
101 Innovation Drive
San Jose, CA 95134
www.altera.com

PCI Compiler

User Guide

Compiler Version: 11.1
Document Date: October 2011

c The PCI Compiler is scheduled for product obsolescence and discontinued support
as described in PDN1410. Therefore, Altera does not recommend use of this IP in
new designs. For more information about Altera’s current IP offering, refer to
Altera’s Intellectual Property website.

http://www.altera.com
http://www.altera.com/literature/pcn/pdn1410.pdf
http://www.altera.com/products/ip/ipm-index.html

i–ii User Guide Version 11.1 Altera Corporation
PCI Compiler

Copyright © 2011 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted
otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names
are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in
accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service de-
scribed herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest
version of device specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

Printed on recycled paper

iii Altera Corporation

UG-PCICOMPILER-4.12

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

i–iv User Guide Version 11.1 Altera Corporation
PCI Compiler

Altera Corporation v

Contents

About PCI Compiler
Introduction .. 1
Release Information ... 2
Device Family Support ... 2
Features ... 3

Common Features ..3
PCI Compiler with MegaWizard Plug-in Manager Flow ..4
PCI Compiler with SOPC Builder Flow..4

General Description ... 5
PCI MegaCore Functions ..5
PCI Testbench ...6
PCI Compiler with MegaWizard Plug-in Manager Flow ..6
PCI Compiler With SOPC Builder Flow ...7

Selecting the Appropriate Flow for Your Design ... 9
PCI Compiler With SOPC Builder Flow ...9
PCI Compiler With MegaWizard Plug-in Manager Flow..10

Compliance Summary .. 10
Performance and Resource Utilization ... 11

PCI Compiler with MegaWizard Plug-in Manager Flow ..11
PCI Compiler with SOPC Builder Flow..13

Installation and Licensing .. 17
OpenCore Plus Evaluation..19
OpenCore Plus Time-Out Behavior...19

Section I. PCI Compiler With MegaWizard Plug-In Manager Flow

Chapter 1. Getting Started
Design Flow .. 1–1
PCI MegaCore Function Design Walkthrough ... 1–2

Create a New Quartus II Project .. 1–2
Launch IP Toolbench ... 1–4
Step 1: Parameterize ... 1–5
Step 2: Set Up Simulation .. 1–7
Step 3: Generate .. 1–7

Simulate the Design ... 1–9
Simulation in the Quartus II Software .. 1–11

The Quartus II Simulation Files ... 1–12
Master Simulation Files ... 1–13
Target Simulation Files .. 1–15

vi User Guide Version 11.1 Altera Corporation
PCI Compiler

Contents

Compile the Design ... 1–16
Program a Device .. 1–18
PCI Timing Support .. 1–18
Using the Reference Designs .. 1–19

pci_mt32 MegaCore Function Reference Design ... 1–19
Synthesis & Compilation Instructions ... 1–20

pci_mt64 MegaCore Function Reference Design ... 1–21
synthesis & Compilation Instructions .. 1–22

Chapter 2. Parameter Settings
Parameterize PCI Compiler ... 2–1
PCI MegaCore Function Settings .. 2–1
Read-Only PCI Configuration Registers .. 2–2
PCI Base Address Registers (BARs) .. 2–2
Advanced PCI MegaCore Function Features .. 2–3

Optional Registers ... 2–3
Optional Interrupt Capabilities ... 2–4
Master Features ... 2–4

Variation File Parameters ... 2–7

Chapter 3. Functional Description
Functional Overview ... 3–1

Target Device Signals & Signal Assertion .. 3–6
Master Device Signals & Signal Assertion .. 3–9

PCI Bus Signals .. 3–11
Parameterized Configuration Register Signals .. 3–15
Local Address, Data, Command, & Byte Enable Signals ... 3–16
Target Local-Side Signals .. 3–20
Master Local-Side Signals ... 3–24

PCI Bus Commands .. 3–27
Configuration Registers .. 3–28

Vendor ID Register ... 3–31
Device ID Register .. 3–31
Command Register .. 3–32
Status Register .. 3–33
Revision ID Register .. 3–34
Class Code Register .. 3–35
Cache Line Size Register ... 3–35
Latency Timer Register .. 3–36
Header Type Register .. 3–36
Base Address Registers .. 3–37
CardBus CIS Pointer Register ... 3–40
Subsystem Vendor ID Register .. 3–40
Subsystem ID Register ... 3–41
Expansion ROM Base Address Register ... 3–41
Capabilities Pointer .. 3–42
Interrupt Line Register .. 3–43

Altera Corporation User Guide Version 11.1 vii
PCI Compiler

Contents

Interrupt Pin Register .. 3–43
Minimum Grant Register .. 3–43
Maximum Latency Register .. 3–44

Target Mode Operation .. 3–44
Target Read Transactions .. 3–48

Memory Read Transactions ... 3–48
I/O Read Transactions ... 3–61
Configuration Read Transactions ... 3–62

Target Write Transactions ... 3–63
Memory Write Transactions .. 3–63
I/O Write Transactions .. 3–75
Configuration Write Transactions .. 3–76

Target Transaction Terminations ... 3–77
Retry .. 3–77
Disconnect .. 3–79
Target Abort ... 3–86

Additional Design Guidelines for Target Transactions .. 3–88
Master Mode Operation ... 3–88

PCI Bus Parking .. 3–92
Design Consideration ... 3–92

Master Read Transactions ... 3–93
Memory Read Transactions ... 3–93
I/O & Configuration Read Transactions ... 3–107

Master Write Transactions .. 3–108
Memory Write Transactions .. 3–108
I/O & Configuration Write Master Transactions ... 3–124

Abnormal Master Transaction Termination ... 3–125
Latency Timer Expires .. 3–125
Retry .. 3–125
Disconnect Without Data ... 3–126
Disconnect with Data ... 3–126
Target Abort ... 3–126
Master Abort .. 3–126

Host Bridge Operation .. 3–127
Using the PCI MegaCore Function as a Host Bridge .. 3–127

PCI Configuration Read Transaction from the pci_mt64 Local Master Device to the Internal
Configuration Space ... 3–127
PCI Configuration Write Transaction from the pci_mt64 Local Master Device to the Internal
Configuration Space ... 3–129

64-Bit Addressing, Dual Address Cycle (DAC) .. 3–131
Target Mode Operation ... 3–131

64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction 3–132
Master Mode Operation .. 3–134

64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction 3–134

Chapter 4. Testbench
General Description ... 4–1

viii User Guide Version 11.1 Altera Corporation
PCI Compiler

Contents

Features ... 4–2
PCI Testbench Files ... 4–2
Testbench Specifications ... 4–6

Master Transactor (mstr_tranx) .. 4–7
PROCEDURES and TASKS Sections .. 4–7
INITIALIZATION Section ... 4–8
USER COMMANDS Section ... 4–8
Target Transactor (trgt_tranx) ... 4–12
FILE IO section .. 4–13
PROCEDURES and TASKS sections .. 4–13

Bus Monitor (monitor) ... 4–14
Clock Generator (clk_gen) .. 4–14
Arbiter (arbiter) .. 4–15
Pull Up (pull_up) ... 4–15

Local Reference Design ... 4–15
Local Target ... 4–17
DMA Engine ... 4–17
Local Master .. 4–19
lm_lastn Generator ... 4–19
Prefetch .. 4–19
LPM RAM .. 4–19

Simulation Flow ... 4–20

Section II. PCI Compiler With SOPC Builder Flow

Chapter 5. Getting Started
Design Flow .. 5–1
PCI Compiler with SOPC Builder Flow Design Walkthrough ... 5–2

Create a New Quartus II Project .. 5–3
Set Up the PCI-Avalon Bridge .. 5–5
Add the Remaining Components to the SOPC Builder System .. 5–7
Complete the Connections in SOPC Builder .. 5–8
Generate the SOPC Builder System ... 5–9
Files Generated by SOPC Builder .. 5–10

Simulate the Design ... 5–11
Compile the Design ... 5–13
Program a Device .. 5–14
Upgrading Systems from a Previous Version ... 5–15

Chapter 6. Parameter Settings
System Options-1 ... 6–1

PCI Device Mode .. 6–1
PCI Target Performance ... 6–3
PCI Master Performance .. 6–5

Value of Multiple Pending Reads ... 6–6

Altera Corporation User Guide Version 11.1 ix
PCI Compiler

Contents

System Options-2 ... 6–9
PCI Bus Speed .. 6–9
PCI Data Bus Width .. 6–9
PCI Clock/Reset Settings ... 6–9
PCI Bus Arbiter ... 6–10

PCI Configuration ... 6–11
PCI Base Address Registers ... 6–11
PCI Read-Only Registers ... 6–11
Setting the PCI Base Address Register Values ... 6–11
Manual Setting of the BAR Size & Avalon Base Address ... 6–14

Avalon Configuration ... 6–16

Chapter 7. Functional Description
Functional Overview ... 7–1

PCI-Avalon Bridge Blocks ... 7–2
Avalon-MM Ports ... 7–3
Control/Status Register Module .. 7–5
PCI MegaCore Function ... 7–5
PCI Bus Arbiter ... 7–6
Other PCI-Avalon Bridge Modules .. 7–6

PCI Operational Modes ... 7–6
PCI Target-Only Peripheral Mode Operation .. 7–6
PCI Master/Target Peripheral Mode Operation .. 7–8
PCI Host-Bridge Device Mode Operation ... 7–10

Performance Profiles .. 7–11
Target Performance .. 7–12
Master Performance .. 7–12

Interface Signals ... 7–13
PCI Bus Arbiter Signals ... 7–14

PCI Bus Commands .. 7–15
PCI Target Operation .. 7–15

Non-Prefetchable Operations ... 7–17
Non-Prefetchable Write Operations ... 7–18
I/O Write Operations ... 7–19
Non-Prefetchable Read Operations .. 7–19

Prefetchable Operations .. 7–21
Prefetchable Write Operations .. 7–22
Prefetchable Read Operations ... 7–23

PCI-to-Avalon Address Translation .. 7–26
PCI Master Operation ... 7–27

Avalon-To-PCI Read & Write Operation .. 7–28
Avalon-to-PCI Write Requests .. 7–31
Avalon-to-PCI Read Requests ... 7–32
Arbitration Among Pending PCI Master Requests .. 7–34

Avalon-to-PCI Address Translation .. 7–35
Ordering of Requests ... 7–38

Ordering of Avalon-to-PCI Operations ... 7–39

x User Guide Version 11.1 Altera Corporation
PCI Compiler

Contents

Ordering PCI-to-Avalon Operations .. 7–42
PCI Host-Bridge Operation .. 7–45
Altera-Provided PCI Bus Arbiter .. 7–45
Interrupts .. 7–46

Generation of PCI Interrupts ... 7–46
Reception of PCI Interrupts ... 7–46
Generation of Avalon-MM Interrupts ... 7–47

Control & Status Registers ... 7–47
PCI Interrupt Status Register .. 7–49
PCI Interrupt Enable Register .. 7–51
PCI Mailbox Register Access .. 7–52
Avalon-to-PCI Address Translation Table ... 7–53
Read-Only Configuration Registers .. 7–54
Avalon-MM Interrupt Status Register .. 7–56
Avalon-MM Interrupt Enable Register ... 7–60
Avalon Mailbox Register Access .. 7–60

Chapter 8. Testbench
General Description ... 8–1
Features ... 8–2
PCI Testbench Files ... 8–3
Testbench Specifications ... 8–4

Master Transactor (mstr_tranx) .. 8–5
PROCEDURES and TASKS Sections .. 8–5
INITIALIZATION Section ... 8–6
USER COMMANDS Section ... 8–7
cfg_rd .. 8–7
cfg_wr ... 8–8
mem_wr_32 .. 8–8
mem_rd_32 .. 8–9
mem_wr_64 .. 8–10
mem_rd_64 .. 8–11
io_wr ... 8–11
io_rd .. 8–11

Target Transactor (trgt_tranx) .. 8–12
FILE IO section .. 8–13
PROCEDURES and TASKS sections .. 8–13

Bus Monitor (monitor) ... 8–13
Arbiter (arbiter) .. 8–14
Pull Up (pull_up) ... 8–14

Simulation Flow ... 8–15

Appendix A. Using PCI Constraint File Tcl Scripts
Introduction ... A–1
PCI Constraint Files .. A–1
Simultaneous Switching Noise (SSN) Considerations .. A–2
Additional Options ... A–3

Altera Corporation User Guide Version 11.1 xi
PCI Compiler

Contents

-speed ... A–3
-no_compile .. A–7
-no_pinouts ... A–7
-pin_prefix ... A–7
-pin_suffix ... A–7
-help ... A–8

Upgrading Assignments from a Previous Version of PCI Compiler .. A–8
Upgrading PCI Assignments Containing Nondefault PCI Pin Names A–8

Additional Information
Revision History ... Info–i
How to Contact Altera .. Info–ii
Typographic Conventions ... Info–iii

xii User Guide Version 11.1 Altera Corporation
PCI Compiler

Contents

Altera Corporation User Guide Version 11.1 1
October 2011

About PCI Compiler

Introduction The Altera® PCI Compiler provides many options for creating custom,
high-performance PCI bus interface designs. Whether your system’s top
priority is high bandwidth, high speed, or a combination of features, you
can use the PCI Compiler to meet your system requirements.

