

PACSR12042

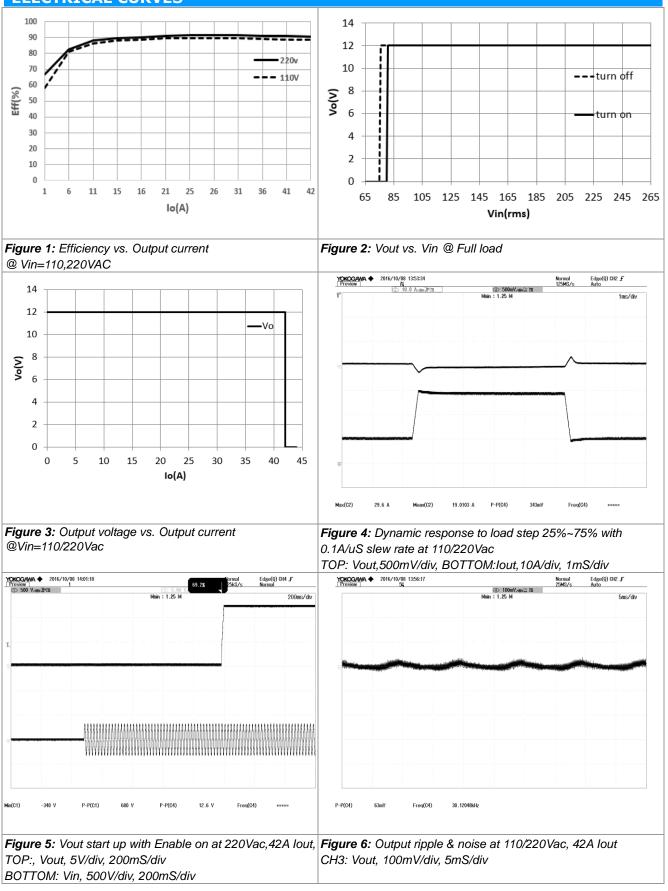
12V Output AC/DC Converter, Module Package

The PACSR12042, a wide input voltage range of 85~265VAC, and single isolated output converter, is the latest product offering from a world leader in power systems technology and manufacturing — Delta Electronics, Inc. Such module type ACDC converter can provide 500W, 12V regulated DC output voltage with full load efficiency up to 91% @220Vac; the PACSR12042 offers Brown-out, output OCP, OTP, OVP and Short protections, and allows a wide operating baseplate temperature range of -40° C to $+100^{\circ}$ C. With creative design technology and optimization of component placement, this converter possesses outstanding electrical and thermal performance, as well as high reliability under extremely harsh operating conditions.

(All specifications valid base on the connection of figure 10, unless otherwise indicated)

Item	Condition	Min.	Тур.	Max.	Unit
Rated input voltage range		100	110/220	240	VAC
Max input voltage range		85		265	VAC
Input voltage frequency range		45	50/60	65	Hz
Maximum Input Current	Vin=85VAC, 85% Load			6.3	А
Input PF value	Vin=110VAC, 100% Load	0.95			
Allowable bus capacitance range Note(1)	Vin=110/220VAC 100% Load	660		1000	uF
OUTPUT CHARACTERIST	ICS				
Item	Conditions	Min.	Тур.	Max.	Unit
PG high	Good state	3.0	3.2	3.4	V
PG low	Fault state	0		0.8	V
PG delay time	Vbus=0V,			0500	
FG delay lime	Vin >75V to PG signal >1V			2500	ms
PG source current	PG high			+0.3	mA
PG sink current	PG low			-0.3	mA
Output voltage setpoint	Vin=220VAC, Io=0-42A	11.8	12.0	12.2	Vdc
Output current range		0		42	А
Output OCP point		44	50	56	А
Turn-on rise time			15		mS
Start up time	Vin=110/220VAC		1500		mS
Hold up time	Vin=110/220VAC, Io= 100% Load		20		mS
Output OVP point		13	14	15	V
	Positive voltage step, 75% to 25% load		300	600	mV
Output Current Transient	dynamic, 0.1A/us slew rate		300	000	mv
	Negative voltage step, 25% to 75% load		300	600	mV
	dynamic, 0.1A/us slew rate			000	

