

HLMP-EGxx, HLMP-EHxx, HLMP-ELxx T-1¾ (5-mm) Extra High Brightness AllnGaP LED Lamps

Description

These precision optical performance AllnGaP LEDs provide superior light output for excellent readability in sunlight, and are extremely reliable. AllnGaP LED technology provides extremely stable light output over long periods of time. These precision optical performance lamps use aluminum indium gallium phosphide (AllnGaP) technology.

These LED lamps are untinted, T-1¾ packages incorporating second-generation optics, producing well-defined spatial radiation patterns at specific viewing cone angles.

These lamps are made with an advanced optical grade epoxy, offering superior high temperature and high moisture resistance performance in outdoor signal and sign applications. The maximum LED junction temperature limit of +130°C enables high-temperature operation in bright sunlight conditions. The epoxy contains both UVA and UVB inhibitors to reduce the effects of long-term exposure to direct sunlight.

Benefits

- Superior performance for outdoor environments
- Suitable for auto-insertion onto PC board

Features

- Viewing angle: 15°, 23°, 30°
- High luminous output
- Colors:
 - 590-nm Amber
 - 615-nm Red Orange
 - 626-nm Red
- Package options:
 - With or without lead standoff
- Superior resistance to moisture
- Untinted for 15°, 23°, and 30° lamps

Applications

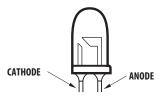
- Traffic management:
 - Traffic signals
 - Pedestrian signals
 - Work zone warning lights
 - Variable message signs
- Solar power signs
- Commercial outdoor advertising
 - Signs
 - Marquees

 2.54 ± 0.38

 (0.100 ± 0.015)

 $\boldsymbol{5.00 \pm 0.20}$ 5.00 ± 0.20 (0.197 ± 0.008) (0.197 ± 0.008) 1.14 ± 0.20 8.71 ±0.20 8.71 ±0.20 (0.045 ± 0.008) (0.343 ± 0.008) (0.343 ± 0.008) 1.14 ± 0.20 2.35 (0.093) (0.045 ± 0.008) MAX. 0.70 (0.028) MAX. 1.50 ± 0.15 31.60 (1.244) MIN. 31.60 (1.244) MIN. (0.059 ± 0.006) 0.70 (0.028) MAX. CATHODE CATHODE LEAD LEAD 0.50 ± 0.10 0.50 ± 0.10 SQ. TYP. SQ. TYP. 1.00 1.00 MIN. MIN. (0.020 ± 0.004) (0.020 ± 0.004) (0.039)(0.039)5.80 ±0.20 5.80 ± 0.20 (0.228 ± 0.008) (0.228 ± 0.008) CATHODE CATHODE FLAT **FLAT**

Figure 1: Package Dimensions (Package Drawing A on the Left and Package Drawing B on the Right)


Viewing Angle	d
15°	12.39 mm ± 0.25 mm (0.476 in. ± 0.010 in.)
23° and 30°	11.96 mm ± 0.25 mm (0.459 in. ± 0.010 in.)

 2.54 ± 0.38

 (0.100 ± 0.015)

NOTE:

- 1. All dimensions are in millimeters (inches).
- 2. Leads are mild steel with tin plating.
- 3. The epoxy meniscus is 1.21 mm, maximum.
- 4. For identification of polarity after the leads are trimmed off, see the following figure.

AV02-1687EN Broadcom

Device Selection Guide

Typical Viewing	Color and Dominant Wavelength (nm),	Lamps without Standoff on Leads	Lamps with Standoff on Leads	Luminous Intensity Iv (mcd) ^{c, d, e} at 20 mA	
Angle 2θ _{1/2} (Deg) ^a	Typ. ^b	(Package Drawing A)	(Package Drawing B)	Min.	Max.
15°	Amber 590	HLMP-EL1A-Z1Kxx	HLMP-EL1B-Z1Kxx	12000	21000
		HLMP-EL1A-Z1LDD	HLMP-EL1B-Z1LDD	12000	21000
	Red 626	HLMP-EG1A-Z10xx	HLMP-EG1B-Z10DD	12000	21000
	Red Orange 615	HLMP-EH1A-Z10DD	_	12000	21000
		_	HLMP-EH1B-120DD	16000	27000
23°	Amber 590	_	HLMP-EL2B-XYKDD	7200	12000
		HLMP-EL2A-YZKxx	HLMP-EL2B-YZKDD	9300	16000
		HLMP-EL2A-YZLDD	HLMP-EL2B-YZLDD	9300	16000
	Red 626	HLMP-EG2A-XY0xx	HLMP-EG2B-XY0xx	7200	12000
	Red Orange 615		HLMP-EH2B-Y10DD	9300	21000
		_	HLMP-EH2B-YZ0DD	9300	16000
30°	Amber 590	HLMP-EL3A-WXKxx	HLMP-EL3B-WXKxx	5500	9300
		HLMP-EL3A-WXLDD	HLMP-EL3B-WXLDD	5500	9300
	Red 626	HLMP-EG3A-WX0xx	HLMP-EG3B-WX0xx	5500	9300
	Red Orange 615	HLMP-EH3A-WX0xx	HLMP-EH3B-WX0DD	5500	9300