The PCI Compiler contains the pci_mt64, pci_mt32, pci_t64, and
pci_t32 MegaCore® functions, a Verilog HDL and VHDL testbench, and
reference designs. Altera also offers the following development kits as
PCI hardware prototyping platforms:

■ PCI High-Speed Development Kit, Stratix Professional Edition
■ PCI Development Kit, Cyclone II Edition

These kits include a PCI development board, a reference design, software
drivers, and a graphical user interface to help you evaluate the PCI
solution in a system.

You can create PCI systems using one of the following design flows in the
Quartus® II software.

■ MegaWizardTM Plug-in Manager flow

This option allows you to choose a specific PCI MegaCore function,
specify parameters, generate design files, and manually integrate the
parameterized PCI MegaCore function into your overall system.

■ SOPC Builder flow

This option allows you to build a complete PCI system—component-
by-component—using an automatically-generated sytem
interconnect fabric. The SOPC Builder uses the PCI-Avalon®-
Memory-Mapped (Avalon-MM) bridge to connect the PCI bus to the
interconnect, allowing you to easily create any system that includes
one or more of the Avalon-MM peripherals.

2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Release Information

Release
Information

Table 1 provides information about this release of the PCI Compiler.

Device Family
Support

The MegaCore functions provide either final or preliminary support for
target Altera device families:

■ Final support means the core is verified with final timing models for
this device family. The core meets all functional and timing
requirements for the device family and can be used in production
designs.

■ Preliminary support means the core is verified with preliminary
timing models for this device family. The core meets all functional
requirements, but might still be undergoing timing analysis for the
device family. It can be used in production designs with caution.

■ HardCopy Compilation means the core is verified with final timing
models for the HardCopy® device family. The core meets all
functional and timing requirements for the device family and can be
used in production designs.

■ HardCopy Companion means the core is verified with preliminary
timing models for the HardCopy companion device. The core meets
all functional requirements, but might still be undergoing timing
analysis for HardCopy device family. It can be used in production
designs with caution.

Table 1. PCI Compiler User Guide Release Information

Item Description

Version 11.1

Release Date October 2011

Ordering Codes IP-PCI/MT64, IP-PCI/T64,
IP-PCI/MT32, IP-PCI/T32

Product IDs pci_mt64 MegaCore function: 0011,
pci_t64 MegaCore function: 0025,
pci_mt32 MegaCore function: 0022,
pci_t32 MegaCore function: 0024

Vendor ID 6AF7

Altera Corporation User Guide Version 11.1 3
October 2011

About PCI Compiler

Table 2 shows the level of support offered by the User Guide MegaCore
functions for each Altera device family.

Features This section summarizes the features of the PCI Compiler.

Common Features

The following list outlines the common features of the PCI Compiler.

■ Fully compliant with the PCI Special Interest Group (PCI SIG)
PCI Local Bus Specification, Revision 3.0

■ Supports both 32-bit and 64-bit interfaces
■ Supports Master/Target and Target-Only modes

Table 2. Device Family Support

Device Family Support

Arria®GX Final

Arria II GX Final

Cyclone® Final

Cyclone II Final

Cyclone III Final

Cyclone III LS Final

Cyclone IV (E, GX) Final

HardCopy II HardCopy Compilation

HardCopy III Refer to the What’s New in Altera IP
page of the Altera website.HardCopy IV (E, GX)

MAX®II (1) Final

Stratix® Final

Stratix GX Final

Stratix II Final

Stratix II GX Final

Stratix III Final

Stratix IV (E, GX) Final

Other device families No support

Note to Table 2:
(1) MAX II devices are supported by the pci_mt32 and pci_t32 MegaCore

functions only.

http://www.altera.com/products/ip/news/ip-whats-new.html

4 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Features

■ IP functional simulation models enable simulation of a register
transfer level (RTL) model of a PCI MegaCore function in VHDL and
Verilog HDL simulators

■ OpenCore Plus hardware evaluation feature enables testing of a
PCI MegaCore function in hardware prior to purchasing a license

■ Configuration registers:
● Parameterized registers: device ID, vendor ID, class code,

revision ID, BAR0 through BAR5, subsystem ID, subsystem-
vendor ID, maximum latency, minimum grant, capabilities list
pointer, expansion ROM BAR

● Parameterized default or preset base address (available for all
six BARs) and expansion ROM base address

● Non-parameterized registers: command, status, header type 0,
latency timer, cache line size, interrupt pin, interrupt line

■ Host bridge application support

PCI Compiler with MegaWizard Plug-in Manager Flow

The following list outlines the features of the PCI Compiler with
MegaWizard Plug-in Manager flow.

■ IP Toolbench wizard-driven interface makes it easy to generate a
custom variation of a PCI MegaCore function

■ PCI target features:
● Capabilities list pointer support
● Expansion ROM BAR support
● Local-side requests for target abort, retry, or disconnect
● Local-side interrupt requests

■ PCI master features (pci_mt64 and pci_mt32 only):
● Allows on-chip arbitration logic
● Allows disabling latency timer

■ 64-bit PCI features (pci_mt64 and pci_t64 only):
● 64-bit addressing support as both master and target
● Initiates 64-bit addressing, using dual-address cycle (DAC)
● Initiates 64-bit memory transactions
● Dynamically negotiates 64-bit transactions and automatically

multiplexes data on the local 64-bit data bus

PCI Compiler with SOPC Builder Flow

The following list outlines the features of the PCI Compiler with SOPC
Builder flow.

■ SOPC Builder ready
■ PCI complexities, such as retry and disconnect are handled by the

PCI/Avalon Bridge logic and transparent to the user

Altera Corporation User Guide Version 11.1 5
October 2011

About PCI Compiler

■ Hard-coded (fixed) or run-time configurable (dynamic) Avalon-to-
PCI address translation

■ Hard-coded or automatic PCI-to-Avalon address translation
■ Separate Avalon Memory-mapped (Avalon-MM) slave ports for PCI

bus access (PBA) and control register access (CRA)
■ Support for Avalon-MM burst mode
■ Option for independent or common PCI and Avalon clock domains
■ Option to increase PCI read performance by increasing the number

of pending reads and maximum read burst size.
■ Internal Arbiter in Host Bridge and Target/Master mode

General
Description

This section provides a general description of the following:

■ PCI MegaCore Functions
■ PCI Testbench
■ PCI Compiler with MegaWizard Plug-in Manager Flow
■ PCI Compiler with SOPC Builder Flow

PCI MegaCore Functions

The PCI MegaCore functions are hardware-tested, high-performance,
flexible implementations of PCI interfaces. These functions handle the
PCI protocol and timing requirements internally. The back-end interface
is designed for easy integration, allowing you to focus your engineering
efforts on value-added custom development to significantly reduce time-
to-market.

Optimized for Altera devices, the PCI MegaCore functions support
configuration, I/O, and memory transactions. The small size of the
functions, combined with the high density of Altera's devices, provides
ample resources for custom local logic to accompany the PCI interface.
The high performance of Altera's devices also enables these functions to
support unlimited cycles of zero wait state memory-burst transactions.
These functions can operate at either 33- or 66-MHz PCI bus clock speeds,
allowing them to achieve up to 132 Megabytes per second (MBytes/s)
throughput in a 32-bit 33-MHz PCI bus system and up to 528 MBytes/s
throughput in a 64-bit 66-MHz PCI bus system.

In the pci_mt64 and pci_mt32 functions, the master and target
interfaces can operate independently, allowing maximum throughput
and efficient usage of the PCI bus. For instance, while the target interface
is accepting zero wait state burst write data, the local logic may
simultaneously request PCI bus mastership, thus minimizing latency.

6 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

General Description

To ensure timing and protocol compliance, the PCI MegaCore functions
have been rigorously hardware tested. Refer to “Compliance Summary”
on page 10 for more information on the hardware tests performed.

PCI Testbench

The PCI testbench, provided in Verilog HDL and VHDL, facilitates the
design and verification of systems that implement any of the PCI
MegaCore functions. You can build a PCI behavioral simulation
environment by using components of the PCI testbench, the IP functional
simulation model of your PCI MegaCore function variation, and the rest
of your Verilog HDL or VHDL design.

PCI Compiler with MegaWizard Plug-in Manager Flow

With this flow, you design to a low-level interface that allows custom PCI
transaction design. Because you are designing the logic to interface to the
PCI MegaCore function, you have more control of individual module
functionality.

1 This flow is recommended for users who have previously
designed with the PCI Compiler or whose highest priority is to
minimize design latency.

For example, if you are designing a PCI-to-DDR2 SDRAM controller
interface you need to do the following:

■ Specify the PCI MegaCore function parameters.
■ Design the ‘back end’ user design, including master control logic,

target control logic, data path first-in first-out (FIFO) buffers, and
direct memory access (DMA) engine.

■ Design the DDR2 SDRAM controller interface.
■ Specify the DDR2 SDRAM MegaCore function parameters.
■ Design internal PCI and DDR2 SDRAM logic blocks.
■ Write RTL code that connects the PCI and DDR2 SDRAM blocks.

Altera Corporation User Guide Version 11.1 7
October 2011

About PCI Compiler

Figure 1 shows a PCI-to-DDR2 SDRAM controller interface design using
the PCI Compiler with MegaWizard Plug-in Manager flow; shaded areas
represent user-customized blocks.

Figure 1. PCI-to-DDR2 SDRAM Design Using the PCI Compiler With MegaWizard Flow

f For more information about the PCI Compiler with MegaWizard flow,
refer to Chapter 1, Getting Started.

PCI Compiler With SOPC Builder Flow

With this flow, you specify system components and choose system
options from a rich set of features, and the SOPC Builder then
automatically generates the interconnect logic and simulation
environment. Thus, you define and generate a complete system in
dramatically less time than manually integrating separate IP blocks.

1 This flow is recommended for users who are new to the PCI
Compiler or whose highest priority is to minimize design time.

Master
Control
Logic

Backend User Design

Altera
PCI

 MegaCore
 Function

PCI
Bus

Altera PCI MegaCore Function Local-Side, Low Level Interface

D
D

R
2

S
D

R
A

M
 M

em
or

y
M

od
ul

e

DMA
 Engine

Target
Control
Logic

Data
 Path

 FIFOs

DDR2
SDRAM

Controller
Interface

Altera FPGA

Altera
DDR2

SDRAM
Controller
MegaCore
Function

8 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

General Description

For example, Figure 2 shows the PCI-to-DDR2 SDRAM design using the
PCI Compiler with SOPC Builder flow; the dashed-lines indicate
pre-existing components that are added to the design via the SOPC
Builder graphical user interface (GUI). When comparing Figure 1 with
Figure 2, you can see that the PCI Compiler with SOPC Builder flow
option requires far less user customization.