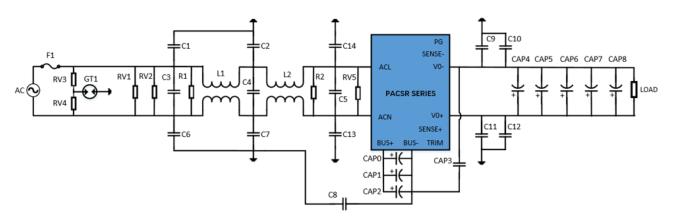
Output Voltage Ripple and Noise	Vin=110/220Vac, Io=42, peak to peak, 20MHz bandwidth		100	300	mV
	RMS		50	100	mV
Output overshoot				3	%
Efficiency @ 60% Load	Vin=110VAC		90		%
Efficiency @ 60% Load	Vin=220VAC		91.5		%
Efficiency @ 100% Load	Vin=110VAC		89		%
Efficiency @ 100% Load	Vin=220VAC		91		%
Allowable output capacitance range Note(2)	Vin=110/220VAC, Io= 100% Load	4000		10000	uF
GENERAL CHARACTERIS	TICS				
Item	Conditions	Min.	Тур.	Max.	Unit
	Input to output		3000		VAC
I/O Isolation Voltage	Input to case		1500		VAC
Γ	Output to case		500		VAC
I/O Isolation Resistance	500Vdc	10			MΩ
MTBF	Ta=25°C, normal input,100%load		1.2		Mhours
Weight			230		g
ENVIRONMENTAL SPECI	FICATIONS				
Parameter	Conditions	Min.		Max.	Unit
Storage Temperature Range		-55		+125	°C
Operating Temperature Range	Plate Temperature	-40		+100	°C
Over Temperature Protection (OTP)	Plate Temperature, Vin=220VAC		109		°C
OTP Restart Hysteresis	· · ·		25		°C
Operating altitude				3000	Meter
TCT cycle Note(3)			200		Cycle
THB cycle Note(4)(5)			1000		Hours


==Note==

- (1) About the bus cap., please find details in section "SIMPLIFIED APPLICATION CIRCUIT".
- (2) About the min. and max. output cap., please find details in section "SIMPLIFIED APPLICATION CIRCUIT".
- (3) The testing conditions of TCT cycle are as follows:
 - 1.1 Temperature Range: -40°C±3°C ~125°C±3°C
 - 1.2 Dwell time: 30min
 - 1.3 Ramp rate: 20°C/min.
 - 1.4 Cycling: 200 cycles
 - 1.5 Units shall be unpowered
- (4) The THB test starts with a pre-conditioning soak of all units for 72hrs under the following conditions:
 - 2.1 Unpowered
 - 2.2 Ambient temperature: 85° C
 - 2.3 Relative humidity: 85%
- (5) The THB Testing is performed for 1000hrs under the following conditions:
 - 3.1 Input Voltage: Maximum Voltage
 - 3.2 Output Load: Minimum load
 - 3.3 Ambient temperature: The max rated ambient temperature or 85°C, whichever is less.
 - 3.4 Relative humidity: 85%

