SMA 50 Ohm
End Launch Jack Receptacle -
Round Contact

<table>
<thead>
<tr>
<th>VSWR & FREQ. RANGE</th>
<th>BOARD THICKNESS</th>
<th>GOLD PLATED</th>
<th>NICKEL PLATED</th>
<th>"A"</th>
<th>"B"</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSWR: N/A 0-18 GHz</td>
<td>.062 (1.57)</td>
<td>142-0701-801</td>
<td>142-0701-806</td>
<td>.068 (1.73)</td>
<td>.073 (1.85)</td>
</tr>
</tbody>
</table>
SMA - 50 Ohm Connectors

Specifications

ELECTRICAL RATINGS

Impedance: 50 ohms
Frequency Range:
- Dummy loads 0.2 GHz
- Flexible cable connectors 0.124 GHz
- Uncabled receptacles, RA semi-rigid and adapters ... 0.180 GHz
- Straight semi-rigid cable connectors and field replaceable connectors 0.265 GHz

Diielectric Withstanding Voltage:
- Field replaceable (Jack-jack adapter and plug-jack adapter) 1.05 + .005f
- Jack-bulkhead jack adapter and plug-plug adapter 1.05 + .01f
- .141 semi-rigid (w/o contact) 1.07 + .006f
- .141 semi-rigid (w/o contact) 1.05 + .006f
- .141 semi-rigid (w/o contact) 1.035 + .005f
- Jack-bulkhead jack adapter and plug-plug adapter 1.05 + .01f
- Uncabled receptacles, dummy loads .. N/A

Power Rating (Dummy Load): 0.5 watt @ +25°C, derated to 0.25 watt @ +125°C

Insertion Loss: (dB maximum)
- Straight flexible cable connectors and adapters 0.06 f (GHz), tested at 6 GHz
- Right angle flexible cable connectors 0.15 f (GHz), tested at 6 GHz
- Straight semi-rigid cable connectors with contact 0.03 f (GHz), tested at 10 GHz
- Right angle semi-rigid cable connectors 0.05 f (GHz), tested at 10 GHz
- Straight semi-rigid cable connectors w/o contact 0.03 f (GHz), tested at 16 GHz
- Right angle semi-rigid cable connectors 0.06 f (GHz), tested at 1 GHz
- Uncabled receptacles, field replaceable, dummy loads .. N/A

Insulation Resistance: 5000 megohms minimum

Contact Resistance: (milliohms maximum)
- Center contact (straight cabled connectors) 4.0
- Center contact (right angle cabled connectors and adapters) 6.0
- Field replaceable connectors 6.0
- Braid to body (gold plated connectors) 0.5
- Braid to body (nickel plated connectors) 5.0
- N/A where the cable center conductor is used as a contact

RF Leakage: (dB minimum, tested at 2.5 GHz)
- Flexible cable connectors, adapters and .141 semi-rigid connectors w/o contact 60 dB
- Field replaceable w/o EMI gasket 70 dB
- .086 semi-rigid connectors and .141 semi-rigid connectors with contact, and field replaceable with EMI Gasket .. -90 dB
- Two-way adapters .. -90 dB
- Uncabled receptacles, dummy loads .. N/A

RF High Potential Withstanding Voltage: (Vrms minimum, tested at 0.25 watts)
- Connectors for RG-178 335
- Connectors for RG-316; LMR-100, 195, 200 ... 500
- Connectors for RG-178; LMR-100, 195, 200 ... 750
- Connectors for RG-178; LMR-100, 195, 200 ... 1000
- Connectors for .141 semi-rigid w/o contact, dummy loads .. N/A

MECHANICAL RATINGS

Cable Retention:
- Connectors for RG-178 10
- Connectors for RG-316; LMR-100 30
- Connectors for RG-178; LMR-100, 195, 200 .. N/A

Temperature Range: -65°C to +165°C
Thermal Shock: MIL-STD-202D, Method 107, Condition B
Corrosion: MIL-STD-202D, Method 101, Condition B

ENVIRONMENTAL RATINGS

- *Avoid user injury due to misapplication. See safety advisory definitions inside front cover.*

Cinch Connectivity Solutions
299 Johnson Avenue SW, Waseca, MN 56093 USA • 800.247.8256 • +1 507 833 8822 • cinchconnectivity.com
MATERIAL SPECIFICATIONS

Bodies: Brass per QQ-B-626, gold plated* per MIL-G-45204 .00001" min. or nickel plated per QQ-N-290

Contacts: Male - brass per QQ-B-626, gold plated per MIL-G-45204 .00003" min.
Female - beryllium copper per QQ-C-530, gold plated per MIL-G-45204 .00003" min.

Nut Retention Spring: Beryllium copper per QQ-C-533. Unplated

Insulators: PTFE fluorocarbon per ASTM D 1710 and ASTM D 1457 or Tefzel per ASTM D 3159 or PFA 340 per ASTM

Expansion Caps: Brass per QQ-B-613, gold plated per MIL-G-45204 .00001" min. or nickel plated per QQ-N-290

Crimp Sleeves: Copper per WW-T-799 or brass per QQ-B-613, gold plated per MIL-G-45204 .00001" min. or nickel plated per QQ-N-290

Mounting Hardware: Brass per QQ-B-626 or QQ-B-613, gold plated per MIL-G-45204 .00001" min. or nickel plated per QQ-N-290

Seal Rings: Silicone rubber per ZZ-R-765

EMI Gaskets: Conductive silicone rubber per MIL-G-83528, Type M

*All gold plated parts include a .00005" min. nickel underplate barrier layer.

