

PACSR24012

24V Output AC/DC Converter, Module Package

FEATURES

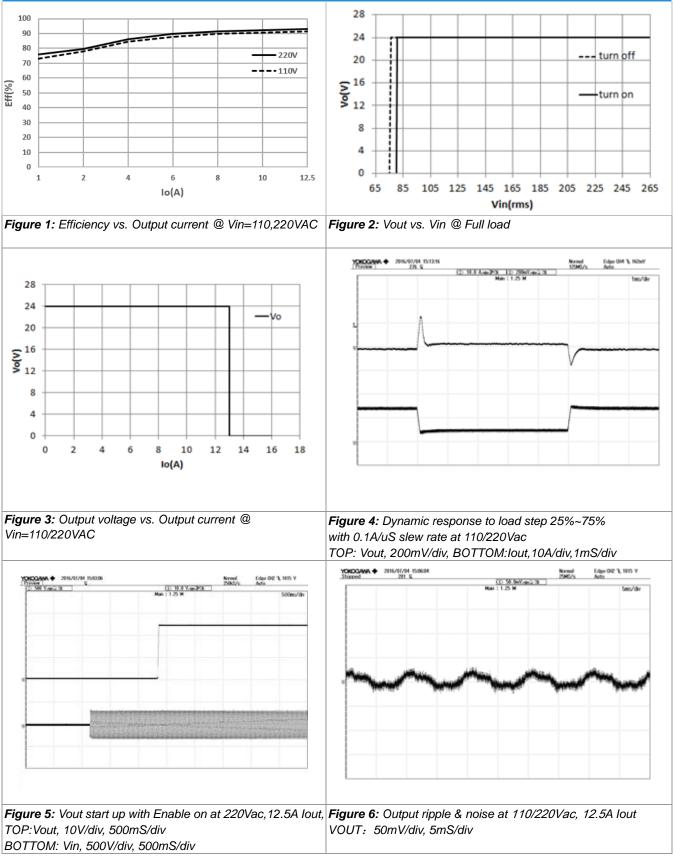
- Full Load Efficiency up to 92.5% @220VAC
- Metal Case Box Type Package
- Package Dimension:
- 110.8x50.8x13.7mm (4.36"x2.0"x0.54")
- Operating Baseplate Temperature Range 40°C to +100°C
- Input Brown-Out, Output OCP, OTP, OVP, SHORT protection
- 3000VAC Isolation
- RoHs Compliant
- CE Mark
- EMC compatible: CISPR22 ClassB (with external EMC filter)
- ISO 9001, ISO 14001 certified manufacturing facility
- UL/cUL 60950-1 (US & Canada)
- Surge immunity(with external EMC filter): AC: ±1 kV differential mode AC: ±2 kV common mode

The PACSR24012, a wide input voltage range of 85~265VAC, and single isolated output converter, is the latest product offering from a world leader in power systems technology and manufacturing — Delta Electronics, Inc. Such module type ACDC converter can provide 300W, 24V regulated DC output voltage with full load efficiency up to 92.5% @220Vac; the PACSR24012 offers Brown-out, output OCP, OTP, OVP and Short protections, and allows a wide operating baseplate temperature range of -40° C to $+100^{\circ}$ C. With creative design technology and optimization of component placement, this converter possess outstanding electrical and thermal performance, as well as high reliability under extremely harsh operating conditions.

(All specifications valid base on the connection of figure 10, unless otherwise indicated)

INPUT CHARACTERISTI	CS				
Item	Condition	Min.	Тур.	Max.	Unit
Rated input voltage range		100	110/220	240	VAC
Max input voltage range		85		265	VAC
Input voltage frequency range		45	50/60	65	Hz
Maximum Input Current	Vin=85VAC, 100% Load			4.5	A
Input PF value	Vin=110VAC, 100% Load	95			%
Allowable bus capacitance range Note(1)	Vin=110/220VAC 100% Load	660		1000	uF
OUTPUT CHARACTERIST	ICS				
Item	Conditions	Min.	Тур.	Max.	Unit
PG high	Good state	3.0	3.2	3.4	V
PG low	Fault state	0		0.8	V
PG delay time	Vbus=0V,			2500	
FG delay lime	Vin >75V to PG signal >1V			2500	ms
PG source current	PG high			+0.3	mA
PG sink current	PG low			-0.3	mA
Output voltage setpoint	Vin=220VAC, Io=0-12.5A	23.6	24	24.4	Vdc
Out put current range		0		12.5	A
Output OCP point		13	15.5	18	A
Turn-on rise time			15		ms
Start up time	Vin=110/220VAC		1500		mS
Hold up time	Vin=110/220VAC, Io= 100% Load		20		mS
Output OVP point		27	29	30.5	V

