

AR35-T25E/S

AR35 Through-Hole Series Programmable Absolute and Incremental Encoders

Introduction

The Broadcom[®] AR35-T25 series are programmable reflective absolute through-hole rotary encoders designed for space-constrained motion control applications.

The AR35-T25 series encoder has an overall diameter of 35 mm with a maximum axial through hole of 9.5 mm for through shaft motors and axial cabling.

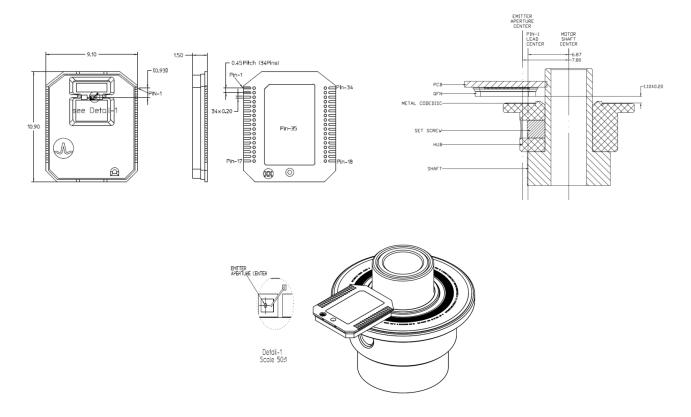
The AR35-T25 series provides incremental ABI and UVW in differential mode. Both come with a recommended temperature range of -40°C to 115°C suitable for most industrial applications. Dual-mode operating voltages of 3.3V and 5V are suitable for handheld and portable device applications.

Employing Broadcom-patented Reflective Optical Encoding Theory, the AR35-T25 series offers high-accuracy with correction, which is unattainable by the magnetic encoder.

Application

- Robotic automation and engineering
- Factory automation and drone
- Medical and dentistry, devices and equipment
- High-accuracy portable and handheld devices
- Miniature motor, servo motor, linear actuator

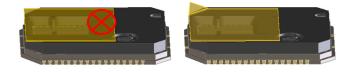
Related Part Ordering Information


Ordering Information	Туре
AR35-T25S/E	AR35 SSI/ESL Single-Turn Absolute Encoder

Mounting Requirements

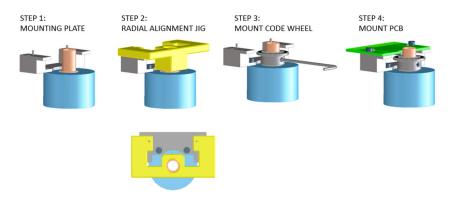
Figure 1 shows the mounting requirements to set up the encoder to the optimum position for typical encoder performance. Overall mounting requirements applicable for the following items:

- AR35 DFN Encoder to code wheel operational gap.
- Code wheel placement.


Figure 1: Mounting Requirement

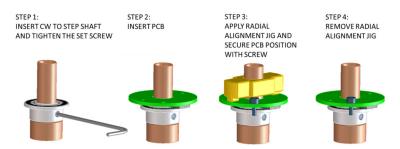
Notes on Assembly

- 1. The encoder assembly requires a clean room condition of Class 100k or better.
- 2. The encoder must be enclosed with an IP50-rated enclosure.
- 3. Encoder has protective tape to prevent contamination. Remove the tape at the location, away from the ASIC slot as shown in Figure 2 to prevent scratches to the ASIC and damage to the LED wire bond after the SMD reflow processes.


Figure 2: Removal of Protective Tape

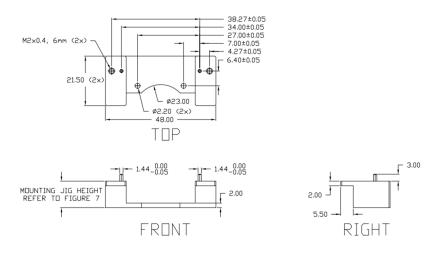
Evaluation Kit Mounting Concept with Alignment Jig