- a. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is half the on-axis intensity.
- b. Dominant wavelength, λ_{d} , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.
- c. The luminous intensity is measured on the mechanical axis of the lamp package and it is tested with pulsing condition.
- d. The optical axis is closely aligned with the package mechanical axis.
- e. Tolerance for each bin limit is ±15%.

Absolute Maximum Ratings, $T_J = 25$ °C

Parameter	Red, Amber, Red Orange	Units
DC Forward Current ^a	50	mA
Peak Forward Current	100 ^b	mA
Average Forward Current	30	mA
Power Dissipation	120	mW
Reverse Voltage	5	V
Operating Temperature Range	-40 to +100	°C
Storage Temperature Range	-40 to +100	°C

- a. Derate linearly as shown in Figure 6.
- b. Duty factor 30%, frequency 1 KHz.

AV02-1687EN Broadcom

Electrical/Optical Characteristics, $T_J = 25$ °C

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Forward Voltage	V _F				V	I _F = 20 mA
Amber, Red, Red Orange		1.8	2.1	2.4		·
Reverse Voltage	V_{R}	5	_	_	V	I _R = 100 μA
Dominant Wavelength ^a	λ_{d}				nm	I _F = 20 mA
Amber		584.5	590.0	594.5		
Red		618.0	626.0	630.0		
Red Orange		612.0	615.0	619.0		
Peak Wavelength	λ _{PEAK}				nm	Peak of Wavelength of Spectral
Amber	. 27.11	_	594	_		Distribution at I _F = 20 mA
Red		_	634	_		
Red Orange		_	621	_		
Spectral Halfwidth	$\Delta\lambda_{1/2}$				nm	
Amber	1/2	_	13	_		
Red		_	14	_		
Red Orange		_	14	_		
Thermal Resistance	Rθ _{J-PIN}	_	240	_	°C/W	LED junction to anode lead
Luminous Efficacy ^b	η_{V}				lm/W	Emitted Luminous Flux/Emitted
Amber		_	500	_		Radiant Flux
Red		_	200	_		
Red Orange		_	265	_		
Luminous Flux	фν				mlm	I _F = 20 mA
Amber		_	2100	_		
Red		_	2300			
Red Orange		_	2300	_		
Luminous Efficiency ^c	η _e				lm/W	Emitted Luminous Flux/Electrical
Amber		_	50			Power
Red		_	55	_		
Red Orange		_	55	_		
Thermal Coefficient of λ_d					nm/°C	$I_F = 20 \text{ mA}, +25^{\circ}\text{C} \le T_J \le +100^{\circ}\text{C}$
Amber		_	0.08	_		
Red		_	0.05	_		
Red Orange		_	0.07	_		

a. The dominant wavelength, λ_d is derived from the CIE Chromaticity Diagram referenced to Illuminant E. Tolerance for each color of dominant wavelength is ± 0.5 nm.

b. The radiant intensity, I_e in watts per steradian, maybe found from the equation $I_e = I_v / \eta_V$ where I_v is the luminous intensity in candela and η_V is the luminous efficacy in lumens/watt.

c. $\eta_e = \phi_v / I_F \times V_F$ where ϕ_v is the emitted luminous flux, I_F is electrical forward current, and V_F is the forward voltage.

