

H48SC28025

700W 1/2th Brick DC/DC Power Modules

H48SC28025, Half Brick Family DC/DC Power Modules: 36~75V in, 28V/25A out, 700W

The H48SC28025 Series, 36~75V input, isolated single output, Half Brick, are full digital control DC/DC converters, and are the latest offering from a world leader in power systems technology and manufacturing — Delta Electronics, Inc. The H48SC28025 provide up to 700 watts of power in an industry standard, DOSA compliant footprint and pin out; the typical efficiency is 95.0% at 48V input, 28V output and 25A load. There is a built-in digital PWM controller in the H48SC28025, which is used to complete the Vo feedback, PWM signal generation, fault protection, and PMBUS communications, and so on. With the digital control, many design and application flexibility, advanced performance, and reliability are obtained.

FEATURES

- High efficiency: 95.0% @ 28V/25A
- Size:

61.0x57.9x12.7mm (2.40"x2.28"x0.5") with Base-plate

- Industry standard footprint and pinout
- Fixed frequency operation
- Input UVLO
- OTP and output OVP
- Output OCP hiccup mode
- Output voltage trim down to 23V
- Output voltage trim up to 34V
- Monotonic startup into normal and pre-biased loads
- 1500V isolation and basic insulation
- No minimum load required
- No negative current during power or enable on/off
- ISO 9001, TL 9000, ISO 14001, QS 9000, OHSAS18001 certified manufacturing facility
- IEC/EN/UL/CSA 62368-1, 2nd edition
- ► IEC/EN/UL/CSA 60950-1, 2nd edition+A2

OPTIONS

- Negative or Positive remote On/Off
- Digital pins, PMBus

SOLDERING METHODS

- Wave soldering
- Hand soldering

APPLICATIONS

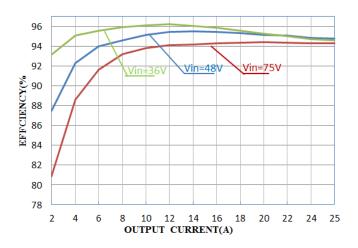
- Optical Transport
- Data Networking
- Communications
- Servers

TECHNICAL SPECIFICATIONS

(T_A =25°C, airflow rate=300 LFM, V_{in} =48Vdc, nominal Vout unless otherwise noted.)

PARAMETER	NOTES and CONDITIONS			C28025	
		Min.	Тур.	Max.	Units
BSOLUTE MAXIMUM RATINGS					Vdo
nput Voltage Continuous		0		80	Vdc Vdc
Transient		U		100	Vdc
Operating Ambient Temperature		-40		85	°C
Storage Temperature		-55		125	°C
nput/Output Isolation Voltage				1500	Vdc
NPUT CHARACTERISTICS					
Operating Input Voltage		36	48	75	Vdc
Input Under-Voltage Lockout Turn-On Voltage Threshold		32.0	34.0	36.0	Vdc
Turn-Off Voltage Threshold		30.0	32.0	35.0	Vdc
Lockout Hysteresis Voltage		1	2	3	Vdc
Maximum Input Current	Full Load, 36Vin		_	22	A
No-Load Input Current	Vin=48V, Io=0A		170		mA
Off Converter Input Current	Vin=48V, Io=0A		22		mA
Inrush Current (I ² t)				1	A ² s
Input Reflected-Ripple Current	P-P thru 12µH inductor, 5Hz to 20MHz		500		mArn
Input Voltage Ripple Rejection	120 Hz		60		dB
OUTPUT CHARACTERISTICS	Vir. 40V/ In In T. 0500	07.44	00	00.50	
Output Voltage Set Point	Vin=48V, Io=Io.max, Tc=25°C	27.44	28	28.56	Vdo
Output Regulation	lo-lo min to lo mov			+140	m\
Over Load Over Line	lo=lo, min to lo, max Vin=36V to 75V			±140 ±140	mV mV
Over Line Over Temperature	Vin=36V to 75V Tc=-40°C to 85°C			±140 ±140	mv mV
Total Output Voltage Range	Over sample load, line and temperature	27.16	28	28.84	V
Output Voltage Ripple and Noise	5Hz to 20MHz bandwidth	27.10	20	20.04	
Peak-to-Peak	Vin=48V, Full Load, 50µF ceramic, 1350uF Electrolytic Capacitor		200		m∨
RMS	Vin=48V, Full Load, 50µF ceramic, 1350uF Electrolytic Capacitor		70		m۷
Operating Output Current Range	Vin=36V to75V	0		25	Α
Output Over Current Protection(hiccup mode)	Output Voltage 10% Low	27		31	Α
YNAMIC CHARACTERISTICS					
Output Voltage Current Transient	48Vin, 50μF ceramic, 1350uF Electrolytic Capacitor, 0.1A/μs				
Positive Step Change in Output Current	75% lo.max to 50% lo.max		500		mV
Negative Step Change in Output Current	50% lo.max to 75% lo.max		500		mV
Settling Time (within 1% Vout nominal)			200		μs
Turn-On Transient Start-Up Time, From On/Off Control			145		mS
Start-Up Time, From Input			160		mS
Otalt op Time, From input	Full load; 5% overshoot of Vout at startup, low ESR cap .		100		
Output Capacitance	(advice:5pcs*HHXB350ARA271MJA0G: 35V/270uF +5pcs*10uF/50V)	1350		5000	μF
EFFICIENCY					
100% Load	Vin=36V		94		%
100% Load	Vin=48V		94		%
60% Load	Vin=48V		95		%
SOLATION CHARACTERISTICS				4500	\ / -I
Input to Output		10		1500	Vd:
Isolation Resistance Isolation Capacitance		10	6.9		nF
FEATURE CHARACTERISTICS			0.8		ПГ
Switching Frequency			120		KH:
ON/OFF Control, Negative Remote On/Off logic			.20		1311
Logic Low (Module On)	Von/off			0.8	V
Logic High (Module Off)	Von/off	3.5		8	V
ON/OFF Control, Positive Remote On/Off logic	V 5/1/ OII	0.0		J	,
Logic Low (Module Off)	Von/off			0.8	V
Logic High (Module On)	Von/off	3.5		10	V
DN/OFF Current (for both remote on/off logic)	Ion/off at Von/off=0.0V	0.0		1	m/
eakage Current (for both remote on/off logic)	Logic High, Von/off=5V			'	111/
Output Voltage Trim Range (note1)	Pout ≤ max rated power,lo ≤ lo.max	23		33	V
Output Voltage Remote Sense Range	Pout ≤ max rated power, lo ≤ lo.max Pout ≤ max rated power, lo ≤ lo.max	-3		+10	%
Output Over-Voltage Protection	% of nominal Vout	125		150	%
GENERAL SPECIFICATIONS	% of nominal vout	125		100	%
	In-20% of In-max: Ta-25°C, sirflaw rate-2001 EM		TPD		Mhou
MTBF	Io=80% of Io, max; Ta=25°C, airflow rate=300LFM		TBD		
Weight	With Baseplate		93.5		gram
Over-Temperature Shutdown (With Base plate)	Refer to Figure 18 for Hot spot on Base plate location (48Vin,80% lo)		110		°C
Over-Temperature Shutdown (NTC resistor)			140		°C

Note1: Vout trim up voltage is limited when Vin is less than 38V, if need wider Vout trim range, please contact with Delta.


