R8C/33T Group RENESAS MCU

1.1 Features

The R8C/33T Group of single-chip MCUs incorporates the R8C CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs are designed to maximize EMI/EMS performance.

Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

The R8C/33T Group has data flash (1 KB \times 4 blocks) with the background operation (BGO) function.

1.1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

Apr 26, 2011

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/33T Group.

	-	
Item	Function	Specification
CPU	Central processing unit	R8C CPU core • Number of fundamental instructions: 89 • Minimum instruction execution time: 50 ns (f(XIN) = 20 MHz, VCC = 2.7 V to 5.5 V) 200 ns (f(XIN) = 5 MHz, VCC = 1.8 V to 5.5 V) • Multiplier: 16 bits \times 16 bits \rightarrow 32 bits • Multiply-accumulate instruction: 16 bits \times 16 bits + 32 bits \rightarrow 32 bits • Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data flash	Refer to Table 1.3 Product List for R8C/33T Group.
Power Supply Voltage Detection	Voltage detection circuit	 Power-on reset Voltage detection 3 (detection level of voltage detection 0 and voltage detection 1 selectable)
I/O Ports	Programmable I/O ports	 Input-only: 1 pin CMOS I/O ports: 27, selectable pull-up resistor High current drive ports: 27
Clock	Clock generation circuits	 3 circuits: XIN clock oscillation circuit, High-speed on-chip oscillator (with frequency adjustment function), Low-speed on-chip oscillator Oscillation stop detection: XIN clock oscillation stop detection function Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16 Low power consumption modes: Standard operating mode (high-speed clock, high-speed on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
Interrupts		 Number of interrupt vectors: 69 External Interrupt: 7 (INT × 4, Key input × 4) Priority levels: 7 levels
Watchdog Tim	er	 14 bits × 1 (with prescaler) Reset start selectable Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	nsfer Controller)	 1 channel Activation sources: 22 Transfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	 8 bits × 1 (with 8-bit prescaler) Timer mode (period timer), pulse output mode (output level inverted every period), event counter mode, pulse width measurement mode, pulse period measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler) Timer mode (period timer), programmable waveform generation mode (PWM output), programmable one-shot generation mode, programmable wait one- shot generation mode
	Timer RC	16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin)

Table 1.1Specifications for R8C/33T Group (1)

Item	Function	Specification		
Serial	UART0	Clock synchronous serial I/O/UART		
Interface	Interface UART2 Clock synchronous serial I/O/UART, I ² C mode (I ² C-bus), SSU mode, multiprocessor communication function			
LIN Module		Hardware LIN: 1 (timer RA, UART0)		
A/D Converter		10-bit resolution \times 12 channels, includes sample and hold function, with sweep mode		
Sensor Contro	l Unit	System CH x 3, electrostatic capacitive touch detection x 18		
Flash Memory		 Programming and erasure voltage: VCC = 2.7 V to 5.5 V Programming and erasure endurance: 10,000 times (data flash) 1,000 times (program ROM) Program security: ROM code protect, ID code check Debug functions: On-chip debug, on-board flash rewrite function Background operation (BGO) function 		
Operating Free Voltage	quency/Supply	f(XIN) = 20 MHz (VCC = 2.7 V to 5.5 V) f(XIN) = 5 MHz (VCC = 1.8 V to 5.5 V)		
Current Consumption		Typ. 6.5 mA (VCC = 5.0 V, f(XIN) = 20 MHz) Typ. 3.5 mA (VCC = 3.0 V, f(XIN) = 10 MHz) Typ. 3.5 μ A (VCC = 3.0 V, wait mode) Typ. 2.0 μ A (VCC = 3.0 V, stop mode)		
Operating Amb	pient Temperature	-20 to 85°C (N version)		
Package		32-pin LQFP Package code: PLQP0032GB-A (previous code: 32P6U-A)		

Table 1.2 Specifications for R8C/33T Group (2)

Current of Apr 2011

1.2 Product List

Table 1.3 lists Product List for R8C/33T Group. Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/33T Group.

Part No.	ROM Capacity		RAM	Package Type	Remarks
Fait NO.	Program ROM	Data flash	Capacity	Fackage Type	Remarks
R5F21334TNFP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLQP0032GB-A	N version
R5F21335TNFP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLQP0032GB-A	
R5F21336TNFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0032GB-A	
R5F21334TNXXXFP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLQP0032GB-A	N version
R5F21335TNXXXFP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLQP0032GB-A	Factory-
R5F21336TNXXXFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0032GB-A	programming product ⁽¹⁾

Table 1.3 Product List for R8C/33T Group

Note:

1. The user ROM is programmed before shipment.

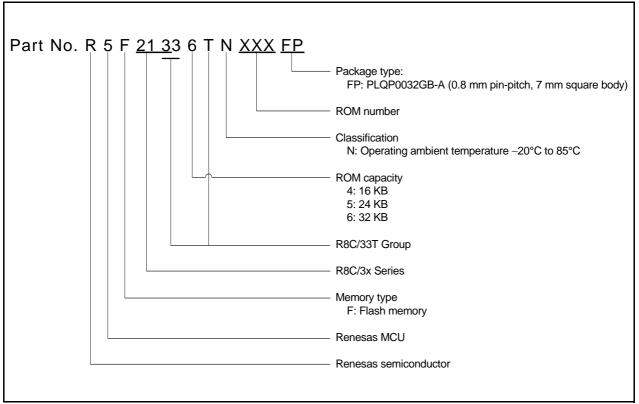


Figure 1.1 Part Number, Memory Size, and Package of R8C/33T Group

1.3 **Block Diagram**

Figure 1.2 shows a Block Diagram.

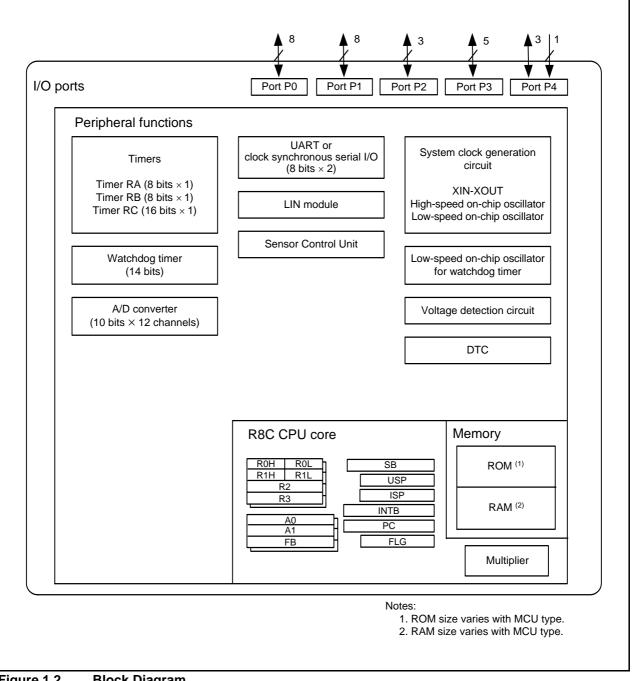
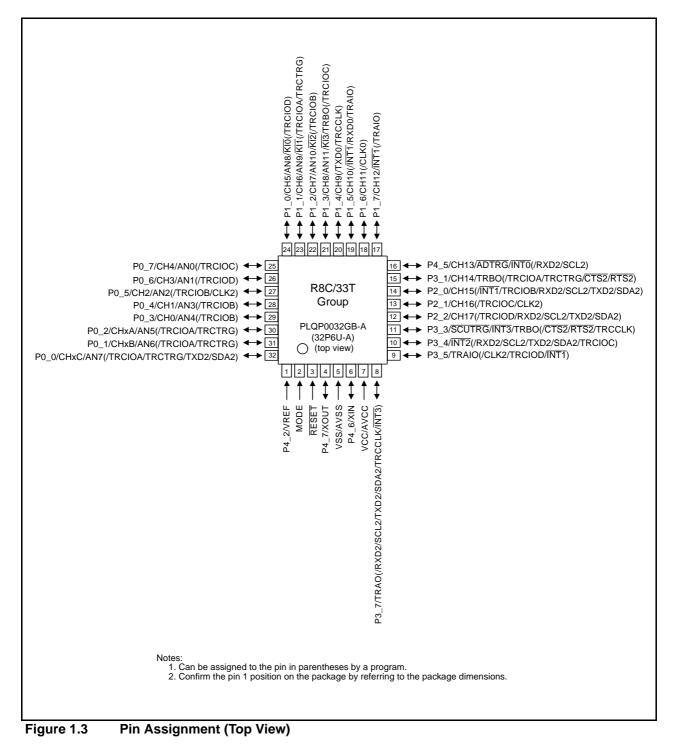



Figure 1.2 **Block Diagram**

1.4 Pin Assignment

Figure 1.3 shows Pin Assignment (Top View). Table 1.4 outlines the Pin Name Information by Pin Number.

