
Viterbi IP Core User Guide

Updated for Intel® Quartus® Prime Design Suite: 17.1

Subscribe
Send Feedback

UG-VITERBI | 2017.11.06
Latest document on the web: PDF | HTML

https://www.altera.com/bin/rssdoc?name=dmi1416822321903
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Viterbi%20IP%20Core%20User%20Guide%20(UG-VITERBI%202017.11.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/en_US/pdfs/literature/ug/ug_viterbi-compiler.pdf
https://www.altera.com/documentation/dmi1416822321903.html

Contents

1 About the Viterbi IP Core... 3
1.1 Intel® DSP IP Core Features...3
1.2 Viterbi IP Core Features...4
1.3 DSP IP Core Device Family Support...4
1.4 DSP IP Core Verification...5
1.5 Viterbi IP Core Release Information...5
1.6 Viterbi IP Core Performance and Resource Utilization...5

2 Viterbi IP Core Getting Started.. 9
2.1 Installing and Licensing Intel FPGA IP Cores... 9

2.1.1 Intel FPGA IP Evaluation Mode..9
2.1.2 Viterbi IP Core Intel FPGA IP Evaluation Mode Timeout Behavior......................12

2.2 IP Catalog and Parameter Editor... 12
2.3 Generating IP Cores (Intel Quartus Prime Pro Edition)..14

2.3.1 IP Core Generation Output (Intel Quartus Prime Pro Edition)...........................15
2.4 Simulating Intel FPGA IP Cores... 18
2.5 DSP Builder for Intel FPGAs Design Flow.. 18

3 Viterbi IP Core Functional Description... 19
3.1 Decoder...19
3.2 Convolutional Encoder... 19
3.3 Trellis Coded Modulation.. 19

3.3.1 Half-Rate Convolutional Codes.. 20
3.3.2 Trellis Decoder..22
3.3.3 About Converting Received Signals..23
3.3.4 Trellis Termination...25
3.3.5 Trellis Initialization ... 25

3.4 Viterbi IP Core Parameters... 25
3.4.1 Architecture... 25
3.4.2 Code Sets.. 28
3.4.3 Viterbi Parameters.. 28
3.4.4 Test Data...30

3.5 Viterbi IP Core Interfaces and Signals..31
3.5.1 Avalon-ST Interfaces in DSP IP Cores.. 31
3.5.2 Global Signals.. 32
3.5.3 Avalon-ST Sink Signals.. 32
3.5.4 Avalon Source-ST Signals...33
3.5.5 Configuration Signals...34
3.5.6 Status Signals.. 34
3.5.7 Viterbi IP Core Timing Diagrams... 35

A Viterbi IP Core User Guide Document Archives.. 37

5 Document Revision History.. 38

Contents

Viterbi IP Core User Guide
2

1 About the Viterbi IP Core

Related Links

• Introduction to Intel FPGA IP Cores
Provides general information about all Intel FPGA IP cores, including
parameterizing, generating, upgrading, and simulating IP cores.

• Creating Version-Independent IP and Qsys Simulation Scripts
Create simulation scripts that do not require manual updates for software or IP
version upgrades.

• Project Management Best Practices
Guidelines for efficient management and portability of your project and IP files.

• Viterbi IP Core User Guide Document Archives on page 37
Provides a list of user guides for previous versions of the Viterbi IP core.

1.1 Intel® DSP IP Core Features

• Avalon® Streaming (Avalon-ST) interfaces

• DSP Builder for Intel® FPGAs ready

• Testbenches to verify the IP core

• IP functional simulation models for use in Intel-supported VHDL and Verilog HDL
simulators

UG-VITERBI | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958250601
https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958301774
https://www.altera.com/documentation/mwh1409960181641.html#esc1444754592005
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

1.2 Viterbi IP Core Features

• High-speed parallel architecture:

— Performance of over 250 megabits per second (Mbps)

— Fully parallel operation

— Optimized block decoding and continuous decoding

• Low to medium-speed, hybrid architecture:

— Configurable number of add compare and select (ACS) units

— Memory-based architecture

— Wide range of performance; wide range of logic area

• Fully parameterized Viterbi decoder, including:

— Number of coded bits

— Constraint length

— Number of soft bits

— Traceback length

— Polynomial for each coded bit

• Variable constraint length

• Trellis coded modulation (TCM) option

1.3 DSP IP Core Device Family Support

Intel offers the following device support levels for Intel FPGA IP cores:

• Advance support—the IP core is available for simulation and compilation for this
device family. FPGA programming file (.pof) support is not available for Quartus
Prime Pro Stratix 10 Edition Beta software and as such IP timing closure cannot be
guaranteed. Timing models include initial engineering estimates of delays based
on early post-layout information. The timing models are subject to change as
silicon testing improves the correlation between the actual silicon and the timing
models. You can use this IP core for system architecture and resource utilization
studies, simulation, pinout, system latency assessments, basic timing assessments
(pipeline budgeting), and I/O transfer strategy (data-path width, burst depth, I/O
standards tradeoffs).

• Preliminary support—Intel verifies the IP core with preliminary timing models for
this device family. The IP core meets all functional requirements, but might still be
undergoing timing analysis for the device family. You can use it in production
designs with caution.

• Final support—Intel verifies the IP core with final timing models for this device
family. The IP core meets all functional and timing requirements for the device
family. You can use it in production designs.

Table 1. DSP IP Core Device Family Support

Device Family Support

Arria® II GX Final

Arria II GZ Final

continued...

1 About the Viterbi IP Core

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
4

Device Family Support

Arria V Final

Intel Arria 10 Final

Cyclone® IV Final

Cyclone V Final

Intel Cyclone 10 Final

Intel MAX® 10 FPGA Final

Stratix® IV GT Final

Stratix IV GX/E Final

Stratix V Final

Intel Stratix 10 Advance

Other device families No support

1.4 DSP IP Core Verification

Before releasing a version of an IP core, Intel runs comprehensive regression tests to
verify its quality and correctness. Intel generates custom variations of the IP core to
exercise the various parameter options and thoroughly simulates the resulting
simulation models with the results verified against master simulation models.

1.5 Viterbi IP Core Release Information

Use the release information when licensing the IP core.

Table 2. Release Information

Item Description

Version 17.1

Release Date November 2017

Ordering Code IP-VITERBI/HS (parallel architecture) IP-VITERBI/SS (hybrid
architecture)

Intel verifies that the current version of the Quartus Prime software compiles the
previous version of each IP core. Intel does not verify that the Quartus Prime software
compiles IP core versions older than the previous version. The Intel FPGA IP Release
Notes lists any exceptions.

Related Links

• Intel FPGA IP Release Notes

• Errata for Viterbi IP core in the Knowledge Base

1.6 Viterbi IP Core Performance and Resource Utilization

This typical expected performance uses different architectures and constraint length,
L, combinations, and ACS units, A, and the Quartus Prime software. Performance
largely depends on constraint length, L.

