
Pyxos FT EVK User’s Guide

@®

0 7 8 - 0 3 4 2 - 0 1 A

@ECHELON
®

Echelon, LONWORKS, LONMARK, NodeBuilder, LonTalk, Neuron,
3120, 3150, LNS, i.LON, ShortStack, LonMaker, and the
Echelon logo are trademarks of Echelon Corporation
registered in the United States and other countries.
OpenLDV, Pyxos, and LonScanner are trademarks of Echelon
Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Each user of the Pyxos FT Chip and protocol assumes
responsibility for, and hereby agrees to use its best efforts in,
designing and manufacturing equipment licensed
hereunder to provide for safe operation thereof, including,
but not limited to, compliance or qualification with respect
to all safety laws, regulations and agency approvals, as
applicable. The Pyxos FT Chip and protocol are not
designed or intended for use as components in equipment
intended for surgical implant into the body, or other
applications intended to support or sustain life, for use in
flight control or engine control equipment within an
aircraft, or for any other application in which the failure of
the Pyxos FT Chip or protocol could create a situation in
which personal injury or death may occur, and the user
shall have no rights hereunder for any such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2006, 2007 Echelon Corporation.

Echelon Corporation
www.echelon.com

Pyxos FT EVK User’s Guide iii

Welcome
Echelon’s Pyxos™ FT EVK Evaluation Kit is a set of hardware and software tools
that you can use to demonstrate the functions and capabilities of Pyxos FT
technology and to develop your own devices that incorporate Pyxos FT
technology. You can also use the Pyxos FT EVK to develop devices that integrate
a Pyxos FT network with a control network based on the LONWORKS® platform.

To learn more about the Pyxos FT platform, see the Introduction to the Pyxos FT
Platform.

The Pyxos FT EVK includes examples devices that you can use to create a Pyxos
FT network that includes a Pyxos controller, called a Pyxos Pilot, and three
Pyxos I/O devices, called Pyxos Points. Two of these Pyxos Points demonstrate
how you can use a microprocessor with a Pyxos FT Chip; these Points are called
hosted Points. One of the Pyxos Points demonstrates how you can use a Pyxos FT
Chip without a separate microprocessor; this Point is called an unhosted Point.
The sample devices in the Pyxos FT EVK demonstrate a simple control system
with multiple sensors and actuators, plus a controller.

The Pyxos FT EVK includes example software that demonstrates a complete
control system using the example devices that are included with the Pyxos FT
EVK. This software demonstrates how you can use a Windows® computer to
monitor and control a Pyxos FT network through a Pyxos Pilot. The example
software is pre-loaded in the Pyxos FT EVK devices, and is included on the Pyxos
FT EVK CD in binary form (so that you can re-load the example software if
needed) and as C source code that you can use to learn how to develop Pyxos
Pilots and Pyxos Points.

The Pyxos FT EVK includes software that you can use to develop applications for
Pyxos Pilots and Pyxos Points. This software includes C source code for the
Pyxos FT application programming interface (API), and it includes two Windows
application programs, the Pyxos FT Interface Developer utility, which simplifies
development of Pyxos applications that use the Pyxos API, and the Pyxos
Network Example human-machine interface (HMI) application program, which is
a visualization tool for monitoring and controlling the Pyxos example software.

This document describes the Pyxos FT EVK hardware, how to assemble the
hardware, and how to use the hardware and software that is included with the
Pyxos FT EVK to demonstrate Pyxos FT technology and to develop your own
Pyxos Pilots and Points.

Except where specified otherwise, the term Pyxos in this document refers to
Pyxos FT technology.

Audience
This manual provides information for hardware, software, and firmware
engineers who are evaluating Pyxos FT technology for use in their products or
who are developing devices using Pyxos FT technology.

iv

Related Documentation
The Pyxos FT EVK User’s Guide describes the Pyxos FT EVK. In addition, the
following guide provides a quick summary of how to use the Pyxos FT EVK:

• Pyxos FT EVK Quick Start Guide. This guide helps you set up and
install the Pyxos FT EVK Evaluation Boards and helps you get started
with the Pyxos FT EVK examples. A printed copy of this guide is
included with the Pyxos FT EVK.

The following manuals describe the Pyxos FT platform:

• Introduction to the Pyxos FT Platform. This manual introduces the
concepts, technology, and tools for the Pyxos FT platform.

• Pyxos FT Chip Data Book. This manual provides hardware specifications
for working with the Pyxos FT Chip.

• Pyxos FT Programmer’s Guide. This manual describes the API for the
Pyxos FT platform, how to use the API to develop applications that use
the Pyxos FT platform, and how to program directly to the Pyxos FT Chip
when you cannot use the API.

The following manual provides additional information that can help you to
develop applications for the Pyxos FT platform:

• Introduction to the LONWORKS System. This manual provides an
introduction to the ANSI/CEA-709.1 (EN14908) Control Networking
Protocol, and provides a high-level introduction to LONWORKS networks
and the tools and components that are used for developing, installing,
operating, and maintaining them.

After you install the Pyxos FT EVK software, you can view all of these documents
from the Windows Start menu: select Programs → Echelon Pyxos FT EVK →
Documentation, then select the document that you want to view.

In addition to the documentation that is included with the Pyxos FT EVK, the
following documents are also useful for Pyxos FT development projects and are
available from the Echelon Web site (www.echelon.com):

• ShortStack User’s Guide. This manual describes how to develop
applications for LONWORKS devices that use the ShortStack® Micro
Server. It also describes the architecture of a ShortStack device and how
to develop one.

• LONWORKS Host Application Programmer's Guide. This manual
describes how to create LONWORKS host applications. Host applications
are application programs that run on hosts other than Neuron® Chips
and use the LONTALK® protocol to communicate with devices on a
LONWORKS network.

All of the Pyxos documentation, and related product documentation, is available
in Adobe® PDF format. To view the PDF files, you must have a current version of
the Adobe Reader®. The Pyxos FT EVK CD includes the English-language
version of the Adobe Reader; you can download other language versions from
Adobe at: www.adobe.com/products/acrobat/readstep2.html.

Pyxos FT EVK User’s Guide v

FCC Compliance Statement – Class A
This equipment has been tested and found to comply with the limits for a Class A
digital device, pursuant to Title 47 of the Code of Federal Regulations (CFR) Part
15 of the United States Federal Communications Commission (FCC). These
limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio frequency energy and, if not installed and
used in accordance with the instructions in this manual, can cause interference
with radio communications. Operation of this equipment in a residential area is
likely to cause harmful interference, in which case the user will be required to
correct the interference at his or her own expense.

IC Compliance Statement – Class A
This Class A digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du
Canada.

 Pyxos™ FT EVK Evaluation Kit

Application of Council Directive: 89/336/EEC, Electromagnetic Compatibility Directive (EMC)

Manufacturer’s Name: Echelon Corporation

Manufacturer’s Address: 550 Meridian Avenue
 San Jose, CA 95126
 USA

Manufacturer’s Address in Europe: Echelon BV
 Printerweg 3
 3821 AP Amersfoort
 The Netherlands

Product Model Numbers: 11000R-10-11, 11000R-10-12, 11000R-10-13, 11000R-10-14

Type of Equipment: Information Technology Equipment

Standards to which Conformity EN 55022:1998 EN 61000-4-4
is Declared: EN 55024:1998 EN 61000-4-5
 EN 61000-4-2 EN 61000-4-6
 EN 61000-4-3 EN 61000-4-11

I, Wim Meijer, hereby declare that the equipment specified above conforms to the above

Directives and Standards.

For a signed copy of this Declaration of Conformity, go to the Echelon Web site.

Place: Amersfoort, The Netherlands Date: January 2007 Position: Controller, Echelon Europe

@ECHELON
®
 DECLARATION OF CONFORMITY

Pyxos FT EVK User’s Guide vii

Table of Contents
Welcome...iii
Audience ..iii
Related Documentation .. iv
FCC Compliance Statement – Class A ... v
IC Compliance Statement – Class A... v

Introduction to the Pyxos FT EVK.. 1
Introduction to the Pyxos FT EVK ... 2
Pyxos FT EVK Hardware Features .. 3
Pyxos FT EVK Hardware Contents .. 4
Power Considerations for the Pyxos FT EVK .. 6
Network Termination .. 6
Connecting the EV Pilot to a Computer Using USB 7
Connecting to a LONWORKS Network ... 7
Developing a Pyxos FT Application .. 9

Getting Started with the Pyxos FT EVK .. 11
Assembling the Evaluation Boards... 12
Pyxos FT EVK Software System Requirements .. 13

Hardware Requirements... 14
Software Requirements... 14

Installing the Pyxos FT EVK Software .. 15
Compatibility..15

Pyxos FT EVK Hardware Details.. 17
Pyxos FT EV Pilot Evaluation Board ... 18

Key Features.. 18
Push Buttons and LEDs.. 18

Join and Reset Buttons and LEDs... 19
Smart Transceiver Reset and Service Buttons 20
Application Buttons and LEDs .. 20

Jumper Settings for Controlling Onboard I/O..................................... 22
Connectors..30

Header Connector for Accessing Host Power and I/O 31
Header Connector for Accessing Host SPI 32
Header Connector for Remote Programming and Debugging...... 33
Pyxos FT Network Connector .. 33
LONWORKS Network Connector ... 33
USB Connector..34
DC Power Connector... 34
AC Power Connector ...34

Pyxos FT EV-Actuator Point Evaluation Board .. 34
Key Features.. 34
Push Buttons and LEDs.. 35

Join and Reset Buttons and LEDs... 35
Application Buttons and LEDs .. 36

Jumper Settings for Controlling Onboard I/O..................................... 38
Connectors..43

Header Connector for Accessing Host Power and I/O 44
Header Connector for Accessing Host SPI 44
Header Connector for Analog Output.. 45
Header Connectors for Accessing Digital I/O................................ 45

viii

Header Connector for Remote Programming and Debugging...... 46
Pyxos FT Network Connector .. 46
Power Connector ... 46

Pyxos FT EV-Sensor Point Evaluation Board.. 46
Key Features.. 46
Join and Reset Buttons and LEDs ... 47
Sensors ...48
Jumper Settings for Controlling Onboard I/O..................................... 49
Connectors..52

Header Connector for Accessing Host Power and I/O and for Remote
Programming and Debugging .. 53
Header Connector for Accessing Host SPI 54
Header Connector for Accessing Sensor I/O.................................. 54
Header Connector for Analog Input... 54
Pyxos FT Network Connector .. 55
Power Connector ... 55

Pyxos FT EV-Nano Point Evaluation Board .. 55
Key Features.. 55
Power Considerations.. 55
Push Buttons and LEDs.. 56

Join and Reset Buttons and LEDs... 56
Application Buttons and LEDs .. 57

Jumper Settings for Controlling Onboard I/O..................................... 58
Connectors..60

Header Connector for Accessing Power and I/O 61
Pyxos FT Network Connector .. 61
Power Connector ... 62

Electromagnetic Compatibility Considerations ... 62
Using the Pyxos Network Example... 63

Overview of the Pyxos Network Example .. 64
The Pyxos FT EV Pilot .. 65
The Pyxos FT EV Points ... 66

Starting and Running the Pyxos Network Example 66
Registering Points Automatically ... 67
Registering Points Manually... 68
Monitoring Activity within the Pyxos FT Network 69

Monitoring Sensor Data and Dry-Contact Input................................. 69
Monitoring Sensor Data ... 69
Monitoring Dry-Contact Input ... 70

Monitoring Network Integrity and Security.. 71
Monitoring and Controlling Analog I/O ... 71
Monitoring and Controlling Digital I/O ... 71

Replacing Points and Simulating Network Failure................................... 71
Stopping the Pyxos Network Example ... 72

Running the Pyxos Network Example HMI Application Program 73
Starting the Pyxos Network Example HMI Application Program 74
Connecting to the Pyxos FT Network ... 74

LONWORKS Functionality.. 75
Controlling the Pilot and Points in the Network 76

Setting the Alarm Temperature ... 76
Setting the Light-Level Threshold ... 77
Setting the Outputs for the EV-Actuator Point................................... 77

Pyxos FT EVK User’s Guide ix

Setting the Analog Output ... 77
Setting a Digital Output... 78

Resetting Points... 78
Monitoring Pilot and Point Status ... 79
Clearing Timeslot Information ... 79
Logging Pyxos FT Network Events ..80

Displaying the Log Window Area .. 80
Copying Log Information.. 80
Controlling Logging .. 81

Running the Performance Demo...81
Setting the Frequency for the Performance Demo.............................. 83
Starting and Stopping the Performance Demo.................................... 83

Refreshing the Display .. 84
Shutting Down the Pyxos Network Example HMI Application Program 84

Troubleshooting the Pyxos FT Network Example .. 85
Troubleshooting.. 86

Developing Pyxos FT Applications Using the Pyxos FT EVK........................ 89
Setting Up Your Development Environment ... 90

Working with Development Tools for Host Processors 90
Tools for the ARM7 Processor .. 90
Tools for the AVR Processor ... 91

Working with the Pyxos FT API... 92
Using the Pyxos FT Interface Developer Utility 93

Including LONWORKS Support in Your Pyxos FT Applications 94
Loading Your Application into a Host Processor 95

Loading the ARM AT91SAM7S64 Microprocessor.............................. 95
Loading the AVR ATtiny13 Microprocessor .. 96

Using a Flash Programming Board ... 96
Using the debugWIRE Interface .. 97
Configuring the AVR STK500.. 97

Debugging Your Application ... 99
Debugging for the ARM AT91SAM7S64 Microprocessor.................. 100
Debugging for the AVR ATtiny13 Microprocessor 100

Enabling the debugWIRE Interface... 101
Connecting a Hardware Emulator and Debugger to the EV-Sensor Point
Evaluation Board ..102

Exploring the Pyxos Network Example ...105
Design Overview for the Pyxos Network Example 106
The Pyxos FT EV-Actuator Point Example.. 108

Design...108
Interface ...109
Source Files and Project Files...110

The Pyxos FT EV-Sensor Point Example ...111
Design...111
Interface ...112
Source Files and Project Files...113

The Pyxos FT EV-Nano Point Example ... 114
The Pyxos FT EV Pilot Example... 114

Design...115
Maintaining EV Point Data ...116
EV Point Registration... 117

x

Processing for the EV-Actuator Point.. 119
Processing for the EV-Sensor Point ... 120
Processing for the EV-Nano Point ... 120
Connecting to a Computer Using a USB Connection 121
Using the Pyxos-LONWORKS Gateway... 121

Source Files and Project Files...127
Data Flow Scenario for the Network Example .. 130

The ARM7 PS API for the EV-Actuator Point and EV Pilot Examples133
Overview of the API ...134
Files Used for the Examples.. 134

Index..137

Pyxos FT EVK User’s Guide 1

1

Introduction to the Pyxos FT EVK

This chapter introduces the Pyxos FT EVK, including the
hardware contents of the EVK, power considerations,
network termination, connecting to a computer using USB
or to a LONWORKS network.

2 Introduction to the Pyxos FT EVK

Introduction to the Pyxos FT EVK
The Pyxos FT EVK Evaluation Kit provides a set of hardware and software tools
that you can use to evaluate the Pyxos FT platform and to develop applications
and devices that use Pyxos FT technology. You can also use the Pyxos FT EVK to
evaluate the development of control network applications, including those that
use the LONWORKS platform.

The Pyxos FT EVK includes the following evaluation boards that demonstrate
the features and functions of the Pyxos FT Chip and of Pyxos FT technology, and
that you can use to develop your own Pyxos applications:

• The Pyxos FT EV Pilot Evaluation Board

The EV Pilot is the controller for the Pyxos FT EVK network. It includes
an example application that controls the Pyxos Network Example. This
program demonstrates how to use the Pyxos FT Pilot API to monitor and
control a Pyxos FT network.

The EV Pilot includes an Atmel ARM7 host microprocessor that is
connected to, and communicates with, a Pyxos FT Chip. The Pilot is
responsible for configuring, maintaining, and communicating with the
Pyxos Points in the Pyxos FT network, as well as for receiving
information from the network, and distributing that information to the
appropriate Pyxos Points. The EV Pilot can also communicate with
LONWORKS devices.

• The Pyxos FT EV-Actuator Point Evaluation Board

The EV-Actuator Point is a Pyxos Point that serves as a hosted analog
and digital actuator for the Pyxos FT EVK network. The EV-Actuator
Point also includes an Atmel ARM7 host microprocessor.

• The Pyxos FT EV-Sensor Point Evaluation Board

The EV-Sensor Point is a Pyxos Point that serves as a hosted multi-
sensor for the Pyxos FT EVK network. The EV-Sensor Point includes an
Atmel ATtiny13 microprocessor. The sensors measure temperature, light
level, and DC voltage.

• The Pyxos FT EV-Nano Point Evaluation Board

The EV-Nano Point is a Pyxos Point that serves as a simple unhosted
digital sensor for the Pyxos FT EVK network. The EV-Nano Point shows
how a Point can participate in a Pyxos FT network without a host
microprocessor.

For more information about the hardware that is included with Pyxos FT EVK,
see Chapter 2, Getting Started with the Pyxos FT EVK, on page 11, and Chapter
3, Pyxos FT EVK Hardware Details, on page 17.

The Pyxos FT EVK includes the following Windows application programs:

• The Pyxos FT Interface Developer utility, which allows you to create
Point interface definitions for Pyxos FT network applications. You can
use these definitions to simplify Pyxos application development.

Pyxos FT EVK User’s Guide 3

For more information about the Pyxos FT Interface Developer utility, see
the Pyxos FT Programmer’s Guide.

• The Pyxos Network Example human-machine interface (HMI) application
program, which is a visualization tool for monitoring and controlling the
Pyxos Network Example application.

For more information about the Pyxos Network Example HMI application
program, see Chapter 5, Running the Pyxos Network Example HMI
Application Program, on page 73.

The Pyxos FT EVK also provides source code for:

• The Pyxos FT Pilot API, Pyxos FT Point API, and Pyxos FT Serial API.
You can port the APIs to various host microprocessors for your Pilot and
Point applications. The Pyxos FT Serial API source code provides an
example port for an ARM7-family microprocessor, the Atmel
AT91SAM7S64.

For more information about the Pyxos FT APIs, see the Pyxos FT
Programmer’s Guide.

• The Pyxos Network Example firmware applications that are pre-loaded
in the device’s host microprocessors. You can modify the applications and
use them to learn how to develop your own Pyxos FT network
applications.

For more information about the Pyxos Network Example firmware
application, see Chapter 4, Using the Pyxos Network Example, on page
63, and Chapter 8, Exploring the Pyxos Network Example, on page 105.

• The LONWORKS Neuron C model file that is used for the EV Pilot
firmware application and the ShortStack® API that the EV Pilot
firmware application uses to communicate with the ShortStack Micro
Server on the Pyxos FT EV Pilot Evaluation Board.

For more information about the LONWORKS Neuron C model file, see
Using the Pyxos-LonWorks Gateway on page 121. For more information
about the ShortStack API, see the ShortStack User’s Guide.

For a more detailed introduction to the Pyxos FT platform and Pyxos FT
technology, see the Introduction to the Pyxos FT Platform.

Pyxos FT EVK Hardware Features
The Pyxos FT EVK evaluation boards are fully functional Pyxos FT devices that
you can use to demonstrate key features and functions of Pyxos FT technology
and to develop your own Pyxos applications. At a system level, you can use the
Pyxos FT EVK evaluation boards to demonstrate the following features:

• Link power at 24 VAC. The Pyxos FT network provides power to each of
the EV Points as well as providing communications between the EV
Points and the EV Pilot.

• LONWORKS connectivity. You can connect the EV Pilot to a LONWORKS
network to share Pyxos data with a LONWORKS network, or you can
connect multiple EV Pilots and other Pyxos Pilots to a LONWORKS

4 Introduction to the Pyxos FT EVK

network to share data among Pyxos Points on multiple Pyxos FT
networks and devices on the LONWORKS network.

• Variety of Point designs:

o High-performance ARM7-based Point (the EV-Actuator Point)

o Low-cost AVR®-based Point (the EV-Sensor Point)

o Small, low-cost, unhosted Point (the EV-Nano Point)

• Free-topology communication. You can configure a Pyxos FT network as
a bus or as a free-topology network. The Pyxos FT EVK uses a free-
topology network with a built-in network terminator on the EV Pilot
evaluation board.

• Deterministic response time. The Pyxos FT network provides predictable
communications response times. The Pyxos Network Example firmware
includes a Performance Demo that you can run from the Network
Example HMI application program.

• Switching and linear power supply designs. The Pyxos FT EVK provides
examples of two power supply designs for link-powered Points, a
switching power supply and a linear power supply.

• Network coupling options. The Pyxos FT EVK provides examples of two
different options for coupling to the Pyxos FT network, transformer-
isolated coupling and floating non-isolated coupling.

The Pyxos FT EVK includes the necessary power supply and network cables so
that you can run the example Pyxos FT network out of the box.

Pyxos FT EVK Hardware Contents
The Pyxos FT EVK includes the hardware listed in Table 1.

Table 1. Pyxos FT EVK Contents

Item Description Quantity

Model 11200R-1P Pyxos FT EV Pilot 1

Model 11220R Pyxos FT EV-Actuator Point 1

Model 11210R Pyxos FT EV-Sensor Point 1

Model 11230R Pyxos FT EV-Nano Point 1

Power supply adapter 1

Pyxos FT network cables 3

I/O cable (used to connect the analog output of the EV-
Actuator Point to the analog input of the EV-Sensor Point)

1

Universal Serial Bus (USB) A/B cable 1

Pyxos FT EVK User’s Guide 5

Item Description Quantity

Pyxos FT Chip samples 10

Pyxos FT EVK Quick Start Guide 1

Pyxos FT EVK CD 1

Echelon Technical Documentation CD 1

LonScanner™ Protocol Analyzer Demo CD 1

Echelon Training brochure 1

Pyxos FT EVK product registration card 1

Each of the four evaluation boards includes an integrated Pyxos FT Chip.

The Pyxos FT EVK includes an example application that demonstrates the
functions and capability of the Pyxos FT Chip and of the Pyxos FT network. To
run the example, connect the four evaluation boards together using the supplied
Pyxos FT network cables.

The Pyxos FT EVK also includes an example human-machine interface (HMI)
application program that you can use to monitor and control the example Pyxos
FT network. To run this application program, connect the EV Pilot evaluation
board to a computer that will run the HMI application program. You can connect
the EV Pilot Evaluation Board to the computer using the supplied USB cable or
using a LONWORKS network cable and LONWORKS network interface (not
included with the Pyxos FT EVK).

One of the functions of the HMI application program demonstrates network
determinism for the Pyxos FT network. To run this demonstration, connect the
EV-Actuator Point evaluation board to the EV-Sensor evaluation board using the
supplied I/O cable.

This chapter describes the following main tasks for becoming familiar with the
Pyxos FT EVK:

• Power Considerations for the Pyxos FT EVK on page 6. This section
describes the Pyxos FT EVK’s link-power supply.

• Network Termination on page 6. This section describes the required
network terminators for a Pyxos FT network.

• Connecting the EV Pilot to a Computer Using USB on page 7. This
section describes how to connect the Pyxos FT EV Pilot to a computer to
run the HMI application program or to run other Windows software that
will interact with the evaluation boards.

• Connecting to a LonWorks Network on page 7. This section describes
how to connect the Pyxos FT EV Pilot to a LONWORKS network interface
and how to configure that network interface as a layer-5 network
interface.

• Developing a Pyxos FT Application on page 9. This section introduces
using the Pyxos FT EVK to develop Pyxos FT applications.

6 Introduction to the Pyxos FT EVK

Power Considerations for the Pyxos FT EVK
The Pyxos FT EVK includes a power supply that converts line power to 24 VAC.
This power supply provides power to the EV Pilot, which in turn provides link
power to the Pyxos FT network. The EV Pilot uses an inductor-based filter to
condition the link power for each of the EV Points. For the Pyxos FT EVK, this
filter supports up to 6 link-powered Pyxos FT Points (where each Point requires
35-100 mA of application current). This Point limitation applies only to the
Pyxos FT EVK, and is not a general limitation for the Pyxos FT Chip. If you
provide local power for the Pyxos FT Points, the Pyxos FT EVK supports up to 32
Points.

To include additional link-powered Points in the Pyxos FT EVK network, see the
Pyxos FT Chip Data Book for distance limitations for the network cable. If you
exceed those limitations, both available power and communication integrity can
degrade performance.

Recommendation: To connect additional devices to the Pyxos FT EVK network or
extend the distance to each Point, use a 24 VDC power supply with appropriate
filter circuit for the Pilot. See the Pyxos FT Chip Data Book for more information
about designing power supplies and filter circuits for a Pyxos FT network.

Network Termination
A Pyxos FT network must be properly terminated. For the Pyxos FT EVK, the
EV Pilot evaluation board includes the proper network terminator for an AC link-
powered free-topology network. Thus, you can use the EV Pilot network
terminator for a free-topology Pyxos FT network.

You can disable the EV Pilot network terminator and replace it with a different
network terminator:

• If you want to use the Pyxos FT EVK in a bus-topology network (which
requires two network terminators)

• If you do not want the network terminator to be co-located with EV Pilot
(for example, if you want to perform large-network testing)

To disable the EV Pilot network terminator and supply your own network
termination, perform the following steps:

1. Dismount jumper JP306 on the EV Pilot evaluation board to disable the
EV Pilot network terminator.

2. For a free-topology Pyxos FT network, attach a single network
terminator, as shown in Figure 1 on page 7, anywhere in the network.

3. For a bus-topology Pyxos FT network, attach two network terminators, as
shown in Figure 2 on page 7, one at each end of the network.

Pyxos FT EVK User’s Guide 7

1 μF

51 Ω

Pyxos FT Network

Pyxos FT Network

Figure 1. Network Terminator for a Free-Topology Pyxos FT Network

100 Ω 100 Ω

1 μF

Pyxos FT Network

Pyxos FT Network

1 μF

Figure 2. Network Terminators for a Bus-Topology Pyxos FT Network

For details about these network-termination circuits, see the Pyxos FT Chip Data
Book.

Caution: Do not use Echelon 44100 or Echelon 44101 network terminators for
your Pyxos FT network. Because the power transmission characteristics for a
Pyxos FT network are different than those of a TP/FT-10 channel, using the
Echelon 44100 or Echelon 44101 network terminators in a Pyxos FT network can
damage the terminators and damage the network cable.

Connecting the EV Pilot to a Computer Using USB
You can connect the EV Pilot to a USB port on a Windows computer. Connecting
the EV Pilot to a computer is not required to evaluate the Pyxos FT technology.
However, to use the Pyxos Network Example HMI application program, you must
connect the Pyxos FT EV Pilot evaluation board to a Windows computer through
either a USB connection or a LONWORKS network interface.

To connect the EV Pilot to a computer using a USB connection, insert the Pyxos
FT EVK USB cable into an available USB port on your computer and attach the
USB cable to the EV Pilot. The Pyxos FT EVK CD installs a Windows-
compatible USB driver that manages the communications between the computer
and the EV Pilot.

Connecting to a LONWORKS Network
You can connect the Pyxos FT network to a LONWORKS network, either to
connect multiple Pyxos FT networks together or to share Pyxos data with devices
on a LONWORKS network. You can also connect the EV Pilot to a LONWORKS
network interface that is connected to a Windows computer and run the Network

8 Introduction to the Pyxos FT EVK

Example HMI application program. In this configuration, the EV Pilot acts as a
LONWORKS device and sends and receives LONWORKS network variable updates
to the Pyxos Network Example HMI application program over the LONWORKS
network.

Connecting the EV Pilot to a LONWORKS network is not required to evaluate or
develop with the Pyxos FT technology.

To connect the EV Pilot to a LONWORKS network, perform the following steps:

1. Ensure that OpenLDV 3.3 or later is installed on your computer. You can
install the OpenLDV driver from the Pyxos FT EVK CD, or you can
download the latest version from www.echelon.com/openldv. See the
OpenLDV ReadMe file for installation instructions.

2. Install an OpenLDV compatible LONWORKS TP/FT-10 network interface
in your computer. OpenLDV compatible TP/FT-10 network interfaces
include: the i.LON 10, i.LON 100, i.LON 600, PCC-10, PCLTA-20/21,
SLTA/2, and U10 network interfaces. The LONWORKS network interface
is not included with the Pyxos FT EVK. See the documentation for your
network interface for installation instructions.

3. Attach the network interface and your EV-Pilot to a LONWORKS TP/FT-10
twisted pair cable. The LONWORKS cable is not included with the Pyxos
FT EVK.

If you are using a PCC-10, a PCLTA-20, or a PCLTA-21 as your network
interface, you must configure it to operate as a layer-5 network interface before
using it with the EV Pilot. To configure a PCC-10, PCLTA-20, or PCLTA-21 as a
layer-5 network interface, perform the following steps:

1. Open the Windows Control Panel and double-click the LONWORKS Plug ‘n
Play icon. The dialog shown in Figure 3 opens.

Figure 3. LONWORKS Plug ‘n Play Application

Pyxos FT EVK User’s Guide 9

2. Select your network interface from the Device Selected dropdown list.

3. If you are using a PCC-10, select PCC10NSI from the NI Application
dropdown list. If you are using a PCLTA-20 or a PCLTA-21, select
NSIPCLTA.

