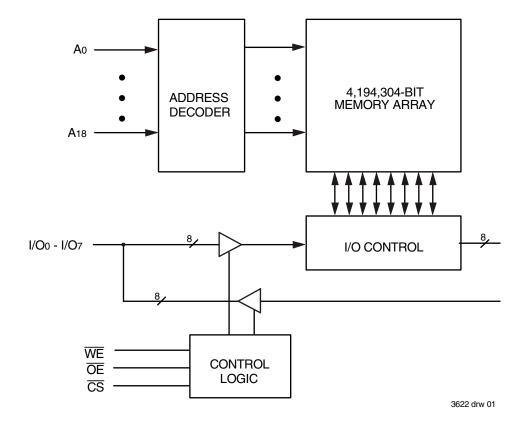
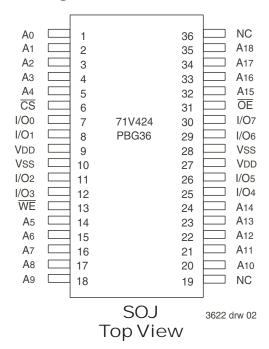
Features

- 512K x 8 advanced high-speed CMOS Static RAM
- ◆ JEDEC Center Power / GND pinout for reduced noise
- Equal access and cycle times
 - Commercial and Industrial: 10/12/15ns
- Single 3.3V power supply
- One Chip Select plus one Output Enable pin
- Bidirectional data inputs and outputs directly TTL-compatible
- Low power consumption via chip deselect
- Available in 36-pin, 400 mil plastic SOJ package and 44-pin, 400 mil TSOP.
- Industrial temperature range (-40°C to +85°C) is available for selected speeds

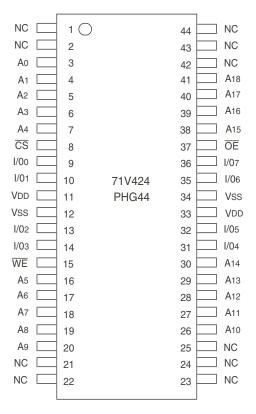

Description

The IDT71V424 is a 4,194,304-bit high-speed Static RAM organized as $512K \times 8$. It is fabricated using high-performance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.


The IDT71V424 has an output enable pin which operates as fast as 5ns, with address access times as fast as 10ns. All bidirectional inputs and outputs of the IDT71V424 are TTL-compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.

The IDT71V424 is packaged in a 36-pin, 400 mil Plastic SOJ and 44-pin, 400 mil TSOP.

Functional Block Diagram



Pin Configurations⁽¹⁾

NOTE:

1. This text does not indicate orientation of actual part-marking.

TSOP 36 Top View

3622 drw 11

Pin Description

A0 - A18	Address Inputs	Input
CS	Chip Select Input	
WE	Write Enable	Input
ŌĒ	Output Enable	Input
1/00 - 1/07	Data Input/Output	I/O
VDD	3.3V Power	Power
Vss	Ground	Gnd

3622 tbl 02

Capacitance

 $(TA = +25^{\circ}C, f = 1.0MHz, SOJ package)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	7	pF
Cı/o	I/O Capacitance	Vout = 3dV	8	pF

3622 tbl 03

NOTE:

 This parameter is guaranteed by device characterization, but not production tested.

Truth Table^(1,2)

CS	ŌĒ	WE	l/O	Function
L	L	Н	DATAout	Read Data
L	Х	L	DATAIN	Write Data
L	Н	Н	High-Z	Output Disabled
Н	Χ	Χ	High-Z	Deselected - Standby (ISB)
V HC ⁽³⁾	Х	Х	High-Z	Deselected - Standby (ISB1)

3622 tbl 01

- NOTES: 1. $H = V_{IH}, L = V_{IL}, x = Don't care.$
- 2. VLC = 0.2V, VHC = VDD 0.2V
- 3. Other inputs $\geq V_{HC}$ or $\leq V_{LC}$.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Value	Unit
VDD	Supply Voltage Relative to Vss	-0.5 to +4.6	V
VIN, VOUT	Terminal Voltage Relative to Vss	-0.5 to VDD+0.5	V
TBIAS	Temperature Under Bias	-55 to +125	۰C
Тѕтс	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	1	W
Гоит	DC Output Current	50	mA

NOTE: 3622 tbl 04

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	Vss	VDD
Commercial	0°C to +70°C	0V	See Below
Industrial	-40°C to +85°C	0V	See Below

3622 tbl 05

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Supply Voltage	3.0	3.3	3.6	٧
Vss	Ground	0	0	0	٧
ViH	Input High Voltage	2.0		V _{DD} +0.3 ⁽¹⁾	٧
VIL	Input Low Voltage	-0.3 ⁽²⁾		0.8	٧

3622 tbl 06

NOTES:

- 1. ViH (max.) = VDD+2V for pulse width less than 5ns, once per cycle.
- 2. V_{IL} (min.) = -2V for pulse width less than 5ns, once per cycle.