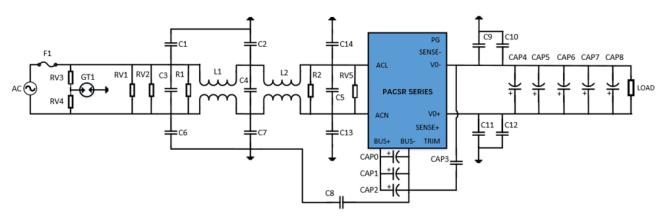
	Positive voltage step, 75% to 25% load		800	1000	mV
Output Current Transient	dynamic, 0.1A/us slew rate				
	Negative voltage step, 25% to 75% load		800	1000	mV
	dynamic, 0.1A/us slew rate				
	Vin=110/220Vac, Io=12.5A, peak to peak,		150		mV
Output Voltage Ripple and Noise	20MHz bandwidth			<u> </u>	
2 · · · · · ·	RMS		80	<u> </u>	mV
Output overshoot				3	%
Efficiency @ 60% Load	Vin=110VAC		89.5		%
Efficiency @ 60% Load	Vin=220VAC		90.5		%
Efficiency @ 100% Load	Vin=110VAC		91.5		%
Efficiency @ 100% Load	Vin=220VAC		92.5		%
Allowable output capacitance range $^{\text{Note}(2)}$		1080		5000	uF
GENERAL CHARACTERIS	STICS				
Item	Conditions	Min.	Тур.	Max.	Unit
	Input to output		3000		VAC
I/O Isolation Voltage	Input to case		1500		VAC
	Output to case		500		VAC
I/O Isolation Resistance	500Vdc	10			MΩ
MTBF	Ta=25°C, normal input,100%load		1.2		Mhours
Weight			225		g
ENVIRONMENTAL SPEC	IFICATIONS				
Parameter	Conditions	Min.		Max.	Unit
Storage Temperature Range		-40		+125	°C
Operating Temperature Range	Case Temperature	-40		+105	°C
Operating altitude				3000	meter
TCT cycle Note(3)					
THB cycle Note(4)(5)			1		


==Note==

- (1) About the bus cap., please find details in section "SIMPLIFIED APPLICATION CIRCUIT".
- (2) About the min. and max. output cap., please find details in section "SIMPLIFIED APPLICATION CIRCUIT".
- (3) The testing conditions of TCT cycle are as follows:
 - 1.1 Temperature Range: -40°C±3°C ~125°C±3°C
 - 1.2 Dwell time: 30min
 - 1.3 Ramp rate: 20°C/min.
 - 1.4 Cycling: 200 cycles
 - 1.5 Units shall be unpowered
- (4) The THB test starts with a pre-conditioning soak of all units for 72hrs under the following conditions:
 - 2.1 Unpowered
 - 2.2 Ambient temperature: 85°C
 - 2.3 Relative humidity: 85%
- (5) The THB Testing is performed for 1000hrs under the following conditions:
 - 3.1 Input Voltage: Maximum Voltage
 - 3.2 Output Load: Minimum load
 - 3.3 Ambient temperature: The max rated ambient temperature or $85^\circ\!\mathrm{C}$, whichever is less.
 - 3.4 Relative humidity: 85%