Part Numbering System

H L M P - x_1 x_2 x_3 x_4 - x_5 x_6 x_7 x_8 x_9

Code	Description	Option	
x ₁	Package type	E	5-mm Standard Round AllnGaP
x ₂	Color	G	Red
		L	Amber
		Н	Red Orange
x ₃ x ₄	x ₃ x ₄ Viewing angle and lead standoffs		15° without lead standoffs
		1B	15° with lead standoffs
		2A	23° without lead standoffs
		2B	23° with lead standoffs
		3A	30° without lead standoffs
		3B	30° with lead standoffs
x ₅	Minimum intensity bin	Refer to Device Selection Guide	
x ₆	Maximum intensity bin		
x ₇	Color bin selection	0	Full range
		K	Color bin 2 and 4
		L	Color bin 4 and 6
x ₈ x ₉	Packaging option	00	Bulk packaging
		DD	Ammopack

Bin Information

Intensity Bin Limit Table (1.3:1 lv Bin Ratio)

Intensity (mcd) at 20 mA Bin Min. Max. V 4200 5500 W 5500 7200 Χ 7200 9300 Υ 9300 12000 Ζ 12000 16000 1 16000 21000 2 21000 27000

Tolerance for each bin limit is ±15%

V_F Bin Table (V at 20 mA)

Bin ID	Min.	Max.
VD	1.8	2.0
VA	2.0	2.2
VB	2.2	2.4

Tolerance for each bin limit is ±0.05V.

Red Color Range

Min. Dom.	Max. Dom.	X Min.	Y Min.	X Max.	Y Max.
618	630	0.6872	0.3126	0.6890	0.2943
		0.6690	0.3149	0.7080	0.2920

Tolerance for each bin limit is ±0.5 nm.

Red Orange Color Range

Min.Dom	Max. Dom	X Min.	Y Min.	X Max.	Y Max.
612	619	0.6712	0.6887	0.6716	0.6549
		0.3280	0.3109	0.3116	0.3282

Tolerance for each bin limit is ±0.5 nm.

Amber Color Range

Bin	Min. Dom.	Max. Dom.	X Min.	Y Min.	X Max.	Y Max.
2	587	589.5	0.5570	0.4420	0.5670	0.4250
			0.5530	0.4400	0.5720	0.4270
4	589.5	592	0.5720	0.4270	0.5820	0.4110
			0.5670	0.4250	0.5870	0.4130
6	592	594.5	0.5870	0.4130	0.5950	0.3980
			0.5820	0.4110	0.6000	0.3990

Tolerance for each bin limit is ±0.5 nm.

NOTE: All bin categories are established for classification of products. Products may not be available in all bin categories. Contact a Broadcom representative for further information.