4. Click OK to save your changes and close the LONWORKS Plug ‘n Play
application. You can now use your PCC-10, PCLTA-20, or PCLTA-21
with the Network Example HMI application program, or any other
OpenLDV application.

Developing a Pyxos FT Application
In addition to providing a showcase for Pyxos FT technology and running the
Pyxos FT Network Example application, you can also use the Pyxos FT EVK as
part of an open development platform for your own Pyxos FT applications.

The EV Pilot and the EV-Actuator Point evaluation boards both include a header
connector that provides external access to the host microprocessor memory. This
header complies with the Institute of Electrical and Electronics Engineers (IEEE)
Standard Test Access Port and Boundary-Scan Architecture (IEEE 1149.1-1990)
of the Joint Test Action Group (JTAG), and can be used for debugging the host
microprocessor’s program, for an in-circuit emulator (ICE), or to load program
firmware into the host microprocessor’s memory.

Use the JTAG header connector to load your own Pyxos FT application firmware
into the host processors for the EV Pilot or the EV-Actuator Point.

You can also use the Pyxos FT EVK to test or debug applications for the Pyxos
FT platform that use host microprocessors that are different than the ones used
on the evaluation boards. You can replace the AVR host microprocessor on the
EV-Sensor Point evaluation board by using the Serial Programming Interface
(SPI) header on the Evaluation Board to connect the new microprocessor to the
Pyxos FT Chip. You can also use a microprocessor that has the same 8-lead,
0.300" Wide Body, Plastic Dual In-line Package (PDIP) package and has the same
pinout as the Atmel® ATtiny13 microprocessor. For specific information about
the host microprocessors for the Pyxos FT EVK, see Chapter 3, Pyxos FT EVK
Hardware Details on page 17.

For more information about using the Pyxos FT EVK for Pyxos application
development, see Chapter 7, Developing Pyxos FT Applications Using the Pyxos
FT EVK, on page 89.

.

Pyxos FT EVK User’s Guide 11

2

Getting Started with the Pyxos FT
EVK

This chapter helps you set up the Pyxos FT EVK evaluation boards
and install the Pyxos FT software so that you can begin to
demonstrate key features and functions of Pyxos FT technology and to
develop your own Pyxos applications.

12 Getting Started with the Pyxos FT EVK

Assembling the Evaluation Boards
Before you begin: The Pyxos FT evaluation boards are shipped in protective anti-
static packaging. When assembling the Pyxos FT evaluation boards, you must
not subject the boards to high electrostatic potentials. Wear a grounding strap,
or similar protective device, while handling the boards. Avoid touching the
component pins, or any other metallic components on the evaluation boards.

Unpack the equipment from the shipping carton. Refer to Table 1 on page 4 to
verify that all hardware items are present. Avoid touching areas of integrated
circuitry, because electrostatic discharge can damage the circuits.

Figure 4 shows the four Pyxos FT evaluation boards, as they appear when
assembled. For more information about each of the Evaluation Boards, see
Chapter 3, Pyxos FT EVK Hardware Details, on page 17.

Figure 4. Pyxos FT EVK Evaluation Boards

To assemble the Pyxos FT EVK Evaluation Boards, perform the following steps:

1. Connect the Pyxos FT EVK power supply adapter to the EV Pilot
evaluation board, as shown in Figure 4, and plug it in. The power LED
on the EV Pilot evaluation board illuminates to show that it is running.

2. Connect the Pyxos FT EVK network cables to each of the four evaluation
boards, as shown in Figure 4. These cables establish the Pyxos FT

Pyxos FT EVK User’s Guide 13

network and supply power to each of the EV Point evaluation boards.
The power LED on each of the EV Point evaluation boards illuminate to
show that they are running.

Note: The Pyxos FT network connector for the EV Pilot evaluation board
is the black (rightmost) connector; the orange (leftmost) connector is for
an optional LONWORKS network cable (not included with the Pyxos FT
EVK).

3. Register the EV-Nano Point. Press the SW5 button on the EV Pilot to
place the Pilot in manual registration mode; verify that LED8 blinks
while the EV Pilot is in this mode. Then, press the Join button on the
EV-Nano Point to register the Point. Verify that LED8 is illuminated
and no longer blinking.

4. Verify that LED6, LED7, and LED8 on the EV Pilot are illuminated.
When these three LEDs are illuminated, the three EV Points are
correctly connected to, and communicating with, the EV Pilot.

5. Connect one end of the Pyxos FT EVK I/O cable to the analog output
header (JP44) of the EV-Actuator Point evaluation board. Connect the
other end of the cable to the analog input header (JP41) of the EV-Sensor
Point evaluation board.

6. Install the Pyxos FT software on a computer. If you plan to use the
Network Example HMI application program, or if you plan to write Pyxos
FT applications that use the Pyxos FT application programming interface
(API), you must install the Pyxos FT software.

7. Connect the EV Pilot to your computer. If you plan to use the Network
Example HMI application program, you must connect the EV Pilot to a
computer using either the USB cable or a LONWORKS network interface
cable.

• Use the supplied USB cable to connect the EV Pilot to your
computer.

• To demonstrate or develop a LONWORKS interface to your Pyxos
FT EV Pilot, install an OpenLDV compatible LONWORKS TP/FT-
10 network interface in your computer, and then attach a
network interface and the EV Pilot to a LONWORKS TP/FT-10
twisted-pair cable. The LONWORKS network interface and the
LONWORKS cable are not included with the Pyxos FT EVK.

8. Run the Pyxos FT Network Example application and the Network
Example HMI application program. For more information about running
these examples, see Chapter 4, Using the Pyxos Network Example, on
page 63, and Chapter 5, Running the Pyxos Network Example HMI
Application Program, on page 73.

Pyxos FT EVK Software System Requirements
This section describes the minimum and recommended hardware and software
requirements for the Pyxos FT EVK software.

14 Getting Started with the Pyxos FT EVK

Hardware Requirements
To run the Pyxos FT EVK Windows software, your computer system must meet
the following minimum requirements:

• Intel® Pentium® III 500 MHz processor or AMD™ Athlon® 750 MHz
processor

• 128 MB RAM

• 65 MB available hard disk space

• CD-ROM drive

• 1 available Universal Serial Bus (USB) port

The recommended specifications for your computer system include:

• Intel Pentium 4 1.0 GHz processor or AMD Athlon 1.5 GHz processor

• 256 MB RAM

• 100 MB available hard disk space

• CD-ROM or DVD-ROM drive

• 3 available USB ports

In addition, you need a monitor that can support a minimum screen resolution of
1024 x 768 pixels for the Pyxos FT Interface Developer utility and the Pyxos
Network Example HMI application program.

Optional hardware, if you need LONWORKS connectivity:

• LONWORKS TP/FT-10 compatible network interface, such as a U10 USB
Network Interface or an i.LON 100 Internet Server

• LONWORKS TP/FT-10 network cable, with network terminator

Software Requirements
To run the Pyxos FT EVK Windows software, your computer system must meet
either one of the following minimum requirements:

• Microsoft® Windows XP, plus Service Pack 2

• Microsoft Windows 2000, plus Service Pack 4

In addition, you must have the following software, all of which is installable from
the Pyxos FT EVK CD:

• Microsoft .NET 2.0 (or later) runtime components

• Adobe Reader 7.0.8 or later

• The OpenLDV 3.3 driver, if you need LONWORKS connectivity for
LONWORKS network interfaces

• LONMARK® Resource Editor 3.13 or later, if you need to create custom
LONMARK resource files and data type definitions

Important: Before you can install the Pyxos FT EVK software, you must log on to
your Windows system with a user ID that is a member of the Administrators
group or have equivalent administrator privileges.

Pyxos FT EVK User’s Guide 15

Installing the Pyxos FT EVK Software
To install the Pyxos FT EVK software, perform the following steps:

1. Insert the Pyxos FT EVK CD-ROM into a CD-ROM or DVD drive. The
setup application should start automatically. If it does not, use Windows
Explorer to open the contents of the CD-ROM drive, and double click the
Setup icon. The Pyxos FT EVK setup application’s main window opens.

2. From the Pyxos FT EVK setup application’s main window, click Install
Products. The Install Products window opens.

3. From the Install Products window, click Pyxos FT EVK 1.0. Follow the
installation dialogs to install the Pyxos FT EVK software onto your
computer.

4. If you do not already have the Microsoft .NET 2.0 (or later) runtime
components on your computer, return to the Install Products window and
click Microsoft .NET Framework 2.0 to install the Microsoft .NET
Framework. The .NET runtime components are required to run the
Pyxos Network Example HMI application program.

5. If you do not already have the Adobe Reader installed on your computer,
return to the Install Products window and click Adobe Reader 7.0.8 to
install the Adobe Reader. A current version of the Adobe Reader is
required to view the Pyxos product documentation. The Pyxos FT EVK
CD includes the English-language version of the Adobe Reader; you can
download other language versions from Adobe at:
www.adobe.com/products/acrobat/readstep2.html.

6. If you plan to connect the Pyxos FT network to a LONWORKS network,
you can install the LONMARK Resource Editor 3.13 and the OpenLDV 3.3
driver from the Install Products window. These products are optional.
You can also download the latest version of the OpenLDV driver from
www.echelon.com/downloads.

After you install the Pyxos FT EVK Software, you are ready to use the Pyxos
Network Example HMI application program and the Pyxos FT Interface
Developer utility. However, you might need to restart your computer if you also
installed the Microsoft .NET 2.0 runtime components.

Compatibility
The Pyxos FT EVK software is compatible with Echelon’s LONWORKS products,
such as the ShortStack Developer's Kit and the LonMaker® Integration Tool.

Pyxos FT EVK User’s Guide 17

3

Pyxos FT EVK Hardware Details

This chapter describes the Pyxos FT EVK hardware,
including descriptions of the LEDs, push buttons, header
connectors, jumper settings, and I/O. It also provides
information that you will need when using custom
applications and I/O devices with the evaluation boards. It
includes the following major sections:

• Pyxos FT EV Pilot Evaluation Board on page 18.

• Pyxos FT EV-Actuator Point Evaluation Board on
page 34.

• Pyxos FT EV-Sensor Point Evaluation Board on
page 46.

• Pyxos FT EV-Nano Point Evaluation Board on page
55.

18 Pyxos FT EVK Hardware Details

Pyxos FT EV Pilot Evaluation Board
The Pyxos FT EV Pilot serves as the controller for the Pyxos FT EV Points on the
Pyxos FT network. You can use the EV Pilot as a standalone controller for the
Pyxos FT network, or you can connect the EV Pilot to another Pyxos FT network
using a LONWORKS network connection. You can also connect the EV Pilot to a
Windows computer using a USB connection or a LONWORKS network connection.

The Pyxos FT EV Pilot uses the Atmel ARM® AT91SAM7S64 microprocessor as
its host microprocessor, which is an ARM7-family microprocessor. You can use
this microprocessor, or another microprocessor that meets your application
requirements, as the host microprocessor for any Pyxos FT Pilot applications that
you develop.

The Pyxos FT EV Pilot also includes an Echelon FT 3150® Smart Transceiver
with a ShortStack 2 Micro Server that provides an interface to an optionally
connected LONWORKS network.

This section provides additional details for the Pyxos FT EV Pilot evaluation
board, including descriptions of the push buttons, light-emitting diodes (LEDs),
jumper settings, and connectors.

The descriptions of programmatic behaviors in this section apply only to the
Pyxos Network Example firmware; your custom firmware can provide different
behaviors.

The Pyxos FT EVK includes schematics for the circuitry of the evaluation boards.
You can view the Pyxos FT EVK schematics from the Windows Start menu:
select Programs → Echelon Pyxos FT EVK → Board Schematics, then select a
schematic. These installed schematics are not meant to be used as general
reference designs; see the Pyxos FT Chip Data Book for reference designs that
you can use for designing your own Pyxos FT devices.

Key Features
The EV Pilot evaluation board includes the following key features:

• High-performance ARM7 host microprocessor running at 47.9232 MHz

• Optional USB connectivity

• Optional LONWORKS connectivity using the ShortStack Micro Server and
FT 3150 Smart Transceiver

• Link power source power supply and filter that supports up to 6 Pyxos
Points that each consume 35-100 mA of application current

• Transformer-isolated coupling circuit

Push Buttons and LEDs
The Pyxos FT EV Pilot evaluation board includes a Join button, a Reset button
for the Pyxos FT Chip and host microprocessor, a Reset button for the FT 3150
Smart Transceiver, a Service button for the FT 3150 Smart Transceiver, and five
application push buttons. The evaluation board also includes eight application

Pyxos FT EVK User’s Guide 19

LEDs that illuminate either when an application push button is pressed or when
some condition exists that causes the EV Pilot to illuminate them.

This section describes the default behavior of the application push buttons and
LEDs for the Pyxos Network Example firmware application that is pre-installed
in the EV Pilot ARM7 host processor.

Figure 5 shows the locations of the various push buttons and LEDs for the Pyxos
FT EV Pilot evaluation board.

Figure 5. Push Buttons and LEDs for the Pyxos FT EV Pilot

Join and Reset Buttons and LEDs
The Pyxos FT EV Pilot evaluation board includes a Join button (labeled JOIN)
and corresponding LED that are not used by the Pyxos FT Network Example
application.

The EV Pilot evaluation board also includes a Reset button (labeled RESET) and
corresponding LED that you can use to reset all functions on the board, including
the ARM7 host microprocessor, the Pyxos FT Chip, and the FT 3150 Smart
Transceiver. Restarting the host microprocessor restarts the host firmware
application.

20 Pyxos FT EVK Hardware Details

Smart Transceiver Reset and Service
Buttons
The Pyxos FT EV Pilot evaluation board includes a Reset button (labeled NEU
RST) for the FT 3150 Smart Transceiver. You can use this button to reset the
connection to a LONWORKS network or test the reset behavior of the LONWORKS
functionality of your Pilot application firmware.

The Pyxos FT EV Pilot evaluation board also includes a Service button (labeled
SERVICE) that you can use to send a service-pin message from the EV Pilot to
the LONWORKS network.

Application Buttons and LEDs
The Pyxos FT EV Pilot evaluation board includes the following push buttons for
application use:

SW1 Tests dry-contact functions.

SW2 Provides digital input for a custom application. This button is
not used by the Pyxos Network Example application; however,
the Pyxos Network Example HMI application program displays
the current state of this push button.

SW3 Clears persistent data associated with the Pyxos FT EV-
Actuator Point, and causes the EV Pilot to re-register the EV-
Actuator Point.

SW4 Clears persistent data associated with the Pyxos FT EV-Sensor
Point, and causes the EV Pilot to re-register the EV-Sensor
Point.

SW5 Clears persistent data associated with the Pyxos FT EV-Nano
Point, and places the EV Pilot in manual registration mode.

While the EV-Nano Point is in manual registration mode, LED8
blinks; to cancel manual registration mode without registering
the Point, press SW5 a second time (LED8 turns off).

The example firmware for the Pyxos FT EV Pilot uses the following LEDs:

LED1 Indicates network status and network security.

• This LED is on when all three EV Points are connected
and the network is functioning properly.

• This LED blinks for 10 seconds to indicate a security
alarm when a Point is added or removed from the
network.

• This LED is off if any one of the three EV Points is
disconnected from the network or is unconfigured.

Pyxos FT EVK User’s Guide 21

LED2 Indicates whether the dry-contact push button on the EV Pilot,
EV-Actuator Point, or EV-Nano Point is pressed. This LED
remains on while a dry-contact push button is pressed.

LED3 Indicates an Over Temperature alarm status. This LED is on
when the temperature rises above a threshold value. The
default value is 30 ºC (86 ºF). You can configure the threshold
value using the Pyxos Network Example HMI application
program.

LED4 Indicates a Low Light Level alarm status. This LED is on when
the light level falls below a threshold value. The default value is
50 lux. You can configure the threshold value using the Pyxos
Network Example HMI application program.

LED5 Indicates that the Performance Demo is running. This LED is
on when the demo is active. See Running the Performance
Demo on page 81 for more information about the Performance
Demo.

LED6 Indicates the status of the Pyxos FT EV-Actuator Point. This
LED is on when the EV-Actuator Point is connected and online.

LED7 Indicates the status of the Pyxos FT EV-Sensor Point. This LED
is on when the EV-Sensor Point is connected and online.

LED8 Indicates the status of the Pyxos FT EV-Nano Point. This LED
is on when the EV-Nano Point is connected and online. This
LED blinks when the Pilot is in manual registration mode.

22 Pyxos FT EVK Hardware Details

Jumper Settings for Controlling Onboard I/O
The Pyxos FT EV Pilot evaluation board contains 12 sets of jumpers, as shown in
Figure 6.

Figure 6. Pyxos FT EV Pilot Evaluation Board Jumper Settings

Pyxos FT EVK User’s Guide 23

Table 2 describes the Pilot evaluation board jumpers.

Table 2. Pyxos FT EV Pilot Jumpers

Function Jumper Description

Connects the filtered AC power input to the
Pyxos FT network.

Be sure to mount or dismount these two
jumpers at the same time.

When both of these jumpers are mounted,
you must also mount jumper JP33 in the
upper position to select the onboard 5 VDC
switching power supply.

This is the factory shipped default setting.
Network Power
Connect Enable

(JP31 and JP32)

JP31

JP32

Disconnects the filtered AC power input
from the Pyxos FT network.

Be sure to mount or dismount these two
jumpers at the same time.

Selects the onboard 5 VDC switching power
supply. This setting is required for the EV
Pilot to use link power.

This is the factory shipped default setting.

Power Supply
Input Selector

(JP33)

Selects the external power supply connected
to connector J31.

Power Supply
Connect Enable

(JP34 and JP35)

Connects the transformer side of the
onboard switching power supply to the 24
VAC network connector JP201.

Be sure to mount or dismount these two
jumpers at the same time.

This is the factory shipped default setting.

24 Pyxos FT EVK Hardware Details

Function Jumper Description

JP34

JP35

Disconnects the transformer side of the
onboard switching power supply from the 24
VAC network connector JP201.

Be sure to mount or dismount these two
jumpers at the same time.

Connects the onboard network terminator to
the Pyxos FT network connector JP102.

This is the factory shipped default setting. Network
Terminator
Connect Enable

(JP36)

Disconnects the onboard network terminator
from the Pyxos FT network connector JP102.

JP61

Connects the onboard 5 VDC power supply
to the LONWORKS-connectivity section of the
Evaluation Board (including the FT 3150
Smart Transceiver chip).

This is the factory shipped default setting.
LONWORKS
Enable

(JP61)

Disconnects the onboard 5 VDC power
supply from the LONWORKS-connectivity
section of the Evaluation Board (including
the FT 3150 Smart Transceiver chip).

Host Processor
Function Enable

(JP501, JP502,
JP503)

JP
50

3

JP
50

1

JP
50

2

ER
AS

E

JT
AG

SE
L

TS
T

Allows external connections to the following
ARM7 host microprocessor functions:

• The ERASE pin to reinitialize flash
memory content and certain non-
volatile memory (NVM) bits.

• The JTAGSEL pin to select the
JTAG boundary scan when asserted
at a high level.

• The TST pin for manufacturing test,
fast programming mode, or SAM-BA
Boot Recovery of the AT91SAM7S
Series when asserted high.

Pyxos FT EVK User’s Guide 25

Function Jumper Description

Prevents external connections to the ARM7
host microprocessor functions.

This is the factory shipped default setting.

Connects the NRST~ pin of the ARM7 host
microprocessor to the RST~ pin of the Pyxos
FT Chip.

This is the factory shipped default setting.

Reset Line Enable

(JP506)

Disconnects the NRST~ pin of the ARM7
host microprocessor from the RST~ pin of
the Pyxos FT Chip.

Example I/O
Enable - Switches

(JP509)

USRST

SW1

SW2

SW3

SW4

SW5

PA3

PA16

PA17

PA18

PA9

PA10

JP509

Connects the ARM7 host microprocessor to
the EV Pilot onboard push buttons (SW1
through SW5), and connects the RESET pin
of the ARM7 host microprocessor to the reset
function of the USB interface (USRST).

The PA numbers refer to the ARM7
programmed I/O (PIO) lines.

This is the factory shipped default setting.

26 Pyxos FT EVK Hardware Details

Function Jumper Description

USRST

SW1

SW2

SW3

SW4

SW5

PA3

PA16

PA17

PA18

PA9

PA10

JP509

Disconnects the ARM7 host microprocessor
from the EV Pilot onboard push buttons
(SW1 through SW5), and disconnects the
RESET pin of the ARM7 host microprocessor
from the reset function of the USB interface
(USRST).

The PA numbers refer to the ARM7 PIO
lines.

Example I/O
Enable - LEDs

(JP510)

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

PA19

PA20

PA26

PA27

PA28

PA29

PA30

PA31

JP510

Connects the ARM7 host microprocessor to
the EV Pilot onboard LEDs (LED1 through
LED8).

The PA numbers refer to the ARM7 PIO
lines.

This is the factory shipped default setting.

Pyxos FT EVK User’s Guide 27

Function Jumper Description

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

PA19

PA20

PA26

PA27

PA28

PA29

PA30

PA31

JP510

Disconnects the ARM7 host microprocessor
from the EV Pilot onboard LEDs (LED1
through LED8).

The PA numbers refer to the ARM7 PIO
lines.

Connects the EV Pilot 3.3 VDD3 power supply
to the ARM7 host microprocessor I/O header
JP505.

Host
Microprocessor
Header Voltage
Enable

(JP511)

JP511

Disconnects the EV Pilot 3.3 VDD3 power
supply from the ARM7 host microprocessor
I/O header JP505.

This is the factory shipped default setting.

28 Pyxos FT EVK Hardware Details

Function Jumper Description

ShortStack Micro
Server SCI
Connect Enable

(JP512)

NRST

_CTS

_RTS

RXD

TXD

SBR0

SBR1

_HRDY

PA23

PA8

PA7

PA6

PA5

PA0

PA1

PA2

JP512

Connects the PIO lines of the ARM7 host
microprocessor to the Serial
Communications Interface (SCI) of the
ShortStack Micro Server.

• NRST allows the ARM7 host
microprocessor to restart the
ShortStack Micro Server.

• _CTS: Clear. Set by the Micro Server
after the host has asserted _RTS.
The _CTS output is used to signal
that the Micro Server is ready to
receive data from the host.

• _RTS: Request to Send. Set by the
host to signal that it has data to
send. The host asserts this signal
low and waits for the Micro Server to
assert _CTS.

• RXD: Receive Data. Used to transfer
data from the host to the Micro
Server.

• TXD: Transmit Data. Used to
transfer data from the Micro Server
to the host.

• SBR0: Serial Bit Rate Bit 0.

• SBR1: Serial Bit Rate Bit 1.

• _HRDY: Host Ready. The host can
use this optional signal to indicate to
the Micro Server that it cannot
accept any data transfers.

The PA numbers refer to the ARM7 PIO
lines.

This is the factory shipped default setting.

See the ShortStack User’s Guide for more
information about the ShortStack Micro
Server.

Pyxos FT EVK User’s Guide 29

Function Jumper Description

NRST

_CTS

_RTS

RXD

TXD

SBR0

SBR1

_HRDY

PA23

PA8

PA7

PA6

PA5

PA0

PA1

PA2

JP512

Disconnects the PIO lines of the ARM7 host
microprocessor from the ShortStack Micro
Server.

The PA numbers refer to the ARM7 PIO
lines.

See the ShortStack User’s Guide for more
information about the ShortStack Micro
Server.

USB Interface
Communications
Connect Enable

(JP513)

TXD

SBR0

SBR1

_HRDY

PA5

PA0

PA1

PA2

JP513

Connects the ARM7 host microprocessor to
the communications lines of the onboard
USB universal asynchronous
receiver/transmitter (UART) chip.

• CTS1: Clear to Send Control input /
Handshake signal.

• RTS1: Request To Send Control
Output / Handshake signal

• TXD1: Transmit Asynchronous
Data Output

• RXD1: Receive Asynchronous Data
Input

The PA numbers refer to the ARM7 PIO
lines.

This is the factory shipped default setting.

See the Future Technology Devices
International Ltd. Web site
(www.ftdichip.com) for more information
about the USB UART chip.

30 Pyxos FT EVK Hardware Details

Function Jumper Description

TXD

SBR0

SBR1

_HRDY

PA5

PA0

PA1

PA2

JP513

Disconnects the ARM7 host microprocessor
from the communications lines of the
onboard USB UART chip.

The PA numbers refer to the ARM7 PIO
lines.

See the Future Technology Devices
International Ltd. Web site
(www.ftdichip.com) for more information
about the USB UART chip.

Connectors
The Pyxos FT EV Pilot evaluation board includes three header connectors, two
network connectors, a USB connector, a 24 VDC power connector, and a 24 VAC
power connector, as shown in Figure 7. The header connectors provide access to
the host processor, including host power and I/O, and provide an interface for
debugging or programming the host processor. The network connectors provide
access to the Pyxos FT network and to a LONWORKS network. The USB
connector allows the EV Pilot to communicate with a PC that is running the
Pyxos Network Example HMI application program.

Pyxos FT EVK User’s Guide 31

Figure 7. Pyxos FT EV Pilot Evaluation Board Connectors

Header Connector for Accessing Host
Power and I/O
The Pyxos FT EV Pilot evaluation board provides a header connector (JP505)
that provides external access to the ARM7 programmed I/O (PIO) lines, onboard
power (+3.3 VDC), and onboard ground.

The connections for this header are shown in Figure 8, and match those of the
PIO header of the Atmel AT91SAM7S-EK evaluation board for accessing the
ARM7 host microprocessor.

32 Pyxos FT EVK Hardware Details

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2 1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

EXTVDD3

HRST

PA31

PA1

PA3

PA29

PA27

PA5

PA7

PA9

PA11

PA26

PA24

PA14

PA16

PA23

PA19

PA18

AD7

AD5

NC

GND

EXTVDD3

NC

PA0

PA2

PA30

PA28

PA4

PA6

PA8

PA10

PA12

PA25

PA13

PA15

PA20

PA22

PA21

PA17

AD6

AD4

NC

GND

Figure 8. Host Power and I/O Header Connector

Header Connector for Accessing Host SPI
The Pyxos FT EV Pilot evaluation board provides a header connector (J401) that
provides external access to the ARM7 Serial Peripheral Interface (SPI) lines. The
connections for this header are shown in Figure 9.

Pyxos FT EVK User’s Guide 33

20 18 16 14 12 10 8 6 4 2

135791113151719

EX
TV

D
D

3

P
A

12
 M

IS
O

P
A

13
 M

O
S

I

P
A

14
 S

C
LK

P
A

11
 N

P
S

C
0~

P
A

15
 IN

T~

R
S

T~

N
C

N
C

N
C

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

N
C

N
C

G
N

D

Figure 9. Host SPI Header Connector

Header Connector for Remote
Programming and Debugging
The Pyxos FT EV Pilot evaluation board provides a header connector (JP504)
that provides external access to the ARM7 host processor memory. This header
complies with the IEEE Standard Test Access Port and Boundary-Scan
Architecture (IEEE 1149.1-1990) of the Joint Test Action Group (JTAG). You can
use this header for remote debugging of the ARM7 application program, for an in-
circuit emulator (ICE), or to load programs into the ARM7 memory.

Pyxos FT Network Connector
The Pyxos FT EV Pilot evaluation board provides a connector (JP102) that
provides access to the Pyxos FT network. The EV Pilot uses this connector to
communicate with Pyxos FT EV Points.

LONWORKS Network Connector
The Pyxos FT EV Pilot evaluation board provides a LONWORKS TP/FT-10
interface connector (JP161) that provides access to a LONWORKS network. Use of
this network connector is optional.

You can use this network connector to:

• Connect the EV Pilot to a LONWORKS network, either to connect multiple
Pyxos FT networks together or to share Pyxos FT data with devices on a
LONWORKS network.

• Connect the EV Pilot to a LONWORKS network interface that is connected
to a Windows computer so that you can run the Pyxos Network Example
HMI application program.

34 Pyxos FT EVK Hardware Details

USB Connector
The Pyxos FT EV Pilot evaluation board provides a USB Type B socket connector
(J41) that provides a USB connection to a Windows computer. Use of this
connector is optional.

You can use this network connector to connect the EV Pilot to a Windows
computer so that you can run the Pyxos Network Example HMI application
program.

DC Power Connector
The Pyxos FT EV Pilot evaluation board provides a 24 VDC power connector
(J31) that supplies optional DC power to the EV Pilot evaluation board.

AC Power Connector
The Pyxos FT EV Pilot evaluation board provides a 24 VAC power connector
(JP201) that supplies AC power to the EV Pilot evaluation board.

Pyxos FT EV-Actuator Point Evaluation Board
The Pyxos FT EV-Actuator Point is a Pyxos Point that serves as a hosted analog
and digital actuator for the Pyxos FT EVK network. The EV-Actuator Point
includes a variable attenuator that you can use with the Performance Demo to
demonstrate network determinism.

The Pyxos FT EV-Actuator Point uses the Atmel ARM AT91SAM7S64
microprocessor as its host processor, which is an ARM7-family microprocessor.
This microprocessor includes a robust feature set, and contrasts with the reduced
feature set of the Atmel ATtiny13 host microprocessor that is used for the Pyxos
FT EV-Sensor Point. You can use this microprocessor, or another microprocessor
that meets your application requirements, as the host microprocessor for any
Pyxos Points that you develop.