*Specifications are subject to change without notice

ELECTRICAL CURVES



T: Output over voltage protection at DVac, 12.5A Figure 8: / OUT: 5V/div, 500mS/div		220Vac. lin: 10A/c
Vac, 12.5A OUT: 5V/div, 500mS/div ◆ 2019/12/26 10:1551 Normal 2 000000000000000000000000000000000000		220Vac. lin: 10A/c
2010/12/5 10:651		220Vac. lin: 10A/c
ac, 12.5A JT: 5V/div, 500mS/div 2016/12/26 10:1651 2016/12/26 10:1651 2016/12/26 10:1651 2016/12/26 10:1651 2016/12/26 10:1651		220Vac. lin: 10A/c
ac, 12.5A UT: 5V/div, 500mS/div 2016/12/20 10:1551 2 0 100 V_may BB 31.2MS/5 Educ(0) CD # 31.2MS/5 Normal	ruch current @ \/in_1	220Vac. lin: 10A/c
2016/12/26 10:1551	ruch current @ \/in_f	220Vac. lin: 10A/c
ac, 12.5A UT: 5V/div, 500mS/div	ruch current @ \/in_f	220Vac. lin: 10A/c
2010/12/25 10:1551	ruch current @ \/in_f	220Vac. lin: 10A/c
ac, 12.5A JT: 5V/div, 500mS/div 2018/12/26 10:1651 2018/12/26 10:1651 2018/12/26 10:1651 2018/12/26 10:1651 2018/12/26 10:1651	ruch current @ \/in_1	220Vac. lin: 10A/c
ac, 12.5A JT: 5V/div, 500mS/div 2018/12/26 10:1651 2 00 100 / watting 10:00 J. F. 100 / watting 10:00 / watting 10:00 J. F. 100 / watting 10:00 /	ruch current @ Vin-1	220Vac. lin: 10A/c
ac, 12.5A JT: 5V/div, 500mS/div 2018/12/26 10:1651 2018/12/26 10:1651 2018/12/26 10:1651 2018/12/26 10:1651 2018/12/26 10:1651	ruch current @ Vin-1	220Vac. lin: 10A/c
C, 12.5A <i>IT: 5V/div, 500mS/div</i>	ruch current @ Vin-1	220Vac. lin: 10A/c
c, 12.5A IT: 5V/div, 500mS/div	ruch current @ Vin-1	220Vac. lin: 10A/c
c, 12.5A IT: 5V/div, 500mS/div	rush ourroot @ Via-C	220Vac. lin: 10A/c
ac, 12.5A JT: 5V/div, 500mS/div 2016/12/26 10:1651 2016/12/26 10:1651 2016/12/26 10:1651 2016/12/26 10:1651 2016/12/26 10:1651	rush ourrant @ Vin_C	220Vac. lin: 10A/c
C, 12.5A IT: 5V/div, 500mS/div 118/12/26 10:1551 2 2 2 100 Vary PDR 31.2965/s Educ(0) GB.F Normal 31.2965/s Normal	rush current @ Vin_1	220Vac. lin : 10A/c
12.5A T: 5V/div, 500mS/div 12/26 10:1651 12/26 10:1651 12/26 10:1651 131.2MS/5 10/169 10/169 10/16 10	rush current @ Vin_C	220Vac. lin: 10A/c
x12.5A T: 5V/div, 500mS/div x12/26 16:651 x12/26 16:75 x12/26	rush current @ Vin_?	220Vac. lin: 10A/c
, 12.5A <i>T:</i> 5V/div, 500mS/div ¹² ∞ 1.00 V _{ere} ≥ 1 ² ∞ 1.00 V _{ere} ≥ 1 ^{31.2MS/s} Nermal	rush current @ Vin_C	220Vac. lin: 10A/c
12.5A T: 5V/div, 500mS/div 12/26 10:1651 12/26 10:1651 12/26 10:1651 131.2MS/5 10/169 10/169 10/16 10	rush current @ Vin_C	220Vac. lin:10A/c
12.5A <i>F:</i> 5V/div, 500mS/div //2/26 101651 ₩ Normal 2 0 100 V _{ery} ¥ 1 31.25M5/6 Normal		
Image: State of the s		
T: 5V/div, 500mS/div 8/12/26 10:1651 Normal 2 00 1.00 Versellina		
2016/12/26 10:15:51 U Normal Edge(0) OID # 2 31.29MS/s Normal		
2016/12/26 10:15:51 2 31.2MS/s Normal 31.2MS/s Normal		
2016/12/26 10:15:51 2016/12/26 10:15:51 C C C C C C C C C C C C C		
Z Q 10 V _{cdtr2} PIX 31.25MS/s_Normal		
Mein : 6.25 M 20ms/div		
PO veltare ve Veut @Vie 2001/ 04/		
PG voltage vs. Vout @Vin=220Vac,0Alout		
10V/div, 20mS/div BOTTOM: PG, 1V/div,		

