RD890 SYSTEM CLOCK FOR AMD-BASED SERVERS

932S890C

General Description

The 932S890C is a main clock synthesizer chip for SR5690/SR5670 AMD Servers. An SMBus interface allows full control of the device.

Recommended Application

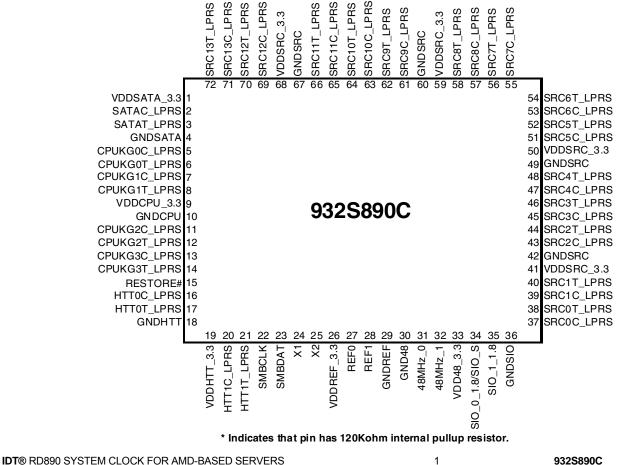
SR5690/SR5670 AMD-based Servers

Output Features

- Low power differential outputs with integrated series resistors for Zo=50ohm systems
- 4 -Differential 200MHz CPU pairs
- 2 Differential 100MHz HT3 pairs
- 14 Differential PCIe Gen2 SRC pairs
- 1 Differential non-spread SATA clock
- 2 48MHz USB clocks (180 degrees out of phase for EMI) reduction)
- 2 SIO clocks (selectable 48MHz or 24MHz). 180 degrees out of phase for EMI reduction
- 2 14.318MHz REF clock outputs

Pin Configuration

Features/Benefits

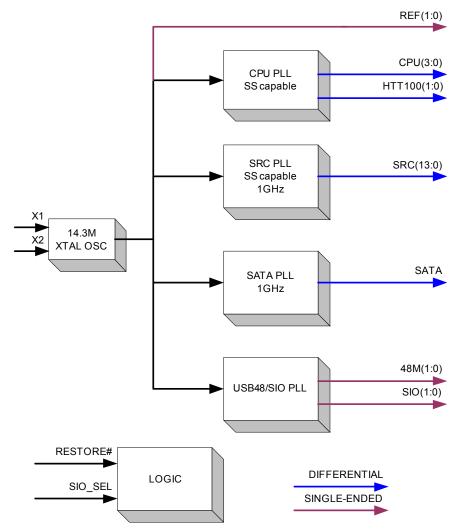

- Spread Spectrum; EMI reduction
- Outputs may be disabled via SMBus; saves power
- External crystal load capacitors; maximum frequency accuracy

Key Specifications

- CPU output cycle-to-cycle jitter <100ps
- SRC output cycle-to-cycle jitter <125ps
- 48MHz output cycle-to-cycle jitter <130ps
- SIO output cycle-to-cycle jitter <150ps
- SRC output phase jitter <3.1ps rms (PCIe Gen2)
- +/- 50ppm frequency accuracy on all clocks, assuming REF is trimmed to 0 ppm)

Table 1: 932 S890 Functionality

CPU	HTT	SRC	SATA	REF	SIO	USB	DOT
MHz	MHz	MHz	SATA	MHz	510	USB MHz 48.00	MHz
200.00	100.00	100.00	100.00	14.318	24/48	48.00	96.00


Pin Descriptions

PIN #	PIN NAME	PIN TYPE	DESCRIPTION	
1	VDDSATA_3.3	PWR	Power supply for SATA core logic, nominal 3.3V	
			Complement clock of low power differential SATA clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm	
2	SATAC_LPRS	OUT		
			True clock of low power differential SATA clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series	
3	SATAT_LPRS	OUT	resistor needed)	
4	GNDSATA	GND	Ground pin for the SATA output	
-			Complementary signal of low-power differential push-pull AMD "Greyhound" clock with integrated series resistor.	
5	CPUKG0C_LPRS	001	(no 33 ohm series resistor needed and no 50 ohm pull down resistor needed)	
c			True signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated series resistor(no 33	
0	CPUKGUI_LPHS	001	ohm series resistor needed and no 50 ohm pull down resistor needed)	
7		ОЛТ	Complementary signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated series	
1		001	resistor. (no 33 ohm series resistor needed and no 50 ohm pull down resistor needed)	
8		ОЛТ	True signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated series resistor(no 33	
0		001		
9		PWR		
10	GNDCPU	GND		
11	CPUKG2C LPRS	OUT		
12	CPUKG2T LPRS	OUT		
	-			
13	2 SATAC_LPRS UUT series resistor needed. 3 SATAT_LPRS OUT Tree clock of low power differential SATA clock pair. (no 50 ohm shunt resistor to GND and no 3 resistor needed.) 4 GNDSATA GND Ground pin for the SATA output 5 CPUKGOC_LPRS OUT Complementary signal of low-power differential push-pul AMD "Greyhound" clock with integrated serie ohm series resistor needed and no 50 ohm pull down resistor needed.) 7 CPUKG0C_LPRS OUT Tree signal of low-power differential push-pul AMD "Greyhound" CPU clock with integrated serie ohm series resistor needed and no 50 ohm pull down resistor needed.) 7 CPUKG1C_LPRS OUT Tree signal of low-power differential push-pul AMD "Greyhound" CPU clock with integrated serie ohm series resistor needed and no 50 ohm pull down resistor needed.) 9 VDDCPU GND B Ground pin for the CPU outputs 10 GNDCPU GND Ground pin for the CPU outputs 11 CPUKG3C_LPRS OUT Tree signal of low-power differential push-pul AMD "Greyhound" CPU clock with integrated serie ohm series resistor needed and no 50 ohm pull down resistor needed.) 12 CPUKG3C_LPRS OUT Tree signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated serie ohm series resistor needed			
			resistor. (no 33 onm series resistor needed and no 50 onm puil down resistor needed)	
14	CPUKG3T_LPRS	OUT		
15	RESTORE#	I/O		
			1 0 0 00	
			Complementary signal of low-nower differential push-pull Hypertransport 3 clock with integrated series resistor	
16	HTT0C_LPRS	OUT		
		<u></u>	True signal of low-power differential push-pull Hypertransport 3 clock with integrated series resistor. (no 50 ohm	
17	HITOI_LPRS	001		
18	GNDHTT	PWR	Ground pin for the HTT outputs	
19	VDDHTT_3.3	PWR	Supply for HTT clocks, nominal 3.3V.	
20		ОЛТ	Complementary signal of low-power differential push-pull Hypertransport 3 clock with integrated series resistor.	
20		001		
21	HTT1T LPBS	ОЛТ	True signal of low-power differential push-pull Hypertransport 3 clock with integrated series resistor. (no 50 ohm	
21	_	001		
			Crystal input, nominally 14.318MHz	
-				
-				
34	SIO_0_1.8/SIO_SEL	I/O	0 = 24 MHz, $1 = 48$ MHz.	
			Selectable 48MHz or 24MHz output. (180 out of phase with SIO 0. Selected by SIO latched input.	
35	SIO_1_1.8	OUT	0 = 24 MHz, $1 = 48$ MHz.	
36	GNDSIO	GND	Ground pin for the SIO outputs	
			the second	