This section provides additional details for the Pyxos FT EV-Actuator Point
evaluation board, including descriptions of the push buttons, LEDs, jumper
settings, and connectors.

The descriptions of programmatic behaviors in this section apply only to the
Pyxos Network Example firmware; your custom firmware can provide different
behaviors.

Key Features
The EV-Actuator Point Evaluation Board includes the following key features:

• High-performance ARM7 host microprocessor running at 47.9232 MHz

• Digital-to-analog converter (DAC) and LED output

• Link powered using a switching power supply that delivers up to 100 mA
application current

• Transformer-isolated coupling circuit

Pyxos FT EVK User’s Guide 35

Push Buttons and LEDs
The Pyxos FT EV-Actuator Point evaluation board includes a Join button, a
Reset button, and five application push buttons. The evaluation board also
includes eight application LEDs that illuminate either when a button is pressed
or when some condition exists.

This section describes the default behavior of the application push buttons and
LEDs for the Pyxos Network Example firmware that is pre-installed in the EV-
Actuator Point ARM7 host processor.

Figure 10 shows the locations of the various push buttons and LEDs for the
Pyxos FT EV-Actuator Point evaluation board.

Figure 10. Push Buttons and LEDs for the Pyxos FT EV-Actuator Point

Join and Reset Buttons and LEDs
The Pyxos FT EV-Actuator Point evaluation board includes a Join button (labeled
JOIN) and corresponding LED that are not used by the Pyxos Network Example
application. This button and LED are included on the EV-Actuator Point
evaluation board so that you can perform manual registration for this Point if
your custom firmware application should require it.

The EV-Actuator Point evaluation board also includes a Reset button (labeled
RESET) and corresponding LED that you can use to reset the ARM7 host
microprocessor and Pyxos FT Chip, and restart the host firmware.

36 Pyxos FT EVK Hardware Details

Application Buttons and LEDs
The Pyxos FT EV-Actuator Point evaluation board includes the following push
buttons for application use:

SW1 Tests dry-contact functions.

SW2 Provides digital input for a custom application. This button is
not used by the Pyxos Network Example application; however,
the Pyxos Network Example HMI application program displays
the current state of this push button.

SW3 Provides digital input for a custom application. This button is
not used by the Pyxos Network Example application; however,
the Pyxos Network Example HMI application program displays
the current state of this push button.

SW4 Provides digital input for a custom application. This button is
not used by the Pyxos Network Example application; however,
the Pyxos Network Example HMI application program displays
the current state of this push button.

SW5 Provides digital input for a custom application. This button is
not used by the Pyxos Network Example application; however,
the Pyxos Network Example HMI application program displays
the current state of this push button.

When you connect the Pyxos Network Example HMI application
program to the EV Pilot through a LONWORKS network
connection and press SW5, LED8 illuminates on the EV-
Actuator Point Evaluation Board, and the Network Example
HMI shows LED8 as on.

The example firmware application for the Pyxos FT EV-Actuator Point uses the
following LEDs:

LED1 Indicates the status of the Pyxos FT EV-Actuator Point. This
LED is on when the EV-Actuator Point is connected and
correctly configured.

LED2 Indicates whether the dry-contact push button on the EV Pilot,
EV-Actuator Point, or EV-Nano Point is pressed. This LED
remains on while a dry-contact push button is pressed.

LED3 Indicates an Over Temperature alarm status. This LED is on
when the temperature rises above a threshold value. The
default value is 30 ºC (86 ºF). You can configure the threshold
value using the Pyxos Network Example HMI application
program.

Pyxos FT EVK User’s Guide 37

LED4 Indicates a Low Light Level alarm status. This LED is on when
the light level falls below a threshold value. The default value is
50 lux. You can configure the threshold value using the Pyxos
Network Example HMI application program.

LED5 Indicates that the Performance Demo is running. This LED is
on when the demo is active. See Running the Performance
Demo on page 81 for more information about the Performance
Demo.

LED6 Indicates the presence of a digital output. This LED is on when
one or more of the digital outputs are active.

LED7 Indicates status from a custom application. This LED is not
used by the Pyxos Network Example application.

LED8 Indicates status from a custom application. This LED is not
used by the Pyxos Network Example application.

When you connect the Pyxos Network Example HMI application
program to the EV Pilot through a LONWORKS network
connection and press SW5, LED8 illuminates on the EV-
Actuator Point Evaluation Board, and the Network Example
HMI shows LED8 as on.

38 Pyxos FT EVK Hardware Details

Jumper Settings for Controlling Onboard I/O
The Pyxos FT EV-Actuator Point evaluation board contains eight sets of jumpers,
as shown in Figure 11.

Figure 11. Pyxos FT EV-Actuator Point Evaluation Board Jumper Settings

Pyxos FT EVK User’s Guide 39

Table 3 describes the EV-Actuator Point jumpers.

Table 3. Pyxos FT EV-Actuator Point Jumpers

Function Jumper Description

Connects the EV-Actuator point to network
link power.

Be sure to mount or dismount these two
jumpers at the same time.

When both of these jumpers are mounted,
you must also mount jumper JP33 in the
upper position to select the onboard 5 VDC
switching power supply.

This is the factory shipped default setting.
Network Power
Connect Enable

(JP31 and JP32)

JP31

JP32

Disconnects the EV-Actuator Point from
network link power.

Be sure to mount or dismount these two
jumpers at the same time.

Selects the onboard 5 VDC switching power
supply. This setting is required for the EV-
Actuator Point to use link power.

This is the factory shipped default setting.

Power Supply
Input Selector

(JP33)

Selects the external power supply connected
to connector J31.

JP43

Connects the EV-Actuator Point 3.3 VDD3
power supply to the analog output header
(JP44).

This is the factory shipped default setting. Analog Output
Voltage Enable

(JP43)

Disconnects the EV-Actuator Point 3.3 VDD3
power supply from the analog output header
(JP44), and allows you to use the analog
output header for other purposes.

40 Pyxos FT EVK Hardware Details

Function Jumper Description

Allows external connections to the following
ARM7 host microprocessor functions:

• The ERASE pin to reinitialize flash
memory content and certain non-
volatile memory (NVM) bits.

• The JTAGSEL pin to select the
JTAG boundary scan when asserted
at a high level.

• The TST pin for manufacturing test,
fast programming mode, or SAM-BA
Boot Recovery of the AT91SAM7S
Series when asserted high. Host Processor

Function Enable

(JP501, JP502,
JP503)

Prevents external connections to the ARM7
host microprocessor functions.

This is the factory shipped default setting.

Connects the NRST~ pin of the ARM7 host
microprocessor to the RST~ pin of the Pyxos
FT Chip.

This is the factory shipped default setting.

Reset Line Enable

(JP506)

Disconnects the NRST~ pin of the ARM7
host microprocessor from the RST~ pin of
the Pyxos FT Chip.

Pyxos FT EVK User’s Guide 41

Function Jumper Description

TWD

TWCK

SW1

SW2

SW3

SW4

SW5

PA3

PA4

PA16

PA17

PA18

PA9

PA10

JP509

Connects the ARM7 host microprocessor to
the EV-Actuator Point onboard push buttons
(SW1 through SW5).

Also connects the ARM7 host microprocessor
two-wire interface serial data (TWD) and
two-wire interface serial clock (TWCK)
functions.

The PA numbers refer to the ARM7 PIO
lines.

This is the factory shipped default setting.

Example I/O
Enable - Switches

(JP509)

TWD

TWCK

SW1

SW2

SW3

SW4

SW5

PA3

PA4

PA16

PA17

PA18

PA9

PA10

JP509

Disconnects the ARM7 host microprocessor
from the EV-Actuator Point onboard push
buttons (SW1 through SW5), and
disconnects the ARM7 host microprocessor
two-wire interface serial data (TWD) and
two-wire interface serial clock (TWCK)
functions.

The PA numbers refer to the ARM7 PIO
lines.

42 Pyxos FT EVK Hardware Details

Function Jumper Description

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

PA19

PA20

PA26

PA27

PA28

PA29

PA30

PA31

JP510

Connects the ARM7 host microprocessor to
the EV-Actuator Point onboard LEDs (LED1
through LED8).

The PA numbers refer to the ARM7 PIO
lines.

This is the factory shipped default setting.

Example I/O
Enable - LEDs

(JP510) LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

PA19

PA20

PA26

PA27

PA28

PA29

PA30

PA31

JP510

Disconnects the ARM7 host microprocessor
to the EV-Actuator Point onboard LEDs
(LED1 through LED8).

The PA numbers refer to the ARM7 PIO
lines.

Host
Microprocessor
Header Voltage
Enable

(JP511)

Connects the EV-Actuator Point 3.3 VDD3
power supply to the ARM7 host
microprocessor I/O header (JP505).

Pyxos FT EVK User’s Guide 43

Function Jumper Description

JP511

Disconnects the EV-Actuator Point 3.3 VDD3
power supply from the ARM7 host
microprocessor I/O header (JP505).

This is the factory shipped default setting.

Connectors
The Pyxos FT EV-Actuator Point evaluation board includes five header
connectors, a network connector, and a 24 VDC power connector, as shown in
Figure 12. The header connectors provide access to the ARM7 host processor,
including host power and I/O, provide access to analog and digital I/O, and
provide an interface for debugging or programming the host processor. The
network connector provides access to the Pyxos FT network.

Figure 12. Pyxos FT EV-Actuator Point Evaluation Board Connectors

44 Pyxos FT EVK Hardware Details

Header Connector for Accessing Host
Power and I/O
The Pyxos FT EV-Actuator Point evaluation board provides a header connector
(JP505) that provides external access to the ARM7 programmed I/O (PIO) lines,
onboard power (+3.3 VDC), and onboard ground.

The connections for this header are shown in Figure 13, and match those of the
PIO header of the Atmel AT91SAM7S-EK evaluation board for accessing the
ARM7 host microprocessor.

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2 1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

EXTVDD3

HRST

PA31

PA1

PA3

PA29

PA27

PA5

PA7

PA9

PA11

PA26

PA24

PA14

PA16

PA23

PA19

PA18

AD7

AD5

NC

GND

EXTVDD3

NC

PA0

PA2

PA30

PA28

PA4

PA6

PA8

PA10

PA12

PA25

PA13

PA15

PA20

PA22

PA21

PA17

AD6

AD4

NC

GND

Figure 13. Host Power and I/O Header Connector

Header Connector for Accessing Host SPI
The Pyxos FT EV-Actuator Point evaluation board provides a header connector
(J401) that provides external access to the ARM7 Serial Peripheral Interface
(SPI) lines. The connections for this header are shown in Figure 14.

Pyxos FT EVK User’s Guide 45

20

18

16

14

12

10

8

6

4

2 1

3

5

7

9

11

13

15

17

19

EXTVDD3

PA12 MISO

PA13 MOSI

PA14 SCLK

PA11 NPSC0~

PA15 INT~

RST~

NC

NC

NC

GND

GND

GND

GND

GND

GND

GND

NC

NC

GND

Figure 14. Host SPI Header Connector

Header Connector for Analog Output
The Pyxos FT EV-Actuator Point evaluation board provides a header connector
(JP44) that provides external access to the onboard digital-to-analog converter
(DAC) output and to the attenuator circuit. The analog output ranges from 0 to
+3.0 VDC.

You can connect the analog output from the EV-Actuator Point to the analog
input on the EV-Sensor Point to allow the Pyxos Network Example HMI
application program to run the Performance Demo.

Header Connectors for Accessing Digital
I/O
The Pyxos FT EV-Actuator Point evaluation board provides two header
connectors that provide external access to the onboard digital I/O. One header
(JP41) provides access to the four digital outputs. The other header (JP42)
provides access to the four digital inputs. These headers are shown in Figure 15.

You can use either the digital input header or the SW2 through SW5 push
buttons to provide digital input to the EV-Actuator Point.

Figure 15. Digital I/O Header Connectors

46 Pyxos FT EVK Hardware Details

Header Connector for Remote
Programming and Debugging
The Pyxos FT EV-Actuator Point evaluation board provides a header connector
(JP504) that provides external access to the ARM7 host processor memory. This
header complies with the IEEE Standard Test Access Port and Boundary-Scan
Architecture (IEEE 1149.1-1990) of the Joint Test Action Group (JTAG). You can
use this header for remote debugging of the ARM7 application program, for an in-
circuit emulator (ICE), or to load programs into the ARM7 memory.

Pyxos FT Network Connector
The Pyxos FT EV-Actuator Point evaluation board provides a connector (JP102)
that provides access to the Pyxos FT network. The EV-Actuator Point uses this
connector to communicate with Pyxos FT EV Pilot.

Power Connector
The Pyxos FT EV-Actuator Point evaluation board provides a 24 VDC power
connector (J31) that supplies optional local power to the EV-Actuator Point. Do
not use this connector if the EV-Actuator Point evaluation board is powered by
link power.

Pyxos FT EV-Sensor Point Evaluation Board
The Pyxos FT EV-Sensor Point is a Pyxos Point that serves as a hosted multi-
sensor for the Pyxos FT EVK network. The sensors measure temperature, light
level, and DC voltage.

The Pyxos FT EV-Sensor Point uses the Atmel AVR® ATtiny13 microprocessor as
its host processor. This microprocessor has a reduced feature set compared with
the feature set of the ARM7 host microprocessor that is used for the Pyxos EV-
Actuator Point, but is a lower-cost solution. You can use this microprocessor, or
another microprocessor that meets your application requirements, as the host
microprocessor for any Pyxos Point applications that you develop.

This section provides additional details for the Pyxos FT EV-Sensor Point
evaluation board, including descriptions of the push buttons, LEDs, jumper
settings, and connectors.

The descriptions of programmatic behaviors in this section apply only to the
Pyxos Network Example firmware; your custom firmware can provide different
behaviors.

Key Features
The EV-Sensor Point Evaluation Board includes the following key features:

• Low-cost AVR host microprocessor running at 10 MHz

• Three sensor inputs: light-level sensor, temperature sensor, and analog-
to-digital converter (ADC) input

• Small size (9.5 cm x 7.75 cm)

Pyxos FT EVK User’s Guide 47

• Link powered using a switching power supply that delivers up to 100 mA
application current

• Transformer-isolated coupling circuit

Join and Reset Buttons and LEDs
The Pyxos FT EV-Sensor Point evaluation board includes a Join button (labeled
JOIN) and corresponding LED that are not used by the Pyxos Network Example
application. This button and LED are included on the EV-Sensor Point
evaluation board so that you can perform manual registration for this Point if
your custom firmware application should require it.

The EV-Sensor Point evaluation board also includes a Reset button (labeled
RESET) and corresponding LED that you can use to reset the AVR host
microprocessor and Pyxos FT Chip, and restart the host firmware application
program.

Figure 16 shows the location of the buttons and LEDs for the Pyxos FT EV-
Sensor Point evaluation board.

Figure 16. Push Buttons and LEDs for the Pyxos FT EV-Sensor Point

48 Pyxos FT EVK Hardware Details

Sensors
The EV-Sensor Point evaluation board includes two onboard sensors, as shown in
Figure 17:

• An ambient light photo sensor

• A low-voltage temperature sensor

The EV-Sensor Point evaluation board also includes a header (JP41) for analog
voltage input that is used as an analog voltage sensor.

Figure 17. Onboard Sensors for the Pyxos FT EV-Sensor Point

Neither the light sensor nor the temperature sensor has been accurately
calibrated because accurate measurements of light levels and temperature are
not necessary for the Pyxos Network Example.

The following characteristics define a subset of the device specifications for the
light photo sensor:

• Light reception cone: ±35°

• Saturation: approximately 500 lux

• The sensor is less sensitive to fluorescent light, and can report values
that show from 100% to 300% variance from equivalent incandescent lux
values

Pyxos FT EVK User’s Guide 49

• Specified operating temperature: –40 °C to +85 °C

The following characteristics define a subset of the device specifications for the
temperature sensor:

• Specified operating temperature: –40 °C to +125 °C

• Specified ambient temperature TA: +25 °C

• Specified accuracy: ±3.0 °C within specified operating temperature

Jumper Settings for Controlling Onboard I/O
The Pyxos FT EV-Sensor Point evaluation board contains five sets of jumpers, as
shown in Figure 18.

Figure 18. Pyxos FT EV-Sensor Point Evaluation Board Jumper Settings

50 Pyxos FT EVK Hardware Details

Table 4 describes the EV-Sensor Point jumpers.

Table 4. Pyxos FT EV-Sensor Point Jumpers

Function Jumper Description

JP31

JP32

Connects the EV-Sensor Point to network link
power.

Be sure to mount or dismount these two jumpers
at the same time.

When both of these jumpers are mounted, you
must also mount jumper JP33 in the upper
position to select the onboard 5 VDC switching
power supply.

This is the factory shipped default setting.
Network Power
Connect Enable

(JP31 and JP32)

JP31

JP32

Disconnects the EV-Sensor Point from network
link power.

Be sure to mount or dismount these two jumpers
at the same time.

JP33

Selects the onboard 5 VDC switching power
supply. This setting is required for the EV-
Sensor Point to use link power.

This is the factory shipped default setting.

Power Supply
Input Selector

(JP33)

JP33

Selects the external power supply connected to
connector J31.

Connects the RESET~ pin of the AVR host
microprocessor to the RST~ pin of the Pyxos FT
Chip.

This is the factory shipped default setting. Reset Line Enable

(JP52)

Disconnects the RESET~ pin of the AVR host
microprocessor from the RST~ pin of the Pyxos
FT Chip.

Pyxos FT EVK User’s Guide 51

Function Jumper Description

JP53

Connects the onboard SPI header (JP401) to the
AVR host microprocessor. This header connects
pins 3, 5, 7, and 9 of the SPI header to PB0 and
PB1 of the AVR host microprocessor. The CS~
pin is connected to Ground.

This is the factory shipped default setting.

Host
Microprocessor
Interface Connect
Enable

(JP53)

PD
 C

S
~

PB
1

SC
K

PB
0

SD
AT

A

PB
0

SD
AT

A

JP53

Disconnects the onboard SPI header (JP401) from
the AVR host microprocessor.

Analog I/O Enable

(JP54)

PB
3

LI
G

H
T

PB
4

TE
M

P

PB
2

A
I

Connects the AVR host microprocessor to the EV-
Sensor Point onboard analog I/O devices (light
sensor, temperature sensor, and analog input
voltage sensor).

This is the factory shipped default setting.

52 Pyxos FT EVK Hardware Details

Function Jumper Description

JP54

Disconnects the AVR host microprocessor from
the EV-Sensor Point onboard analog I/O devices
(light sensor, temperature sensor, and analog
input voltage sensor).

Connectors
The Pyxos FT EV-Sensor Point evaluation board includes four header connectors,
a network connector, and a 24 VDC power connector, as shown in Figure 19 on
page 53. The header connectors provide access to the AVR host processor,
including host power and I/O, provide access to analog I/O, and provide an
interface for debugging or programming the host processor. The network
connector provides access to the Pyxos FT network.

Pyxos FT EVK User’s Guide 53

Figure 19. Pyxos FT EV-Sensor Point Evaluation Board Connectors

Header Connector for Accessing Host
Power and I/O and for Remote
Programming and Debugging
The Pyxos FT EV-Sensor Point evaluation board provides a header connector
(JP51) that provides external access to the AVR programmed I/O (PIO) line,
onboard power (+3.3 VDC), and onboard ground. The PIO line also provides
external access to the host processor memory. You can use this header for remote
debugging of the AVR application program, for an in-circuit emulator (ICE), or to
load programs into the AVR memory.

321

G
N

D

R
S

T~

VD
D

3

Figure 20. Host Power and I/O Header Connector

The header’s three pins are for external supply voltage, reset, and ground, as
shown in Figure 20. Pin 2, the Reset pin, allows you to use the AVR host

54 Pyxos FT EVK Hardware Details

microprocessor’s debugWIRE interface to control program flow and to program
the microprocessor’s non-volatile memory. For information about how to use this
header, see Debugging for the AVR ATtiny13 Microprocessor on page 100.

Header Connector for Accessing Host SPI
The Pyxos FT EV-Sensor Point evaluation board provides a header connector
(JP401) that provides external access to the AVR Serial Peripheral Interface
(SPI) lines. The connections for this header are shown in Figure 21.

You can use this header together with the Host Microprocessor Interface Connect
Enable jumpers (JP53) to connect your own host microprocessor to the Pyxos FT
Chip on the EV-Sensor Point evaluation board.

20

18

16

14

12

10

8

6

4

2 1

3

5

7

9

11

13

15

17

19

EXTVDD3

PA12 MISO

PA13 MOSI

PA14 SCLK

PA11 NPSC0~

PA15 INT~

RST~

NC

NC

NC

GND

GND

GND

GND

GND

GND

GND

NC

NC

GND

Figure 21. Host SPI Header Connector

Header Connector for Accessing Sensor I/O
The Pyxos FT EV-Sensor Point evaluation board provides a header connector
(JP55) that provides external access to the sensor output. The connections for
this header are shown in Figure 22.

Figure 22. Sensor I/O Header Connector

Header Connector for Analog Input
The Pyxos FT EV-Sensor Point evaluation board provides a header connector
(JP41) that provides access to the input to the onboard analog-to-digital
converter (ADC). The ADC also receives input from the output of the two
onboard sensors.

Pyxos FT EVK User’s Guide 55

You can connect the analog output from the EV-Actuator Point to the analog
input on the EV-Sensor Point to allow the Pyxos Network Example HMI
application program to run the Performance Demo.

Pyxos FT Network Connector
The Pyxos FT EV-Sensor Point evaluation board provides a connector (JP102)
that provides access to the Pyxos FT network. The EV-Sensor Point uses this
connector to communicate with Pyxos FT EV Pilot.

Power Connector
The Pyxos FT EV-Sensor Point evaluation board provides a 24 VDC power
connector (J31) that supplies optional local power to the EV-Sensor Point. Do not
use this connector if the EV-Sensor Point evaluation board is powered by link
power.

Pyxos FT EV-Nano Point Evaluation Board
The Pyxos FT EV-Nano Point is a Pyxos Point that serves as a simple digital
sensor for the Pyxos FT EVK network. The EV-Nano Point shows how a Pyxos
Point can participate in a Pyxos FT network without a host microprocessor.

This section provides additional details for the Pyxos FT EV-Nano Point
evaluation board, including descriptions of the push buttons, LEDs, jumper
settings, and connectors.

The descriptions of programmatic behaviors in this section apply only to the
Pyxos Network Example firmware of the EV Pilot; your custom firmware can
provide different behaviors.

Key Features
The EV-Nano Point evaluation board includes the following key features:

• Unhosted Point with four general-purpose digital I/Os

• Small size (6.75 cm x 6.0 cm)

• Link powered using a linear power supply that delivers up to 15 mA
application current

• Floating isolation circuit

Power Considerations
The EV-Nano Point evaluation board’s voltage is intended to float relative to
Earth ground.

Caution: Connecting the onboard ground to Earth (for example, by using an
Earth-grounded oscilloscope probe) can damage the EV-Nano Point evaluation
board and can impair network communications.

56 Pyxos FT EVK Hardware Details

Push Buttons and LEDs
The Pyxos FT EV-Nano Point evaluation board includes a Join button, a Reset
button, and two application push buttons. The evaluation board also includes
two LEDs that illuminate either when an application push button is pressed or
when some condition exists.

Figure 23 shows the locations of the push buttons and LEDs for the Pyxos FT
EV-Nano Point evaluation board.

Figure 23. Push Buttons and LEDs for the Pyxos FT EV-Nano Point

Join and Reset Buttons and LEDs
The Pyxos FT EV-Nano Point evaluation board includes a Join button (labeled
JOIN) and corresponding LED that is used for joining the Pyxos FT network.

Because the EV-Nano Point is an unhosted Point, it uses manual registration
and does not automatically register with the EV Pilot. To register the EV-Nano
Point, press the SW5 push button on the EV Pilot to place the EV Pilot in manual
registration mode; in this mode, LED8 on the EV Pilot blinks. Press the JOIN
button on the EV-Nano Point to register the Point. When the EV-Nano Point is
correctly registered with the EV Pilot and connected to the Pyxos FT network,
LED8 on the EV Pilot is on.

The EV-Nano Point evaluation board also includes a Reset button (labeled
RESET) and corresponding LED that you can use to reset the Pyxos FT Chip.

Pyxos FT EVK User’s Guide 57

Application Buttons and LEDs
The Pyxos FT EV-Nano Point evaluation board includes the following push
buttons for application use:

SW1 Provides digital input for a custom application. This button is
not used by the Pyxos Network Example application; however,
the Pyxos Network Example HMI application program displays
the current state of this push button.

When you connect the Pyxos Network Example HMI application
program to the EV Pilot through a LONWORKS network
connection and press SW1, LED1 illuminates on the EV-Nano
Point Evaluation Board, and the Network Example HMI shows
LED1 as on.

SW2 Tests dry-contact functions.

The Pyxos EV Pilot example firmware application uses the following LEDs on the
EV-Nano Point:

LED1 Indicates status from a custom application. This LED is not
used by the Pyxos Network Example application.

When you connect the Pyxos Network Example HMI application
program to the EV Pilot through a LONWORKS network
connection and press SW1, LED1 illuminates on the EV-Nano
Point Evaluation Board, and the Network Example HMI shows
LED1 as on.

LED2 Indicates whether the dry-contact button on the EV Pilot, EV-
Actuator Point, or EV-Nano Point is pressed. This LED remains
on while a dry-contact push button is pressed.

58 Pyxos FT EVK Hardware Details

Jumper Settings for Controlling Onboard I/O
The Pyxos FT EV-Nano Point evaluation board contains three sets of jumpers, as
shown in Figure 24.

Figure 24. Pyxos FT EV-Nano Point Evaluation Board Jumper Settings

Pyxos FT EVK User’s Guide 59

Table 5 describes the EV-Nano Point jumpers.

Table 5. Pyxos FT EV-Nano Point Jumpers

Function Jumper Description

Connects the EV-Nano Point to network link
power.

Be sure to mount or dismount these two
jumpers at the same time.

When both of these jumpers are mounted,
you must also mount jumper JP33 in the
upper position to select the onboard 5 VDC
switching power supply.

This is the factory shipped default setting.
Network Power
Connect Enable

(JP31 and JP32)

JP31

JP32

Disconnects the EV-Nano Point from network
link power.

Be sure to mount or dismount these two
jumpers at the same time.

Selects the onboard 5 VDC linear power
supply. This setting is required for the EV-
Nano Point to use link power.

This is the factory shipped default setting.

Power Supply
Input Selector

(JP33)

Selects the external power supply connected
to connector J31.

60 Pyxos FT EVK Hardware Details

Function Jumper Description

SW2

SW1

LED2

LED1

JP41

Connects the Pyxos FT Chip to the EV-Nano
Point onboard I/O (SW1, SW2, LED1, and
LED2).

This is the factory shipped default setting.

Example I/O
Enable

(JP41)

Disconnects the Pyxos FT Chip from the EV-
Nano Point onboard I/O (SW1, SW2, LED1,
and LED2).

Connectors
The Pyxos FT EV-Nano Point evaluation board includes a header connector, a
network connector, and a 24 VDC power connector, as shown in Figure 25 on
page 61. The header connector provides access to the Pyxos FT Chip. The
network connector provides access to the Pyxos FT network.

Pyxos FT EVK User’s Guide 61

Figure 25. Pyxos FT EV-Nano Point Evaluation Board Connectors

Header Connector for Accessing Power and
I/O
The Pyxos FT EV-Nano Point evaluation board provides a header connector
(JP42) that provides external access to the onboard I/O lines of the Pyxos FT
Chip, onboard power (+3.3 VDC), and onboard ground. The connections for this
header are shown in Figure 26.

14 12 10 8 6 4 2

135791113

Figure 26. Power and I/O Header Connector

Pyxos FT Network Connector
The Pyxos FT EV-Nano Point evaluation board provides a connector (JP102) that
provides access to the Pyxos FT network. The EV-Nano Point uses this connector
to communicate with Pyxos FT EV Pilot.

62 Pyxos FT EVK Hardware Details

Power Connector
The Pyxos FT EV-Nano Point evaluation board provides a 24 VDC power
connector (J31) that supplies optional local power to the EV-Nano Point. Do not
use this connector if the EV-Nano Point evaluation board is powered by link
power.

Electromagnetic Compatibility Considerations
Echelon's Pyxos FT technology supports the creation of products that meet a wide
variety of regulatory requirements. Chapter 7 of the Pyxos FT Chip Data Book
describes how to create products with Echelon’s Pyxos FT technology that meet
electromagnetic compatibility regulations.

The evaluation boards are designed to facilitate testing of Echelon's Pyxos FT
technology. As such, they have no enclosure, which provides open access to the
I/O connectors, buttons, LEDs, and other I/O components. They have been
developed to allow consumer and commercial device OEM suppliers to evaluate
the technology quickly, and have not been designed to be installed permanently
in homes or commercial buildings. If you work with the evaluation boards in a
home environment, operation of other electronic equipment that is sensitive to
RF radiated emissions, such as televisions or radios, might be temporarily
impaired during the evaluation period.

The standards for RF emissions vary by geographic region. To determine which
standards apply in your region, consult the appropriate regulatory agencies. In
the European Union, CISPR 22 (or equivalently, EN 55022) applies. In North
American, the FCC regulates emissions from unintentional radiators under
47CFR15.109, Subpart A, which allows for substitution of CISPR 22. The
evaluation boards comply with CISPR 22 Level A, but not Level B (which is
required for deployment in home and commercial environments).

