

SCD4x

Breaking the size barrier in CO₂ sensing

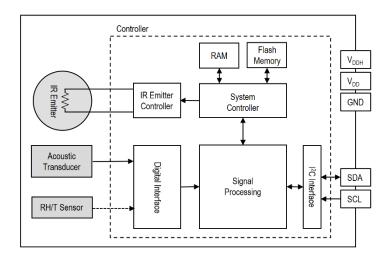
Features

- Photoacoustic NDIR sensor technology PASens®
- Smallest form factor: 10.1 x 10.1 x 6.5 mm³
- Reflow solderable for cost-effective assembly
- Digital I²C interface
- Integrated temperature and humidity sensor

Product Variants

- SCD40: Base accuracy, specified measurement range 400 –2'000 ppm
- SCD41: High accuracy, specified measurement range 400 – 5'000 ppm, compatible with relevant IAQ standards, several power modes

Product Summary


The SCD4x is Sensirion's next generation miniature CO_2 sensor. This sensor builds on the photoacoustic NDIR sensing principle and Sensirion's patented PASens® and CMOSens® technology to offer high accuracy at an unmatched price and smallest form factor. SMD assembly allows cost- and space-effective integration of the sensor combined with maximal freedom of design. On-chip signal compensation is realized with the built-in SHT4x humidity and temperature sensor.

CO₂ is a key indicator for indoor air quality (IAQ) as high levels compromise humans' cognitive performance and well-being. The SCD4x enables smart ventilation systems to regulate ventilation in the most energy-efficient and human-friendly way. Moreover, indoor air quality monitors and other connected devices based on the SCD4x can help maintain low CO₂ concentration for a healthy, productive environment.

Product Overview

Products	Details
SCD40-D-R2	Base accuracy, specified range 400 – 2'000 ppm
SCD41-D-R2	High accuracy, specified range 400 – 5'000 ppm, low power modes supported

Functional Block Diagram

Table of Contents

1	Ser	nsor Performance	3
	1.1	CO ₂ Sensing Performance	3
	1.2	Humidity Sensing Performance	3
	1.3	Temperature Sensing Performance	3
2	Spe	ecifications	4
	2.1	Electrical Specifications	4
	2.2	Absolute Maximum Ratings	4
	2.3	Interface Specifications	5
	2.4	Timing Specifications	6
	2.5	Material Contents	6
3	Dig	ital Interface Description	
	3.1	Power-Up and Communication Start	
	3.2	Data Type & Length	
	3.3	Command Sequence Types	
	3.4	SCD4x Command Overview	8
	3.5	Basic Commands	
	3.6	On-Chip Output Signal Compensation	
	3.7	Field Calibration	_
	3.8	Low Power Periodic Measurement Mode	
	3.9	Advanced Features	
	3.10	Single Shot Measurement Mode (SCD41 Only)	
	3.11	Checksum Calculation	
4		chanical specifications	
	4.1	Package Outline	
	4.2	Land Pattern	
	4.3	Tape & Reel Package	
	4.4	Moisture Sensitivity Level	
	4.5	Soldering Instructions	
	4.6	Traceability and Identification	
5		dering Information	
6	Rev	vision History	26

1 Sensor Performance

1.1 CO₂ Sensing Performance

Default conditions of 25 °C, 50 %RH, ambient pressure 1013 mbar, periodic measurement and 3.3 V supply voltage apply to values in the table below, unless otherwise stated.

Parameter	Conditions	Value
CO ₂ output range ¹	-	0 – 40'000 ppm
SCD40 CO ₂ measurement accuracy ²	400 ppm – 2'000 ppm	±(50 ppm + 5% of reading)
	400 ppm – 1'000 ppm	±(50 ppm + 2.5% of reading)
SCD41 CO ₂ measurement accuracy ²	1'001 ppm – 2'000 ppm	±(50 ppm + 3% of reading)
	2'001 ppm – 5'000 ppm	±(40 ppm + 5% of reading)
Repeatability	Typical	±10 ppm
Response time ³	т _{63%} , typical	60 s
Additional accuracy drift after five years with automatic self-calibration (ASC) algorithm enabled ⁴	Typical, 400 – 2000 ppm	±(5 ppm + 0.5 % of reading)

Table 1: SCD40 and SCD41 CO2 sensor specifications

1.2 Humidity Sensing Performance

Parameter	Conditions	Value	
Humidity measurement range	-	0 %RH – 100 %RH	
Acquirect (frum)	15 °C – 35 °C, 20 %RH – 65 %RH	±6 %RH	
Accuracy (typ.)	-10 °C – 60 °C, 0 %RH – 100 %RH	±9 %RH	
Repeatability	Typical	±0.4 %RH	
Response time ³	τ _{63%} , typical	90 s	
Accuracy drift	-	<0.25 %RH / year	

Table 2: SCD4x humidity sensor specifications⁵

1.3 Temperature Sensing Performance

Parameter	Conditions	Value
Temperature measurement range	-	- 10 °C – 60 °C
Accuracy (typ.)	15 °C – 35 °C	± 0.8 °C
Accuracy (typ.)	-10 °C – 60 °C	± 1.5 °C
Repeatability	-	± 0.1 °C
Response time ³	т _{63%} , typical	120 s
Accuracy drift	-	< 0.03 °C / year

Table 3: SCD4x temperature sensor specifications⁵

¹ Exposure to CO₂ concentrations smaller than 400 ppm can affect the accuracy of the sensor if the ASC is on.

² Deviation from a high-precision reference with gas mixtures having a ±2% tolerance. Rough handling, shipping and sensor assembly can temporarily impact the accuracy. Accuracy can be fully restored through the forced recalibration (FRC) or ASC algorithms at least 5 days after sensor assembly (See Section 3.7)

³ Time for achieving 63% of a respective step function when operating the SCD41 Evaluation Kit in periodic measurement mode. Response time depends on design-in, signal update rate and environment of the sensor in the final application.

⁴ For proper function of the ASC algorithm, the SCD4x must be exposed to air with CO₂ concentrations of 400 ppm on a weekly basis. Maximum accuracy drift after five years estimated from stress tests is ±(5 ppm + 2% of reading). Higher drift values may occur if the sensor is not handled according to its handling instructions.

⁵ Design-in of the SCD4x in final application, self-heating of the sensor and the environment around the sensor impacts the accuracy of the RH/T sensor. To realize indicated specifications, the temperature-offset of the SCD4x inside the customer device must be set correctly (see Section 3.6).