Figure 2. PCI-to-DDR2 SDRAM Design Using the PCI Compiler With SOPC Builder Flow

f For more information about the PCI Compiler with SOPC Builder flow,
refer to Chapter 5, Getting Started.

For more information about SOPC Builder, refer to volume 4 of the
Quartus II Handbook.

PCI
Bus

PCI Master/Target
Component

DMA
 Engine

Altera FPGA

DDR2
SDRAM
Memory
Module

Altera
DDR2

SDRAM
MegaCore
Function

System
Interconnect

Fabric

PCI-Avalon
Bridge
Logic

Altera
PCI

MegaCore
Function

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf

Altera Corporation User Guide Version 11.1 9
October 2011

About PCI Compiler

Selecting the
Appropriate
Flow for Your
Design

Table 3 summarizes the guidelines for selecting a particular flow over
another. In most cases, the PCI Compiler with SOPC Builder flow is the
appropriate choice.

PCI Compiler With SOPC Builder Flow

This section lists the advantages and disadvantages of the PCI Compiler
with the SOPC Builder flow.

Advantages
■ Dramatically faster time-to-market
■ Requires minimal PCI bus protocol design expertise
■ Very short learning curve
■ Access to rich feature set
■ Uses simple and flexible GUI to create complete PCI system within

hours
■ Predesigned ‘back end’ and ‘local side’ interconnect
■ Uses an automatically-generated simulation environment
■ Create custom components and integrate them by using the

component wizard
■ All components are automatically interconnected

Disadvantages
■ Does not allow you to customize PCI transaction behavior
■ Some applications may have excessive overhead in size and

performance

Table 3. PCI Compiler Parameterization Flow Selection Guidelines

SOPC Builder Flow MegaWizard Plug-in Manager Flow

● You would like to quickly integrate
multiple system blocks.

● You are creating a new PCI design.
● You have limited PCI bus protocol

experience.

● You are migrating a design that
uses a previous version of PCI
Compiler.

● You require features that are not
supported with the SOPC Builder
flow.

10 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Compliance Summary

PCI Compiler With MegaWizard Plug-in Manager Flow

This section lists the advantages and disadvantages of the PCI Compiler
with MegaWizard Plug-in Manager flow.

Advantages
■ More control of the system feature set
■ Can design directly from the PCI interface to peripheral devices
■ Can access local-side interface to reduce clock cycles and achieve

higher bandwidth

Disadvantages
■ Requires manual integration of system modules
■ Cannot easily use existing SOPC Builder peripherals
■ Requires a register transfer level (RTL) file for each instantiation
■ Requires significant knowledge of the PCI bus protocol

Compliance
Summary

The MegaCore functions are compliant with the requirements specified in
the PCI SIG PCI Local Bus Specification, Revision 3.0 and Compliance
Checklist, Revision 3.0.

To ensure PCI compliance, Altera has performed extensive validation of
the PCI MegaCore functions. Validation includes both simulation and
hardware testing. The following simulations are covered by the
validation suite for the PCI MegaCore functions:

■ PCI-SIG checklist simulations
■ Applicable operating rules in Appendix C of the PCI Local Bus

Specification, Revision 3.0, including:
● Basic protocol
● Signal stability
● Master and target signals
● Data phases
● Arbitration
● Latency
● Device selection
● Parity

■ Local-side interface functionality
■ Corner cases of the PCI and local-side interface, such as random wait

state insertion

In addition to simulation, Altera performed extensive hardware testing
on the functions to ensure robustness and PCI compliance. The test
platforms include the Agilent E2928A PCI Bus Exerciser and Analyzer, an
Altera PCI development board with a device configured with a PCI
MegaCore function and a reference design, and PCI bus agents such as a

Altera Corporation User Guide Version 11.1 11
October 2011

About PCI Compiler

host bridge, Ethernet network adapter, and video card. The Altera PCI
MegaCore functions were tested on the Stratix EP1S25F1020C5 and
EP1S60F1020C6 devices. Hardware testing ensures that the PCI
MegaCore functions operate flawlessly under the most stringent
conditions.

During hardware testing with the Agilent E2928A PCI Bus Exerciser and
Analyzer, various tests were performed to guarantee robustness and
strict compliance. These tests included the following:

■ Memory read/write
■ I/O read/write
■ Configuration read/write

The tests generate random transaction types and parameters at the PCI
and local sides. The Agilent E2928A PCI Bus Exerciser and Analyzer
simulated random behavior on the PCI bus by randomizing transactions
with variable parameters such as the following:

■ Bus commands
■ Burst length
■ Data types
■ Wait states
■ Terminations
■ Error conditions

The local side also emulated a variety of test conditions in which the PCI
MegaCore functions experienced random wait states and terminations.
During the tests, the Agilent E2928A PCI Bus Exerciser and Analyzer also
acted as a PCI protocol and data integrity checker as well as a logic
analyzer to aid in debugging. This testing ensures that the functions
operate under the most stringent conditions in your system.

f For more information on the Agilent E2928A PCI Bus Exerciser and
Analyzer, refer to the Agilent website at www.agilent.com.

Performance
and Resource
Utilization

This section lists the speed and approximate resource utilization of the
PCI MegaCore functions in supported Altera device families.

PCI Compiler with MegaWizard Plug-in Manager Flow

The speed and resource utilization estimates are based on a PCI
MegaCore function using one BAR that reserves 1 MByte of memory.
Implementing additional BARs generates additional logic in the PCI

http://www.agilent.com

12 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Performance and Resource Utilization

MegaCore function. Using different parameter options may result in
additional logic generated within the function. Results were generated
using the Quartus II software version 11.1.

Table 4 shows PCI MegaCore function resource utilization and
performance data for Stratix II devices.

Table 5 shows PCI MegaCore function resource utilization and
performance for Stratix, Stratix GX, and Cyclone devices.

Table 4. PCI MegaCore Function Performance in Stratix II Devices (1)

PCI Function Utilization
(ALUTs) (2) I/O Pins fMAX (MHz)

pci_mt64 1,083 89 > 67

pci_t64 714 87 > 67

pci_mt32 754 50 > 67

pci_t32 448 48 > 67

Notes to Table 4:
(1) This data was obtained by compiling each of the PCI MegaCore functions

(parameterized to use one BAR that reserves 1 MByte of memory) in the Stratix II
EP2S60F1020C5 device.

(2) The Utilization for Stratix II devices is based on the number of adaptive look-up
tables (ALUTs) used for the design as reported by the Quartus II software.

Table 5. PCI MegaCore Function Performance in Stratix, Stratix GX &
Cyclone Devices (1)

PCI Function Logic Elements
(LEs) I/O Pins fMAX (MHz)

pci_mt64 1,378 89 > 67

pci_t64 966 87 > 67

pci_mt32 1007 50 > 67

pci_t32 661 48 > 67

Note to Table 5:
(1) The PCI MegaCore functions use approximately the same number of LEs for the

Stratix, Stratix GX, and Cyclone device families. This data was obtained by
compiling each of the PCI MegaCore functions (parameterized to use one BAR
that reserves 1 MByte of memory) in the Stratix EP1S60F1020C6 device.

Altera Corporation User Guide Version 11.1 13
October 2011

About PCI Compiler

Table 6 shows PCI MegaCore function resource utilization and
performance data for Cyclone II devices.

Table 7 shows PCI MegaCore function resource utilization and
performance for MAX II devices.

PCI Compiler with SOPC Builder Flow

The speed and resource utilization estimates are for the supported
devices when operating in the PCI Target-Only, PCI Master/Target, and
PCI Host-Bridge device modes for each of the application-specific
performance settings.

1 Performance results will vary depending on the user-specified
parameters that are built into the system module.

Table 6. PCI MegaCore Function Performance in Cyclone II Devices (1)

PCI Function Logic Elements
(LEs) I/O Pins fMAX (MHz)

pci_mt64 1,219 89 > 67

pci_t64 778 87 > 67

pci_mt32 847 50 > 67

pci_t32 504 48 > 67

Note to Table 6:
(1) This data was obtained by compiling each of the PCI MegaCore functions

(parameterized to use one BAR that reserves 1 MByte of memory) in the
Cyclone II EP2C35F672C7 device.

Table 7. PCI MegaCore Function Performance in MAX II Devices (1), (2)

PCI Function Logic Elements
(LEs) I/O Pins fMAX (MHz)

pci_mt32 789 50 > 67

pci_t32 455 48 > 67

Notes to Table 7:
(1) This data was obtained by compiling each of the PCI MegaCore functions

(parameterized to use one BAR that reserves 1 MByte of memory) in the MAX II
EPM2210F324C3 device.

(2) pci_mt64 and pci_t64 MegaCore functions are not supported in MAX II
devices.

14 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Performance and Resource Utilization

Table 8 lists memory utilization and performance data for Stratix II
devices.

Table 8. Memory Utilization & Performance Data for Stratix II Devices (4)

PCI
Device
Mode

Performance Setting
as: (1) 32-Bit PCI Interface 64-Bit PCI Interface

PCI
fMAX

(MHz)PCI Target PCI
Master

Utilization
ALUTs(2)

M4K
Memory
Blocks

(3)

I/O
Pins

Utilization
ALUTs(2)

M4K
Memory
Blocks

(3)

I/O
Pins

PCI
Target-
Only

Min N/A 543 0 48 767 0 87 >67

Typical N/A 886 4 48 1,165 6 87 >67

Max N/A 1,240 4 48 1,556 68 87 >67

PCI
Master/
Target

Min Typical 1,726 6 50 2,393 9 89 >67

Typical Typical 1,953 8 50 2,729 123 89 >67

Max Typical 2,321 8 50 3,114 12 89 >67

Min Max 2,532 9 50 3,665 15 89 >67

Typical Max 2,753 11 50 3,989 18 89 >67

Max Max 3,149 11 50 4,350 18 89 >67

Notes to Table 8:
(1) Min = Single-cycle transactions

Typical = Burst transactions with a single pending read
Max = Burst transactions with multiple pending reads

(2) The LE count for Stratix II devices is based on the number of adaptive look-up tables (ALUTs) used for the design as
reported by the Quartus II software.

(3) In some compilations one M512 block was used, but it is not counted.
(4) The data was obtained by performing compilations on a Stratix II EP2S60F1020C5 device. Each of the device types

was parameterized to use one BAR that reserved 1 MByte of memory on the Avalon-MM side. For the PCI
Master/Target Peripheral mode, one MByte of memory was reserved on the PCI side.

Altera Corporation User Guide Version 11.1 15
October 2011

About PCI Compiler

Table 9 lists memory utilization and performance data for Cyclone II
devices.

Table 10 lists memory utilization and performance data for Stratix,
Stratix GX, and Cyclone devices.

Table 9. Memory Utilization & Performance Data for Cyclone II Devices (2)

PCI
Device
Mode

Performance Setting as: (1) 32-Bit PCI Interface 64-Bit PCI Interface
PCI
fMAX

(MHz)PCI Target PCI Master
Logic

Elements
(LEs)

M4K
Memory
Blocks

I/O
Pins

Logic
Elements

(LEs)

M4K
Memory
Blocks

I/O
Pins

PCI
Target-
Only

Min N/A 547 0 48 1,114 0 87 >67

Typical N/A 1,113 4 48 1,565 6 87 >67

Max N/A 1,605 4 48 2,051 6 87 >67

PCI
Master/
Target

Min Typical 2,117 7 50 3,075 9 89 >67

Typical Typical 2,319 9 50 3,391 13 89 >67

Max Typical 2,806 9 50 3,915 13 89 >67

Min Max 3,096 7 50 4,655 9 89 >67

Typical Max 3,328 9 50 4,939 13 89 >67

Max Max 3,806 9 50 5,454 13 89 >67

Notes to Table 9:
(1) Min = Single-cycle transactions

Typical = Burst transactions with a single pending read
Max = Burst transactions with multiple pending reads

(2) The data was obtained by performing compilations on a Cyclone II EP2C35F672C7 device. Each of the device types
was parameterized to use one BAR that reserved 1 MByte of memory on the Avalon-MM side. For the PCI
Master/Target Peripheral mode, one MByte of memory was reserved on the PCI side.