Pyxos FT EVK User’s Guide 63

4

Using the Pyxos Network Example

This chapter describes the Pyxos Network Example,
including setting it up and operating it.

64 Using the Pyxos Network Example

Overview of the Pyxos Network Example
The Pyxos FT EVK includes an example that simulates a room controller
network with analog and digital sensors, analog and digital actuators, and a
controller running on a Pyxos Pilot. The example also includes performance
demonstration that you can use to demonstrate Pyxos FT network determinism.
This example is called the Pyxos Network Example. The example demonstrates
several of the major features of the Pyxos FT platform, including:

• Automatic registration of Points

• Manual registration of Points

• Seamless replacement of Points within the Pyxos FT network

• Determinism within the Pyxos FT network

• Network monitoring for the Pyxos FT network

You can interact with the Pyxos Network Example directly by pressing the push
buttons on the various evaluation boards and by affecting the sensor inputs. You
can also interact with the Pyxos Network Example by connecting the EV Pilot to
a Windows computer and using the Pyxos Network Example HMI application
program. There are a few functions of the Pyxos Network Example application
that you can access only by using the Network Example HMI application
program (or by using an external connection to the evaluation boards, such as an
oscilloscope probe). For example, the Performance Demo that shows network
determinism requires the Network Example HMI application program.

Figure 27 on page 65 shows an overview of the Pyxos Network Example.

In addition to using the Pyxos Network Example, you can modify the firmware
for the EV Pilot, EV-Actuator Point, or the EV-Sensor Point to create your own
Pyxos FT network using the Pyxos FT EVK. For more information about
developing your own Pyxos FT applications, see Developing Pyxos FT
Applications Using the Pyxos FT EVK on page 89, the Pyxos FT Chip Data Book,
and the Pyxos FT Programmer’s Guide.

Pyxos FT EVK User’s Guide 65

Figure 27. The Pyxos Network Example

The Pyxos FT EV Pilot
The Pyxos Network Example uses the EV Pilot as the network controller. The
EV Pilot monitors the status of each of the sensors and controls each of the
actuators in the Pyxos FT network. The sensors and actuators are implemented
on the three EV Points. The EV Points communicate with the EV Pilot through
Pyxos network variables (PNVs). PNVs are richly-typed data points that
facilitate the exchange of data between a Pyxos Pilot and the Points attached to
it. When the EV Pilot needs to change the state of one of the EV Points, the Pilot
updates a PNV and puts it on the Pyxos FT network for the Point to receive.

The EV Pilot includes a USB connector for communication with a Windows
computer. The Pyxos Network Example HMI application program can
communicate with the Pyxos FT network using this USB connection.

The EV Pilot also includes an FT 3150 Smart Transceiver with a ShortStack 2
Micro Server and a LONWORKS network connector for optional communication

66 Using the Pyxos Network Example

with a LONWORKS network. The EV Pilot firmware includes a Pyxos LONWORKS
Gateway application to facilitate communication with a LONWORKS network.

The EV Pilot includes five push buttons (one for dry-contact input, three for Point
registration, and one that is not used for the Pyxos Network Example) and eight
status LEDs. In addition, the EV Pilot includes headers that allow you to access
I/O and other board functions, most of which are not part of the Pyxos Network
Example.

The Pyxos FT EV Points
The Pyxos Network Example uses the following EV Points included with the
Pyxos FT EVK for the example sensors and actuators:

• The Pyxos FT EV-Actuator Point is a Pyxos Point that serves as a hosted
analog and digital actuator for your Pyxos FT EVK network. The EV-
Actuator Point includes an Atmel ARM7 host microprocessor that runs
example firmware which uses the Pyxos Point API. It also includes five
push buttons (one for dry-contact input and four that are not used for the
Pyxos Network Example), eight status LEDs, a header for connecting the
analog output of the EV-Actuator Point to the analog input of the EV-
Sensor Point, and a potentiometer that controls a voltage attenuator; the
header and attenuator are used for the Performance Demo of the Pyxos
Network Example HMI application program. In addition, the EV-
Actuator Point includes headers that allow you to access I/O and other
board functions that are not part of the Pyxos Network Example.

• The Pyxos FT EV-Sensor Point is a Pyxos Point that serves as a hosted
multi-sensor for the Pyxos FT EVK network. The EV-Sensor Point
includes an Atmel ATtiny13 host microprocessor that runs example
firmware which does not use the Pyxos Point API. The sensors measure
temperature, light level, and DC voltage. The EV-Sensor Point also
includes a header for connecting the analog output of the EV-Actuator
Point to the analog input of the EV-Sensor Point. In addition, the EV-
Sensor Point includes headers that allow you to access I/O and other
board functions that are not part of the Pyxos Network Example.

• The Pyxos FT EV-Nano Point is a Pyxos Point that serves as a simple
unhosted digital sensor for the Pyxos FT EVK network. The EV-Nano
Point shows how a Point can participate in a Pyxos FT network without a
host microprocessor. The EV-Nano Point includes two push buttons, one
for dry-contact input and one that is not used for the Pyxos Network
Example, and two status LEDs. In addition, the EV-Nano Point includes
headers that allow you to access I/O and other board functions that are
not part of the Pyxos Network Example.

Starting and Running the Pyxos Network Example
To set up the Pyxos Network Example, complete the following tasks:

1. Connect the Pyxos FT network cables to the Pyxos FT network connectors
on each of the four evaluation boards.

2. To control and monitor the Pyxos Network Example from the Network
Example HMI application program, perform one of the following tasks:

Pyxos FT EVK User’s Guide 67

• Connect the USB cable B end (the square connector) to the EV
Pilot and connect the USB cable A end (the flat rectangular
connector) to your computer.

• Connect a LONWORKS network cable to the EV Pilot LONWORKS
network connector and to a LONWORKS Network Interface device
for your computer.

You can create both types of connections, but only one is required and
only one can be used at a time.

3. Connect the Pyxos FT EVK I/O cable to the EV-Actuator Point analog I/O
header (JP44) and to the EV-Sensor Point analog I/O header (JP41).

4. Connect the power cable to the EV Pilot. Do not connect power cables to
the EV Points if they are set up for link power (the factory shipped
default configuration).

The evaluation boards become active as soon as you supply them with power.
After a few seconds, after the firmware for the EV Pilot, EV-Actuator Point, and
EV-Sensor Point complete their startup processing, the Pyxos Network Example
is ready for operation.

Registering Points Automatically
To set up a Pyxos FT network, each Pyxos Point must be registered with a Pyxos
Pilot. The registration process enables communication between a Pyxos Pilot and
a Pyxos Point. There are three types of registration: automatic, manual, and
hardwired. The example firmware for EV-Actuator Point and the EV-Sensor
Point use automatic registration. The EV-Nano Point always uses manual
registration because it is an unhosted Point. The Pyxos Network Example does
not use hardwired registration.

For automatic registration in the Pyxos Network Example, when either the EV-
Actuator Point or the EV-Sensor Point is initially connected to the Pyxos FT
network, the EV Point’s firmware writes the EV Point’s unique ID (UID) into a
free timeslot that is advertised by the EV Pilot. The EV Pilot firmware receives
the EV Point’s UID and assigns a permanent timeslot to the Point, then the EV
Pilot reads the EV Point’s program ID and identifies the program interface for
the Point based on its type. After the EV Pilot completes this processing, the EV
Point is functional and can send and receive network updates.

To force the EV Pilot to re-register the EV-Actuator Point or the EV-Sensor
Point, press the appropriate registration push button on the EV Pilot (SW3 for
the EV-Actuator Point or SW4 for the EV-Sensor Point). Pressing one of these
registration push buttons causes the following actions:

• The EV Pilot deletes persistent data that is associated with the EV Point

• The EV Pilot deletes dynamic (PNV) data that is associated with the EV
Point

• The EV Pilot frees the timeslot that is associated with the EV Point

• The EV Point (if it is still connected to the network) sends its UID to the
EV Pilot to initiate registration

• The EV Pilot receives the EV Point’s UID and completes registration for
the Point

68 Using the Pyxos Network Example

During the registration of any EV Point, the Network Security LED on the EV
Pilot (LED1) blinks for ten seconds to indicate that the Pyxos FT network status
has changed. When registration is complete, the Network Security LED
illuminates to indicate that all three EV Points are connected and registered and
that the Pyxos FT network is functioning properly.

When registration for an EV Point is complete, the appropriate Point Status LED
on the EV Pilot (LED6 for the EV-Actuator Point and LED7 for the EV-Sensor
Point) illuminates to indicate that the EV Point is registered and active.

After initial registration, each EV Point’s timeslot information persists across
resets and power cycles because this information is stored as persistent data in
the EV Pilot’s host microprocessor. You can clear the persistent data for the EV-
Actuator Point or the EV-Sensor Point by pressing the appropriate registration
push button on the EV Pilot (SW3 for the EV-Actuator Point and SW4 for the EV-
Sensor Point).

Registering Points Manually
Hosted Points can use any of the three registration methods, but unhosted Points
must use manual registration. Therefore, the EV-Nano Point uses manual
registration. The EV-Nano Point is non-operational when initially connected to
the network.

To manually register the EV-Nano Point, perform the following steps:

1. Press the SW5 push button on the EV Pilot to place the Pilot in manual
registration mode. While it is in this mode, the EV Pilot’s Nano Point
Status LED (LED8) blinks. If the EV-Nano Point was previously
registered, pressing this push button causes the EV Pilot to:

• Delete persistent data that is associated with the EV-Nano Point

• Delete dynamic (PNV) data that is associated with the EV-Nano
Point

• Free the timeslot that is associated with the EV-Nano Point

2. Press the Join push button on the EV-Nano Point to initiate manual
registration. If you press the EV-Nano Point’s Join push button when the
EV Pilot is not in manual registration mode, the EV Pilot ignores the
registration request.

Note: If you accidentally press the SW5 push button on the EV Pilot, press the
SW5 push button a second time to ensure that the EV Pilot is not in manual
registration mode. Because pressing this push button causes the EV-Nano Point
to be no longer registered, LED8 should be off.

During manual registration, pressing the Join push button on the EV-Nano Point
causes the Pyxos FT Chip on the Point to send the Point’s unique ID (UID) to the
EV Pilot. The EV Pilot firmware receives the Point’s UID and assigns a
permanent timeslot to the EV Point, then identifies the program interface for the
Point based on its type. After the EV Pilot completes this processing, the EV-
Nano Point is functional and can send and receive network updates.

During registration of any Point, the Network Security LED on the EV Pilot
(LED1) blinks for ten seconds to indicate that the Pyxos FT network status has
changed. When registration is complete, the Network Security LED illuminates

Pyxos FT EVK User’s Guide 69

to indicate that all three EV Points are connected and registered and that the
Pyxos network is functioning properly.

When registration for the EV Point is complete, the EV-Nano Point Status LED
on the EV Pilot (LED8) illuminates to indicate that the Point is registered and
active.

After initial registration, each EV Point’s timeslot information persists across
resets and power cycles because this information is stored as persistent data in
the EV Pilot’s host microprocessor. You can clear the persistent data for the EV-
Nano Point by pressing SW5 on the EV Pilot to place the EV Pilot in manual
registration mode. If you do not want to re-register the Point, press SW5 a
second time to cause the EV Pilot to leave manual registration mode.

Monitoring Activity within the Pyxos FT Network
Whenever the state changes for some data point within the Pyxos Network
Example, the originator of that change encapsulates the changed data value in a
Pyxos network variable (PNV) update. Each PNV is associated with a Point and
has a direction that is determined relative to its Point, so that a PNV is either an
input PNV or an output PNV relative to the Point. Thus, a Point sends output
PNVs to the Pilot, and the Pilot sends input PNVs to the Point. For example, the
EV Pilot updates an input PNV to set an LED on an EV Point, and an EV Point
sends an output PNV to the EV Pilot when you press a push button on the EV
Point.

The Pyxos Network Example implements a number of PNVs that you can
monitor and control through the LEDs and push buttons on the EV Pilot and EV
Points. There are also a few other PNVs that you can monitor and control only
through the Pyxos Network Example HMI application program. This section
describes the Pyxos FT network activity that you can monitor and control.

Monitoring Sensor Data and Dry-Contact Input
The EV-Sensor Point includes three sensors: a light-level sensor, a temperature
sensor, and an analog voltage-level sensor. As the sensor values change, the EV-
Sensor Point firmware encapsulates the changes in PNVs and sends them to the
EV Pilot over the Pyxos FT network. The EV Pilot firmware monitors the
updated PNVs, and takes appropriate action as necessary, such as updating a
PNV to illuminate an LED.

Monitoring Sensor Data
To monitor sensor data:

• The EV-Sensor Point reads the light level from the light-level sensor and
sends the light-level value as a PNV to the EV Pilot. If the light-level
value is less than the Low Light Level alarm threshold value (by default,
50 lux), the EV Pilot updates a PNV to illuminate the Low Light Level
LED on the EV-Actuator Point (LED4). The EV Pilot also illuminates its
own Low Light Level LED (LED4).

If the EV Pilot is connected to the Pyxos Network Example HMI
application program, the Pilot also sends it the updated light-level PNV.

70 Using the Pyxos Network Example

Using the Network Example HMI application program, you can override
the default Low Light Level alarm threshold value.

• The EV-Sensor Point reads the temperature level from the temperature
sensor and sends the temperature value as a PNV to the EV Pilot. If the
temperature value is greater than the Over Temperature alarm threshold
value (by default, 30 °C or 86 °F), the EV Pilot updates a PNV to
illuminate the Over Temperature LED on the EV-Actuator Point (LED3).
The EV Pilot also illuminates its own Over Temperature LED (LED3).

If the EV Pilot is connected to the Pyxos Network Example HMI
application program, the Pilot also sends it the updated temperature
PNV. Using the Network Example HMI application program, you can
override the default Over Temperature alarm threshold value.

• The EV-Sensor Point reads the analog voltage-level from the analog
voltage-level sensor and sends the voltage value as a PNV to the EV
Pilot. The EV Pilot takes no action based on the voltage level unless it is
connected to the Network Example HMI application program or to a
LONWORKS network.

When the EV Pilot is connected to the Network Example HMI application
program, the EV Pilot sends it the voltage-level PNV. Using the Pyxos
Network Example HMI application program, you can override the analog
output value or run the Performance Demo. When the performance demo
is active, the EV Pilot updates a PNV to illuminate the Performance
Demo LED (LED5) on the EV-Actuator Point. The EV Pilot also
illuminates its own Performance Demo LED (LED5).

Monitoring Dry-Contact Input
The evaluation boards for the EV-Actuator Point, EV-Nano Point, and the EV
Pilot each include a push button that represents a dry-contact button. A dry-
contact button is a push button with an electrical contact that does not make or
break a circuit, that is, no current flows through it. It represents a simple digital
input.

The evaluation boards include digital input circuits that read the state of the dry-
contact input:

• The EV-Actuator Point reads the state of its dry-contact push button
(SW1) and sends the changed state as a PNV to the EV Pilot.

• The EV-Nano Point reads the state of its dry-contact push button (SW2)
and sends the changed state as an I/O update to the EV Pilot.

• If the dry-contact push button (SW1) on the EV Pilot itself changes state,
the EV Pilot does not update a PNV for this change, but acts on the
change directly.

If the dry-contact push button state is on (that is, someone is pressing the
button), the EV Pilot updates a PNV to illuminate the Dry-contact LED on the
EV-Actuator Point (LED2) and the EV-Nano Point (LED2). The EV Pilot also
illuminates its own Dry Contact LED (LED2).

If the EV Pilot is connected to the Pyxos Network Example HMI application
program, the Pilot also sends it the updated dry-contact PNV.

Pyxos FT EVK User’s Guide 71

Monitoring Network Integrity and Security
When an EV Point is connected to the Pyxos FT network, or when an EV Point is
disconnected from the Pyxos FT network, the EV Pilot causes its Network
Security LED (LED1) to blink for ten seconds to indicate a network security
alarm condition. If the EV Pilot is connected to the Pyxos Network Example HMI
application program, the Pilot also sends an updated network-security PNV value
to it.

When the Pyxos FT network is functioning properly, that is, when all of the EV
Points are configured properly and connected to the Pyxos FT network, the
Network Security LED is on.

Monitoring and Controlling Analog I/O
The EV-Actuator Point includes an analog output header, and the EV-Sensor
Point includes an analog input header. You can use these two headers to monitor
and control analog I/O for the Pyxos FT EVK.

When the Performance Demo of the Pyxos Network Example HMI application
program is not running, you can use the Pyxos Network Example HMI
application program to monitor user analog input from the EV-Sensor Point
analog input header and control user analog output on the EV-Actuator Point
analog output header.

When the Performance Demo is running, the EV Pilot continuously sends
updated voltage-level PNVs to the Network Example HMI application program.
In this case, you cannot manually control the analog I/O; however, you can still
monitor it.

Monitoring and Controlling Digital I/O
The EV-Actuator Point includes four digital outputs on one header, and four
digital inputs that are shared with the SW2 through SW5 push buttons on
another header. You can use these headers to monitor and control digital I/O.

If the EV Pilot is connected to the Pyxos Network Example HMI application
program, the Pilot sends it the updated output PNVs that represent the digital-
input values from the EV-Actuator Point. You can use the Network Example
HMI application program to monitor and control the digital input and output
values, although the Pyxos Network Example does not use these values.

Replacing Points and Simulating Network Failure
The EV Pilot saves the timeslot number, unique ID, and program ID (if any) of
each Pyxos Point on the network. When you replace a Point, if the Point has a
program ID that matches a previously removed Point, the EV Pilot attempts to
replace the Point in the previously used timeslot. For Point replacement, the EV
Pilot performs the following tasks:

1. When the EV Pilot receives a registration request from an Point, the EV
Pilot initially allocates an available timeslot for the Point.

2. As part of the registration process, the Pyxos FT Pilot API automatically
reads the Point’s program ID. The EV Pilot searches its persistent data

72 Using the Pyxos Network Example

to determine if there is any data available for this program ID. The EV
Pilot also determines if it can communicate with the old Point using this
timeslot.

3. If there is already a timeslot for the program ID, and the EV Pilot cannot
communicate with the old Point using this timeslot, the EV Pilot releases
the current timeslot and assigns the previously used timeslot to the new
Point.

For unhosted Points, user input is required to indicate that the Point needs to be
replaced. For the EV-Nano Point, press the SW5 push button on the EV Pilot to
enter manual registration mode, and then press the Join push button on the EV-
Nano Point to initiate the replacement process. If an unused timeslot exists that
was previously used by this type of Point, the Pilot will assign it to this newly
attached Point.

To simulate network failure, detach the Pyxos FT network cable from one of the
EV Points or from the EV Pilot. The Pilot detects that a Point is non-responsive
and enters recovery mode for that Point. When you reconnect the network cable,
the Pilot performs recovery processing for the Point and attempts to reconfigure
it.

Stopping the Pyxos Network Example
To stop the Pyxos Network Example, remove power from the EV Pilot. The EV
Pilot firmware periodically saves necessary data in persistent memory in the
Pilot’s host microprocessor, so no registration information is lost when you
remove power from the EV Pilot. However, the EV Pilot does not save current
PNV values in persistent memory, so all PNVs are updated the next time you
supply power to the EV-Pilot.

Pyxos FT EVK User’s Guide 73

5

Running the Pyxos Network
Example HMI Application Program

This chapter describes the Pyxos Network Example HMI
software application program that controls and interacts
with the Pyxos Network Example application firmware for
the Pyxos FT EVK.

74 Running the Pyxos Network Example HMI Application Program

Starting the Pyxos Network Example HMI
Application Program

Before you run the Pyxos Network Example HMI application program, follow the
instructions described in Installing the Pyxos FT EVK Software on page 15 to
install it on your computer.

To start the Pyxos Network Example HMI application program, go to the
Windows Start menu and select Programs → Echelon Pyxos FT EVK → Pyxos
Network Example HMI.

Important: Set your Windows screen resolution (the display screen area) to 1024
by 768 pixels or higher before running the Pyxos Network Example HMI
application program. You can set your color settings to either high color (16-bit)
or true color (32-bit) for the Pyxos Network Example HMI application program.

Figure 28 shows the main window of the Pyxos Network Example HMI
application program.

Figure 28. Pyxos Network Example HMI Application Program

Connecting to the Pyxos FT Network
When you start the Pyxos Network Example HMI application program, you see
the Connect To Network dialog. You can connect your computer to the Pyxos FT
network using either a direct USB connection or using a LONWORKS network

Pyxos FT EVK User’s Guide 75

interface. In the Connect To Network dialog, perform either of the following
steps:

• For USB, select Direct. Click Connect.

• For LONWORKS, select LonWorks then select a LONWORKS network
interface from the dropdown list. Click Connect. The Connect To Pyxos
Pilot dialog opens, in which you must enter the Neuron ID for the EV
Pilot. Press the Neuron Chip’s Service pin button (labeled SERVICE) on
the EV Pilot to send the Neuron ID to the Network Example HMI
application program. Click OK.

You can switch between these two connection methods at any time. When the
Network Example HMI application program is running, you can connect or
reconnect your computer to the Pyxos FT network by selecting Tools → Connect
to Network.

LONWORKS Functionality
When the EV Pilot sends updates to the Network Example HMI application
program over a LONWORKS network, it sends them as LONWORKS network
variable (NV) updates. When the Network Example HMI application program
receives an updated output LONWORKS NV, it updates the display for that NV.
When you update a control within the Network Example HMI application
program, it sends the update to the EV Pilot by updating one of the Pilot’s input
LONWORKS NVs.

The basic functionality of the Network Example HMI application program is the
same whether you connect to it by USB or by a LONWORKS network. However,
the Network Example HMI application program exhibits the following differences
in functionality when connected by a LONWORKS network:

• The Performance Demo tab is not available, and you cannot run the
performance demo. You must connect by USB to run the performance
demo. You can, however, still control the analog output from the EV-
Actuator Point and monitor the analog input from the EV-Sensor Point.

• You cannot reset EV Points or clear timeslot information for the EV
Points. You also cannot control the refresh rate of the information
displayed in the main window.

• When you press the SW5 push button on the EV-Actuator Point, the
Network Example HMI application program updates an input NV for the
EV Pilot. This input NV instructs the EV Pilot to illuminate LED8 on the
EV-Actuator Point. The Network Example HMI application program
displays the current state of LED8 as well as the state of SW5. This LED
does not illuminate when connected by USB.

This function is provided to illustrate how the functionality of a Pyxos FT
network can be extended by providing control over a LONWORKS network.

• When you press the SW1 push button on the EV-Nano Point, the
Network Example HMI application program updates an input NV for the
EV Pilot. This input NV instructs the EV Pilot to illuminate LED1 on the
EV-Nano Point. The Network Example HMI application program
displays the current state of LED1 as well as the state of SW1. This LED
does not illuminate when connected by USB.

76 Running the Pyxos Network Example HMI Application Program

This function is provided to illustrate how the functionality of a Pyxos FT
network can be extended by providing control over a LONWORKS network.

• The log window area includes slightly different information for alarm
events when connected by a LONWORKS network interface than it
displays when connected by USB.

• Overall performance of the Network Example HMI application program
can be slower than when connected by USB.

In the rest of this chapter, the functionality described assumes that you are
connected to the Network Example HMI application program by USB, unless
stated otherwise.

Controlling the Pilot and Points in the Network
The Controller Demo tab displays a graphical representation of the Pyxos FT
network as configured for the Network Example application, including the EV
Pilot, EV-Actuator Point, EV-Sensor Point, and EV-Nano Point. Whenever a
PNV is updated within the Network Example, the EV Pilot sends the updated
PNV to the Network Example HMI application program. Thus, the Network
Example HMI application program shows the current states of the various LEDs,
push buttons, and sensor values for the EV Pilot and each of the EV Points.

When the EV Pilot or an EV Point in the Pyxos FT network becomes unavailable
or is disconnected from the network, the controls for that device are disabled and
the display shows it as not connected to the Pyxos FT network. After you make
the EV Pilot or EV Point available again or reconnect it to the network, the
controls for that device are re-enabled and the display shows it as connected to
the Pyxos FT network.

The information that is displayed on the Controller Demo tab is refreshed
periodically. You can also refresh the displayed information manually, as
described in Refreshing the Display on page 84.

The following sections describe how to control the EV Pilot and EV Points for the
Pyxos Network Example application.

Setting the Alarm Temperature
To set the temperature value at which the EV-Actuator Point and the EV Pilot
register an alarm condition and illuminate the Over Temperature LEDs, perform
either of the following steps from the Controller Demo tab:

• Click the temperature value displayed for the Temperature Alarm set
point, as shown in Figure 29, to display the Set Alarm Temperature
dialog. This alarm set point appears to the right of the display for the
Pilot.

• Select Edit → EV-Pilot → Set Alarm Temperature to display the Set
Alarm Temperature dialog.

Figure 29. Temperature Alarm Set Point

Pyxos FT EVK User’s Guide 77

In the Set Alarm Temperature dialog, specify a valid temperature value in the
Value field and click OK. Valid temperature values are 0 to 100 °C or 32 to 212
°F.

You can switch between ºC (degrees Centigrade) and ºF (degrees Fahrenheit) by
clicking the radio buttons that appear next to the Temperature output display, as
shown in Figure 30. This display appears to the left of the Sensor Point.

Figure 30. Temperature Scale Radio Buttons

Setting the Light-Level Threshold
To set the lux value at which the EV-Actuator Point and the EV Pilot register an
alarm condition and illuminate the Low Light level LEDs, perform either of the
following steps from the Controller Demo tab:

• Click the lux value displayed for the Low Light Alarm set point, as shown
in Figure 31, to display the Set Light Level Threshold dialog. This alarm
set point appears to the right of the display for the Pilot.

• Select Edit → EV-Pilot → Set Light Level Threshold to display the Set
Light Level Threshold dialog.

Figure 31. Low Light Alarm Set Point

In the Set Light Level Threshold dialog, specify a valid lux value in the Value
field and click OK. Valid values are 0 to 2000 lux.

The lux is a measure of illuminance per unit area, and 1 lux is approximately
equivalent to 1/10 footcandle. A value of 400 lux represents a brightly lit office.

Setting the Outputs for the EV-Actuator Point
You can set analog and digital voltage output values for the EV-Actuator Point.
The analog output value is used for the Performance Demo (see Running the
Performance Demo on page 81). The digital output values are not used by the
Pyxos Network Example application.

Setting the Analog Output
To set the analog output value for the EV-Actuator Point, perform either of the
following steps from the Controller Demo tab:

• Click the analog output value set point labeled AO, as shown in Figure 32
on page 78, to display the Set Analog Output dialog. This set point
appears to the right of the EV-Actuator Point.

• Select Edit → EV-Actuator → Set Analog Output to display the Set
Analog Output dialog.

78 Running the Pyxos Network Example HMI Application Program

Figure 32. Analog Output Set Point

In the Set Analog Output dialog, specify a valid analog output value in the Value
field and click OK. Valid values are 0 to 3.0 volts.

Note: You cannot set the value for the analog output while the Performance
Demo is running.

If the Pyxos FT EVK I/O cable is connected to the EV-Actuator Point and the EV-
Sensor Point, the analog input to the EV-Sensor Point monitors the analog
output from the EV-Actuator Point, and the measured value for the analog input
is displayed in the box labeled AI, which is to the left of the EV-Sensor Point.

Setting a Digital Output
To set any of the four digital output values for the EV-Actuator Point, perform
either of the following steps from the Controller Demo tab:

• Click a digital output set point value labeled DO1 through DO4, as shown
in Figure 33. This set point appears to the right of the EV-Actuator
Point. Each click toggles the current value, so that if the current value is
1, clicking it changes the value to 0.

• Select Edit → EV-Actuator → Set Digital Outputs to display the Set
Digital Outputs dialog. In the Set Digital Outputs dialog, click the digital
value displayed for one of the digital outputs labeled DO1 through DO4.
Each click toggles the current value, so that if the current value is 1,
clicking it changes the value to 0. Click OK to set the values and close
the dialog.

Figure 33. Digital Output Set Points

When any of the four digital outputs is active (set to 1), LED6 is illuminated on
the EV-Actuator Point and in the Network Example HMI application program’s
main window.

Resetting Points
You can reset any or of all the EV Points from the Pyxos Network Example HMI
application program. Resetting an EV Point causes the following actions:

• The Pyxos FT Chip resets, which causes the EV Point to become
unconfigured

• For hosted EV Points, the host microprocessor resets

Pyxos FT EVK User’s Guide 79

• The EV Pilot reconfigures the EV Point

• The EV Pilot resends cached input PNV values to the EV Point

Resetting an EV Point from the Network Example HMI application program is
similar to pressing the Reset button on the evaluation board for that EV Point:

• When you press a Point’s Reset button, the EV Point loses its
configuration, the EV Pilot detects a communication error for that Point,
and the Pilot initiates recovery for the EV Point.

• When you reset an EV Point from the Network Example HMI application
program, it sends a reset message to the EV Pilot, which reconfigures the
Point without initiating recovery.

Note: You cannot reset the EV Pilot from the Network Example HMI application
program. To reset the Pilot, press the Reset button on the EV Pilot evaluation
board.

Within the Network Example HMI application program, resetting an EV Point
does not affect the set-point values that you might have set for the EV-Actuator
Point or the EV-Sensor Point.

