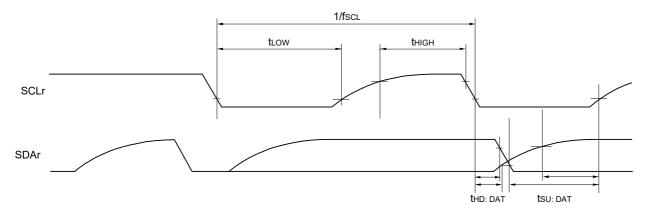
(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than $f_{MCK}/4$.

Note 2. Use it with $V_{DD} \ge V_b$.


Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 01), g: PIM, POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

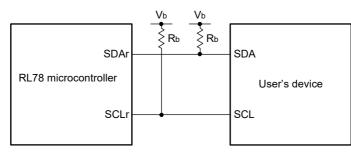
(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Devenueter	Symbol	Conditions	HS (high-speed	l main) Mode	11-34
Parameter	Symbol	Conditions	MIN.	MAX.	– Unit
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		100 Note 1	kHz
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ \text{C}_{b} = 100 \ \text{pF}, \ \text{R}_{b} = 2.7 \ \text{k}\Omega \end{array}$	4600		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	4650 ns		
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ \text{C}_{b} = 100 \ \text{pF}, \ \text{R}_{b} = 2.7 \ \text{k}\Omega \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1830		kHz ns ns ns ns ns ns ns ns ns ns ns ns ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	1/fмск + 340 Note 3		ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ \\ C_{b} = 100 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$	1/fмск + 760 Note 3		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1/fмск + 570 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\label{eq:VDD} \begin{split} 2.7 \ V &\leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	0	1420	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

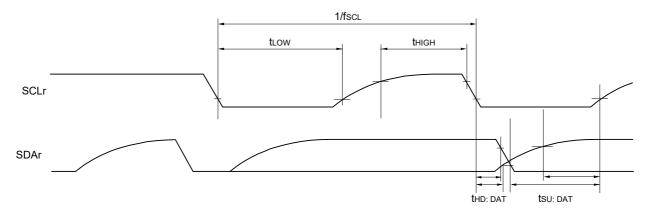
(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Use it with $V_{DD} \ge V_b$.


Note 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 01), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AV _{REFP} Reference voltage (-) = AV _{REFM}		Reference voltage (+) = Internal reference voltage Reference voltage (-) = AV _{SS}
High-accuracy channel; ANI0 to ANI13	Refer to 2.6.1 (1) .	Refer to 2.6.1 (2) .	Refer to 2.6.1 (5) .
(input buffer power supply: AVDD)	Refer to 2.6.1 (7).	Refer to 2.6.1 (7) .	Refer to 2.6.1 (10) .
Standard channel; ANI16 to ANI18	Refer to 2.6.1 (3) .	Refer to 2.6.1 (4) .	
(input buffer power supply: Voo)	Refer to 2.6.1 (8) .	Refer to 2.6.1 (9) .	
Internal reference voltage,	Refer to 2.6.1 (3) .	Refer to 2.6.1 (4) .	_
Temperature sensor output voltage	Refer to 2.6.1 (8) .	Refer to 2.6.1 (9) .	

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI13

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{REFP} \leq AV_{DD} \leq 3.6~V$	8		12	bit
			$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$		8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5	
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	13.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	2.5625			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	5.125			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.0	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.0	
Analog input voltage	VAIN			0		AVREFP	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV \text{DD} \leq 3.6~V$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$		8 Note 2	1	
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±7.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±3.0	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq \text{AVdd} \leq 3.6 \text{ V}$	13.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	2.5625			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	5.125			
			$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6~V \le AV_{DD} \le 3.6~V$			±2.5	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±3.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.5	
Analog input voltage	VAIN	ANI0 to ANI6		0		AVdd	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

(3) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq Vdd \leq 3.6 V, 1.6 V \leq AVREFP \leq AVdd = Vdd \leq 3.6 V, Vss = 0 V, AVss = 0 V,
Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{REFP} \leq AV_{DD} \leq 3.6~V$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±7.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	57.5			
		ADTYP = 1,	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.3125			
		8-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.5	
Analog input voltage	VAIN			0		AVREFP	V
		Internal reference voltage (1.8 V \leq VDD \leq 3.6 V)			VBGR Note 4		
		Temperature sensor ou	stput voltage (1.8 V \leq VDD \leq 3.6 V)	V	/ _{TMP25} No	te 4	

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error $(\pm 1/2 \text{ LSB})$.