Table 10. Memory Utilization & Performance Data for Stratix, Stratix GX & Cyclone Devices (3) (Part 1
of 2)

PCI
Device
Mode

Performance Setting as: (1) 32-Bit PCI Interface 64-Bit PCI Interface

PCI
fMAX

(MHz)PCI Target PCI Master
Logic

Elements
(LEs)

M512
Memory
Blocks

(2)

I/O
Pins

Logic
Elements

(LEs)

M512
Memory
Blocks

(2)

I/O
Pins

PCI
Target-
Only

Min N/A 852 0 48 1,186 0 87 >67

Typical N/A 1,460 4 48 1,949 6 87 >67

Max N/A 1,940 4 48 2,442 6 87 >67

16 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Performance and Resource Utilization

Table 11 lists memory utilization and performance data for MAX II
devices.

1 MAX II devices only support the PCI Target-Only peripheral
and the single-cycle performance setting.

PCI
Master/
Target

Min Typical 2,715 7 50 3,668 10 89 >67

Typical Typical 3,053 9 50 4,187 14 89 >67

Max Typical 3,540 9 50 4,682 14 89 >67

Min Max 3,728 10 50 5,138 16 89 >67

Typical Max 4,059 12 50 5,634 20 89 >67

Max Max 4,788 14 50 6,696 22 89 >67

Notes to Table 10:
(1) Min = Single-cycle transactions

Typical = Burst transactions with a single pending read
Max = Burst transactions with multiple pending reads

(2) In Cyclone devices, memory is implemented in M4K blocks, not M512 blocks.
(3) The data was obtained by performing compilations on a Cyclone EP1C20F400C7 device. Each of the device types

was parameterized to use one BAR that reserved 1 MByte of memory on the Avalon-MM side. For the PCI
Master/Target Peripheral mode, one MByte of memory was reserved on the PCI side.

Table 10. Memory Utilization & Performance Data for Stratix, Stratix GX & Cyclone Devices (3) (Part 2
of 2)

PCI
Device
Mode

Performance Setting as: (1) 32-Bit PCI Interface 64-Bit PCI Interface

PCI
fMAX

(MHz)PCI Target PCI Master
Logic

Elements
(LEs)

M512
Memory
Blocks

(2)

I/O
Pins

Logic
Elements

(LEs)

M512
Memory
Blocks

(2)

I/O
Pins

Table 11. Memory Utilization & Performance Data for MAX II Devices (2)

PCI
Device
Mode

Performance Setting as: (1) 32-Bit PCI Interface

PCI fMAX

(MHz)PCI Target PCI Master
Logic

Elements
(LEs)

Memory
Blocks I/O Pins

PCI
Target-Only

Min N/A 770 0 48 >67

Notes to Table 11:
(1) Min = Single-cycle transactions
(2) The data was obtained by performing compilations on a MAX II EPM2210F324C3 device. The device type was

parameterized to use one BAR that reserved 1 MByte of memory on the Avalon-MM side.

Altera Corporation User Guide Version 11.1 17
October 2011

About PCI Compiler

Installation and
Licensing

The User Guide is part of the MegaCore IP Library, which is distributed
with the Quartus II software and downloadable from the Altera website,
www.altera.com.

f For system requirements and installation instructions, refer to Altera
Software Installation and Licensing.

Figure 3 shows the directory structure after you install the PCI Compiler
User Guide, where <path> is the installation directory. The default
installation directory on Windows is c:\altera\<version>; on Linux it is
/opt/altera<version>.

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
www.altera.com

18 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Installation and Licensing

Figure 3. Directory Structure

qexamples
Contains example Quartus II projects and simulation waveforms for each of the PCI MegaCore functions.

ref_designs
Contains reference designs for common functions implemented with the PCI MegaCore functions.

testbench
Contains Verilog HDL and VHDL testbenches for simulating designs.

megawizard_flow
Contains the files that are specific for PCI Compiler with MegaWizard flow.

sopc_flow
Contains the files that are specific for PCI Compiler with SOPC Builder.

common
Contains shared components.

ip_toolbench
Contains common IP Toolbench files.

pci_compiler
 Contains the PCI Compiler files.

inc
Contains a header file that can be used in PCI Compiler with SOPC Builder flow. The header
file contains macros to access control and status registers inside the PCI-Avalon bridge.

sopc_builder
Contains the necessary files for the SOPC Builder GUI. For Linux, this directory must be
added to the Component/Kit Library search path by choosing SOPC Builder Setup (File menu).

ip_toolbench
Contains the necessary files for the parameterization wizard.

lib
Contains encrypted lower-level design files and other support files.
On Linux systems, you must add this directory as a user library in the Quartus II software.

example
Contains example Quartus II projects using SOPC Builder.

testbench
Contains the Verilog HDL and VHDL testbenches for simulating designs that include the PCI-Avalon bridge.

const_files
Contains constraint files that include all necessary assignments to meet your PCI timing requirements for
all supported Altera device families and development kits.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.

altera
Contains the Altera MegaCore IP Library.

<path>
Installation directory.

Altera Corporation User Guide Version 11.1 19
October 2011

About PCI Compiler

OpenCore Plus Evaluation

With Altera’s free OpenCore Plus evaluation feature, you can perform the
following actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function
or AMPPSM megafunction) within your system.

■ Verify the functionality of your design, as well as evaluate its size
and speed quickly and easily.

■ Generate time-limited device programming files for designs that
include megafunctions.

■ Program a device and verify your design in hardware.

You only need to purchase a license for the megafunction when you are
completely satisfied with its functionality and performance, and want to
take your design to production.

After you purchase a license for PCI Compiler MegaCore function, you
can request a license file from the Altera website at
www.altera.com/licensing and install it on your computer. When you
request a license file, Altera emails you a license.dat file. If you do not
have Internet access, contact your local Altera representative.

f For more information on OpenCore Plus hardware evaluation, refer to
AN 320: OpenCore Plus Evaluation of Megafunctions.

OpenCore Plus Time-Out Behavior

OpenCore Plus hardware evaluation supports the following two
operation modes:

■ Untethered—the design runs for a limited time.
■ Tethered—requires a connection between your board and the host

computer. If tethered mode is supported by all megafunctions in a
design, the device can operate for a longer time or indefinitely.

All megafunctions in a device time out simultaneously when the most
restrictive evaluation time is reached. If there is more than one
megafunction in a design, a specific megafunction’s time-out behavior
may be masked by the time-out behavior of the other megafunctions.

1 For MegaCore functions, the untethered time-out is 1 hour; the
tethered time-out value is indefinite.

Your design stops working after the hardware evaluation time expires.

www.altera.com/licensing
http://www.altera.com/literature/an/an320.pdf

20 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Installation and Licensing

Altera Corporation Section I–1
October 2011

Section I. PCI Compiler
With MegaWizard Plug-In

Manager Flow

The Altera PCI Compiler provides a complete solution for implementing
a conventional PCI interface using Altera devices. It contains the Altera
pci_mt64, pci_mt32, pci_t64, and pci_t32 MegaCore functions, a
Verilog HDL and VHDL testbench, and reference designs.

This section includes the following chapters:

■ Chapter 1, Getting Started

■ Chapter 2, Parameter Settings

■ Chapter 3, Functional Description

■ Chapter 4, Testbench

Section I–2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Compiler With MegaWizard Plug-In Manager Flow

Altera Corporation User Guide Version 11.1 1–1
October 2011

1. Getting Started

Design Flow To evaluate a PCI Compiler MegaCore function using the OpenCore Plus
feature include these steps in your design flow:

1. Obtain and install the PCI Compiler.

2. Create a custom variation of a PCI MegaCore function using
IP Toolbench.

1 IP Toolbench is a toolbar from which you can quickly and
easily view documentation, choose a PCI MegaCore
function , specify parameters, and generate all of the files
necessary for integrating the parameterized PCI MegaCore
function into your design.

3. Implement the rest of your system using the design entry method of
your choice.

4. Use the IP Toolbench-generated IP functional simulation model to
verify the operation of your design.

f For more information on IP functional simulation models,
refer to the Simulating Altera in Third-Party Simulation Tools
chapter in volume 3 of the Quartus II Handbook.

5. Use an Altera-provided PCI constraint file to meet the timing
requirements of the PCI specification.

f For more information on obtaining and using
Altera-provided PCI constraint files in your design, refer to
Appendix A, Using PCI Constraint File Tcl Scripts.

6. Use the Quartus II software to compile your design and perform
static timing analysis.

1 You can generate an OpenCore Plus time-limited
programming file, which you can use to verify the
operation of your design in hardware.

7. Purchase a license for the PCI Compiler.

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf

1–2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI MegaCore Function Design Walkthrough

After you have purchased a license for the PCI Compiler, the design flow
involves the following additional steps:

1. Set up licensing.

2. Generate a programming file for the Altera device(s) on your board.

3. Program the Altera device(s) with the completed design.

4. Perform design verification.

PCI MegaCore
Function Design
Walkthrough

This walkthrough explains how to create a custom variation of a PCI
MegaCore function using the Altera PCI IP Toolbench and the Quartus II
software. When you finish generating a custom variation of the PCI
MegaCore function, you can incorporate it into your overall project.

This walkthrough explains how to create a custom variation of the
pci_mt64 MegaCore function in Verilog HDL. You can also use these
procedures for the pci_mt32, pci_t32 and pci_t64 MegaCore
functions, and substitute VHDL for Verilog HDL.

Altera recommends that you use the pci_mt32 MegaCore function for
32-bit applications. The pci_mt64 MegaCore function has additional
logic and I/O pins which are wasted if used in a 32-bit mode applications.

1 You can interface the pci_mt64 MegaCore function with 32-bit
agents on the bus. To operate in 32-bit mode only, connect an
input pin to the l_dis_64_extn signal. This signal disables the
64-bit extension signals if driven low.

This walkthrough consists of these steps:

■ Create a New Quartus II Project
■ Launch IP Toolbench
■ Step 1: Parameterize
■ Step 2: Set Up Simulation
■ Step 3: Generate

Create a New Quartus II Project

You need to create a new Quartus II project with the New Project Wizard,
which specifies the working directory for the project, assigns the project
name, and designates the name of the top-level design entity.

Altera Corporation User Guide Version 11.1 1–3
October 2011 PCI Compiler

Getting Started

To create a new project, follow these steps:

1. Choose Programs > Altera > Quartus II <version> (Windows Start
menu) to run the Quartus II software. You can also use the
Quartus II Web Edition software.

2. Choose New Project Wizard (File menu).

3. Click Next in the New Project Wizard: Introduction (the
introduction does not display if you turned it off previously).

4. In the New Project Wizard: Directory, Name, Top-Level Entity
page, enter the following information:

a. Specify the working directory for your project. This
walkthrough uses the directory:

c:\altera\projects

b. Specify the name of the project. This walkthrough uses
pci_project for the project name.

1 The Quartus II software automatically specifies a top-level
design entity that has the same name as the project. Do not
change it.

5. Click Next to close this page and display the New Project Wizard:
Add Files page.

1 When you specify a directory that does not already exist, a
message asks if the specified directory should be created.
Click Yes to create the directory.

6. If you installed the MegaCore IP library in a different directory from
where you installed the Quartus II software, add user libraries by
following these steps on the New Project Wizard: Add Files page:

a. Click User Libraries.

b. Type <path>\pci_compiler\lib\ into the Library name box,
where <path> is the directory in which you installed the PCI
Compiler.

c. Click Add to add the path to the Quartus II project.

d. Click OK to save the library path in the project.