To reset any or all of the EV Points from the Network Example HMI application
program, perform any of the following steps from either the Controller Demo tab
or the Performance Demo tab:

• Select Tools → Reset → EV-Sensor.

• Select Tools → Reset → EV-Actuator.

• Select Tools → Reset → EV-Nano.

• Select Tools → Reset All Points.

Monitoring Pilot and Point Status
You can monitor status for the EV Pilot and EV Points from the Controller Demo
tab of the Pyxos Network Example HMI application program. As shown in
Figure 28 on page 74, the Controller Demo tab displays a logical representation
of the EV Pilot, EV-Actuator Point, EV-Sensor Point, and EV-Nano Point, along
with a logical representation of the Pyxos FT network connections.

For the Pilot and for each EV Point, the Network Example HMI application
program displays the current status of the LEDs and push buttons, just as they
are on the evaluation boards themselves. The Network Example HMI
application program also shows the current temperature, light levels, and analog
voltage level measured by the EV-Sensor Point.

The Network Example HMI also shows disruptions to the Pyxos FT network. If
any of the EV Points loses its connection to the EV Pilot (and when the EV-Nano
Point is not yet registered), the Network Example HMI application program
changes the display for the connection and displays a red X on the line that
represents the network connection to the disconnected point.

Clearing Timeslot Information
You can clear the timeslot information for the Pyxos FT network by selecting
Tools → Clear Timeslot Information from either the Controller Demo tab or the

80 Running the Pyxos Network Example HMI Application Program

Performance Demo tab. Clearing the timeslot information for the Pyxos FT
network causes the EV Pilot to delete all EV Point information from its memory
and to reset each EV Point. Because the EV-Actuator Point and EV-Sensor Point
use automatic registration, if the EV Point is connected to the network, the EV
Pilot automatically re-registers the EV Point and assigns it a new Pyxos FT
network timeslot.

After you clear timeslot information, you must manually re-register the EV-Nano
Point. To register the EV-Nano Point, press the SW5 button on the EV Pilot to
place the Pilot in manual registration mode; then press the Join button on the
EV-Nano Point to register the Point.

Logging Pyxos FT Network Events
The Pyxos Network Example HMI application program can log events that occur
on the Pyxos FT network, such as when EV Points are registered, when an EV
Point is disconnected from the Pyxos FT network, when a dry-contact button is
pressed, when the Performance Demo is running, and when alarm conditions
exist for the temperature and light-level sensors.

The Network Example HMI application program maintains log information in a
file named PyxosHMIDemo.log in the [Pyxos FT EVK]\Bin directory, where
[Pyxos FT EVK] is directory in which you installed the Pyxos FT EVK software,
usually C:\Program Files\Echelon\Pyxos FT EVK.

Displaying the Log Window Area
To display the log window area, perform one of the following steps from either the
Controller Demo tab or the Performance Demo tab:

• Click Show Log.

• Select View → Show Log.

To hide the log window area, perform one of the following steps from either the
Controller Demo tab or the Performance Demo tab:

• Click Hide Log.

• Select View → Hide Log.

Log information is not lost while the log window area is hidden, however, if you
display the log after it has been hidden, you might need to scroll the contents of
the log window area to see current log entries.

Copying Log Information
To copy information from the log window area to the Windows system clipboard,
use the mouse to highlight the text that you want to copy, then perform one of
the following steps:

• Select Edit → Copy from either the Controller Demo tab or the
Performance Demo tab.

• Right-click within the log window area and select Copy from the popup
menu.

• Press Ctrl-C on the keyboard.

Pyxos FT EVK User’s Guide 81

You can also select all of the text within the log window area by clicking within
the log window area and selecting Edit → Select All from either the Controller
Demo tab or the Performance Demo tab (or by pressing Ctrl-A on the keyboard).

Controlling Logging
To clear the log window area and discard current log information, right-click
within the log window area and select Clear Log from the popup menu.

To temporarily disable logging, right-click within the log window area and select
Pause Logging from the popup menu. To re-enable logging, right-click within the
log window area and select Resume Logging from the popup menu.

To control what types of events are included in the log, right-click within the log
window area and select Filter from the popup menu. You can selectively include
or exclude the following event types in the log:

• Registration events

• PNV updates

• Alarms

• Errors and resets

Running the Performance Demo
The Pyxos Network Example HMI application program includes a performance
demonstration that shows network determinism for the Pyxos FT network by
simultaneously generating and monitoring a time-varying analog voltage signal,
which can be optionally modified by an attenuator.

Important: To view and control the Performance Demo, you must use a direct
USB connection between the computer that is running the Network Example
HMI application program and the Pyxos FT network.

The Performance Demo tab displays the output from the Performance Demo in
real time. The display for the Performance Demo is a pair of sine curves:

• The blue curve shows the generated output from the EV Pilot for the
specified frequency and amplitude.

• The red curve shows the output signal measured by the EV-Sensor Point.
If the measured signal is attenuated, the red curve’s amplitude is less
than the blue curve’s amplitude, although they share the same zero point.

When the Performance Demo is active, it performs the following actions, as
shown in Figure 34 on page 82:

1. The EV Pilot sends a stream of Pyxos network variable (PNV) updates to
the EV-Actuator Point to generate a time-varying sinusoidal DC analog
signal.

The EV Pilot also sends these values directly to the Network Example
HMI application program, which uses the values as the basis for its
generated output (the blue curve on the display).

2. The EV-Actuator Point passes that signal through its attenuator (the
potentiometer on the EV-Actuator Point), and makes the signal available

82 Running the Pyxos Network Example HMI Application Program

on its AO header.

You connect to the AO header of the EV-Actuator Point to the AI header
of the EV-Sensor Point using the Pyxos FT EVK I/O cable.

3. The EV-Sensor Point reads the signal on its AI header.

4. The EV-Sensor Point sends the current signal value as a PNV to the EV
Pilot.

5. The EV Pilot sends the value to the Network Example HMI application
program.

6. The Network Example HMI application program displays the measured
value, along with the generated output value. You can view the raw
values from the Controller Demo tab in the AO and AI displays, and you
can view the continuous values as sine curves from the Performance
Demo tab.

Figure 34. Overview of the Performance Demo

The following sections describe how to control the Performance Demo.

Pyxos FT EVK User’s Guide 83

Setting the Frequency for the Performance Demo
To change the frequency for the Performance Demo, perform either of the
following steps from the Performance Demo tab:

• Click Change Frequency to display the Change Frequency for
Performance Demo dialog.

• Select Edit → Change Frequency to display the Change Frequency for
Performance Demo dialog.

In the Change Frequency for Performance Demo dialog, you can set how often the
Network Example HMI application program refreshes the display output for the
Performance Demo and how often the EV Pilot sends a new voltage value for the
EV-Actuator Point to make available on its AO header, which controls the
frequency of the output curve.

In the Change Frequency for Performance Demo dialog:

• To set the refresh rate for drawing the output curves to the screen, select
a value from the Refresh the display every n ms dropdown list. Larger
values introduce delay in drawing the output to the screen, but do not
affect the data generated by the EV Pilot and measured by the EV-Sensor
Point.

• To set the frequency for how often the EV Pilot sends updated values to
the Network Example HMI application program for the Performance
Demo, enter a valid value in the Send a new value every n frames field.
Valid values are 1 to 32 Pyxos FT network frames. This frame rate
represents a range of approximately 297 frames per second to 9 frames
per second, or approximately 0.825 Hz to 0.026 Hz for the curves.

To change the amplitude of the output curve, adjust the potentiometer on the EV-
Actuator Point.

Starting and Stopping the Performance Demo
To start or stop the Performance Demo, perform either of the following steps from
the Performance Demo tab:

• Click Start to start the demo; click Stop to stop the demo.

• Select Tools → Start Performance Demo to start the demo; select Tools →
Stop Performance Demo to stop the demo.

You can return to the Controller Demo tab while the Performance Demo is
running to interact with other parts of the Pyxos Network Example HMI
application program, but you can interact with the Performance Demo only from
the Performance Demo tab.

Important: If the Performance Demo is running and you open the Connect To
Network dialog to connect the Network Example HMI application to the Pyxos
FT network using a LONWORKS network interface, the Performance Demo
continues to run. Because you cannot stop the Performance Demo while you are
connected by a LONWORKS network interface, you cannot modify the analog
output value for the EV-Actuator Point.

Recommendation: Stop the Performance Demo before changing the host
connection type.

84 Running the Pyxos Network Example HMI Application Program

Refreshing the Display
You can control how often the Pyxos Network Example HMI application program
refreshes its display of the information that it collects from the EV Pilot.

To refresh the displayed information on the Controller Demo tab, perform either
of the following steps:

• Click Refresh.

• Select Tools → Refresh Now.

Select Tools → Set Refresh Rate to control how often the Network Example HMI
application program refreshes the displayed information. In the Set Refresh
Rate dialog, select a value from the Refresh the display every n ms dropdown list.
Larger values introduce delay in refreshing the information to the screen, but do
not affect the data generated by the EV Pilot or any of the EV Points.

To set the refresh rate for information on the Performance Demo tab, click
Change Frequency, as described in Setting the Frequency for the Performance
Demo on page 83.

Shutting Down the Pyxos Network Example HMI
Application Program

To shut down the Pyxos Network Example HMI application program, perform
either of the following steps from either the Controller Demo tab or the
Performance Demo tab:

• Click Exit.

• Select File → Exit.

Recommendation: After you shut down the program, remove power from the EV
Pilot evaluation board while you are not using the Pyxos FT EVK.

Pyxos FT EVK User’s Guide 85

6

Troubleshooting the Pyxos FT
Network Example

This chapter describes basic troubleshooting information for
the hardware and software components that are included
with the Pyxos FT EVK.

86 Troubleshooting the Pyxos FT Network Example

Troubleshooting
This chapter describes some common problems that you might experience while
using the Pyxos FT EVK, along with suggested actions that can either fix the
problem or help to diagnose the problem. For further assistance in
troubleshooting the Pyxos FT EVK, contact Echelon Support at
www.echelon.com/support.

1. My EV Pilot evaluation board has no power (the power LED is off).

• Check that the power supply is properly plugged into the EV Pilot power
connector and to the AC mains power.

• Check that power-related jumper settings (JP31 through JP35) are
correct.

2. My EV Point evaluation board has no power.

• If you are using link power:

o Ensure that the EV Pilot evaluation board is powered.

o Ensure that the Pyxos FT network cable is properly connected to
the EV Point and to the EV Pilot.

o Check that the Network Power Connect Enable jumpers (JP31
and JP32) are properly mounted on the EV Pilot and the EV
Point.

o Check that the Power Supply Input Selector jumper (JP33) is
properly mounted to select the onboard power supply.

• If you are using local power, ensure that the external power supply is
working, and that power-related jumper settings (JP31 through JP35) are
correct.

3. My EV Point is not working.

• Is the EV Pilot’s Point Status LED (LED6, LED7, or LED8) for the
affected EV Point illuminated? If not, check EV Point’s power and
network connectors. For the EV-Nano Point, register it by pressing SW5
on the EV Pilot and then the Join button on the EV-Nano Point.

• Check that the LEDs are enabled by ensuring that the appropriate
Example I/O Enable jumpers (JP510) are properly mounted.

• Try manually resetting point by pressing its Reset button.

4. My EV Pilot or EV Point is not working and its Reset LED is on or blinking;
the Network Example HMI shows it as not connected.

• For the EV Pilot or EV-Actuator Point evaluation boards, if you have a
JTAG probe connected to the board’s JTAG header (JP504), ensure that
the JTAG Emulator is properly connected to its USB cable and that its
USB port is working properly and supplying power to it. Alternately,
unplug the JTAG probe from the evaluation board’s JTAG header.

Pyxos FT EVK User’s Guide 87

5. The application LEDs for the EV-Actuator Point flash continuously in the
restart pattern and the Reset LED is blinking.

• There is likely a configuration error for the EV Point, such as a mismatch
in the firmware versions between the EV-Actuator Point and the EV
Pilot. Try reloading the EV Point’s firmware with the binary image found
in the [Pyxos FT EVK]\Pyxos FT EVK\Pyxos Network
Example\ImagesArchive directory, where [Pyxos FT EVK] is the
directory in which you installed the Pyxos FT EVK software, usually
C:\Program Files\Echelon\Pyxos FT EVK. See Loading Your
Application into a Host Processor on page 95 for information about
loading these firmware images.

6. The Reset LED is blinking on the EV-Sensor Point.

• There is likely a configuration error for the EV Point, such as a mismatch
in the firmware versions between the EV-Sensor Point and the EV Pilot.
Try reloading the EV Point’s firmware with the binary image found in the
[Pyxos FT EVK]\Pyxos FT EVK\Pyxos Network
Example\ImagesArchive directory. See Loading Your Application into a
Host Processor on page 95 for information about loading these firmware
images.

7. The Pyxos FT network is behaving oddly, or not at all.

• Verify that the Pyxos FT network cable is properly terminated. If you are
using the Pyxos FT network cable that is supplied with the Pyxos FT
EVK, the terminator is located on the EV Pilot evaluation board. Ensure
that the Network Terminator Connect Enable jumper (JP36) is properly
mounted.

• Ensure that the Reset Line Enable jumper (JP506) is properly mounted.

8. How can I verify communications between the Pyxos FT Chip and its host
microprocessor?

• You can connect a Serial Peripheral Interface (SPI) connector to the
header connector for accessing host SPI (J401) and use a SPI protocol
analyzer to monitor communications between the Pyxos FT Chip and the
host microprocessor.

9. The Network Example HMI application program cannot connect over USB.

• Check that the EV Pilot is connected to the USB cable and that the USB
cable is connected to a working USB port on your computer.

• Check that Windows can communicate with the USB port by checking the
port’s status in the Device Manger. You can open the Device Manager by
opening the Windows Control Panel and double clicking the System icon;
from the Hardware tab of the System Properties window, click Device
Manager.

• Check that the USB Interface Communications Connect Enable jumpers
(JP513) on the EV Pilot are properly mounted.

88 Troubleshooting the Pyxos FT Network Example

10. The Network Example HMI application program can’t find my LONWORKS
network interface.

• Ensure that the network interface is properly installed. For most U10 or
i.LON network interfaces, double click the LonWorks Interfaces icon in
the Windows Control Panel to configure and test the network interface.

• For a PCLTA-10, PCLTA-20, or PCC-10 device, ensure that it is
configured as a layer-5 network interface. See Connecting to a LonWorks
Network on page 7 for information about configuring network interfaces
as layer-5 interfaces.

• Ensure that no other application is currently using the network interface.
If another LONWORKS application is running, either detach it from the
network interface or shut down the application.

11. The Network Example HMI application program cannot communicate with
the EV Pilot over a LONWORKS connection.

• Check that the LONWORKS Enable jumper (JP61) and the ShortStack
Micro Server SCI Connect Enable jumpers (JP512) are properly mounted.

12. The Network Example HMI application program does not recognize the
Service Pin message from the EV Pilot.

• Ensure that you are using a LONWORKS TP/FT-10 network interface,
such as an i.LON, U10, or a PCLTA-10, PCCLTA-20, or PCC-10 network
interface. The Network Example HMI might not recognize Service Pin
messages from other types of LONWORKS network interfaces.

Pyxos FT EVK User’s Guide 89

7

Developing Pyxos FT Applications
Using the Pyxos FT EVK

This chapter describes how to use the Pyxos FT EVK in your
development environment for developing custom firmware
applications for the Pyxos FT platform.

90 Developing Pyxos FT Applications Using the Pyxos FT EVK

Setting Up Your Development Environment
Application development for the Pyxos FT platform is similar to application
development for other embedded program environments. You need:

• A set of development tools that are specific to the host processors that you
are using.

• You will likely need to use the Pyxos FT API and the Pyxos FT Serial
API.

• You will use the Pyxos FT Interface Developer utility to maintain your
Pyxos projects.

• If your Pyxos application requires USB or LONWORKS communications,
you need to include code for such communications in your program.

• Finally, you need to load your application into the host microprocessor to
run, test, and debug it.

This section describes these general tasks for developing your Pyxos FT
application. See the Pyxos FT Programmer’s Guide for more information about
developing Pyxos FT applications.

Working with Development Tools for Host Processors
To develop custom firmware for your Pyxos FT Pilot and hosted Pyxos FT Points,
you need a software development environment for the host microprocessor,
including a code editor or Integrated Development Environment (IDE), a C
compiler, an assembler, a linker, and a debugger. You should also have an In-
Circuit Emulator (ICE) for hardware emulation and program simulation.

This section describes some of the development and debugging tools that are
available for the host processors that are used by the Pyxos FT EVK evaluation
boards. These development tools are not included with the Pyxos FT EVK.

Tools for the ARM7 Processor
The EV Pilot and the EV-Actuator Point each use an Atmel ARM AT91SAM7S64
microprocessor as their host microprocessor. The AT91SAM7S64 is an ARM7-
family microprocessor.

You can use any of the many available tools that support ARM7 firmware
development for the microprocessor that you plan to use for your Pyxos Pilot or
Points, such as one of the following:

• ARM RealView® Development Suite
The RealView Development Suite is a set of development tools that
support all ARM processors and ARM debug technology. It includes a
C/C++ compiler, assembler, linker, virtual platforms, text editor, and
debugger. It also allows you to choose an IDE for code development. For
more information about ARM RealView, see
www.arm.com/products/DevTools/.

• IAR Embedded Workbench®
The IAR Embedded Workbench is a set of development tools for

Pyxos FT EVK User’s Guide 91

programming embedded applications. It includes a C/C++ compiler,
assembler, linker, librarian, text editor, project manager, and debugger.
For more information about the IAR Embedded Workbench, see
www.iar.com/ewarm.

To debug ARM7 firmware applications, you should use a hardware emulator and
debugger that supports the microprocessor that you plan to use for your Pyxos
Pilot or Points, such as one of the following:

• AT91SAM-ICE JTAG Emulator
The SAM-ICE is a JTAG emulator designed for Atmel ARM processors.
You can get software support for the SAM-ICE from www.segger.com
(www.segger.com/downloads.html, under “J-Link ARM / J-Trace /
MidasLink”). For more information about the SAM-ICE, see
www.atmel.com/dyn/products/tools_card.asp?tool_id=3892 or
www.atmel.com/products/AT91/.

• IAR J-Link
IAR J-Link is a small ARM JTAG hardware debug probe that connects to
a Windows computer by a USB connection. You can use IAR J-Link with
the IAR Embedded Workbench. For more information about the J-Link,
see www.iar.com/jlinkarm.

To load program images (such as the images for the Pyxos Network Example
firmware applications that you can find in the [Pyxos FT EVK]\Pyxos Network
Example\ImagesArchive directory), you can use an In-System Programmer (ISP)
such as:

• Atmel SAM-PROG
The SAM-PROG is included with the AT91 In-System Programmer (ISP),
an open set of tools for programming the AT91SAM7 and AT91SAM9
ARM-based microcontrollers. SAM-PROG allows you to directly program
your application through a SAM-ICE or a J-Link JTAG Probe. For more
information about the AT91ISP and SAM-PROG, see
www.atmel.com/dyn/products/tools_card.asp?tool_id=3883.

The Pyxos Network Example firmware applications for the EV Pilot and EV-
Actuator Point were developed using the IAR Embedded Workbench. The IAR
Embedded Workbench project files for the example firmware applications are
included with the firmware source code; for more information on the firmware
source code, see Exploring the Pyxos Network Example on page 105.

Tools for the AVR Processor
The EV-Sensor Point uses the Atmel AVR ATtiny13 microprocessor as its host
processor.

You can use any of the many available tools that support AVR firmware
development for the microprocessor that you plan to use for your Pyxos Points,
such as one of the following:

• Atmel AVR Studio®
The AVR Studio is a set of development tools for programming embedded
applications in Windows environments. It includes a project
management tool, source file editor, and chip simulator. For more
information about the AVR Studio, see

92 Developing Pyxos FT Applications Using the Pyxos FT EVK

www.atmel.com/dyn/products/tools_card.asp?tool_id=2725 or
www.atmel.com/products/avr/.

• WinAVR
WinAVR is a suite of Windows-based open source software development
tools for the Atmel AVR series of RISC microprocessors. It includes the
GCC C/C++ compiler, assembler, linker, and debugger. For more
information about WinAVR, see sourceforge.net/projects/winavr/.

To debug AVR firmware applications, you should use a hardware emulator and
debugger that supports the microprocessor that you plan to use for your Pyxos
Points, such as:

• Atmel AVR JTAGICE mkII
The JTAGICE mkII is a development tool for On-chip Debugging of AVR
8-bit RISC microcontrollers. It includes both a JTAG interface and a
debugWIRE interface. You can use the JTAGICE mkII with the AVR
Studio to control the internal resources of the microcontroller. For more
information about the JTAGICE mkII, see
www.atmel.com/dyn/products/tools_card.asp?tool_id=3353.

You might also need additional hardware to facilitate loading applications into
your AVR microprocessor, such as:

• Atmel AVR STK® 500 Flash Microcontroller Starter Kit
The AVR STK500 is a starter kit and development system for Atmel's
AVR Flash microcontrollers. The STK500 interfaces with AVR Studio,
Atmel's Integrated Development Environment (IDE) for code writing and
debugging. For more information about the STK500, see
www.atmel.com/dyn/products/tools_card.asp?tool_id=2735.

The Pyxos Network Example firmware application for the EV-Sensor Point was
developed using the AVR Studio. The AVR Studio project file for the EV-Sensor
Point example firmware application is included with the firmware source code;
for more information on the firmware source code, see Exploring the Pyxos
Network Example on page 105.

Working with the Pyxos FT API
The Pyxos FT EVK includes C source code for the Pyxos FT application
programming interface (API) which you can use with your applications to access
a Pyxos FT network from a Pyxos Pilot, or to interact with a Pyxos Pilot from a
Pyxos Point. You can develop simple applications for microprocessors with
limited memory space, such as the AVR microprocessor used in the EV-Sensor
Point, without the Pyxos FT API; instead you add the minimum required API
functionality into the application. For microprocessors with sufficient memory to
support the API, the Pyxos FT API can reduce the required application
development time for a Pyxos Pilot or Pyxos Point application. To port the Pyxos
FT API to a new processor, perform the following steps:

1. Customize the platform.h file in the Pyxos FT API include-file directory
([Pyxos FT EVK]\Pyxos FT API\Include) to include a section for each of
the host microprocessors that you intend to support.

2. Implement the Pyxos FT serial driver for your host platform. See The
ARM7 PS API for the EV-Actuator Point and EV Pilot Examples on page

Pyxos FT EVK User’s Guide 93

133 for information about how the Pyxos Network Example firmware
applications implement the Pyxos FT serial driver.

When you create Pyxos FT applications, whether they use the Pyxos FT API or
not, you can define the Pyxos FT network interface for your Pyxos FT application
with the Pyxos FT Interface Developer utility. Use this utility to specify how
your Pilot application interoperates with the Pyxos FT network, and to define a
Pyxos Point interface definition for each type of Pyxos Point in your network.

To create Pyxos FT applications that use either the Pilot API or the Point API,
perform the following general steps:

1. Create applications for any custom hosted Pyxos Points in your network
with the Pyxos FT Point API. A Pyxos Point application typically
performs the following tasks:

a. Initializes the Pyxos FT Point and initialize the Pyxos FT API.

b. If the Pyxos FT Point uses the hardwired installation mode,
announces its timeslot after completing initialization.

c. Periodically calls the PyxosPointEventHandler() function to send
and receive updates for the Point to the network.

d. Reads and writes PNVs, as your application requires.

2. Create the Pilot application for your network if you are developing a
custom Pilot. A Pilot application should perform the following tasks:

a. Initialize the Pyxos Pilot and initialize the Pyxos FT API. The
Pilot must complete this task before it performs any other tasks.

b. Configure the Pyxos Points in the network: receive registration
requests from the Pyxos Points, allocate timeslots for them, read
their program IDs, and specify their interfaces.

c. Periodically call the Pyxos event handler to handle Pyxos events.

d. Receive updates for PNVs from the Pyxos Points on the network,
and send PNV updates onto the network.

e. Monitor the health of the network, and recover from network
errors by resetting, reconfiguring, or replacing Pyxos Points when
necessary.

3. Load the Pyxos Pilot and Point applications into the host microprocessors
that are attached to the Pyxos FT Chips in the network, and begin
operating the network.

For more information about using the Pyxos FT API, see the Pyxos FT
Programmer’s Guide.

Using the Pyxos FT Interface Developer Utility
You can use the Pyxos FT Interface Developer utility to configure the Pilot
application for your Pyxos FT network, and to create Point interface definitions
for the Pyxos Points in the network. To perform either of these tasks, perform
the following steps:

94 Developing Pyxos FT Applications Using the Pyxos FT EVK

1. Create a network project. Set the Pilot options that determine how the
Pilot will interact with and manage the Pyxos FT network.

2. Create or import the point interface definitions for the Pyxos FT Points in
your network. Create a separate Point interface definition for each type
of custom Pyxos Point that exists in your network. For each Point
interface definition, define the Pyxos network variables that you want
each Pyxos Point to contain, and select the installation mode for the
Pyxos Points to use. Pyxos Point manufacturers should provide Point
interface definitions for their Points.

3. Set advanced options for the Pyxos FT network, including the project
settings and Pilot options.

4. Generate the C header files for the network. These files contain macros
that control the implementation of the Pyxos Point and Pilot interface
definitions. Include these header files in your custom Pyxos Point and
Pilot applications.

For more information about using the Pyxos FT Interface Developer utility, see
the Pyxos FT Programmer’s Guide.

Including LONWORKS Support in Your Pyxos FT
Applications

You can develop a device that is both a Pyxos Pilot and a LONWORKS device.
Pyxos FT networks and LONWORKS networks use the same data types, which
simplifies integration of data points on Pyxos Points with other LONWORKS
devices, or with other Pyxos FT networks that also include LONWORKS
integration. To connect your Pyxos Pilot to a LONWORKS network, complete the
following general tasks:

• Create a Neuron C model file of the network-variable data for Pyxos
objects. You can use the NodeBuilder® 3.1 Development Tool Code
Wizard to generate the Neuron C model file, or you can create one
manually.

• Generate network-variable data files for the ShortStack Micro Server.
You can use the ShortStack Developer's Kit to generate these files.

• Develop a serial driver for your host application that communicates with
the ShortStack Micro Server firmware in a Smart Transceiver.

• Develop a program that handles the communications between the Pyxos
FT network and the LONWORKS network. This program works with the
serial driver to enable communications.

See Using the Pyxos-LonWorks Gateway on page 121 for more information about
the example Pyxos LONWORKS Gateway application that is included with the
Pyxos Network Example.

Because a Pyxos FT network can often send small amounts of data more quickly
than a LONWORKS network can, your networking program must send data to the
LONWORKS network at an appropriate rate, that is, you might need to impose a
throttle on the propagation of LONWORKS network variables. One approach for
imposing such a throttle is to store network-variable updates in a data structure,
and to allow your networking program to send the updates to the network in a

Pyxos FT EVK User’s Guide 95

round-robin fashion, while ensuring that only one update at a time is sent to the
ShortStack Micro Server.

When you use the ShortStack Developer's Kit to generate NV data for Pyxos
objects, you might need to make certain manual changes to the generated files for
correct operation in your environment; see ShortStack Interface and Serial
Driver on page 126 for examples of the necessary changes for the EV Pilot
Examples firmware.

The ShortStack Developer’s Kit includes the ShortStack API, the ShortStack
MicroServer library, documentation, and examples. Download the ShortStack
Developer’s Kit from www.echelon.com/shortstack.

Important: The Pyxos FT EVK has been developed and tested with the
ShortStack 2 Micro Server; changes may be required for different releases of the
ShortStack firmware.

If you need to reload the ShortStack Micro Server, you can use the NodeLoad
utility (available from the Echelon Web site, www.echelon.com) to load the
system images from the [Pyxos FT EVK]\Pyxos FT EVK\Pyxos Network
Example\ImagesArchive\Pilot ShortStack MicroServer directory.

See the ShortStack User's Guide for more information about developing
ShortStack applications. See the LONWORKS Host Application Programmer's
Guide for more information about developing LONWORKS networking
applications.

Loading Your Application into a Host Processor
The EV Pilot and EV-Actuator Point each include a JTAG-compliant header
connector that provides external access to the ARM7 host microprocessor’s
functions and memory. You can use a hardware emulator, such as Atmel’s
AT91SAM-ICE JTAG Emulator to connect to this header and load your programs
into the ARM7 memory. You can also use the JTAG header for remote debugging
of the ARM7 application program or for an in-circuit emulator (ICE).

Because the ATtiny13 microprocessor does not support the JTAG interface, the
EV-Sensor Point does not include a JTAG-compliant header connector. You can
load your programs into the host microprocessor using a flash programming
board or the ATtiny13 microprocessor’s debugWIRE interface.

If your Pyxos Point application uses a different host microprocessor, you can
connect it to the EV-Sensor Point using the board’s External Host SPI header
connector (JP401).

Loading the ARM AT91SAM7S64 Microprocessor
To load your programs into the AT91SAM7S64 host microprocessor in the EV
Pilot and EV-Actuator Point, perform the following general steps:

1. Connect a hardware emulator and debugger, such as the AT91SAM-ICE
JTAG Emulator, to the evaluation board’s JTAG header connector
(JP504).