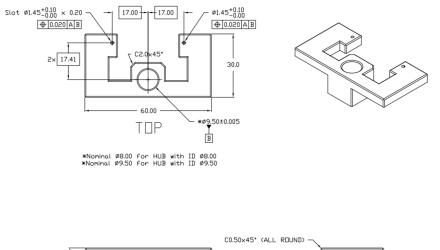
- 1. Place the mounting plate on the motor base.
- 2. Align the mounting plate guide pins to the motor shaft with the aid of the radial alignment jig, and secure the position with mounting screws.
- 3. Install the code wheel-hub assembly onto the motor shaft step. Secure the hub with a M3x3 set screw. (The recommended tightening torque is 0.15 Nm for the M3x3 set screw.)
- 4. Position the PCBA on the mounting plate guided by the guide pins. Secure the position with the mounting screws. (The recommended tightening torque is 0.15 Nm for the M2x6 cap screw.)


Figure 3: Mounting Concept with Alignment Jig

Recommended Mounting Concept with Alignment Jig

- 1. Insert the code wheel-hub assembly onto the step shaft. Tighten the set screw. (The recommended tightening torque is 0.15 Nm for the M3x3 set screw.)
- 2. Install the PCB over the motor shaft.
- 3. Apply the radial alignment jig. Secure the PCB position with a screw per the motor mounting requirements.
- 4. Remove the radial alignment jig.


Figure 4: Recommended Mounting Concept with Alignment Jig


Evaluation Kit Jig Design Concept

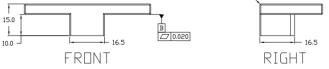
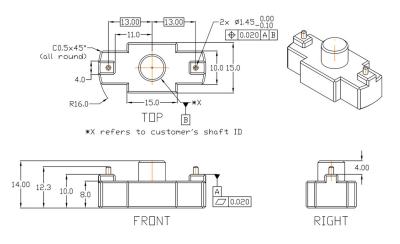
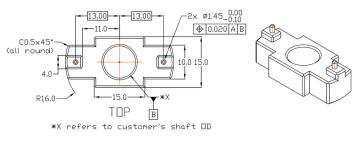

The jig design is based on the AR35 Through Hole encoder with the 9.5 mm shaft mount.

Figure 5: Mounting Plate Concepts (PN: 5023-9406)


Figure 6: Radial Alignment Jig Concept (PN: 5023-9407)



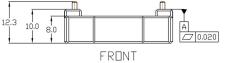

Recommended Jig Design Concept

Figure 7: ID Alignment Jig Concept

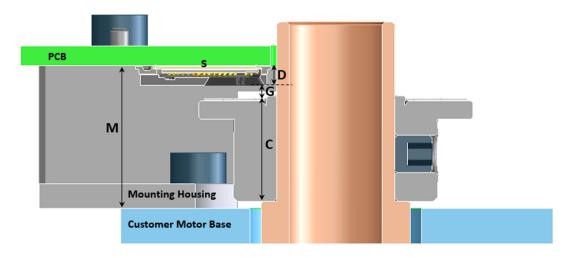

Figure 8: OD Alignment Jig Concept

Figure 9: Jig Design Concept

Table 1: Jig Design Concept

Number	Description	Symbol	Nominal Dimension
1	Mounting Jig Height	М	M = C + G + D + S
2	Code Wheel – Hub Height	С	8.25 mm
3	Gap DFN and Code Wheel	G	1.10 mm
4	DFN Package Height	D	1.50 mm
5	Solder Paste Thickness	S	0.05 mm

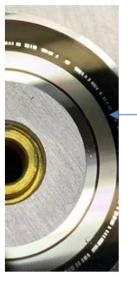
Mounting Guide

- 1. Install the code wheel on the motor shaft and set the height per the motor shaft step.
- 2. Secure the hub with a M3x3 set screw. The recommended tightening torque is 0.15 Nm.
- 3. Mount the encoder PCBA on the mounting housing at the recommended height.

Recommended Motor Shaft Diameter Tolerance

Table 2: Code Wheel Hub Tolerance

Hub ID	Hole Tolerance		Hole Tolerance		Hole Tolerance			Shaft OD		Shaft Tole	erance
(mm)	Lower	Upper	Hole Basis	Set Screw Size	(mm)	Lower	Upper	Shaft Basis			
8.00	0	0.009	H6	M3	8.00	-0.005	-0.011	g5			
9.50	0	0.009	H6	M3	9.50	-0.005	-0.011	g5			


Code Wheel Handling Precaution

- 1. Wear finger cots to avoid contact with the active area.
- 2. Use delicate task wipers with isopropyl alcohol to wipe the code wheel. Do not use cotton buds (non-lint-free) because they can contaminate scratch the code wheel.