*Specifications are subject to change without notice

ELECTRICAL CURVES



New 12.5 M 500ms/dv 14.07 V Freq(04) 528.8272mHz Inte 7: Output over voltage protection at 220Vac, 42A lout Vout: 2V/div, 500mS/div	Near 1.25 M 500ms/dv I.a. I.a. I.a. I.a. I.a. </th <th>Wag 1.25 M 500ms/dv 1 500ms/dv 1 1 1 1 10 1.97 V Freq00 528.6272mHz Figure 7: Output over voltage protection at 0/220 Vac, 42A lout Vout: 2 V/div, 500mS/div</th> <th>TOKOGAWA</th> <th>2016/10/08 14:12:53 1</th> <th></th> <th>L</th> <th>Normal 250kS/s</th> <th>Edge(Q) CH4 7. Normal</th> <th>YOKO Previ</th> <th>Gawa ♦ .ew</th> <th>GAWA ◆ 2015/09/17 14:06:15 iew 11 ② 10.0 A∠ew⊒শ⊡</th> <th>GAWA 2015/09/17 14:06:15</th> <th>GAMA ◆ 2015/09/17 14:06:15</th> <th>CAWAA ♦ 2015/09/17 14:06:15 Normal I 2.5MS/s</th>	Wag 1.25 M 500ms/dv 1 500ms/dv 1 1 1 1 10 1.97 V Freq00 528.6272mHz Figure 7: Output over voltage protection at 0/220 Vac, 42A lout Vout: 2 V/div, 500mS/div	TOKOGAWA	2016/10/08 14:12:53 1		L	Normal 250kS/s	Edge(Q) CH4 7. Normal	YOKO Previ	Gawa ♦ .ew	GAWA ◆ 2015/09/17 14:06:15 iew 11 ② 10.0 A∠ew⊒শ⊡	GAWA 2015/09/17 14:06:15	GAMA ◆ 2015/09/17 14:06:15	CAWAA ♦ 2015/09/17 14:06:15 Normal I 2.5MS/s
H.97 V FreqCA) 628.5272mHz Irre 7: Output over voltage protection at 220Vac,42A lout Figure 8: CH2:lin, 10	14.07 V FreqC4) 628.5272mHz Figure 8: Figure 8: CH2:In, 10 CH2:In, 10	14.07 V Freq(04) 628.6272mHz gure 7: Output over voltage protection at Figure 8: 0/220Vac,42A lout Vout: 2 V/div, 500mS/div			Me	© 2.00 V⊿aw⊒M ain : 1.25 M		/ 500ms/div			20 10.0 Axee Prod	<u>k⊘ 10.0 Avdev⊒tu j</u> Mole	(⊉ 10.0 A.day.⊉ta Main ≦ 125 k	(☎) 10.0 Avaiw⊉tas Main : 125 k
07 V FreqC4) 528.6272mHz 2: Output over voltage protection at /ac,42A lout Figure 8: Innu CH2:lin, 10A/	07 V FreqC4) 528.6272mHz 2: Output over voltage protection at /ac,42A lout Figure 8: Innu CH2:lin, 10A/	07 V FreqC4) 528.6272mHz 2: Output over voltage protection at /ac,42A lout Figure 8: Innu CH2:lin, 10A/									٨	٨	۸	۸
7 V Free(04) 628.6272mHz 7 Output over voltage protection at Vac,42A lout Figure 8: Inrush of CH2:lin, 10A/div, 500mS/div	7 V Free(04) 628.6272mHz 7 Output over voltage protection at Vac,42A lout Figure 8: Inrush of CH2:lin, 10A/div, 500mS/div	7 V Free(04) 628.6272mHz 7 Output over voltage protection at Vac,42A lout Figure 8: Inrush of CH2:lin, 10A/div, 500mS/div												
e 7: Output over voltage protection at Figure 8: Inrush cur 20Vac,42A lout Vout: 2V/div, 500mS/div CH2:lin, 10A/div, 5m	e 7: Output over voltage protection at Figure 8: Inrush cur 20Vac,42A lout Vout: 2V/div, 500mS/div CH2:lin, 10A/div, 5m	e 7: Output over voltage protection at Figure 8: Inrush cur 20Vac,42A lout Vout: 2V/div, 500mS/div CH2:lin, 10A/div, 5m							L					
Ire 7: Output over voltage protection at Figure 8: Inrush curre 220Vac,42A lout Vout: 2V/div, 500mS/div CH2:lin, 10A/div, 5mS	re 7: Output over voltage protection at Figure 8: Inrush curre 220Vac,42A lout Vout: 2V/div, 500mS/div CH2:lin, 10A/div, 5mS	ure 7: Output over voltage protection at Figure 8: Inrush current /220Vac,42A lout Vout: 2V/div, 500mS/div CH2:lin, 10A/div, 5mS								ad government		<u>, del conte e que des estas las testes</u>		
re 7: Output over voltage protection at Figure 8: Inrush curre 220Vac,42A lout Vout: 2V/div, 500mS/div CH2:lin, 10A/div, 5mS	re 7: Output over voltage protection at Figure 8: Inrush curre 220Vac,42A lout Vout: 2V/div, 500mS/div CH2:lin, 10A/div, 5mS	re 7: Output over voltage protection at Figure 8: Inrush current 220Vac,42A lout Vout: 2V/div, 500mS/div CH2:lin, 10A/div, 5mS												
A ← 2018/12/25 15:33:18 Kormal Edge(Q) DK3 F 2 COD 1.00 Vote:P33 Hom : 6:25 M 208cc/dv Hom : 6:25 M 208cc/dv	A ♦ 2018/12/25 15:33:18 Normal Code(0) DI3 F 7 31.2945/5 Normal Nam: 6.25 M 20ms/dv	A ← 2018/12/25 15:33:18 Normal Leave(2) 03:3 F 31:24€7.5 Leave(2) 03:3 F Normal 2018://br Normal 2018://br		7: Output o	ver voltag									
			-	◆ 2018/12/25 15:33:18 2 æ/∄'⊠	ti ⊠ 1.00 Vativ⊒≊ta Main	: 6.25 M	Normal 31.25MS/s	Horman						
			ure	9: PG volta	ge vs. Vo	ut @V	in=220Va	ac,0Alout						
ure 9: PG voltage vs. Vout @ Vin=220Vac,0Alout	re 9: PG voltage vs. Vout @ Vin=220Vac,0Alout	gure 9: PG voltage vs. Vout @ Vin=220Vac,0Alout		out, 5V/div, 2										