Pin Descriptions (cont.)

PIN #		PIN TYPE	DESCRIPTION
37	SRC0C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
38	SRC0T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
39	SRC1C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
40	SRC1T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
41	VDDSRC_3.3	PWR	Supply for SRC core and outputs, 3.3V nominal
42	GNDSRC	GND	Ground pin for the SRC outputs
	SRC2C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
44	SRC2T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
45	SRC3C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
46	SRC3T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
47	SRC4C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
48	SRC4T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
49	GNDSRC	GND	Ground pin for the SRC outputs
50	VDDSRC_3.3	PWR	Supply for SRC core and outputs, 3.3V nominal
51	SRC5C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
52	SRC5T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
53	SRC6C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
54	SRC6T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
55	SRC7C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
56	SRC7T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
57	SRC8C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
58	SRC8T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
59	VDDSRC_3.3	PWR	Supply for SRC core and outputs, 3.3V nominal
60	GNDSRC	GND	Ground pin for the SRC outputs
61	SRC9C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
62	SRC9T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
63	SRC10C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
64	SRC10T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
65	SRC11C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
66	SRC11T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
67	GNDSRC	GND	Ground pin for the SRC outputs
68	VDDSRC_3.3	PWR	Supply for SRC core and outputs, 3.3V nominal
69	SRC12C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
70	SRC12T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
71	SRC13C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)
72	SRC13T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed)

Block Diagram

932S890 Power Hookup

Pin N	umber	Description
VDD	GND	Description
1	4	SATA PLL and output
9	10	CPU PLL and outputs
19	18	HTT outputs
26	29	XTAL Osc and REF outputs
33	30	48MHz PLL and Outputs
33	36	SIO Outputs
41, 50, 59,	42, 49, 60,	SRC PLL and Outputs
68	67	SHC FLL and Outputs

Table 2: IO_Vout select table

B5b2	B5b1	B5b0	IO_Vout
0	0	0	0.3V
0	0	1	0.4V
0	1	0	0.5V
0	1	1	0.6V
1	0	0	0.7V
1	0	1	0.8V
1	1	0	0.9V
1	1	1	1.0V

CPU Frequency Selection Table

	CPU FS4	CPU FS3						
	Byte 3,	Byte 3,	CPU FS2	CPU FS1	CPU FS0	CPU	HTT	Spread
Line	bit 4	bit 3	Byte3,	Byte3,	Byte3,	Speed	Speed	%
	(Spread	(DN/CTR	bit2	bit1	bit0	(MHz)	(MHz)	,.
	Enable)	Spread)						
0	0	0	0	0	0	184.47	92.24	
1	0	0	0	0	1	188.24	94.12	
2	0	0	0	1	0	192.08	96.04	
3	0	0	0	1	1	196.00	98.00	SS OFF
4	0	0	1	0	0	200.00	100.00	0%
5	0	0	1	0	1	204.00	102.00	
6	0	0	1	1	0	208.08	104.04	
7	0	0	1	1	1	212.24	106.12	
8	0	1	0	0	0	184.47	92.24	
9	0	1	0	0	1	188.24	94.12	
10	0	1	0	1	0	192.08	96.04	
11	0	1	0	1	1	196.00	98.00	SS OFF
12	0	1	1	0	0	200.00	100.00	0%
13	0	1	1	0	1	204.00	102.00	
14	0	1	1	1	0	208.08	104.04	
15	0	1	1	1	1	212.24	106.12	
16	1	0	0	0	0	184.47	92.24	
17	1	0	0	0	1	188.24	94.12	
18	1	0	0	1	0	192.08	96.04	
19	1	0	0	1	1	196.00	98.00	DOWN SPREAD'-
20	1	0	1	0	0	200.00	100.00	
21	1	0	1	0	1	204.00	102.00	0.5%
22	1	0	1	1	0	208.08	104.04	
23	1	0	1	1	1	212.24	106.12	
24	1	1	0	0	0	184.47	92.24	
25	1	1	0	0	1	188.24	94.12	
26	1	1	0	1	0	192.08	96.04	CENTER
27	1	1	0	1	1	196.00	98.00	
28	1	1	1	0	0	200.00	100.00	SPREAD
29	1	1	1	0	1	204.00	102.00	'+/-0.25%
30	1	1	1	1	0	208.08	104.04	1
31	1	1	1	1	1	212.24	106.12	