SIMPLIFIED APPLICATION CIRCUIT

Note: PACSR series does not support parallel application

Figure 10: Application connection

No	Location	Item	Value	Part No.
1	Cap0	Bus cap	220uF/450V	Capacitor should have good
2	Cap1	Bus cap	220uF/450V	low-temperature characteristics, keep at least 75% capacitance at -40°C if need
3	Cap2	Bus cap	220uF/450V	-40°C application. Note(6)
4	Cap3	Cap for pri-sec	2200pF/250Vac Y1/X1	
5	Cap4	Output cap	1000uF/35V	ESR≤16m Ω (100kHz), Rated ripple≥ 2920mArms (105°C) ^{Note(7)}
6	Cap5	Output cap	270uF/35V	
7	Cap6	Output cap	270uF/35V	ESR \leq 17m Ω (100kHz), Rated ripple \geq
8	Cap7 Output cap	270uF/35V	2200mArms(125°C) ^{Note(8)}	
9	Cap8	Output cap	270uF/35V	
10	F1	Input Fuse	10A/250Vac	
11	RV1	Input VDR	300VAC	TVR14471KOOOTB9Y/THINKING
12	RV2	Input VDR	300VAC	TVR14471KOOOTB9Y/THINKING
13	RV3	Input VDR	300VAC	TVR14471KOOOTB9Y/THINKING
14	RV4	Input VDR	300VAC	TVR14471KOOOTB9Y/THINKING
15	RV5	Input VDR	300VAC	TVR14471KOOOTB9Y/THINKING
16	GT1	Input GAS TUBE	2.5KV/10KA	B88069X8661S102(EF2500X8S)
17	C1	Input Y-cap	100pF/250Vac Y2/X1	
18	C2	Input Y-cap	4700pF/250Vac Y2/X1	
19	C3	Input X-cap	1uF /305VAC X2	
20	C4	Input X-cap	0.47uF /275VAC X2	
21	C5	Input X-cap	0.47uF /275VAC X2	
22	C6	Input Y-cap	100pF/250Vac Y2/X1	
23	C7	Input Y-cap	4700pF/250Vac Y2/X1	
24	C8	Cap for pri-PE	1500pF/250Vac Y1/X1	
25	C9	Output Y-cap	4700pF/250Vac Y2/X1	
26	C10	Output Y-cap	4700pF/250Vac Y2/X1	
27	C11	Output Y-cap	4700pF/250Vac Y2/X1	

28	C12	Output Y-cap	4700pF/250Vac Y2/X1	
29	C13	Input Y-cap	100pF/250Vac Y2/X1	
30	C14	Input Y-cap	100pF/250Vac Y2/X1	
31	L1	Input chock	11mH ф1mm	
32	L2	Input chock	11mH ф1mm	
33	R1	Input RES	1/4W 820Kohm	
34	R2	Input RES	1/4W 820Kohm	

*read the Application Note for this module carefully before using the power supply unit

==Note==

(1) and (6): About the bus cap., please read the Application Note about the hold up time configure.
(2) and (8): About the min. output cap., please use the cap. which has more performance than the cap. in the table above, or refer the cap. about the output cap. ability in the Application Note.
(2) and (7): About the max. output cap., please follow the Application Note about the output cap. ability.

THERMAL CONSIDERATION

Thermal management is an important part of the system design. To ensure proper, reliable operation, sufficient cooling of the power module is needed over the entire temperature range of the module. Conduction cooling is usually the dominant mode of heat transfer.

Thermal Testing Setup

The following figure shows the testing setup in which the power module is mounted on an AI plate and was cooled by cooling liquid.