DIGITAL INTERFACE SPECIFICATIONS

(T_A=25°C, airflow rate=400 LFM, V_{in}=48Vdc, nominal Vout unless otherwise noted.)

PARAMETER	NOTES and CONDITIONS				
		Min.	Тур.	Max.	Units
PMBUS SIGNAL INTERFACE CHARACTERISTICS					
Input High Voltage (CLK, DATA)		2.4		3.6	Vdc
Input Low Voltage (CLK, DATA)		0		0.8	Vdc
Input high level current (CLK, DATA)		-10		10	uA
Input low level current (CLK, DATA)		-10		10	uA
Output Low Voltage (SMBALERT#)	IOUT=2mA			0.4	Vdc
Output high level open drain leakage current	VOUT=3.6V	0		10	uA
(SMBALERT#)	V G G 1 = 0.0 V	U		10	4
PMBus Operating frequency range		100		400	kHz
Measurement System Characteristics					
Output current reading accuracy	16.5A <iout<35a< td=""><td>-5</td><td>1.4</td><td>3</td><td>%</td></iout<35a<>	-5	1.4	3	%
Output current reading accuracy	1A <iout<16.5a< td=""><td>-1.7</td><td></td><td>2.5</td><td>Α</td></iout<16.5a<>	-1.7		2.5	Α
VOUT reading accuracy			1		%
VIN reading accuracy		-2		+2	Vdc
Temperature sense range		0			°C
Temperature reading accuracy		-5		+5	°C

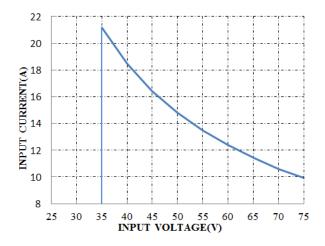
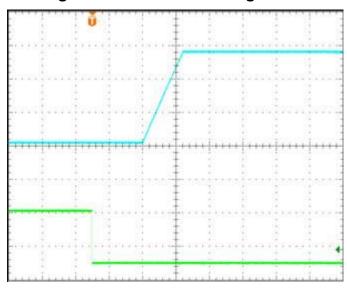
45

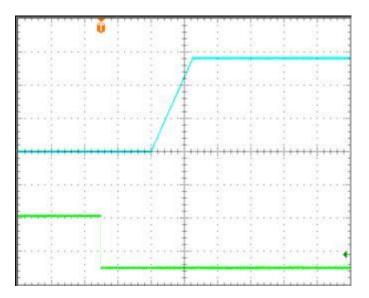
ELECTRICAL CHARACTERISTICS CURVES

40 POWER DISSIPATION(W) 35 30 25 20 Vin=48V 15 ·Vin=36V 10 5 0 12 14 16 18 20 24 OUTPUT CURRENT(A)

Figure 1: Efficiency vs. load current for 36V, 48V, and 75V input voltage at 25°C.

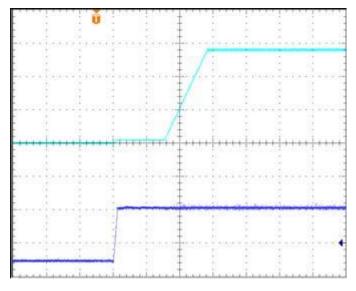
Figure 2: Power dissipation vs. load current for 36V, 48V, and 75V input voltage at 25°C.


Figure 3: Full load input characteristics at room temperature.

ELECTRICAL CHARACTERISTICS CURVES

For Negative Remote On/Off Logic



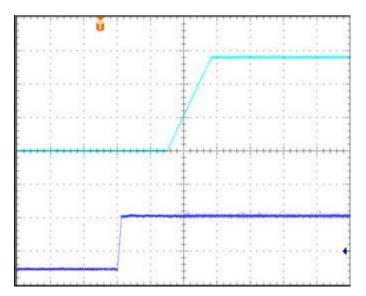


Figure 4: Turn-on transient at zero load current (40ms/div). Vin=48V. Top Trace: Vout; 10V/div; Bottom Trace: ON/OFF input: 5V/div.

Figure 5: Turn-on transient at full load current (40ms/div). Vin=48V. Top Trace: Vout: 10V/div; Bottom Trace: ON/OFF input: 5V/div.

For Input Voltage Start up

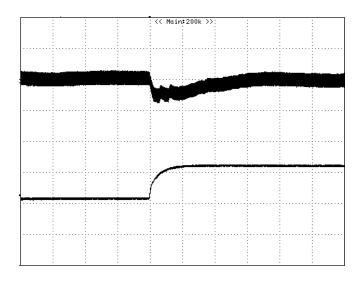
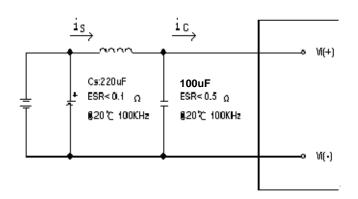
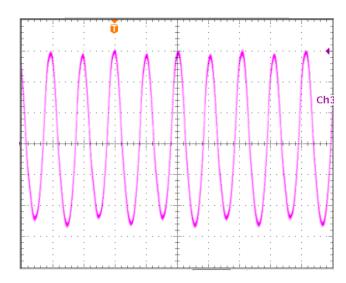


Figure 6: Turn-on transient at zero load current (40 ms/div). Top Trace: Vout; 10V/div; Bottom Trace: input voltage: 30V/div

Figure 7: Turn-on transient at full load current (40 ms/div). Top Trace: Vout; 10V/div; Bottom Trace: input voltage:30V/div.