SRC Frequency Selection Table

	SRC FS4	SRC FS3					
	Byte 4,	Byte 4,	SRC FS2	SRC FS1	SRC FS0		
	bit 4	bit 3	Byte 4,	Byte 4,	Byte 4,	SRC	Sprd
				bit1	• •	(MHz)	%
Line	(Spread	(DWN/CTR	bit2	DITI	bit0		
0	Enable)	Spread)	0	0	0	00.04	
1	0	0	0	0	0	92.24	
2	0	0	0	0		94.12	
23	0	0	0	1	0	96.04	SS OFF
3 4	0 0	0 0	0	0	0	98.00	0%
						100.00	0%
5	0	0	1	0	1	102.00	
6	0	0	1	1	0	104.04	
7	0	0	1	1	1	106.12	
8	0	1	0	0	0	92.24	
9	0	1	0	0	1	94.12	
10	0	1	0	1	0	96.04	
11	0	1	0	1	1	98.00	SS OFF
12	0	1	1	0	0	100.00	0%
13	0	1	1	0	1	102.00	
14	0	1	1	1	0	104.04	
15	0	1	1	1	1	106.12	
16	1	0	0	0	0	92.24	
17	1	0	0	0	1	94.12	
18	1	0	0	1	0	96.04	DOWN
19	1	0	0	1	1	98.00	SPREAD'
20	1	0	1	0	0	100.00	0.5%
21	1	0	1	0	1	102.00	0.5%
22	1	0	1	1	0	104.04	
23	1	0	1	1	1	106.12	
24	1	1	0	0	0	92.24	
25	1	1	0	0	1	94.12	1
26	1	1	0	1	0	96.04	CENTER
27	1	1	0	1	1	98.00	
28	1	1	1	0	0	100.00	SPREAD
29	1	1	1	0	1	102.00	'+/-0.25%
30	1	1	1	1	0	104.04	1
31	1	1	1	1	1	106.12	1

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 932S890C. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
3.3V Core Supply Voltage	VDDxxx	-		3.3	GND + 3.9V	V	1
Storage Temperature	Ts	-	-65		150	°C	1
Ambient Operating Temp	Tambient	-	0		70	°C	1
Case Temperature	Tcase	-			115	°C	1
Input ESD protection HBM	ESD prot	-	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics–Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP	MAX	UNITS	Notes
3.3V Core Supply Voltage	VDDxxx	-	3.135	3.3	3.465	V	1
Input High Voltage	VIH	VDD = 3.3 V +/-5%	2		V _{DD} + 0.3	V	1
Input Low Voltage	V _{IL}	VDD = 3.3 V +/-5%	V _{SS} - 0.3		0.8	v	1
Input High Current	I _H	$V_{IN} = V_{DD}$	-5		5	uA	1
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			uA	1
input Low Current	I_{1L2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200			uA	1
Operating Current	I _{DD3.3OP}	all outputs driven			250	mA	1
Input Frequency	Fi	VDD = 3.3 V +/-5%		14.31818		MHz	2
Pin Inductance	L _{pin}				7	nH	1
	C _ℕ	Logic Inputs			5	pF	1
Input Capacitance	C _{OUT}	Output pin capacitance			6	pF	1
	C _{INX}	X1 & X2 pins			5	pF	1
Clk Stabilization	T _{STAB}	From VDD Power-Up to 1st clock			1.8	ms	1
Modulation Frequency		Triangular Modulation	30		33	kHz	1
SMBus Voltage	V _{DDSMB}		2.7		5.5	V	1
Low-level Output Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	1
Current sinking at V _{OL} = 0.4 V	I _{PULLUPSMB}		4	6		mA	1
SMBCLK/SMBDAT Clock/Data Rise Time	T _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SMBCLK/SMBDAT Clock/Data Fall Time	T _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1

 $*TA = 0 - 70^{\circ}C$; Supply Voltage VDD = 3.3 V +/-5%

¹Guaranteed by design and characterization, not 100% tested in production.

² Input frequency should be measured at the REF pin and tuned to ideal 14.31818MHz to meet ppm frequency accuracy on PLL outputs.

AC Electrical Characteristics–Low-Power DIF Outputs: CPUKG and HTT

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Crossing Point Variation	ΔV_{CROSS}	Single-ended Measurement			140	mV	1,2,5
CPU Frequency (HTT = 1/2 of CPU Frequency)	f _{CPU}	Spread Specturm On	198.8		200	MHz	1,3
Long Term Accuracy	ppm	Spread Specturm Off	-50		+50	ppm	1,11
Rising Edge Slew Rate	S _{RISE}	Differential Measurement	0.5		10	V/ns	1,4
Falling Edge Slew Rate	S _{FALL}	Differential Measurement	0.5		10	V/ns	1,4
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement			20	%	1
CPU, DIF HTT Jitter - Cycle to Cycle	CPUJ _{C2C}	Differential Measurement			150	ps	1,6
Accumulated Jitter	t _{JACC}	See Notes			1	ns	1,7
Peak to Peak Differential Voltage	V _{D(PK-PK)}	Differential Measurement	400		2400	mV	1,8
Differential Voltage	VD	Differential Measurement	200		1200	mV	1,9
Duty Cycle	D _{CYC}	Differential Measurement	45		55	%	1
Amplitude Variation	ΔV _D	Change in V $_{\rm D}$ DC cycle to cycle	-75		75	mV	1,10
CPU[3:0] Skew	CPU _{SKEW30}	Differential Measurement			200	ps	1
HTT[1:0] Skew	HTT _{SKEW10}	Differential Measurement			100	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

² Single-ended measurement at crossing point. Value is maximum – minimum over all time. DC value of common mode is not important due to the blocking cap.

³Minimum Frequency is a result of 0.5% down spread spectrum

⁴ Differential measurement through the range of ±100 mV, differential signal must remain monotonic and within slew rate spec when crossing through this region.

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶Max difference of t_{CYCLE} between any two adjacent cycles.

⁷ Accumulated tjc over a 10 µs time period, measured with JIT2 TIE at 50ps interval.

⁸VD(PK-PK) is the overall magnitude of the differential signal.

⁹ VD(min) is the amplitude of the ring-back differential measurement, guaranteed by design, that ring-back will not cross 0V VD. VD(max) is the largest amplitude allowed.