1–4 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI MegaCore Function Design Walkthrough

7. Click Next to close this page and display the New Project Wizard:
Family & Device Settings page.

8. On the New Project Wizard: Family & Device Settings page,
choose the following:

● In the Family list, choose Stratix as the target device family.
● Under Target device, select a Specific device selected in the

‘Available devices’ list.
● Under Show in ‘Available device’ list, in the Speed Grade list,

choose Any.
● In the Available Devices list, select EP1S60F1020C5.
1 These procedures create a design targeting the Stratix

device family. You can also use these procedures for other
supported device families. MAX II devices are supported
by the pci_mt32 and pci_t32 MegaCore functions only.

9. The remaining pages in the New Project Wizard are optional. Click
Finish to complete the Quartus II project.

You have finished creating your new Quartus II project.

Launch IP Toolbench

To launch IP Toolbench in the Quartus II software, follow these steps:

1. Start the MegaWizard Plug-In Manager by choosing MegaWizard
Plug-In Manager (Tools menu). The MegaWizard Plug-In Manager
dialog box is displayed.

f For more information on MegaWizard Plug-in Manager,
refer to Quartus II Help.

2. Specify that you want to create a new custom megafunction
variation and click Next.

3. Under Installed Plug-Ins, expand the Interfaces>PCI folder, and
click on PCI to select the PCI Compiler v10.1.

4. Select the output file type for your design; the wizard supports
VHDL and Verilog HDL. For this walkthrough, choose Verilog
HDL.

Altera Corporation User Guide Version 11.1 1–5
October 2011 PCI Compiler

Getting Started

5. The MegaWizard Plug-In Manager shows the project path that you
specified in the New Project Wizard. Append a variation name for
the MegaCore function output files using the format <project
path>\<variation name>. For this walkthrough, specify
c:\altera\projects for the directory name, and pci_project.v for the
output file variation name.

6. Click Next to launch IP Toolbench for the PCI Compiler.

Step 1: Parameterize

To parameterize your MegaCore function, follow these steps:

1. Click Step 1: Parameterize in IP Toolbench to open the
Parameterize - PCI Compiler dialog box.

f For more information on the parameters you set during
this walkthrough, refer to Chapter 2, Parameter Settings.

2. On the PCI MegaCore Function Settings page, select the following
options:

a. Under Technology, select PCI.

b. Under Application Speed, turn on PCI 66-MHz Capable.

c. Select the desired PCI MegaCore function in the PCI MegaCore
section. For this walkthrough select 64-Bit Master/Target
(pci_mt64).

3. Click Next to open the Read-Only PCI Configuration Registers
page. You can modify the values of the read-only PCI configuration
registers on this page. For this walkthrough, use the default settings.

1–6 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI MegaCore Function Design Walkthrough

4. Click Next to open the Base Address Registers (BARs) page. This
page allows you to configure the PCI base address registers (BARs)
that define the address ranges of Memory and I/O write and read
requests that your application will claim for the PCI interface.

For this walkthrough, specify these settings:

a. Ensure that Implement Only 32 Bit BARs is selected under
32/64 Bit BARs.

b. Click BAR0 = 1 MBytes (Memory).

c. A window showing default settings for BAR0 displays. For this
walkthrough, use the default sliding pointer setting so that
BAR0 reserves 1 MByte (0xFFF00000) of memory.

d. Click OK.

e. Click BAR1 .

f. A window showing the default settings for BAR1 displays.
Turn on Enable.

g. Select I/O for the type of memory reserved.

h. Move the sliding pointer so that BAR1 reserves 64 Bytes
(0xFFFFFFC1) of I/O memory.

i. Click OK.

j. Select BAR2 Unused: Click to Configure.

k. A window showing default settings of BAR2 displays. Turn on
Enable.

l. Move the sliding pointer so that BAR2 reserves 1 MByte
(0xFFF00000) of memory.

m. Click OK.

5. Click Next to open the Advanced PCI MegaCore Features page. For
this walkthrough, use the default settings for all options on this
page.

6. Click Finish to complete the parameterization of your pci_mt64
MegaCore function variation.

Altera Corporation User Guide Version 11.1 1–7
October 2011 PCI Compiler

Getting Started

Step 2: Set Up Simulation

An IP functional simulation model is a cycle-accurate VHDL or Verilog
HDL model file produced by the Quartus II software. The model allows
for fast functional simulation of IP using industry-standard VHDL and
Verilog HDL simulators.

c Only use these simulation model output files for simulation
purposes and expressly not for synthesis or any other purposes.
Using these models for synthesis creates a nonfunctional design.

1 Some third-party synthesis tools can use a netlist that contains
only the structure of the MegaCore function, but not detailed
logic, to optimize performance of the design that contains the
MegaCore function. If your synthesis tool supports this feature,
turn on Generate netlist.

To generate an IP functional simulation model for your MegaCore
function, follow these steps:

1. Click Step 2: Set Up Simulation in IP Toolbench.

2. Turn on Generate Simulation Model.

3. Choose Verilog HDL in the Language list.

4. Click OK.

Step 3: Generate

Generate your MegaCore function after specifying parameter values and
IP functional simulation model options.

1 Clicking Quartus II Constraints displays up-to-date
information about PCI Constraint files.

f For more information on PCI constraint files, refer to Appendix A, Using
PCI Constraint File Tcl Scripts.

1–8 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI MegaCore Function Design Walkthrough

To generate your MegaCore function, follow these steps:

1. Click Step 3: Generate in IP Toolbench. A summary of files
generated to your project directory is displayed.

Table 1–1 describes the generated files and other files that may be in
your project directory. The names and types of files specified in the
IP Toolbench report vary based on whether you created your design
with VHDL or Verilog HDL.

Table 1–1. IP Toolbench-Generated Files

Extension Description

<variation name>.v or .vhd A MegaCore function variation file that defines a VHDL or Verilog HDL
top-level description of the custom MegaCore function. Instantiate the
entity defined by this file inside of your design. Include this file when
compiling your design in the Quartus II software.

<variation name>_bb.v A Verilog HDL black box file for the MegaCore function variation. Use this
file when using a third-party EDA tool to synthesize your design.

<variation name>.bsf A Quartus II symbol file for the MegaCore function variation. You can use
this file in the Quartus II block diagram editor.

<variation name>.qip Contains Quartus II project information for your MegaCore function
variations.

<variation name>_syn.v A timing and resource estimation netlist for use in some third-party
synthesis tools. This file is generated when the option Generate netlist on
the EDA page is turned on.

<variation name>.ppf This XML file describes the MegaCore pin attributes to the Quartus II Pin
Planner. MegaCore pin attributes include pin direction, location, I/O
standard assignments, and drive strength. If you launch IP Toolbench
outside of the Pin Planner application, you must explicitly load this file to
use Pin Planner.

<variation name>.vo or .vho A Verilog HDL or VHDL IP functional simulation model.

pci_constraints_for_<variation
name>.tcl

A tcl script for assigning timing constraints to the MegaCore function.

<variation name>_nativelink.tcl A tcl script for assigning NativeLink simulation testbench settings to the
Quartus project.

<variation name>.html A MegaCore function report file.

Altera Corporation User Guide Version 11.1 1–9
October 2011 PCI Compiler

Getting Started

2. After you review the generation report, click Exit to close IP
Toolbench.

1 If you generate the MegaCore function instance in a Quartus II
project, you are prompted to add the Quartus II IP File (.qip)
files to the current Quartus II project. The .qip file is generated
by the MegaWizard interface, and contains information about
the generated IP core. In most cases, the .qip file contains all of
the necessary assignments and information required to process
the MegaCore function or system in the Quartus II compiler. The
MegaWizard interface generates a single .qip file for each
MegaCore function.

You can now integrate your PCI MegaCore function variation into your
design and compile.

Simulate the
Design

To simulate your design, you use the IP functional simulation models
generated by IP Toolbench in conjunction with the Altera-provided
PCI testbench. The IP functional simulation model is the .vo or .vho file
generated as specified in “Step 2: Set Up Simulation” on page 1–7. These
files are generated in the directory you specified in the MegaWizard Plug-
In Manager. Compile this IP functional simulation model in your
simulation environment as instructed below to perform functional
simulation of your PCI MegaCore function variation.

1–10 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Simulate the Design

This section of the walkthrough uses the following:

■ The IP toolbench-generated PCI testbench in the
c:\altera\projects\pci_project_nativelink\verilog\pci_mt64
directory

■ The IP functional simulation model generated as specified in “Step
2: Set Up Simulation” on page 1–7

■ The ModelSim® software
■ The generated NativeLink script in the project directory,

c:\altera\projects

For this walkthrough, follow these steps:

1. On the EDA Tool Option page in the Quartus II software (Tools >
Options > EDA Tools Option), set the location of the ModelSim
executable .

1 If you are using other simulators, set the location of your
preferred EDA simulation tool executable. This is a global
setting, and needs to be done only once.

2. At the Quartus II Tcl Console, run the following command:
source pci_top_nativelink.tcl

3. On the Simulation page (Assignments > EDA Tools Settings >
Simulation), do the following:

● select ModelSim from the Tool Name list
● select Compile test bench under NativeLink settings.

4. Perform analysis and synthesis to create the required netlist.

5. Run the simulation.

f For more information on simulation using NativeLink, refer to
Simulating Altera IP in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf

Altera Corporation User Guide Version 11.1 1–11
October 2011 PCI Compiler

Getting Started

Simulation in the Quartus II Software

Altera provides Vector Waveform Files (.vwf) for each of the PCI
MegaCore functions to perform functional simulation in the Quartus II
software. The .vwf files are provided in the subdirectories at <path>\
pci_compiler\megawizard_flow\qexamples\<PCI MegaCore
function>\sim. For an explanation of the provided .vwf files, refer to “The
Quartus II Simulation Files” on page 1–12.

This user guide explains the behavior and usage of the PCI MegaCore
functions for the most common PCI transactions. You can use the .vwf
files to further understand the local-side behavior of a PCI MegaCore
function for different PCI bus conditions. In addition, you can modify the
provided .vwf files to simulate other scenarios of interest.

1 This procedure demonstrates functional simulation in the
Quartus II software of a pci_mt64 MegaCore function
variation. You can also use this procedure for the pci_mt32,
pci_t32 and pci_t64 MegaCore functions.

To perform functional simulation in the Quartus II software, perform
these steps:

1. Go to the <path>\pci_compiler\megawizard_flow\
qexamples\pci_mt64 directory.

2. Open the Quartus II project by double-clicking on pci_top.qpf.

1 This Quartus II project contains a PCI MegaCore function
variation with the parameter settings required to simulate
the included .vwf files successfully. For a description of the
parameter settings required to simulate the included .vwf
files, refer to “The Quartus II Simulation Files” on
page 1–12.

3. Choose Generate Functional Simulation Netlist (Processing
menu).

The Quartus II software may issue several warning messages,
including messages indicating that one or more registers are stuck at
ground. These warning messages are due to parameter settings and
can be ignored.

4. After compilation has finished successfully, choose Simulator Tool
(Processing Menu).

5. In the Simulation mode list, select Functional.

1–12 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

The Quartus II Simulation Files

6. In the Simulation input, specify <path>\pci_compiler\
megawizard_flow\qexamples\pci_mt64\sim\target\
cfg_wr_rd.vwf.

7. Click Start to start the simulation.

8. Click Report to view the simulation results.

The Quartus II
Simulation Files

This section contains information about the Quartus II simulation files
supplied with the pci_mt64, pci_mt32, pci_t64, and pci_t32
MegaCore functions. These simulation files are provided in .vwf format.

You can use these simulation files to further understand the local-side
behavior of the PCI MegaCore functions for different PCI bus conditions.
In addition, you can modify the simulation files to simulate the scenarios
of interest.

The simulation files are based on the parameter settings used in pci_top.v.
There is a separate pci_top.v file for each of the four MegaCore functions.
The files are located in <path>\pci_compiler\
megawizard_flow\qexamples\<PCI MegaCore function>. This example
design file implements 6 base address registers (BARs), and an expansion
ROM BAR, with the following attributes:

■ BAR0 reserving 256 Megabytes (MBytes) (memory)
■ BAR1 reserving 64 Bytes (I/O)
■ BAR2 reserving 16 MBytes (memory)
■ BAR3 reserving 1 MByte (memory)
■ BAR4 reserving 64 Kilobytes (KBytes) (memory)
■ BAR5 reserving 4 KBytes (memory)
■ Expansion ROM BAR reserving 1 MByte (memory)

The simulation files contain functional simulation waveforms and should
be used after choosing Generate Functional Simulation Netlist
(Processing menu) for your design.