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(4) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV \text{DD} \leq 3.6~V$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6~V \le AV \text{DD} \le 3.6~V$		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	$2.4~V \le AV \text{DD} \le 3.6~V$			±8.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±6.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.5	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	57.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	3.3125			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±8.0 ±5.5 ±3.0 ±5.5 ±3.0 ±5.5 ±3.0 ±1.5 ±2.5 ±1.5 ±2.5 ±2.5 ±2.5 ±2.0 AVDD	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±3.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$			±2.5	
		8-bit resolution	$1.6 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$			±2.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
Analog input voltage	Vain			0		AVDD	V
		Internal reference voltag	$e(1.8 V \le VDD \le 3.6 V)$,	VBGR Note 4		
		Temperature sensor out (1.8 V \leq VDD \leq 3.6 V)	V	TMP25 Note	e 4		

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error ($\pm 1/2$ LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13, ANI16 to ANI18

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Analog input voltage	Vain		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(6) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI13

(TA = +85 to +105°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
Full-scale error Note	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN			0		AVREFP	V

Note Excludes quantization error (±1/2 LSB).

(7) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	DIConditionsMIN.TYP.MAX. $2.4 V \le AVDD \le 3.6 V$ 81212-bit resolution $2.4 V \le AVDD \le 3.6 V$ ± 7.5 ADTYP = 0, 12-bit resolution $2.4 V \le AVDD \le 3.6 V$ 3.375 12-bit resolution $2.4 V \le AVDD \le 3.6 V$ ± 6.0		Unit		
Resolution	Res		$2.4~V \leq AV \text{DD} \leq 3.6~V$	8	12	bit
Overall error Note	AINL	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$		±7.5	LSB
Conversion time	t CONV	- ,	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.375		μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$		±6.0	LSB
Full-scale error Note	Efs	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$		±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$		±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$		±2.0	LSB
Analog input voltage	VAIN		÷	0	AVdd	V

Note Excludes quantization error ($\pm 1/2$ LSB).

(8) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = +85 to +105°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{REFP} \leq AV_{DD} \leq 3.6~V$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±7.0	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±5.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	LSB
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN			0		AVREFP	V
	Internal reference voltage (2.4 V \leq VDD \leq 3.6 V)		voltage (2.4 V \leq VDD \leq 3.6 V)	VBGR Note 2			
		Temperature sens (2.4 V \leq VDD \leq 3.6		V	TMP25 Note	e 2	

Note 1. Excludes quantization error ($\pm 1/2$ LSB).

Note 2. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(9) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4~V \leq AV \text{DD} \leq 3.6~V$			±8.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4~V \le AV \text{DD} \le 3.6~V$			±8.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4~V \le AV \text{DD} \le 3.6~V$			±8.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±3.5	LSB
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±2.5	LSB
Analog input voltage	VAIN			0		AVdd	V
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V)		VBGR Note 2			
		Temperature sensor output voltage (2.4 V \leq VDD \leq 3.6 V)			TMP25 Note	2	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

(10) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13, ANI16 to ANI18

(TA = +85 to +105°C, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Analog input voltage	Vain		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.2 Temperature sensor, internal reference voltage output characteristics

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)
(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp	$2.4 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$	5			μs
		$1.8 \text{ V} \le \text{V}_{DD} \le 2.4 \text{ V}$	10			

2.6.3 Comparator

 $(TA = -40 \ to \ +85^{\circ}C, \ 1.6 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V) \\ (TA = +85 \ to \ +105^{\circ}C, \ 2.4 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V)$

Parameter	Symbol	Сог	nditions	MIN.	TYP.	MAX.	Unit	
Input voltage range	lvref0	IVREF0 pin	•			VDD - 1.4 Note	V	
	lvref1	IVREF1 pin				Vdd	V	
	lvcmp	IVCMP0, IVCMP1 pins		-0.3				
Output delay td	td	AV _{DD} = 3.0 V Input slew rate > 50 mV/µs	Comparator high-speed mode, standard mode			1.2	μs	
					Comparator high-speed mode, window mode			2.0
					Comparator low-speed mode, standard mode		3.0	
			Comparator low-speed mode, window mode		4		μs	
Operation stabilization wait time	tсмр			100			μs	

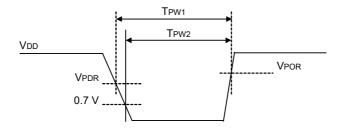
Note In window mode, make sure that Vref1 - Vref0 \ge 0.2 V.