DC Electrical Characteristics

(VDD = Min. to Max., Commercial and Industrial Temperature Ranges)

			IDT71V424		
Symbol	Parameter	Test Condition	Min.	Max. Unit	
Iu	Input Leakage Current	VDD = Max., VIN = Vss to VDD		5	μΑ
ILO	Output Leakage Current	VDD = Max., $\overline{\text{CS}}$ = VIH, VOUT = VSS to VDD		5	μΑ
Vol	Output Low Voltage	IOL = 8mA, VDD = Min.		0.4	V
Vон	Output High Voltage	Iон = -4mA, V _{DD} = Min.	2.4		V

3622 tbl 07

DC Electrical Characteristics (1, 2, 3)

(VDD = Min. to Max., VLC = 0.2V, VHC = VDD - 0.2V)

			71V424S/L 10		71V424S/L 12		71V424S/L 15		Unit	
Symbol	Parameter		Com'l.	Ind.	Com'l.	Ind.	Com'l.	Ind.	Unit	
loo	$\label{eq:Dynamic Operating Current} \begin{array}{ll} \text{Icc} & \overline{\text{CS}} \leq \text{VLc, Outputs Open, VDD} = \text{Max., f} = \text{fmax}^{(4)} \end{array}$	S	180	180	170	170	160	160	mA	
ICC		L	165	165	155	155	145	145	mA	
lon	Dynamic Standby Power Supply Current	S	60	60	55	55	50	50	mA	
ISB	ISB $\overline{CS} \ge VHC$, Outputs Open, VDD = Max., $f = f_{MAX}^{(4)}$	L	55	55	50	50	45	45	mA	
ISB1	Full Standby Power Supply Current (static)	S	20	20	20	20	20	20	mA	
ISBI	$\overline{\text{CS}} \ge \text{VHC}$, Outputs Open, $\text{VDD} = \text{Max.}$, $f = 0^{(4)}$	L	10	10	10	10	10	10	mA	

NOTES:

3622 tbl 08

- 1. All values are maximum guaranteed values.
- 2. All inputs switch between 0.2V (Low) and VDD 0.2V (High).
- 3. Power specifications are preliminary.
- 4. $f_{MAX} = 1/t_{RC}$ (all address inputs are cycling at f_{MAX}); f = 0 means no address input lines are changing.

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	1.5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figure 1, 2 and 3

3622 tbl 09

AC Test Loads

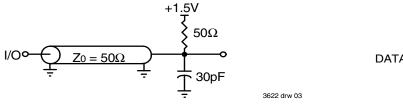
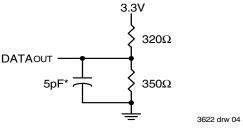



Figure 1. AC Test Load

*Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

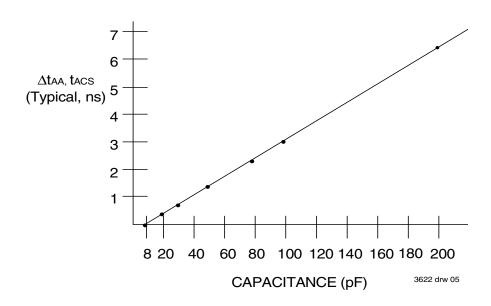
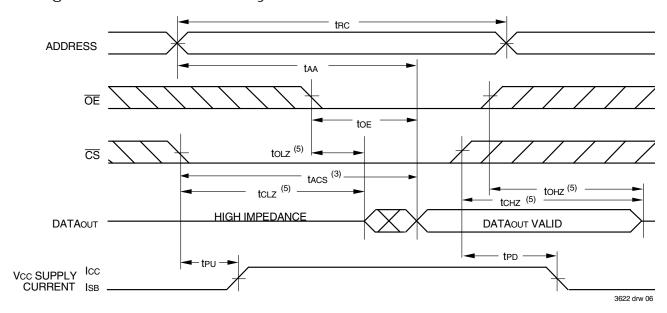


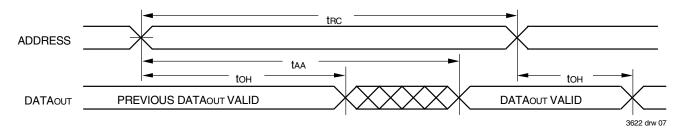
Figure 3. Output Capacitive Derating

AC Electrical Characteristics

(Vcc = $3.3V \pm 10\%$, Commercial and Industrial Temperature Ranges)