Specifications 2

Electrical Specifications 2.1

Parameter	Symbol	Conditions	Min.	Typical	Max.	Units
Supply voltage DC ⁶	V_{DD}		2.4	3.3 or 5.0	5.5	V
Voltage ripple peak to peak ⁷	V_{RPP}				30	mV
Peak supply current ⁸	1 .	$V_{DD} = 3.3 \text{ V}$		175	205	mA
reak supply cullent	Ipeak	$V_{DD} = 5 V$		115	137	mA
Average supply current for periodic measurement	1	V _{DD} = 3.3 V		15	18	mA
mode, 1 measurement every 5 seconds	IDD	$V_{DD} = 5 V$		11	13	mA
Average supply current for low power periodic	I _{DD}	$V_{DD} = 3.3 \text{ V}$		3.2	3.5	mA
measurement mode, 1 measurement every 30 seconds		$V_{DD} = 5 V$		2.8	3	mA
Average supply current for single shot mode, 1	1	$V_{DD} = 3.3 \text{ V}$		0.45	0.5	mA
measurement every 5 minutes (SCD41 only)9	I _{DD}	$V_{DD} = 5 V$		0.36	0.4	mA
Input high level voltage	V _{IH}		0.65 x V _{DD}		1 x V _{DD}	-
Input low level voltage	VIL				0.3 x V _{DD}	-
Output low level voltage	VoL	3 mA sink current			0.66	V

Table 4: SCD4x electrical specifications

2.2 Absolute Maximum Ratings

Stress levels beyond those listed in Table 5 may cause permanent damage to the device. Exposure to minimum/maximum rating conditions for extended periods may affect sensor performance and device reliability.

Parameter	Conditions	Value
Temperature operating conditions		-10 – 60 °C
Humidity operating conditions ¹⁰	Non-condensing	0 – 95 %RH
MSL Level		3
DC supply voltage		-0.3 V – 6.0 V
Max voltage on pins SDA, SCL, GND		-0.3 V – V _{DD} + 0.3 V
Input current on pins SDA, SCL, GND		-280 mA – 100 mA
Short term storage temperature ¹¹		-40 °C – 70 °C
Recommended storage temperature		10 °C – 50 °C
ESD HBM (pads and metal cap)		2 kV
ESD CDM		500 V
Maintenance Interval	Maintenance free when the ASC algorithm ¹² is used.	None
Sensor lifetime ¹³	Typical operating conditions	>10 years

Table 5: SCD4x operation conditions, lifetime and maximum ratings

⁶ Supply voltage must be kept constant for stable sensor operation.

⁷ Valid only for the supply voltage without the load of the sensor.

⁸ Refers to sustained current.

⁹ On-demand measurement with freely adjustable interval. See Section 3.10.

¹⁰ Accuracy can be reduced at relative humidity levels lower than 10%.

¹¹ Short term storage refers to temporary conditions during e.g., transport.
12 For proper function of the ASC field-calibration algorithm, the SCD4x must be exposed to air with CO₂ concentrations of 400 ppm on a weekly basis.

¹³ Sensor tested over simulated lifetime of >10 years for indoor environment mission profile.

2.3 Interface Specifications

The SCD4x comes in an LGA package (**Table 6**). The package outline is schematically displayed in Section 4.1. The landing pattern of the SCD4x can be found in Section 4.2.

Name	Comments	SND
VDD	Supply voltage	
VDDH	Supply voltage IR source, must be connected to VDD on customer PCB	DNC 1 15 DNC 1 14 DNC DNC
GND	Ground contact	0 DNC 3 DNC 13 DNC DNC 4 GND 12 DNC
SDA	I ² C Serial data, bidirectional	DNC 5 GND 11 DNC
SCL	I ² C Serial clock	6 7 8 9 10
DNC	Do not connect, pads must be soldered to a floating pad on the customer PCB	

Table 6: Pin assignment (top view). The notched corner of the protection membrane serves as a polarity mark to indicate pin 1 location.

VDD and VDDH are used to supply the sensor and must always be kept at the same voltage, i.e. both should be connected to the same power supply. The combined maximum current drawn on VDD and VDDH is indicated in **Table 4**. VDD and VDDH must be connected to each other close to the sensor on the customer PCB.

For the sensor operation, a low noise power supply, such as a low-dropout regulator (LDO), should be chosen which can handle the peak supply current and voltage ripple peak to peak as specified in **Table 4**. Due to the sensor's internal regulation, higher transient currents (on the order of microseconds) may be observed. These transient currents can be neglected in typical design-in scenarios due to the parasitic R/L/C of the leads as well as the load regulation characteristics of the supply. Additionally, to avoid interference with the sensor regulation, the non-loaded supply voltage while the sensor is not acquiring data must not vary by more than 30 mV (e.g. drops caused by other loads). Operating the sensor with a separate LDO is recommended. SCL is used to synchronize the I²C communication between the master (microcontroller) and the slave (sensor). The SDA pin is used to transfer data to and from the sensor. For safe communication, the timing specifications defined in the I²C manual¹⁴ must be met. Both SCL and SDA lines should be connected to external pull-up resistors (e.g. $R_p = 10 \text{ k}\Omega$, see **Figure 1**). To avoid signal contention, the microcontroller must only drive SDA and SCL low. For dimensioning resistor sizes please take bus capacity and communication frequency into account (see example in Section 7.1 of NXPs I²C Manual for more details¹⁴). It should be noted that pull-up resistors may be included in the I/O circuits of microcontrollers.

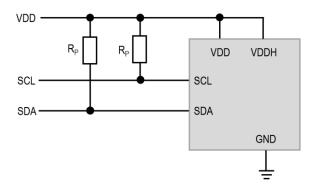


Figure 1: Typical application circuit (representative and not to scale).

¹⁴ NXP I2C-bus specification and user manual UM10204, Rev.6, 4 April 2014

2.4 Timing Specifications

Table 7 lists the timings of the ASIC¹⁵.

Parameter	Condition	Min.	Max.	Unit
Power-up time	After hard reset, $V_{DD} \ge 2.25 \text{ V}$	-	30	ms
Soft reset time	After re-initialization (i.e. reinit)	-	30	ms
SCL clock frequency	-	0	400	kHz

Table 7: System timing specifications.

2.5 Material Contents

The device is fully REACH and RoHS compliant.

 $^{^{15}}$ Timing specifications based on the NXP I2C-bus specification and user manual UM10204, Rev.6, 4 April 2014

3 Digital Interface Description

3.1 Power-Up and Communication Start

The sensor starts powering-up after reaching the power-up threshold voltage $V_{DD,min}$ and will take up to the maximum of the power-up time to enter the idle state. Once the idle state has been reached, it is ready to receive commands from the master. Each transmission sequence begins with a START condition (S) and ends with a STOP condition (P) as described in the I^2C -bus specification.

3.2 Data Type & Length

Data sent to and received from the sensor consists of a sequence of 16-bit commands and/or 16-bit words (each to be interpreted as unsigned integer with the most significant byte transmitted first). Each data word is immediately succeeded by an 8-bit CRC. In write direction it is mandatory to transmit the checksum. In read direction it is up to the master to decide if it wants to process the checksum (see Section 3.11).

3.3 Command Sequence Types

All SCD4x commands and data are mapped to a 16-bit address space.