1 About the Viterbi IP Core

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
5

http://www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/support/kdb/kdb-browse.jsp?keyword=viterbi

Hybrid Architecture

The typical expected performance for a hybrid Viterbi IP core uses the Quartus Prime
software with the Arria V (5AGXFB3H4F40C4), Cyclone V (5CGXFC7D6F31C6), and
Stratix V (5SGSMD4H2F35C2) devices and the following parameters:

• v = 6 × L

• softbits = 3

• N = 2

where:

• v is the traceback length

• L is the constraint length

• N is the number of coded bits

• A is the number of ACS units

Table 3. Typical Performance

Parameters Device ALM fMAX (MHz) Memory Registers

L A M10K M20K Primary Secondary

5 1 Arria 10 401 383 -- 3 422 40

5 1 Arria V 323 201 5 -- 390 60

5 1 Cyclone V 324 172 5 -- 390 53

5 1 Stratix V 316 432 -- 5 388 44

7 1 Arria 10 521 370 -- 4 559 50

7 1 Arria V 427 207 6 -- 507 58

7 1 Cyclone V 427 185 6 -- 507 74

7 1 Stratix V 417 438 -- 6 506 51

7 2 Arria 10 622 363 -- 4 670 51

7 2 Arria V 529 215 6 -- 625 71

7 2 Cyclone V 532 180 6 -- 625 74

7 2 Stratix V 502 408 -- 6 625 56

7 4 Arria 10 835 366 -- 4 885 101

7 4 Arria V 744 204 6 -- 856 99

7 4 Cyclone V 746 173 6 -- 856 100

7 4 Stratix V 652 382 -- 6 856 82

9 1 Arria 10 932 343 -- 9 970 88

1 Arria V 792 190 11 -- 927 90

9 1 Cyclone V 794 176 11 -- 926 96

9 1 Stratix V 777 393 -- 11 924 94

9 16 Arria V 2,118 188 17 -- 2,743 309

continued...

1 About the Viterbi IP Core

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
6

Parameters Device ALM fMAX (MHz) Memory Registers

L A M10K M20K Primary Secondary

9 16 Cyclone V 2,119 163 17 -- 2,744 275

9 16 Stratix V 1,887 348 -- 17 2,738 198

9 2 Arria 10 1,029 363 -- 9 1,091 74

9 2 Arria V 889 205 11 -- 1,053 98

9 2 Cyclone V 889 180 11 -- 1,053 96

9 2 Stratix V 883 377 -- 11 1,053 115

9 4 Arria 10 1,240 298 -- 9 1,321 87

9 4 Arria V 1,097 201 11 -- 1,302 137

9 4 Cyclone V 1,096 159 11 -- 1,302 126

9 4 Stratix V 1,021 390 -- 11 1,302 119

9 8 Arria V 1,465 197 13 -- 1,788 193

9 8 Cyclone V 1,465 163 13 -- 1,789 191

9 8 Stratix V 1,398 351 -- 13 1,790 154

Parallel Architecture

The typical expected performance for a parallel Viterbi IP core uses the Quartus Prime
software with the Arria V (5AGXFB3H4F40C4), Cyclone V (5CGXFC7D6F31C6), and
Stratix V (5SGSMD4H2F35C2) devices. The following parameters apply:

• v = 6 ×L

• N = 2

where:

• v is the traceback length

• L is the constraint length

• N is the number of coded bits

Table 4. Typical Performance

Parameters Device ALMs fMAX
(MHz)

Memory Registers

softbits L Optimization Best State Finder M10K M20K Primary Secondary

5 3 — On Arria 10 420 400 -- 5 500 63

7 3 — On Arria 10 453 351 -- 5 534 75

3 3 — Off Arria 10 396 423 -- 5 473 39

5 3 — Off Arria 10 420 400 -- 5 500 63

7 3 — Off Arria 10 453 351 -- 5 534 75

3 7 Block Off Arria 10 1,454 354 -- 3 817 154

3 7 Block Off Arria V 1,537 201 5 -- 1,166 168

3 7 Block Off Cyclone V 1,544 149 5 -- 1,167 88

continued...

1 About the Viterbi IP Core

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
7

Parameters Device ALMs fMAX
(MHz)

Memory Registers

softbits L Optimization Best State Finder M10K M20K Primary Secondary

3 7 Block Off Stratix V 1,521 352 -- 3 1,167 154

3 3 — Off Arria V 378 237 5 -- 456 67

3 3 — Off Cyclone V 378 200 5 -- 456 84

3 3 — Off Stratix V 378 405 -- 5 455 45

5 3 — Off Arria V 397 210 5 -- 483 68

5 3 — Off Cyclone V 397 188 5 -- 484 81

5 3 — Off Stratix V 396 406 -- 5 482 92

3 3 — On Arria V 378 237 5 -- 456 67

3 3 — On Cyclone V 378 200 5 -- 456 84

3 3 — On Stratix V 378 405 -- 5 455 45

5 3 — On Arria V 397 210 5 -- 483 68

5 3 — On Cyclone V 397 188 5 -- 484 81

5 3 — On Stratix V 396 406 -- 5 482 92

7 3 — On Arria V 424 219 5 -- 518 82

7 3 — On Cyclone V 424 185 5 -- 519 76

7 3 — On Stratix V 424 408 -- 5 517 69

7 3 — Off Arria V 424 219 5 -- 518 82

7 3 — Off Cyclone V 424 185 5 -- 519 76

7 3 — Off Stratix V 424 408 -- 5 517 69

7 4 — Off Arria V 424 219 5 -- 518 82

7 4 — Off Cyclone V 424 185 5 -- 519 76

7 4 — Off Stratix V 424 408 -- 5 517 69

3 7 Continuous Off Arria 10 1,180 365 -- 5 829 178

3 7 Continuous Off Arria V 1,222 187 9 -- 1,137 250

3 7 Continuous Off Cyclone V 1,223 157 9 -- 1,137 187

3 7 Continuous Off Stratix V 1,220 325 -- 5 1,137 168

1 About the Viterbi IP Core

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
8

2 Viterbi IP Core Getting Started

1.

2.1 Installing and Licensing Intel FPGA IP Cores

The Intel Quartus Prime software installation includes the Intel FPGA IP library. This
library provides many useful IP cores for your production use without the need for an
additional license. Some Intel FPGA IP cores require purchase of a separate license for
production use. The Intel FPGA IP Evaluation Mode allows you to evaluate these
licensed Intel FPGA IP cores in simulation and hardware, before deciding to purchase a
full production IP core license. You only need to purchase a full production license for
licensed Intel IP cores after you complete hardware testing and are ready to use the
IP in production.

The Intel Quartus Prime software installs IP cores in the following locations by default:

Figure 1. IP Core Installation Path

intelFPGA(_pro)

quartus - Contains the Intel Quartus Prime software
ip - Contains the Intel FPGA IP library and third-party IP cores

altera - Contains the Intel FPGA IP library source code
<IP name> - Contains the Intel FPGA IP source files

Table 5. IP Core Installation Locations

Location Software Platform

<drive>:\intelFPGA_pro\quartus\ip\altera Intel Quartus Prime Pro Edition Windows*

<drive>:\intelFPGA\quartus\ip\altera Intel Quartus Prime Standard
Edition

Windows

<home directory>:/intelFPGA_pro/quartus/ip/altera Intel Quartus Prime Pro Edition Linux*

<home directory>:/intelFPGA/quartus/ip/altera Intel Quartus Prime Standard
Edition

Linux

2.1.1 Intel FPGA IP Evaluation Mode

The free Intel FPGA IP Evaluation Mode allows you to evaluate licensed Intel FPGA IP
cores in simulation and hardware before purchase. Intel FPGA IP Evaluation Mode
supports the following evaluations without additional license:

UG-VITERBI | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• Simulate the behavior of a licensed Intel FPGA IP core in your system.

• Verify the functionality, size, and speed of the IP core quickly and easily.

• Generate time-limited device programming files for designs that include IP cores.

• Program a device with your IP core and verify your design in hardware.