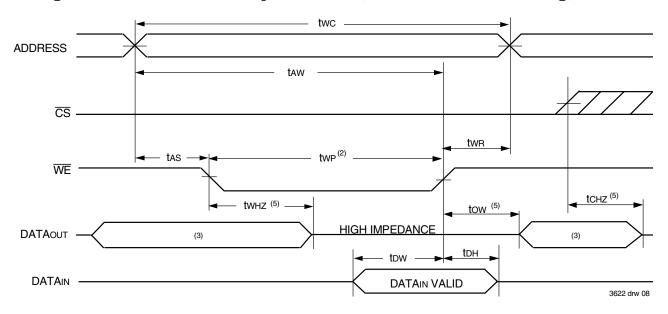

		71V42	4S/L10	71V42	4S/L12	71V42	4S/L15	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE								
trc	Read Cycle Time	10	_	12	_	15		ns
taa	Address Access Time	_	10		12		15	ns
tacs	Chip Select Access Time		10		12		15	ns
tclz ⁽¹⁾	Chip Select to Output in Low-Z	4	_	4	_	4		ns
tcHz ⁽¹⁾	Chip Deselect to Output in High-Z	_	5		6		7	ns
toe	Output Enable to Output Valid		5		6		7	ns
tolz ⁽¹⁾	Output Enable to Output in Low-Z	0	_	0	_	0		ns
tonz ⁽¹⁾	Output Disable to Output in High-Z	_	5		6		7	ns
toн	Output Hold from Address Change	4		4		4		ns
tpu ⁽¹⁾	Chip Select to Power Up Time	0	_	0		0		ns
tpD ⁽¹⁾	Chip Deselect to Power Down Time	_	10		12		15	ns
WRITE CYCL	E							
twc	Write Cycle Time	10		12		15		ns
taw	Address Valid to End of Write	8	_	8	_	10		ns
tcw	Chip Select to End of Write	8	_	8	_	10		ns
tas	Address Set-up Time	0		0	_	0		ns
twp	Write Pulse Width	8	_	8	_	10		ns
twr	Write Recovery Time	0		0		0		ns
tow	Data Valid to End of Write	6	_	6	_	7		ns
tон	Data Hold Time	0		0		0		ns
tow ⁽¹⁾	Output Active from End of Write	3	—	3		3		ns
twnz ⁽¹⁾	Write Enable to Output in High-Z	_	6		7		7	ns

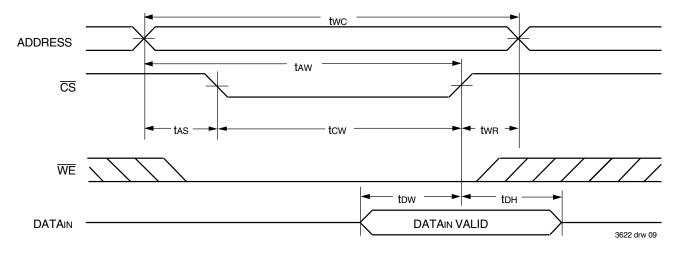
3622 tbl 10


NOTE:

1. This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.

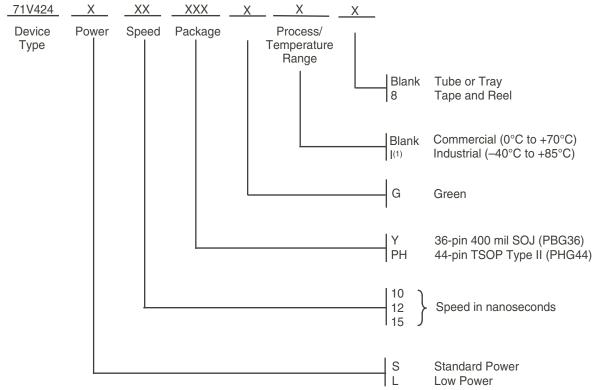
Timing Waveform of Read Cycle No. 1(1)


Timing Waveform of Read Cycle No. 2^(1, 2, 4)


NOTES:

- 1. $\overline{\text{WE}}$ is HIGH for Read Cycle.
- 2. Device is continuously selected, $\overline{\text{CS}}$ is LOW.
- 3. Address must be valid prior to or coincident with the later of \overline{CS} transition LOW; otherwise tax is the limiting parameter.
- 4. \overline{OE} is LOW.
- 5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)(1, 2, 4)


Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)(1, 4)

NOTES:

- 1. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 2. $\overline{\text{OE}}$ is continuously $\overline{\text{HIGH}}$. During a $\overline{\text{WE}}$ controlled write cycle with $\overline{\text{OE}}$ LOW, two must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If $\overline{\text{OE}}$ is HIGH during a $\overline{\text{WE}}$ controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high impedance state. CS must be active during the tcw write period.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state.