SCD4x	Hex. Code
I ² C address	0x62

Table 8: I2C device address

The SCD4x features four different I²C command sequence types: "read I²C sequences", "write I²C sequences", "send I²C command" and "send command and fetch result" sequences. **Figure 2** illustrates how the I²C communication for the different sequence types is built-up.

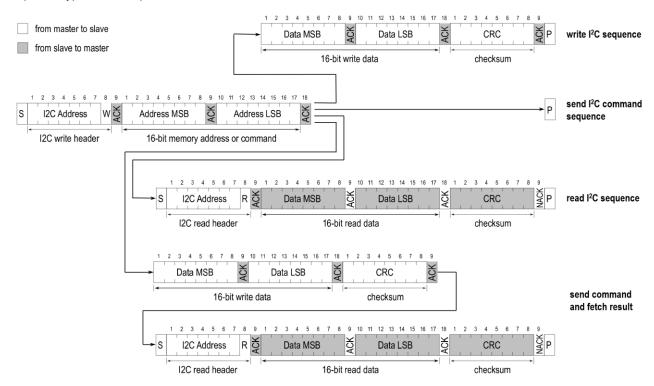


Figure 2: Command sequence types: "write", "send command", "read", and "send command and fetch result"

For the "read" or "send command and fetch results" sequences, after writing the address and/or data to the sensor and sending the ACK bit, the sensor needs the execution time (see **Table 9**) to respond to the I²C read header with an ACK bit. Hence, it is required to wait the command execution time before issuing the read header. Commands must not be sent while a preceding command is being processed.

3.4 SCD4x Command Overview

An overview of the available SCD4x commands can be found in **Table 9.** A detailed description for each command can be found in the following sections.

Domain	Command	Hex.	I ² C sequence type	Execution	
		Code	(see Section 3.3)	time [ms]	During meas.
Dania Camananda	start_periodic_measurement	0x21b1	send command	-	no
Basic Commands Section 3.5	read_measurement	0xec05	read	1	yes
00011011 0.0	stop_periodic_measurement	0x3f86	send command	500	yes
	set_temperature_offset	0x241d	write	1	no
	get_temperature_offset	0x2318	read	1	no
On-chip output signal compensation	set_sensor_altitude	0x2427	write	1	no
Section 3.6	get_sensor_altitude	0x2322	read	1	no
	set_ambient_pressure	0xe000	write	1	yes
	get_ambient_pressure	0xe000	read	1	yes
Field calibration	perform_forced_recalibration	0x362f	send command and fetch result	400	no
Section 3.7	set_automatic_self_calibration_enabled	0x2416	write	1	no
	get_automatic_self_calibration_enabled	0x2313	read	time [ms] - 1 500 1 1 1 1 1 1 400	no
Low power periodic	start_low_power_periodic_measurement	0x21ac	send command	-	no
measurement mode Section 3.8	get_data_ready_status	ensor_altitude	1	yes	
	persist_settings	0x3615	send command	800	no
	get_serial_number	0x3682	read	1	no
Advanced features	perform_self_test	0x3639	read	10000	no
Section 3.9	perform_factory_reset	0x3632	send command	1200	no
	get_data_ready_status persist_settings get_serial_number perform_self_test perform_factory_reset reinit measure_single_shot	0x3646	send command	30	no
	measure_single_shot	0x219d	send command	5000	no
	measure_single_shot_rht_only	0x2196	send command	50	no
Single shot	power_down	0x36e0	send command	1	no
measurement mode	wake_up	0x36f6	send command	30	no
(SCD41 only)	set_automatic_self_calibration_initial_period	0x2445	write	1	no
Section 3.10	get_automatic_self_calibration_initial_period	0x2340	read	1	no
	set_automatic_self_calibration_standard_period	0x244e	write	1	no
	get_automatic_self_calibration_standard_period	0x234b	read	1	no

Table 9: List of SCD4x sensor commands. The final column ('During meas.') indicates whether the command can be executed while a periodic measurement is running.

3.5 Basic Commands

This section lists the basic SCD4x commands that are necessary to start a periodic measurement and subsequently read out the sensor outputs.

The typical communication sequence between the I²C master (e.g., a microcontroller) and the SCD4x sensor is as follows:

- 1. The sensor is powered up
- 2. The I²C master sends a *start_periodic_measurement* command. The signal update interval is 5 seconds.
- 3. The I²C master periodically reads out data with the *read_measurement* command.
- 4. To put the sensor back to idle mode, the I²C master sends a *stop_periodic_measurement* command.

While a periodic measurement is running, no other commands must be issued with the exception of *read_measurement*, *get_data_ready_status*, *stop_periodic_measurement*, *set_ambient_pressure* and *get_ambient_pressure*.

3.5.1 start_periodic_measurement

Description: start periodic measurement mode. The signal update interval is 5 seconds.

Write	Input parameter: -		Response parameter	Max. command		
(hexadecimal)	length [bytes]	signal conversion length [bytes] signal conversion		signal conversion	duration [ms]	
0x21b1	-	-	-	-	not applicable	
Example: start periodic measurement						
Write 0x21b1 (hexadecimal) Command						

Table 10: start_periodic_measurement I2C sequence description

3.5.2 read measurement

Description: read sensor output. The measurement data can only be read out once per signal update interval as the buffer is emptied upon read-out. If no data is available in the buffer, the sensor returns a NACK. To avoid a NACK response, the *get_data_ready_status* can be issued to check data status (see Section 3.8.2 for further details). The I²C master can abort the read transfer with a NACK followed by a STOP condition after any data byte if the user is not interested in subsequent data.

Write	Input parameter: -			Response parameter: CO ₂ , Temperature, Relative Humidity		
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion		duration [ms]
			3	CO ₂ [ppm] = word[[0]	
0xec05	-	-	3	T = -45 + 175	$5*\frac{word[1]}{2^{16}-1}$	1
			3	RH = 100 *	$\frac{word[2]}{2^{16}-1}$	
Example: read ser	nsor output (500 ppm, 2	5 °C, 37 %RH)				
Write	0xec05					
(hexadecimal)	Command					
Wait	1 ms command execution time					
Response	0x01f4 0x	7b 0x666	67 0xa2	0x5	eb9	0x3c
(hexadecimal)	CO ₂ = 500 ppm CR	C of 0x01f4 Temp	= 25 °C CRC	of 0x6667 RH	= 37%	CRC of 0x5eb9

Table 11: read_measurement I2C sequence description

3.5.3 stop periodic measurement

Description: stop periodic measurement mode to change the sensor configuration or to save power. Note that the sensor will only respond to other commands 500 ms after the stop_periodic_measurement command has been issued.

Write	Input parameter: -		Response parameter: -	Max. command	
(hexadecimal)	length [bytes]	gth [bytes] signal conversion		length [bytes] signal conversion	
0x3f86	-			-	500
Example: stop per	riodic measurement				
Write	0x3f86				
(hexadecimal)	Command				

Table 12: stop_periodic_measurement I2C sequence description

On-Chip Output Signal Compensation

The SCD4x features on-chip signal compensation to counteract pressure and temperature effects. Feeding the SCD4x with the pressure or altitude enables highest accuracy of the CO₂ output signal across a large pressure range. Setting the temperature offset improves the accuracy of the relative humidity and temperature output signal. Note that the temperature offset does not impact the accuracy of the CO₂ output.