¹⁰ The difference in magnitude of two adjacent VD_DC measurements. VD_DC is the stable post overshoot and ring-back part of the signal.

¹¹ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

AC Electrical Characteristics–Low-Power DIF Outputs: SRC, SATA

			•		-	-	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
SRC/SATA Frequency	f_{SRC_SATA}	Spread Specturm Off		100		MHz	1,6
Long Term Accuracy	ppm	Spread Specturm Off	-50		+50	ppm	1,6
Rising Edge Slew Rate	t _{SLR}	Differential Measurement	2.5		8	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	2.5		8	V/ns	1,2
Slew Rate Variation	t _{slvar}	Single-ended Measurement			20	%	1
Maximum Output Voltage	V _{HIGH}	Includes overshoot			1150	mV	1
Minimum Output Voltage	V _{LOW}	Includes undershoot	-300			mV	1
Differential Voltage Swing	V _{SWING}	Differential Measurement	300			mV	1
Crossing Point Voltage	V _{XABS}	Single-ended Measurement	300		550	mV	1,3,4
Crossing Point Variation	VXABSVAR	Single-ended Measurement			140	mV	1,3,5
Duty Cycle	DCYC	Differential Measurement	45		55	%	1
Jitter - Cycle to Cycle	SRCJ _{C2C}	Differential Measurement			125	ps	1
SRC[13:0] Skew Even Outputs	SRC _{SKEW_E}	Differential Measurement			200	ps	1,8
SRC[13:0] Skew Odd Outputs	$\mathrm{SRC}_{\mathrm{SKEW}_{\mathrm{O}}}$	Differential Measurement			200	ps	1,8
SRC[13:0] Even to Odd Skew	SRC _{SKEW}	Differential Measurement	1275	1375	1475	ps	1,8
		PCle Gen 1 specs (1.5 - 22 MHz)		40	86	ps	1, 7
Jitter, Phase	tjphaseSRC	PCIe Gen 2 (8-16 MHz, 5-16 MHz) Lo-band content (10kHz to 1.5MHz)		1.6	3	ps rms	1, 7
		PCIe Gen 2 (8-16 MHz, 5-16 MHz) Hi-band content (1.5MHz to Nyquist)		2.6	3.1	ps rms	1, 7

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through V swing centered around differential zero

³Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

⁷ Applicable to all SRC outputs. See http://www.pcisig.com for complete specs. Guaranteed by design and characterization, not tested in production.

⁸ SRC outputs are divided into two banks, odd and even. The odd bank skew window is 200 ps. The even bank skew window is 200ps. The skew between the even and odd banks is intentionally set at 1375ps.

Electrical Characteristics–USB - 48MHz, SIO 48/24MHz

PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-50		+50	ppm	1,2
Clock period	T _{P ERIOD}	USB output nominal	20.702	20.833	20.964	ns	3,5
Clock Low Time	T _{LOW}	Measure from < 0.6V	9.375		11.458	ns	3
Clock High Time	T _{HIGH}	Measure from > 2.0V	9.375		11.458	ns	3
Rise Time	t _{r_USB}	V_{OL} = 20% of Voh, V_{OH} = 80%of Voh	0.5		3	ns	1
Fall Time	t _{f_USB}	V_{OL} = 20% of Voh, V _{OH} = 80%of Voh	0.5		3	ns	1
Output High Voltage	VOHUSB	I _{OH} = -1 mA	2.4			V	1,3
Output Low Voltage	V _{OLUSB}	$I_{OL} = 1 \text{ mA}$			0.4	V	1,3
Output High Voltage	V _{OHSIO}	I _{OH} = -0.2 mA	1.8	2	2.2	V	1,4
Output Low Voltage	V _{OLSIO}	I _{OL} = 0.2 mA			0.4	V	1,4
Duty Cycle	d _{CYCUSB}	V _T = 1.5 V	45		55	%	1,3
Skew	t _{skew}	V _T = 1.5 V			250	ps	1
Jitter, Cycle to cycle	tјсүс-с үс	V _T = 1.5 V			130	ps	1,3

*TA = 0 - 70°C; Supply Voltage VDD = $3.3 \text{ V} \pm -5\%$

¹Guaranteed by design and characterization, not 100% tested in production.

²IDT recommended and/or chipset vendor layout guidelines must be followed to meet this specification

³Applies to USB outputs only

⁴Applies to SIO outputs only

⁵SIO 24MHz outputs are 1/2 of USB48MHz frequency (twice the period). Includes cycle to cycle jitter.

Electrical Characteristics-REF-14.318MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-50		+50	ppm	1,2
Long Term Jitter	ţ∟⊤	@ 1us			500	ps	1,2
Clock period	T _{PERIOD}	14.318MHz output nominal	69.6378	69.8413	70.0448	ns	2,3
Clock Low Time	T _{LOW}	Measure from $V_T = 50\%$	2			ns	2
Clock High Time	T _{HIGH}	Measure from $V_T = 50\%$	2			ns	2
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4	2.8	3.3	V	1
Output Low Voltage	V _{OL}	$I_{OL} = 1 \text{ mA}$	0		0.4	V	1
Rise Time	t _R	$V_{OL} = 20\%$ of V_{OH} , $V_{OH} = 80\%$ of V_{OH}			1.5	ns	1
Fall Time	t _F	$V_{OL} = 20\%$ of V_{OH} , $V_{OH} = 80\%$ of V_{OH}			1.5	ns	1
Skew	t _{SKEW}	Measure from $V_T = 50\%$			250	ps	1
Duty Cycle	d _{t1}	$V_T = V_{OH}/2$	45		55	%	1
Jitter, Cycle to Cycle	t _{jCYC-CYC}	Measure from $V_T = 50\%$			200	ps	1
Jitter, Peak to Peak	t _{јРК-РК}	$\label{eq:constraint} \begin{array}{l} \mbox{Measure from V_T} = 50\% \ (0.9V) \\ \mbox{t}_{jpk-pk} = [lt_{jcyc-cyc}maxl + lt_{jcyc-cyc}minl]/2 \end{array}$			200	ps	1

*TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

³Includes cycle to cycle jitter.