Intel FPGA IP Evaluation Mode supports the following operation modes:

• Tethered—Allows running the design containing the licensed Intel FPGA IP
indefinitely with a connection between your board and the host computer.
Tethered mode requires a serial joint test action group (JTAG) cable connected
between the JTAG port on your board and the host computer, which is running the
Intel Quartus Prime Programmer for the duration of the hardware evaluation
period. The Programmer only requires a minimum installation of the Intel Quartus
Prime software, and requires no Intel Quartus Prime license. The host computer
controls the evaluation time by sending a periodic signal to the device via the
JTAG port. If all licensed IP cores in the design support tethered mode, the
evaluation time runs until any IP core evaluation expires. If all of the IP cores
support unlimited evaluation time, the device does not time-out.

• Untethered—Allows running the design containing the licensed IP for a limited
time. The IP core reverts to untethered mode if the device disconnects from the
host computer running the Intel Quartus Prime software. The IP core also reverts
to untethered mode if any other licensed IP core in the design does not support
tethered mode.

When the evaluation time expires for any licensed Intel FPGA IP in the design, the
design stops functioning. All IP cores that use the Intel FPGA IP Evaluation Mode time
out simultaneously when any IP core in the design times out. When the evaluation
time expires, you must reprogram the FPGA device before continuing hardware
verification. To extend use of the IP core for production, purchase a full production
license for the IP core.

You must purchase the license and generate a full production license key before you
can generate an unrestricted device programming file. During Intel FPGA IP Evaluation
Mode, the Compiler only generates a time-limited device programming file (<project
name>_time_limited.sof) that expires at the time limit.

2 Viterbi IP Core Getting Started

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
10

Figure 2. Intel FPGA IP Evaluation Mode Flow

Install the Intel Quartus Prime
Software with Intel FPGA IP Library

Parameterize and Instantiate a
Licensed Intel FPGA IP Core

Purchase a Full Production
 IP License

Verify the IP in a
Supported Simulator

Compile the Design in the
Intel Quartus Prime Software

Generate a Time-Limited Device
Programming File

Program the Intel FPGA Device
and Verify Operation on the Board

No

Yes

IP Ready for
Production Use?

Include Licensed IP
in Commercial Products

Note: Refer to each IP core's user guide for parameterization steps and implementation
details.

Intel licenses IP cores on a per-seat, perpetual basis. The license fee includes first-
year maintenance and support. You must renew the maintenance contract to receive
updates, bug fixes, and technical support beyond the first year. You must purchase a
full production license for Intel FPGA IP cores that require a production license, before
generating programming files that you may use for an unlimited time. During Intel
FPGA IP Evaluation Mode, the Compiler only generates a time-limited device
programming file (<project name>_time_limited.sof) that expires at the time
limit. To obtain your production license keys, visit the Self-Service Licensing Center or
contact your local Intel FPGA representative.

The Intel FPGA Software License Agreements govern the installation and use of
licensed IP cores, the Intel Quartus Prime design software, and all unlicensed IP cores.

2 Viterbi IP Core Getting Started

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
11

http://www.altera.com/licensing
https://www.altera.com/about/contact/contact.html
http://dl.altera.com/eula/

Related Links

• Intel Quartus Prime Licensing Site

• Intel FPGA Software Installation and Licensing

2.1.2 Viterbi IP Core Intel FPGA IP Evaluation Mode Timeout Behavior

All IP cores in a device time out simultaneously when the most restrictive evaluation
time is reached. If there is more than one IP core in a design, the time-out behavior of
the other IP cores may mask the time-out behavior of a specific IP core .

For IP cores, the untethered time-out is 1 hour; the tethered time-out value is
indefinite. Your design stops working after the hardware evaluation time expires. The
Quartus Prime software uses Intel FPGA IP Evaluation Mode Files (.ocp) in your
project directory to identify your use of the Intel FPGA IP Evaluation Mode evaluation
program. After you activate the feature, do not delete these files..

When the evaluation time expires the decbit signal goes low .

Related Links

AN 320: OpenCore Plus Evaluation of Megafunctions

2.2 IP Catalog and Parameter Editor

The IP Catalog displays the IP cores available for your project. Use the following
features of the IP Catalog to locate and customize an IP core:

• Filter IP Catalog to Show IP for active device family or Show IP for all
device families. If you have no project open, select the Device Family in IP
Catalog.

• Type in the Search field to locate any full or partial IP core name in IP Catalog.

• Right-click an IP core name in IP Catalog to display details about supported
devices, to open the IP core's installation folder, and for links to IP documentation.

• Click Search for Partner IP to access partner IP information on the web.

The parameter editor prompts you to specify an IP variation name, optional ports, and
output file generation options. The parameter editor generates a top-level Intel
Quartus Prime IP file (.ip) for an IP variation in Intel Quartus Prime Pro Edition
projects.

The parameter editor generates a top-level Quartus IP file (.qip) for an IP variation
in Intel Quartus Prime Standard Edition projects. These files represent the IP variation
in the project, and store parameterization information.

2 Viterbi IP Core Getting Started

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
12

http://www.altera.com/licensing
https://www.altera.com/documentation/esc1425946071433.html#esc1426013042774
http://www.altera.com/literature/an/an320.pdf

Figure 3. IP Parameter Editor (Intel Quartus Prime Pro Edition)

IP Parameters IP Block Symbol

Figure 4. IP Parameter Editor (Intel Quartus Prime Standard Edition)

IP Port and
Parameter
Details

Specify IP Variation Name
and Target Device

2 Viterbi IP Core Getting Started

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
13

2.3 Generating IP Cores (Intel Quartus Prime Pro Edition)

Quickly configure Intel FPGA IP cores in the Intel Quartus Prime parameter editor.
Double-click any component in the IP Catalog to launch the parameter editor. The
parameter editor allows you to define a custom variation of the IP core. The parameter
editor generates the IP variation synthesis and optional simulation files, and adds
the .ip file representing the variation to your project automatically.

Figure 5. IP Parameter Editor (Intel Quartus Prime Pro Edition)

IP Parameters IP Block Symbol

Follow these steps to locate, instantiate, and customize an IP core in the parameter
editor:

1. Create or open an Intel Quartus Prime project (.qpf) to contain the instantiated
IP variation.

2. In the IP Catalog (Tools ➤ IP Catalog), locate and double-click the name of the
IP core to customize. To locate a specific component, type some or all of the
component’s name in the IP Catalog search box. The New IP Variation window
appears.

3. Specify a top-level name for your custom IP variation. Do not include spaces in IP
variation names or paths. The parameter editor saves the IP variation settings in a
file named <your_ip>.ip. Click OK. The parameter editor appears.

4. Set the parameter values in the parameter editor and view the block diagram for
the component. The Parameterization Messages tab at the bottom displays any
errors in IP parameters:

• Optionally, select preset parameter values if provided for your IP core. Presets
specify initial parameter values for specific applications.

• Specify parameters defining the IP core functionality, port configurations, and
device-specific features.

• Specify options for processing the IP core files in other EDA tools.

2 Viterbi IP Core Getting Started

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
14

Note: Refer to your IP core user guide for information about specific IP core
parameters.

5. Click Generate HDL. The Generation dialog box appears.

6. Specify output file generation options, and then click Generate. The synthesis and
simulation files generate according to your specifications.

7. To generate a simulation testbench, click Generate ➤ Generate Testbench
System. Specify testbench generation options, and then click Generate.

8. To generate an HDL instantiation template that you can copy and paste into your
text editor, click Generate ➤ Show Instantiation Template.