Figure 10: Code Wheel Handling

Contaminated

Clean code wheel


Encoder Zero Offset

Zero Offset with SSI 3-Wire and SPI

Table 3: Reference Memory Map (SPI) for Zero Offset

		Address				Bi	its			
Number	Item	Page 14	7	6	5	4	3	2	1	0
1	ST_Zero_Reset_0 (Byte 0)	0x0C	ST_ZR[7:0]							
2	ST_Zero_Reset_1 (Byte 1)	0x0D	ST_ZR[15:8]							
3	ST_Zero_Reset_2 (Byte 2)	0x0E				ST_ZR	[23:16]			

Figure 11: Resolution Bits

- 1. With a static motor, read the position (using Figure 20) that SSI outputs, and patch zero to make it 24 bits.
 - If readout is in the 25 bits position, only store 24 bits MSB.
 - If readout is in the 23 bits position, patch 1 zero at LSB.
 - If readout is in the 21 bits position, patch 3 zero at LSB.
 - If readout is in the 17 bits position, patch 8 zero at LSB.
 - Split into 3 bytes as shown in Figure 11.

2. SPI Write offset value operation.

- SPI write address 0x7F, value 0x08 (switch to EEPROM page 8).
- SPI write address 0x00, value 0xAB (unlock write access).
- SPI write address 0x7F, value 0x0E (switch to EEPROM page 14).
- SPI write address 0x0C, value of Byte 0 (write LSB 8 bits of offset value).
- SPI write address 0x0D, value of Byte 1 (write LSB+ 8 8 bits of offset value).
- SPI write address 0x0E, value of Byte 2 (write MSB 8 bits of offset value).
- SPI write address 0x1B, value 0x0F (unlock MTP for programming offset value).
- SPI write address 0x40, value 0xC0 (perform MTP programming).
- 3. After approximately 30 ms, read the position that SSI outputs, and get position value 0.

Zero Offset with ESL Interface

Use Table 4 with the ESL protocol in Memory Read/Write Frame.

Method 1:

- 1. With a static motor, read the position (using Figure 20) that ESL outputs, and patch zero to make it 24 bits.
 - If readout is in the 25 bits position, only store 24 bits MSB.
 - If readout is in the 23 bits position, patch 1 zero at LSB.
 - If readout is in the 21 bits position, patch 3 zero at LSB.
 - If readout is in the 17 bits position, patch 8 zero at LSB.
 - Split into 3 bytes as shown in Figure 11.
- 2. SPI Write offset value operation.
 - SPI write address 0x7F, value 0x08 (switch to EEPROM page 8).
 - SPI write address 0x00, value 0xAB (unlock write access).
 - SPI write address 0x7F, value 0x0E (switch to EEPROM page 14).
 - SPI write address 0x0C, value of Byte 0 (write LSB 8 bits of offset value).
 - SPI write address 0x0D, value of Byte 1 (write LSB +8 8 bits of offset value).
 - SPI write address 0x0E, value of Byte 2 (write MSB 8 bits of offset value).
 - SPI write address 0x1B, value 0x0F (unlock MTP for programming offset value).
 - SPI write address 0x40, value 0xC0 (perform MTP programming).
- 3. After approximately 30 ms, read the position that ESL outputs, and get position value 0.

NOTE: The value of the position readout after a zero offset might fluctuate at 0 due to motor vibration at static.