NOTES

1. ID OF CONTACT TO MEET VSWR, CONTACT RESISTANCE AND INSERTION WITHDRAWAL FORCES WHEN MATED WITH DIA .0355-.0370 MALE PIN.

Mating Engagement for SMA Series per MIL-C-39012

Cinch Connectivity Solutions

299 Johnson Avenue SW, Waseca, MN 56093 USA • 800.247.8256 • +1 507 833 8822 • cinchconnectivity.com
The End Launch connector is attached to the circuit board by inserting the board edge between the legs and soldering the legs and center conductor to pads on the board. For optimum high frequency performance, the connector to circuit board transition must be adjusted for low VSWR. To compensate for the transition from coax to microstrip, trace widths “A” and “B” must be adjusted based on circuit board thickness. When properly adjusted, this technique yields a low VSWR over a wide bandwidth.

The tabulated dimensions “A”, “B”, “C”, “D”, and “E” were determined experimentally to achieve low VSWR (typically less than 1.5 up to 18 GHz). The circuit board used for these tests was double-sided FR 4 with 1 oz. copper on both sides. The copper was left on the bottom of the board to create a ground plane for the 50 Ohm microstrip structure. While not all inclusive, these dimensions are given as reference information for selected SMA End Launch connectors. Further adjustments may be necessary depending upon the application. All dimensions are in inches.

Tabulated Dimensions “A”, “B”, “C” and “D” are symmetrical about the center line.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Base Width</th>
<th>Board Thick</th>
<th>“A”</th>
<th>“B”</th>
<th>“C”</th>
<th>“D”</th>
<th>“E”</th>
</tr>
</thead>
<tbody>
<tr>
<td>142-0701-801/806</td>
<td>.375</td>
<td>.062</td>
<td>.103</td>
<td>.090</td>
<td>.250</td>
<td>.440</td>
<td>.200</td>
</tr>
<tr>
<td>142-0701-851/861</td>
<td>.375</td>
<td>.062</td>
<td>.103</td>
<td>.090</td>
<td>.250</td>
<td>.440</td>
<td>.200</td>
</tr>
<tr>
<td>142-0701-871/876</td>
<td>.375</td>
<td>.062</td>
<td>.103</td>
<td>.090</td>
<td>.250</td>
<td>.440</td>
<td>.200</td>
</tr>
<tr>
<td>142-0711-821/826</td>
<td>.250</td>
<td>.062</td>
<td>.103</td>
<td>.070</td>
<td>.170</td>
<td>.380</td>
<td>.165</td>
</tr>
<tr>
<td>142-0711-871/876</td>
<td>.375</td>
<td>.047</td>
<td>.083</td>
<td>.075</td>
<td>.250</td>
<td>.440</td>
<td>.200</td>
</tr>
<tr>
<td>142-0711-881/886</td>
<td>.375</td>
<td>.047</td>
<td>.083</td>
<td>.075</td>
<td>.250</td>
<td>.440</td>
<td>.200</td>
</tr>
<tr>
<td>142-0701-881/886</td>
<td>.375</td>
<td>.031</td>
<td>.050</td>
<td>.045</td>
<td>.250</td>
<td>.440</td>
<td>.200</td>
</tr>
</tbody>
</table>

Surface Mount Versions Available!

SMA End Launch Specifications

ELECTRICAL RATINGS
- Impedance: 50 Ohms
- Frequency Range: 0-18 GHz
- VSWR: Dependent upon application
- Working Voltage (VRMS max.): 335 @ Sea Level, 85 @ 70K Feet
- Dielectric Withstanding Voltage (VRMS min. at sea level): 1000
- Corona Level (Volts min. at 70,000 feet): 250
- Insulation Resistance: 5000 megohms min
- Contact Resistance (milliohms max.): 3.0 Initial, 4.0 after environmental
- RF High Potential Withstanding Voltage (VRMS min. tested at 4 and 7 MHz): 670

MECHANICAL RATINGS
- Engagement Design: MIL-C-39012, Series SMA
- Engagement/Disengagement Force: 2 inch-pounds max.
- Mating Torque: 7 to 10 inch-pounds
- Coupling Proof Torque: 15 inch-pounds min.
- Coupling Nut Retention: 60 pounds min.
- Contact Retention Force: 6 lbs min. axial force, 4 inch-ounce min. torque
- Durability: 500 cycles min.

ENVIRONMENTAL RATINGS:
- Temperature Range: -65° to + 165° C
- Thermal Shock: MIL-STD-202, Method 107, Condition B
- Corrosion: MIL-STD-202, Method 101, Condition B
- Shock: MIL-STD-303, Method 213, Condition I
- Vibration: MIL-STD-204, Method 204, Condition D

MATERIAL SPECIFICATIONS
- Bodies: Brass per QQ-B-626, gold plated* per MIL-G-45204 .00001″ min. or nickel plated per QQ-N-290
- Contacts: Male - brass per QQ-B-626, gold plated per MIL-G-45204 .00003″ min.
 Female - beryllium copper per QQ-C-530, gold plated per MIL-G-45204 .00003″ min.
- Nut Retention Spring: Beryllium copper per QQ-C-533. Unplated
- Insulators: PTFE fluorocarbon per ASTM D 1710 and ASTM D 1457
- Mounting Hardware: Brass per QQ-B-626 or QQ-B-613, gold plated per MIL-G-45204 .00001″ min. or nickel plated per QQ-N-290

*All gold plated parts include a .00005″ min. nickel underplate barrier layer.