Pin			I/O Pin Functions for Peripheral Modules				
Number	Control Pin	Port	Interrupt	Timer	Serial Interface	A/D Converter	Sensor Control Unit
1		P4_2				VREF	
2	MODE						
3	RESET						
4	XOUT	P4_7					
5	VSS/AVSS						
6	XIN	P4_6					
7	VCC/AVCC						
8		P3_7	(INT3)	TRAO/ (TRCCLK)	(RXD2/SCL2/ TXD2/SDA2)		
9		P3_5	(INT1)	TRAIO/ (TRCIOD)	(CLK2)		
10		P3_4	INT2	(TRCIOC)	(RXD2/SCL2/ TXD2/SDA2)		
11		P3_3	INT3	TRBO/ (TRCCLK)	(CTS2/RTS2)		SCUTRG
12		P2_2		(TRCIOD)	(RXD2/TXD2/ SCL2/SDA2)		CH17
13		P2_1		(TRCIOC)	(CLK2)		CH16
14		P2_0	(INT1)	(TRCIOB)	(RXD2/TXD2/ SCL2/SDA2)		CH15
15		P3_1		TRBO/ (TRCTRG/ TRCIOA)	(CTS2/RTS2)		CH14
16		P4_5	INT0		(RXD2/SCL2)	ADTRG	CH13
17		P1_7	INT1	(TRAIO)			CH12
18		P1_6			(CLK0)		CH11
19		P1_5	(INT1)	(TRAIO)	(RXD0)		CH10
20		P1_4	()	(TRCCLK)	(TXD0)		CH9
21		P1_3	KI3	TRBO (/TRCIOC)		AN11	CH8
22		P1_2	KI2	(TRCIOB)		AN10	CH7
23		P1_1	KI1	(TRCIOA/ TRCTRG)		AN9	CH6
24		P1_0	KI0	(TRCIOD)		AN8	CH5
25		P0_7		(TRCIOC)		AN0	CH4
26		P0_6		(TRCIOD)		AN1	CH3
27		P0_5		(TRCIOB)	(CLK2)	AN2	CH2
28		P0_4		(TRCIOB)		AN3	CH1
29		P0_3		(TRCIOB)		AN4	CH0
30		P0_2		(TRCIOA/ TRCTRG)		AN5	CHxA
31		P0_1		(TRCIOA/ TRCTRG)		AN6	CHxB
32		P0_0		(TRCIOA/ TRCTRG)	(TXD2/SDA2)	AN7	CHxC

Table 1.4	Pin Name Information by Pin Number
-----------	------------------------------------

Note:

1. Can be assigned to the pin in parentheses by a program.

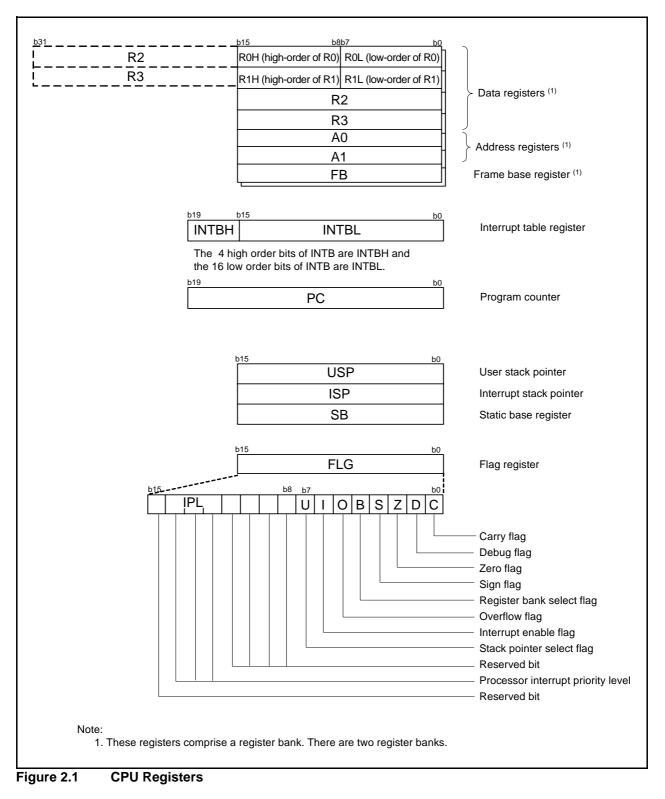
1.5 Pin Functions

Table 1.5 lists Pin Functions.

Table 1.5Pin Functions

Item	Pin Name	I/O Type	Description
Power supply input	VCC, VSS	—	Apply 1.8 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin
Analog power supply input	AVCC, AVSS	—	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between
XIN clock output	XOUT	I/O	the XIN and XOUT pins. ⁽¹⁾ To use an external clock, input it to the XOUT pin and leave the XIN pin open.
INT interrupt input	INT0 to INT3	Ι	INT interrupt input pins. INT0 is timer RB, and RC input pin.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins
Serial interface	CLK0, CLK2	I/O	Transfer clock I/O pins
	RXD0, RXD2	I	Serial data input pins
	TXD0, TXD2	0	Serial data output pins
	CTS2	I	Transmission control input pin
	RTS2	0	Reception control output pin
	SCL2	I/O	I ² C mode clock I/O pin
	SDA2	I/O	I ² C mode data I/O pin
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
	ADTRG	I	AD external trigger input pin
Sensor control unit	CHxA, CHxB, CHxC	I/O	Control pins for electrostatic capacitive touch detection
	CH0 to CH17	I	Electrostatic capacitive touch detection pins
	SCUTRG	I	Sensor control unit external trigger input
I/O port	P0_0 to P0_7,	I/O	CMOS I/O ports. Each port has an I/O select direction
	P1_0 to P1_7, P2_0 to P2_2, P3_1, P3_3 to P3_5, P3_7,		register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports.
	P4_5 to P4_7		
	1	1	

Note:


State was the second second

1. Refer to the oscillator manufacturer for oscillation characteristics.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

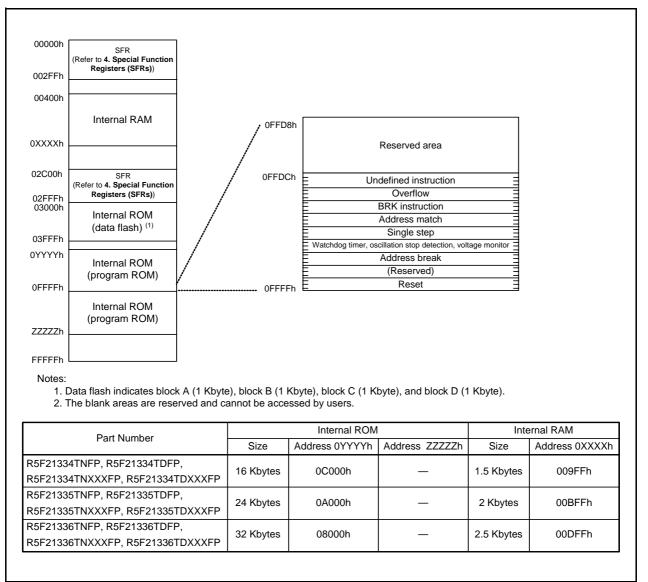
IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

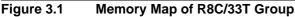
If necessary, set to 0. When read, the content is undefined.

3. Memory

3.1 R8C/33T Group


Figure 3.1 is a Memory Map of R8C/33T Group. The R8C/33T Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.


The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

RENESAS

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers. Table 4.13 lists the ID Code Areas and Option Function Select Area.

Address	Register	Symbol	After Reset
0000h	Kegistei	Symbol	Alter Reset
00001h			
0002h			
0002h			
0003h	Processor Mode Register 0	PM0	00h
0004h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CMO	00101000b
0000h	System Clock Control Register 1	CM1	00100000b
0008h	Module Standby Control Register	MSTCR	00h
0009h	System Clock Control Register 3	CM3	00h
000Ah	Protect Register	PRCR	00h
000Bh	Reset Source Determination Register	RSTFR	0XXXXXXb ⁽²⁾
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Eh	Watchdog Timer Control Register	WDTC	00111111b
0010h			
0011h			
0012h			
0012h			
0013h			
0015h	High-Speed On-Chip Oscillator Control Register 7	FRA7	When shipping
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
	Ŭ		1000000b (3)
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	When shipping
002Ah	High-Speed On-Chip Oscillator Control Register 5	FRA5	When shipping
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	When shipping
002Ch			
002Dh			
002Eh			
002Fh	High-Speed On-Chip Oscillator Control Register 3	FRA3	When shipping
0030h	Voltage Monitor Circuit Control Register	СМРА	00h
0031h	Voltage Monitor Circuit Edge Select Register	VCAC	00h
0032h			
0033h	Voltage Detect Register 1	VCA1	00001000b
0034h	Voltage Detect Register 2	VCA2	00h ⁽⁴⁾
			00100000b ⁽⁵⁾
0035h			
0036h	Voltage Detection 1 Level Select Register	VD1LS	00000111b
0037h			
0037h	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b (4)
000011		******	
00205	Voltage Maniter 1 Circuit Control Basister	VW1C	1100X011b ⁽⁵⁾ 10001010b
0039h	Voltage Monitor 1 Circuit Control Register	VVVIC	100010100

Table 4.1SFR Information (1) (1)

X: Undefined

Notes:

2. The CWR bit in the RSTFR register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, Software reset, or watchdog timer reset does not affect this bit.