9. Click Finish. Click Yes if prompted to add files representing the IP variation to
your project.

10. After generating and instantiating your IP variation, make appropriate pin
assignments to connect ports.

Note: Some IP cores generate different HDL implementations according to the IP
core parameters. The underlying RTL of these IP cores contains a unique
hash code that prevents module name collisions between different variations
of the IP core. This unique code remains consistent, given the same IP
settings and software version during IP generation. This unique code can
change if you edit the IP core's parameters or upgrade the IP core version.
To avoid dependency on these unique codes in your simulation environment,
refer to Generating a Combined Simulator Setup Script.

2.3.1 IP Core Generation Output (Intel Quartus Prime Pro Edition)

The Intel Quartus Prime software generates the following output file structure for
individual IP cores that are not part of a Platform Designer system.

2 Viterbi IP Core Getting Started

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
15

Figure 6. Individual IP Core Generation Output (Intel Quartus Prime Pro Edition)

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip - Lists files for IP core synthesis

synth - IP synthesis files

<IP Submodule>_<version> - IP Submodule Library

sim

<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.ip - Top-level IP variation file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Simulation startup scripts

*

<your_ip>.cmp - VHDL component declaration

<your_ip>.v or vhd - Top-level simulation file

synth

 - IP submodule 1 simulation files

 - IP submodule 1 synthesis files

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<HDL files>

<HDL files>

<your_ip>_tb - IP testbench system *

<your_testbench>_tb.qsys - testbench system file
<your_ip>_tb - IP testbench files

your_testbench> _tb.csv or .spd - testbench file

sim - IP testbench simulation files
 * If supported and enabled for your IP core variation.

<your_ip>.qgsimc - Simulation caching file (Platform Designer)

<your_ip>.qgsynthc - Synthesis caching file (Platform Designer)

Table 6. Output Files of Intel FPGA IP Generation

File Name Description

<your_ip>.ip Top-level IP variation file that contains the parameterization of an IP core in
your project. If the IP variation is part of a Platform Designer system, the
parameter editor also generates a .qsys file.

<your_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains local
generic and port definitions that you use in VHDL design files.

<your_ip>_generation.rpt IP or Platform Designer generation log file. Displays a summary of the
messages during IP generation.

continued...

2 Viterbi IP Core Getting Started

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
16

File Name Description

<your_ip>.qgsimc (Platform Designer
systems only)

Simulation caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_ip>.qgsynth (Platform
Designer systems only)

Synthesis caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_ip>.qip Contains all information to integrate and compile the IP component.

<your_ip>.csv Contains information about the upgrade status of the IP component.

<your_ip>.bsf A symbol representation of the IP variation for use in Block Diagram Files
(.bdf).

<your_ip>.spd Input file that ip-make-simscript requires to generate simulation scripts.
The .spd file contains a list of files you generate for simulation, along with
information about memories that you initialize.

<your_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP
components you create for use with the Pin Planner.

<your_ip>_bb.v Use the Verilog blackbox (_bb.v) file as an empty module declaration for use
as a blackbox.

<your_ip>_inst.v or _inst.vhd HDL example instantiation template. Copy and paste the contents of this file
into your HDL file to instantiate the IP variation.

<your_ip>.regmap If the IP contains register information, the Intel Quartus Prime software
generates the .regmap file. The .regmap file describes the register map
information of master and slave interfaces. This file complements
the .sopcinfo file by providing more detailed register information about the
system. This file enables register display views and user customizable statistics
in System Console.

<your_ip>.svd Allows HPS System Debug tools to view the register maps of peripherals that
connect to HPS within a Platform Designer system.
During synthesis, the Intel Quartus Prime software stores the .svd files for
slave interface visible to the System Console masters in the .sof file in the
debug session. System Console reads this section, which Platform Designer
queries for register map information. For system slaves, Platform Designer
accesses the registers by name.

<your_ip>.v <your_ip>.vhd HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a msim_setup.tcl script to set up and run a ModelSim simulation.

aldec/ Contains a Riviera*-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS* simulation.
Contains a shell script vcsmx_setup.sh and synopsys_sim.setup file to
set up and run a VCS MX* simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and
run an NCSIM simulation.

/submodules Contains HDL files for the IP core submodule.

<IP submodule>/ Platform Designer generates /synth and /sim sub-directories for each IP
submodule directory that Platform Designer generates.

2 Viterbi IP Core Getting Started

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
17

2.4 Simulating Intel FPGA IP Cores

The Intel Quartus Prime software supports IP core RTL simulation in specific EDA
simulators. IP generation creates simulation files, including the functional simulation
model, any testbench (or example design), and vendor-specific simulator setup scripts
for each IP core. Use the functional simulation model and any testbench or example
design for simulation. IP generation output may also include scripts to compile and run
any testbench. The scripts list all models or libraries you require to simulate your IP
core.

The Intel Quartus Prime software provides integration with many simulators and
supports multiple simulation flows, including your own scripted and custom simulation
flows. Whichever flow you choose, IP core simulation involves the following steps:

1. Generate simulation model, testbench (or example design), and simulator setup
script files.

2. Set up your simulator environment and any simulation scripts.

3. Compile simulation model libraries.

4. Run your simulator.

2.5 DSP Builder for Intel FPGAs Design Flow

DSP Builder for Intel FPGAs shortens digital signal processing (DSP) design cycles by
helping you create the hardware representation of a DSP design in an algorithm-
friendly development environment.

This IP core supports DSP Builder for Intel FPGAs. Use the DSP Builder for Intel FPGAs
flow if you want to create a DSP Builder for Intel FPGAs model that includes an IP core
variation; use IP Catalog if you want to create an IP core variation that you can
instantiate manually in your design.

Related Links

Using MegaCore Functions chapter in the DSP Builder for Intel FPGAs Handbook.

2 Viterbi IP Core Getting Started

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
18

http://www.altera.com/literature/hb/dspb/hb_dspb_std.pdf

3 Viterbi IP Core Functional Description

3.1 Decoder

The Viterbi decoder can be a continuous or block decoder.

The continuous decoder processes a number of symbols greater than the traceback
length. When the decoder traces back the number of bits (traceback length), it
delivers output bits. This behavior changes when you assert the end of packet (EOP)
signal. The decoder then switches to block decoding, starting traceback from the last
symbol or state. The tr_init_state signal indicates the end state that starts the
traceback operation. For block decoding Intel recommends you indicate the end state
of the tail bits (usually zero) and set the tb_type signal to 1.

3.2 Convolutional Encoder

The viterbi IP core convolutional encoder.

Figure 7. Convolutional Encoder
L = 5, N = 2 and polynomials GA = 19 and GB = 29. GA in decimal is 19, which is equal to 10011 in binary.
The most significant bit of the binary representation is the connection at the input data bit; the least significant
bit (LSB) represents the connection at the end of the shift register chain. The XOR function implements the
modulo-2 adding operation

RR
Port

MSB

LSB

ga_xor

gb_xor

3.3 Trellis Coded Modulation

Trellis coded modulation (TCM) combines modulation and encoding processes to
achieve better efficiency without increasing the bandwidth.

Bandwidth-constrained channels operate in the region R/W > 1, where R = data rate
and W = bandwidth available. For such channels, digital communication systems use
bandwidth efficient multilevel phase modulation. For example, phase shift keying
(PSK), phase amplitude modulation (PAM), or quadrature amplitude modulation
(QAM).

UG-VITERBI | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

When you apply TCM to a bandwidth-constrained channel, you see a performance gain
without expanding the signal bandwidth. An increase in the number of signal phases
from four to eight requires approximately 4dB in additional signal power to maintain
the same error rate. Hence, if TCM is to provide a benefit, the performance gain of the
rate 2/3 code must overcome this 4dB penalty. If the modulation is an integral part of
the encoding process and is designed in conjunction with the code to increase the
minimum Euclidian distance between the pairs of coded signals, the loss from the
expansion of the signal set is easily overcome and significant coding gain is achieved
with relatively simple codes.