Clock Periods–Differential Outputs with Spread Spectrum Enabled

Measuren	Measurement Window Symbol		1us	0.1s	0.1s	0.1s	1us	1 Clock		
Sy			-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
Definition		Absolute Period	Short-ter m Average	Long-Term Average	Period	Long-Term Average	Short-ter m Average	Period		
		Minimum Absolute Period	Minimum Absolute Period	Minimum Absolute Period	Nominal	Maximum	Maximum	Maximum	Units	Notes
Signal Name	HTT/SRC 100	9.87456	9.99956	10.02456	10.02506	10.02556	10.05056	10.17556	ns	1,2
Signal Name	CPU 200	4.84978	4.99978	5.01228	5.01253	5.01278	5.02528	5.17528	ns	1,2

Clock Periods–Differential Outputs with Spread Spectrum Disabled

Measurem	nent Window	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Sy	Symbol		-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
Definition		Absolute Period	Period Period Period		Period					
		Minimum Absolute Period	Minimum Absolute Period	Minimum Absolute Period	Nominal	Maximum	Maximum	Maximum	Units	Notes
	SRC 100	9.87450		9.99950	10.00000	10.00050		10.12550	ns	1,2
Signal Name	SATA 100	9.87450		9.99950	10.00000	10.00050		10.12550	ns	1,2
	CPU 200	4.84975		4.99975	5.00000	5.00025		5.15025	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

General SMBus Serial Interface Information

How to Write

Τ

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time

Index Block Write Operation

• Controller (host) sends a Stop bit

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- · Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Co	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		· · · · · · · · · · · · · · · · · · ·
S	lave Address		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
RT	Repeat starT		
Slave Address			
RD	ReaD		
			ACK
		_	Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		e	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
Ν	Not acknowledge		
Р	stoP bit		

	Index Bl	ock \	Write Operation
Controll	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave /	Address		
WR	WRite		
			ACK
Beginning	g Byte = N		
Data Byte Coupt - X			ACK
Data Byte	Count = X		
			ACK
Beginnir	ng Byte N		
			ACK
0		\times	
0		X Byte	0
0		ë	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

Read Address	Write Address
D3 _(H)	D2 _(H)

SMBus Table: Output Enable Control Register

		emzae ranner earpar =	j				
Byte	0	Name	Description	Туре	0	1	Default
	Bit 7	HTT1_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 6	HTT0_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 5	REF0_OE	Output Enable	RW	Low	Enabled	1
	Bit 4	REF1_OE	Output Enable	RW	Low	Enabled	1
	Bit 3	SIO_0_OE	Output Enable	RW	Hi-Z	Enabled	1
	Bit 2	SIO_1_OE	Output Enable	RW	Low	Enabled	1
	Bit 1	48MHz_1_OE	Output Enable	RW	Low	Enabled	1
	Bit 0	48MHz_0_OE	Output Enable	RW	Low	Enabled	1

SMBus Table:Output Enable Control Register

Byte	1	Name	Control Function	Туре	0	1	Default
	Bit 7	SRC13_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 6	SRC12_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 5	SRC11_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 4	SRC10_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 3	SRC9_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 2	SRC8_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 1	SRC7_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 0	SRC6_OE	Output Enable	RW	Low/Low	Enabled	1

SMBus Table: Output Enable Control Register

Byte	2	Name	Control Function	Туре	0	1	Default
	Bit 7	SRC5_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 6	SRC4_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 5	SRC3_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 4	SRC2_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 3	SRC1_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 2	SRC0_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 1	SATA_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 0	CPU0_OE	Output Enable	RW	Low/Low	Enabled	1

SMBus Table: CPU/HTT Frequency and Output Enable Control Register

Byte	3	Name	Control Function	Туре	0	1	Default
	Bit 7	CPU3_OE	Output enable	RW	Low/Low	Enabled	1
	Bit 6	CPU2_OE	Output enable	RW	Low/Low	Enabled	1
	Bit 5	CPU1_OE	Output enable	RW	Low/Low	Enabled	1
	Bit 4	CPU SS Enable	Spread Enable	RW	SS Off	SS On	0
	Bit 3	CPU Spread Type	Down or Center Spread	RW	0.5% Down Spread 0.5% Center Spread (+/-0.25%)		0
	Bit 2	CPU_FS2	CPU Frequency Select	RW		ency Select Table	1
	Bit 1	CPU_FS1	CPU Frequency Select	RW	Default value corresponds to 200MHz. Note that HTT frequency tracks the CPU frequency and is equal to 1/2 for CPU.		0
ĺ	Bit 0	CPU_FS0	CPU Frequency Select LSB	RW			0

SMBus Table: SRC Frequency Control Register

Byte	4	Name	Control Function	Туре	0	1	Default
_	Bit 7		R	eservec	1		0
	Bit 6		R	eservec	1		0
	Bit 5		R	eservec	1		0
	Bit 4	SRC SS Enable	Spread Enable	RW	SS Off	SS On	0
	Bit 3	SRC Spread Type	Down or Center Spread	RW	0.5% Down Spread	0.5% Center Spread	0
	Bit 2	SRC_FS2	SRC Frequency Select	RW	Soo SPC Frogue	anay Salagt Tabla	1
	Bit 1	SRC_FS1	SRC Frequency Select	SRC Frequency Select RW See SRC Frequency Select Table Default Corresponds to 100MHz			0
	Bit 0	SRC_FS0	SRC Frequency Select LSB	RW	Default Corresp		0

	Simbles Table. N-Step Gelect and Sto Headback negister											
Byte	5	Name	Control Function	Туре	0	1	Default					
	Bit 7	SIO_SEL	Selects 24MHz or 48MHz	R	24MHz	48MHz	Latch					
			CPU PLL M/N Prog. Enable	RW	M/N Prog. Disabled	M/N Prog. Enabled	0					
	Bit 5	SRC M/N En	SRC M/N Prog.Enable	RW	M/N Prog. Disabled	M/N Prog. Enabled	0					
	Bit 4	Test_Sel	Selects Test Mode	RW	Normal mode	All ouputs are REF/N	0					
	Bit 3		Reserved									
	Bit 2	IO_VOUT2	IO Output Voltage Select (Most Significant Bit)	RW		V IO Selection	1					
	Bit 1	IO_VOUT1	IO Output Voltage Select	RW			0					
				RW	(Default is 0.8V) RW							