2.6.4 Operational amplifier characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)
(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

•			•				
Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Common mode input range	Vicm1	Low-power consumption mod	le	0.2		AVDD - 0.5	V
	Vicm2	High-speed mode		0.3		AVDD - 0.6	V
Output voltage range	Vo1	Low-power consumption mod	le	0.1		AVDD - 0.1	V
	Vo2	High-speed mode		0.1		AVDD - 0.1	V
Input offset voltage	Vioff			-10		10	mV
Open gain	Av			60	120		dB
Gain-bandwidth (GB) product	GBW1	Low-power consumption mod	le		0.04		MHz
	GBW2	High-speed mode	• ·		1.7		MHz
Phase margin	PM	CL = 20 pF		50			deg
Gain margin	GM	CL = 20 pF		10			dB
Equivalent input noise	Vnoise1	f = 1 kHz	Low-power		230		nV/√Hz
	Vnoise2	f = 10 kHz	consumption mode		200		nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode		90		nV/√Hz
	Vnoise4	f = 2 kHz	-		70		nV/√Hz
Power supply reduction ratio	PSRR				90		dB
Common mode signal	CMRR				90		dB
reduction ratio							
Operation stabilization wait	Tstd1	CL = 20 pF	Low-power	650			μs
time		Only operational amplifier is	consumption mode				
	Tstd2	activated ^{Note}	High-speed mode	13			μs
	Tstd3	CL = 20 pF	Low-power	650			μs
		Operational amplifier and reference current circuit are	consumption mode				
	Tstd4	activated simultaneously	High-speed mode	13			μs
Settling time	Tset1	CL = 20 pF	Low-power			750	μs
			consumption mode				
	Tset2		High-speed mode			13	μs
Slew rate	Tslew1	CL = 20 pF	Low-power		0.02		V/µs
			consumption mode				
	Tslew2		High-speed mode		1.1		V/µs
Load current	lload1	Low-power consumption mod	le	-100		100	μA
	lload2	High-speed mode		-100		100	μA
Load capacitance	CL					20	pF

Note


When the operational amplifier reference current circuit is activated in advance.

2.6.5 POR circuit characteristics

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	TA = -40 to +85°C	1.47	1.51	1.55	V
			TA = +85 to +105°C	1.45	1.51	1.57	V
	VPDR	Power supply fall time Note 1	TA = -40 to +85°C	1.46	1.50	1.54	V
			TA = +85 to +105°C	1.44	1.50	1.56	V
Minimum pulse width Note 2	TPW1	Other than STOP/SUB HALT/SUB RUN	TA = +40 to +105°C	300			μs
	TPW2	STOP/SUB HALT/SUB RUN	TA = +40 to +105°C	300			μs

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.

Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.6 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level		Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pulse widt	h	tLw		300			μs
Detection delay time	9					300	μs

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Р	arameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	າ	tLW		300			μs
Detection delay time	!					300	μs

(2) LVD Detection Voltage of Interrupt & Reset Mode

Parameter	Symbol		Cor	MIN.	TYP.	MAX.	Unit	
Interrupt and	VLVDA0	VPOC0,	0, VPOC1, VPOC2 = 0, 0, 0, falling reset voltage			1.63	1.66	V
reset mode	VLVDA1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC0,	VPOC1, VPOC2 = 0, 0, 1, f	alling reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC0,	VPOC1, VPOC2 = 0, 1, 0, f	alling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, f	alling reset voltage	2.70	2.75	2.81	V
	VLVDD1	1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	1	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

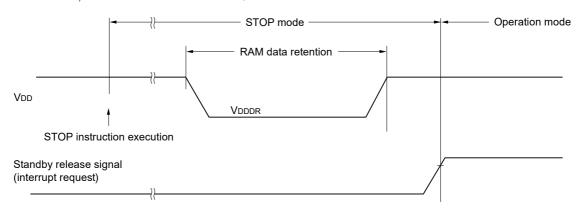
Parameter	Symbol		Condi	MIN.	TYP.	MAX.	Unit	
Interrupt and	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, fall	2.64	2.75	2.86	V	
reset mode	VLVDD1		LVIS0, LVIS1 = 1, 0 Rising release reset voltage		2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V

2.6.7 Power supply voltage rising slope characteristics

(TA = -40 to +105°C	C, Vss = AVss = 0 V)
---------------------	----------------------

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.