Any bandwidth-constrained system benefits from this technique, for example, satellite
modem systems. The TCM Viterbi decoder only supports N = 2 (only mother code
rates of 1/2).

3.3.1 Half-Rate Convolutional Codes

A 1/2 rate convolutional code encodes one information bit and leaves the second
information bit uncoded.

Figure 8. Half-Rate Convolutional Code
With an eight-point signal constellation (e.g. eight-PSK), the two bits select one of the four subsets in the
signal constellation. The remaining information bit selects one of the two points within each subset.

Uncoded Bit

Input

c 2

c 0

GB

GA

c 1

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
20

Figure 9. Mapping of Coded Bits and Sector Numbers

The specific mapping is not important. You can derive other mappings by permutating subsets in a way that
preserves the main property of increased minimum distance among the subsets. However, you can create any
other mapping, including symbol mappings for 8-PSK, 16-PSK and others.

011
001

000

110

111
101

100

010

0

12

3

4

5 6

7

If you create another mapping, you must correctly connect the branch metrics created
outside the IP core to the input ports and correctly configure the polynomials GA and
GB for the trellis generation.

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
21

Figure 10. Four-State Trellis
The four-state trellis is the trellis for the 1/2 rate convolution encoder with the addition of parallel paths in each
transition to accommodate the uncoded bit c2. The decoder uses the coded bits (c1, c0) to select one of the
four subsets that contain two signal points each It uses the uncoded bit to select one of the two signal points
within each subset.

00

01

10

11

101

001

110

010

000 = (c 2 c 1 c 0)

011111

111011

100

000
100

001

101010
110

3.3.2 Trellis Decoder

The decoder processes an arriving symbol to obtain four branch metric values and a
sector number. The branch metrics enter the Viterbi decoder in trellis mode and it
obtains the encoded bit.

The encoder re-encodes this bit stream and the decoder uses the output of this
encoder with the sector number information to retrieve the uncoded bit. The testbench
implements all the logic. The wizard generates the branch metric values and sector
number values, so you need no logic to create these values. The testbench reads the
sector number when it needs it. It has no delay functionality nor rotation. The wizard-
created data introduces has no phase error so the phase is aligned. In a real system,
you must calculate the phase. For a TCM code the BER block does not produce a
meaningful output (numerr), because the BER block does not compute errors at the
input for TCM codes.

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
22

Figure 11. Implementation of the Viterbi Decoder as a Trellis Decoder

decdat0
Viterbi

Decoder
Trellis Mode

Rate 1/2
Convolutional

Encoder

Trellis
Output

 Demapper
decdat1

Branch
Metric
Rotate

Delay
Sector

Number

ROM
(I, Q)

to
Branch
Metric

and
Sector

Number

Rotate
Sector

Number

I

Q

3.3.3 About Converting Received Signals

The Viterbi decoder calculates the distances to the nearest four symbol points as an
unsigned number in the range 0...00 to 1...11 (number of softbits).

Where the range is equal to the radius of the symbol map. The decoder works with
accumulative metrics (not Euclidean metrics), so the decoder inverts these distances
(000 becomes 111; 001 becomes110).

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
23

Figure 12. Conversion of Received Symbol into Four Branch Metrics and a Sector
Number

Branch Metric 1

Branch Metric 3

Branch Metric 2

Branch Metric 0

Received Symbol

011

001

000

110

111

101

100

010

2

For example, consider a received symbol that lands in sector number 2 with the
following distances to the four nearest symbol map points:

• 1111

• 1101

• 1011

• 0001

Where the distance of the radius for 4 softbits is 1111. The distances are inverted to
obtain the following branch metrics:

• Branch metric 0 = 0000

• Branch metric 1 = 0010

• Branch metric 2 = 0100

• Branch metric 3 = 1110

The decoder uses the coded bits (c1, c0) to select the branch metric number, which it
uses to decide where to connect the branch metrics to the rr input of the Viterbi
decoder. Branch metric 3 goes to the most significant bits (MSB) of rr; branch metric
0 goes to the least significant bits (LSB) of rr.

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
24

3.3.4 Trellis Termination

Block decoders must properly decode the last bits of the block and adapt to the
convolutional encoder.

Tail-biting feeds the convolutional encoder with a block and terminates it with (L – 1)
unknown bits taken from the end of the block. Tail-biting sets the initial state of the
convolutional encoder with the last (L – 1) information bits. Tail-biting is decoded by
replicating the block at the decoder or double feeding the block into the decoder. By
decoding in the middle point, the trellis is forced into the state that is both the initial
state and the end state. From the first decoding block, you can take the last half of
the block; from the second decoded block (or second pass through the decoder), you
can obtain the first half of the bits of the block.

Note: In tail-biting, the block size must be large enough to train the decoder, otherwise you
may see BER loss.

Alternatively, if you initialize the convolutional encoder to zero, the initial state of the
trellis is zero. The decoder knows the last (L – 1) bits to the convolutional encoder.
They bring the convolutional encoder to a known end state. The decoder then uses
this information to set the end state of the trellis with tr_init_state, which is
derived from the last (L – 1) bits of the block in reverse order. For example, for a
block that ends in: ...000101 If L = 5 and the decoder knows the last (L – 1) = 4 bits,
it sets tr_init_state as 0101, which reversed and in binary is 1010, or 10 in
decimal. The wizard generates tr_init_state as if it knows the last (L – 1) bits of
each block.

3.3.5 Trellis Initialization

The parallel decoder always starts its trellis from state zero for a new block.

However, the hybrid decoder allows you to set the initial state (usually zero) with
bm_init_state. This signal ranges from 0 to 2 (L – 1) – 1, which are the trellis
states. The bm_init_value signal initializes the state metric of the state indicated by
bm_init_state. The decoder initializes all other states with zero. The appropriate
value for this port is approximately 2(bmgwide – 2) or any value between 2(N + softbits) to
2(bmgwide – 1). Continuous decoders never reset the state metrics, which creates a
possible difference if the same block of data is sent several times. Initially, the
decoder sets the state metrics so that the state metric for state 0 is 0, and all others
infinity. For any subsequent blocks, the state metrics contain whatever they have
when the previous block ends.

3.4 Viterbi IP Core Parameters

3.4.1 Architecture

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
25

Table 7. Architecture Parameters

Parameter Value Description

Viterbi architecure Hybrid or Parallel Selects the hybrid or parallel architecture.

BER On or Off Specifies the BER estimator option, refer to “BER Estimator” on page 3–
7.

Node Sync On or Off Specifies the node synchronization option (only available when BER
option is on).

Optimizations None, Continuous, or Block Specifies the optimization for the parallel decoder. if you select None
you can turn on Best State Finder. However, to use less logic, turn off
Best State Finder.

3.4.1.1 BER Estimator

The BER estimator option uses a re-encode and compare approach for estimating the
number of errors in the input data.

Figure 13. BER Block Diagram

Viterbi
Decoder

Input Symbols

Delay

Compare
and Count

BER Output
(numerr)

Convolutional
Encoder

In cases where the signal-to-noise ratio is sufficiently high to allow the decoder to
decode an error-free output, the BER estimation is very close to the actual channel
BER. When the decoder is not decoding an error-free output, the estimated BER is
higher and more random than the actual channel BER, which introduces a degree of
uncertainty directly proportional to the output errors.

Note: For a TCM code, the BER block does not produce a meaningful output (numerr)
because the BER block does not compute errors at the input for TCM codes.