SMBus Table: N-Step Select and SIO Readback Register

SMBus Table: Byte Count Register

Byte	6	Name	Control Function	Туре	0	1	Default
	Bit 7		F	Reserved	1		0
	Bit 6		F	Reserved	1		0
	Bit 5	BC5	Byte Count bit 5 (MSB)	RW			0
	Bit 4	Bit 4 BC4 Byte Count bit 4		RW			0
	Bit 3	BC3	Byte Count bit 3	RW	Determines the number of bytes that are read back	of bytes that are read back	1
	Bit 2	BC2	Byte Count bit 2	RW	from the device. Default is 08 hex.		0
	Bit 1 BC1	BC1	Byte Count bit 1	RW			0
	Bit 0	BC0	Byte Count bit 0 (LSB)	RW			0

SMBus Table: Device ID register

Byte	7	Name	Control Function	Туре	0	1	Default
	Bit 7	Device ID7		R			Х
	Bit 6	Device ID6		R			х
	Bit 5	Device ID5		R			х
	Bit 4	Device ID4	Device ID	R	89 hex for 932S820	or 0325820	х
	Bit 3	Device ID3	Device iD	R	09 Hex I	01 9020020	х
	Bit 2	Device ID2	1	R			х
	Bit 1	Device ID1		R			х
ľ	Bit 0	Device ID0		R			х

SMBus Table: Vendor & Revision ID Register

Byte	8	Name	Control Function	Туре	0	1	Default
	Bit 7	RID3		R	Boy	A = 0000	х
	Bit 6	RID2	REVISION ID	R	-		х
	Bit 5	RID1	REVISIONID	R		Rev B = 0001 Rev C = 0010	х
	Bit 4	RID0		R	Hev C		х
	Bit 3	VID3		R	-	-	0
	Bit 2	VID2	VENDOR ID	R		-	0
	Bit 1	VID1		R		0	
	Bit 0	VID0		R	-	-	1

SMBus Table: WatchDog Timer Control Register

Byte	9	Name	Control Function	Туре	0	1	Default
					Disable and Reload Hartd		
	Bit 7	HWD_EN	Watchdog Hard Alarm Enable	RW	Alarm Timer, Clear WD	Enable Timer	0
					Hard status bit.		
	Bit 6	SWD_EN	Watchdog Soft Alarm Enable	RW	Disable	Enable	0
	Bit 5	WD Hard Status	WD Hard Alarm Status	R	Normal	Alarm	Х
	Bit 4	WD Soft Status	WD Soft Alarm Status	R	Normal	Alarm	Х
	Bit 3	WDTCtrl	Watch Dog Alarm Time base Control	RW	290ms Base	1160ms Base	0
	Bit 2	HWD2	WD Hard Alarm Timer Bit 2	RW	These bits represent the n	umber of Watch Dog Time	1
	Bit 1	HWD1	WD Hard Alarm Timer Bit 1	RW	Base Units that pass befor	e the Watch Alarm expires.	1
	Bit 0	HWD0	WD Hard Alarm Timer Bit 0	RW	Default is 7 X	290ms = 2s.	1

SMBus Table: WD Timer Safe Frequency Control Register

Byte	10	Name	Control Function	Туре	0	1	Default
	Bit 7	SWD2	WD Soft Alarm Timer Bit 2	RW	These bits represent the n	umber of Watch Dog Time	1
	Bit 6	SWD1	WD Soft Alarm Timer Bit 1	RW	Base Units that pass befor	e the Watch Alarm expires.	1
	Bit 5	SWD0	WD Soft Alarm Timer Bit 0	RW		(290ms = 2s.	1
	Bit 4	WD SF4		RW	These bits configure the sa	e frequency that the device	0
	Bit 3	WD SF3	Watch Dog Hard Alarm Safe	RW	returns to if the Watchdog	g Hardware Timer expires.	0
	Bit 2	WD SF2	Freq Programming bits	RW	The value show here cor	responds to the power up	1
	Bit 1	WD SF1	rieg riogramming bits	RW	default of the device. See the		0
	Bit 0	WD SF0		RW	Tables for the ex	xact frequencies.	0

SMBus Table: CPU PLL Frequency Control Register

Byte	11	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div2	N Divider Prog bit 2	RW			Х
	Bit 6	N Div1	N Divider Prog bit 1	RW			Х
	Bit 5	M Div5		RW	The decimal representation	n of M and N Divider in Byte	Х
	Bit 4	M Div4		RW	16 and 17 will configure the	n of M and N Divider in Byte VCO frequency. Default at able. See M/N Caculation equency formulas.	Х
	Bit 3	M Div3	M Divider Programming bits	RW	power up = Byte 3 Rom t		Х
	Bit 2	M Div2	W Divider i Tograffinning bits	RW	Tables for VCO fr		Х
	Bit 1	M Div1		RW			Х
	Bit 0	M Div0		RW			Х

SMBus Table: CPU PLL Frequency Control Register

			riequency control negleter				
Byte	12	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div10		RW			Х
	Bit 6	N Div9		RW			Х
	Bit 5	N Div8		RW	The decimal representation	n of M and N Divider in Byte	Х
	Bit 4	N Div7	N Divider Programming	RW	16 and 17 will configure the	VCO frequency. Default at	Х
	Bit 3	N Div6	b(10:3)	RW	power up = Byte 3 Rom t	able. See M/N Caculation	Х
	Bit 2	N Div5		RW	Tables for VCO fr	equency formulas.	Х
	Bit 1	N Div4		RW			Х
	Bit 0	N Div3		RW			Х