3. The CSPROINI bit in the OFS register is set to 0.

4. The LVDAS bit in the OFS register is set to 1.

5. The LVDAS bit in the OFS register is set to 0.

^{1.} The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
003Ah	Voltage Monitor 2 Circuit Control Register	VW2C	10000010b
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			
0040h			
0041h	Flash Memory Ready Interrupt Control Register	FMRDYIC	XXXXX000b
0042h			
0043h			
0044h			
0045h 0046h			
0046h	Timer RC Interrupt Control Register	TRCIC	XXXXX000b
004711 0048h		TROIC	~~~~~000b
0049h			
004Ah			
004Bh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	-	İ	
0050h			
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h			
0054h			
0055h	INT2 Interrupt Control Register	INT2IC	XX00X000b
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h		75510	
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah 005Bh	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh			
005Ch	INT0 Interrupt Control Register	INTOIC	XX00X000b
005Eh	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
005Fh	OARTZ Bus Comsion Detection Interrupt Control Register	OZBEINE	
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah	Sensor Control Unit Interrupt Control Register	SCUIC	XXXXX000b
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h 0072h	Voltage Monitor 1 Interrupt Control Register	VCMP1IC	XXXXX000b
0072h 0073h	Voltage Monitor 1 Interrupt Control Register	VCMP1IC VCMP2IC	XXXXX000b
0073h 0074h	volage wontor 2 interrupt control Register	VCIVIFZIC	~~~~~
007411 0075h			
0076h			
0077h			
0078h			
0079h			
007Ah		İ	
007Bh			
007Ch			
007Dh			
007Eh			
007Fh			

SFR Information (2) ⁽¹⁾ Table 4.2

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Bogistor	Symbol	After Reset
0080h	Register DTC Activation Control Register	DTCTL	00h
0080h		DICIE	0011
0081h			
0082h			
0083h			
0085h			
0086h			
0087h			
0087h	DTC Activation Enable Provinter 0	DTCEN0	00h
0089h	DTC Activation Enable Register 0 DTC Activation Enable Register 1	DTCEN0	00h
0089h	DTC Activation Enable Register 2	DTCEN1 DTCEN2	00h
008An	DTC Activation Enable Register 3	DTCEN2	00h
008Ch	DTC ACtivation Enable Register 5	DICENS	0011
008Ch	DTC Activation Enable Register 5	DTCEN5	00h
	DTC Activation Enable Register 6	DTCENS DTCEN6	00h
008Eh 008Fh		DICENO	oon
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	UORB	XXh
00A7h			XXh
00A8h	UART2 Transmit/Receive Mode Register	U2MR	00h
00A9h	UART2 Bit Rate Register	U2BRG	XXh
00AAh	UART2 Transmit Buffer Register	U2TB	XXh
00ABh		_	XXh
00ACh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
00ADh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
00AEh	UART2 Receive Buffer Register	U2RB	XXh
00AFh		02.02	XXh
00B0h	UART2 Digital Filter Function Select Register	URXDF	00h
00B0h			
00R2h			
00B2h 00B3h			
00B3h			
00B3h 00B4h			
00B3h 00B4h 00B5h			
00B3h 00B4h 00B5h 00B6h			
00B3h 00B4h 00B5h 00B6h 00B7h			
00B3h 00B4h 00B5h 00B6h 00B7h 00B8h			
00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h			
00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh			
00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BBh	UART2 Special Mode Register 5	U2SMR5	00h
00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BBh 00BCh	UART2 Special Mode Register 4	U2SMR4	00h
00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BAh 00BBh 00BCh	UART2 Special Mode Register 4 UART2 Special Mode Register 3	U2SMR4 U2SMR3	00h 000X0X0Xb
00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BBh 00BCh	UART2 Special Mode Register 4	U2SMR4	00h

Table 4.3SFR Information (3) (1)

X: Undefined Note:

Addroop	Porieter	Symbol	After Reset
Address	Register		
00C0h	A/D Register 0	AD0	XXh
00C1h			000000XXb
00C2h	A/D Register 1	AD1	XXh
00C3h			000000XXb
00C4h	A/D Register 2	AD2	XXh
00C5h		102	000000XXb
		4.50	
00C6h	A/D Register 3	AD3	XXh
00C7h			000000XXb
00C8h	A/D Register 4	AD4	XXh
00C9h			000000XXb
00CAh	A/D Register 5	AD5	XXh
00CBh		120	000000XXb
		100	
00CCh	A/D Register 6	AD6	XXh
00CDh			000000XXb
00CEh	A/D Register 7	AD7	XXh
00CFh			000000XXb
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Mode Register	ADMOD	00h
00D5h	A/D Input Select Register	ADINSEL	1100000b
00D6h	A/D Control Register 0	ADCON0	00h
00D0h	A/D Control Register 1	ADCON0 ADCON1	00h
		ADCONT	001
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			-
00DDh			
00DEh			
00DFh			
00E0h	Port P0 Register	P0	XXh
00E1h	Port P1 Register	P1	XXh
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h	Port P2 Register	P2	XXh
00E5h	Port P3 Register	P3	XXh
00E6h	Port P2 Direction Register	PD2	00h
00E7h	Port P3 Direction Register	PD3	00h
		P4	
00E8h	Port P4 Register	P4	XXh
00E9h			
00EAh	Port P4 Direction Register	PD4	00h
00EBh			
00ECh		1	
00EDh			+
00EEh			
00EFh			
00F0h			
00F1h			
00F2h		1	
00F3h		1	+
00F4h			4
00F5h			
00F6h			
00F7h			
00F8h			+
			+
00F9h			
00FAh			
00FBh			
00FCh			
00FDh		1	
00FEh		1	+
00FFh			
Villadafiaad			

Table 4.4SFR Information (4) (1)

Note:

Address	Degister	Cumhal	After Deset
Address	Register	Symbol	After Reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h	LIN Control Register 2	LINCR2	00h
	LIN Control Register		
0106h		LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			
0116h			
0117h			l
0118h			
0119h			
011Ah			
011Bh			
011Ch			
011Dh			
011Eh			
011Fh			
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0123h		TRCIOR0	10001000b
	Timer RC I/O Control Register 0		
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b
0126h	Timer RC Counter	TRC	00h
0127h			00h
0128h	Timer RC General Register A	TRCGRA	FFh
0129h			FFh
	Timer RC General Register B	TRCGRB	
012Ah		INUGRD	FFh
012Bh			FFh
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh			FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh	Ĭ		FFh
0121 h	Timer RC Control Register 2	TRCCR2	00011000b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	01111111b
0133h	Timer RC Trigger Control Register	TRCADCR	00h
0134h			
0135h			1
0136h			
0130h			l
0138h			
0139h			<u> </u>
013Ah			
013Bh			1
013Ch			
013Dh			l
013Eh			
013Fh			

Table 4.5SFR Information (5) (1)

Note:

Address	Register	Symbol	After Reset
0140h			
0141h			
0142h			
0143h			
0144h			
0145h			
0146h			
0147h			
0148h			
0149h			
014Ah			
014Bh			
014Ch			
014Dh			
014Eh			
014Fh			
0150h			
0151h			
0152h			
0153h			1
0154h		1	1
0155h			
0156h			
0157h			
0158h			
0159h			
015Ah			
015Bh			
015Ch			
015Dh			
015Eh			
015Eh			
0160h			
0161h			
0162h			
0162h			
0164h			
0165h			
0166h			
0166h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h			
0171h			
0172h			
0173h			
0174h			
0175h			
0176h			
0177h			
0178h			
0179h			
017Ah			
017Bh			
017Ch			
017Dh		1	1
017Eh			
017Eh			
Note:		1	

Table 4.6	SFR Information (6) ⁽¹⁾
-----------	------------------------------------

Note:

Address	Register	Symbol	After Reset
0180h	Timer RA Pin Select Register	TRASR	00h
0181h	Timer RB/RC Pin Select Register	TRBRCSR	00h
0182h	Timer RC Pin Select Register 0	TRCPSR0	00h
0183h	Timer RC Pin Select Register 0	TRCPSR0	00h
		IRCPORT	000
0184h			
0185h			
0186h			
0187h			
0188h	UARTO Pin Select Register	U0SR	00h
0189h			
018Ah	UART2 Pin Select Register 0	U2SR0	00h
018Bh	UART2 Pin Select Register 1	U2SR1	00h
018Ch	-		
018Dh			
018Eh	INT Interrupt Input Pin Select Register	INTSR	00h
018Fh	I/O Function Pin Select Register	PINSR	00h
0190h	Low-Voltage Signal Mode Control Register	TSMR	00h
		TOWIK	0011
0191h			
0192h			
0193h			
0194h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh			l
01ABh			
01ACh			1
01ADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h	Flash Memory Status Register	FST	10000X00b
01B3h		1	
01B4h	Flash Memory Control Register 0	FMR0	00h
01B5h	Flash Memory Control Register 1	FMR1	00h
01B5h	Flash Memory Control Register 2	FMR2	00h
	i iash wennury culturi Neyister 2		
01B7h			ł
01B8h			l
01B9h			1
01BAh			
01BBh			
01BCh			
01BDh			
01BEh			
01BFh			1
X: Undefined	1	I	L

Table 4.7SFR Information (7) (1)

Note:

Address	Register	Symbol	After Reset
01C0h	Address Match Interrupt Register 0	RMAD0	XXh
01C1h			XXh
01C2h			0000XXXXb
01C3h	Address Match Interrupt Enable Register 0	AIER0	00h
01C4h	Address Match Interrupt Register 1	RMAD1	XXh
	Address Match Interrupt Register 1	RIVIADI	
01C5h			XXh
01C6h			0000XXXXb
01C7h	Address Match Interrupt Enable Register 1	AIER1	00h
01C8h			
01C9h			
01CAh			
01CBh			
01CCh			
01CDh			
01CEh			
01CFh			
01D0h			
01D1h			
01D1h 01D2h			
01D2h 01D3h			
01D4h			
01D5h			
01D6h			
01D7h			
01D8h			
01D9h			
01DAh			
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			
01E0h	Pull-Up Control Register 0	PUR0	00h
01E1h	Pull-Up Control Register 1	PUR1	00h
01E2h			0011
01E2h			
01E4h			
01E5h			
01E6h			
01E7h			
01E8h			
01E9h			
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
	Port P1 Drive Capacity Control Register	P1DRR	00h
01F1h	Port P2 Drive Capacity Control Register	P2DRR	00h
01F2h	Drive Capacity Control Register 0	DRR0	00h
01F3h	Drive Capacity Control Register 0	DRR1	00h
01F4h			0011
01F5h	Input Threshold Control Register 0	VLT0	00h
01F5h	Input Threshold Control Register 0	VLT0 VLT1	
01500		VLII	00h
01F7h			
01F8h			
01F9h			0.01
01FAh	External Input Enable Register 0	INTEN	00h
01FBh			
01FCh	INT Input Filter Select Register 0	INTF	00h
01FDh			
01FEh	Key Input Enable Register 0	KIEN	00h
01FFh	-		
X: Undefined		1	

Table 4.8SFR Information (8) (1)

Note:

A -1 -1		2 · · ·	
Address	Register	Symbol	After Reset
02C0h	SCU Control Register 0	SCUCR0	00h
02C1h	SCU Mode Register	SCUMR	00h
02C2h	SCU Timing Control Register 0	SCTCR0	00000011b
02C3h	SCU Timing Control Register 1	SCTCR1	0000001b
02C4h	SCU Timing Control Register 2	SCTCR2	00010000b
02C5h	SCU Timing Control Register 3	SCTCR3	00h
02C6h	SCU Channel Control Register	SCHCR	00h
02C7h	SCU Channel Control Counter	SCUCHC	00h
02C8h	SCU Flag Register	SCUFR	00h
02C8h	SCU Status Counter	SCUSTC	00h
02CAh	SCU Secondary Counter Set Register	SCSCSR	00000111b
02CBh	SCU Secondary Counter	SCUSCC	00000111b
02CCh			
02CDh			
02CEh	SCU Destination Address Register	SCUDAR	00h
02CFh			00001100b
02D0h	SCU Data Buffer Register	SCUDBR	00h
02D1h		000000	00h
02D1h	SCU Primary Counter	SCUPRC	00h
		SCOFIC	
02D3h			00h
02D4h			
02D5h			
02D6h			
02D7h			
02D8h		1	
02D9h		1	
02DOh			
02DBh			
02DBh 02DCh	Touch Sensor Input Enable Register 0		0.01
		TSIER0	00h
02DDh	Touch Sensor Input Enable Register 1	TSIER1	00h
02DEh	Touch Sensor Input Enable Register 2	TSIER2	00h
02DFh			
:			
2C00h	DTC Transfer Vector Area		XXh
2C01h	DTC Transfer Vector Area		XXh
2C02h	DTC Transfer Vector Area		XXh
2C03h	DTC Transfer Vector Area		XXh
2C04h	DTC Transfer Vector Area		XXh
2C05h	DTC Transfer Vector Area		XXh
2C05h			XXh
	DTC Transfer Vector Area		
2C07h	DTC Transfer Vector Area		XXh
2C08h	DTC Transfer Vector Area		XXh
2C09h	DTC Transfer Vector Area		XXh
2C0Ah	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
2C3Ah	DTC Transfer Vector Area		XXh
2C3An 2C3Bh	DTC Transfer Vector Area		XXh
2C3Ch	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area		XXh
2C3Eh	DTC Transfer Vector Area		XXh
2C3Fh	DTC Transfer Vector Area		XXh
2C40h	DTC Control Data 0	DTCD0	XXh
2C41h	1	1	XXh
2C42h	1		XXh
2C43h	1		XXh
2C43h	4		XXh
	4		
2C45h	4		XXh
2C46h	1		XXh
			XXh
2C47h	DTC Control Data 1	DTCD1	XXh
2C47h 2C48h		1	XXh
2C48h 2C49h			
2C48h 2C49h 2C4Ah			XXh
2C48h 2C49h 2C4Ah 2C4Bh			XXh XXh
2C48h 2C49h 2C4Ah 2C4Bh 2C4Ch			XXh XXh XXh
2C48h 2C49h 2C4Ah 2C4Bh 2C4Ch 2C4Ch			XXh XXh XXh XXh
2C48h 2C49h 2C4Ah 2C4Bh 2C4Ch			XXh XXh XXh

Table 4.9SFR Information (9) (1)

Note:

Aslahasas	Desister	Querrate al	After Decet
Address	Register	Symbol	After Reset
2C50h	DTC Control Data 2	DTCD2	XXh
2C51h			XXh
2C52h	-		XXh
	_		
2C53h			XXh
2C54h			XXh
2C55h			XXh
2C56h			XXh
2C57h			XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h		21020	XXh
2C5Ah			XXh
2C5Bh			XXh
2C5Ch	-		XXh
	_		
2C5Dh			XXh
2C5Eh			XXh
2C5Fh			XXh
		DTOD (
2C60h	DTC Control Data 4	DTCD4	XXh
2C61h			XXh
2C62h	1		XXh
	4		
2C63h			XXh
2C64h			XXh
2C65h	1		XXh
2C66h	4		XXh
2C67h			XXh
2C68h	DTC Control Data 5	DTCD5	XXh
2C69h			XXh
	_		
2C6Ah			XXh
2C6Bh			XXh
2C6Ch			XXh
	_		
2C6Dh			XXh
2C6Eh			XXh
2C6Fh	1		XXh
2C70h	DTC Cantral Data 6	DTCD6	
	DTC Control Data 6	DICDO	XXh
2C71h			XXh
2C72h			XXh
2C73h			XXh
	_		
2C74h			XXh
2C75h			XXh
2C76h	1		XXh
	_		
2C77h			XXh
2C78h	DTC Control Data 7	DTCD7	XXh
2C79h	1		XXh
2073h	4		XXh
	4		
2C7Bh			XXh
2C7Ch			XXh
2C7Dh	4		XXh
	4		
2C7Eh	1		XXh
2C7Fh			XXh
2C80h	DTC Control Data 8	DTCD8	XXh
		51000	
2C81h	4		XXh
2C82h			XXh
2C83h			XXh
2C84h	1		XXh
	4		
2C85h	1		XXh
2C86h			XXh
2C87h	1		XXh
	DTC Control Data 0	DTODO	
2C88h	DTC Control Data 9	DTCD9	XXh
2C89h			XXh
2C8Ah	1		XXh
	4		XXh
2C8Bh	4		
2C8Ch			XXh
2C8Dh	7		XXh
2C8Eh	1		XXh
	-		
2C8Fh			XXh
Y: Undofined			

Table 4.10SFR Information (10) (1)

Note:

Address	Register	Symbol	After Reset
2C90h	DTC Control Data 10	DTCD10	XXh
2C91h			XXh
2C92h	-		
			XXh
2C93h			XXh
2C94h			XXh
2C95h			XXh
2C96h			XXh
2C97h			XXh
2C98h	DTC Control Data 11	DTCD11	XXh
2C99h		510511	XXh
2C9Ah			XXh
2C9Bh			XXh
2C9Ch			XXh
2C9Dh			XXh
2C9Eh			XXh
2C9Fh			XXh
2CA0h	DTC Control Data 12	DTCD12	XXh
	DTC CONTOL Data 12	DICDIZ	
2CA1h			XXh
2CA2h			XXh
2CA3h	1		XXh
	4		
2CA4h	1		XXh
2CA5h			XXh
2CA6h	1		XXh
2CA7h	4		XXh
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
2CAAh			XXh
2CABh			XXh
2CACh			XXh
2CADh			XXh
2CAEh	-		
			XXh
2CAFh			XXh
2CB0h	DTC Control Data 14	DTCD14	XXh
2CB1h		-	XXh
2CB2h			XXh
2CB3h			XXh
2CB4h			XXh
2CB5h	-		XXh
2CB6h			XXh
2CB7h			XXh
2CB8h	DTC Control Data 15	DTCD15	XXh
	DTC CONTOL Data 15	DICDIS	
2CB9h			XXh
2CBAh			XXh
2CBBh	1		XXh
	4		
2CBCh	4		XXh
2CBDh			XXh
2CBEh	7		XXh
2CBFh	1		XXh
		PTOD <i>i</i> A	
	DTC Control Data 16	DTCD16	XXh
2CC1h			XXh
2CC2h	1		XXh
2002h	4		
	4		XXh
2CC4h			XXh
2CC5h	7		XXh
2CC6h	1		XXh
	4		
2CC7h			XXh
2CC8h	DTC Control Data 17	DTCD17	XXh
2CC9h	1	-	XXh
	4		
2CCAh			XXh
2CCBh			XXh
2CCCh	1		XXh
	4		
2CCDh	4		XXh
2CCEh			XXh
2CCFh	7		XXh
Y: Undefined	1		

Table 4.11SFR Information (11) (1)

Note:

Address	Register	Symbol	After Reset
2CD0h	DTC Control Data 18	DTCD18	XXh
2CD1h			XXh
2CD2h			XXh
2CD3h			XXh
2CD4h			XXh
2CD5h			XXh
2CD6h	4		XXh
2CD7h	4		XXh
2CD8h	DTC Control Data 19	DTCD19	XXh
2CD9h		2.02.0	XXh
2CDAh			XXh
2CDBh			XXh
2CDCh			XXh
2CDDh	-		XXh
2CDDh 2CDEh	-		XXh
2CDEh 2CDFh	4		XXh
2CDFI 2CE0h	DTC Control Data 20	DTCD20	XXh
2CE0II 2CE1h		DICD20	XXh
2CE2h	4		XXh
2CE2h	4		XXh
2CE3h	4		XXh
2CE4II 2CE5h	4		XXh
2CE5h	4		XXh
2CE01 2CE7h	4		XXh
2CE711 2CE8h	DTC Control Data 21	DTCD21	XXh
2CE0h		DICD21	XXh
2CE911 2CEAh	4		XXh
2CEAn 2CEBh			XXh
2CEBI 2CECh	4		XXh
2CECh 2CEDh			XXh
2CEDh 2CEEh			XXh
2CEFh	DTO Operated Data 00	DTODOO	XXh
2CF0h 2CF1h	DTC Control Data 22	DTCD22	XXh XXh
	-		
2CF2h			XXh
2CF3h	4		XXh
2CF4h	4		XXh
2CF5h	4		XXh
2CF6h	4		XXh
2CF7h		DTODOO	XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h	4		XXh
2CFAh	4		XXh
2CFBh	4		XXh
2CFCh			XXh
2CFDh			XXh
2CFEh	1		XXh
2CFFh			XXh
2D00h			
:			
2FFFh			
Y · I Indefined			

Table 4.12SFR Information (12) (1)

Note:

Address	Area Name	Symbol	After Reset
:			
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
:			
FFEFh	ID4		(Note 2)
:			
FFF3h	ID5		(Note 2)
:	100		
FFF7h	ID6		(Note 2)
:	107		
FFFBh	ID7		(Note 2)
	Ortion Function Colort Desister	050	(NI-4- 4)
FFFFh	Option Function Select Register	OFS	(Note 1)

Table 4.13 ID Code Areas and Option Function Select Area

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

5. Electrical Characteristics

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		–0.3 to 6.5	V
Vi	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-20^{\circ}C \le Topr \le 85^{\circ}C$	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version)	°C
Tstg	Storage temperature		-65 to 150	°C

Cumhal		De	romotor		Conditions	;	Standard	ł	Linit
Symbol		Pa	arameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage					1.8		5.5	V
Vss/AVss	Supply voltage					—	0	_	V
Viн	Input "H" voltage	Other th	nan CMOS ir	nput		0.8 Vcc	—	Vcc	V
		CMOS	Input level	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	_	Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc		Vcc	V
			function (I/O port)		$1.8~V \leq Vcc < 2.7~V$	0.65 Vcc		Vcc	V
			(1/0 port)	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc		Vcc	V
				: 0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc		Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.8 Vcc	_	Vcc	V
				Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.85 Vcc	—	Vcc	V
				: 0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.85 Vcc	—	Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.85 Vcc	_	Vcc	V
			I clock input	. ,		1.2	—	Vcc	V
VIL	Input "L" voltage	-	nan CMOS ir			0	_	0.2 Vcc	V
		CMOS	Input level	Input level selection		0	—	0.2 Vcc	V
		input	switching function	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	_	0.2 Vcc	V
			(I/O port)		$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	_	0.2 Vcc	V
			(Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0		0.4 Vcc	V
			: 0.5 \	: 0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0		0.3 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0		0.2 Vcc	V
				Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0		0.55 Vcc	V
				: 0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0		0.45 Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	_	0.35 Vcc	V
			I clock input			0		0.4 Vcc	V
IOH(sum)	Peak sum output "H" current		all pins IOH(p			_	_	-160	mA
IOH(sum)	Average sum output "H" current	Sum of	all pins IOH(a	ivg)		—	—	-80	mA
IOH(peak)	Peak output "H"	Drive ca	apacity Low			—		-10	mA
	current	Drive ca	apacity High			—	—	-40	mA
IOH(avg)	Average output	Drive ca	apacity Low			—		-5	mA
	"H" current	Drive ca	apacity High			—		-20	mA
IOL(sum)	Peak sum output "L" current	Sum of	all pins IOL(p	eak)		—	_	160	mA
IOL(sum)	Average sum output "L" current	Sum of	all pins IOL(a	vg)		—	—	80	mA
IOL(peak)	Peak output "L"	Drive ca	apacity Low			_	_	10	mA
	current	Drive ca	apacity High			_	_	40	mA
IOL(avg)	Average output	Drive ca	apacity Low			_	_	5	mA
	"L" current	Drive ca	apacity High			_	_	20	mA
f(XIN)	XIN clock input os	cillation fr	requency		$2.7~V \leq Vcc \leq 5.5~V$	—	_	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	—	_	5	MHz
fOCO40M	When used as the	count so	urce for time	er RC ⁽³⁾	$2.7~V \leq Vcc \leq 5.5~V$	32	—	40	MHz
fOCO-F	fOCO-F frequency				$2.7~V \leq Vcc \leq 5.5~V$	_	—	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	_	—	5	MHz
—	System clock frequ	lency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$		_	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	_	—	5	MHz
f(BCLK)	CPU clock frequer	ю			$2.7~V \leq Vcc \leq 5.5~V$		—	20	MHz
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	_	_	5	MHz

Table 5.2 Recommended Operating Conditions

Notes:

1. Vcc = 1.8 V to 5.5 V at Topr = -20° C to 85°C (N version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5 V.

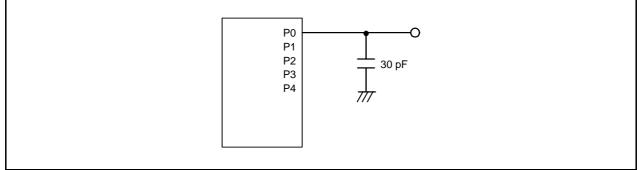


Figure 5.1 Ports P0 to P4 Timing Measurement Circuit

Symbol	Parameter		Cond	itions		Standard		Unit
Symbol	i alameter		Cond	10113	Min.	Тур.	Max.	Offic
—	Resolution		Vref = AVcc		_		10	Bit
	Absolute accuracy	10-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input AN8 to AN11 input	_	—	±3	LSB
			Vref = AVcc = 3.3 V	AN0 to AN7 input AN8 to AN11 input		—	±5	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input AN8 to AN11 input	_	_	±5	LSB
			Vref = AVcc = 2.2 V	AN0 to AN7 input AN8 to AN11 input	_	_	±5	LSB
		8-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input AN8 to AN11 input	_	—	±2	LSB
			Vref = AVcc = 3.3 V	AN0 to AN7 input AN8 to AN11 input	_	—	±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input AN8 to AN11 input	_	—	±2	LSB
			Vref = AVcc = 2.2 V	AN0 to AN7 input AN8 to AN11 input	_	_	±2	LSB
φAD	A/D conversion clock		4.0 V \leq Vref = AVcc \leq	5.5 V ⁽²⁾	2		20	MHz
			$3.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	5.5 V ⁽²⁾	2		16	MHz
			$2.7 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	5.5 V ⁽²⁾	2		10	MHz
			$2.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	5.5 V ⁽²⁾	2		5	MHz
—	Tolerance level impedanc	e				3	—	kΩ
t CONV	Conversion time	10-bit mode	Vref = AVcc = 5.0 V, ¢	AD = 20 MHz	2.2			μS
		8-bit mode	Vref = AVcc = 5.0 V, ¢	AD = 20 MHz	2.2			ms
tSAMP	Sampling time		φAD = 20 MHz		0.8			μS
IVref	Vref current		Vcc = 5.0 V, XIN = f1 = φAD = 20 MHz		_	45	—	μΑ
Vref	Reference voltage				2.2	—	AVcc	V
Via	Analog input voltage (3)				0		Vref	V
OCVREF	On-chip reference voltage	•	$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	Z	1.19	1.34	1.49	V

Table 5.3 A/D Converter Characteristics

Notes:

1. Vcc/AVcc = Vref = 2.2 V to 5.5 V, Vss = 0 V at Topr = -20° C to 85° C (N version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-consumption current mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Symbol	Parameter	Conditions		Unit			
Symbol	Parameter	Conditions	Min. Typ.		Max.	Unit	
_	Program/erase endurance (2)		1,000 (3)	—	—	times	
_	Byte program time		—	80	500	μS	
—	Block erase time		—	0.3	—	S	
td(SR-SUS)	Time delay from suspend request until suspend		—	—	5 + CPU clock × 3 cycles	ms	
—	Interval from erase start/restart until following suspend request		0	—	_	μS	
_	Time from suspend until erase restart		—	—	30 + CPU clock × 1 cycle	μS	
td(CMDRST -READY)	Time from when command is forcibly terminated until reading is enabled		—	—	30 + CPU clock × 1 cycle	μS	
	Program, erase voltage		2.7	—	5.5	V	
—	Read voltage		1.8	—	5.5	V	
—	Program, erase temperature		0	—	60	°C	
—	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	—	—	year	

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

Notes:

1. Vcc = 2.7 V to 5.5 V at Topr = 0° C to 60° C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

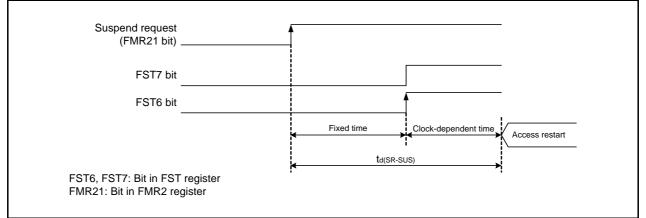
3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

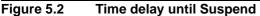
4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.


Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
—	Program/erase endurance (2)		10,000 (3)	_	—	times
-	Byte program time (program/erase endurance ≤ 1,000 times)		—	160	1,500	μS
-	Byte program time (program/erase endurance > 1,000 times)		_	300 1,500		μS
-	Block erase time (program/erase endurance ≤ 1,000 times)		_	0.2	1	S
-	Block erase time (program/erase endurance > 1,000 times)		_	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		—	— 5 + CPU clock × 3 cycles		ms
-	Interval from erase start/restart until following suspend request		0	—	—	μS
-	Time from suspend until erase restart		—	— 30 + CPU clock × 1 cycle		μS
td(CMDRST -READY)	Time from when command is forcibly terminated until reading is enabled		_	—	30 + CPU clock × 1 cycle	μS
—	Program, erase voltage		2.7		5.5	V
—	Read voltage		1.8	_	5.5	V
—	Program, erase temperature		-20	_	85	°C
_	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	_		year


Table 5.5 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Notes:

1. Vcc = 2.7 V to 5.5 V at Topr = -20°C to 85°C (N version), unless otherwise specified.

- 2. Definition of programming/erasure endurance
- The programming and erasure endurance is defined on a per-block basis.
- If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.
- However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Cumhal	Parameter	Condition		Unit		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
_	Voltage detection 0 circuit response time ⁽⁴⁾	At the falling of Vcc from 5 V to $(Vdet0_0 - 0.1) V$	—	6	150	μS
_	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	—	1.5		μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		—	—	100	μS

Table 5.6	Voltage Detection 0 Circuit Electrical Characteristics

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20° C to 85°C (N version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.7	Voltage Detection 1 Circuit Electrical Characteristics
-----------	--

Symbol	Parameter	Condition		Unit		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Onit
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 ⁽²⁾	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 ⁽²⁾	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A (2)	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E (2)	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
	Hysteresis width at the rising of Vcc in voltage	Vdet1_0 to Vdet1_5 selected	_	0.07		V
	detection 1 circuit	Vdet1_6 to Vdet1_F selected	—	0.10	_	V
_	Voltage detection 1 circuit response time (3)	At the falling of Vcc from 5 V to $(Vdet1_0 - 0.1) V$	_	60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	—	1.7		μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾				100	μs

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20° C to 85° C (N version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

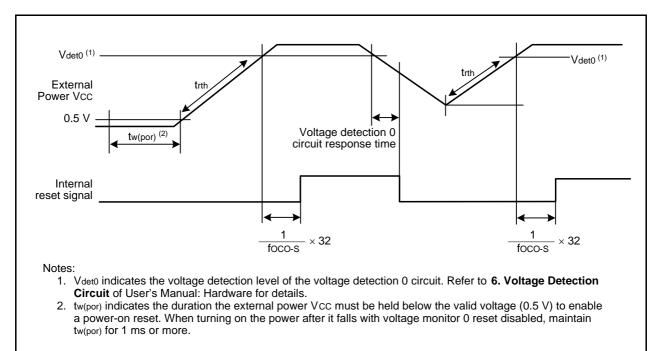
4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Unit		
Symbol	Faranielei	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V
_	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		—	0.10	—	V
	Voltage detection 2 circuit response time ⁽²⁾	At the falling of Vcc from 5 V to $(Vdet2_0 - 0.1)$ V	—	20	150	μS
—	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V		1.7		μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		—	—	100	μS

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20° C to 85° C (N version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.


Table 5.9 Power-on Reset Circuit ⁽²⁾

Symbol	Parameter	Condition		Unit		
			Min.	Тур.	Max.	Unit
trth	External power Vcc rise gradient	(Note 1)	0	—	50000	mV/msec

Notes:

1. The measurement condition is Topr = -20° C to 85° C (N version), unless otherwise specified.

2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit			
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit	
—	High-speed on-chip oscillator frequency after reset	Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C	38.4	40	41.6	MHz	
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into the FRA1 register and the FRA5 register correction value into the FRA3 register ⁽²⁾	$\label{eq:Vcc} \begin{array}{l} Vcc = 1.8 \ V \ to \ 5.5 \ V \\ -20^{\circ}C \leq Topr \leq 85^{\circ}C \end{array}$	35.389	36.864	38.338	MHz	
	High-speed on-chip oscillator frequency when the FRA6 register correction value is written into the FRA1 register and the FRA7 register correction value into the FRA3 register	Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C	30.72	32	33.28	MHz	
—	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	—	0.5	3	ms	
—	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	_	400	_	μΑ	

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Notes:

1. Vcc = 1.8 V to 5.5 V, Topr = -20° C to 85° C (N version), unless otherwise specified.

2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
—	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	—	30	100	μS
—	Self power consumption at oscillation	$Vcc = 5.0 V$, Topr = $25^{\circ}C$	_	2	_	μΑ

Note:

1. Vcc = 1.8 V to 5.5 V, Topr = -20° C to 85° C (N version), unless otherwise specified.

Table 5.12 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition		Unit		
		Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾			—	2000	μs

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = 25° C.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

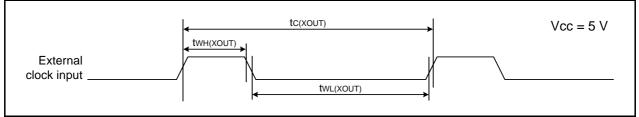
Symbol	bol Parameter Condition		Condition		Standard		Unit	
Symbol				Min.	Тур.	Max.	Unit	
Vон	Output "H"	Other than XOUT	Drive capacity High Vcc = 5 V	Іон = -20 mA	Vcc - 2.0	_	Vcc	V
	voltage		Drive capacity Low Vcc = 5 V	Iон = -5 mA	Vcc - 2.0	_	Vcc	V
		XOUT	Vcc = 5 V	Іон = -200 μА	1.0	_	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = 5 V	lo∟ = 20 mA	—	_	2.0	V
	voltage		Drive capacity Low Vcc = $5 V$	lo∟ = 5 mA	—	—	2.0	V
		XOUT	Vcc = 5 V	IoL = 200 μA	—	—	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SCL2, SDA2			0.1	1.2	_	V
		RESET			0.1	1.2		V
Ін	Input "H" cu	rrent	VI = 5 V, Vcc = 5.0 V		—	—	5.0	μΑ
lı∟	Input "L" current		VI = 0 V, Vcc = 5.0 V		—	—	-5.0	μA
RPULLUP	Pull-up resis	stance	VI = 0 V, Vcc = 5.0 V		25	50	100	kΩ
Rfxin	Feedback resistance	XIN			—	0.3	_	MΩ
Vram	RAM hold v	oltage	During stop mode		1.8	_		V

Table 5.13	Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]
------------	--

Note:

1. $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$ at Topr = -20° C to 85° C (N version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.14	Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V]
	(Topr = -20° C to 85° C (N version), unless otherwise specified.)