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
26

Figure 14. Graph Comparing Actual BER with Estimated BER

3.00 3.50 4.00 4.50 5.00 5.50 6.00
Signal-to-Noise Ratio

BER

Actual BER
Estimated BER

1.00e-03

1.00e-02

1.00e-01

3.4.1.2 Node Synchronization

If you are not using external synchronization, you may not know the order of your N
bits. The node synchronization option allows you to rotate the rr inputs until the
decoder is in synchronization. To use node synchronization, you observe the BER and
keep changing state_node_sync to rotate the rr inputs until you get the correct value
for the BER.

Figure 15. Node Synchronization Block Diagram

state_node_sync

Barrel
Rotator

rr(1)
rr(2)

...

RR(1)
RR(2)
...

rr(N) RR(N)

The following equation represents node synchronization:

RR[i] = rr[((state_node_sync + i – 1) mod N) + 1]

where i is 1 to N.

RR and rr are treated as an array of width N of busses softbits wide. The range of
valid values for state_node_sync is 0 to (N – 1).

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
27

3.4.2 Code Sets

Table 8. Code Sets Parameters

Parameter Value Description

Number of Code
Sets

1 to 8 The Viterbi IP core supports multiple code definitions. The multiple code set
option allows up to eight code sets, where a code set comprises a code rate and
associated generating polynomials.

Number of coded
bits. (N)

2 to 7 (hybrid)
2 to 4 (parallel)

For every bit to be encoded, N bits are output. With the multiple code set option
there are up to 5 different N parameters, which can be in any order. Valid only
for Viterbi mode. For TCM mode only N = 2 is supported

Constraint length
(L)

3 to 9 The constraint length. Defines the number of states in the convolutional encoder,
where number of states = 2(L – 1). You can choose different values of L for each
code set.

Decimal or Octal – Decimal or octal base representation for the generator polynomials. The design
file representation is decimal, but you have the option of entering in either
decimal or octal base.

Mode V or T Viterbi (V) or TCM mode (T).

GA, GB, GC, GD,
GE, GF, GG

– The generator polynomials. If you use the multiple code set option, the wizard
enters a different set of polynomials in the respective gi group. The wizard
provides default values that you can overwritte by any valid polynomial. (The
wizard does not check whether the entered values are valid.) The parallel
architecture uses only GA, GB, GC, and GD.

For multiple code sets, the first code definition corresponds to the first line and is
selected with sel_code input = 0; the second line is selected with sel_code = 1;
the third with sel_code = 2 and so on. For each code definition you can select N, the
polynomials, the constraint length L, and the mode (Viterbi or TCM). You can mix
different constraint lengths with different TCM and Viterbi modes. The test data, which
the wizardr creates, tests each of the code definitions. You can see these tests in the
simulation with the testbench or if you look at the block_period_stim.txt file.

In hybrid mode, for constraint lengths of 3 and 4, the bitwidth of tr_init_state is
4, but the MegaCore function ignores the redundant higher bits.

For multiple constraint lengths, some of the last decoded bits may be incorrect,
becauset of the Viterbi algorithm. To avoid this effect, give a lower BER, and reduce
the probability of being on the wrong trellis path, set Optimization to None and turn
on Best State Finder.

3.4.3 Viterbi Parameters

Parameter Value Description

Maximum
constraint length
(LMAX)

5 to 9 (hybrid)
3 to 9 (parallel)

The maximum constraint length LMAX. .

ACS Units (A) 1, 2, 4, 8, or 16 The number of ACS units, which adds a degree of parallelism (hybrid architecture
only). The range of values available depends upon the value of maximum
constraint length LMAX.

continued...

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
28

Parameter Value Description

Traceback (v) 8 (minimum) The traceback length, which is the number of stages in the trellis that are traced
back to obtain a decoded bit. It is typically set to 6 × L for unpunctured codes, and
up to 15 × L for highly punctured codes.

Softbits (softbits) 1 to 16 The number of soft decision bits per symbol. When softbits is set to 1 bit, the
decoder acts as a hard decision decoder, and still allows for erased symbols to be
entered using the eras_sym input.

Bmgwide – The precision of the state metric accumulation. The parameter editor selects and
displays the optimum value, which depends on NMAX, LMAX and, softbits.

3.4.3.1 Soft Symbol Input

The number of soft decision bits per symbol, softbits, represent 2softbits – 1 soft 0s and
2softbits – 1 soft 1s. The input values represent received signal amplitudes. If the input
is in log-likelihood format, a transformation is required and you must use extra
softbits to retain signal integrity. The decoder marks depunctured values separately.
The decoder allows a hard-decision input when softbits = 1.

Table 9. Soft Symbol Input Representation
softbits = 3

Soft Symbol Meaning

011 Strongest '0'

010 Strong '0'

001 Weak '0'

000 Weakest '0'

111 Weakest '1'

110 Weak '1'

101 Strong '1'

100 Strongest '1'

3.4.3.2 State Metrics

The Viterbi decoder state metrics are accumulative not Euclidean and are based on
maximum metrics rather than minimum metrics.

As the metrics grow, normalize them to avoid overflow. When a normalization occurs
the decoder subtracts 2(bmgwide – 1) from all metrics and increases the normalization
register by +1. The total metric value for the best path = (number of normalizations)
× (2(bmgwide – 1)) + bestmet. The total metric value for the best path, the number of
symbols processed, and the number of errors in the BER block indicate the quality of
the channel and whether you have a suitable value for softbits. The output bestadd
indicates the state that has the best metric.

3.4.3.3 Throughput Calculator

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
29

The throughput calculator uses the following equation:

Hybrid throughput = fMAX/Z

where:

• — Z = 10, if log2C = 3

— Z= 2log2C, if log2C > 3

— log2C = LMAX – 2 – log2A

— LMAX is the maximum constraint length

— A is ACS units

— Parallel throughput = fMAX

3.4.3.4 Latency Calculator

The latency calculator gives you an approximate indication of the latency of your
Viterbi decoder.

Latency is the number of clock cycles it takes the decoder to process r the data and
output it. Latency is from the first symbol to enter the IP core (sink_sop) up to the
first symbol to leave (source_sop). The latency depends on the parameters. For the
precise latency, perform simulation. The latency calculator uses the following formula
for the hybrid architecture:

Number of clock cycles = Z × V

where:

• — V is the traceback length value that is in the input tb_length

— Z = 10, if log2C = 3

— Z = 2log2C, if log2C > 3

— log2C = LMAX – 2 – log2A, where A is ACS units

For the parallel architecture the number of clock cycles is approximately 4V.

3.4.4 Test Data

Parameter Description

Number of bits per block The number of bits per block.
The number of bits per block × the number of blocks must be less than
50,000,000.

Signal to noise ratio (dB) The signal to noise ratio, which must be between 1 and 100.

Number of blocks The number of blocks.
The number of bits per block × the number of blocks must be less than
50,000,000.

Pattern A Enter the puncturing pattern A.

Pattern B Enter the puncturing pattern B.

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
30

3.4.4.1 External Puncturing

Both parallel and hybrid architectures support external puncturing.

All punctured codes are based on a mother code of rate 1/2. For external depuncturing
you must depuncture the received data stream external to the decoder and input the
data into the decoder n symbols at a time.