For more information regarding simulating with .vwf files, refer to
“Simulation in the Quartus II Software” on page 1–11.

The following sections describe the simulation files provided with the
PCI Compiler.

Altera Corporation User Guide Version 11.1 1–13
October 2011 PCI Compiler

Getting Started

Master Simulation Files

Table 1–2 describes the Quartus II simulation files included in the
<path>\pci_compiler\megawizard_flow\qexamples\
pci_mt64\sim\master directory.

Table 1–2. pci_mt64 Master Simulation Files

Simulation File Name Description

Master Read

mmbr64 Memory Burst Read, 64-Bit PCI, 64-Bit Local

mmbr32_64 Memory Burst Read, 32-Bit PCI, 64-Bit Local

mmbr32_32 Memory Burst Read, 32-Bit PCI, 32-Bit Local

mmsr64 Memory Single-Cycle, 64-Bit PCI, 64-Bit Local

mmsr32_32 Memory Single-Cycle, 32-Bit PCI, 32-Bit Local

mmbr64_mabrt Master Abort, 64-Bit PCI, 64-Bit Local

mmbr64_tabrt Target Abort Response, 64-Bit PCI, 64-Bit Local

mmbr64_tdisc_wd Target Disconnect with Data Response, 64-Bit PCI, 64-Bit Local

mmbr64_tdisc_wod Target Disconnect without Data Response, 64-Bit PCI, 64-Bit Local

mmbr64_tret Target Retry Response, 64-Bit PCI, 64-Bit Local

mmbr64_lte Latency Timer Expires, 64-Bit PCI, 64-Bit Local

mior I/O Read

mcfgr Configuration Read

Master Write

mmbw64 Memory Burst Write, 64-Bit PCI, 64-Bit Local

mmbw32_64 Memory Burst Write, 32-Bit PCI, 64-Bit Local

mmbw32_32 Memory Burst Write, 32-Bit PCI, 64-Bit Local

mmsw32_32 Memory Single-Cycle, 32-Bit PCI, 32-Bit Local

mmbw64_mabrt Master Abort, 64-Bit PCI, 64-Bit Local

mmbw64_tabrt Target Abort Response, 64-Bit PCI, 64-Bit Local

mmbw64_tdisc_wd Target Disconnect with Data Response, 64-Bit PCI, 64-Bit Local

mmbw64_tdisc_wod Target Disconnect without Data Response, 64-Bit PCI, 64-Bit Local

mmbw64_tret Target Retry Response, 64-Bit PCI, 64-Bit Local

mmbw64_lte Latency Timer Expires, 64-Bit PCI, 64-Bit Local

miow I/O Write

mcfgw Configuration Write

1–14 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

The Quartus II Simulation Files

Table 1–3 describes the Quartus II simulation files included in the
<path>\pci_compiler\megawizard_flow\qexamples\
pci_mt32\sim\master directory.

Table 1–3. pci_mt32 Master Simulation Files

Simulation File
Name Description

Master Read

mmbr Memory Burst Read

mmsr Memory Single-Cycle

mmbr_mabrt Master Abort

mmbr_tabrt Target Abort Response

mmbr_tdisc_wd Target Disconnect with Data Response

mmbr_tdisc_wod Target Disconnect without Data Response

mmbr_tret Target Retry Response

mmbr_lte Latency Timer Expires

mior I/O Read

mcfgr Configuration Read

Master Write

mmbw Memory Burst Write

mmsw Memory Single-Cycle

mmbw_mabrt Master Abort

mmbw_tabrt Target Abort Response

mmbw_tdisc_wd Target Disconnect with Data Response

mmbw_tdisc_wod Target Disconnect without Data Response

mmbw_tret Target Retry Response

mmbw_lte Latency Timer Expires

miow I/O Write

mcfgw Configuration Write

Altera Corporation User Guide Version 11.1 1–15
October 2011 PCI Compiler

Getting Started

Target Simulation Files

Table 1–4 describes the Quartus II simulation files included in the
<path>\pci_compiler\megawizard_flow\qexamples\
<pci_mt64 or pci_t64>\sim\target directory.

Table 1–4. pci_mt64 & pci_t64 Target Simulation Files

Simulation File Name Description

Target Read

tmbr64 Memory Burst Read, 64-Bit PCI, 64-Bit Local

tmbr32_64 Memory Burst Read, 32-Bit PCI, 64-Bit Local

tmsr64 Memory Single-Cycle, 64-Bit PCI, 64-Bit Local

tmbr64_abrt Memory Abort, 64-Bit PCI, 64-Bit Local

tmbr64_disc_wd Memory Disconnect with Data, 64-Bit PCI, 64-Bit Local

tmbr64_disc_wod Memory Disconnect without Data, 64-Bit PCI, 64-Bit Local

tmbr64_ret Memory Retry, 64-Bit PCI, 64-Bit Local

cfg_wr_rd Configuration Write and Read

tior I/O Read

exp_rom_tmbr64 Expansion ROM Memory Burst Read, 64-Bit PCI, 64-Bit Local

Target Write

tmbw64 Memory Burst Write, 64-Bit PCI, 64-Bit Local

tmbw32_64 Memory Burst Write, 32-Bit PCI, 64-Bit Local

tmsw64 Memory Single-Cycle, 64-Bit PCI, 64-Bit Local

tmbw64_abrt Memory Abort, 64-Bit PCI, 64-Bit Local

tmbw64_disc_wd Memory Disconnect with Data, 64-Bit PCI, 64-Bit Local

tmbw64_disc_wod Memory Disconnect without Data, 64-Bit PCI, 64-Bit Local

tmbw64_ret Memory Retry, 64-Bit PCI, 64-Bit Local

tiow I/O Write

exp_rom_tmbw64 Expansion ROM Memory Burst Write, 64-Bit PCI, 64-Bit Local

1–16 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Compile the Design

Table 1–5 describes the Quartus II simulation files included in the
<path>\pci_compiler\megawizard_flow\qexamples\
<pci_mt32 or pci_t32>\sim\target directory.

Compile the
Design

You can use the Quartus II software to compile your design.

Altera provides constraint files to ensure that the PCI MegaCore function
achieves PCI specification timing requirements in Altera devices. This
walkthrough incorporates a constraint file included with PCI Compiler.

f For more information on using Altera-provided constraint files in your
design, refer to Appendix A, Using PCI Constraint File Tcl Scripts.

For instructions on compiling your design, refer to Quartus II Help.

Table 1–5. pci_mt32 & pci_t32 Target Directory

Simulation File
Name Description

Target Read

tmbr Memory Burst Read

tmsr Memory Single-Cycle

tmbr_abrt Memory Abort

tmbr_disc_wd Memory Disconnect with Data

tmbr_disc_wod Memory Disconnect without Data

tmbr_ret Memory Retry

cfg_wr_rd Configuration Write and Read

tior I/O Read

exp_rom_tmbr Expansion ROM Memory Burst Read

Target Write

tmbw Memory Burst Write

tmsw Memory Single-Cycle

tmbw_abrt Memory Abort

tmbw_disc_wd Memory Disconnect with Data

tmbw_disc_wod Memory Disconnect without Data

tmbw_ret Memory Retry

tiow I/O Write

exp_rom_tmbw Expansion ROM Memory Burst Write

Altera Corporation User Guide Version 11.1 1–17
October 2011 PCI Compiler

Getting Started

For this walkthrough, follow these steps:

1. Open <path>\pci_example\pci_top.qpf (the pci_top project) in the
Quartus II software.

1 This is the same project you created in “PCI MegaCore
Function Design Walkthrough” on page 1–2.

2. Choose Utility Windows > Tcl Console (View menu).

3. Source the generated constraint file by typing the following
commands at the Quartus II Tcl Console command prompt:

source pci_constraints_for_pci_top.tcl r

add_pci_constraints r

1 The constraint file uses the following naming convention:

pci_constraints_for_<variation name>.tcl.

4. Monitor the Quartus II Tcl Console to see the actions performed by
the script.

To verify the PCI timing assignments in your project, perform the
following steps:

1. Choose Start Compilation (Processing menu) in the Quartus II
software.

2. After compilation, expand the Timing Analyzer folder in the
Compilation Report by clicking the + icon next to the folder name.
Note the values in the Clock Setup, tsu, th, and tco report sections.

1–18 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Program a Device

Program a
Device

After you have compiled your design, program your targeted Altera
device and verify your design in hardware.

With Altera's free OpenCore Plus evaluation feature, you can evaluate the
PCI MegaCore function before you purchase a license. OpenCore Plus
evaluation allows you to generate an IP functional simulation model and
produce a time-limited programming file.

You can simulate the PCI Compiler MegaCore function in your design
and perform a time-limited evaluation of your design in hardware.

f For more information on IP functional simulation models, refer to the
Simulating Altera in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Handbook.

For more information on OpenCore Plus hardware evaluation using the
PCI MegaCore functions, refer to “Compliance Summary” on page 10
and AN 320: OpenCore Plus Evaluation of Megafunctions.

For more information on setting up licensing for PCI Compiler, refer to
“PCI Timing Support” on page 1–18.

PCI Timing
Support

Designs that use an Altera PCI Compiler MegaCore function must use an
Altera-provided PCI constraint file. A PCI constraint file does the
following:

■ Constrains Quartus II compilations so that your design meets PCI
timing requirements

■ Specifies the required PCI pin assignments for your board layout

The PCI Compiler generates PCI constraint files in the form of Tcl scripts
that allow you to meet the PCI timing requirements in the Quartus II
software.

The constraint files use the following naming convention:

pci_constraints_for_<variation name>.tcl

These constraint files have been tested against PCI Compiler 11.1 and
Quartus II 11.1 and meet PCI Compiler timing.

To use the constraint file, follow these steps:

1. Open your project in the Quartus II software.

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/an/an320.pdf

Altera Corporation User Guide Version 11.1 1–19
October 2011 PCI Compiler

Getting Started

2. In the Quartus II software, choose Tcl Console (View > Utility
Windows menu).

3. To source the constraint file, type the following in the Quartus II Tcl
console:

source pci_constraints_for_<variation name>.tcl

add_pci_constraints [-speed "33" | "66"]
[-no_compile] [no_pinouts] [-help]

f For more information on PCI Compiler constraint files, refer to
Appendix A, Using PCI Constraint File Tcl Scripts.

Using the
Reference
Designs

The following sections outline how to use the reference designs that are
packaged with the PCI Compiler

pci_mt32 MegaCore Function Reference Design

The pci_mt32 MegaCore Function Reference Design example illustrates
how to interface local logic to the pci_mt32 MegaCore function. The
reference design includes a target and a master interface to the pci_mt32
function and the SDRAM memory. The DMA engine is implemented in
the local logic to enable the pci_mt32 function to operate as a bus master.
The design implements a FIFO interface to solve latency issues when data
is transferred between the PCI bus and the SDRAM.

The pci_mt32 MegaCore Function Reference Design requires the Quartus
II software.

Table 1–6 describes the directory structure of the pci_mt32 MegaCore
Function Reference Design. The directory names are relative to the
following path:

<path>/pci_compiler/megawizard_flow
/ref_designs/ref_designs/pci_mt32/vhdl

where <path> is the directory in which you installed the PCI Compiler.

1–20 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Using the Reference Designs

Refer to Table 1–3 the pci_mt32 MegaCore Function Reference Design
Directory Structure for more details regarding the directory structure.

Synthesis & Compilation Instructions

To compile the pci_mt32 MegaCore Function Reference Design in the
Quartus II software, perform the following steps:

1. Create a new project in the Quartus II software, specifying
<path>/pci_compiler/megawizard_flow/
ref_designs/pci_mt32/vhdl/chip_top.vhd as the top-level
design file.