SIMPLIFIED APPLICATION CIRCUIT

Note: PACSR series does not support parallel application

Figure 10: Application connection

	AL value ADV			
No	Location	ltem	Value	Part Number
1	Cap0	Bus cap	220uF/450V	Capacitor should have good
2	Cap1	Bus cap	220uF/450V	low-temperature characteristics, keep at least 75% capacitance at
3	Cap2	Bus cap	220uF/450V	-40℃ if need -40C application. Note(6)
4	Cap3	Cap for pri-sec	2200pF/250Vac Y1/X1	
5	Cap4	Output cap	820uF/16V	
6	Cap5	Output cap	820uF/16V	
7	Cap6	Output cap	820uF/16V	ESR≪8m Ω (100kHz), Rated ripple≥ 7000mArms(125℃) ^{Note(7)}
8 Cap7		Output cap	820uF/16V	7000mAmia(125 C)
9	Cap8	Output cap	820uF/16V	
10	F1	Input fuse	10A/250Vac	
11	RV1	Input VDR	300VAC	TVR14471KOOOTB9Y/THINKING
12	RV2	Input VDR	300VAC	TVR14471KOOOTB9Y/THINKING
13	RV3	Input VDR	300VAC	TVR14471KOOOTB9Y/THINKING
14	RV4	Input VDR	300VAC	TVR14471KOOOTB9Y/THINKING
15	RV5	Input VDR	300VAC	TVR14471KOOOTB9Y/THINKING
16	GT1	Input GAS TUBE	2.5KV/10KA	B88069X8661S102(EF2500X8S)
17	C1	Input Y-cap	100pF/250Vac Y2/X1	
18	C2	Input Y-cap	4700pF/250Vac Y2/X1	
19	C3	Input X-cap	1uF /305VAC X2	
20	C4	Input X-cap	0.47uF /275VAC X2	
21	C5	Input X-cap	0.47uF /275VAC X2	
22	C6	Input Y-cap	100pF/250Vac Y2/X1	
23	C7	Input Y-cap	4700pF/250Vac Y2/X1	
24	C8	Cap for pri-PE	1500pF/250Vac Y1/X1	
25	C9	Output Y-cap	4700pF/250Vac Y2/X1	
26	C10	Output Y-cap	4700pF/250Vac Y2/X1	
27	C11	Output Y-cap	4700pF/250Vac Y2/X1	
28	C12	Output Y-cap	4700pF/250Vac Y2/X1	
29	C13	Input Y-cap	100pF/250Vac Y2/X1	