2. Load the program from your software development environment, such as
the IAR Embedded Workbench.

96 Developing Pyxos FT Applications Using the Pyxos FT EVK

3. Disconnect the hardware emulator and debugger from the evaluation
board.

You can also use an In-System Programmer (ISP) to load program images (such
as the images for the Pyxos Network Example firmware applications that you can
find in the [Pyxos FT EVK]\Pyxos Network Example\ImagesArchive directory).
Atmel’s SAM-PROG allows you to directly program your application through a
SAM-ICE or a J-Link JTAG Probe. To obtain SAM-PROG, download the latest
version of the Atmel AT91ISP (which includes SAM-PROG) from
www.atmel.com/dyn/products/tools_card.asp?tool_id=3883.

Loading the AVR ATtiny13 Microprocessor
You can load your custom firmware application (or the image for the EV-Sensor
Point example firmware application that you can find in the [Pyxos FT
EVK]\Pyxos Network Example\ImagesArchive directory) into the EV-Sensor
Point ATtiny13 microprocessor using either of the following methods:

• Use the ATtiny13 microprocessor’s 6-wire programming interface (the In-
System Programming (ISP) interface) by moving the microprocessor to a
flash programming board.

• Use the ATtiny13 microprocessor’s 3-wire programming interface (the
debugWIRE interface) by connecting a hardware emulator and debugger
to the EV-Sensor Point Remote Programming header (JP51).

Using a Flash Programming Board
To load your programs into the ATtiny13 host microprocessor using a flash
programming board, perform the following general steps:

1. Remove the ATtiny13 chip from the EV-Sensor Point evaluation board
using a Plastic Leadless Chip Carrier (PLCC) extraction tool (or similar
device).

2. Insert the ATtiny13 chip into a flash programming board, such as the
Atmel AVR STK500 Flash Microcontroller Starter Kit, using an
integrated-circuit inserter tool (or similar device).

3. Connect the flash programming board to a hardware emulator and
debugger, such as the Atmel AVR JTAGICE mkII.

4. Load the program from your software development environment, such as
the Atmel AVR Studio.

5. Remove the ATtiny13 chip from the flash programming board.

6. Insert the ATtiny13 chip into the EV-Sensor Point evaluation board.

Ensure that the flash programming board is properly configured for
programming the ATtiny13 microprocessor. See Configuring the AVR STK500
for information about configuring the Atmel AVR STK500 Flash Microcontroller
Starter Kit flash programming board for the ATtiny13 microprocessor and the
Atmel AVR JTAGICE mkII hardware emulator and debugger.

Important: When programming the ATtiny13 microprocessor with AVR Studio
connected to a JTAGICE mkII emulator and debugger, set the ISP frequency to
256 kHz.

Pyxos FT EVK User’s Guide 97

Using the debugWIRE Interface
To load your programs into the ATtiny13 host microprocessor using the
debugWIRE interface, perform the following steps:

1. Enable the debugWIRE interface by programming the debugWIRE
Enable (DWEN) Fuse bit on the ATtiny13 chip. You must use a flash
programming board, such as the Atmel AVR STK500 Flash
Microcontroller Starter Kit, to program this fuse bit.

2. Connect a hardware emulator and debugger, such as the Atmel AVR
JTAGICE mkII, to the EV-Sensor Point Remote Programming header
(JP51).

3. Dismount the EV-Sensor Point Reset Line Enable jumper (JP52) to
disconnect the RESET~ pin of the ATtiny13 chip from the RST~ pin of
the Pyxos FT Chip.

4. Load the program from your software development environment, such as
the Atmel AVR Studio.

5. Disable the debugWIRE interface by programming the debugWIRE
Enable (DWEN) Fuse bit on the ATtiny13 chip. You must use a flash
programming board, such as the Atmel AVR STK500 Flash
Microcontroller Starter Kit, to program this fuse bit.

6. Mount the EV-Sensor Point Reset Line Enable jumper (JP52) to
reconnect the RESET~ pin of the ATtiny13 chip to the RST~ pin of the
Pyxos FT Chip.

It is possible to run your firmware application on the ATtiny13 microprocessor
while the debugWIRE interface is enabled, but Atmel recommends that the
debugWIRE interface be disabled when not in use. In addition, while the
debugWIRE interface is enabled, the External Reset function for the ATtiny13
chip is disabled; thus, when you reset the EV-Sensor Point, the ATtiny13
microprocessor will not reset. In this case, communications with the EV Pilot
can be lost, and it might be necessary to reset the ATtiny13 microprocessor
manually to re-establish communications.

Recommendation: Because you must enable and disable the debugWIRE
interface before you can program the ATtiny13 microprocessor, use a flash
programming board to load your firmware applications into the ATtiny13
microprocessor, as described in Using a Flash Programming Board on page 96.

Configuring the AVR STK500
If you plan to use the Atmel AVR STK500 Flash Microcontroller Starter Kit flash
programming board with the Atmel AVR JTAGICE mkII hardware emulator and
debugger to program the ATtiny13 microprocessor for the EV-Sensor Point, you
must ensure that the STK500 flash programming board is properly configured.

Some of the configuration described in this section configures the board for
Atmel’s Serial High-Voltage Programming of the ATtiny13 microprocessor, and
some of it configures the board for use with the JTAGICE mkII hardware
emulator and debugger.

98 Developing Pyxos FT Applications Using the Pyxos FT EVK

To configure the STK500 flash programming board for programming the
ATtiny13 microprocessor with the JTAGICE mkII hardware emulator and
debugger, perform the following steps:

1. Connect the wires of the included squid cable to the blue SPROG1 target
In-System Programming (ISP) header as described in Table 6.

Table 6. JTAGICE mkII Probe and STK500 ISP Header Connections

Squid Cable
Wire JTAGICE mkII Probe Pins STK500 ISP Header Pins

Black Pin 1

Test clock (TCK)

Pin 3

Serial clock (SCK)

White Pin 2

Ground (GND)

Pin 6

Ground (GND)

Grey Pin 3

Test data output (TDO)

Pin 1

Master In Slave Out (MISO)
serial output

Purple Pin 4

Target reference voltage (VTref)

Pin 2

Supply voltage (VCC)

Green Pin 6

Target system reset I/O (nSRST)

Pin 5

Reset input (RESET)

Red Pin 9

Test data input (TDI)

Pin 4

Master Out Slave In (MOSI)
serial input

Note: You will not use the blue (pin 5), yellow (pin 7), orange (pin 8), or brown
(pin 10) wires of the squid cable connector.

2. Mount the onboard oscillator (OSCSEL) jumper to pins 2 and 3. This
setting enables the onboard crystal signal. Pin 1 is the right-most pin.

3. Mount the onboard system clock (XTAL1) jumper to pins 1 and 2 (the
default setting). This setting routes the oscillator signal to the device.

4. Mount the VTARGET jumper to pins 1 and 2 (the default setting). This
setting provides reference voltage to the AVR device, and can be
controlled from the AVR Studio program.

5. Dismount the RESET jumper. This setting is necessary when using the
JTAGICE mkII hardware emulator and debugger.

6. Dismount the Byte Select 2 (BSEL2) jumper. This setting is not used for
the ATtiny13 microprocessor.

7. Connect PORTB header pins to PORTE/AUX header pins, as described in
Table 7.

Pyxos FT EVK User’s Guide 99

Table 7. PORTB to PORTE/AUX Header Connections

PORTB Header Pin PORTE/AUX Header Pin Function

PB3

Pin 4

XT1

Pin 7

Connect the system clock to
the AVR device.

PB5

Pin 6

RST

Pin 4

Connect the onboard reset
system to the AVR device.

8. Connect the header connector of the squid cable to the JTAGICE mkII
probe.

Insert the ATtiny13 chip into the blue target socket (SCKT3400D1) for
programming.

Important: Ensure that that ATtiny13 chip is the only chip mounted into any of
the sockets on the STK500 flash programming board. Having another chip (such
as the AT90S8515-8PC microcontroller that comes with the STK500) mounted
into any of the programming sockets can interfere with the software development
environment’s ability to program the ATtiny13 chip.

When the STK500 flash programming board is properly configured, you can use
the AVR Studio program to load your firmware program into the ATtiny13
microprocessor.

See the AVR STK500 User Guide for more information about configuring and
using the STK500 flash programming board.

See the AVR JTAG ICE User Guide and the JTAGICE mkII Quick Start Guide
for more information about the JTAGICE mkII. You can find additional
information for the JTAGICE mkII in the online help for the AVR Studio.

Debugging Your Application
The process of debugging Pyxos FT applications is similar to the process of
debugging other embedded applications. In general, you test the application
using simulated hardware or prototype hardware, then you test the application
with the final target hardware. For Pyxos FT applications, you also need to test
the application while it is connected to the Pyxos FT network to ensure that the
application correctly uses the Pyxos FT API.

Certain host microprocessors might impose specific requirements or restrictions
for program debugging. For example, the host microprocessor might use the
debugWIRE interface in addition to, or instead of, the JTAG interface, or the
microprocessor might have restrictions for setting multiple program break points.

100 Developing Pyxos FT Applications Using the Pyxos FT EVK

Debugging for the ARM AT91SAM7S64
Microprocessor

To debug programs running on the AT91SAM7S64 host microprocessor that is
included with the EV Pilot and EV-Actuator Point, perform the following general
steps:

1. Connect a hardware emulator and debugger, such as the AT91SAM-ICE
JTAG Emulator, to the evaluation board’s JTAG header connector
(JP504).

2. Run and debug the program using your software development
environment, such as the IAR Embedded Workbench.

3. Disconnect the hardware emulator and debugger from the evaluation
board.

Debugging for the AVR ATtiny13 Microprocessor
To debug programs running on the EV-Sensor Point ATtiny13 host
microprocessor, perform the following general steps:

1. Enable the ATtiny13 microprocessor’s debugWIRE interface by
programming the debugWIRE Enable (DWEN) Fuse bit on the ATtiny13
chip. You must use a flash programming board, such as the Atmel AVR
STK500 Flash Microcontroller Starter Kit, to program this fuse bit.

2. Connect a hardware emulator and debugger, such as the Atmel AVR
JTAGICE mkII, to the EV-Sensor Point Remote Programming header
(JP51).

3. Dismount the EV-Sensor Point Reset Line Enable jumper (JP52) to
disconnect the RESET~ pin of the ATtiny13 chip from the RST~ pin of
the Pyxos FT Chip.

4. Run and debug the program from your software development
environment, such as the Atmel AVR Studio.

5. Disable the debugWIRE interface by programming the debugWIRE
Enable (DWEN) Fuse bit on the ATtiny13 chip. You must use a flash
programming board, such as the Atmel AVR STK500 Flash
Microcontroller Starter Kit, to program this fuse bit.

6. Mount the EV-Sensor Point Reset Line Enable jumper (JP52) to
reconnect the RESET~ pin of the ATtiny13 chip to the RST~ pin of the
Pyxos FT Chip.

It is possible to run your firmware application on the ATtiny13 microprocessor
while the debugWIRE interface is enabled, but Atmel recommends that the
debugWIRE interface be disabled when not in use. In some situations, the EV
Pilot can lose communications with the Point and be unable to reconfigure the
Point. In this case, manually reset the ATtiny13 microprocessor to re-establish
communications with the Pilot.

Pyxos FT EVK User’s Guide 101

Enabling the debugWIRE Interface
The debugWIRE interface provides a one-wire, bi-directional interface that
allows you to control program flow and to program the ATtiny13 microprocessor’s
non-volatile memory.

To enable the ATiny13 microprocessor’s debugWIRE interface, perform the
following steps:

1. Remove the ATtiny13 chip from the EV-Sensor Point evaluation board
using a Plastic Leadless Chip Carrier (PLCC) extraction tool (or similar
device).

2. Insert the ATtiny13 chip into a flash programming board, such as the
Atmel AVR STK500 Flash Microcontroller Starter Kit, using an
integrated-circuit inserter tool (or similar device).

3. Connect the flash programming board to a hardware emulator and
debugger, such as the Atmel AVR JTAGICE mkII.

4. Enable the debugWIRE interface by programming the debugWIRE
Enable (DWEN) Fuse bit on the ATtiny13 chip. The interface is enabled
when DWEN=0.

You can program this fuse bit from your software development
environment, such as the Atmel AVR Studio.

5. Remove the ATtiny13 chip from the flash programming board.

6. Insert the ATtiny13 chip into the EV-Sensor Point evaluation board.

While the debugWIRE interface is enabled, and the ATtiny13 microprocessor is
installed on the EV-Sensor Point evaluation board, you can connect a hardware
emulator and debugger to the evaluation board and use your software
development environment, such as the Atmel AVR Studio, to load, run, and
debug the program.

To disable the debugWIRE interface, following the same steps as those described
above. The interface is disabled when DWEN=1.

Important: Because the debugWIRE communication pin (dW) on the ATtiny13
microprocessor is physically located on pin 1, which is the same pin as its
External Reset (RESET) function, you cannot use the External Reset function
while the debugWIRE interface is enabled. For the EV-Sensor Point, the
ATtiny13 microprocessor’s pin 1 (the External Reset (RESET~) pin) is connected
to the Pyxos FT Chip’s pin 19 (the Reset (RST~) pin), so that while the
debugWIRE interface is enabled, when you press the Reset button on the EV-
Sensor Point, the Pyxos FT Chip resets, but the ATtiny13 microprocessor does
not.

Additionally, when the EV Pilot sends a reset message (for example, during an
error-recovery scenario) to the EV-Sensor Point while the debugWIRE interface
is enabled, the EV-Sensor Point successfully resets the Pyxos FT Chip, but does
not reset the ATtiny13 microprocessor. Thus, your firmware program must
perform the reset function for the ATtiny13 microprocessor while the debugWIRE
interface is enabled.

Important: Disconnect the Pyxos FT Chip’s Reset pin from the ATtiny13
microprocessor’s External Reset pin while you are using the debugWIRE

102 Developing Pyxos FT Applications Using the Pyxos FT EVK

interface. To disconnect these two pins, dismount the EV-Sensor Point Reset
Line Enable jumper (JP52).

Be sure to re-mount the Reset Line Enable jumper (JP52) after you disable the
debugWIRE interface to ensure that your firmware program operates correctly.

The debugWIRE system accurately emulates all I/O functions while the processor
is running. However, when the microprocessor is stopped, if you access the I/O
registers through a debugger (such as the AVR Studio), you should verify your
results while the microprocessor is running.

See the debugWIRE documentation for a description of other programming and
debugging considerations.

Connecting a Hardware Emulator and
Debugger to the EV-Sensor Point
Evaluation Board
You can connect a hardware emulator and debugger to the EV-Sensor Point
evaluation board to debug your custom firmware application while the ATtiny13
microprocessor has its debugWIRE interface enabled.

To connect the Atmel AVR JTAGICE mkII to the EV-Sensor Point evaluation
board, perform the following steps:

1. Connect the wires of a squid cable to the EV-Sensor Point Remote
Programming header (JP51), as described in Table 8. The colors of the
squid wire correspond to those of the squid wire cable that is included
with the AVR JTAGICE mkII hardware emulator and debugger.

2. Connect the header connector of the squid cable to the JTAGICE mkII
probe.

3. Dismount the EV-Sensor Point Reset Line Enable jumper (JP52) to
disconnect the Pyxos FT Chip’s Reset pin from the ATtiny13
microprocessor’s External Reset pin while you are using the debugWIRE
interface.

Be sure to re-mount the EV-Sensor Point Reset Line Enable jumper (JP52) after
you disable the debugWIRE interface to ensure that your firmware program
operates correctly.

Table 8. JTAGICE mkII Probe and EV-Sensor Point Remote Programming
Header (JP51) Connections

Squid Cable
Wire JTAGICE mkII Probe Pins

EV-Sensor Point Remote
Programming Header Pins

White Pin 2

Ground (GND)

Pin 3

Ground (GND)

Purple Pin 4

Target reference voltage (VTref)

Pin 1

Supply voltage (VCC)

Pyxos FT EVK User’s Guide 103

Squid Cable
Wire JTAGICE mkII Probe Pins

EV-Sensor Point Remote
Programming Header Pins

Green Pin 6

Target system reset I/O (nSRST)

Pin 2

Reset (RST)

Note: You will not use any of the other wires of the squid cable connector.

Pyxos FT EVK User’s Guide 105

8

Exploring the Pyxos Network
Example

This chapter describes the C code that comprises the
firmware example applications that are loaded in the host
microprocessors for the EV Pilot and the hosted Points (the
EV-Actuator Point and EV-Sensor Point).

106 Exploring the Pyxos Network Example

Design Overview for the Pyxos Network Example
The Pyxos Network Example defines a Pyxos FT network with a Pilot, two hosted
Points, and one unhosted Point, as described in Chapter 4, Using the Pyxos
Network Example, on page 63. This chapter describes the firmware
implementation for the Network Example.

The firmware application programs for the Pyxos Network Example are written
in standard ANSI C, with some additional programming framework to support
the host processors for the Pyxos Pilot and Points. If you are familiar with
Echelon’s Neuron C language, certain programming concepts (such as network
variables) and certain aspects of the communication model might already be
familiar to you. However, you do not need to know Neuron C to develop Pyxos FT
applications.

The overall design for the Pyxos Network Example firmware applications
encompasses the following programming models:

• Master/subordinate: Each of the EV Points performs a specific set of
functions and acts independently of each other. The Points send their
data to the Pilot and receive their data from the Pilot. Thus, the Pilot
acts as the master, communicating with all of the Points and managing
their actions.

• Event-driven: When an event occurs on one of the EV Points, its
firmware application program detects that event and sends the data for
the event to the EV Pilot. When the EV Pilot application program
receives notification of an event from one of the EV Points, or when an
event occurs on the EV Pilot itself, the Pilot’s firmware application
program performs some action; often, that action is to illuminate an LED
on the EV Pilot evaluation board and to send a message to one of the EV
Points to perform some similar action.

• Time-division multiplexing: The devices in the Pyxos FT network share
the communications channel by dividing the communications signal into
discrete timeslot intervals. Each device in the network is assigned a
unique timeslot ID, and each device sends and receives data only during
its assigned timeslot. The EV Pilot application program is responsible for
managing the timeslots and for the communication with the EV Points in
the network.

The Pyxos Network Example firmware programs are pre-loaded into the host
microprocessors for the EV Pilot, EV-Actuator Point, and EV-Sensor Point. The
source files for the example firmware programs are installed into a set of
directories on your computer when you install the Pyxos FT software. You can
use this source code to learn how to write your own Pyxos Pilot firmware or Pyxos
Point firmware, or you can modify the source code to change the behavior of the
Pyxos Network Example application.

The source files for the Pyxos Network Example are contained in the following
top-level directory:

[Pyxos FT EVK]\Pyxos Network Example

where [Pyxos FT EVK] is the directory in which you installed the Pyxos FT EVK
software, usually C:\Program Files\Echelon\Pyxos FT EVK. Table 9 on page
107 lists the top-level directories for the example firmware and describes the

Pyxos FT EVK User’s Guide 107

contents of these directories. The rest of this chapter describes the example
firmware and the files that make up the Pyxos Network Example.

Table 9. Directory Structure and Contents for Network Example

Directory Contents

\Pyxos Network Example • Overall project file (pyxos network
example.PxPrj) for the Pyxos
Network Example, created with the
Pyxos FT Interface Developer utility.

• Project files for each Point (*.PxIntf),
created with the Pyxos FT Interface
Developer utility.

• C header files (*.h), generated from
the project files.

\Pyxos Network Example\ActuatorPoint • C source and header files for the EV-
Actuator Point example.

• Project files for the IAR Embedded
Workbench development
environment.

• Options file for the Pyxos FT
Interface Developer utility to define
implementation-specific options for
the EV-Actuator Point example.

\Pyxos Network Example\AT91SAM7S64 Directories that contain the shared files for
the ARM7 development environment,
including the modified Pyxos FT Serial API
(see Chapter 9, The ARM7 PS API for the
EV-Actuator Point and EV Pilot Examples on
page 133).

\Pyxos Network Example\ImagesArchive Compiled binary executable files of the
factory-shipped example firmware programs,
which you can use to reload the example
firmware on the evaluation boards.

\Pyxos Network Example\Pilot • C source and header files for the EV
Pilot example.

• Project files for the IAR Embedded
Workbench development
environment.

• Options file for the Pyxos FT
Interface Developer utility to define
implementation specific options for
the EV Pilot example.

• A directory for LONWORKS support.

108 Exploring the Pyxos Network Example

Directory Contents

\Pyxos Network Example\SensorPoint • C source and header file for the EV-
Sensor Point example.

• Project file for the AVR Studio
development environment.

The Pyxos FT EVK example firmware applications were developed using the
following tools: IAR Embedded Workbench for the ARM7 firmware, and AVR
Studio for the ATtiny13 firmware. You can use any development tools that meet
the requirements of your host microprocessor, but to use the included
development-environment project files, you must use these tools.

The Pyxos FT EV-Actuator Point Example
The EV-Actuator Point example firmware application program controls digital
and analog output for the Pyxos Network Example application.

The EV-Actuator Point example firmware uses the Pyxos FT Point API to
manage communications with the Pyxos FT Chip.

Design
The EV-Actuator Point example firmware has a simple design. It includes a
main() function, an implementation of the Pyxos network variable (PNV) update
function that is required by the Pyxos FT API, and I/O definitions and functions
for interfacing with the ARM7 host microprocessor.

The EV-Actuator Point Example firmware’s main() function performs the
following tasks:

1. Initializes the digital inputs.

2. Initializes the Pyxos FT API.

3. Runs an infinite loop to repeatedly perform the following tasks:

a. Read each of the digital input values.

b. If the value of an input has changed since the last time through
the loop:

i. Convert the value to a SNVT_switch data structure.

ii. Call the Pyxos FT Point API to update the value of the
PNV in the Pyxos FT Chip.

c. Call the Pyxos FT Point API event handler to send any updated
PNV values to the EV Pilot and receive any updated PNV values
from the EV Pilot.

The EV-Actuator Point example firmware does not interpret any of the digital
input values, nor does it take independent action based on the values. The EV
Pilot example firmware interprets the data values and instructs the EV-Actuator
Point example to take any necessary actions, such as activating an LED.

Pyxos FT EVK User’s Guide 109

The EV-Actuator Point example firmware also does not handle the analog output
setting directly, but sets the current analog output value based on PNV values
received from the EV Pilot example firmware.

The EV-Actuator Point example firmware I/O definitions and functions for the
ARM7 microprocessor include:

• Pin definitions and I/O mappings

• Get and set functions for the digital and analog I/O (including the push
buttons, LEDs, and analog output value)

• Utility functions that are called by the EV-Actuator Point firmware’s
main() function and by the EV Pilot firmware

Interface
The EV-Actuator Point supports eight LEDs, four additional digital outputs
(available on a header), and five switches. The PNVs are declared in the order of
the physical switches and LEDs on the evaluation board, from left to right. The
example firmware uses the Pyxos FT Point API.

The [Pyxos FT EVK]\Pyxos Network
Example\EchelonEx_ActuatorPointInterface.h file (which is generated from
[Pyxos FT EVK]\Pyxos Network Example\EchelonEx_Actuator.PxIntf by the
Pyxos FT Interface Developer utility) defines the PNVs for the EV-Actuator
Point. The PNVs include:

• Eight input PNVs for the LEDs:

o CONNECTED_LED

o DRY_CONTACT_LED

o OVER_TEMP_LED

o LOW_LIGHT_LED

o PERFORMANCE_DEMO_LED

o DO_STATUS_LED

o USER_LED_1

o USER_LED_2

• Four input PNVs for the digital outputs:

o DO_1

o DO_2

o DO_3

o DO_4

• One input PNV for the analog output:

o AO

• Five output PNVs for the push buttons:

o DRY_CONTACT_BUTTON

o USER_BUTTON_1

110 Exploring the Pyxos Network Example

o USER_BUTTON_2

o USER_BUTTON_3

o USER_BUTTON_4

• One output PNV for the version number of the EV-Actuator Point
firmware:

o VERSION

The interface file also defines the program ID (PID) for the EV-Actuator Point.

In myPyxosApplication.h, the registration mode for the Actuator Point is defined
as automatic. This header file is included in the [Pyxos FT EVK]\Pyxos
API\Include\Pyxos.h Pyxos FT API header file.

Source Files and Project Files
In addition to the files in the [Pyxos FT EVK]\Pyxos Network Example directory
that are listed in Table 9 on page 107 (specifically, the
EchelonEx_ActuatorPointInterface.h file, which is generated from
EchelonEx_Actuator.PxIntf by the Pyxos FT Interface Developer utility), the EV-
Actuator Point example uses the files in the [Pyxos FT EVK]\Pyxos Network
Example\ActuatorPoint directory that are listed in Table 10.

Table 10. File Contents for EV-Actuator Point Example

File Contents

ActuatorPointApp.c

ActuatorPointApp.h

C source and header files for the main
application of the EV-Actuator Point
example, including main control loop and
event handlers.

ActuatorPointIo.c

ActuatorPointIo.h

C source and header files for the code used
by the EV-Actuator Point example to access
digital inputs, digital outputs, and analog
output supported by the EV-Actuator Point.

EvkActuatorPoint.ewd

EvkActuatorPoint.ewp

EvkActuatorPoint.eww

Project files for the IAR Embedded
Workbench development environment.

MyPyxosApplication.h C header file for the EV-Actuator Point
example; generated by the Pyxos FT
Interface Developer utility.

MyPyxosApplication.PxOpts Application options file for the EV-Actuator
Point example, generated by the Pyxos FT
Interface Developer utility.

Pyxos FT EVK User’s Guide 111

File Contents

resources.h C header file for the LONWORKS definitions
that are used by the EV-Actuator Point
example; generated by the Pyxos FT
Interface Developer utility.

The project files for the IAR Embedded Workbench development environment for
the EV-Actuator Point include two configurations to control conditional
compilation for different environments: Flash Debug and Flash Release. These
configurations allow you to control whether to include debug control code.

The Pyxos FT EV-Sensor Point Example
The EV-Sensor Point example firmware monitors three onboard sensor devices
for the Pyxos Network Example application. The sensors measure temperature,
light levels, and analog input.

The EV-Sensor Point example firmware does not use the Pyxos FT Point API to
manage communications with the Pyxos FT Chip, but instead manages the
communication with the Pyxos FT Chip directly by using a software bit-bang
technique.

Design
Because the EV-Sensor Point example firmware does not use the Pyxos FT Point
API, it might appear more complex than the EV-Actuator Point example
firmware, but the application design is still relatively simple. It includes a
main() function and a number of implementations of functions that are required
by the AVR Serial Peripheral Interface (SPI), including I/O definitions and
functions for interfacing with the AVR host microprocessor. It also calls
functions that provide an interface with the Pyxos FT Chip.

The EV-Sensor Point example firmware’s main() function performs the following
tasks:

1. Configures the PORTB pins on the ATtiny13 microprocessor for I/O, and
waits for the SPI to complete initialization.

2. Calls an SPI function to write the Sensor Point’s program ID to the Pyxos
FT Chip.

3. Calls an SPI function to write an initial value (to specify that the EV-
Sensor Point is a hosted Point, that it uses the automatic registration
mode, and that it is ready) to the Pyxos FT Chip configuration register,
and waits until the Pyxos FT Chip confirms that the Point is configured.

4. Calls an SPI function to write the unique ID (UID) to the Pyxos FT Chip,
and waits for the Pyxos FT Chip to acknowledge receipt of the UID.
Sending the UID as the first data from the EV-Sensor Point to the EV
Pilot ensures that the EV-Sensor Point UID synchronizes with the EV
Pilot's transaction ID.

5. Calls an SPI function to write a value to the Pyxos FT Chip
POINT_READY register, and waits for it to be acknowledged. Writing to

112 Exploring the Pyxos Network Example

this register signifies that the Point is configured and ready to accept
PNV updates.

6. Calls an SPI function to check that the Pilot has sent a value to the Pyxos
FT Chip SET_POINT_ONLINE register. The Pilot writes to this register
when it is ready for the Point to begin sending PNV updates.

7. Calls an SPI function to write the firmware version number PNV to the
Pyxos FT Chip.

8. Runs an infinite loop to repeatedly perform the following tasks:

a. Determine whether the sensor values have been updated
recently.

b. If the sensor values have been updated, determine whether to
read the lux sensor value or the temperature sensor value. Each
iteration through this infinite loop alternates between reading
either the lux value or the temperature value.

c. If the lux sensor value is the one to process, read the lux value
from the analog-to-digital converter (ADC) on the ATtiny13
microprocessor input for the light sensor. Then, convert this
value to a SNVT format.

d. If the temperature sensor value is the one to process, read the
temperature value from the ADC converter on the ATtiny13
microprocessor input for the temperature sensor. Then, convert
this value to a SNVT format.

e. Read the analog-input voltage value from the ADC converter on
the ATtiny13 microprocessor input for the analog input line.
Then, convert this value to a SNVT format. Each iteration
through the infinite loop reads the analog-input voltage value so
that the value is always current for the Pyxos Network Example
HMI application program’s Performance Demo.

f. Call an SPI function to determine whether there are pending
updates, that is, updates that the EV-Sensor Point example
firmware has written to the Pyxos FT Chip but that the EV Pilot
has not yet acknowledged.

g. If there are no pending updates, write either the lux or
temperature SNVT value to the Pyxos FT Chip and write the
analog-input SNVT value to the Pyxos FT Chip.