Method 2:

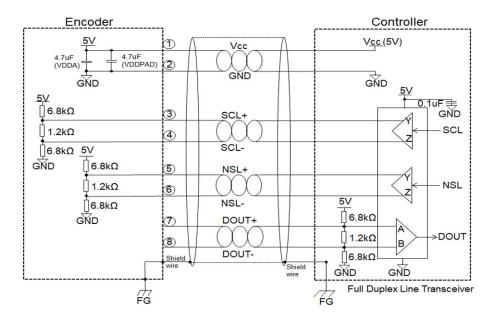
Table 4: ESL Command ID List

ID	CF	SF	DF0	DF1	DF2	DF3	DF4	DF5	DF6	DF7	CRC	Remark	Frame Size
Data ID 4		de CF Status	ALMC	ABS0	ABS1	ABS2	ABS3	_		_	Include CRC	Position Read Command	8
Data ID 6			ABS0	ABS1	ABS2	ABS3	_	_		_			7
Data ID 8			ENID		_	_	_		—			Encoder ID Read Command	4
Data ID A			ALMC		_	_	_		—			Alarm Read Command	4
Data ID B			ALMC	ABS0	ABS1	ABS2	ABS3	_		_		Perform continuous 8× for ST clear command	8
Data ID C			ALMC	ABS0	ABS1	ABS2	ABS3		—			Perform continuous 8× for alarm clear command	8
Data ID E	CF	ADF	EDF	_	_	_	—	_	—	_		Memory or Register Read command	4
Data ID F	CF	ADF	EDF		—		—					Memory or Register Write command	4

1. With a static motor, read the position that ESL outputs (ID4) for reference only.

- 2. Execute ST clear command.
 - See Table 4 and use ESL (IDB) to send the command eight times continuously.
- 3. After approximately 30 ms, read the position that ESL outputs (ID4), and get position value 0.

NOTE: The value of the position readout after a zero offset might fluctuate at 0 due to motor vibration at static.


Recommended I/O Connection

The recommended I/O connection between the encoder and the motor driver has the following basic requirements.

ESL/SSI 3-Wire Differential Connections

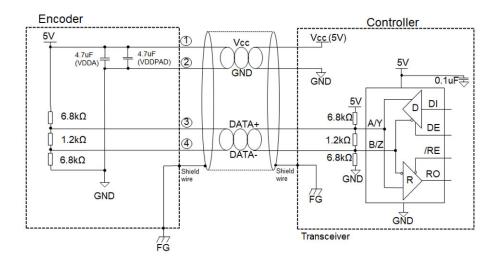
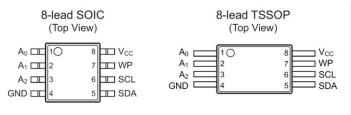

- 1. Provide the following encoder power supply:
 - For the 5.0V supply, V_{CC} should be within the range of 4.5V to 5.5V.
 - For the 3.3V supply, V_{CC} should be within the range of 3.0V to 3.6V.
- 2. For best noise immunity, use a twisted-pair shielded cable for connection to the servo driver.
- 3. To prevent undesirable signal reflection, terminate with 1200Ω resistors.

Figure 12: SSI Differential I/O Connections

ESL Half-Duplex Connection

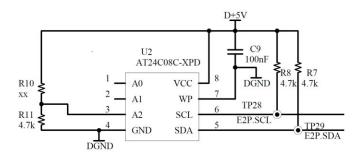
Figure 13: ESL Half-Duplex I/O Connections



Recommended External EEPROM Device

Table 5: Recommended External EEPROM

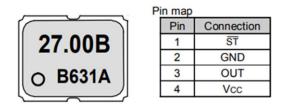
Description	Part Number
ST Microelectronics, IC EEPROM 8K I2C 1MHZ 8TSSOP	M24C08-DRDW3TP/K
Microchip, 2-wire Automotive Temperature Serial EEPROMs	AT24C08C-XPD


Figure 14: Recommended External EEPROM

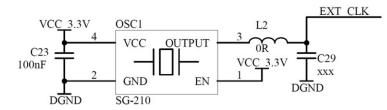
Note: Drawings are not to scale.