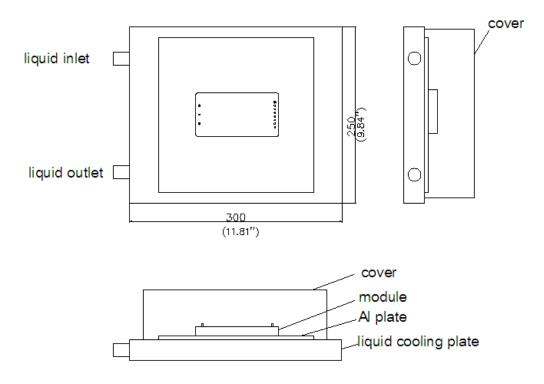


Figure 11: Thermal test setup

THERMAL DERATING CURVE

The following figure shows the location to monitor the temperature of the module's baseplate. The baseplate temperature in thermal curve is a reference for customer to make thermal evaluation and make sure the module is operated under allowable temperature. (Thermal curves shown in Figure13 are based on different input voltage).

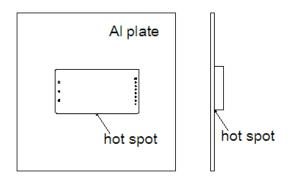
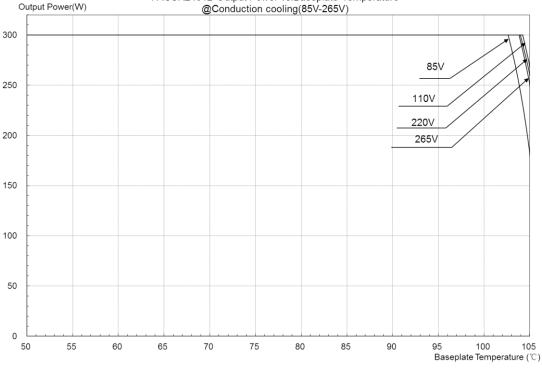
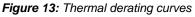
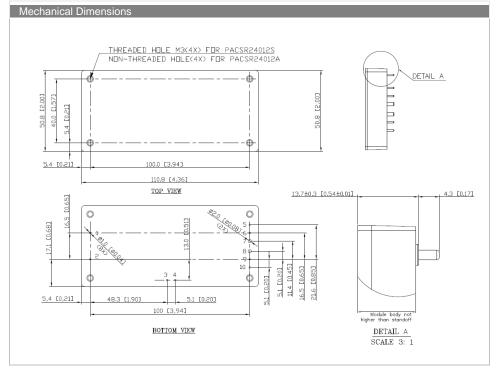
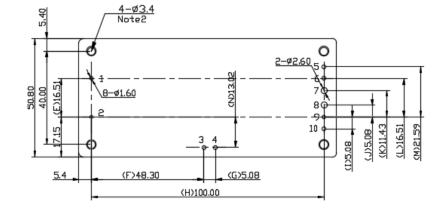




Figure 12: Baseplate's temperature measured point



PACSR24012 Output Power vs.Baseplate Temperature

MECHANICAL DRAWING



Pin Conn	ection
Pin	Function
1	ACL
2	ACN
3	BUS+
4	BUS-
5	PG
6	SENSE-
7	VOUT-
8	VOUT+
9	SENSE+
10	NC

All dimensions in mm (inches) Tolerance:X.X±0.5 (X.XX±0.02) X.XX±0.25 (X.XXX±0.010)

RECOMMENDED P.W.B PAD LAYOUT

RECOMMENDED P.W.B. PAD LAYOUT

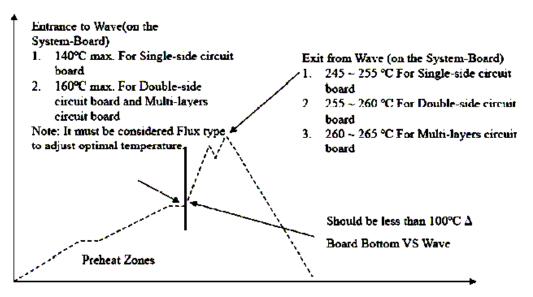
PIN # FUNCTION D_PIN Ø1.00 1 ACL 2 Ø1.00 ACN 3 Ø1.00 Bus+ Ø1.00 4 Bus-5 PG Ø1.00 6 Ø1.00 Sense-7 Ø2.00 Vout-Ø2.00 8 Vout+ 9 Sense+ Ø1.00 10 NC Ø1.00