SMBus Table: CPU PLL Spread Spectrum Control Register

Byte	13	Name	Control Function	Туре	0	1	Default
	Bit 7	SSP7		RW		•	Х
	Bit 6	SSP6		RW			Х
	Bit 5	SSP5		RW			Х
	Bit 4	SSP4	Spread Spectrum	RW	These bits set the CPU	spread pecentage.Please	Х
	Bit 3	SSP3	Programming b(7:0)	RW	contact IDT for the	appropriate values.	Х
	Bit 2	SSP2		RW			Х
	Bit 1	SSP1		RW			Х
	Bit 0	SSP0		RW			Х

SMBus Table: CPU PLL Spread Spectrum Control Register

Byte	14	Name	Control Function	Туре	0	1	Default
	Bit 7	SSP15		RW			Х
	Bit 6	SSP14		RW			Х
	Bit 5	SSP13		RW			Х
	Bit 4	SSP12	Spread Spectrum	RW	These bits set the CPU s	spread pecentage.Please	Х
	Bit 3	SSP11	Programming b(15:8)	RW	contact IDT for the	appropriate values.	Х
	Bit 2	SSP10		RW			Х
	Bit 1	SSP9		RW			Х
	Bit 0	SSP8		RW			Х

Note: If CLKREQA and CLKREQB are both selected to control an output, the control condition is an OR function. CLKREQA# = 0 OR CLKREQB = 0 results in the controlled output running.

SMBUS Table: SRC Frequency Control Register

Byte	15	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div2	N Divider Prog bit 2	RW			Х
	Bit 6	N Div1	N Divider Prog bit 1	RW			Х
	Bit 5	M Div5		RW	The decimal representation	on of M and N Divider in Byte SRC VCO frequency. See or VCO frequency formulas.	Х
	Bit 4	M Div4		RW	•		Х
	Bit 3	M Div3	M Divider Programming	RW	-		Х
	Bit 2	M Div2	bit (5:0)	RW	M/N Caculation Tables to		Х
	Bit 1	M Div1		RW			Х
	Bit 0	M Div0		RW			Х

SMBUS Table: SRC Frequency Control Register

Byte	16	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div10		RW			Х
	Bit 6	N Div9		RW			Х
	Bit 5	N Div8	N Divider Programming	RW	The decimal representation	of Mand N Divider in Byte	Х
	Bit 4	N Div7	Byte16 bit(7:0) and Byte15	RW	•	on of M and N Divider in Byte SRC VCO frequency. See or VCO frequency formulas.	Х
	Bit 3	N Div6	bit(7:6)	RW	•		Х
	Bit 2	N Div5	Dit(7.0)	RW	M/N Caculation Tables for VCO frequency formulas.	Х	
	Bit 1	N Div4		RW			Х
	Bit 0	N Div3		RW			Х

SMBUS Table: SRC Spread Spectrum Control Register

Byte	17	Name	Control Function	Туре	0	1	Default
	Bit 7	SSP7		RW			Х
	Bit 6	SSP6		RW			Х
	Bit 5	SSP5		RW			Х
	Bit 4	SSP4	Spread Spectrum	RW	These bits set the SRC s	pread pecentages.Please	Х
	Bit 3	SSP3	Programming bit(7:0)	RW	contact IDT for the	appropriate values.	Х
	Bit 2	SSP2		RW			Х
	Bit 1	SSP1		RW			Х
	Bit 0	SSP0		RW			Х

SMBUS Table: SRC Spread Spectrum Control Register

			eau opectrum control negis				
Byte	18	Name	Control Function	Туре	0	1	Default
	Bit 7	SSP15		RW			Х
	Bit 6	SSP14		RW			Х
	Bit 5	SSP13		RW			Х
	Bit 4	SSP12	Spread Spectrum	RW	These bits set the SRC s	pread pecentages.Please	Х
	Bit 3	SSP11	Programming bit(15:8)	RW	contact IDT for the	appropriate values.	Х
	Bit 2	SSP10		RW			Х
	Bit 1	SSP9]	RW			Х
	Bit 0	SSP8]	RW			Х

SMBus Table: SRC N Divider Control Register

Byte	19	Name	Control Function	Туре	0	1	Default
	Bit 7	SRC NDiv0	LSB N Divider Programming	RW	N Divider LSB (bit 0) for	SRC M/N programming.	Х
	Bit 6		R	eserved			0
	Bit 5		R	eserved			0
	Bit 4		R	eserved			0
	Bit 3		R	eserved			0
	Bit 2		R	eserved			0
	Bit 1		R	eserved			0
	Bit 0		R	eserved			0

SMBUS Table: CPU Output Divider Register

			at Bitlaci nogiotoi						
Byte	20	Name	Control Function	Туре	0	1	Default		
	Bit 7	CPU NDiv0	LSB N Divider Programming RW Byte 20 has the N Divider LSB (bit 0) for CPU M/N						
	Bit 6		Reserved						
	Bit 5		R	eservec	1		0		
	Bit 4	Reserved					0		
	Bit 3	CPUDiv3		RW	0000:/2;0100:/4	1000:/8 ; 1100:/16	Х		
	Bit 2	CPUDiv2	CPU Divider Ratio	RW	0001:/3 ; 0101:/6	1001:/12 ; 1101:/24	Х		
	Bit 1	CPUDiv1	Programming Bits	RW	0010:/5;0110:/10	1010:/20 ; 1110:/40	Х		
	Bit 0	CPUDiv0		RW	0011:/9;0111:/18	1011:/36 ; 1111:/72	Х		

Bytes 21 to 63 Are Reserved

CPU, SRC and PCI Divider Ratios

Div(3:0)	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101		1111
Divider	2	3	5	15	4	6	10	30	8	12	20	60	16	24	40	120