Pin Name	Function
A ₀	Address Input (1K and 2K)
A ₁	Address Input (1K, 2K, and 4K)
A ₂	Address Input (1K, 2K, 4K, and 8K)
GND	Ground
SDA	Serial Data
SCL	Serial Clock Input
WP	Write Protect
V _{cc}	Device Power Supply

Figure 15: Recommended EEPROM Connection



Recommended External Oscillator Device


Table 6: Recommended External Oscillator Device

Description	Part Number
SEIKO EPSON, 50MHz Crystal Oscillator	SG-210SCB 50.000000MHz

Figure 16: Recommended External Oscillator Device

Figure 17: Recommended Oscillator Connection

ESL: Half-Duplex

Table 7: ESL Interface

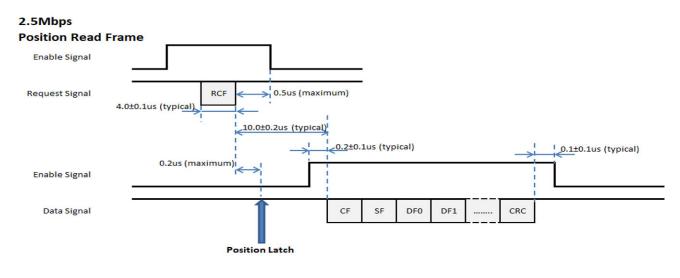

Interface	Circuit
ESL Serial Data (DATA +)	Transceiver (part number: ISL8485E)
ESL Serial Data (DATA –)	Transceiver (part number: ISL8485E)

Table 8: Timing Characteristics

Parameter	Min.	Тур.	Max.	Units
Communication Baud Rate	—	—	2.5 or 10.0	MHz
Frame Length	—	10	—	Bits/Frame

Position Read Frame (10 µs Wait Time)

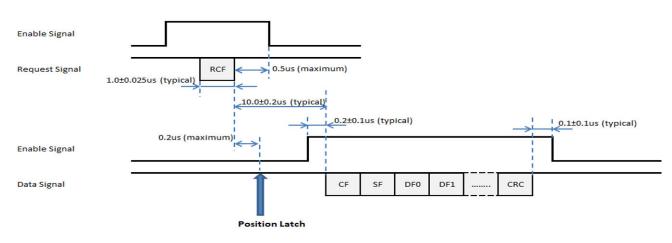
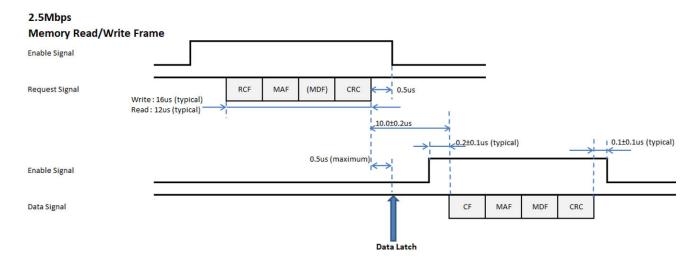
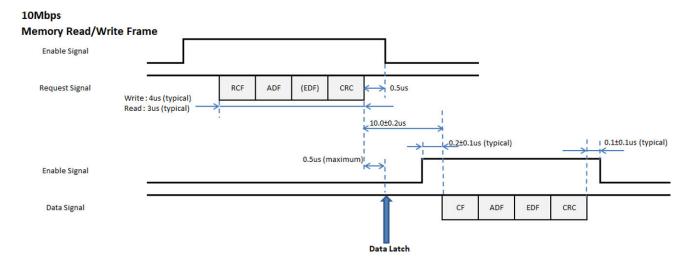

Figure 18: Position Read Frame (2.5 Mb/s)

Figure 19: Position Read Frame (10 Mb/s)


10Mbps



Memory Read/Write Frame

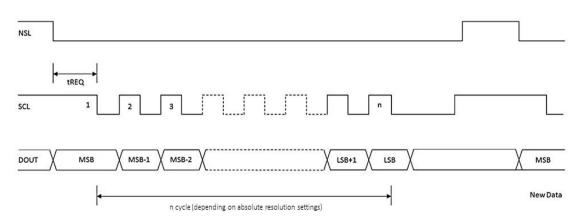
Figure 20: Timing Characteristics of Enable, Request, and Data Signals (2.5 Mb/s)

Figure 21: Timing Characteristics of Enable, Request, and Data Signals (10 Mb/s)

Register Communication and Assignment

Refer to the AR35-Series-SS100 software specification document for detailed information.