NDTE1

FOR MODULES WITH THROUGH-HOLE PINS AND THE OPTIONAL HEAT SPREADER, THEY ARE INTENDED FOR WAVE SOLDERING ASSEMBLY ON TO SYSTEM BOARDS. PLEASE DO NOT SUBJECT SUCH MODULES THROUGH REFLOW TEMPERATURE PROFILE.

NDTE2

AT THESE FOUR HOLES POSITION, IT SHOULD USE SCREWS TO FIX THE POWER MODULE ON CUSTOMER SYSTEM BOARD.


SOLDERING METHOD

Generally, as the most common mass soldering method for the solder attachment, wave soldering is used for through-hole power modules and reflow soldering is used for surface-mount ones. Delta recommended soldering methods and process parameters are provided in this document for solder attachment of power modules onto system board. SAC305 is the suggested lead-free solder alloy for all soldering methods. The soldering temperature profile presented in this document is based on SAC305 solder alloy.

Reflow soldering is not a suggested method for through-hole power modules due to many process and reliability concerns. If you have this kind of application requirement, please contact Delta sales or FAE for further confirmation.

Wave Soldering (Lead-free)

Delta's power modules are designed to be compatible with single-wave or dual wave soldering. The suggested soldering process must keep the power module's internal temperature below the critical temperature of 217°C continuously. The recommended wave-soldering profile is shown below:

Note: The temperature is measured on solder joint of pins of power module.

The typical recommended (for double-side circuit board) preheat temperature is $115+/-10^{\circ}$ C on the top side (component side) of the circuit board. The circuit-board bottom-side preheat temperature is typically recommended to be greater than 135° C and preferably within 100° C of the solder-wave temperature. A maximum recommended preheat up rate is 3° C /s. A maximum recommended solder pot temperature is $255+/-5^{\circ}$ C with solder-wave dwell time of $3\sim6$ seconds. The cooling down rate is typically recommended to be 6° C/s maximum.

Hand Soldering (Lead Free)

Hand soldering is the least preferred method because the amount of solder applied, the time the soldering iron is held on the joint, the temperature of the iron, and the temperature of the solder joint are variable. The recommended hand soldering guideline is listed in Table below. The suggested soldering process must keep the power module's internal temperature below the critical temperature of 217°C continuously.

Parameter	Single-side	Double-side	Multi-side
	Circuit Board	Circuit Board	Circuit Board
Soldering Iron Wattage	90₩	90₩	90₩
Tip Temperature	385+/-10℃	420+/-10℃	420+/-10℃
Soldering Time	2 $^{\sim}$ 6 seconds	4 $^{\sim}$ 10 seconds	4 $^{\sim}$ 10 seconds

Case Size	:	NE 110.8x50.8x13.7mm (4.36"x2.0"x0.54")
Case Material	:	AL6061+Plastic case
Weight	:	225g

PARINU	PART NUMBERING STSTEM								
Р	AC	S	R	24	012	А			
Form Factor	Rated Input Voltage	Number of Outputs	Product Series	Output Voltage	Output Current	Option Code			
P-Module	AC - 100VAC~240VAC	S - Single	R - Regular	24V	12.5A	A – Through hole S – Screw hole(M3*0.5)			

MODEL LIST						
Model Name	Rate Ir	nput	Outp	ut	EFF @220VAC 100% LOAD	
PACSR24012A	100VAC~240VAC	3.8A	24V	12.5A	92%	
PACSR24012S	100VAC~240VAC	3.8A	24V	12.5A	92%	

WARRANTY

Delta offers a two (2) years limited warranty. Complete warranty information is listed on our web site or is available upon request from Delta.

Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these specifications at any time, without notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Delta Electronics:
PACSR24012S PACSR24012A