2.7 **RAM Data Retention Characteristics**

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR	TA = -40 to +85°C	1.46 Note		3.6	V
		TA = +85 to +105°C	1.44 Note		3.6	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.8 **Flash Memory Programming Characteristics**

	(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)						
	(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)						
1	Demonstern	0	O an alitican a				

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C ^{Note 4}		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

This temperature is the average value at which data are retained. Note 4.

<R>

<R>

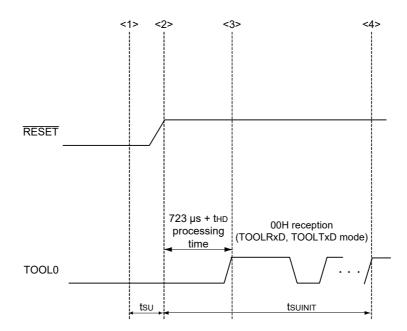
2.9 Dedicated Flash Memory Programmer Communication (UART)

(Ta = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V ≤	≤ AV DD =	$VDD \leq 3.6 V$, Vss = AVss = 0 V)		
Demonstern	0	O and little man	MINI	

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes


(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the	tsuinit	POR and LVD reset must end			100	ms
initial communication settings are specified Note 1		before the external reset ends.				
How long from when the TOOL0 pin is placed at the	ts∪	POR and LVD reset must end	10			μs
low level until an external reset ends Note 1		before the external reset ends.				
How long the TOOL0 pin must be kept at the low	thd	POR and LVD reset must end	1			ms
level after an external reset ends		before the external reset ends.				
(excluding the processing time of the firmware to						
control the flash memory) ^{Notes 1, 2}						

Note 1. Deassertion of the POR and LVD reset signals must precede deassertion of the pin reset signal.

Note 2. This excludes the flash firmware processing time (723 μ s).

<1> The low level is input to the TOOL0 pin.

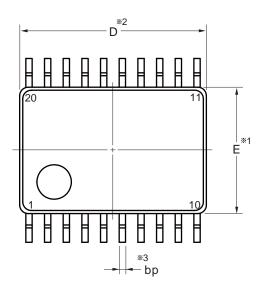
<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

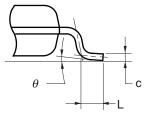
<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

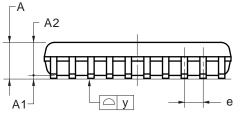
Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

- tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
- tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)


RENESAS

3. PACKAGE DRAWINGS


3.1 20-pin products


R5F1176AGSP, R5F11768GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

detail of lead end

DIMENSIONS
6.50±0.10
4.40±0.10
6.40±0.20
1.45 MAX.
0.10±0.10
1.15
0.65±0.12
0.22 + 0.10 - 0.05
0.15 + 0.05 - 0.02
0.50±0.20
0.10
0° to 10°

© 2012 Renesas Electronics Corporation. All rights reserved.

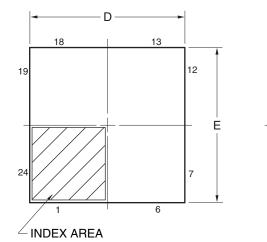
NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "3" does not include trim offset.

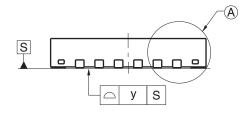
3.2 24-pin products

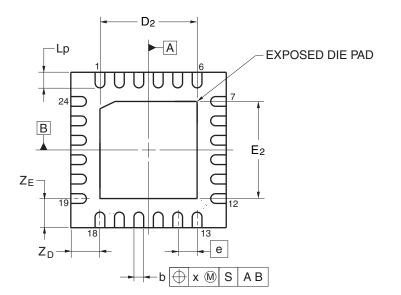
R5F1177AGNA, R5F11778GNA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]	
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04	