To change or read sensor settings, the SCD4x must be in idle mode. A typical sequence between the I²C master and the SCD4x is described as follows:

- 1. If the sensor is operated in a periodic measurement mode, the I²C master sends a stop_periodic_measurement command.
- The I²C master sends one or several commands to get or set the sensor settings.
- If settings need to be preserved after power-cycle events, the persist settings command must be sent (see Section 3.9.1)
- The I²C master sends a *start_periodic_measurement* command to set the sensor in the operating mode again.

3.6.1 set temperature offset

Description: Setting the temperature offset of the SCD4x inside the customer device allows the user to optimize the RH and T output signal. Note that the temperature offset can depend on several factors such as the SCD4x measurement mode, selfheating of close components, the ambient temperature and air flow. Thus, the SCD4x temperature offset should be determined inside the customer device under its typical operation conditions (including the operation mode to be used in the application) and in thermal equilibrium. By default, the temperature offset is set to 4 °C. To save the setting to the EEPROM, the persist_settings (see Section 3.9.1) command must be issued. Equation (1) shows how the characteristic temperature offset can be obtained. Recommended temperature offset values are between 0 °C and 20 °C.

$$T_{offset_actual} = T_{SCD4x} - T_{Reference} + T_{offset_previous}$$
 (1)

Write	Input parameter	t parameter: Offset temperature		Response parameter: -	
(hexadecimal)		signal conversion	length [bytes]	signal conversion	duration [ms]
0x241d	3 $word[0] = T_{offset}[{}^{\circ}C] * \frac{2^{16}-1}{175}$		-	-	1

Example: set temperature offset to 5.4 °C

Write 0x241d 0x07e6 0x48(hexadecimal) Command $T_{offset} = 5.4 \, ^{\circ}C$ CRC of 0x7e6

Table 13: set temperature offset I²C sequence description

3.6.2 get_temperature_offset

Write	Input parameter: -	Input parameter: -		Response parameter: Offset temperature		
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	command duration [ms]	
0x2318	-	-	3	$T_{offset}[^{\circ}C] = word[0] * \frac{175}{2^{16}-1}$	1	
Example: temper	ature offset is 6.2 °C					
Write	0x2318					
(hexadecimal)	Command					
Wait	1 ms	command execution	command execution time			
Response	0x0912	0x63				
(hexadecimal)	T_{offset} = 6.2 °C	CRC of 0x0912				

Table 14: get_temperature_offset I2C sequence description

3.6.3 set_sensor_altitude

Description: Reading and writing the sensor altitude must be done while the SCD4x is in idle mode. Typically, the sensor altitude is set once after device installation. To save the setting to the EEPROM, the *persist_settings* (see Section 3.9.1) command must be issued. The default sensor altitude value is set to 0 meters above sea level. Valid input values are between 0 - 3'000 m.

Write (hexadecimal) Input paramete length [bytes]		: Sensor altitude	Response paran	neter: -	Max. command
		signal conversion	length [bytes]	signal conversion	duration [ms]
0x2427	3	3 word[0] = Sensor altitude [m] -		-	1
Example: set set	ensor altitude to 1's	950 m			
Write	0x2427	0x079e	0x09		
(hexadecimal)	Command	Sensor altitude = 1'950 m	CRC of 0x79e		

Table 15: set_sensor_altitude I2C sequence description

3.6.4 get_sensor_altitude

Description: The *get_sensor_altitude* command can be sent while the SCD4x is in idle mode to read out the previously saved sensor altitude value set by the *set_sensor_altitude* command.

Write	Input parameter: -		Response parar	Max. command	
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]
0x2322	-	-	3	Sensor altitude [m] = word[0]	1
Example: sensor altitude is 1'100 m					
Write	0x2322				
(hexadecimal)	Command				
Wait	1 ms	command execution tin	пе		
Response	0x044c	0x42			
(hexadecimal)	Sensor altitude = 1'100 m	CRC of 0x044c			

Table 16: get_sensor_altitude I2C sequence description

3.6.5 set_ambient_pressure

Description: The *set_ambient_pressure* command can be sent during periodic measurements to enable continuous pressure compensation. Note that setting an ambient pressure overrides any pressure compensation based on a previously set sensor altitude. Use of this command is highly recommended for applications experiencing significant ambient pressure changes to ensure sensor accuracy. Valid input values are between 70'000 – 120'000 Pa. The default value is 101'300 Pa.

Write	Input parameter: Ambient pressure		Response parame	Max. command	
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]
0xe000	3	word[0] = ambient P [Pa] / 100 -		-	1
Example: set amb	ient pressure to 98	700 Pa			
Write	0xe000	0xe000 0x03db 0			
(hexadecimal)	Command	Ambient P = 98'700 Pa	CRC of 0x03db		

Table 17: set_ambient_pressure I2C sequence description

3.6.6 get_ambient_pressure

Description: The *get_ambient_pressure* command can be sent during periodic measurements to read out the previously saved ambient pressure value set by the *set_ambient_pressure* command.

Write	Input parameter: -		Response para	Max. command	
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]
0xe000	-	-	3	ambient P [Pa] = word[0] * 100	1
Example: ambient	pressure is 98'700 Pa				
Write	0xe000				
(hexadecimal)	Command				
Wait	1 ms	command execution t	ime		
Response	0x03db	0xb6			
(hexadecimal)	Ambient P = 98,700 Pa	CRC of 0x03db			

Table 18: get ambient pressure I²C sequence description

3.7 Field Calibration

To realize high initial and long-term accuracy, the SCD4x includes two field calibration features. Forced recalibration (FRC) immediately restores high accuracy with the assistance of an external CO_2 reference value. Typically, an FRC is applied to compensate for drifts (e.g. the sensor assembly process). Automatic self-calibration (ASC) ensures the highest long-term stability of the SCD4x without the need of manual action steps from the user. The ASC algorithm assumes that the sensor is exposed to air with CO_2 concentrations of 400 ppm at least once per week.

3.7.1 perform_forced_recalibration

Description: To successfully conduct an accurate FRC, the following steps need to be carried out:

- 1. Operate the SCD4x in the operation mode later used in normal sensor operation (e.g. periodic measurement) for at least 3 minutes in an environment with a homogenous and constant CO₂ concentration. The sensor must be operated at the voltage desired for the application when performing the FRC sequence.
- 2. Issue the stop periodic measurement command. Wait 500 ms for the command to complete.
- 3. Issue the *perform_forced_recalibration* command and optionally read out the FRC correction (i.e. the magnitude of the correction) after waiting for 400 ms for the command to complete. A return value of 0xffff indicates that the FRC has failed. Note that the sensor will fail to perform a FRC if it was not operated before sending the command.