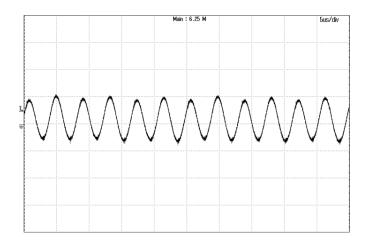

ELECTRICAL CHARACTERISTICS CURVES



<< Main; 200k >>

Figure 8: Output voltage response to step-change in load current (50%-75% of lo, max; di/dt = 0.1A/μs; Vin=48V). Load cap: 1350μF Electrolytic Capacitor and 50μF ceramic capacitor. Top Trace: Vout (0.5V/div, 200us/div), Bottom Trace: lout (8A/div). Scope measurement should be made using a BNC cable (length shorter than 20 inches). Position the load between 51 mm to 76 mm (2 inches to 3 inches) from the module

Figure 9: Output voltage response to step-change in load current (75%-50% of lo, max; di/dt = 0.1A/μs; Vin=48V). Load cap: 1350μF Electrolytic Capacitor and 50μF ceramic capacitor. Top Trace: Vout (0.2V/div, 200us/div), Bottom Trace: lout (5A/div). Scope measurement should be made using a BNC cable (length shorter than 20 inches). Position the load between 51 mm to 76 mm (2 inches to 3 inches) from the module


Figure 10: Test set-up diagram showing measurement points for Input Terminal Ripple Current and Input Reflected Ripple Current.

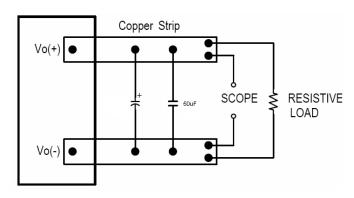
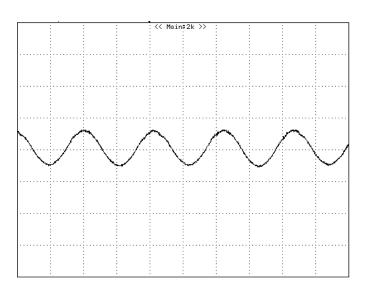

Note: Measured input reflected-ripple current with a simulated source Inductance (L_{TEST}) of 12 μ H. Capacitor Cs offset possible battery impedance. Measure current as shown above.

Figure 11: Input Terminal Ripple Current, i_c, at max output current and nominal input voltage with 12μH source impedance and 100μF electrolytic capacitor (500mA/div, 4us/div).


ELECTRICAL CHARACTERISTICS CURVES

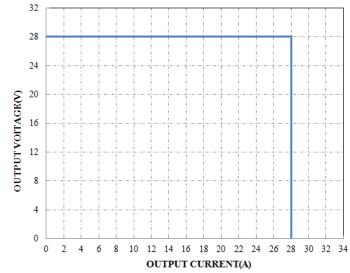


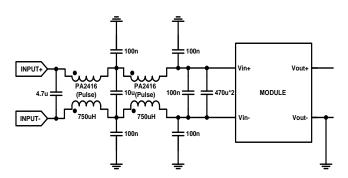
Figure 12: Input reflected ripple current, i_s , through a $12\mu H$ source inductor at nominal input voltage and max load current (100mA/div, 5us/div).

Figure 13: Output voltage noise and ripple measurement test setup.

Figure 14: Output voltage ripple at nominal input voltage and max load current (100 mV/div, 2us/div)
Load capacitance: 50μF ceramic capacitor and low ESR 1350μF Electrolytic Capacitor. Bandwidth: 20 MHz.

Figure 15: Output voltage vs. load current showing typical current limit curves and converter shutdown points.

DESIGN CONSIDERATIONS


Input Source Impedance

The impedance of the input source connecting to the DC/DC power modules will interact with the modules and affect the stability. A low ac-impedance input source is recommended. If the source inductance is more than a few μ H, we advise 220 μ F electrolytic capacitor (ESR < 0.7 Ω at 100 kHz) mounted close to the input of the module to improve the stability.

Layout and EMC Considerations

Delta's DC/DC power modules are designed to operate in a wide variety of systems and applications. For design assistance with EMC compliance and related PWB layout issues, please contact Delta's technical support team. An external input filter module is available for easier EMC compliance design. Below is the reference design for an input filter tested with H48SC28025 to meet class A in CISSPR 22.

Schematic and Components List

Test Result: Vin=48V, full load.

Blue Line is quasi peak mode; green line is average mode.

Safety Considerations

The power module must be installed in compliance with the spacing and separation requirements of the end-user's safety agency standard, i.e. IEC 62368-1: 2014 (2nd edition), EN 62368-1: 2014 (2nd edition), UL 62368-1, 2nd Edition, 2014-12-01 and CSA C22.2 No. 62368-1-14, 2nd Edition, 2014-12. IEC 60950-1: 2005, 2nd Edition + A1: 2009 + A2: 2013, EN 60950-1: 2006 + A11: 2009 + A1: 2010 + A12: 2011 + A2: 2013, UL 60950-1, 2nd Edition, 2011-10-14 and CSA C22.2 No. 60950-1-07, 2nd Edition, 2010-14, if the system in which the power module is to be used must meet safety agency requirements.

Basic insulation based on 75 Vdc input is provided between the input and output of the module for the purpose of applying insulation requirements when the input to this DC-to-DC converter is identified as TNV-2 or SELV. An additional evaluation is needed if the source is other than TNV-2 or SELV.

When the input source is SELV circuit, the power module meets SELV (safety extra-low voltage) requirements. If the input source is a hazardous voltage which is greater than 60 Vdc and less than or equal to 75 Vdc, for the module's output to meet SELV requirements, all of the following must be met:

- The input source must be insulated from the ac mains by reinforced or double insulation.
- The input terminals of the module are not operator accessible.
- A SELV reliability test is conducted on the system where the module is used, in combination with the module, to ensure that under a single fault, hazardous voltage does not appear at the module's output.

When installed into a Class II equipment (without grounding), spacing consideration should be given to the end-use installation, as the spacing between the module and mounting surface have not been evaluated.

The power module has extra-low voltage (ELV) outputs when all inputs are ELV.

This power module is not internally fused. To achieve optimum safety and system protection, an input line fuse is highly recommended. The safety agencies require a fast-blow fuse with 40A maximum rating to be installed in the ungrounded lead. A lower rated fuse can be used based on the maximum inrush transient energy and maximum input current.