VDDCPU_3.3 9

CPUKG2C_LPRS 11

CPUKG3C_LPRS 13 CPUKG3T_LPRS 14 RESTORE# 15

HTT0C_LPRS 16

GNDHTT 18

HTT0T_LPRS

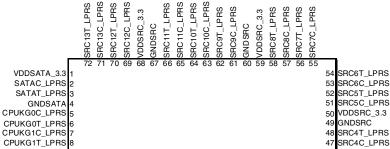
CPUKG2T_LPRS

GNDCPU 10

12

17

VDDHTT_3.3 HTT1C_LPRS


HTT1T_LPRS SMBCLK SMBDAT

X1 X2

VDD REF_3.3

Drive Strength and Terminations

Drive	N/A	N/A	N/A	N/A	Ndd	Ground	N/A	N/A	N/A	N/A	N/A	N/A	Ground	V dd	N/A	N/A	N/A	N/A
Rs(ohm)	0 ohm	0 ohm	0 ohm	0 ohm	Ndd	Ground	0 ohm	Ground	V dd	0 ohm	0 ohm	0 ohm	0 ohm					
CL(pF)	2pF	2pF	2pF	2pF	Ndd	Ground	2pF	2pF	2pF	2pF	2pF	2pF	Ground	νdd	2pF	2pF	2pF	2p F
Pin Type	OUT	OUT	OUT	OUT	PWR	GND	OUT	OUT	OUT	OUT	OUT	OUT	GND	AWP	OUT	DUT	OUT	OUT

932S890C

SRC5T_LPRS SRC5C_LPRS VDDSRC_3.3 GNDSRC SRC4T_LPRS SRC4C_LPRS 47 SRC3T_LPRS SRC3C_LPRS 46 45 44 SRC2T_LPRS 43 SRC2C_LPRS GNDSRC VDDSRC_3.3 SRC1T_LPRS SRC1C_LPRS 42 41 40 39 38 SRC0T_LPRS SRC0C_LPRS 37

GNDSIO

SIO_1_1.8

Pin Type	CL(pF)	Rs(ohm)
OUT	2pF	0 ohm
PWR	Vdd	Vdd
GND	Ground	Ground
OUT	2pF	0 ohm
GND	Ground	Ground
PWR	Vdd	Vdd
OUT	2pF	0 ohm

Drive	Rs(ohm)	CL(pF)	Pin Type
Vdd	Vdd	Vdd	PWR
N/A	0 ohm	2pF	OUT
N/A	0 ohm	2pF	OUT
Ground	Ground	Ground	GND
N/A	0 ohm	2pF	OUT
N/A	0 ohm	2pF	OUT
N/A	0 ohm	2pF	OUT
N/A	0 ohm	2pF	OUT
Vdd	Vdd	Vdd	PWR
Ground	Ground	Ground	GND
N/A	0 ohm	2pF	OUT
N/A	0 ohm	2pF	OUT
N/A	0 ohm	2pF	OUT
N/A	0 ohm	2pF	OUT
I/O	I/O	I/O	I/O
N/A	0 ohm	2pF	OUT
N/A	0 ohm	2pF	OUT
Ground	Ground	Ground	PWR

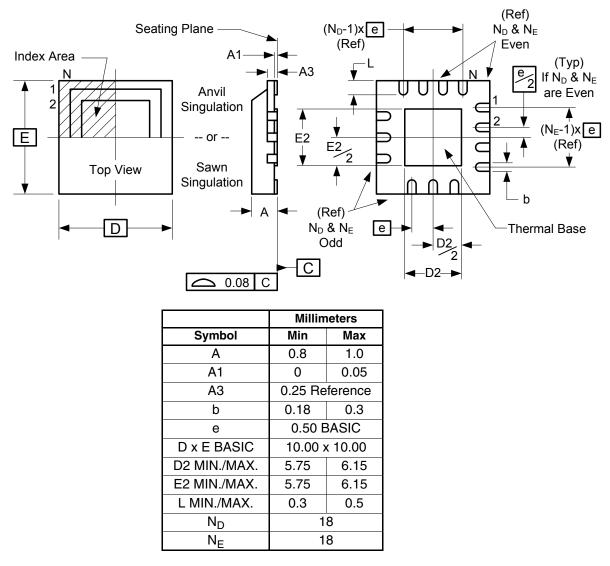
SIO_0_1.8/SIO_SI * Indicates that pin has 120Kohm internal pullup resistor.

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

REF0 REF1 GNDREF

GND48

48MHz_0


48MHz_1

VDD48_3.3

Pin Type	PWR	OUT	OUT	N	0/1	NI	OUT	PWR	OUT	OUT	GND	GND	OUT	OUT	ЯWЧ	0/1	OUT	GND
	Vdd	2pF	2pF	SCLK	SDATA	30pF	30 pF	Vdd	3.9pF	3.9pF	Ground	Ground	3.9pf	3.9pf	ρpΛ	3.9pf	3.9pf	Ground
Rs(ohm) CL(pF)	Vdd	0 ohm	0 ohm	SCLK	SDATA	N/A	N/A	Vdd	39 ohm	39 ohm	Ground	Ground	39 ohm	39 ohm	Vdd	29 oh m	29 ohm	Ground
Drive	Vdd	N/A	N/A	SCLK	SDATA	N/A	N/A	Vdd	2X	2X	Ground	Ground	2X	2X	Vdd	1X	1 X	Ground

Resistor values are for default drive strength driving a single transmission line with Zo = 50 ohms!

Package Outline and Package Dimensions (72-pin MLF)

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
932S890CKLF	see page 13	Trays	72-pin MLF	0 to +70° C
932S890CKLFT		Tape and Reel	72-pin MLF	0 to +70° C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

"C" is the device revision designator (will not correlate with the datasheet revision).

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Issue Date	Who	Description	Page #
Α	1/15/2009	RDW	Updates to pin descriptions, electrical tables, power tables, release to final	Various
В	2/26/2009	RDW	Updates to pin 71 & 72 descriptions.	3
			1. Updated PPM tolerances to +/-50ppm from +/-100ppm	
			2. Updated clock periods to reflect this.	
			3. Added footnote 3 to 14.318M Electrical Table	
			4. Updated ppm reference on page 1 to reflect this.	
С	2/10/2011	RDW	5. Added clock periods table after page 10.	1,8,9,10,19
D	5/20/2011	RDW	Updated to new datasheet template.	Various

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

932S890CKLF 932S890CKLFT