Memory Map

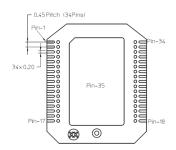

Table 9: Memory Map

			Bits							
Number	ltem	Address	7	6	5	4	3	2	1	0
1	Customer Configuration1	0x09	EEPROM Disable	—	CW Direction	—		ES	L Encoder	ID
2	Customer Configuration2	0x0A		UVW Setting		I-width	Setting	CPR Setting		
3	Customer Configuration3	0x0B			_				abs res	solution
4	ST_Zero_Reset_0	0x0C				ST_ZR[7:	0]			
5	ST_Zero_Reset_1	0x0D	ST_ZR[15:8]							
6	ST_Zero_Reset_2	0x0E	ST_ZR[23:16]							

SSI 3-Wire Differential Output

SSI 3-Wire Timing

Figure 22: Timing Diagram


NSL toggles from high to low to start request position data.

SCL maximum frequency is 10 MHz.

tREQ= 10 μ s is the time of data request processing with 8x averaging.

SSI 3-Wire Pin-Out and Relevant Registers

Figure 23: SSI 3-Wire Pinout

Table 10: SSI 3-Wire Pinout

Pin	Name	Function
10	SSI DOUT	SSI Data Output
12	SSI NSL	SSI Input
14	+ SSI SCL	SSI Clock (+)

AR35TH SSI 3-Wire Output

Figure 24: AR35TH Output

MSB						LSB
	25-bit absolute position			5	5-bits error	
MSB					LSB	
	23-bit absolute position			5-bits erro	or	
MSB				l	LSB	
	21-bit absolute position		5-bits er	ror		
MSB			LSB			
	17-bit absolute position	5-bits error				

Table 11: 5-Bits Error Definition

Bit [4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
LED Error	MEM Error	LIS Error	MLS Error	ST Error

Encoder Alarm Definition

The following table shows the encoder alarms and their definition.

Table 12: Alarms and Definition Table

Number	Alarms	Alarms Definition
1	ST_Err (Single-turn Counting Error)	To check the integrity of single-turn position.
		1: error in single-turn position.
		0: no error in single-turn position.
2	MLS_Err (Absolute Code Error)	To detect error in the absolute MLS (pseudo-random code) generation. 1: MLS code error. 0: MLS code good.
3	Lis_Err (Lissajous Error)	To check integrity of the single-turn Sine & Cosine signals by means of the Lissajous specifications. 1: Lissajous out of specification. 0: Lissajous within specification.
4	MEM_Err (Memory Error)	To indicate EEPROM content loading status upon encoder power up. 1: Fail to load EEPROM memory data. 0: EEPROM memory data loaded successfully.
5	LED_Err (LED Error)	To indicate if LED current is out of operating range. 1: LED out of operating range. 0: LED within operating range.

Encoder Calibration

Perform encoder calibration after the completion of the code strip and encoder installation. Perform encoder calibration using the Broadcom Calibration Kit, A25E-0030.

Do not power cycle the encoder during calibration. Power cycle the unit *only* after the completion of calibration and programming of EEPROM.

NOTE: Encoder calibration can also be performed manually through the SPI/ESL interface. Request from the factory the encoder calibration flow document, AR35L-Series-CAL100.

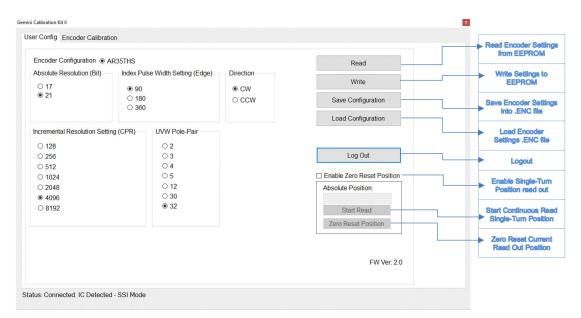
Calibration Kit

You can perform encoder calibration with the Broadcom Calibration Kit. The kit part number is A25E-0030 – 25 Bits, Linear and Through Hole, AR35 Calibration Kit.

Calibration Kit Pinout

Connect the supplied ribbon cable to the encoder as shown in Table 13.