Symbol	Parameter		Condition		Standar		Unit
Symbol	Falameter	Condition		Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 V to 5.5 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	15	mA
	other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5.3	12.5	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.6	—	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	3	—	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	2.2	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	400	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	15	100	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μA
		Stop mode	XIN clock off, Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off		2	5.0	μA
			VCA27 = VCA26 = VCA25 = 0 XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	-	5		μA

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 5.15 External Clock Input (XOUT)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(XOUT)	XOUT input cycle time	50	—	ns
twh(xout)	XOUT input "H" width	24	—	ns
twl(xout)	XOUT input "L" width	24	—	ns

Figure 5.4 External Clock Input Timing Diagram when Vcc = 5 V

Table 5.16 TRAIO Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(TRAIO)	TRAIO input cycle time	100	_	ns
twh(traio)	TRAIO input "H" width	40	_	ns
twl(traio)	TRAIO input "L" width	40		ns

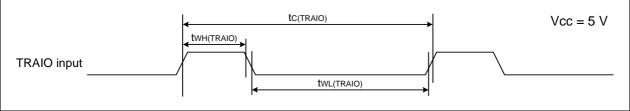


Figure 5.5 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.17Serial Interface

Symbol	Parameter	Stan	L Locit	
	Parameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200	—	ns
tW(CKH)	CLKi input "H" width	100	—	ns
tW(CKL)	CLKi input "L" width	100	—	ns
td(C-Q)	TXDi output delay time	—	50	ns
th(C-Q)	TXDi hold time	0	—	ns
tsu(D-C)	RXDi input setup time	50	—	ns
th(C-D)	RXDi input hold time	90	—	ns

i = 0 to 2

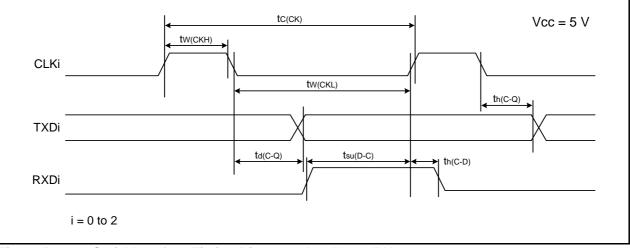


Figure 5.6 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.18 External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tw(INH)	INTi input "H" width, Kli input "H" width	250 ⁽¹⁾	_	ns
tw(INL)	INTi input "L" width, Kli input "L" width	250 ⁽²⁾		ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

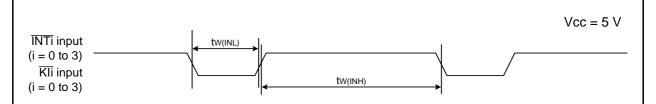


Figure 5.7 Input Timing for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V

Symbol		Parameter	Conditio	Condition		Standard		
Symbol		Parameter	Condition		Min.	Тур.	Max.	Unit
Vон	Output "H"	Other than XOUT	Drive capacity High	Iон = -5 mA	Vcc - 0.5	_	Vcc	V
	voltage		Drive capacity Low	Іон = -1 mA	Vcc - 0.5	—	Vcc	V
		XOUT		Іон = –200 μА	1.0	—	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High	lo∟ = 5 mA	—	_	0.5	V
	voltage		Drive capacity Low	lo∟ = 1 mA	—	_	0.5	V
		XOUT		IoL = 200 μA	—	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SCL2, SDA2	Vcc = 3.0 V		0.1	0.4		V
		RESET	Vcc = 3.0 V		0.1	0.5	—	V
Ін	Input "H" cu	rrent	VI = 3 V, Vcc = 3.0 V		—	—	4.0	μΑ
lı∟	Input "L" cu	rrent	VI = 0 V, Vcc = 3.0 V		—	_	-4.0	μΑ
RPULLUP	Pull-up resis	stance	VI = 0 V, Vcc = 3.0 V		42	84	168	kΩ
Rfxin	Feedback resistance	XIN			—	0.3	—	MΩ
Vram	RAM hold v	oltage	During stop mode		1.8	_	_	V

Table 5.19	Electrical Characteristics (3) [2.7 V \leq Vcc $<$ 4.2 V]
------------	---

Note:

1. 2.7 V \leq Vcc < 4.2 V at Topr = -20°C to 85°C (N version), f(XIN) = 10 MHz, unless otherwise specified.

Table 5	.20	Characteristics (4) [2.7 V \leq Vcc $<$ 3.3 V] $^{\circ}$ C to 85 $^{\circ}$ C (N version), unless otherwise specified.)
1		

0	Denessatas				Standar	d	Lloit
Symbol Icc	Parameter	cc = 2.7 V to 3.3 V)clock modeHigh-speed on-chip oscillator offhgle-chip mode,Low-speed on-chip oscillator on = 125 kHz	Min. Typ. Max			- Unit	
	Power supply current (Vcc = 2.7 V to 3.3 V) Single-chip mode, output pins are open,		_	3.5	10	m/	
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	1.5	7.5	m/
		High-speedXIN clock offon-chipHigh-speed on-chip oscillator on fOCO-F = 20 MHzoscillatorLow-speed on-chip oscillator on = 125 kHzmodeNo division	—	7	15	mA	
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3		mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	—	4	—	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5		mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1	_	1		m/
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	390	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	4	80	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μA
		Stop mode	XIN clock off, Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		2	5.0	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5		μA

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C)

Table 5.21 External Clock Input (XOUT)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(XOUT)	XOUT input cycle time	50	—	ns
twh(xout)	XOUT input "H" width	24	—	ns
twl(xout)	XOUT input "L" width	24	—	ns

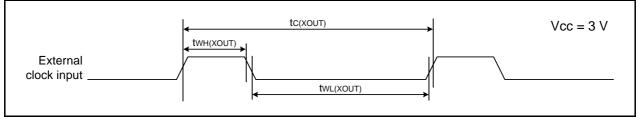


Figure 5.8 External Clock Input Timing Diagram when Vcc = 3 V

Table 5.22 TRAIO Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onit
tc(TRAIO)	TRAIO input cycle time	300	_	ns
twh(traio)	TRAIO input "H" width	120	_	ns
twl(traio)	TRAIO input "L" width	120	_	ns

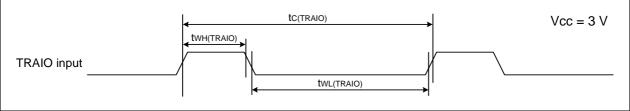


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.23Serial Interface

Symbol	Parameter	Star	Standard		
	Parameter	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	300	—	ns	
tw(CKH)	CLKi input "H" width	150	—	ns	
tW(CKL)	CLKi Input "L" width	150	—	ns	
td(C-Q)	TXDi output delay time	—	80	ns	
th(C-Q)	TXDi hold time	0	—	ns	
tsu(D-C)	RXDi input setup time	70	—	ns	
th(C-D)	RXDi input hold time	90	—	ns	

i = 0 to 2

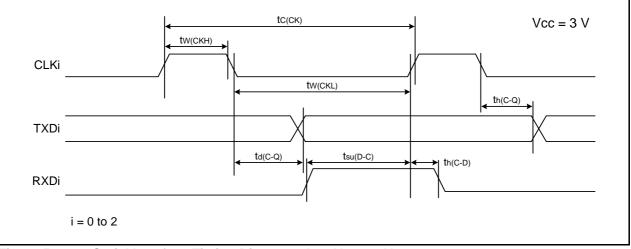


Figure 5.10 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.24 External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onit
tw(INH)	INTi input "H" width, Kli input "H" width	380 (1)	_	ns
tw(INL)	INTi input "L" width, Kli input "L" width	380 (2)		ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