Soldering and Cleaning Considerations

Post solder cleaning is usually the final board assembly process before the board or system undergoes electrical testing. Inadequate cleaning and/or drying may lower the reliability of a power module and severely affect the reliability of a power module and severely affect the finished circuit board assembly test. Adequate cleaning and/or drying is especially important for un-encapsulated and/or open frame type power modules. For assistance on appropriate soldering and cleaning procedures, please contact Delta's technical support team.

FEATURES DESCRIPTIONS

Over-Current Protection

The modules include an internal output over-current protection circuit, which will endure current limiting for an unlimited duration during output overload. If the output current exceeds the OCP set point, the modules will shut down (hiccup mode).

The modules will try to restart after shutdown. If the overload condition still exists, the module will shut down again. This restart trial will continue until the overload condition is corrected.

Over-Voltage Protection

The modules include an internal output over-voltage protection circuit, which monitors the voltage on the output terminals. If this voltage exceeds the over-voltage set point, the protection circuit will constrain the max duty cycle to limit the output voltage, if the output voltage continuously increases the modules will shut down, and then restart after a hiccup-time (hiccup mode).

Over-Temperature Protection

The over-temperature protection consists of circuitry that provides protection from thermal damage. If the temperature exceeds the over-temperature threshold the module will shut down. The module will restart after the temperature is within specification.

Remote On/Off

The remote on/off feature on the module can be either negative or positive logic. Negative logic turns the module on during a logic low and off during a logic high. Positive logic turns the modules on during a logic high

and off during a logic low.

Remote on/off can be controlled by an external switch between the on/off terminal and the Vi (-) terminal. The switch can be an open collector or open drain. For negative logic if the remote on/off feature is not used, please short the on/off pin to Vi (-). For positive logic if the remote on/off feature is not used, please leave the on/off pin to floating.

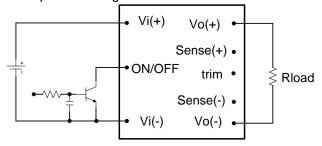


Figure 16: Remote on/off implementation

Output Voltage Adjustment (TRIM)

To increase or decrease the output voltage set point, connect an external resistor between the TRIM pin and the Vout+ or Vout-. The TRIM pin should be left open if this feature is not used.

For trim down, the external resistor value required to obtain a percentage of output voltage change \triangle % is defined as:

$$Rtrim - down = \left[\frac{100}{\Delta} - 2\right] (K\Omega)$$

Ex. When Trim-down -10% (28Vx0.9=25.2V)

$$Rtrim - down = \left[\frac{100}{10} - 2\right] (K\Omega) = 8(K\Omega)$$

For trim up, the external resistor value required to obtain a percentage output voltage change \triangle % is defined as:

$$Rtrim - up = \frac{Vo(100 + \Delta)}{1.225\Delta} - \frac{100}{\Delta} - 2(K\Omega)$$

Ex. When Trim-up +18% (28Vx1.1=30.8V)

$$Rtrim - up = \frac{28 \times (100 + 10)}{1.225 \times 10} - \frac{100}{10} - 2 = 239.4 (K\Omega)$$

The output voltage can be increased by both the remote sense and the trim, however the maximum increase is the larger of either the remote sense or the trim, not the sum of both.

The output voltage can also be trimmed by potential applied at the Trim pin.

$$V_0 = (Vtrim + 1.225) \times 11.43$$

Where trim Vtrim is the potential applied at the Trim pin, and Vo is the desired output voltage.

When using remote sense and trim, the output voltage of the module is usually increased, which increases the power output of the module with the same output current.

Care should be taken to ensure that the maximum output power of the module remains at or below the maximum rated power.

Configurable Control Pins

The module contains one configurable control pins C2, referenced to the module secondary SIG_GND. See Mechanical Views for pin locations. The following table list the default factory configurations for the functions assigned to the pin.

Pin Designation/Function	Configuration
C2	_
Power Good	Factory Default
On/Off	Optional Vias PMBUS

Note1: Power Good is a Open-drian output.

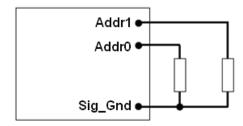
Note2: On/Off is an Open-drian input

DIGITAL FEATURE DESCRIPTIONS

The module has a digital PMBus interface to allow the module to be monitored, controlled and configured by the system. The module supports 4 PMBus signal lines, Data, Clock, SMBALERT (optional), Control (C2 pin, optional), and 2 Address line Addr0 and Addr1. More detail PMBus information can be found in the PMB Power Management Protocol Specification, Part I and part II, revision 1.2; which is shown in http://pmbus.org . Both 100kHz and 400kHz bus speeds are supported by the module. Connection for the PMBus interface should be following the High Power DC specifications given in section 3.1.3 in the SMBus specification V2.0 or the Low Power DC specifications in section 3.1.2. The complete SMBus specification is shown in http://smbus.org.

The module supports the Packet Error Checking (PEC) protocol. It can check the PEC byte provided by the PMBus master, and include a PEC byte in all message responses to the master.

SMBALERT protocol is also supported by the module. SMBALERT line is also a wired-AND signal; by which the module can alert the PMBUS master via pulling the SMBALERT pin to an active low. There are only one way that the master and the module response to the alert of SMBALERT line.


This way is for the module used in a system that does not support Alert Response Address (ARA). The module is to retain it's resistor programmed address, when it is in an ALERT active condition. The master will communicate with the slave module using the programmed address, and using the various READ_STATUS commands to find who cause for the SMBALERT. The CLEAR_FAULTS command will clear the SMBALERT.

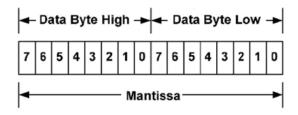
The module contains a data flash used to store configuration settings, which will not be programmed into the device data flash automatically. The STORE_DEFAULT_ALL command must be used to commit the current settings are transfer from RAM to data flash as device defaults.

PMBUS Addressing

The Module has flexible PMBUS addressing capability. When connect different resistor from Addr0 and Addr1 pin to Sig_GND pin, 64 possible addresses can be acquired. The address is in the form of octal digits; Each pin offer one octal digit, and then combine together to form the decimal address as shown in below.

Address = 8 * ADDR1 + ADDR0

Corresponded to each octal digit, the requested resistor values are shown in below, and +/-1% resistors accuracy can be accepted. If there is any resistances exceeding the requested range, address 126 will be return. 0-12 and 40, 44, 45, and 55 in decimal address can't be used, since they are reserved according to the SMBus specifications, and which will also return address 126.