Table 13: J2 (Ribbon Cable) – 26 Pins Connector Version


Calibration Kit	Connector's Pin	Connection to Encoder Pin	
1	VDD_PAD	8	
2	VSSA	27	
3	VDDA	28	
4	VSS	9	
9	SN_TST1	3	
10	CN_TST3	1	
11	SP_TST0	4	
12	CP_TST2	2	
13	SSI SCL	14	
14	ESL_SEL	17	
15	SSI NSL	12	
16	SSI DOUT- / ESL Dout-	11	
17	SSI DOUT+ / ESL Dout+	10	
18	SPI_CLK	7	
19	SPI_IN	6	
20	SPI_DOUT	5	
22	l+	26	
24	B+	24	
25	PROBE4+	30	
26	A+	22	

Calibration Kit Interface

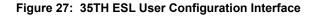

- Log in as user. The software auto detects the encoder type.
- 2. Configure the encoder using the User Config interface as shown in Figure 26. After configuration, click **Write** then **Save Configuration**.
- 3. Set up the encoder to the motor.
- 4. Run the encoder at 60 rpm \pm 5 rpm.
- NOTE: To save the calibration result, check Save Cal Log before Start as shown in Figure 28.
- 5. Click Start as shown in Figure 28 and wait for the calibration to end (Green Circle).
- 6. Set the encoder zero reset and absolute position read out using the User Config interface as shown in Figure 26.
 - a. Click Start Read to read absolute position.
 - b. Stop at the position for zero reset and click Zero Reset Position.

Figure 25: Login Menu

Login		_		\times
\rm BRO	ADCOM.			
Reflective	Absolute Cali	bration	Kit I	I
Login as	User			~
	Login			

Figure 26: 35TH SSI User Configuration Interface

Figure 28: Encoder Calibration Interface

	nic Calibration Kit Rev 3.00							
ser Config	Encoder Calibratio	n						
		Alarm Status					Start	
		LED Error	MEM Error	LIS Error	MLS Error	ST Error	Abort	
		LED LIN				OT EIIO		
							Save Cal Log	
		Cal State:						

Encoder Troubleshooting

Table 14: Encoder Troubleshooting Table

Number	Description	Causes	Counter Measure		
1	No output	Encoder power supply is too low	Check if V_{CC} versus ground potential is within 4.5 to 5.5V		
		Poor connectivity between the encoder connector to customer connector	Check encoder connector and customer connector connectivity		
		Wrong wire connection assignment	Check connector wire connection assignment		
		Detector IC faulty/shorted	Perform power cycle. If problem still exist, please cor		
2	Encoder high current	LED faulty/ shorted	factory.		
	consumption (>200 mA at 25°C)	Detector IC faulty/shorted	-		
3	LED_Err triggered	LED faulty			
4	MEM_Err triggered	Opto-ASIC memory block or EEPROM faulty			
5	Lis_Err triggered	LED faulty	Clean code wheel and perform power cycle. If problem		
		Detector IC faulty	still exists, please consult factory.		
		Code wheel contaminated/damaged			
6	MLS_Err triggered	LED faulty			
		Detector IC faulty			
		Code wheel contaminated/damaged			
7	Single-turn Counting	Detector IC faulty			
	Error triggered	Code wheel contaminated/damaged			

Dos and Don'ts

Do

- 1. Ensure that the environment is clean during installation.
- 2. Ensure that operators wear finger cots during the code wheel assembly.
- 3. Ensure that the code wheel is clean by using lint-free delicate task wipers with isopropyl alcohol (IPA) to clean the metal code wheel when necessary.
- 4. Ensure that there is adequate protection from dust and moisture when encoders are used in a harsh environment.
- 5. Ensure that the pin configuration is correct per the data sheet.
- 6. Ensure that the encoder power supply is within tolerance.
- 7. Ensure that all ESD precaution is observed during installation or handling of the encoder.

Don't

- 1. Do not overload the transceiver by using the wrong termination resistor.
- 2. Do not hammer the code wheel hub into the motor shaft during installation.
- 3. Do not reverse the power source polarity.
- 4. Do not operate the encoder under extreme temperatures over long periods of time.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2019 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Broadcom Limited: A25E-0030