Write	Input parameter: Ta	rget CO ₂ concentration	Response parame	Max.	
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	command duration [ms]
0x362f	3	word[0] = Target concentration [ppm CO ₂]	3	FRC correction [ppm CO ₂] = word[0] – 0x8000	400
				word[0] = 0xffff in case of failed FRC	
Example: perform	forced recalibration, re	ference CO ₂ concentration is	s 480 ppm		
Write	0x362f	0x01e0	0xb4		
(hexadecimal)	Command	Input: 480 ppm	CRC of 0x01e0		
Wait	400 ms	command execution time			
Response	0x7fce	0x7b			
(hexadecimal)	Response: - 50 ppm	CRC of 0x7fce			

Table 19: perform forced recalibration I2C sequence description

3.7.2 set automatic self calibration enabled

Description: Set the current state (enabled / disabled) of the ASC. By default, ASC is enabled. To save the setting to the EEPROM, the *persist_settings* (see Section 3.9.1) command must be issued.

Write	Input parameter: ASC enabled		Response paran	Max. command		
(hexadecimal)	length [bytes]	signal convers	ion	length [bytes]	signal conversion	duration [ms]
0x2416	3		word[0] = 1 \rightarrow ASC enabled word[0] = 0 \rightarrow ASC disabled		-	1
Example: set ASC	status: enabled					
Write	0x2416	0x0001	0x0001 0xb0			
(hexadecimal)	Command	ASC enabled	CRC of 0x0001			

Table 20: set_automatic_self_calibration_enabled I²C sequence description.

3.7.3 get_automatic_self_calibration_enabled

Write	Input parameter: -		Response parar	Max. command	
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]
0x2313	-	-	3	word[0] = 1 \rightarrow ASC enabled word[0] = 0 \rightarrow ASC disabled	1
Example: read AS	C status: disabled				
Write	0x2313				
(hexadecimal)	Command				
Wait	1 ms	command execution tin	пе		
Response	0x0000	0x81			
(hexadecimal)	ASC disabled	CRC of 0x0000			

Table 21: get_automatic_self_calibration_enabled I2C sequence description

3.8 Low Power Periodic Measurement Mode

To enable use-cases with a constrained power-budget, the SCD4x features a low power periodic measurement mode with a signal update interval of approximately 30 seconds.

The low power periodic measurement mode is initiated and read-out in a similar manner as the periodic measurement mode. Please consult Section 3.5.2 for further instructions. To avoid receiving a NACK in case the result of a subsequent measurement is not ready yet, use the *get_data_ready_status* command to check whether new measurement data is available for read-out.

3.8.1 start_low_power_periodic_measurement

Description: start low power periodic measurement mode, signal update interval is approximately 30 seconds.

Write	Input parameter: -	Input parameter: -		Response parameter: -			
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]		
0x21ac	-			-	not applicable		
Example: start lo	ow power periodic meas	urement					
Write	0x21ac	ac					
(hexadecimal)	Command						

Table 22: start_low_power_periodic_measurement I2C sequence description

3.8.2 get_data_ready_status

Write	Input parameter: -		Response para	Response parameter: data ready status		
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]	
0xe4b8	-	-	3 If the least significant 11 bits of word[0] are: 0 → data not ready		1	
				else → data ready for read-out		
Example: read	data ready status	: data not ready				
Write	0xe4b8					
(hexadecimal)	Command					
Wait	1 ms	command execution t	ime			
Response	0x8000		0xa2			
(hexadecimal)	Least significant and not ready	11 bits are $0 \rightarrow$ data	CRC of 0x8000			

Table 23: get_data_ready_status I²C sequence description

3.9 Advanced Features

3.9.1 persist_settings

Description: Configuration settings such as the temperature offset, sensor altitude and the ASC enabled/disabled parameters are by default stored in the volatile memory (RAM) only and will be lost after a power-cycle. The *persist_settings* command stores the current configuration in the EEPROM of the SCD4x, ensuring the settings persist across power-cycling. To avoid unnecessary wear of the EEPROM, the *persist_settings* command should only be sent when persistence is required and if actual changes to the configuration have been made. The EEPROM is guaranteed to withstand at least 2000 write cycles. Note that field calibration history (i.e. FRC and ASC, see Section 3.7) is automatically stored in a separate EEPROM dimensioned for the specified sensor lifetime.

Write	Input parameter: -		Response parameter: -	Max. command	
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]
0x3615			-	-	800
Example: persist settings					
Write	0x3615				

Table 24: persist_settings I2C sequence description

Command

(hexadecimal)

3.9.2 get_serial_number

Description: Reading out the serial number can be used to identify the chip and to verify the presence of the sensor. The *get_serial_number* command returns 3 words, and every word is followed by an 8-bit CRC checksum. Together, the 3 words constitute a unique serial number with a length of 48 bits (big endian format).

Write (hexadecimal)	Input parameter	Input parameter: -		Response parameter: serial number		
	length [bytes]	signal conve	ersion length [bytes]	signal conve	rsion	duration [ms]
0x3682	-	-	9	Serial number = word[0] << 32 word[1] << 16 word[2]		1
Example: serial	number is 273'325'7	96'834'238				
Write	0x3682					
(hexadecimal)	Command					
Wait	1 ms	command exe	ecution time			
Response	0xf896	0x31	0x9f07 0:	xc2	0x3bbe	0x89
(hexadecimal)	word[0]	CRC of 0xf896	word[1] C	RC of 0x9f07	word[2]	CRC of 0x3bbe

Table 25: get_serial_number I²C sequence description

3.9.3 perform_self_test

Description: The *perform_self_test* command can be used as an end-of-line test to check the sensor functionality.

Write (hexadecimal)	Input paramete	er: -	Response para	Response parameter: sensor status		
	length [bytes]	signal conversion	length [bytes]	signal conversion	Max. command duration [ms]	
0x3639	-	-	3	word[0] = 0 \rightarrow no malfunction detected word[0] \neq 0 \rightarrow malfunction detected	10000	
Example: perform	self-test, no malfi	unction detected				
Write	0x3639					
(hexadecimal)	Command					
Wait	10000 ms	command execution	time			
Response	0x0000	0x81				
(hexadecimal)	No malfunction d	letected CRC of	of 0x0000			

Table 26: perform_self_test I2C sequence description

3.9.4 perfom_factory_reset

Description: The *perform_factory_reset* command resets all configuration settings stored in the EEPROM and erases the FRC and ASC algorithm history.

Write	Input parameter: -	Input parameter: -		Response parameter: -		
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]	
0x3632	-	-	-	-	1200	
Example: perform	m factory reset					
Write	0x3632					
(hexadecimal)	Command					

Table 27: perform factory reset I²C sequence description

3.9.5 reinit

Description: The *reinit* command reinitializes the sensor by reloading user settings from EEPROM. Before sending the *reinit* command, the *stop_periodic_measurement* command must be issued. If the *reinit* command does not trigger the desired reinitialization, a power-cycle should be applied to the SCD4x.