The EV-Sensor Point example firmware does not interpret any of the sensor
values, nor does it take independent action based on the values. The EV Pilot
example firmware interprets the data values and instructs the EV-Sensor Point
example to take any necessary actions.

Interface
The EV-Sensor Point evaluation board includes three sensors: a temperature
sensor, a light sensor, and a voltage sensor.

The example firmware defines a 2-byte output PNV for each of the three sensors.
The firmware reads the sensor values, converts them to standard formats, and

Pyxos FT EVK User’s Guide 113

then sends them out onto the Pyxos FT network. The application does not use
the Pyxos FT Point API.

The [Pyxos FT EVK]\Pyxos Network
Example\EchelonEx_SensorPointInterface.h file (which is generated from [Pyxos
FT EVK]\Pyxos Network Example\EchelonEx_Sensor.PxIntf by the Pyxos FT
Interface Developer utility) defines the PNVs for the EV-Sensor Point. The PNVs
include:

• Three output PNVs for the sensors:

o LUX

o TEMP

o AI

• One output PNV for the version number of the EV-Sensor Point
firmware:

o VERSION

The interface file also defines the program ID (PID) for the EV-Sensor Point.

Source Files and Project Files
In addition to the files in the [Pyxos FT EVK]\Pyxos Network Example directory
that are listed in Table 9 on page 107 (specifically, the
EchelonEx_SensorPointInterface.h file, which is generated from
EchelonEx_Sensor.PxIntf by the Pyxos FT Interface Developer utility), the
Sensor Example uses the files in the [Pyxos FT EVK]\Pyxos Network
Example\SensorPoint directory that are listed in Table 11.

Table 11. File Contents for EV-Sensor Example

File Contents

resources.h C header file for the LONWORKS definitions
that are used by the EV-Sensor Point
example; generated by the Pyxos FT
Interface Developer utility.

EvkSensorPoint.aps Project file for the AVR Studio development
environment.

SensorPoint.c

SensorPoint.h

C source and header files for the main
application for the EV-Sensor Point example,
including main control loop, drivers, event
handlers, and definitions for the SPI
interface.

The project files for the AVR Studio development environment for the EV-Sensor
Point includes one configuration: default. You can create additional
configurations to control whether to include debug control code.

Note: Because the EV-Sensor Point’s example firmware does not use the Pyxos
FT Point API, there is no Point application options file (*.PxOpts file) generated
by the Pyxos FT Interface Developer utility for it. If you open the overall project

114 Exploring the Pyxos Network Example

file for the Network Example (pyxos network example.PxPrj file in the [Pyxos FT
EVK]\Pyxos Network Example directory), select the Ex_Sensor Point, and click
the Point Application Options button, the settings displayed in the Point
Application Options dialog represent default settings for the hosted Points rather
than the actual settings used by the EV-Sensor Point example firmware.

The Pyxos FT EV-Nano Point Example
Because the EV-Nano Point is an unhosted Point, it does not have a host
microprocessor or a firmware application. The EV Pilot controls all of the
functions of the EV-Nano Point. See the [Pyxos FT EVK]\Pyxos Network
Example\Pilot\PilotNanoPoint.c file for an example of the actions that the EV
Pilot performs.

The [Pyxos FT EVK]\Pyxos Network Example\EchelonEx_NanoPointInterface.h
file (which is generated from [Pyxos FT EVK]\Pyxos Network
Example\EchelonEx_Nano.PxIntf by the Pyxos FT Interface Developer utility)
defines the interface for the EV-Nano Point. This interface includes I/O masks
that the EV Pilot uses to monitor and control the I/O on the EV-Nano Point.
These I/O masks include:

• Two input masks for the buttons:

o DRY_CONTACT_BUTTON

o USER_BUTTON

• Two output masks for the LEDs:

o DRY_CONTACT_LED

o USER_LED

The EV-Nano Point has no program ID (PID); the PID for unhosted Points is
always zero.

The Pyxos FT EV Pilot Example
The EV Pilot controls the Pyxos FT network, including handling communications
with the Pyxos Points in the Pyxos FT network and handling communications
with a Windows computer or with a LONWORKS network. The EV Pilot receives
all updates to Pyxos network variables (PNVs) from the EV Points, and takes
appropriate action for each update, such as activating an LED or sending the
updated value to a computer or to a LONWORKS network.

The EV Pilot also handles registration for each EV Point in the Pyxos FT
network, and maintains current status for each Point. If the status for an EV
Point becomes unacceptable, the EV Pilot tries to reestablish communications
with the Point, and if it cannot, the EV Pilot instructs the EV Point to reset.

The EV Pilot’s example firmware also includes a number of utility functions for
the Pilot and the Points, as well as functions for interacting with its ARM7 host
microprocessor.

The EV Pilot example firmware uses the Pyxos FT Pilot API to manage
communications with the Pyxos FT Chip.

Pyxos FT EVK User’s Guide 115

Design
The EV Pilot example firmware is more complex than the EV Point examples
because the Pilot acts as the controller for all of the EV Points in the Pyxos FT
network. It includes several files that encapsulate functionality into discrete
areas, such as processing for the EV Pilot itself, handling I/O functions for the EV
Pilot and EV Points, managing registration for the EV Points, processing for each
type of Point, interfacing with the ARM7 microprocessor, handling USB
connections, and managing the LONWORKS Gateway. The EV Pilot uses the
Pyxos FT Pilot API for interfacing with the Pyxos FT Chip.

The EV Pilot example firmware’s main() function performs the following tasks:

1. Initializes the ARM7 host microprocessor.

2. Reads the nonvolatile data from the ARM7 host microprocessor. This
data helps the EV Pilot restore the Pyxos FT network to the state it had
before the EV Pilot was powered off.

3. Activates the LEDs on the EV Pilot evaluation board in a pattern to give
a visual indication that the EV Pilot is active.

4. Initializes the Pyxos FT Pilot API.

5. Calls a function to inform the Pyxos Network Example HMI application
program that the EV Pilot firmware has reset.

6. Reallocates timeslots for any EV Points that the EV Pilot had previously
assigned and stored in the ARM7 nonvolatile memory.

7. Initializes the LONWORKS Gateway.

8. Runs an infinite loop to repeatedly perform the following tasks:

a. Call a function to process events from a connected computer, such
as updates from the Pyxos Network Example HMI application
program.

b. Call a function to process registration push buttons for any EV
Points in the Pyxos network, and send them to a connected
computer and to a connected LONWORKS network.

c. Call the Pyxos FT Pilot API to process Pyxos events, such as PNV
updates from any of the EV Points in the Pyxos FT network.

d. Call a function to process state changes for any of the dry-contact
push buttons on the EV Pilot or on any of the EV Points in the
Pyxos FT network.

e. Call a function to check the current status of each EV Point in the
Pyxos FT network, and set an alarm condition for any EV Points
that do not have an acceptable status.

f. Call the LONWORKS Gateway to process LONWORKS events, such
as network variable updates from LONWORKS devices or PNV
updates from another Pyxos FT network.

g. Call a function to send an updated voltage-level value to the EV-
Actuator Point for the Pyxos Network Example HMI application
program’s Performance Demo, if it is running.

116 Exploring the Pyxos Network Example

h. Call a function to write current data to the ARM7 nonvolatile
memory, if necessary.

i. Call a function to check the current status of the EV Pilot itself,
in case the software or hardware state should have an
unacceptable status.

The following sections describe other functions performed by the EV Pilot
firmware.

Maintaining EV Point Data
The EV Pilot firmware maintains general information about the EV Points in two
arrays, one for the EV Point’s static properties and another for the EV Point’s
current status.

The pointDefinitions array describes each EV Point's static properties. Each
array element has the following structure:

• A pointer to the EV Point's program interface. An EV Point’s interface
includes the Point’s program ID, whether it is a hosted or unhosted Point,
the number of PNVs and remote registers that are associated with the
Point, and an array that describes the PNVs and remote registers.

• A variable that identifies which LED the EV Point uses to indicate that it
is registered.

• A variable that identifies which switch the EV Point uses for registration.

• The name of the function that the EV Point uses to initialize its inputs.
This function name can be NULL.

• The name of the function that the EV Point uses to clear cached Point
data. This function name can be NULL.

The pointInfo array describes the current status of each EV Point. Each array
element has the following structure:

• A variable that contains the timeslot that the EV Pilot assigns to the EV
Point (or, if there were hardwired registrations, the timeslot that the EV
Point returns to the Pilot).

• A variable that contains the EV Point's unique ID (UID). This UID is
uniquely assigned to each Pyxos FT Chip during manufacturing.

• A variable that identifies whether the EV Point is correctly configured.

• A variable that contains the frame count of the last time that the EV
Pilot checked the EV Point. When this frame count is approximately 250
milliseconds older than the current write frame, the EV Pilot will check
up on the EV Point.

• A variable that contains the frame count of the last time that the EV
Pilot received a value from the EV Point. If this frame count is
approximately 500 milliseconds older than the current write frame, the
EV Pilot assumes that the EV Point has a problem.

• A variable that identifies the current status of the EV Point’s registration
button.

Pyxos FT EVK User’s Guide 117

EV Point Registration
There are three Point-registration methods: automatic, manual, and hardwired.
For automatic registration, a Point sends its unique ID to the Pilot and the Pilot
assigns a timeslot to the Point. For manual registration, a Point does not
communicate with the Pilot until a user presses the Join button at the Point. For
hardwired registration, a Point sends its timeslot to the Pilot, in addition to
sending its unique ID, and the Pilot records that timeslot for that Point. The EV-
Actuator and EV-Sensor Points use automatic registration, and the EV-Nano
Point uses manual registration. The Pyxos Network Example does not use
hardwired registration.

The following sections describe the registration process as implemented in the
Pyxos Network Example firmware applications.

Initial Registration
The initial registration of a hosted EV Point includes the following general steps:

1. The Point’s Pyxos FT Chip sends its unique ID (UID) to the Pilot.

The EV-Actuator Point calls the PyxosPointInit() function to initialize the
Pyxos FT Chip. It also sends its unique ID (UID) to the EV Pilot.

The EV-Sensor Point calls an implementation of an SPI function to write
to the Pyxos FT Chip’s configuration register to set the Point’s
registration mode. It also sends its UID to the EV Pilot.

The EV-Nano Point waits for external confirmation of registration (that
is, the user’s pressing the Join button), before it sends its UID to the EV
Pilot.

The EV-Sensor Point and the EV-Actuator Point both send their UIDs
automatically when they start up or are reset. The EV-Nano Point sends
its UID only during registration, that is, when you push the JOIN button.

2. The EV Pilot receives the UID.

The Pyxos FT Pilot API calls the
PyxosPilotRegistrationRequestReceived() function to assign a timeslot to
the EV Point, if it has not already.

3. The EV Point is configured.

After the EV Point is successfully configured, the Pyxos FT Pilot API calls
the PyxosPilotPointConfigured() function.

4. The EV Pilot sets the EV Point’s interface.

The EV Pilot calls the PyxosPilotSetPointInterface() function based on
the EV Point’s program ID to inform the Pyxos FT API which interface
the EV Point implements, and to allocate a cache of PNVs for the EV
Point based on that interface.

5. The Pilot updates the Point’s SET_POINT_ONLINE register.

118 Exploring the Pyxos Network Example

The EV Pilot calls the PyxosPilotSetPointOnline() function to signify that
the EV Pilot is ready to receive updates from the EV Point.

Installation after EV Pilot Reset
After a reset, the EV Pilot determines if there are any EV Points defined in its
non-volatile memory. If there are, the EV Pilot reallocates the timeslot to the EV
Points. After the allocation completes, the EV Pilot calls the
PyxosPilotSetPointInterface() function to set each EV Point’s interface. If an EV
Point is not successfully configured, the EV Pilot attempts to reset the EV Point
and reconfigure the EV Point.

Resetting a Point
After the EV Pilot resets an EV Point, the Pyxos FT Pilot API calls the
PyxosPilotResetPointCompleted() function. The EV Pilot firmware always
attempts to reconfigure the EV Point after the reset completes, regardless of
whether the reset is successful.

Reconfiguration
After an EV Point is reconfigured or replaced, the Pyxos FT Pilot API calls either
the PyxosPilotPointConfigured() or the PyxosPilotPointConfigurationFailed()
function:

• If the reconfiguration is successful, the EV Pilot puts the EV Point online
and updates all of the EV Point's inputs with the values that the EV Pilot
had previously cached.

• If the reconfiguration is unsuccessful, the EV Pilot attempts to reset the
EV Point, which, when it completes, restarts the reconfiguration process.
This process continues until the EV Point is correctly configured or the
EV Point is deleted.

Replacement
During the registration process, if a Point is discovered that has the same
program ID as a currently installed Point, and that currently installed Point is
not responsive, the EV Pilot replaces the old Point with the new Point and polls
its outputs and updates its inputs.

Detection and Recovery of Non-Responsive Points
The EV Pilot polls the configuration register of each EV Point’s Pyxos FT Chip.
If this poll request fails, or if any update fails, or if the EV Pilot does not receive
any updates from an EV Point for an extended period of time, the EV Pilot
assumes that the Point has become unconfigured. The EV Pilot attempts to
recover an unconfigured Point by resetting it and reconfiguring it.

The EV Pilot also periodically checks its own configuration by calling the
PyxosPilotCheckConfiguration() function. If the EV Pilot is not correctly
configured, it attempts to reconfigure itself by calling the
PyxosPilotReInitPyxosInterface() function. If this attempt fails, the EV Pilot
resets its host processor.

Pyxos FT EVK User’s Guide 119

Processing for the EV-Actuator Point
The EV Pilot example firmware’s processing for the EV-Actuator Point consists of
three principal functions:

• Processing PNV updates from the EV-Actuator Point.

During its main control loop, the EV Pilot firmware calls the Pyxos FT
Pilot API to process Pyxos events, such as PNV updates. When the EV-
Actuator Point updates a PNV (for example, when you press the dry-
contact push button on the EV-Actuator Point evaluation board):

1. The Pyxos FT Pilot API calls the PyxosPilotPnvUpdateOccurred()
function of the EV Pilot firmware to process the PNV update. This
function determines which of the Points sent the updated PNV, and
calls the appropriate function, in this case,
ActuatorPnvUpdateOccurred().

2. The ActuatorPnvUpdateOccurred() function sends the event to a
connected computer and a connected LONWORKS network, then
records the dry-contact push button event.

3. Later in its main control loop, the EV Pilot firmware calls the
ProcessDryContacts() function to activate the dry contact LED on the
EV Pilot (LED2), on the EV-Actuator Point (LED2), and on the EV-
Nano Point (LED2).

• Updating the EV-Actuator Point’s analog output for the Pyxos Network
Example HMI application program’s Performance Demo.

During its main control loop, the EV Pilot firmware calls the
SendPerfValue() function to update the EV-Actuator Point’s analog
output that is used for the Performance Demo. This function checks
whether the Performance Demo is active and whether it needs to be
updated, and if so, it updates the EV-Actuator Point’s AO PNV with the
next appropriate voltage-level value for the demo.

If the Performance Demo is not active, the EV Pilot updates the EV-
Actuator Point’s AO PNV when that PNV is updated by the Network
Example HMI application program (whether connected by USB or by a
LONWORKS network interface) or by a LONWORKS device that is
connected to the EV Pilot.

When the EV-Actuator Point receives this updated PNV, it sets the
analog output to the updated voltage-level value by writing to the digital-
to-analog converter (DAC) on the EV-Actuator Point.

• Processing digital I/O for the EV-Actuator Point.

Because the Pyxos Network Example does not make use of the digital
input or output that is available on the EV-Actuator Point, the EV Pilot
firmware does not control the digital I/O for the EV-Actuator Point.

However, the Pyxos Network Example HMI application program does
allow you to set the digital output values for the EV-Actuator Point. The
EV Pilot firmware simply passes any PNV updates for the digital outputs

120 Exploring the Pyxos Network Example

from the Pyxos Network Example HMI application program to the EV-
Actuator Point, and updates the DO_STATUS_LED PNV to illuminate
the digital-output status LED (LED6 on the EV-Actuator Point
Evaluation Board) as necessary. This LED is on if any of the four digital
outputs is active.

Processing for the EV-Sensor Point
During its main control loop, the EV Pilot example firmware calls the Pyxos FT
Pilot API to process Pyxos events, such as PNV updates. When the EV-Sensor
Point updates a PNV (for example, when the lux or temperature values change,
or when the analog input value for the Pyxos Network Example HMI application
program’s Performance Demo changes):

1. The Pyxos FT Pilot API calls the PyxosPilotPnvUpdateOccurred()
function of the EV Pilot firmware to process the PNV update. This
function determines which of the Points sent the updated PNV, and calls
the appropriate function, in this case, SensorPnvUpdateOccurred().

2. The SensorPnvUpdateOccurred() function determines which of the EV-
Sensor Point’s PNVs was updated, LUX, TEMP, or AI:

• For the LUX PNV: If the value has changed by 5 lux or more, the
function saves the updated value and calls the CheckLowLightLevel()
function to determine if the new lux value is below the light-level-
alarm limit. If the value is below the limit, the EV Pilot example
firmware updates a PNV to activate the EV-Actuator Point’s Low
Light LED (LED4) and calls a function to activate the EV Pilot’s Low
Light LED (LED4).

• For the TEMP PNV: If the value has changed by 0.5 ºC or more, the
function saves the updated value and calls the
CheckHighTempLevel() function to determine if the new temperature
value is over the temperature-alarm limit. If the value is over the
limit, the EV Pilot example firmware updates a PNV to activate the
EV-Actuator Point’s Over Temperature LED (LED3) and calls a
function to activate the EV Pilot’s Over Temperature LED (LED3).

• For the AI PNV: If the value has changed by 20 millivolts or more,
the function saves the updated value.

3. For all PNV updates, if the value meets the PNV’s change threshold, the
EV Pilot example firmware sends the updated PNV to a connected
computer and to a connected LONWORKS network.

Processing for the EV-Nano Point
During its main control loop, the EV Pilot example firmware calls the Pyxos FT
Pilot API to process Pyxos events, such as PNV updates. When the EV-Nano
Point updates a PNV (for example, when you press the dry-contact push button
on the EV-Nano Point evaluation board):

1. The Pyxos FT Pilot API calls the PyxosPilotPnvUpdateOccurred()
function of the EV Pilot firmware to process the PNV update. This
function determines which of the Points sent the updated PNV, and calls
the appropriate function, in this case, NanoPnvUpdateOccurred().

Pyxos FT EVK User’s Guide 121

2. The NanoPnvUpdateOccurred() function sends the updated PNV to a
connected computer and a connected LONWORKS network and records the
state of the dry-contact push button.

3. Later in its main control loop, the EV Pilot example firmware calls the
ProcessDryContacts() function to activate the dry contact LED on the EV
Pilot (LED2), on the EV-Actuator Point (LED2), and on the EV-Nano
Point (LED2).

Connecting to a Computer Using a USB
Connection
You can connect the EV Pilot to a Windows computer using a USB connection.
Table 12 lists the files that provide the USB support for the Pyxos Network
Example. The USB connection uses a standard USB A/B cable.

Table 12. Files for USB Support

File Description

\USB Driver

EchPyxosEVK.inf

FTD2XX.dll

FTIBUS.sys

The Windows USB driver provided by Future
Technology Devices International (FTDI).
This driver is automatically installed and
registered with Windows during installation
of the Pyxos FT EVK software.

\Pyxos Network
Example\AT91SAM7S64\USB UART SCI

uart.c

uart.h

Universal asynchronous receiver-transmitter
(UART) driver for the ARM7 host
microprocessor. This driver interfaces with
the FTDI USB UART chip used on the EV
Pilot.

\Pyxos Network Example\Pilot

PilotUsb.c

PilotUsb.h

Control program that allows the EV Pilot
example firmware to communicate with the
computer using the USB UART driver.

Using the Pyxos-LONWORKS Gateway
The Pyxos-LONWORKS Gateway is part of the EV Pilot example firmware
application, and it allows the EV Pilot to communicate with a LONWORKS
network through the FT 3150 Smart Transceiver with ShortStack Micro Server
on the EV Pilot evaluation board. The Gateway source code includes a Neuron C
model file that maps the PNVs to LONWORKS functional blocks and standard
network variable types (SNVTs). The Gateway also includes a serial driver that
handles communication with the FT Smart Transceiver.

The EV Pilot is a fully functional LONWORKS device. You can use a network
management tool, such as the LonMaker Integration tool, to configure and
manage the EV Pilot and integrate it into a LONWORKS network. The Pyxos
Network Example HMI application program is also a simple network
management tool that manages only one device in a LONWORKS network, the EV-
Pilot. To prevent management conflicts, do not manage the EV-Pilot with any

122 Exploring the Pyxos Network Example

other network management tools, such as the LonMaker tool, when you are
running the Pyxos Network Example HMI application program through a
LONWORKS network interface.

The EV Pilot example firmware implements several LONWORKS functional blocks
that allow any LONWORKS devices in the LONWORKS network to monitor and
control the activity within the Pyxos FT network. Table 13 shows the LONWORKS
functional blocks, configuration properties, and network variables that are
available. In the table, the standard type for each functional block, network
variable, and configuration property is given in parenthesis following the name
used in the EV Pilot firmware.

Table 13. LONWORKS Functional Blocks Implemented by the EV Pilot

Functional Block
Network Variables and
Configuration Properties Description

 The standard node object
required for all LONMARK
devices with more than one
functional block.

For more information about
this functional block, see
LONMARK® Functional
Profile: Node Object
SFPTnodeObject, available
from www.lonmark.org.

nviRequest

(SNVT_obj_request)

Input network variable used
to request information or
control functional blocks.

nvoStatus

(SNVT_obj_status)

Output network variable
used to report status
information concerning
functional blocks.

NodeObject

(SFPTnodeObject)

nvoAlarm2

(SNVT_alarm_2)

Output network variable
used to report alarm
information.

Alarms are generated when
Points are connected or
disconnected, when the light
level drops below a specified
limit, or when the
temperature exceeds a
specified limit.

nanoDcSw

(SFPTopenLoopSensor)

nvoNanoDcSw

(SNVT_switch)

Output network variable
that represents the current
state of the dry-contact
switch (SW2) on the EV-
Nano Point.

Pyxos FT EVK User’s Guide 123

Functional Block
Network Variables and
Configuration Properties Description

nviNanoDcLed

(SNVT_switch)

Input network variable used
to control the dry-contact
LED (LED2) on the EV-
Nano Point.

nanoDcLed

(SFPTclosedLoopActuator)

nvoNanoDcLedFb

(SNVT_switch)

Output network variable
that represents the current
state of the dry-contact LED
(LED2) on the EV-Nano
Point.

NVIDX_nvoNanoSwitch

(SFPTopenLoopSensor)

nvoNanoSwitch

(SNVT_switch)

Output network variable
that represents the current
state of the user switch
(SW1) on the EV-Nano
Point.

nviNanoLed

(SNVT_switch)

Input network variable used
to control the user LED
(LED1) on the EV-Nano
Point.

nanoLed

(SFPTclosedLoopActuator)

nvoNanoLedFb

(SNVT_switch)

Output network variable
that represents the current
state of the user LED
(LED1) on the EV-Nano
Point.

nvoLightValue

(SNVT_lux)

Output network variable
that represents the light
value on the EV-Sensor
Point.

lightSensor

(SFPTopenLoopSensor)

nciLowLightLimit

(SCPTLowLimit1)

Configuration property that
sets the low light limit. If
nvoLightValue drops below
the value of this CP, the low
light LEDs on the EV Pilot
and EV-Actuator Point are
illuminated, the
under_range status for this
functional block is set, and
an under-range alarm is
generated.

tempSensor

(SFPTopenLoopSensor)

nvoTempValue

(SNVT_temp_p)

Output network variable
that represents the
temperature measured by
the EV-Sensor Point.

124 Exploring the Pyxos Network Example

Functional Block
Network Variables and
Configuration Properties Description

nciHighTempLimit

(SCPThighLimit1)

Configuration Property that
sets the high temperature
limit. If nvoTempValue
exceeds the value of this CP,
the high temperature LEDs
on the EV Pilot and EV-
Actuator Points are
illuminated, the over_range
status for this functional
block is set, and an over-
range alarm is generated.

openLoopAi

(SFPTopenLoopSensor)

nvoAi

(SNVT_volt_mil)

Output network variable
that represents the voltage
read by the EV-Sensor Point.

actuatorDcSw

(SFPTopenLoopSensor)

nvoActDcSw

(SNVT_switch)

Output network variable
that represents the current
state of the dry-contact
switch (SW1) on the EV-
Actuator Point.

nviActDcLed

(SNVT_switch)

Input network variable used
to control the dry-contact
LED (LED2) on the EV-
Actuator Point.

actuatorDcLed

(SFPTclosedLoopActuator)

nvoActDcLedFb

(SNVT_switch)

Output network variable
that represents the current
state of the dry-contact LED
(LED2) on the EV-Actuator
Point.

actuatorSwitch_1 through
actuatorSwitch_4

(SFPTopenLoopSensor)

nvoActuatorSw_1 through
nvoActuatorSw_4

(SNVT_switch)

Array of output network
variables that represent the
current state of switches
SW2 through SW5 on the
EV-Actuator Point.

nviActuatorLed_1 through
nviActuatorLed_2

(SNVT_switch)

Input network variables
used to control the user
LEDs (LED7 and LED8) on
the EV-Actuator Point.

actuatorLed_1 through
actuatorLed_2

(SFPTclosedLoopActuator)

nvoActuatorLedFb_1
through
nvoActuatorLedFb_2

(SNVT_switch)

Output network variables
that represent the current
state of user LEDs (LED7
and LED8) on the EV-
Actuator Point.

Pyxos FT EVK User’s Guide 125

Functional Block
Network Variables and
Configuration Properties Description

openLoopDo_1 through
openLoopDo_4

(SFPTopenLoopActuator)

nviDoValue_1 through
nviDoValue_4

(SNVT_switch)

Array of output network
variables used to control the
four digital outputs on the
EV-Actuator Point header
(DOUT1 through DOUT4).

openLoopAo

(SFPTopenLoopActuator)

nviAo

(SNVT_volt_mil)

Input network variable used
to set the analog output on
the EV-Actuator Point.

PilotDcSw

(SFPTopenLoopSensor)

nvoPilotDcSw

(SNVT_switch)

Output network variable
that represents the current
state of the dry-contact
switch (SW1) on the EV
Pilot.

nviPilotDcLed

(SNVT_switch)

Input network variable used
to control the dry-contact
LED (LED2) on the EV Pilot.

pilotDcLed

(SFPTclosedLoopActuator)

nvoPilotDcLedFb

(SNVT_switch)

Output network variable
that represents the current
state of the dry-contact LED
(LED2) on the EV Pilot.

pilotSwitch

(SFPTopenLoopSensor)

nvoPilotSwitch

(SNVT_switch)

Output network variable
that represents the current
state of the user switch
(SW2) on the EV Pilot.

LONWORKS Interface
The Pyxos-LONWORKS Gateway is implemented in the PilotLonWorksApp.c file
in the [Pyxos FT EVK]\Pyxos Network Example\Pilot\LonWorks directory. The
Gateway maps Pyxos network variables (PNVs) to LONWORKS functional blocks,
and defines LONWORKS network variable self-documentation data. It also
includes several utility functions for handling the LONWORKS network data and
alarm conditions.

When the EV Pilot sends updated PNVs to the network, the main EV Pilot
application program (PilotApp.c) calls the SendExternalEvent() function, which
calls the SendToPc() function to send data to the Windows computer. This
function also calls the lonProcessPyxosEvent() function (in the Gateway,
PilotLonWorksApp.c) if a LONWORKS network is defined.

When the computer or the LONWORKS network sends data to the EV Pilot, the
main EV Pilot application program (PilotApp.c) receives the data from the
ProcessExternalPilotEvent() function.

The Neuron C model file for the Pyxos interface was generated with the
NodeBuilder Code Wizard. The generated files for the Pyxos FT EVK Examples

126 Exploring the Pyxos Network Example

firmware application are in the [Pyxos FT EVK]\Pyxos Network
Example\Pilot\LonWorks\Neuron Model directory.

Because a Pyxos FT network can often send small amounts of data more quickly
than a LONWORKS network can, the Gateway must ensure that data is sent to the
LONWORKS network at an appropriate rate, so the Gateway imposes a throttle on
the propagation of network variables. As updates come in from the Pyxos FT
network, the EV Pilot ensures that the network variables are updated, but it does
not propagate them. Instead, the EV Pilot updates a data structure
(pendingNvPropagationTable) to record the fact that the network variable needs
to be propagated. The LonPilotEventHandler() function of the Gateway
(PilotLonWorksApp.c) is responsible for propagating these updates onto the
network in a round-robin fashion and to ensure that only one update at a time is
sent to the ShortStack Micro Server.

ShortStack Interface and Serial Driver
The general architecture for communicating with a LONWORKS network includes:

• A host application (in this case, the EV Pilot example firmware)

• The ShortStack API

• A serial driver

• The ShortStack Micro Server firmware

• A transceiver that connects to the LONWORKS network

For the EV Pilot firmware, the serial driver uses the Serial Communication
Interface (SCI) and is implemented for the ARM7 processor in the ldvsci.c file,
which is in the [Pyxos FT EVK]\Pyxos Network
Example\AT91SAM7S64\ShortStack SCI directory. This file defines the
interface with the ShortStack Micro Server firmware in the FT 3150 Smart
Transceiver.