2. Add the following directories as user libraries in the Quartus II
software:

<path>/pci_compiler/lib

<path>/pci_compiler/megawizard_flow/
ref_designs/pci_mt32/vhdl/chip_top

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt32/vhdl/pci_local

Table 1–6. Directory Structure of pci_mt32 MegaCore Reference Design

Directory Name Description

chip_top This directory contains a top-level design file that
instantiates the following modules:
● pci_mt32 MegaCore function variation file
● Local interface logic
● SDR SDRAM interface
● SDR SDRAM controller

pci_top This directory contains a pci_mt32 MegaCore function top-
level wrapper file. This wrapper file was generated using IP
Toolbench with the following parameters selected using the
Parameterize - PCI Compiler Wizard:
● BAR0 reserves 1MB of memory space
● BAR1 reserves 32MB of memory space

pci_local This directory contains local interface logic files. For more
information on these files, refer to FS 12: pci_mt32
MegaCore Function Reference Design.

sdr_intf This directory contains files for the interface logic between
the PCI local interface logic and the SDR SDRAM controller.

sdr_cntrl This directory contains files for the SDR SDRAM controller.

Altera Corporation User Guide Version 11.1 1–21
October 2011 PCI Compiler

Getting Started

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt32/vhdl/sdr_intf

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt32/vhdl/sdr_cntrl

f Refer to Quartus II help for information on how to add
user libraries in the Quartus II software.

3. Include the following files in your Quartus II project:

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt32/vhdl/chip_top
/vhdl_components.vhd

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt32/vhdl/pci_top/pci_top.vhd

4. Select the appropriate Altera device for your project.

Use an Altera-provided PCI constraint file.

f For more information on using PCI constraint files, refer to
Appendix A, Using PCI Constraint File Tcl Scripts.

5. Compile your project.

pci_mt64 MegaCore Function Reference Design

The pci_mt64 MegaCore Function Reference Design is an example that
shows how to connect the local-side signals of the Altera pci_mt64
MegaCore function to local-side applications when the MegaCore
function is used as a master or target on the PCI bus. The reference design
consists of the following elements:

■ Master control logic
■ Target control logic
■ DMA engine
■ Data path FIFO buffer functions
■ SDRAM interface

The pci_mt64 MegaCore Function Reference Design requires the Quartus
II software.

Table 1–7 describes the directory structure of the pci_mt64 MegaCore
Function Reference Design. The directory names are relative to the
following path:

1–22 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Using the Reference Designs

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt64/vhdl

where <path> is the directory in which you installed the PCI Compiler.

synthesis & Compilation Instructions

To compile the pci_mt64 MegaCore Function Reference Design in the
Quartus II software, follow these steps:

1. Create a new project in the Quartus II software, specifying the top-
level design file as follows:

<path>/pci_compilerv/megawizard_flow
/ref_designs/pci_mt64/vhdl/chip_top.vhd

2. Add the following directories as user libraries in the Quartus II
software:

<path>/pci_compiler/lib

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt64/vhdl/chip_top

Table 1–7. Directory Structure of pci_mt64 MegaCore Reference Design

Directory Name Description

chip_top This directory contains a top-level design file that
instantiates the following modules:
● pci_mt64 MegaCore function variation file
● Local interface logic
● SDR SDRAM interface
● SDR SDRAM controller

pci_top This directory contains a pci_mt64 MegaCore function top-
level wrapper file. This wrapper file was generated using IP
Toolbench with the following parameters selected using the
Parameterize - PCI Compiler Wizard:
● BAR0 reserves 1MB of memory space
● BAR1 reserves 32MB of memory space

pci_local This directory contains local interface logic files. For more
information on these files, refer to FS 10: pci_mt64
MegaCore Function Reference Design.

sdr_intf This directory contains files for the interface logic between
the PCI local interface logic and the SDR SDRAM controller.

sdr_cntrl This directory contains files for the SDR SDRAM controller.

Altera Corporation User Guide Version 11.1 1–23
October 2011 PCI Compiler

Getting Started

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt64/vhdl/pci_local

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt64/vhdl/sdr_intf

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt64/vhdl/sdr_cntrl

f Refer to Quartus II help for information on how to add
user libraries in the Quartus II software.

3. Include the following files in your Quartus II project:

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt64/vhdl/chip_top
/vhdl_components.vhd

<path>/pci_compiler/megawizard_flow
/ref_designs/pci_mt64/vhdl/pci_top/pci_top.vhd

4. Select the appropriate Altera device for your project.

5. Use an Altera-provided PCI constraint file for the device you have
selected.

f For more information on using PCI constraint files, refer to
Appendix A, Using PCI Constraint File Tcl Scripts.

6. Compile your project.

1–24 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Using the Reference Designs

Altera Corporation User Guide Version 11.1 2–1
October 2011

2. Parameter Settings

This chapter describes the parameters available to configure PCI
Compiler, including:

■ “PCI MegaCore Function Settings”
■ “Read-Only PCI Configuration Registers”
■ “PCI Base Address Registers (BARs)”
■ “Advanced PCI MegaCore Function Features”
■ “Variation File Parameters”

Parameterize
PCI Compiler

You can customize the PCI MegaCore functions by changing parameters
and specifying optional features using the Parameterize - PCI Compiler
wizard. Start the wizard by clicking Step 1: Parameterize in IP Toolbench.

These parameters allow you to customize the PCI MegaCore functions to
meet specific application requirements, such as defining read-only and
read/write PCI configuration space. The wizard is also used to enable
and parameterize optional features.

For a complete list of parameter names and descriptions found in a
generated PCI MegaCore function variation file, refer to “Variation File
Parameters” on page 2–7.

PCI MegaCore
Function
Settings

The PCI MegaCore functions are capable of operating at clock speeds of
up to 66 MHz. Depending on the PCI device speed, the PCI 66-MHz
Capable option is enabled or disabled on the PCI MegaCore Function
Settings page of the Parameterize - PCI Compiler wizard.

When turned on, the PCI 66-MHz Capable option sets bit 5 of the PCI
configuration space status register. For more information on the function
of this register, refer to “Configuration Registers” on page 3–28.

2–2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Read-Only PCI Configuration Registers

Read-Only PCI
Configuration
Registers

Parameters for read-only PCI configuration space registers are defined on
the Read-Only PCI Configuration Registers page of the Parameterize -
PCI Compiler wizard.

The following read-only PCI configuration space register parameters are
set on this page:

■ Device ID
■ Vendor ID
■ Revision ID
■ Subsystem ID
■ Subsystem Vendor ID
■ Minimum Grant
■ Maximum Latency
■ Class Code

The parameters require hexadecimal values. For information on the
functionality of the read-only registers, refer to “Configuration Registers”
on page 3–28.

PCI Base
Address
Registers
(BARs)

The PCI MegaCore functions implement up to six 32-bit BARs and an
expansion ROM BAR. The pci_mt64 and pci_t64 MegaCore functions
can also implement one 64-bit BAR using either BAR 1 and BAR0, or
BAR2 and BAR1.

You must instantiate at least one BAR in your application design.
Multiple BARs must be implemented in sequence starting from BAR0. By
default, BAR0 is enabled and reserves 1 MByte of memory space.

In addition to allowing normal BAR operation where the system writes
the base address value during system initialization, the PCI MegaCore
functions allow the base address of any BAR to be hardwired using the
Hardwire BAR option. When hardwiring a BAR, the BAR address
becomes a read-only value supplied to the PCI MegaCore function
through the parameter value. System software cannot overwrite a base
address register that is hardwired. The value provided for the hardwired
BAR is written into the BAR, including the four least significant bits.
Thus, you must provide the appropriate value for all of the contents of the
BAR.

1 Use hardwired BARs in closed systems only.

The PCI BAR attributes are defined on the Base Address Registers
(BARs) page of the Parameterize - PCI Compiler wizard.

Altera Corporation User Guide Version 11.1 2–3
October 2011

Parameter Settings

The pci_mt64 and pci_t64 MegaCore functions allow the
implementation of 64-bit BARs. When implementing a 64-bit BAR, most
systems do not require that all of the upper bits be decoded. The PCI
MegaCore functions allow the number of read/write bits on the upper
BAR to be defined for specific application needs. For example, if the
maximum size of memory in your system is 512 Gigabytes (GBytes), you
only need 8 bits of the most significant BAR to be decoded. The
acceptable range of read/write bits is between 8 and 32. When the
maximum number of read/write bits is set to 32, all bits of the most
significant BAR will be decoded.

For more information on the function of BARs, refer to “Base Address
Registers” on page 3–37.

Advanced PCI
MegaCore
Function
Features

Optional registers, interrupt capabilities, and optional master features are
set on the Advanced PCI MegaCore Function Features page of the
Parameterize - PCI Compiler wizard.

Optional Registers

The PCI MegaCore functions support two optional read-only registers:
the capabilities list pointer register and CIS cardbus pointer register.
When these features are used, the values provided in the wizard are
stored in these optional registers. When CompactPCI technology is
selected on the initial page of the wizard, the capabilities list pointer
register on the Advanced PCI MegaCore Function Features page is
automatically turned on with the default value of 0x40.

2–4 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Advanced PCI MegaCore Function Features

Optional Interrupt Capabilities

The PCI MegaCore functions support optional PCI interrupt capabilities.
For example, if an application uses the interrupt pin, the interrupt pin
register indicates that the interrupt signal (intan) is used by storing a
value of 0x01 in the interrupt pin register. Turning off Use Interrupt Pin
on the Advanced PCI MegaCore Function Features page results in the
interrupt pin register being set to 0x00.

The PCI MegaCore functions also include an option to respond to the
interrupt acknowledge command. If Support Interrupt Acknowledge
Command is turned off, the PCI MegaCore function ignores the interrupt
acknowledge command. When Support Interrupt Acknowledge
Command is turned on, the PCI MegaCore function responds to the
interrupt acknowledge command by treating it as a regular target
memory read. The local side must implement the logic necessary to
respond to the interrupt acknowledge command.

For more information on the capabilities list pointer, CIS cardbus pointer,
and interrupt pin registers, refer to “Configuration Registers” on
page 3–28.

Master Features

The pci_mt64 and pci_mt32 MegaCore functions also provide the
following options available in the Parameterize - PCI Compiler wizard:

■ Allow Variable Byte Enables During Burst Transactions
■ Use in Host Bridge Application
■ Allow Internal Arbitration Logic
■ Disable Master Latency Timer
■ Assume ack64n Response

Enable these features on the Advanced PCI MegaCore Function Features
page as described in the following sections.

Altera Corporation User Guide Version 11.1 2–5
October 2011

Parameter Settings

Allow Variable Byte Enables During Burst Transactions
In a default master burst transaction the byte enables accompanying the
initial data word provided by the local side are used throughout the
master burst transaction. Turning on Allow Variable Byte Enables
During Burst Transactions allows byte enables to change for successive
data words during the transaction. This option affects both burst memory
read and burst memory write master transactions. However, use this
option only for burst memory write master transactions. Refer to “Burst
Memory Write Master Transaction with PCI Wait State” on page 3–117 for
more information. For burst memory read master transactions, you must
keep the byte enables constant throughout the transaction. Typically the
byte enable values are set to 0x00 for burst memory read master
transactions.

Use in Host Bridge Application
Turning on the Use in Host Bridge Application option allows you to
implement a host bridge design using the pci_mt64 and pci_mt32
MegaCore functions. For more information on using the pci_mt64 or
pci_mt32 MegaCore functions in a host bridge application, refer to
“Host Bridge Operation” on page 3–127.

Allow Internal Arbitration Logic
Many designs that utilize the pci_mt64 or pci_mt32 MegaCore
functions as a host bridge implement other central resource functionality
in the same FPGA as the PCI interface. Turning on Allow Internal
Arbitration Logic option allows you to include the PCI bus arbiter in the
same FPGA as the PCI MegaCore function.