Octal digit	Resistor(Kohm)
0	10
1	15.4
2	23.7
3	36.5
4	54.9
5	84.5
6	130
7	200

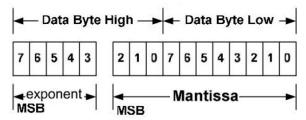
Address 127 (or 0x7F) is reserved address by PMBus. The built-in digital PWM controller uses this address for Factory test purposes, and will ack this address. Application should not use this address either.

PMBus Data Format

The module receives and report date in LINEAR format. The Exponent of the data words is fixed at a reasonable value for the command; altering the exponent is not supported. DIRECT format is not supported by the module.

For commands that set or report any voltage thresholds related to the output voltage, the module supports the linear data format consisting of a two byte value with a 16-bit, unsigned mantissa, and a fixed exponent of -9. The format of the two data bytes is shown below:

The equation can be written as:


Vout = Mantissa x 2⁽⁻⁹⁾

For example, considering set Vout to 28V by VOUT_COMMAND, the read/write data can be calculated refer to below process:

Mantissa = $Vout/2^{(-9)}$ = 28/2⁽⁻⁹⁾=14336;

Converter the calculated Mantissa to hexadecimal 0x3800.

For commands that set or report all other thresholds, including input voltages, output current, temperature, time and frequency, the supported linear data format is a two byte value with: an 11 bit, two's complement mantissa, and a 5 bit, two's complement exponent (scaling factor). The format of the two data bytes is shown as in below.

The equation can be written as:

Value = Mantissa x 2^(exponent)

For example, considering set the turn on threshold of input under voltage lockout to 34V by VIN_ON command; the read/write data can be calculated refer to below process:

Get the exponent of Vin, -3; whose binary is 11101 Mantissa = $Vin/2^{(-3)}$ =34/2⁽⁻³⁾=272;

Converter the calculated Mantissa to hexadecimal 110, then converter to binary 00100010000; Combine the exponent and the mantissa, 11101 and 00100010000;

Converter binary 1110100100010000 to hexadecimal E910.

SUPPORTED PMBUS COMMANDS

The main PMBus commands described in the PMBus 1.2 specification are supported by the module. Partial PMBus commands are fully supported; Partial PMBus commands have difference with the definition in PMBus

1.2 specification. All the supported PMBus commands are detail summarized in below table

1.2 specification. All th	<u>ie suppo</u>	rted PMBus co	<u>mma</u>		<u>etail sur</u>	nmarız	zed in b	pelow	table	
Command	Command Code	Command description	Transf -er type	Compatible with standard PMBUS or not?	Data Format	Default value	Range limit	Data units	Expon -ent	Note
OPERATION	0x01	Turn the module on or off by PMBUS command	R/W byte	Refer to below description;	Bit field	0x80	/	/	/	1
ON_OFF_CONFIG	0x02	Configures the combination of primary on/off pin and PMBus command	R/W byte	Not support turn off delay and fall time setup	Bit field	0x1D	/	/	/	0x1D (Neg Logic); 0x1F (Pos Logic);
CLEAR_FAULTS	0x03	Clear any fault bits that have been set	Send byte	Yes	/	/	/	/	/	/
WRITE_PROTECT	0x10	Control writing to the PMBUS device.	R/W byte	Yes	/	0x80	/	/	/	The intent of this command is to provide protection against accidental changes.
STORE_DEFAULT_ALL	0x11	Stores operating parameters from RAM to data flash	Send byte	Yes	/	/	/	/	/	The FLASH must be unlocked (referring to Command 0xEC) before sending this command. This command is effective to the parameter of all command in this table.
RESTORE_DEFAULT_ALL	0x12	Restores operating parameters from data flash to RAM	Send byte	Yes	/	/	/	/	/	This command can't be issued when the power unit is running.
VOUT_MODE	0x20	Read Vo data format	Read byte	Yes	mode+exp	0x17	/	/	/	/
VOUT_COMMAND	0x21	Set the output voltage normal value	R/W word	Yes	Vout Linear	28	23 ~33	Volts	-9	/
VOUT_MARGIN_HIGH	0x25	Set the output voltage margin high value	R/W word	Yes	Vout Linear	28.56	23 ~33	Volts	-9	1
VOUT_MARGIN_LOW	0x26	Set the output voltage margin low value	R/W word	Yes	Vout Linear	27.44	23 ~33	Volts	-9	1
FREQUENCY_SWITCH	0x33	Set the switching frequency	R/W word	Yes	Frequency linear	120	110 ~ 180	KHz	-2	Write command need module off condition
VIN_ON	0x35	Set the turn on voltage threshold of Vin under voltage lockout	R/W word	Yes	Vin Linear	34	32~36	V	-3	VIN_ON should be higher than VIN_OFF
VIN_OFF	0x36	Set the turn off voltage threshold of Vin under voltage lockout	R/W word	Yes	Vin Linear	32	30~34	٧	-3	VIN_ON should be higher than VIN_OFF
VOUT_OV_FAULT_LIMIT	0x40	Set the output overvoltage fault threshold.	R/W word	Yes	Vout Linear	34	32~35	٧	-9	Must be higher than the value of VOUT_COMMAND and VOUT_OV_WARN_LIMIT;
VOUT_OV_FAULT_RESPONSE	0x41	Instructs what action to take in response to an output overvoltage fault.	Read byte	Refer to below description;	Bit field	0xB8	/	N/A	/	Default Hiccup mode
VOUT_OV_WARN_LIMIT	0x42	Set a threshold causing an output voltage high warning.	R/W word	Yes	Vout Linear	32	31~34	V	-9	Must be the same or less than VOUT_OV_FAULT_LIMIT value
IOUT_OC_FAULT_LIMIT	0x46	Set the output overcurrent fault threshold.	R/W word	Yes	lout Linear	29	27.5~30	А	-4	Must be greater than IOUT_OC_WARN_LIMIT value