30	C14	Input Y-cap	100pF/250Vac Y2/X1	
31	L1	Input chock	11mН ф1mm	
32	L2	Input chock	11mН ф1mm	
33	R1	Input RES	1/4W 820Kohm	
34	R2	Input RES	1/4W 820Kohm	

*read the Application Note for this module carefully before using the power supply unit

==Note==

(1) and (6): About the bus cap., please read the Application Note about the hold up time configure.

(2) and (7): About the min. output cap., please use the cap. which has more performance than the cap. in the table above, or refer the cap. about the output cap. ability in the Application Note.

(2): About the max. output cap., please follow the Application Note about the output cap. ability.

INPUT VOLTAGE DERATING CURVE

Input voltage derating curve is shown in Fig.11.

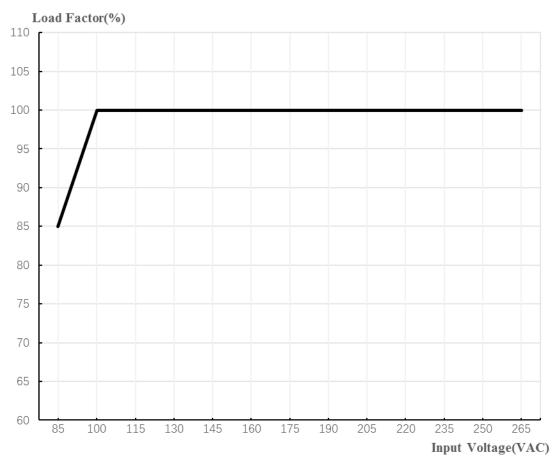


Figure 11: Input voltage derating curve

THERMAL CONSIDERATION

Thermal management is an important part of the system design. To ensure proper, reliable operation, sufficient cooling of the power module is needed over the entire temperature range of the module. Conduction cooling is usually the dominant mode of heat transfer.

Thermal Testing Setup

The following figure shows the testing setup in which the power module is mounted on an AI plate and was cooled by cooling liquid.

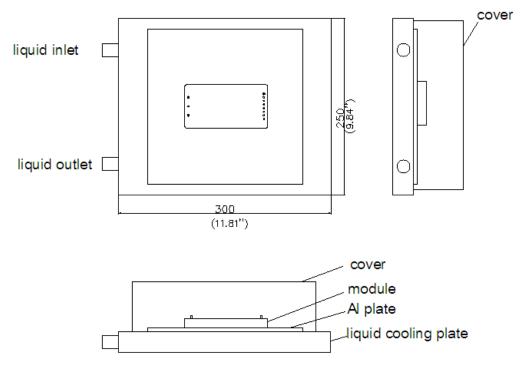


Figure 12: Thermal test setup

THERMAL DERATING CURVE

The following figure shows the location to monitor the temperature of the module's baseplate. The baseplate temperature in thermal curve is a reference for customer to make thermal evaluation and make sure the module is operated under allowable temperature. (Thermal curves shown in Figure14 are based on different input voltage).