Figure 2: Broadcom Color Bin on CIE 1931 Chromaticity Diagram

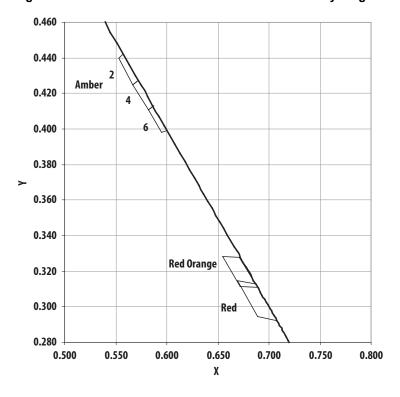


Figure 3: Relative Intensity vs. Peak Wavelength

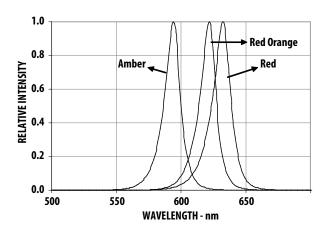


Figure 4: Forward Current vs. Forward Voltage

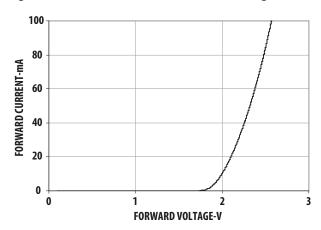


Figure 5: Relative Luminous Intensity vs. Forward Current

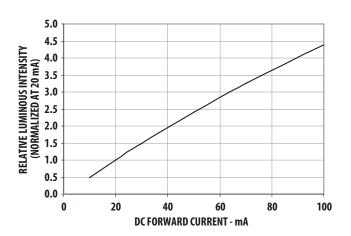


Figure 6: Maximum Forward Current vs. Ambient Temperature

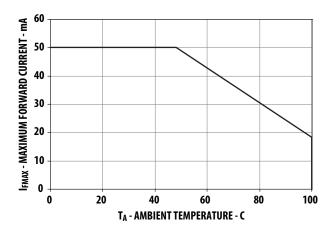


Figure 7: Radiation Pattern for 15° Viewing Angle Lamp

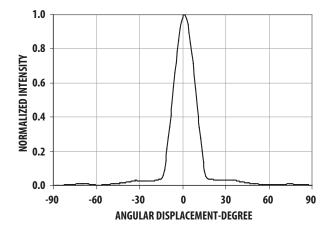


Figure 8: Radiation Pattern for 23° Viewing Angle Lamp

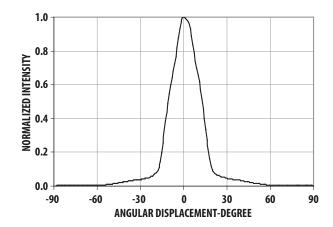


Figure 9: Radiation Pattern for 30° Viewing Angle Lamp

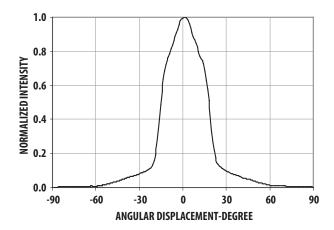


Figure 10: Relative Light Output vs. Junction Temperature

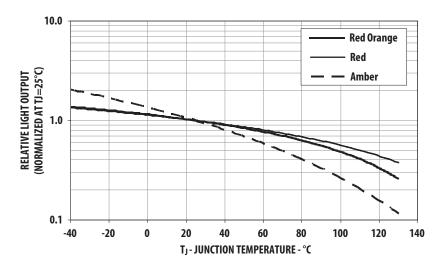
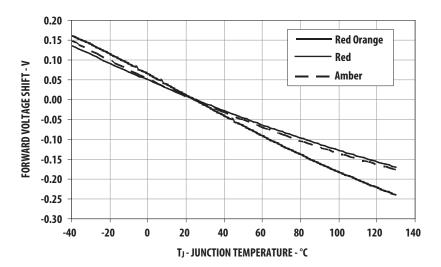
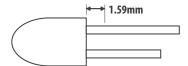



Figure 11: Relative Forward Voltage vs. Junction Temperature


Precautions

Lead Forming

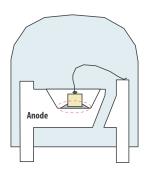
- The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering on the PC board.
- For better control, use the proper tool to precisely form and cut the leads to the applicable length rather than doing it manually.
- If manual lead cutting is necessary, cut the leads after the soldering process. The solder connection forms a mechanical ground that prevents mechanical stress due to lead cutting from traveling into the LED package. Use this method for hand soldering operations, because the excess lead length also acts as a small heat sink.

Soldering and Handling

- Take care during PCB assembly and soldering process to prevent damage to the LED component.
- The LED component may be effectively hand soldered to the PCB; however, use this method only under unavoidable circumstances, such as rework. The closest manual soldering distance of the soldering heat source (the soldering iron's tip) to the body is 1.59 mm. Soldering the LED using the soldering iron tip closer than 1.59 mm might damage the LED.

- Apply ESD precautions on the soldering station and personnel to prevent ESD damage to the LED component, which is ESD sensitive. Refer to Broadcom Application Note AN-1142 for details. Use a soldering iron with a grounded tip to ensure that the electrostatic charge is properly grounded.
- The recommended soldering conditions follow.

	Wave Soldering ^{a, b}	Manual Solder Dipping
Preheat Temperature	105°C max.	_
Preheat Time	60 seconds max.	_
Peak Temperature	260°C max.	260°C max.
Dwell Time	5 seconds max.	5 seconds max


- a. The above conditions refer to a measurement with thermocouple mounted at the bottom of PCB.
- Use only bottom preheaters to reduce thermal stress experienced by the LED.

 Set and maintain wave soldering parameters according to the recommended temperature and dwell time.
 Perform daily checks on the soldering profile to ensure that it conforms to the recommended soldering conditions.

NOTE:

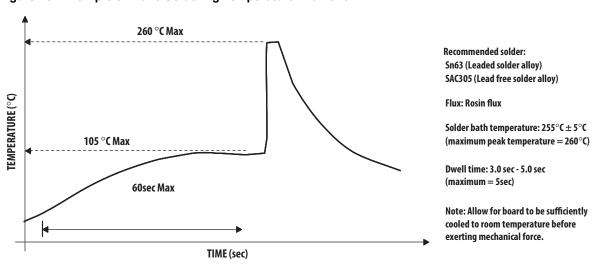
- PCBs with different sizes and designs (component density) have different heat masses (heat capacity). This might cause a change in the temperature experienced by the board if the same wave soldering setting is used. Therefore, you must recalibrate the soldering profile again before loading a new type of PCB.
- Broadcom high brightness LEDs use highefficiency LED dies with a single wire bond as
 shown in Figure 12. Take extra precautions
 during wave soldering to ensure that the
 maximum wave temperature does not exceed
 260°C and the solder contact time does not
 exceed 5 seconds. Over-stressing the LED
 during soldering process might cause
 premature failure to the LED due to
 delamination.