Write	Input parameter: -		Response parameter: -	Max. command	
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]
0x3646	-	-	-	-	30
Example: reinit					
Write	0x3646				
(hexadecimal)	Command re-initialization	1			

Table 28: reinit I²C sequence description

3.10 Single Shot Measurement Mode (SCD41 Only)

The SCD41 additionally features a single shot measurement mode for on-demand measurements.

The typical communication sequence is as follows:

- 1. The sensor is powered up with the wake_up command.
- 2. The I²C master sends a measure_single_shot command and waits for the indicated max. command duration time.
- 3. The I²C master reads out data with the *read_measurement* command (Section 3.5.2) within the specified *max. command duration* time.
- 4. Repeat steps 2–3 as required by the application.
- 5. If desired, power down the sensor with with the *power down* command.

To reduce noise levels, the I²C master can perform several single shot measurements in a row and average the CO₂ output values. After a power cycle, the initial single shot reading should be discarded to maximize accuracy.

The ASC is enabled per default in single shot operation and optimized for single shot measurements performed every 5 minutes. Longer measurement intervals will result in less frequent ASC corrections. To optimize the ASC for longer measurement intervals, the ASC initial and standard intervals can be reconfigured (see relevant commands in following subsections and supporting documentation¹⁶).

For extreme low-power applications, the sensor may be power cycled between measurements to conserve power. Note that for power-cycled single shot measurements, ASC is not available.

¹⁶ More information on ASC settings and SCD4x low power modes can be found in the application note on "Low Power Operation SCD4x"

3.10.1 measure_single_shot

Description: On-demand measurement of CO₂ concentration, relative humidity and temperature. The sensor output is read out by using the *read_measurement* command (Section 3.5.2).

Write	Input parameter: -	Input parameter: -		Response parameter: -		
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]	
0x219d	-	-	-	-	5000	
Example: measu	ure single shot					
Write	0x219d					
(hexadecimal)	Command					

Table 29: measure_single_shot I2C sequence description

3.10.2 measure_single_shot_rht_only

Description: On-demand measurement of relative humidity and temperature only. The sensor output is read out by using the *read_measurement* command (Section 3.5.2). CO₂ output is returned as 0 ppm.

Write (hexadecimal)	Input parameter: -	Input parameter: -		Response parameter: -			
	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]		
0x2196					50		
Example: measu	re single shot, RH and T	output only					
Write	0x2196	2196					
(hexadecimal)	Command						

Table 29: measure_single_shot_rht_only I2C sequence description

3.10.3 power_down

Description: Put the sensor from idle to sleep to reduce current consumption. Can be used to power down when operating the sensor in power-cycled single shot mode.

Write	Input parameter: -	Input parameter: -		Response parameter: -		
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]	
0x36e0	-	-	-	-	1	
Example: power	down the sensor					
Write	0x36e0					
(hexadecimal)	Command					

Table 30: power_down I2C sequence description

3.10.4 wake_up

Description: Wake up the sensor from sleep mode into idle mode. Note that the SCD4x does not acknowledge the *wake_up* command. The sensor idle state after wake up can be verified by reading out the serial number (Section 3.9.2).

Write	Input parameter: -		Response parameter: -	Max. command	
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]
0x36f6	-	-	-	-	30
Example: wake up	o the sensor				
Write	0x36f6				
(hexadecimal)	Command				

Table 30: wake_up I2C sequence description

3.10.5 set_automatic_self_calibration_initial_period

Description: Set the initial period for ASC correction (in hours) based on the single shot measurement interval. By default, the initial period for ASC correction is 44 hours. Allowed values are integer multiples of 4 hours. Note: a value of 0 results in an immediate correction. To save the setting to the EEPROM, the *persist_settings* (see Section 3.9.1) command must be issued.

Write	Input paramete	Input parameter: ASC initial period		Response parameter: -		Max. command
(hexadecimal)	length [bytes]	signal conver	sion	length [bytes]	signal conversion	duration [ms]
0x2445	3	word[0] = AS [hours]	word[0] = ASC initial period [hours]		-	1
Example: write	ASC initial period of	76 hours				
Write	0x2445	0x004c	0xc1			
(hexadecimal)	Command	Initial period 76 hours	CRC of 0x004c			

Table 31: set_automatic_self_calibration_initial_period I2C sequence description

3.10.6 get_automatic_self_calibration_initial_period

Write	Input parameter: -		Response parar	Max. command					
(hexadecimal)	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]				
0x2340	-	-	3	ASC initial period [hrs] = word[0]	1				
Example: read AS	Example: read ASC initial period of 76 hours								
Write	0x2340								
(hexadecimal)	Command								
Wait	1 ms	1 ms command execution time							
Response	0x004c	0xc1							
(hexadecimal)	76 hours	CRC of 0x004c							

Table 32: get_automatic_self_calibration_initial_period I²C sequence description

3.10.7 set_automatic_self_calibration_standard_period

Description: Set the standard period for ASC correction (in hours) based on the single shot measurement interval. By default, the standard period for ASC correction is 156 hours. Allowed values are integer multiples of 4 hours. To save the setting to the EEPROM, the *persist_settings* (see Section 3.9.1) command must be issued.

Write (hexadecimal)	Input parameter: ASC standard period			Response pa	Max. command	
	length [bytes]	signal conversion		length [bytes]	signal conversion	duration [ms]
0x244e	3	word[0] = ASC standard period [hrs]		-	-	1
Example: set automatic self-calibration standard period of 156 hours						
Write	0x244e	0x9c 0xc5				
(hexadecimal)	Command	Standard period 156 hours	CRC of 0x009c			

Table 33: set_automatic_self_calibration_standard_period I2C sequence description

3.10.8 get_automatic_self_calibration_standard_period

Write (hexadecimal)	Input parameter: -		Response para	Max. command	
	length [bytes]	signal conversion	length [bytes]	signal conversion	duration [ms]
0x234b			3	word[0] = ASC standard period [hrs]	1
Example: read A	ASC standard period of	156 hours	•		
Write	0x234b				
(hexadecimal)	Command				
Wait	1 ms	command execution time			
Response	0x009c	0xc5			
(hexadecimal)	ASC disabled	CRC of 0x009c			

Table 34: get_automatic_self_calibration_standard_period I2C sequence description

3.11 Checksum Calculation

The 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm. Its properties are displayed in **Table 35**. The CRC covers the contents of the two previously transmitted data bytes. To calculate the checksum only these two previously transmitted data bytes are used. Note that command words are not followed by CRC.