Table 10. Puncturing Schemes
You can define these schemes and their rate. CA refers to the most significant (first transmitted bit, first
received symbol); CB refers to the least significant (last transmitted bit, last received symbol)

Punctured Rate Puncturing Scheme

Bit Multiplier

2/3 CA 1 0

CB 1 1

3/4 CA 1 0 1

CB 1 1 0

4/5 CA 1 0 0 0

CB 1 1 1 1

5/6 CA 1 0 1 0 1

CB 1 1 0 1 0

6/7 CA 1 0 0 1 0 1

CB 1 1 1 0 1 0

7/8 CA 1 1 1 1 0 1 0

CB 1 0 0 0 1 0 1

3.5 Viterbi IP Core Interfaces and Signals

The Viterbi Avalon-ST interface supports backpressure, which is a flow control
mechanism, where a sink can indicate to a source to stop sending data.

The ready latency on the Avalon-ST input interface is 1.

You may achieve a higher clock rate by driving the source ready signal source_rdy
of the Viterbi high, and not connecting the sink ready signal sink_rdy.

3.5.1 Avalon-ST Interfaces in DSP IP Cores

Avalon-ST interfaces define a standard, flexible, and modular protocol for data
transfers from a source interface to a sink interface.

The input interface is an Avalon-ST sink and the output interface is an Avalon-ST
source. The Avalon-ST interface supports packet transfers with packets interleaved
across multiple channels.

Avalon-ST interface signals can describe traditional streaming interfaces supporting a
single stream of data without knowledge of channels or packet boundaries. Such
interfaces typically contain data, ready, and valid signals. Avalon-ST interfaces can
also support more complex protocols for burst and packet transfers with packets

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
31

interleaved across multiple channels. The Avalon-ST interface inherently synchronizes
multichannel designs, which allows you to achieve efficient, time-multiplexed
implementations without having to implement complex control logic.

Avalon-ST interfaces support backpressure, which is a flow control mechanism where
a sink can signal to a source to stop sending data. The sink typically uses
backpressure to stop the flow of data when its FIFO buffers are full or when it has
congestion on its output.

Related Links

Avalon Interface Specifications

3.5.2 Global Signals

Signal Name Description

clk The main system clock. The whole MegaCore function operates on the rising edge of clk.

reset Reset. The entire decoder is asynchronously reset when reset is asserted high. The reset signal resets the
entire system. You must deassert the reset signal synchronously with respect to the rising edge of clk.

3.5.3 Avalon-ST Sink Signals

Signal Name Avalon-ST
Name

Direction Description

eras_sym[Nma
x:1]

dat Input When asserted, eras_sym Indicates an erased symbol. Both rr and
eras_sym are Avalon-ST dat inputs

rr dat Input Data input, which takes in n symbols, each softbits wide per clock. In
TCM mode the rr width is (2N × softbits:1); in Viterbi mode the rr
width is (nmax × softbits:1).Both rr and eras_sym are Avalon-ST
dat inputs

sink_eop eop Input End of packet (block) signal. sink_eop delineates the packet
boundaries on the rr bus. When sink_eop is high, the end of the
packet is present on the dat bus. sink_eop is asserted on the last
transfer of every packet. This signal applies to block decoding only.

sink_rdy ready Output Data transfer enable signal.The interface sink drives sink_rdy and
controls the flow of data across the interface. sink_rdy behaves as
a read enable from sink to source. When the source observes
sink_rdy asserted on the clk rising edge, it can drive the Avalon-
ST data interface signals and assert sink_val as early as the next
clock cycle, if data is available. In the hybrid architecture, sink_rdy
is asserted for one clock cycle at a time. If data is not available at
the time, you have to wait for the next sink_rdy pulse.

sink_sop sop Input Start of packet (block) signal. sop delineates the packet boundaries
on the rr bus. When sink_sop is high, the start of the packet is
present on the rr bus. sink_sop is asserted on the first transfer of
every packet This signal applies to block decoding only.

sink_val val Input Data valid signal. sink_val indicates the validity of the data
signals. sink_val is updated on every clock edge where sink_rdy
is sampled asserted, and holds its current value along with the dat

continued...

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
32

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Signal Name Avalon-ST
Name

Direction Description

bus where sink_rdy is sampled deasserted. When sink_val is
asserted, the Avalon-ST data interface signals are valid. When
sink_val is deasserted, the Avalon-ST data interface signals are
invalid and you must disregard them. To determine whether new
data has been received, the sink qualifies the sink_val signal with
the previous state of the sink_rdy signal.

sink_data data Input In Qsys systems, this Avalon-ST-compliant data bus includes all the
Avalon-ST input data and configuration signals. The signals are in the
following order from MSB to LSB:
• In

• State_node_sync

• Ber_clear

• Sel_code

• Tb_type

• Tb_length

• Tr_init_state

• Bm_init_state

• Bm_init_value

• Eras_symRr

3.5.4 Avalon Source-ST Signals

Signal Avalon-ST
Name

Direction Description

decbit dat Output The decbit signal contains output bits when source_val is asserted.

source_eop eop Output End of packet (block) signal. if you select continuous optimization,
this signal is left open and you must remove it from the testbench.

source_rdy ready Input Data transfer enable signal. The sink interface drives source_rdy
and uses it to control the flow of data across the interface. ena
behaves as a read enable from sink to source. When the source
observes source_rdy asserted on the clk rising edge it drives, on
the following clk rising edge, the Avalon-ST data interface signals
and asserts source_val. The sink captures the data interface
signals on the following clk rising edge. If the source is unable to
provide new data, it deasserts source_val for one or more clock
cycles until it is prepared to drive valid data interface signals.

source_sop sop Output Start of packet (block) signal. if you select continuous optimization,
this signal is left open and you must remove it from the testbench.

source_val val Output Data valid signal. The IP core assers source_val high for one clock
cycle, whenever there is a valid output on the decbit signal.

out_data data Output In Qsys systems, this Avalon-ST-compliant data bus includes all the
Avalon-ST output data and configuration signals. The signals are in
the following order from MSB to LSB:
• Numerr

• BestAdd

• BestMet

• Normalizations

• Decbit

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
33

3.5.5 Configuration Signals

Signal Name Description

ber_clear Reset for the BER counter. Only for the BER block option.

bm_init_state[(L-1):1] Specifies the state in which to initialize with the value from the
bm_init_value[] bus. All other state metrics are set to zero. the IP core
latches bm_init_state when sink_sop is asserted. Hybrid architecture only.

bm_init_value[(L-1):1] Specifies the value of the metric that initializes the start state. All other metrics
are set to 0. bm_init_value must be larger than (L × 2(softbits – 1)). the IP core
latches bm_init_value when sink_sop is asserted. Hybrid architecture only.

sel_code[log2(Ncodes):1] Selects the codeword. ’0’ selects the first codeword, ‘1’ selects the second, and
so on. The bus size increases according to the number of codes specified. The IP
core latches sel_code when sink_sop is asserted.

state_node_sync[log2(Nmax):1] Specifies the node synchronization rotation to rr.
The IP core latches state_node_sync signal when sink_sop is asserted.
Available only when you turn on Node Sync.

tb_length[] Traceback length. The maximum width of tb_length is equal to the maximum
value of parameter v. The IP core latches tb_length input when sink_sop is
asserted. This IP core disables this signal if you select the continuous
optimization: you must then remove it from the testbench. Not available for
parallel architectures with block optimization.

tb_type Parallel architectures only. Altera recommends that you set tb_type high always
for future compatibility. In block decoding when tb_type is low, the decoder
starts from state 0; when tb_type is high, the decoder uses the state specified
in tr_init_state[(L-1):1]. For block decoding set tb_type high. The IP
core latches tb_type when sink_eop is asserted. If you select None or
Continuous optimization, the IP core connects this input to zero.

tr_init_state[(L-1):1] Specifies the state to start the traceback from, when tb_type is asserted high.
The IP core latches tr_init_state when sink_eop is asserted. If you select
continuous optimization, this input is removed from the top level design and
connected to zero in the inner core.