Ordering Information

NOTE:

1. Contact your local sales office for industrial temp. range for other speeds, packages and powers.

3622 drw 10

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
10	71V424L10PHG	PHG44	TSOP	С
	71V424L10PHG8	PHG44	TSOP	С
	71V424L10PHGI	PHG44	TSOP	I
	71V424L10PHGI8	PHG44	TSOP	I
	71V424L10YG	PBG36	SOJ	С
	71V424L10YG8	PBG36	SOJ	С
	71V424L10YGI	PBG36	SOJ	I
	71V424L10YGl8	PBG36	SOJ	I
12	71V424L12PHG	PHG44	TSOP	С
	71V424L12PHG8	PHG44	TSOP	С
	71V424L12PHGI	PHG44	TSOP	I
	71V424L12PHGl8	PHG44	TSOP	I
	71V424L12YG	PBG36	SOJ	С
	71V424L12YG8	PBG36	SOJ	С
	71V424L12YGI	PBG36	SOJ	I
	71V424L12YGI8	PBG36	SOJ	I
15	71V424L15PHG	PHG44	TSOP	С
	71V424L15PHG8	PHG44	TSOP	С
	71V424L15PHGI	PHG44	TSOP	I
	71V424L15PHGl8	PHG44	TSOP	I
	71V424L15YG	PBG36	SOJ	С
	71V424L15YG8	PBG36	SOJ	С
	71V424L15YGI	PBG36	SOJ	I
	71V424L15YGl8	PBG36	SOJ	ı

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
10	71V424S10PHG	PHG44	TSOP	С
	71V424S10PHG8	PHG44	TSOP	С
	71V424S10PHGI	PHG44	TSOP	I
	71V424S10PHGl8	PHG44	TSOP	I
	71V424S10YG	PBG36	SOJ	С
	71V424S10YG8	PBG36	SOJ	С
	71V424S10YGI	PBG36	SOJ	- 1
	71V424S10YGl8	PBG36	SOJ	1
12	71V424S12PHG	PHG44	TSOP	С
	71V424S12PHG8	PHG44	TSOP	С
	71V424S12PHGI	PHG44	TSOP	I
	71V424S12PHGl8	PHG44	TSOP	I
	71V424S12YG	PBG36	SOJ	С
	71V424S12YG8	PBG36	SOJ	С
	71V424S12YGI	PBG36	SOJ	I
	71V424S12YGl8	PBG36	SOJ	I
15	71V424S15PHG	PHG44	TSOP	С
	71V424S15PHG8	PHG44	TSOP	С
	71V424S15PHGI	PHG44	TSOP	I
	71V424S15PHGI8	PHG44	TSOP	I
	71V424S15YG	PBG36	SOJ	С
	71V424S15YG8	PBG36	SOJ	С
	71V424S15YGI	PBG36	SOJ	ı
	71V424S15YGI8	PBG36	SOJ	ı

Datasheet Document History

m
ture only and updated die stepping from YF to Y.
nd increased for S12 speed by 5mA (refer to
•
e ordering information.
rdering information. Updated the ordering
ation.
entire datasheet.
d Restricted Hazardous Substance Device
ision, the"Y" designator.
ū
l .

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

71V424L15YG8 71V424L10YG 71V424L12YG 71V424L15YG 71V424S12PHGI 71V424L12PHG8
71V424L15PHG 71V424L15PHGI 71V424S15PHG8 71V424L15YGI 71V424L12YGI 71V424S15YG8
71V424S12YGI8 71V424L12PHGI 71V424S12PHG8 71V424L10YGI8 71V424S15YGI 71V424L10PHGI
71V424S10PHG8 71V424S10YG 71V424S15PHG 71V424L15PHG8 71V424S15PHGI 71V424L10PHGI8
71V424S10PHGI8 71V424S15YG 71V424S12YG 71V424S12PHG 71V424S15YGI8 71V424L10YG8
71V424L12YGI8 71V424S10YGI8 71V424L15YGI8 71V424L12PHGI8 71V424S12PHGI8 71V424S12YGI
71V424L10YGI 71V424L10PHG 71V424L12YG8 71V424S10YG8 71V424S10PHG 71V424S10YGI
71V424L15PHGI8 71V424S15PHGI8 71V424S10PHGI 71V424L10PHG8 71V424S12YG8 71V424L12PHG