Property	Value	Example code (C/C++)
Name	CRC-8	#define CRC8_POLYNOMIAL 0x31
Width	8 bit	#define CRC8_INIT 0xFF
Protected Data	read and/or write data	uint8_t sensirion_common_generate_crc(const uint8_t* data, uint16_t count) { uint16_t current_byte;
Polynomial	0x31 (x8 + x5 + x4 + 1)	uint8_t crc = CRC8_INIT;
Initialization	0xFF	uint8_t crc_bit; /* calculates 8-Bit checksum with given polynomial */
Reflect input	False	for (current_byte = 0; current_byte < count; ++current_byte) {
Reflect output	False	crc ^= (data[current_byte]); for (crc_bit = 8; crc_bit > 0;crc_bit) {
Final XOR	0x00	if (crc & 0x80)
Examples	CRC (0xBEEF) = 0x92	<pre>crc = (crc << 1) ^ CRC8_POLYNOMIAL; else</pre>

Table 35: I2C CRC properties

4 Mechanical Specifications

4.1 Package Outline

Figure 3 schematically displays the package outline. The notched corner of the protection membrane serves as a polarity mark to indicate the location of pin 1. Nominal dimensions and tolerances are listed in **Table 36**. Note that the white protection membrane on top of the sensor must not be removed or tampered with to ensure proper sensor operation.

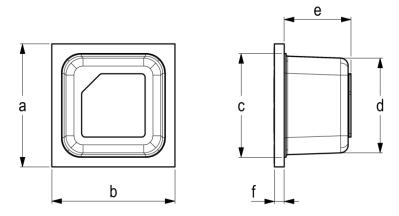


Figure 3: Packaging outline drawing of the SCD4x: (left) top view and (right) side view.

Dimension	а	b	С	d	е	f
Nominal [mm]	10.1	10.1	8.5	7.8	5.5	8.0
Tolerance [mm]	± 0.3	± 0.3	± 0.2	± 0.2	± 0.3	± 0.2

Table 36: Nominal dimensions and tolerances of the SCD4x. The weight of the sensor is approx. 0.6 g.

4.2 Land Pattern

Recommended land pattern, solder paste and solder mask are shown in **Figure 4**. The exact mask geometries, distances and stencil thicknesses must be adapted to the customer soldering processes.

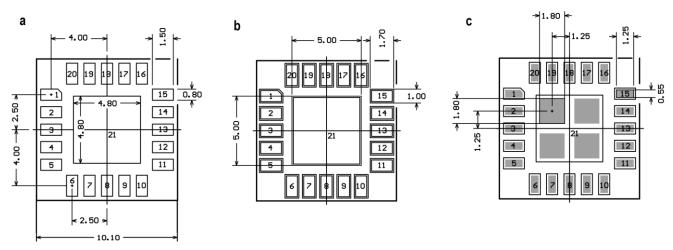
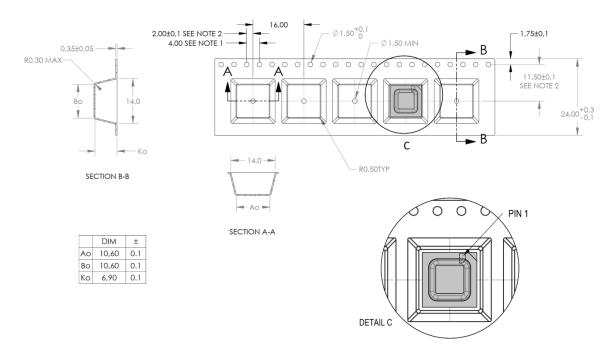



Figure 4: SCD4x footprint (top view): landing pads (a), solder mask (b) and solder paste (c).

4.3 Tape & Reel Package

Figure 5: Technical drawing of the packaging tape with sensor orientation in tape. Header tape is to the right and trailer tape to the left on the drawing. Dimensions are given in millimeters.

4.4 Moisture Sensitivity Level

Sensirion SCD4x sensors must be treated according to Moisture Sensitivity Level 3 (MSL3) as described in IPC/JEDEC J-STD-033B1. Exposure to moisture levels or solder reflow temperatures which exceed the limits as stated in this document can result in yield loss and reliability degradation¹⁷.

The manufacturing floor time (out of bag) at the customer's end is 168 hours at normal factory conditions (≤30 °C and 60 %RH). If sensors are not mounted within this time, or have been exposed to higher temperatures and humidity (>30 °C and >60 %RH), or there is any doubt about the airtight integrity of the dry pack, the parts should be baked (for baking parameters see **Table 37**). The maximum allowed baking temperature is 40 °C if the sensors are inside the reel.

SCD4x package type	Baking temperature	Min. baking time	Baking condition	
Sensors removed from tape	90 °C	48 hours	RH < 5 %	
Sensors in tape	40 °C	23 days	RH < 5 %	

Table 37: Baking conditions for SCD4x if manufacturing floor time with open bag is exceeded.

¹⁷ More information on SCD4x packing and storage can be found in the user guide "Handling Instructions SCD4x"

4.5 Soldering Instructions

The sensors are designed to withstand a soldering profile based on IPC/JEDEC J-STD-020, with a maximum peak temperature of 245°C up to 30 sec and Pb-free assembly in IR/Convection reflow ovens. See **Table 38** for more details.

Note that due to the size and shape of the SCD4x sensor, significant temperature differences across the sensor element can occur during reflow soldering. Specifically, the temperature within the sensor cap can be higher than the temperature measured at the pad using usual temperature monitoring methods. Care must be taken that a temperature of 245°C is not exceeded at any time in any part of the sensor.

The SCD4x is not compatible with vapor phase reflow soldering. The dust cover on top of the cap must not be removed or wetted with any liquid. Do not apply extra flux during the reflow soldering or reflow solder more than once. Do not apply any board wash process step subsequently to the reflow soldering.

Minor temporary accuracy deviations of the CO₂ reading can result from the reflow soldering of the SCD4x. Full sensor accuracy is restored after at most five days after the soldering process, independently on whether the sensor is operated or not.

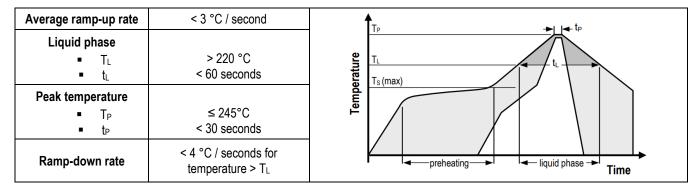


Table 38: Soldering profile parameters

4.6 Traceability and Identification

All SCD4x sensors have a distinct electronic serial number for identification and traceability (see Section 3.9.2). The serial number can be decoded by Sensirion only and allows for tracking through production, calibration, and testing.

All SCD4x sensors include a laser marking on the sidewall of the sensor cap. The laser marking contains the product variant (i.e., SCD40 or SCD41) and the product serial number within a data matrix (**Figure 6**).

Figure 6: Technical drawing of the laser marking of product type and data matrix on the sidewall of the sensor cap.