3.5.6 Status Signals

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
34

Signal Description

bestadd[(L-1):1] The best address state. The address corresponding to the best metric as it is
being found by the best state finder. The metric of this state if shown in
bestmet. If you select Continuous or None optimization and turn off best state
finder, the IP core leaves this signal open. For parallel decoders, the IP core
removes this signal.

bestmet[bmgwide:1] The best metric. The bestmet signal shows the best state metric for every trellis
step as the best state finder finds it. The state that contains this best metric is
shown in bestadd. If you select Continuous or None for optimization and turn
off best state finder, the IP core leave this signal open, For parallel decoders, the
IP core removes this signal.

normalizations[8:1] The normalizations bus indicates in real time the number of normalizations that
occur since you activated sink_sop.

numerr[] The numerr bus contains the number of errors detected during a block. The iP
core updates it each time it detects an error, so you can see the location of
individual errors. It is reset when source_sop asserted; it is valid two-clock
cycles after source_sop. The wizard automatically sets the width of this bus. If
you do not select a BER block, the IP cores leaves this signal open. Only
available when you select the BER estimator option

3.5.7 Viterbi IP Core Timing Diagrams

Figure 16. Hybrid Decoder Input Timing Diagram
The sink_rdy signal is asserted for one clock cycle in every Z clock cycles. If the decoder becomes full
because data is not being collected on the source side, it may deassert sink_rdy until it can accept new data.
The decoder only accepts data, if sink_rdy is asserted.

clk
sink_rdy
sink_val

sink_sop
sink_eop

rr[8:1] 77 8888

Figure 17. Parallel Decoder Input Timing Diagram

clk
sink_rdy
sink_val

sink_sop
sink_eop

rr[8:1] valid data valid data

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
35

Figure 18. Output Timing - Example 1
The source_val signal is asserted initially for 8 or 16 clock cycles. It is then asserted for the number of clock
cycles corresponding to the amount of remaining data, if source_rdy remains asserted. The typical ending of
a block or packet in the Avalon-ST interface is on the source (Viterbi) to the sink (user) side connection.

clk
source_sop
source_eop
source_rdy
source_val

decbit

Figure 19. Output Timing - Example 2
With a different ending.

clk
source_sop
source_eop
source_rdy

source_val
decbit

Figure 20. Depuncturing Timing Diagram
This depuncturing timing diagram shows eras_sym for the pattern 110110 (puncturing rate 3/4). By changing
the eras_sym pattern you can implement virtually any depuncturing pattern you require.

 clk
ena
val

sop
rr[8:5]
rr[4:1]

eras_sym[2]
eras_sym[1]

B X 7 A X 7

8 7 X D 9 X

3 Viterbi IP Core Functional Description

UG-VITERBI | 2017.11.06

Viterbi IP Core User Guide
36

A Viterbi IP Core User Guide Document Archives
If an IP core version is not listed, the user guide for the previous IP core version applies.

IP Core Version User Guide

15.0 Viterbi IP Core User Guide v15.0

14.1 Viterbi IP Core User Guide v14.1

UG-VITERBI | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/en_US/pdfs/literature/ug/archives/ug-viterbi-compiler-15.0.pdf
https://www.altera.com/en_US/pdfs/literature/ug/archives/ug-viterbi-compiler-14.1.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

5 Document Revision History
Viterbi IP Core User Guide revision history.

Date Version Changes

November 2017 2017.11.06 • Changed descriptions of tb_type and tb_length
signals

• Removed product ID and vendor ID.
• Added support for Intel Cyclone 10 devices

2014.12.15 14.1 • Removed Arria 10 specific wizard comments
• Added final support for Arria 10 and MAX 10 devices

August 2014 14.0 Arria 10 Edition • Added support for Arria 10 devices.
• Added new sink_data and out_data bus description.
• Added Arria 10 generated files description.
• Removed table with generated file descriptions
.

June 2014 14.0 • Removed support for Cyclone III and Stratix III devices.
• Added support for MAX 10 FPGAs
• Added instructions for using IP Catalog

November 2013 13.1 • Removed support for the following devices:
• — Arria

— Cyclone II
— HardCopy® II
— HardCopy III
— HardCopy IV
— Stratix
— Stratix II
— Stratix GX
— Stratix II GX

• Added full support for the following devices:
• — Arria V

— Stratix V

November 2012 12.1 Added support for Arria V GZ devices.

May 2011 11.0 • Updated support level to final support for Arria II GX,
Arria II GZ, Cyclone III LS, and Cyclone IV GX devices.

• Updated support level to HardCopy Compilation for
HardCopy III, HardCopy IV E, and HardCopy IV GX
devices

.

December 2010 10.1 • Added preliminary support for Arria II GZ devices.
• Updated support level to final support for Stratix IV GT

devices.

July 2010 10.0 Added preliminary support for Stratix V devices.

UG-VITERBI | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Intel:

 IP-VITERBI/HS IP-VITERBI/SS

https://www.mouser.com/altera
https://www.mouser.com/access/?pn=IP-VITERBI/HS
https://www.mouser.com/access/?pn=IP-VITERBI/SS

	Viterbi IP Core User Guide
	Contents
	1 About the Viterbi IP Core
	1.1 Intel® DSP IP Core Features
	1.2 Viterbi IP Core Features
	1.3 DSP IP Core Device Family Support
	1.4 DSP IP Core Verification
	1.5 Viterbi IP Core Release Information
	1.6 Viterbi IP Core Performance and Resource Utilization

	2 Viterbi IP Core Getting Started
	2.1 Installing and Licensing Intel FPGA IP Cores
	2.1.1 Intel FPGA IP Evaluation Mode
	2.1.2 Viterbi IP Core Intel FPGA IP Evaluation Mode Timeout Behavior

	2.2 IP Catalog and Parameter Editor
	2.3 Generating IP Cores (Intel Quartus Prime Pro Edition)
	2.3.1 IP Core Generation Output (Intel Quartus Prime Pro Edition)

	2.4 Simulating Intel FPGA IP Cores
	2.5 DSP Builder for Intel FPGAs Design Flow

	3 Viterbi IP Core Functional Description
	3.1 Decoder
	3.2 Convolutional Encoder
	3.3 Trellis Coded Modulation
	3.3.1 Half-Rate Convolutional Codes
	3.3.2 Trellis Decoder
	3.3.3 About Converting Received Signals
	3.3.4 Trellis Termination
	3.3.5 Trellis Initialization

	3.4 Viterbi IP Core Parameters
	3.4.1 Architecture
	3.4.1.1 BER Estimator
	3.4.1.2 Node Synchronization

	3.4.2 Code Sets
	3.4.3 Viterbi Parameters
	3.4.3.1 Soft Symbol Input
	3.4.3.2 State Metrics
	3.4.3.3 Throughput Calculator
	3.4.3.4 Latency Calculator

	3.4.4 Test Data
	3.4.4.1 External Puncturing

	3.5 Viterbi IP Core Interfaces and Signals
	3.5.1 Avalon-ST Interfaces in DSP IP Cores
	3.5.2 Global Signals
	3.5.3 Avalon-ST Sink Signals
	3.5.4 Avalon Source-ST Signals
	3.5.5 Configuration Signals
	3.5.6 Status Signals
	3.5.7 Viterbi IP Core Timing Diagrams

	A Viterbi IP Core User Guide Document Archives
	5 Document Revision History