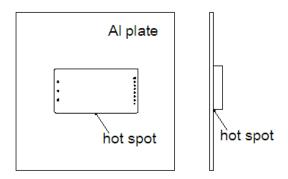
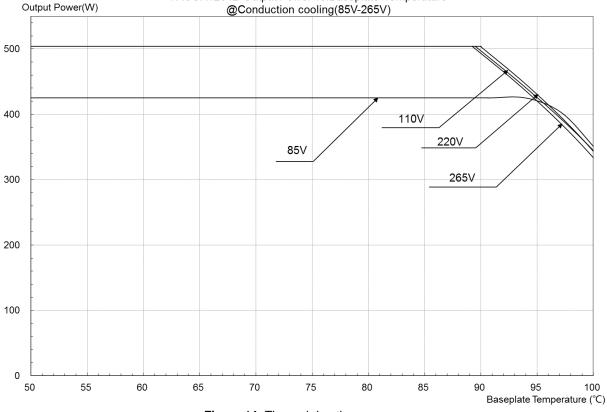
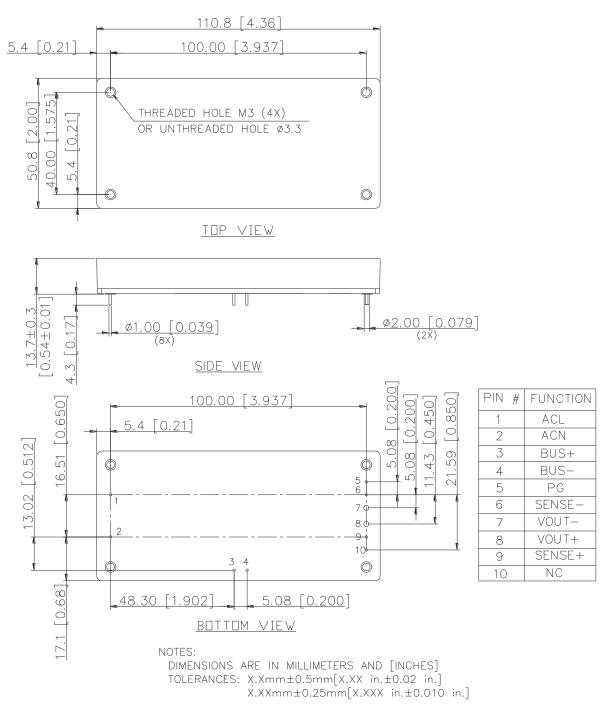



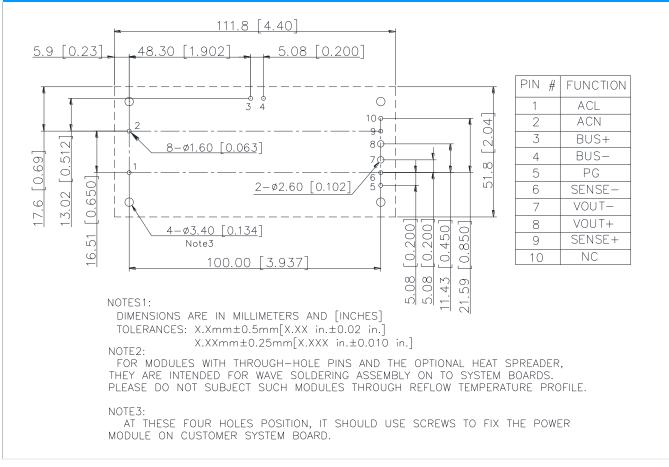
Figure 13: Baseplate's temperature measured point



PACSR12042 Output Power vs.Baseplate Temperature

Figure 14: Thermal derating curves

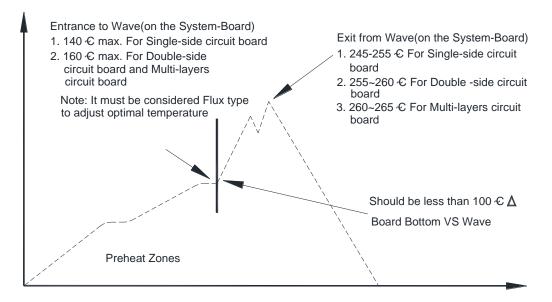
MECHANICAL DRAWING



NOTE: PIN10 requires floating.