¹⁸ More information on SCD4x reflow soldering can be found in the user guide "Handling Instructions SCD4x"

5 Ordering InformationUse the part names and product numbers shown in Table 39 when ordering the SCD4x CO₂ sensor.

Part Name	Description	Ordering quantity (pcs)	Product Number
SCD40-D-R2	SCD40 CO2 sensor SMD component as reel, I2C	600 sensors per reel	3.000.521
SCD40-D-R1	SCD40 CO2 sensor SMD component as reel, I2C	60 sensors per reel	3.000.496
SCD41-D-R2	SCD41 CO2 sensor SMD component as reel, I2C	600 sensors per reel	3.000.498
SCD41-D-R1	SCD41 CO2 sensor SMD component as reel, I2C	60 sensors per reel	3.000.497
SEK-SCD41-Sensor	SEK-SCD41-Sensor set; SCD41 on development board with cables	1	3.000.455
SEK-SensorBridge	Sensor Bridge to connect SEK-SCD41-Sensor to computer	1	3.000.124

 Table 39: For the latest product information and local distributors, visit the Sensirion website

6 Revision History

Date	Version	Page(s)	Changes
January 2021	1	all	Initial release
April 2021	1.1	16 - 17	Adjustment max. command time self-test (Section 3.9) and single shot (Section 3.10), minor revisions on other pages
May 2022	1.2	3	Clarification on additional sensor accuracy drift (Table 1)
-		12	Clarification of set_ambient_pressure command description (Section 3.6.5)
		18	Addition of power_down and wake_up commands (Section 3.10)
		22	Addition of minor temporary accuracy deviation after reflow soldering (Section 4.5)
		all	Minor editorial revisions
September 2022	1.3	1,22	Correction of hyperlink
		All	Minor editorial revisions
February 2023	1.4	3	Updated SCD41 accuracy values, updated drift parameters and drift conditions (Table 1), correction of tolerance in footnote #2, clarification of footnotes #2, 4 and 5
		4	Clarification of operation mode per average supply current (Table 4), additional information
			on ESD HBM (Table 5), additional footnote #8, clarification of footnotes #7 and 12
		5	Clarification of recommendations on power supply for sensor operation (Section 2.3)
		6	Correction of power-up time and soft reset time, increase of maximum SCL clock frequency
			to 400 kHz (Section 2.4)
		7	Minor editorial revisions for clarification (Section 3.1)
		8	Addition of get_ambient_pressure, set_automatic_self_calibration_initial_period,
			get_automatic_self_calibration_initial_period,
			set_automatic_self_calibration_standard_period,
			get_automatic_self_calibration_standard_period and set_automatic_self_calibration_target
		10	commands (Table 9), correction of reinit and wake_up execution times (Section 3.4) Addition of recommended temperature offset range, formula correction of signal conversion
			(Section 3.6.1)
		11	Formula correction of signal conversion (Section 3.6.2), addition of valid sensor altitude input values (Section 3.6.3)
		12	Addition of valid ambient pressure input values to set_ambient_pressure command
			(Section 3.6.5) and addition of get_ambient_pressure command (Section 3.6.6)
		17	Correction of reinit max. command duration (Section 3.9.5), clarification of typical
			communication sequence for single shot measurement mode (Section 3.10)
		19	Correction of wake_up max. command duration (Section 3.10.4), addition of
			set_automatic_self_calibration_initial_period (Section 3.10.5) and
			get_automatic_self_calibration_initial_period commands (Section 3.10.6)
		20	Addition of set_automatic_self_calibration_standard_period command (Section 3.10.7) and
			get_automatic_self_calibration_standard_period command (Section 3.10.8)
		22	Additional information on white protection membrane (Section 4.1)
		24	Increase of peak reflow soldering temperature to 245°C, clarification of soldering guidance
		A 11	(Section 4.5), addition of information concerning product laser marking (Section 4.6)
		All	Minor editorial revisions

Important Notices

Warning, Personal Injury

Do not use this product as safety or emergency stop devices or in any other application where failure of the product could result in personal injury. Do not use this product for applications other than its intended and authorized use. Before installing, handling, using or servicing this product, please consult the data sheet and application notes. Failure to comply with these instructions could result in death or serious injury.

If the Buyer shall purchase or use SENSIRION products for any unintended or unauthorized application, Buyer shall defend, indemnify and hold harmless SENSIRION and its officers, employees, subsidiaries, affiliates and distributors against all claims, costs, damages and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if SENSIRION shall be allegedly negligent with respect to the design or the manufacture of the product.

ESD Precautions

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take customary and statutory ESD precautions when handling this product.

Warranty

SENSIRION warrants solely to the original purchaser of this product for a period of 12 months (one year) from the date of delivery that this product shall be of the quality, material and workmanship defined in SENSIRION's published specifications of the product. Within such period, if proven to be defective, SENSIRION shall repair and/or replace this product, in SENSIRION's discretion, free of charge to the Buyer, provided that:

- notice in writing describing the defects shall be given to SENSIRION within fourteen (14) days after their appearance;
- such defects shall be found, to SENSIRION's reasonable satisfaction, to have arisen from SENSIRION's faulty design, material, or workmanship;
- the defective product shall be returned to SENSIRION's factory at the Buyer's expense; and
- the warranty period for any repaired or replaced product shall be limited to the unexpired portion of the original period.

This warranty does not apply to any equipment which has not been installed and used within the specifications recommended by SENSIRION for the intended and proper use of the equipment. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH HEREIN, SENSIRION MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT. ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSLY EXCLUDED AND DECLINED.

SENSIRION is only liable for defects of this product arising under the conditions of operation provided for in the data sheet and proper use of the goods. SENSIRION explicitly disclaims all warranties, express or implied, for any period during which the goods are operated or stored not in accordance with the technical specifications.

SENSIRION does not assume any liability arising out of any application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. All operating parameters, including without limitation recommended parameters, must be validated for each customer's applications by customer's technical experts. Recommended parameters can and do vary in different applications.

SENSIRION reserves the right, without further notice, (i) to change the product specifications and/or the information in this document and (ii) to improve reliability, functions and design of this product.

Copyright © 2022, by SENSIRION. CMOSens® is a trademark of Sensirion. All rights reserved

Headquarters and Subsidiaries

Sensirion AG Laubisruetistr. 50 CH-8712 Staefa ZH Switzerland

phone: +41 44 306 40 00 fax: +41 44 306 40 30 info@sensirion.com www.sensirion.com

Sensirion Taiwan Co. Ltd phone: +886 3 5506701 info@sensirion.com www.sensirion.com

Sensirion Inc., USA phone: +1 312 690 5858 info-us@sensirion.com www.sensirion.com

Sensirion Japan Co. Ltd. phone: +81 3 3444 4940 info-jp@sensirion.com www.sensirion.com/jp

Sensirion Korea Co. Ltd. phone: +82 31 337 7700~3 info-kr@sensirion.com www.sensirion.com/kr

Sensirion China Co. Ltd. phone: +86 755 8252 1501 info-cn@sensirion.com www.sensirion.com/cn

To find your local representative, please visit www.sensirion.com/distributors

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Sensirion:

SCD41-D-R2 SCD40-D-R1 SCD40-D-R2 SCD41-D-R1