Command	Command Code	Command description	Transf -er type	Compatible with standard PMBUS or not?	Data Format	Default value	Range limit	Data units	Expon -ent	Note
IOUT_OC_FAULT_R ESPONSE	0x47	Instructs what action to take in response to an output overcurrent fault.	Read byte	Refer to below description;	Bit field	0xF8	/	N/A	/	Default Hiccup mode
IOUT_OC_WARN_LI MIT	0x4A	Set a threshold causing an output current high warning.	R/W word	Yes	lout Linear	27	26~29	Α	-4	Must be less than IOUT_OC_FAULT_LIMIT value
OT_FAULT_LIMIT	0x4F	Set the over temperature fault threshold.	R/W word	Yes	TEMP Linear	135	25~13 5	Deg. C	-2	Must be greater than OT_WARN_LIMIT value
OT_FAULT_RESPO NSE	0x50	Instructs what action to take in response to an over temperature fault.	Read byte	Refer to below description;	Bit field	0xB8	/	N/A	/	Default Hiccup mode
OT_WARN_LIMIT	0x51	Set a threshold causing a temperature high warning.	R/W word	Yes	TEMP Linear	110	25~13 5	Deg. C	-2	Must be less than OT_FAULT_LIMIT value
POWER_GOOD_ON	0x5E	Sets the output voltage at which the bit 3 of STATUS_WORD high byte should be asserted.	R/W word	Yes	Vout Linear	25	18 ~31	V	-9	Must be greater than POWER_GOOD_OFF value
POWER_GOOD_OF F	0x5F	Sets the output voltage at which the bit 3 of STATUS_WORD high byte should be negated.	R/W word	Yes	Vout Linear	20	18 ~31	٧	-9	Must be less than POWER_GOOD_ON value
TON_DELAY	0x60	Sets the time from a start condition is received until the output voltage starts to rise	R/W word	Yes	Time Linear	140	20~50 0	ms	-1	/
TON_RISE	0x61	Sets the time from the output starts to rise until the voltage has entered the regulation band.	R/W word	Yes	Time Linear	40	15~50 0	ms	-1	/
STATUS_WORD	0x79	Returns the information with a summary of the module's fault/warning	Read word	Refer to below description;	Bit field	/	/	/	/	/
STATUS_VOUT	0x7A	Returns the information of the module's output voltage related fault/warning	R/W byte	Refer to below description;	Bit field	/	/	/	/	/
STATUS_IOUT	0x7B	Returns the information of the module's output current related fault/warning	R/W byte	Refer to below description;	Bit field	1	/	/	/	1
STATUS_INPUT	0x7C	Returns the information of the module's input over voltage and under voltage fault	R/W byte	Refer to below description;	Bit field	/	/	/	/	/
STATUS_TEMPERA TURE	0x7D	Returns the information of the module's temperature related fault/warning	R/W byte	Refer to below description;	Bit field	/	/	/	/	/
STATUS_CML	0x7E	Returns the information of the module's communication related faults.	R/W byte	Refer to below description;	Bit field	/	/	/	/	/
READ_VIN	0x88	Returns the input voltage of the module	Read word	Yes	Vin Linear	/	/	>	-3	/
READ_VOUT	0x8B	Returns the output voltage of the module	Read word	Yes	Vout Linear	/	/	V	-9	/
READ_IOUT	0x8C	Returns the output current of the module	Read word	Yes	lout Linear	/	/	Α	-4	/
READ_TEMPERATU RE_1	0x8D	Returns the module's hot spot temperature of the module	Read word	Yes	TEMP Linear	/	/	Deg. C	-2	/
PMBUS_REVISION	0x98	Reads the revision of the PMBus	Read byte	Yes	Bit field	0x22	/	/	/	/
MFR_C1_C2_ARA_C ONFIG	0xE0	Config C2 pin function	R/W byte	Refer to below description;	Bit field	0x00	/	/	/	/
MFR_ C2_ Configure	0xE1	Config C2 pin logic	R/W byte	Refer to below description;	Bit field	0x00	/	/	/	/
MFR_PGOOD _POLARITY	0xE2	Config Power Good logic	R/W byte	Refer to below description;	Bit field	0x01	/	/	/	Default Positive PGOOD logic
MFR_SERIAL	0x9E	Reads the SN of module	Read block	/	Total 11 ASCII charact ers	,xxxxx,	/	/	/	The SN number of module use 11 ASCII characters

Command	Command Code	Command description	Transf -er type	Compatible with standard PMBUS or not?	Data Format	Default value		Data units		Note
RESTART_CMD_EN ABLE	0xD2	Restart the module by PMBUS command	R/W byte	No	/	0x80	/	/	/	Write 0x00 restart module
RESTART_CMD_TI ME	0xD3	Sets the time from the output off to on	R/W word	No	Time Linear	500	/	ms	-1	/
PMBUS_CMD_FLAS H_KEY_WRITE	0xEC	Write the key to unlock the Flash before Storing operating parameters from RAM to data flash	R/W Block	No	/	0xA5A5 A5A5		/	/	A data block:7E,15,DC,42 should be send to unlock the FLASH.

OPERATION [0x01]

Bit number	Purpose	Bit Value	Meaning	Default Settings, 0x80
7:	7: Enable/Disable the module		Output is enabled	1
7.	Eliable/Disable the module	0	Output is disabled	ľ
6:	Reserved			0
		00	No margin	
5:4	5:4 Margins		Margin low(Act on Fault)	00
		10	Margin high(Act on Fault)	
3:0	Reserved			0000

VOUT_OV_FAULT_RESPONSE [0x41]

Bit number	Purpose	Bit Value	Meaning	Default Settings, 0xB8
7:6	N I RESPONSE SETTINGS I 10 I		Unit shuts down and responds according to the retry settings	10
5:3	5:3 Retry setting		Unit continuously restarts while fault is present until commanded off	111
		000	Unit does not attempt to restart on fault	
2:0	Delay time setting	000	No delay supported	000

IOUT_OC_FAULT_RESPONSE [0x47]

Bit number	Purpose	Bit Value	Meaning	Default Settings, 0xF8
7:6	Response settings	11	Unit shuts down and responds according to the retry settings	11,
5:3	Unit continuously restarts while fault is present until commanded off		111	
3.3 Ketty settings		000	Unit does not attempt to restart on fault	
2:0	Delay time setting	000	No delay supported	000

OT_FAULT_RESPONSE [0x50]

Bit number	Purpose	Bit Value	Meaning	Default Settings, 0xB8
7:6	Response settings	10	Unit shuts down and responds according to the retry settings	10,
5:3	5:3 Retry settings		Unit continuously restarts while fault is present until commanded off	111
0.0	rtony domingo	000	Unit does not attempt to restart on fault	
2:0	Delay time setting	000	No delay supported	000

STATUS_WORD [0x79]