PHYSICAL	MATER	[AL
Case Material	:	AL6061+Plastic case
Pin Material	:	Copper with matte Tin- plated over Nickel under plating

RECOMMENDED P.W.B PAD LAYOUT


SOLDERING METHOD

Generally, as the most common mass soldering method for the solder attachment, wave soldering is used for through-hole power modules and reflow soldering is used for surface-mount ones. Delta recommended soldering methods and process parameters are provided in this document for solder attachment of power modules onto system board. SAC305 is the suggested lead-free solder alloy for all soldering methods. The soldering temperature profile presented in this document is based on SAC305 solder alloy.

Reflow soldering is not a suggested method for through-hole power modules due to many process and reliability concerns. If you have this kind of application requirement, please contact Delta sales or FAE for further confirmation.

Wave Soldering (Lead-free)

Delta's power modules are designed to be compatible with single-wave or dual wave soldering. The suggested soldering process must keep the power module's internal temperature below the critical temperature of 217°C continuously. The recommended wave-soldering profile is shown below:

Note: The temperature is measured on solder joint of pins of power module.

The typical recommended (for double-side circuit board) preheat temperature is 115+/-10°C on the top side (component side) of the circuit board. The circuit-board bottom-side preheat temperature is typically recommended to be greater than 135°C and preferably within 100°C of the solder-wave temperature. A maximum recommended preheat up rate is 3°C/s. A maximum recommended solder pot temperature is 255+/-5°C with solder-wave dwell time of 3~6 seconds. The cooling down rate is typically recommended to be 6°C/s maximum.

Hand Soldering (Lead Free)

Hand soldering is the least preferred method because the amount of solder applied, the time the soldering iron is held on the joint, the temperature of the iron, and the temperature of the solder joint are variable. The recommended hand soldering guideline is listed in Table below. The suggested soldering process must keep the power module's internal temperature below the critical temperature of 217°C continuously.

Parameter	Single-side	Double-side	Multi-side	
	Circuit Board	Circuit Board	Circuit Board	
Soldering Iron Wattage	90W	90W	90W	
Tip Temperature	385+∕−10°C	420+∕−10°C	420+/−10°C	
Soldering Time	2 $^{\sim}$ 6 seconds	4 $^{\sim}$ 10 seconds	4 $^{\sim}$ 10 seconds	

PART NU	PART NUMBERING SYSTEM										
Р	AC	S	R	12	042	А					
Form Factor	Rated Input Voltage	Number of Outputs	Product Series	Output Voltage	Output Current	Option Code					
P - Module	AC - 100VAC~240VAC	S - Single	R - Regular	12V	42A	A - Through hole S - Screw hole(M3*0.5)					

MODEL LIST

Model name	Rated	Input	Outp	out	EFF @220VAC 100% LOAD
PACSR12042A	100VAC~240VAC	5.8A	12V	42A	91%
PACSR12042S	100VAC~240VAC	5.8A	12V	42A	91%

WARRANTY

Delta offers a two (2) years limited warranty. Complete warranty information is listed on our web site or is available upon request from Delta.

Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these specifications at any time, without notice

CONTACT US:

Website: www.deltaww.com/dcdc

USA: Telephone: East Coast: 978-656-3993 West Coast: 510-668-5100 Fax: 510-668-0680 Email: dcdc@deltaww.com

Europe: Telephone: +31-20-800-3900 Fax: +31-20-800-3999 Asia & the rest of world: Telephone: +886-3-452-6107 Ext. 6221~6226 Fax: +886-3-433-1810

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Delta Electronics:

PACSR12042S