To generate LONWORKS network-variable data for Pyxos FT data, use the
ShortStack Developer's Kit. To modify the ShortStack interfaces for the Pyxos
FT EVK examples, you must manually edit a few of the generated files. Table 14
lists some of the changes that you need to make. The generated files for the
Pyxos FT EVK Examples firmware application are in the [Pyxos FT EVK]\Pyxos
Network Example\Pilot\LonWorks\ShortStack directory.

Table 14. Changes to Files Generated by the ShortStack Wizard

File Changes Needed

LonDev.c In the nvtable[] network variable table, change the data type for
the sizeof() function for the following variables:

• For &nciLowLightLimit, change the type from
sizeof(SCPTlowLimit1) to sizeof(SNVT_lux).

• For &nciHighTempLimit, change the type from
sizeof(SCPThighLimit1) to sizeof(SNVT_temp_p).

Pyxos FT EVK User’s Guide 127

File Changes Needed

LonDev.h In the NVIndex enumeration, the NV array names contain a
tilde (~), which does not compile. Change the tilde to another
character, such as an underscore (_).

NvTypes.h Enforce a packing of 1 and a padding of 0 when compiling the
type definitions:

• Add #pragma pack(push, 1) to the top of the file, after
the #include statements.

• Add #pragma pack(pop) to the end of the file, before the
final #endif statement.

Important: The Pyxos FT EVK has been developed and tested with the
ShortStack 2 Micro Server; changes might be required for different releases of
the ShortStack firmware.

If you need to reload the ShortStack Micro Server, you can use the NodeLoad
utility (available from the Echelon Web site, www.echelon.com) to load the
system images from the [Pyxos FT EVK]\Pyxos FT EVK\Pyxos Network
Example\ImagesArchive\Pilot ShortStack MicroServer directory.

Source Files and Project Files
In addition to the files in the [Pyxos FT EVK]\Pyxos Network Example directory
that are listed in Table 9 on page 107, the Pilot Example uses the files in the
[Pyxos FT EVK]\Pyxos Network Example\Pilot directory that are listed in Table
15.

Table 15. File Contents for EV Pilot Example

File Contents

EvkPilot.ewd

EvkPilot.ewp

EvkPilot.eww

Project files for the IAR Embedded
Workbench development environment.

MyPyxosApplication.h C header file for the EV Pilot example
firmware, generated by the Pyxos FT
Interface Developer utility. This file also
includes information about the EV Point
interfaces that the EV Pilot supports.

MyPyxosApplication.PxOpts Application options file for the EV Pilot
example firmware, generated by the Pyxos
FT Interface Developer utility.

PcPilotEvkComm.h C header file used by the EV Pilot example
application and the Pyxos Network Example
HMI application program to define the
interfaces to communicate with each other.

128 Exploring the Pyxos Network Example

File Contents

PilotActuatorPoint.c

PilotActuatorPoint.h

C source and header files used by the EV
Pilot to monitor and control the EV-Actuator
Point.

PilotApp.c

PilotApp.h

C source and header files for the main
application for the EV Pilot example
firmware, including main control loop, I/O
processing, PNV handling, and networking.

PilotFlash.c

PilotFlash.h

C source file used by the EV Pilot to manage
non-volatile flash memory on the ARM7 host
microprocessor, where the EV Pilot stores
data pertaining to the Pyxos FT network.

PilotIo.c

PilotIo.h

C source and header files used by the EV
Pilot to access the LEDs and push buttons on
the EV Pilot evaluation board.

PilotManagePoints.c

PilotManagePoints.h

C source and header files used by the EV
Pilot to install, replace, delete, and
reconfigure the EV Points, including
verifying communication between the EV
Pilot and each of the EV Points.

PilotNanoPoint.c

PilotNanoPoint.h

C source and header files used by the EV
Pilot to monitor and control the EV-Nano
Point.

PilotSensorPoint.c

PilotSensorPoint.h

C source and header files used by the EV
Pilot to monitor and control the EV-Sensor
Point.

PilotUsb.c

PilotUsb.h

C source and header files used by the EV
Pilot to communicate with a PC using the
USB interface.

Resources.h C header file for the LONWORKS definitions
that are used by the EV Pilot example
firmware; generated by the Pyxos FT
Interface Developer utility.

In addition to the files listed in Table 15, the Pilot requires the device-driver code
that is contained in the following files:

• uart.c and uart.h in the [Pyxos FT EVK]\Pyxos Network
Example\AT91SAM7S64\USB UART SCI directory. These files provide
the USB drivers for the Pilot to communicate with a computer using the
USB interface.

• Flash.c and Flash.h in the [Pyxos FT EVK]\Pyxos Network
Example\AT91SAM7S64\SrcIAR directory. These files provide the flash

Pyxos FT EVK User’s Guide 129

drivers for the EV Pilot to manage non-volatile flash memory on the
ARM7 host microprocessor.

Both the EV Pilot and EV-Actuator Point use the ARM7 host processor, and
share the following files for ARM7 driver support:

• init.c and init.h in the [Pyxos FT EVK]\Pyxos Network
Example\AT91SAM7S64\Initialization directory. These files initialize
low-level I/O with the ARM7 microprocessor, and call functions contained
in other files within the [Pyxos FT EVK]\Pyxos Network
Example\AT91SAM7S64 directory tree. You can customize these files by
modifying macros that are defined at the project level.

• psImpl.c in the [Pyxos FT EVK]\Pyxos Network
Example\AT91SAM7S64\Pyxos SPI directory and psUtilImpl.c in the
[Pyxos FT EVK]\Pyxos API\Serial API directory. These files contain the
ARM7 implementation of the Pyxos FT Serial API.

• Cstartup.s79 and Cstartup_SAM7.c in the [Pyxos FT EVK]\Pyxos
Network Example\AT91SAM7S64\SrcIAR directory. These files are the
low-level initialization files that allow the ARM7 processor to run the C
code for the EV-Pilot and EV-Actuator Point; they are adapted from
samples provided with the IAR Embedded Workbench.

To provide the networking support for the Pyxos-LONWORKS Gateway, the EV
Pilot uses many of the files contained in the [Pyxos FT EVK]\Pyxos Network
Example\Pilot\LonWorks directory. The following files represent the more
important files used by the EV Pilot:

• PilotLonWorksApp.c and PilotLonWorksApp.h. These files define the
Pyxos-LONWORKS Gateway, and communicate with the other EV Pilot
functions to send and receive PNVs from the EV Points and receive EV
Pilot events. The Pyxos-LONWORKS Gateway uses the ShortStack API.

• ldvsci.c and ldvsci.h in the [Pyxos FT EVK]\Pyxos Network
Example\AT91SAM7S64\ShortStack SCI directory. These files contain
the ShortStack driver for the ARM7 microprocessor.

• LonDev.c, LonDev.h, and NvTypes.h. These files are generated by the
ShortStack wizard.

• lonapi.c and lonapi.h. These files contain the LONWORKS API that is
used to communicate with other LONWORKS devices.

The ShortStack interfaces use the PilotShortStack.swprj ShortStack Wizard
project file in the [Pyxos FT EVK]\Pyxos Network
Example\Pilot\LonWorks\ShortStack directory, and this file uses the Neuron C
model files contained in the [Pyxos FT EVK]\Pyxos Network
Example\Pilot\LonWorks\Neuron Model directory.

The [Pyxos FT EVK]\Pyxos Network Example\Pilot\LonWorks\ShortStack
directory also contains the device interface file (.XIF file) that was used for
developing the Pyxos Network Example firmware application.

The project files for the IAR Embedded Workbench development environment for
the EV Pilot include two configurations to control conditional compilation for
different environments: Flash Debug and Flash Release. These configurations
allow you to control whether to include debug control code.

130 Exploring the Pyxos Network Example

Data Flow Scenario for the Network Example
This section describes a scenario that shows the flow of program control and of
data through the Pyxos Network Example firmware applications, including parts
of the Pyxos FT API and some of the hardware interactions. The scenario follows
a below-light-level event from the EV-Sensor Point to the EV Pilot and then to
the EV-Actuator Point. The scenario begins with the light sensor on the EV-
Sensor Point evaluation board:

1. The light sensor hardware processes incoming light levels and converts
them to analog DC voltage levels, and passes them to pin 2 of the
ATtiny13 chip.

2. To process the input data from the light sensor hardware, the EV-Sensor
Point example firmware (SensorPoint.c) reads data from the analog-to-
digital converter (ADC) on the ATtiny13 processor by calling the
readA2D() function.

This function enables the specified port B pin on the ATtiny13 chip for
analog-to-digital conversion, reads the two ADC input registers from the
port B pin, and performs the conversion. Four of the port B pins can be
defined as ADC input channels.

3. The EV-Sensor Point example firmware passes the ADMUX_LUX
constant to the readA2D() function to specify that it should read data
from port B pin 2 (PB3).

4. The EV-Sensor Point example firmware then converts the value from the
readA2D(ADMUX_LUX) function to a PNV named lux, and converts the
byte order of the lux PNV to big-endian form, the form that is used by
PNVs.

In a big-endian byte order, the high-byte value is located in a lower-
memory address, and the bits are numbered from left to right. Big-
endian order contrasts with little-endian byte order, for which the high-
byte value is located in a higher-memory address, and the bits are
numbered from right to left.

5. The EV-Sensor Point example firmware checks the POINT_SEND_BITS
register to determine if there are updates pending. If not, the EV-Sensor
Point example firmware publishes the updated lux PNV.

6. The EV-Sensor Point example firmware writes the updated lux PNV to
the Pyxos FT Chip. It writes the PNV value to its assigned Pyxos Chip
Index (PCI), 0x0 in this case.

7. The Pyxos FT Chip on the EV-Sensor Point writes the PNV data to the
Pyxos FT network during its assigned timeslot, so that the data is made
available for the EV Pilot to read and process.

8. During its main() loop processing, the EV Pilot example firmware
program (PilotApp.c) calls the PyxosPilotEventHandler() function of the
Pyxos FT API (PyxosPilot.c) to ensure that network events are processed.

9. The Pyxos FT API (PyxosPilotProcessInputs.c) calls the
PyxosPilotPnvUpdateOccurred() function of the EV Pilot example
firmware program (PilotApp.c) to notify it that there is an updated PNV
on the network for it to process.

Pyxos FT EVK User’s Guide 131

10. The EV Pilot example firmware (PilotApp.c) calls the
SensorPnvUpdateOccurred() function in PilotSensorPoint.c to process the
updated PNV. This function in turn calls the CheckLowLightLevel()
function.

11. The CheckLowLightLevel() function of the EV Pilot firmware program
(PilotSensorPoint.c) checks whether the lux value that it received from
the EV-Sensor Point is below the low-light threshold. If the lux value is
below the low-light threshold, the firmware calls the
UpdateActuatorSnvtSwitch() function to activate LED4 on the EV-
Actuator Point. It also calls the PilotUpdateDigitalOutput() function to
activate LED4 on the EV Pilot.

12. The UpdateActuatorSnvtSwitch() function of the EV Pilot example
firmware (PilotActuatorPoint.c) converts the Boolean value of the
luxUnderLimit variable to a PNV and passes it to the UpdatePnv()
function in PilotApp.c to update the PNV and write it to the Pyxos FT
Chip.

13. The UpdatePnv() function of the EV Pilot example firmware (PilotApp.c)
calls the PyxosPilotUpdatePnv() function of the Pyxos FT API
(PyxosPilot.c) to have the Pyxos FT Chip write the PNV value to the
Pyxos FT network so that it gets to the EV-Actuator Point.

The UpdatePnv() function also calls the SendExternalEvent() function to
send the updated PNV to the computer (if the computer is connected),
and to the Pyxos LONWORKS Gateway (if it is active).

14. During its main() loop processing, the EV-Actuator Point example
firmware (ActuatorPointApp.c) calls the PyxosPointEventHandler()
function of the Pyxos FT API (PyxosPoint.c) to ensure that network
events are processed.

15. The Pyxos FT API (PyxosPoint.c) calls the
PyxosPointPnvUpdateOccurred() function of the EV-Actuator Point
example firmware (ActuatorPointApp.c) to notify it that there is an
updated PNV on the network for it to process.

16. The EV-Actuator Point example firmware (ActuatorPointApp.c) calls the
ActuatorPointSetDigitalOutput() function of ActuatorPointIo.c to activate
LED4 on the EV-Actuator Point.

17. The ActuatorPointSetDigitalOutput() function of the EV-Actuator Point
example firmware (ActuatorPointIo.c) calls the AT91F_PIO_SetOutput()
function of the ARM7 microprocessor library (lib_AT91SAM7S64.h) to set
the output data register for line 27 of the Parallel Input/Output
Controller A (PA27) in the ARM7 microprocessor. Setting this register to
high (1) has the effect of activating LED4 on the EV-Actuator Point.

Figure 35 shows the basic program and data flow for this scenario.

132 Exploring the Pyxos Network Example

EV-Sensor Point EV Pilot EV-Actuator Point

SensorPoint.c Pyxos FT API

PilotApp.c

ARM7 Library

ActuatorPointIo.c

ActuatorPointApp.c

Pyxos FT API

Pyxos FT
Network

Pyxos FT
Network

LED4

Pyxos
FT ChipATtiny13 Pyxos

FT Chip
Pyxos

FT ChipARM7 ARM7

Figure 35. Program Flow Scenario for the Pyxos Network Example

Pyxos FT EVK User’s Guide 133

9

The ARM7 PS API for the EV-
Actuator Point and EV Pilot

Examples

This chapter describes the Pyxos FT Serial API that is used
by the example firmware applications in the EV-Actuator
Point and the EV Pilot.

134 The ARM7 PS API for the EV-Actuator Point and EV Pilot Examples

Overview of the API
The Pyxos FT Serial API (PS API) provides functions to read from and write to
the Pyxos FT Chip synchronously, to detect interrupts, and to initialize the Pyxos
FT Chip. The implementation of these functions is entirely dependent on the
host microprocessor used.

The basic PS API is defined in the psApi.h file in the [Pyxos FT EVK]\Pyxos
API\Include\Internal directory, where [Pyxos FT EVK] is the directory in which
you installed the Pyxos FT EVK software (usually C:\Program
Files\Echelon\Pyxos FT EVK). The PS API defines the following functions for
interacting with the Pyxos FT Chip:

• psInit() – This function initializes the PS API driver.

• psRead() – This function reads data from the Pyxos FT Chip and stores it
at a predefined memory location (indicated by the PS_PBUFFER pointer)
in the ARM7 memory.

• psWrite() – This function writes data from a predefined memory location
(indicated by the PS_PBUFFER pointer) in the ARM7 memory to the
Pyxos FT Chip.

• psIsInterruptSet() – This function checks whether the interrupt line of
the Pyxos FT Chip is currently set.

The implementation of the PS API for the ARM7 microprocessor that is used for
both the EV Pilot and the EV-Actuator Point is contained in the psImpl.c file in
the [Pyxos FT EVK]\Pyxos Network Example\AT91SAM7S64\Pyxos SPI
directory.

The ARM7 implementation of the PS API uses the ARM7 Serial Peripheral
Interface (SPI) functions. To enable the ARM7 microprocessor to interact with
the Pyxos FT Chip, the ARM7 implementation of the PS API functions passes the
address of the Pyxos FT protocol operation codes to the ARM7 SPI Receive
Pointer Register (RPR) and Transmit Pointer Register (TPR). These registers are
part of the Peripheral Direct Memory Access (DMA) Controller (PDC) of the
ARM7 microprocessor. The PDC transfers data between on-chip serial
peripherals and the on- and off-chip memories, in this case, the Pyxos FT Chip.

In addition to the implementation of the PS API functions, the example firmware
also includes implementations of ARM7 low-level I/O functions to enable control
and management of the ARM7 microprocessor. The firmware also includes an
implementation of bootstrap code to load the C-based firmware into the ARM7
microprocessor to run.

For more information about the PS API, see chapter 6 of the Pyxos FT
Programmer’s Guide.

Files Used for the Examples
The Pyxos Network Example firmware uses the files listed in Table 16 on page
135 to define the ARM7 implementation of the PS API.

Pyxos FT EVK User’s Guide 135

Table 16. Files for PS API Implementation

File Contents

\Pyxos Network
Example\AT91SAM7S64\Initialization

init.c

init.h

C source and header files that initialize low-
level I/O for the ARM7 microprocessor.

\Pyxos Network
Example\AT91SAM7S64\Pyxos SPI

psImpl.c

C source file for implementation of the ARM7
PS API to interface with a Pyxos FT Chip.

\Pyxos Network
Example\AT91SAM7S64\SrcIAR

Cstartup.s79

Cstartup_SAM7.c

Assembler and C source files for starting the
example firmware on the ARM7
microprocessor. These files are adapted from
those provided by the IAR Embedded
Workbench.

Pyxos FT EVK User’s Guide 137

Index

.
.Net Framework, 15

3
3150 Smart Transceiver, 18

A
Actuator Point

buttons, 35
connectors, 43
evaluation board, 34
example firmware, 108
host microprocessor, 34
jumpers, 38
key features, 34
LEDs, 35
output, 77

alarm
light level, 77
temperature, 76

analog output, 77
ARM7

debugging, 100
loading, 95
tools, 90

ATtiny13. See AVR
AVR

debugging, 100
loading, 96
tools, 91

AVR STK500
configuring, 97
description, 92

AVR Studio, 91

B
buttons

Actuator Point, 35
Nano Point, 56
Pilot, 18
Sensor Point, 47

C
clearing timeslot information, 79
compatibility

electromagnetic, 62
Pyxos EVK, 15

configuration properties, 122

connecting
to a LonWorks network, 7
to a PC, 7

connectors
Actuator Point, 43
Nano Point, 60
Pilot, 30
Sensor Point, 52

D
debugging your application, 99
debugWIRE interface

debugging with, 101
loading programs, 97
RESET pin, 101

development
environment, 90
tools, 90

Development Support Kit, 9
digital output, 78
DSK. See Development Support Kit

E
electromagnetic compatibility, 62
EV Pilot. See Pilot
EV-Actuator Point. See Actuator Point
evaluation board

Actuator Point, 34
assembling, 12
connecting hardware emulator, 102
Nano Point, 55
Pilot, 18
Sensor Point, 46

EVK. See Pyxos EVK
EV-Nano Point. See Nano Point
EV-Sensor Point. See Sensor Point
example data flow for Sensor, 130
examples firmware

Actuator Point
design, 108
files, 110
interface, 109

directories, 106
files, 106
Nano Point, 114
overview, 106
Pilot

Actuator Point, 119
ARM7 driver, 126
design, 115
files, 127

138 Index

LonWorks Gateway, 121
LonWorks interface, 125
Nano Point, 120
Point data, 116
Point registration, 117
Sensor Point, 120
ShortStack interface, 126
USB connection, 121

Sensor Point
design, 111
files, 113
interface, 112

F
features

Actuator Point, 34
Nano Point, 55
Pilot, 18
Sensor Point, 46

flash programming board, 96
frequency for performance demo, 83
functional blocks, 122

H
header. See connectors
host microprocessor

Actuator Point, 34
Pilot, 18
Sensor Point, 46

I
I/O, monitoring, 71
IAR Embedded Workbench, 90
IEEE 1149.1. See connectors
installing Pyxos software, 15
Interface Developer utility, 93

J
JTAG header. See connectors
JTAGICE mk II, connecting to Sensor Point,

102
jumpers

Actuator Point, 38
Nano Point, 58
Pilot, 22
Sensor Point, 49

L
LEDs

Actuator Point, 35
Nano Point, 56
Pilot, 18
Sensor Point, 47

light level alarm, setting, 77

light sensor, 48
loading your application, 95
logging, for Network Example HMI, 80
LonMark object, 122
LonMark Resource Editor, 15
LonWorks Gateway, 121
LonWorks network

connecting to, 7
EV Pilot LonWorks Gateway, 121
functional blocks, 122
Network Example HMI functionality, 75
support, 94

M
Microsoft .Net, 15
monitoring

dry-contact input, 69
I/O, 71
network, 71
sensor data, 69

monitoring Points, 79

N
Nano Point

buttons, 56
connectors, 60
evaluation board, 55
jumpers, 58
key features, 55
LEDs, 56
power considerations, 55

network
activity, monitoring, 69
connecting to Network Example HMI, 74
connector. See connectors
example, 64
failure, simulating, 72
integrity, 71

Network Example HMI
Actuator Point output, 77
alarm temperature, 76
clearing timeslot information, 79
connecting to, 74
controlling Pilot and Points, 76
frequency for performance demo, 83
light level threshold, 77
log file, 80
logging, 80
LonWorks functionality, 75
monitoring status, 79
performance demo, 81
refreshing display, 84
resetting Point information, 78
shutting down, 84
starting, 74

NodeLoad utility, 95, 127

Pyxos FT EVK User’s Guide 139

O
OpenLDV driver, 15

P
PC, connecting to, 7
performance demo

running, 81
setting frequency, 83
starting and stopping, 83

Pilot
buttons, 18
connectors, 30
evaluation board, 18
example firmware, 114
host microprocessor, 18
jumpers, 22
key features, 18
LEDs, 18
maintaining Point data, 116

PIO line header. See connectors
Point information, resetting, 78
Point registration, 117
power considerations

Nano Point, 55
Pyxos EVK, 6

PS API. See Pyxos FT Serial API
Pyxos EVK

compatibility, 15
firmware. See examples firmware
hardware contents, 4
hardware features, 3
introduction, 2
power considerations, 6
requirements, 13

Pyxos FT API, 92
Pyxos FT Interface Developer utility, 93
Pyxos FT Serial API

files, 134
overview, 134

Pyxos Network Example
monitoring activity, 69
overview, 64
Pilot, 65
Points, 66
registering Points, 67
replacing Points, 71
running, 66
stopping, 72

Pyxos Network Variable, 69
Pyxos software, installing, 15

R
refreshing display for Network Example HMI,

84
registering Points

automatically, 67
manually, 68

registration, Point, 117
replacing Points, 71
requirements

hardware, 14
software, 14

resolution, screen, 14
Room Controller Network. See Pyxos Network

Example

S
SAM-PROG, 91
screen resolution, 14
Sensor Point

button, 47
connectors, 52
data flow scenario, 130
evaluation board, 46
example firmware, 111
host microprocessor, 46
jumpers, 49
key features, 46
LED, 47
sensors, 48

Serial API. See Pyxos FT Serial API
ShortStack Developer's Kit, 95
ShortStack interface, 126
shutting down Network Example HMI, 84
Smart Transceiver, 18
SNVTs, 122
SPI header. See connectors
standard network variable types, 122
STK500, configuring, 97

T
temperature alarm, setting, 76
temperature sensor, 48
timeslot information, clearing, 79
tiny13. See AVR
tools

ARM7 development, 90
AVR development, 91

troubleshooting, 86

www.echelon.com

@ECHELON
®

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Adesto Technologies:

 11000R-10-11 11000R-10-14 11000R-10-13 11000R-10-12

https://www.mouser.com/echelon
https://www.mouser.com/access/?pn=11000R-10-11
https://www.mouser.com/access/?pn=11000R-10-14
https://www.mouser.com/access/?pn=11000R-10-13
https://www.mouser.com/access/?pn=11000R-10-12

	Welcome
	Audience
	Related Documentation
	FCC Compliance Statement – Class A
	IC Compliance Statement – Class A
	Introduction to the Pyxos FT EVK
	Introduction to the Pyxos FT EVK
	Pyxos FT EVK Hardware Features
	Pyxos FT EVK Hardware Contents
	Power Considerations for the Pyxos FT EVK
	Network Termination
	Connecting the EV Pilot to a Computer Using USB
	Connecting to a LonWorks Network
	Developing a Pyxos FT Application

	Getting Started with the Pyxos FT EVK
	Assembling the Evaluation Boards
	Pyxos FT EVK Software System Requirements
	Hardware Requirements
	Software Requirements

	Installing the Pyxos FT EVK Software
	Compatibility

	Pyxos FT EVK Hardware Details
	Pyxos FT EV Pilot Evaluation Board
	Key Features
	Push Buttons and LEDs
	Join and Reset Buttons and LEDs
	Smart Transceiver Reset and Service Buttons
	Application Buttons and LEDs

	Jumper Settings for Controlling Onboard I/O
	Connectors
	Header Connector for Accessing Host Power and I/O
	Header Connector for Accessing Host SPI
	Header Connector for Remote Programming and Debugging
	Pyxos FT Network Connector
	LonWorks Network Connector
	USB Connector
	DC Power Connector
	AC Power Connector

	Pyxos FT EV-Actuator Point Evaluation Board
	Key Features
	Push Buttons and LEDs
	Join and Reset Buttons and LEDs
	Application Buttons and LEDs

	Jumper Settings for Controlling Onboard I/O
	Connectors
	Header Connector for Accessing Host Power and I/O
	Header Connector for Accessing Host SPI
	Header Connector for Analog Output
	Header Connectors for Accessing Digital I/O
	Header Connector for Remote Programming and Debugging
	Pyxos FT Network Connector
	Power Connector

	Pyxos FT EV-Sensor Point Evaluation Board
	Key Features
	Join and Reset Buttons and LEDs
	Sensors
	Jumper Settings for Controlling Onboard I/O
	Connectors
	Header Connector for Accessing Host Power and I/O and for Remote Programming and Debugging
	Header Connector for Accessing Host SPI
	Header Connector for Accessing Sensor I/O
	Header Connector for Analog Input
	Pyxos FT Network Connector
	Power Connector

	Pyxos FT EV-Nano Point Evaluation Board
	Key Features
	Power Considerations
	Push Buttons and LEDs
	Join and Reset Buttons and LEDs
	 Application Buttons and LEDs

	Jumper Settings for Controlling Onboard I/O
	Connectors
	Header Connector for Accessing Power and I/O
	Pyxos FT Network Connector
	Power Connector

	Electromagnetic Compatibility Considerations

	Using the Pyxos Network Example
	 Overview of the Pyxos Network Example
	The Pyxos FT EV Pilot
	The Pyxos FT EV Points

	Starting and Running the Pyxos Network Example
	Registering Points Automatically
	Registering Points Manually
	Monitoring Activity within the Pyxos FT Network
	Monitoring Sensor Data and Dry-Contact Input
	Monitoring Sensor Data
	Monitoring Dry-Contact Input

	Monitoring Network Integrity and Security
	Monitoring and Controlling Analog I/O
	Monitoring and Controlling Digital I/O

	Replacing Points and Simulating Network Failure
	Stopping the Pyxos Network Example

	Running the Pyxos Network Example HMI Application Program
	 Starting the Pyxos Network Example HMI Application Program
	Connecting to the Pyxos FT Network
	LonWorks Functionality

	Controlling the Pilot and Points in the Network
	Setting the Alarm Temperature
	Setting the Light-Level Threshold
	Setting the Outputs for the EV-Actuator Point
	Setting the Analog Output
	Setting a Digital Output

	Resetting Points
	Monitoring Pilot and Point Status
	Clearing Timeslot Information
	Logging Pyxos FT Network Events
	Displaying the Log Window Area
	Copying Log Information
	Controlling Logging

	Running the Performance Demo
	Setting the Frequency for the Performance Demo
	Starting and Stopping the Performance Demo

	Refreshing the Display
	Shutting Down the Pyxos Network Example HMI Application Program

	Troubleshooting the Pyxos FT Network Example
	Troubleshooting

	Developing Pyxos FT Applications Using the Pyxos FT EVK
	 Setting Up Your Development Environment
	Working with Development Tools for Host Processors
	Tools for the ARM7 Processor
	Tools for the AVR Processor

	Working with the Pyxos FT API
	Using the Pyxos FT Interface Developer Utility

	Including LonWorks Support in Your Pyxos FT Applications
	Loading Your Application into a Host Processor
	Loading the ARM AT91SAM7S64 Microprocessor
	Loading the AVR ATtiny13 Microprocessor
	Using a Flash Programming Board
	Using the debugWIRE Interface
	Configuring the AVR STK500

	Debugging Your Application
	 Debugging for the ARM AT91SAM7S64 Microprocessor
	Debugging for the AVR ATtiny13 Microprocessor
	Enabling the debugWIRE Interface
	Connecting a Hardware Emulator and Debugger to the EV-Sensor Point Evaluation Board

	Exploring the Pyxos Network Example
	 Design Overview for the Pyxos Network Example
	The Pyxos FT EV-Actuator Point Example
	Design
	Interface
	Source Files and Project Files

	The Pyxos FT EV-Sensor Point Example
	Design
	Interface
	Source Files and Project Files

	The Pyxos FT EV-Nano Point Example
	The Pyxos FT EV Pilot Example
	Design
	Maintaining EV Point Data
	EV Point Registration
	Initial Registration
	Installation after EV Pilot Reset
	Resetting a Point
	Reconfiguration
	Replacement
	Detection and Recovery of Non-Responsive Points

	Processing for the EV-Actuator Point
	Processing for the EV-Sensor Point
	Processing for the EV-Nano Point
	Connecting to a Computer Using a USB Connection
	Using the Pyxos-LonWorks Gateway
	LonWorks Interface
	ShortStack Interface and Serial Driver

	Source Files and Project Files

	Data Flow Scenario for the Network Example

	The ARM7 PS API for the EV-Actuator Point and EV Pilot Examples
	Overview of the API
	Files Used for the Examples

	Index