0

C

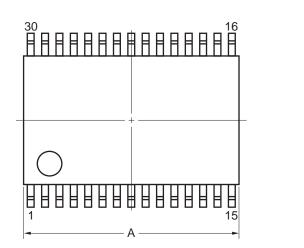

C

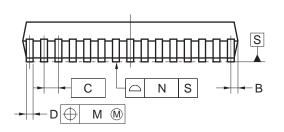

C

O

DETAIL OF A PART

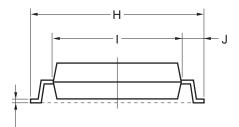
Referance	Dimens	Dimension in Millimeters		
Symbol	Min	Nom	Max	
D	3.95	4.00	4.05	
E	3.95	4.00	4.05	
A			0.80	
A ₁	0.00			
b	0.18	0.25	0.30	
е		0.50		
Lp	0.30	0.40	0.50	
х			0.05	
у			0.05	
ZD		0.75		
Z _E		0.75		
C ₂	0.15	0.20	0.25	
D ₂		2.50		
E ₂		2.50		


©2013 Renesas Electronics Corporation. All rights reserved.


3.3 30-pin products

R5F117ACGSP, R5F117AAGSP, R5F117A8GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

K

ITEM	MILLIMETERS
A	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
К	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	3° ^{+5°} -3°
Т	0.25
U	0.6±0.15

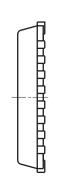
32-pin products 3.4

R5F117BCGNA, R5F117BAGNA

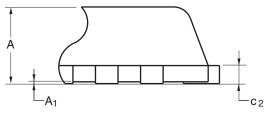
JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HVQFN32-5x5-0.50	PVQN0032KE-A	P32K9-50B-BAH	0.058

 \subset

C


Π

17


е

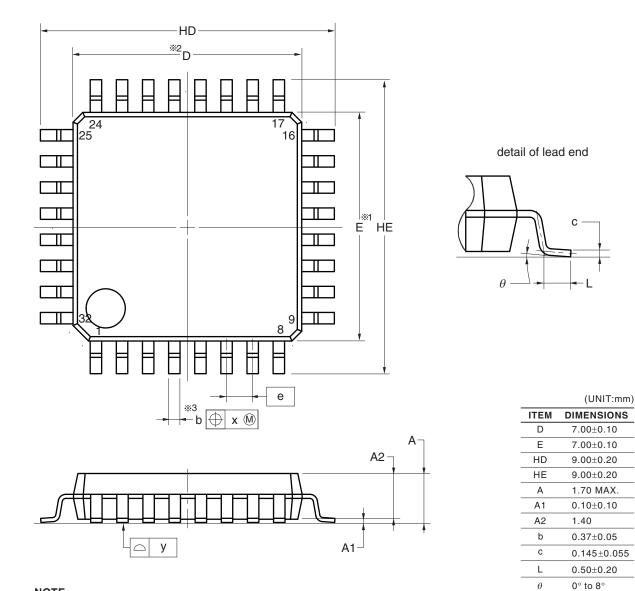
-b 🕀 x 🕅 S AB

16

DETAIL OF (A) PART

Referance	Dimens	Dimension in Millimeters		
Symbol	Min	Nom	Max	
D		4.75		
E		4.75		
А			0.90	
A ₁	0.00			
b	0.20	0.25	0.30	
е		0.50		
Lp	0.30	0.40	0.50	
x			0.10	
У			0.05	
HD	4.95	5.00	5.05	
HE	4.95	5.00	5.05	
Z _D		0.75		
Z _E		0.75		
c ₂	0.19	0.20	0.21	
D ₂		3.30		
E ₂		3.30		

ר


24

25

-Lp

R5F117BAGFP, R5F117BCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

NOTE

1.Dimensions "%1" and "%2" do not include mold flash.

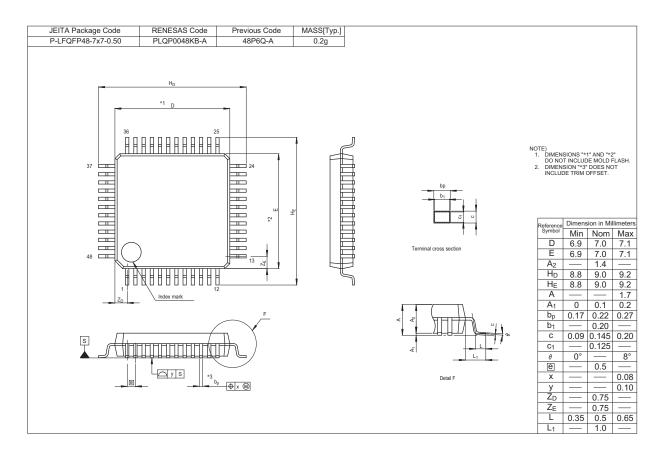
2.Dimension "%3" does not include trim offset.