High byte

Bit number	Purpose	Bit Value	Meaning
7	An output over voltage fault or warning	1	Occurred
,	An output over voltage fault of warning	0	No Occurred
6	An output over ourrest fault or warning	1	Occurred
0	An output over current fault or warning	0	No Occurred
5	An input voltage fault, including over voltage and	1	Occurred
3	undervoltage	0	No Occurred
4	Reserved		

2	3 Power_Good	1	is negated
3		0	ok
2:0	Reserved		

Low byte

Bit number	Purpose	Bit Value	Meaning
7	Reserved		
6	OFF (The unit is not providing power to the output, regardless of the reason)	1 0	Occurred No Occurred
5	An output over voltage fault	1 0	Occurred No Occurred
4	An output over current fault	1 0	Occurred No Occurred
3	An input under voltage fault	1	Occurred
	<u> </u>	0 1	No Occurred Occurred
2	A temperature fault or warning	0	No Occurred
1	CML (A communications, memory or logic fault)	0	Occurred;
·	. Comp (Communications, monter) or regionality		No Occurred
0	Reserved		

STATUS_VOUT [0x7A]

Bit number	Purpose	Bit Value	Meaning	
7	7 Output over voltage fault		Occurred;	
/	- Output over voltage raunt	0	No Occurred	
6	6 Output over voltage warning		Occurred;	
6	Output over voltage warning	0	No Occurred	
5:0	Reserved			

STATUS_IOUT [0x7B]

Bit number	Purpose	Bit Value	Meaning
_	7 Output over current fault	1	Occurred;
7		0	No Occurred
6	Reserved		
-	Output over current warning	1	Occurred;
5		0	No Occurred
4:0	Reserved		

STATUS_INPUT [0x7C]

Bit number	Purpose	Bit Value	Meaning
_	7 Input over voltage fault	1	Occurred:
/		0	No Occurred
6: 5	Reserved		
4	Input under voltage fault	1	Occurred;
		0	No Occurred
3:0	Reserved		

STATUS_TEMPERATURE [0x7D]

Bit number	Purpose	Bit Value	Meaning
7	7 Over temperature fault		Occurred;
/ 0001	voi temperatare radit	0	No Occurred
6	6 Over temperature warning		Occurred;
6	Over temperature warning	0	No Occurred
5:0	Reserved		

STATUS_CML [0x7E]

Bit number	Purpose	Bit Value	Meaning
		1	Occurred;
7 Invalid/Unsupported Command Re	Invalid/Unsupported Command Received	Received	No Occurred
	6 Invalid/Unsupported Data Received	1	Occurred;
6		0	No Occurred
_	Packet Error Check Failed	1	Occurred;
5		0	No Occurred
4:0	Reserved		

MFR_C1_C2_ARA_CONFIG [0xE0]

Bit number	Purpose	Bit Value	Meaning
7:5	Reserved	000	Reserved
4	ARA	0	ARA not functional, module remains at resistor programmed address when SMBLAERT is asserted
3:0	PIN Configuration	0000	C2 pin: POWER_GOOD
		0010	C2 pin: ON/OFF (Secondary)

MFR_ C2_Configure [0xE1]

Bit number	Purpose	Bit Value	Meaning
7:2	Reserved	000000	Reserved
		0	Secondary side on/off pin state when mapped to C2 is ignored
1	ON/OFF Configuration	1	AND – Primary and Secondary side on/off
0	Secondary Side ON/OFF Logic	0	Negative Logic (Low Enable: Input < 0.8V wrt Vout(-)
		1	Positive Logic (High Enable: Input > 2.0V wrt Vout(-)

MFR PGOOD POLARITY [0xE2]

Bit number	Purpose	Bit Value	Meaning
7:1	Reserved	0000000	Reserved
		0	Negative PGOOD logic
0	0 Power Good Logic		Positive PGOOD logic

THERMAL CONSIDERATIONS

Thermal management is an important part of the system design. To ensure proper, reliable operation, sufficient cooling of the power module is needed over the entire temperature range of the module. Convection cooling is usually the dominant mode of heat transfer.

Hence, the choice of equipment to characterize the thermal performance of the power module is a wind tunnel.

Thermal Testing Setup

The following figure shows thermal test setup. The power module is mounted on a test PWB and attatch to a cold plate with thermal interface material (TIM).

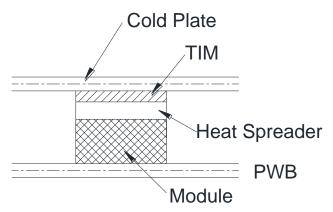
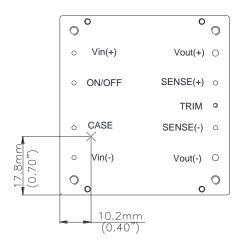
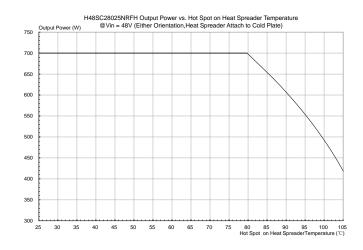



Figure 17: Thermal test setup


Thermal Derating

Heat can be rmoved by increasing airflow over the module. To enhance system reliability, the power module should always be operated below the maximum operating temperature. If the temperature exceeds the maximum module temperature, reliability of the unit may be affected.

THERMAL CURVES (BASE PLATE ATTACH TO COLD PLATE)

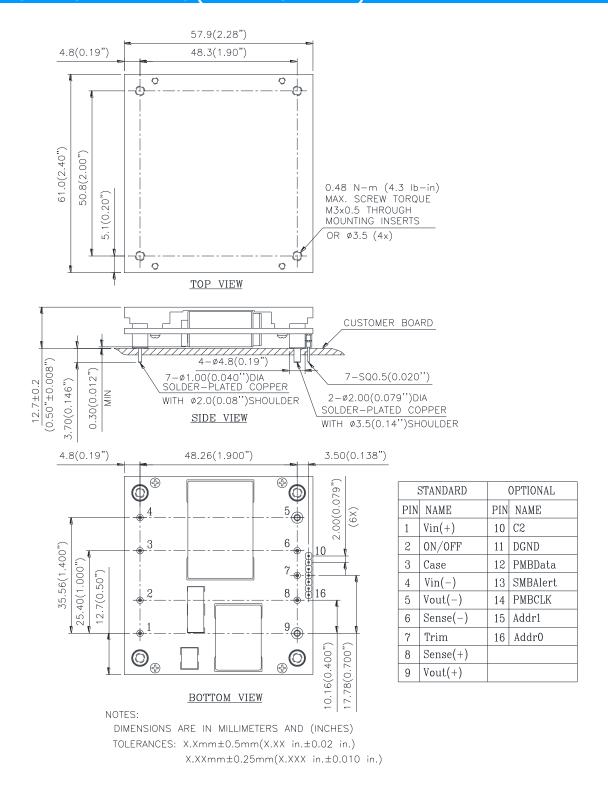
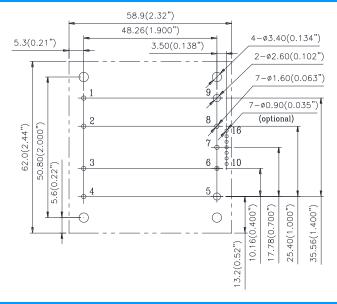