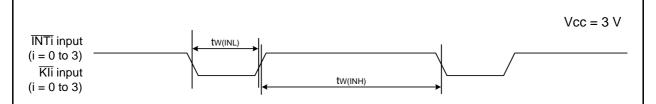


Figure 5.11 Input Timing for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 3 V

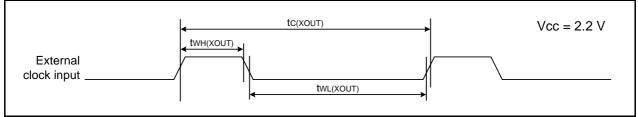
Symbol	Parameter		Conditio	n		Standard		Unit
Symbol		Parameter	Conditio	in .	Min.	Тур.	Max.	Unit
Vон	Output "H"	Other than XOUT	Drive capacity High	Іон = –2 mA	Vcc - 0.5	—	Vcc	V
	voltage		Drive capacity Low	Іон = -1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		Іон = –200 μА	1.0	_	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High	IOL = 2 mA	_	_	0.5	V
	voltage		Drive capacity Low	lo∟ = 1 mA	—	_	0.5	V
		XOUT		IoL = 200 μA	—	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SCL2, SDA2			0.05	0.20	_	
		RESET			0.05	0.20	—	V
Ін	Input "H" cu	rrent	VI = 2.2 V, Vcc = 2.2 V		—		4.0	μΑ
lı∟	Input "L" current		VI = 0 V, Vcc = 2.2 V		—	_	-4.0	μΑ
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 2.2 V		70	140	300	kΩ
Rfxin	Feedback resistance	XIN			—	0.3	_	MΩ
Vram	RAM hold v	oltage	During stop mode		1.8	_	_	V

Table 5.25	Electrical Characteristics (5) [1.8 V \leq Vcc $<$ 2.7 V]
------------	---

Note:

1. $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$ at Topr = -20° C to 85° C (N version), f(XIN) = 5 MHz, unless otherwise specified.

Table 5.26	Electrical Characteristics (6) [1.8 V \leq Vcc $<$ 2.7 V]
	(Topr = -20° C to 85° C (N version), unless otherwise specified.)


Symbol	Parameter	Parameter Condition	Standard		b	Unit	
Symbol				Min.	Тур.	Max.	Unit
(5 0	Power supply current (Vcc = 1.8 V to 2.7 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division		2.2	_	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	0.8	—	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division		2.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8		1.7		mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1	_	1		mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0		90	300	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5		μΑ
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2	5	μA
			XIN clock off, Topr = 85° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	5		μΑ

Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

Table 5.27 External Clock Input (XOUT)

Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Offic
tc(XOUT)	XOUT input cycle time	200	_	ns
twh(xout)	XOUT input "H" width	90	—	ns
twl(xout)	XOUT input "L" width	90	_	ns

Figure 5.12 External Clock Input Timing Diagram when Vcc = 2.2 V

Table 5.28 TRAIO Input

Symbol	Parameter	Standard		Unit
Symbol		Min.	Max.	Unit
tc(TRAIO)	TRAIO input cycle time	500	_	ns
twh(traio)	TRAIO input "H" width	200	_	ns
twl(traio)	TRAIO input "L" width	200	_	ns

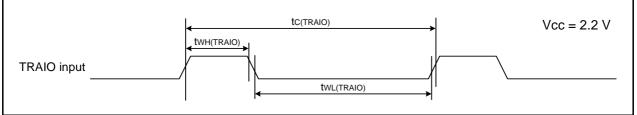


Figure 5.13 TRAIO Input Timing Diagram when Vcc = 2.2 V

Table 5.29 Seria	al Interface
------------------	--------------

Symbol	Parameter		Standard	
	Parameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	800		ns
tw(CKH)	CLKi input "H" width	400		ns
tW(CKL)	CLKi input "L" width			ns
td(C-Q)	TXDi output delay time		200	ns
th(C-Q)	TXDi hold time			ns
tsu(D-C)	RXDi input setup time		—	ns
th(C-D)	RXDi input hold time	90	_	ns

i = 0 to 2

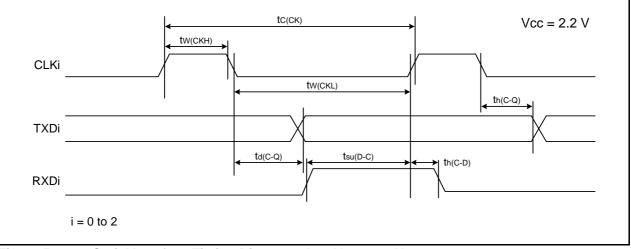


Figure 5.14 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.30 External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
Symbol	Falallielei	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	_	ns	
tw(INL)	INTi input "L" width, Kli input "L" width		1	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

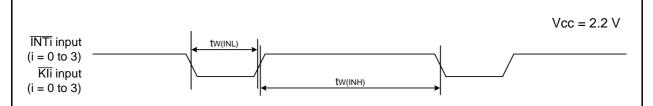
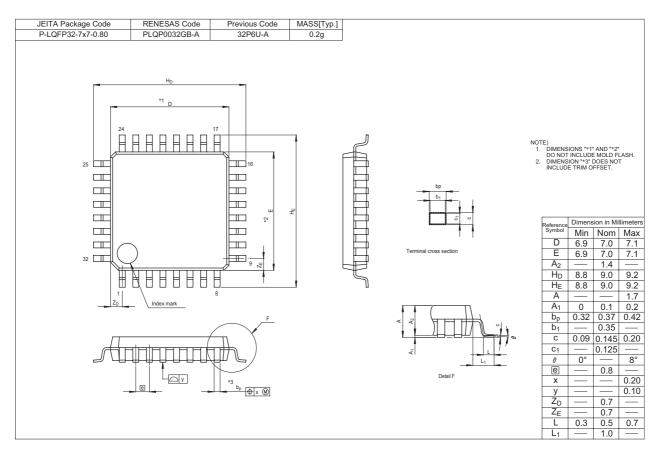



Figure 5.15 Input Timing for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.

REVISION HISTORY

R8C/33T Group Datasheet

Rev.	Date		Description
Date	Page	Summary	
1.00	Mar 16, 2010	_	First Edition issued
1.10	Apr 26, 2011	All pages	"UART1" deleted
		3	Table 1.2 revised, Note 1 deleted
		4	Table 1.3, Note 1, Figure 1.1 revised
		5	Figure 1.2 revised
		6	Figure 1.3 revised
		7	Table 1.4 revised
		8	Table 1.5 revised
		12	3.1 "The internal ROM with address 0FFFFh." deleted
		14	Table 4.2 revised
		18	Table 4.6 revised
		19	Table 4.7 revised
		26	Table 5.1 revised
		27	Note 1 revised
		29	Table 5.3, Note 1 revised
		31	Table 5.5, Note 1, Note 7 revised, and Note 8 added
		32	Note 1 of Table 5.6 and Table 5.7 revised
		33	Note 1 of Table 5.8 and Table 5.9 revised
		34	Table 5.10, Note 1 of Table 5.10 and Table 5.11 revised
		35	Table 5.13, Note 1 revised
		36	Table 5.14 revised
		39	Table 5.19, Note 1 revised
		40	Table 5.20 revised
		43	Table 5.25, Note 1 revised
		44	Table 5.26 revised

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- *Specific*: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Curope GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +486-12-487-71518, Fax: +486-22-4857-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, A221 Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +486-12-4877-71818, Fax: +486-22-4867-7858 Renesas Electronics Hong Kong Limited Unit 1001.151, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +486-2-4175-9600, Fax: +4882-2486-9022/9044 Renesas Electronics Taiwan Co., Ltd. 154, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +486-2-4175-9600, Fax: +4882-24175-9670 Renesas Electronics Magayer Bet. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2715-9900, Fax: +489-2-4075-9910 Renesas Electronics Kong Co., Ltd. 11 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2715-9900, Fax: +489-2-9175-9670 Renesas Electronics Kong Co., Ltd. 11 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2715-9900, Fax: +489-2-915-9910 Renesas Electronics Konge Co., Ltd. 11F, Samik Lavied' or Billog, 720-2 Veoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +60-3-7355-930, Fax: +482-2558-9314

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

 R5F21336TNFP#50
 R5F21335TDFP#30
 R5F21336TNFP#30
 R5F21336TNFP#X6
 R5F21336TNFP#V2

 R5F21334TNFP#30
 R5F21334TDFP#30
 R5F21334TNFP#50
 R5F21335TNFP#30
 R5F21336TDFP#30

 R5F21334TNFP#V2
 R5F21334TNFP#50
 R5F21335TNFP#30
 R5F21336TDFP#30
 R5F21336TDFP#30