0.80

0.20

0.10

е


х

у

3.5 48-pin products

<R>

R5F117GCGFB, R5F117GAGFB

REVISION HISTORY	RL78/I1D Datasheet
-------------------------	--------------------

Rev. Date			Description		
Rev.	Date	Page	Summary		
1.00	Aug 29, 2014	_	First Edition issued		
2.00	Jan 16, 2015	24, 25, 27	Addition of note 7 in 2.3.2 Supply current characteristics		
		24, 26	Addition of description in 2.3.2 Supply current characteristics		
		26, 28	Modification of description in 2.3.2 Supply current characteristics		
		28	Correction of error in 2.3.2 Supply current characteristics		
		95	Modification of package drawing in 3.2 24-pin products		
2.20	Feb 20, 2017	ALL	The function name changed from real-time clock to real-time clock 2		
		5	Addition of product name in 1.3.1 20-pin products		
		6	Addition of product name in 1.3.2 24-pin products		
		7	Addition of product name in 1.3.3 30-pin products		
		8	Addition of product name in 1.3.4 32-pin products		
		9	Change of description and addition of product name in 1.3.4 32-pin products		
		10	Addition of product name in 1.3.5 48-pin products		
		13, 14	Change of description in 1.6 Outline of Functions		
		16	Change of 2.1 Absolute Maximum Ratings		
		22	Change of 2.3.1 Pin characteristics		
		24	Change of conditions in 2.3.2 Supply current characteristics		
		25, 27, 28	Change of note 1 in 2.3.2 Supply current characteristics		
3		26	Change of conditions and unit in 2.3.2 Supply current characteristics		
		30	Change of note 3 in 2.3.2 Supply current characteristics		
		31	Addition of note 5 in 2.3.2 Supply current characteristics		
		92	Change of table in 2.8 Flash Memory Programming Characteristics		
		92	Addition of note 4 in 2.8 Flash Memory Programming Characteristics		
		99	Change of package drawing in 3.5 48-pin products		

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.3.0-1 November 2016) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

 Renesas Electronics (China) Co., Ltd.

 Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

 Tei: +86-10-8235-1155, Fax: +86-10-8235-7679

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tei: +86-17-2226-0888, Fax: +86-228-0999

 Renesas Electronics Hong Kong Limited

 Unit 1001-1611, 1617, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tei: +86-2265-6888, Fax: +86-2286-9092

 Renesas Electronics Taiwan Co., Ltd.

 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

 Tei: +88-2-8175-9600, Fax: +886 2-8175-9670

 Renesas Electronics Singapore Pte. Ltd.

 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

 Tei: +261-2020, Fax: +865-210-3000

 Renesas Electronics Malaysia Sdn.Bhd.

 Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

 Tei: +267-2080, Fax: +865-210-3000

 Renesas Electronics India Pvt. Ltd.

 No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India

 Tei: +30-67208700, Fax: +80-7208777

 Renesas Electronics Korea Co., Ltd.

 12F., 234 Teheran-ro, Gangman-Gu, Seoul, 135-080, Korea

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

R5F117BCGNA#4	0 R5F11768GSP#50	0 R5F1176AGSP#30	R5F117BCGFP#50	R5F117GCGFB#50
R5F117A8GSP#50	R5F11768GSP#30	R5F11778GNA#W0	R5F117BAGFP#30	R5F117ACGSP#50
R5F117A8GSP#30	R5F117BAGNA#40	R5F117GAGFB#30	R5F117GAGFB#50	R5F117BAGNA#20
R5F1177AGNA#U0	R5F117BCGFP#30	R5F117GCGFB#30	R5F117ACGSP#30	R5F1176AGSP#50
R5F117AAGSP#50	R5F11778GNA#U0	R5F117AAGSP#30	R5F1177AGNA#W0	R5F117BAGFP#50
R5F117BCGNA#20	R5F11778GNA#20	R5F11778GNA#40	R5F1177AGNA#20	R5F1177AGNA#40