Figure 12: Broadcom LED Configuration

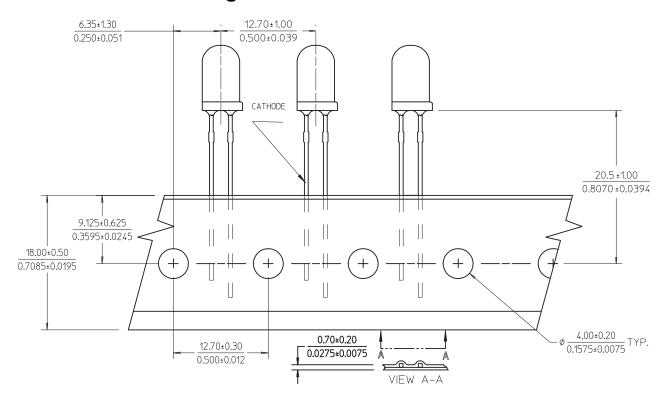
NOTE: The electrical connection between the bottom surface of the LED die and the lead frame is achieved through conductive paste.

Any alignment fixture that is being applied during wave soldering should be loosely fitted and should not apply weight or force on the LED. Use non-metal material because it will absorb less heat during the wave soldering process.

NOTE: To help you design an accurate jig that fits the Broadcom product, a three-dimensional model of the product is available upon request.

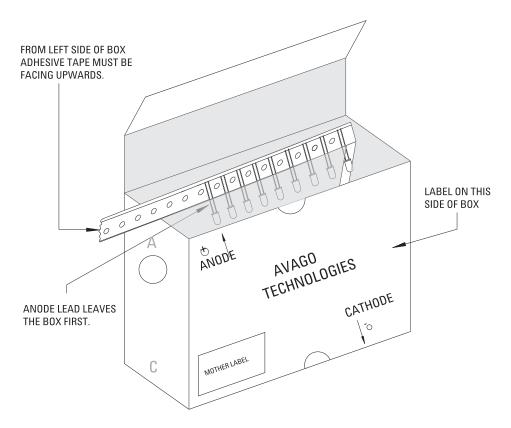

- At elevated temperatures, the LED is more susceptible to mechanical stress. Therefore, allow the PCB to cool down to room temperature prior to handling, which includes removal of the alignment fixture or pallet.
- If the PCB board contains both through-hole (TH) LEDs and other surface mount components, solder surface mount components on the top side of the PCB. If surface-mount LEDs must be soldered on the bottom side, solder these components using reflow soldering prior to insertion the TH LED.
- Recommended PC board plated through-holes (PTHs) size for LED component leads follows.

LED Component Lead Size	Diagonal	Plated Through-Hole Diameter
0.45 mm × 0.45 mm	0.636 mm	0.98 mm to 1.08 mm
(0.018 in. × 0.018 in.)	(0.025 in.)	(0.039 in. to 0.043 in.)
0.50 mm × 0.50 mm	0.707 mm	1.05 mm to 1.15 mm
(0.020 in. × 0.020 in.)	(0.028 in.)	(0.041 in, to 0.045 in.)


 Over-sizing the PTH can lead to a twisted LED after clinching. On the other hand, under-sizing the PTH can cause difficulty inserting the TH LED.

Refer to Application Note AN5334 for more information about soldering and handling of high-brightness TH LED lamps.

Figure 13: Example of Wave Soldering Temperature Profile for TH LED



Ammo Packs Drawing

NOTE: The ammo pack drawing is applicable for packaging option -DD and -ZZ, for LEDs both with and without standoffs.

Packaging Box for Ammo Packs

NOTE: The dimensions for the ammo pack are applicable for LEDs both with and without standoffs.

Disclaimer

Broadcom's products and software are not specifically designed, manufactured, or authorized for sale as parts, components, or assemblies for the planning, construction, maintenance, or direct operation of a nuclear facility or for use in medical devices or applications. The customer is solely responsible, and waives all rights to make claims against Broadcom or its suppliers, for all loss, damage, expense, or liability in connection with such use.

Copyright © 2014–2023 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Broadcom Limited:

HLMP-EL13-WX0DD HLMP-EH2B-XY0DD HLMP-EL3B-VWKDD HLMP-EL2A-XYLDD HLMP-EL3B-VWLDD HLMP-EG3B-VW0DD HLMP-EL2A-XYKDD HLMP-EL3A-VWLDD HLMP-EG3A-VW0DD HLMP-EL3A-VWKDD HLMP-EH1B-Z10DD HLMP-EH2A-XY0DD HLMP-EL2B-XYLDD