Figure 18: *Hot spot on Base Plate temperature measurement location viewed from top side. The allowed maximum hot spot temperature is 95 $^\circ$ C at 48Vin@550W.

Figure 19: Output power vs. Hot spot on Base Plate temperature @Vin=48V (Either Orientation, Base Plate attach to Cold Plate)

MECHANICAL DRAWING (WITH BASE-PLATE)

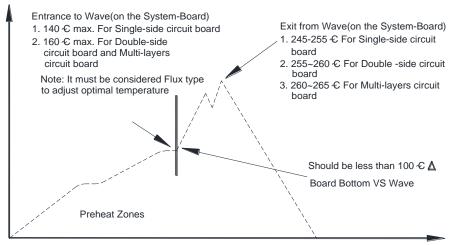


Pin Specification:

Pins 1-4,6-8 Pins 5 & 9 Pins 10~16 1.00mm (0.040") diameter (All pins are copper with matte Tin plating over Nickel under plating) 2.00mm (0.079") diameter (All pins are copper with matte Tin plating over Nickel under plating) Digital pins, SQ 0.50mm(0.020") (All pins are copper with gold flash plating)

SUGGESTED LAYOUT

	STANDARD		OPTIONAL
PIN	NAME	PIN	NAME
1	Vin(+)	10	C2
2	ON/OFF	11	DGND
3	Case	12	PMBData
4	Vin(−)	13	SMBAlert
5	Vout(-)	14	PMBCLK
6	Sense(-)	15	Addr1
7	Trim	16	Addr0
8	Sense(+)		
9	Vout(+)		


SOLDERING METHOD

Generally, as the most common mass soldering method for the solder attachment, wave soldering is used for through-hole power modules and reflow soldering is used for surface-mount ones. Delta recommended soldering methods and process parameters are provided in this document for solder attachment of power modules onto system board. SAC305 is the suggested lead-free solder alloy for all soldering methods. The soldering temperature profile presented in this document is based on SAC305 solder alloy.

Reflow soldering is not a suggested method for through-hole power modules due to many process and reliability concerns. If you have this kind of application requirement, please contact Delta sales or FAE for further confirmation.

Wave Soldering (Lead-free)

Delta's power modules are designed to be compatible with single-wave or dual wave soldering. The suggested soldering process must keep the power module's internal temperature below the critical temperature of 217°C continuously. The recommended wave-soldering profile is shown below:

Recommended Temperature Profile for Lead-free Wave Soldering Note: The temperature is measured on solder joint of pins of power module.

The typical recommended (for double-side circuit board) preheat temperature is $115+/-10^{\circ}\text{C}$ on the top side (component side) of the circuit board. The circuit-board bottom-side preheat temperature is typically recommended to be greater than 135°C and preferably within 100°C of the solder-wave temperature. A maximum recommended preheat up rate is 3°C /s. A maximum recommended solder pot temperature is $255+/-5^{\circ}\text{C}$ with solder-wave dwell time of $3\sim6$ seconds. The cooling down rate is typically recommended to be 6°C/s maximum.

Hand Soldering (Lead Free)

Hand soldering is the least preferred method because the amount of solder applied, the time the soldering iron is held on the joint, the temperature of the iron, and the temperature of the solder joint are variable. The recommended hand soldering guideline is listed in Table below. The suggested soldering process must keep the power module's internal temperature below the critical temperature of 217°C continuously.

Parameter	Single-side	Double-side	Multi-layers
	Circuit Board	Circuit Board	Circuit Board
Soldering Iron Wattage	90	90	90
Tip Temperature	385+/-10°C	420+/-10°C	420+/-10°C
Soldering Time	$2 \sim 6$ seconds	$4 \sim 10$ seconds	$4 \sim 10$ seconds

PART NUMBERING SYSTEM												
Н	48	S	С	280	25	N	R	F (note)	Н			
Form	Input	Number of	Product	Output	Output	ON/OFF	Pin	Pin				
Factor	Voltage	Outputs	Series	Voltage	Current	Logic	Length	Assigment				
H - Half	48-	S - Single	C -	280 - 28V	25 - 25A	N - Negative	K - 0.110"	F - Analog pin	H - With baseplate			
Brick	36V~75V		Series			P - Positive	N - 0.145"	D - digital pin	(threaded mounting			
			number				R - 0.170"		hole) (M3*0.5)			
									X – With			
									Baseplate			
									(unthreaded			
									mounting hole)			

Note 1. F - Analog pins: without digital pins(pin10~16)

2. D - Digital pins: with digital pins (pin10~pin16)

MODEL LIST											
MODEL NAME	MODEL NAME INPUT			TPUT	EFF @ 100% LOAD						
H48SC28025NNFH	36V~75V	21A	28V	25A	95.0% @ 48Vin						
H48SC28025NRDH	36V~75V	21A	28V	25A	95.0% @ 48Vin						
H48SC28025PRDX	36V~75V	21A	28V	25A	95.0% @ 48Vin						

For modules with through-hole pins, they are intended for wave soldering assembly onto system boards; please do not subject such modules through reflow temperature profile.

CONTACT: www.deltaww.com/dcdc

USA: Telephone:

Telephone: East Coast: 978-656-3993 West Coast: 510-668-5100

Fax: (978) 656 3964

Email: dcdc@deltaww.com

Europe:

Phone: +31-20-655-0967 Fax: +31-20-655-0999 Asia & the rest of world:

Telephone: +886 3 4526107

ext 6221~6226 Fax: +886 3 4513485

WARRANTY

Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon request from Delta.

Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these specifications

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Delta Electronics: H48SC28025NRDH