If the Allow Internal Arbitration Logic option is not selected, the reqn
signal output from the pci_mt64 and pci_mt32 functions is
implemented with a tri-state buffer, which prevents reqn from being
connected to internal logic and subsequently to gntn without the use of
device I/Os. Turning on Allow Internal Arbitration Logic removes the
tri-state buffer from the reqn signal output, allowing the signal to be
connected to internal FPGA logic and eliminating the need to use
additional device I/O resources or board traces.

2–6 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Advanced PCI MegaCore Function Features

Disable Master Latency Timer
Turning on the Disable Master Latency Timer option allows you to
disable the latency timer time-out feature. If the latency timer time-out is
disabled, the master will continue the burst transaction even if the latency
timer has expired and the gntn signal is removed. This feature is useful
in systems in which breaking up long data transfers in small transactions
will yield undesirable side effects.

1 Disabling the Disable Master Latency Timer violates the PCI
specification and therefore should only be used in embedded
applications where the designer can control the entire system
configuration. Disabling the master latency timer can also result
in increased latency for other master devices in the system. If
increased latency for other master devices is unacceptable in
your application, this option should not be used.

Assume ack64n Response
This feature provides enhanced master functionality when using the
pci_mt64 MegaCore function in systems where a 64-bit transaction
request is always accepted by a 64-bit target asserting ack64n. This
feature can be used where the bit width of all devices is known, such as
in an embedded system, and where all 64-bit targets respond with
ack64n asserted.

With this option turned on, the pci_mt64 master supports 64-bit single-
cycle write transactions and asserts irdyn one clock cycle after framen
is asserted. For more information, refer to “64-Bit Single Cycle Memory
Write Master Transactions” on page 3–121.

Altera Corporation User Guide Version 11.1 2–7
October 2011

Parameter Settings

Variation File
Parameters

If you do not want to use the IP Toolbench Parameterize - PCI Compiler
wizard, you can specify Altera PCI MegaCore function parameters
directly in the hardware description language (HDL) or graphic design
files. Table 2–1 provides parameter names and descriptions.

Table 2–1. PCI MegaCore Function Parameters (Part 1 of 5)

Name Format Default Value Description

DEVICE_ID Hexadecimal H"0004" Device ID register. This parameter is a
16-bit hexadecimal value that sets the
device ID register in the configuration
space. Any value can be entered for this
parameter.

CLASS_CODE Hexadecimal H"FF0000" Class code register. This parameter is a
24-bit hexadecimal value that sets the class
code register in the configuration space.
The value entered for this parameter must
be a valid PCI SIG-assigned class code
register value.

MAX_LATENCY (1) Hexadecimal H"00" Maximum latency register. This parameter
is an 8-bit hexadecimal value that sets the
maximum latency register in the
configuration space. This parameter must
be set according to the guidelines in the PCI
specification.

MIN_GRANT (1) Hexadecimal H"00" Minimum grant register. This parameter is
an 8-bit hexadecimal value that sets the
minimum grant register in the PCI
configuration space. This parameter must
be set according to the guidelines in the PCI
specification.

REVISION_ID Hexadecimal H"01" Revision ID register. This parameter is an
8-bit hexadecimal value that sets the
revision ID register in the PCI configuration
space.

SUBSYSTEM_ID Hexadecimal H"0000" Subsystem ID register. This parameter is a
16-bit hexadecimal value that sets the
subsystem ID register in the PCI
configuration space. Any value can be
entered for this parameter.

SUBSYSTEM_VEND_ID Hexadecimal H"0000" Subsystem vendor ID register. This
parameter is a 16-bit hexadecimal value
that sets the subsystem vendor ID register
in the PCI configuration space. The value
for this parameter must be a valid PCI
SIG-assigned vendor ID number.

2–8 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Variation File Parameters

VEND_ID Hexadecimal H"1172" Device vendor ID register. This parameter is
a 16-bit hexadecimal value that sets the
vendor ID register in the PCI configuration
space. The value for this parameter can be
the Altera vendor ID (1172 Hex) or any
other PCI SIG-assigned vendor ID number.

BAR0 (2) Hexadecimal H"FFF00000" Base address register (BAR) zero. When
implementing a 64-bit base address register
that uses BAR0 and BAR1, BAR0 contains
the lower 32-bit address. For more
information, refer to “PCI Base Address
Registers (BARs)” on page 2–2.

BAR1 (2) Hexadecimal H"FFF00000" Base address register one. When
implementing a 64-bit base address register
that uses BAR0 and BAR1, BAR1 contains
the upper 32-bit address. When
implementing a 64-bit base address register
that uses BAR1 and BAR2, BAR1 contains
the lower 32-bit address. For more
information, refer to “PCI Base Address
Registers (BARs)” on page 2–2.

BAR2 (2) Hexadecimal H"FFF00000" Base address register two. When
implementing a 64-bit base address register
that uses BAR1 and BAR2, BAR2 contains
the upper 32-bit address. For more
information, refer to “PCI Base Address
Registers (BARs)” on page 2–2.

BAR3 (2) Hexadecimal H"FFF00000" Base address register three.

BAR4 (2) Hexadecimal H"FFF00000" Base address register four.

BAR5 (2) Hexadecimal H"FFF00000" Base address register five.

EXP_ROM_BAR String H"FF000000" Expansion ROM. This value controls the
number of bits in the expansion ROM BAR
that are read/write and will be decoded
during a memory transaction.

Table 2–1. PCI MegaCore Function Parameters (Part 2 of 5)

Name Format Default Value Description

Altera Corporation User Guide Version 11.1 2–9
October 2011

Parameter Settings

HARDWIRE_BARn Hexadecimal H"FF000000" Hardwire base address register. n
corresponds to the base address register
number and can be from 0 to 5.
HARDWIRE_BARn is a 32-bit hexadecimal
value that permanently sets the value stored
in the corresponding BAR. This parameter
is ignored if the corresponding
HARDWIRE_BARn_ENA bit is not set to 1.
When the corresponding
HARDWIRE_BARn_ENA bits are set to 1, the
function returns the value in
HARDWIRE_BARn during a configuration
read. To detect a base address register hit,
the function compares the incoming
address to the upper bits of the
HARDWIRE_BARn parameter. The
corresponding BARn parameter is still used
to define the programmable setting of the
individual BAR such as address space type
and number of decoded bits.

HARDWIRE_EXP_ROM Hexadecimal H"FF000000" Hardwire expansion ROM BAR.
HARDWIRE_EXP_ROM is the default
expansion ROM base address. This
parameter is ignored when
HARDWIRE_EXP_ROM_ENA is set to 0.
When HARDWIRE_EXP_ROM_ENA is set to
1, the function returns the value in
HARDWIRE_EXP_ROM during a
configuration read. To detect base address
hits for the expansion ROM, the functions
compare the input address to the upper bits
of HARDWIRE_EXP_ROM.
HARDWIRE_EXP_ROM_ENA must be set to
enable expansion ROM support, and the
HARDWIRE_EXP_ROM parameter setting
defines the number of decoded bits.

Table 2–1. PCI MegaCore Function Parameters (Part 3 of 5)

Name Format Default Value Description

2–10 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Variation File Parameters

MAX_64_BAR_RW_BITS Decimal 8 Maximum number of read/write bits in upper
BAR when using a 64-bit BAR. This
parameter controls the number of bits
decoded in the high BAR of a 64-bit BAR.
(Values for this parameter are integers from
8 to 32.) For example, setting this parameter
to eight (the default value) allows the user to
reserve up to 512 Gigabytes (GBytes).
Note: Most systems will not require that all
of the upper bits of a 64-bit BAR be
decoded. This parameter controls the size
of the comparator used to decode the high
address of the 64-bit BAR.

NUMBER_OF_BARS Decimal 1 Number of base address registers. Only the
logic that is required to implement the
number of BARs specified by this parameter
is used—i.e., BARs that are not used do not
take up additional logic resources. The PCI
MegaCore function sequentially instantiates
the number of BARs specified by this
parameter starting with BAR0. When
implementing a 64-bit BAR, two BARs are
used; therefore, the NUMBER_OF_BARS
parameter should be raised by two.

CAP_PTR Hexadecimal H"40" Capabilities list pointer register. This 8-bit
value sets the capabilities list pointer
register.

CIS_PTR Hexadecimal H"00000000" CardBus CIS pointer. The CIS_PTR sets
the value stored in the CIS pointer register.
The CIS pointer register indicates where the
CIS header is located. For more
information, refer to the PCMCIA
Specification, version 3.0. The functions
ignore this parameter if CIS_PTR is not set
to 0. In other words, if the CIS_PTR_ENA bit
is set to 1, the functions return the value in
CIS_PTR during a configuration read to the
CIS pointer register. The function returns
H"00000000" during a configuration read
to CIS when CIS_PTR_ENA is set to 0.

ENABLE_BITS Hexadecimal H"00000000" Feature enable bits. This parameter is a
32-bit hexadecimal value which controls
whether various features are enabled or
disabled. The bit definition of this parameter
is shown in Table 2–2.

Table 2–1. PCI MegaCore Function Parameters (Part 4 of 5)

Name Format Default Value Description

Altera Corporation User Guide Version 11.1 2–11
October 2011

Parameter Settings

Table 2–2 shows the bit definition for ENABLE_BITS.

INTERRUPT_PIN_REG Hexadecimal H"01" Interrupt pin register. This parameter
indicates the value of the interrupt pin
register in the configuration space address
location 3DH. This parameter can be set to
two possible values: H"00" to indicate that
no interrupt support is needed, or H"01" to
implement intan. When the parameter is
set to H"00", intan will be stuck at VCC
and the l_irqn local interrupt request input
pin will not be required.

PCI_66MHZ_CAPABLE String "YES" PCI 66-MHz capable. When set to "YES",
this parameter sets bit 5 of the status
register to enable 66-MHz operation.

Notes to Table 2–1:
(1) These parameters affect master functionality, therefore, they only affect the pci_mt64 and pci_mt32 MegaCore

functions.
(2) The BAR0 through BAR5 parameters control the options of the corresponding BAR instantiated in the PCI

MegaCore function. Use BAR0 through BAR5 for I/O and 32-bit memory space. If you use a 64-bit BAR in
pci_mt64 or pci_t64, it must be implemented on either BAR0 and BAR1 or BAR1 and BAR2. Consequently, the
remaining BARs can still be used for I/O and 32-bit memory space.

Table 2–1. PCI MegaCore Function Parameters (Part 5 of 5)

Name Format Default Value Description

Table 2–2. Bit Definition of the ENABLE_BITS Parameter (Part 1 of 5)

Bit
Number Bit Name Default

Value Definition

5..0 HARDWIRE_BARn_ENA B"000000" Hardwire BAR enable. This bit indicates that the
user wants to use a default base address at
power-up. n corresponds to the BAR number and
can be from 0 to 5.

6 HARDWIRE_EXP_ROM_ENA 0 Hardwire expansion ROM BAR enable. This bit
indicates that the user wants to use a default
expansion ROM base address at power-up.

7 EXP_ROM_ENA 0 Expansion ROM enable. This bit enables the
capability for the expansion ROM base address
register. If this bit is set to 1, the function uses the
value stored in EXP_ROM_BAR to set the size and
number of bits decoded in the expansion ROM
BAR. Otherwise, the expansion ROM BAR is read
only and the function returns H"0000000" when
the expansion ROM BAR is read.

2–12 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Variation File Parameters

8 CAP_LIST_ENA 0 Capabilities list enable. This bit determines if the
capabilities list will be enabled in the configuration
space. When this bit is set to 1, it sets the
capabilities list bit (bit 4) of the status register and
sets the capabilities register to the value of
CAP_PTR.

9 CIS_PTR_ENA 0 CardBus CIS pointer enable. This bit enables the
CardBus CIS pointer register. When this bit is set
to 0, the function returns H"00000000" during a
configuration read to the CIS_PTR register.

10 INTERRUPT_ACK_ENA 0 Interrupt acknowledge enable. This bit enables
support for the interrupt-acknowledge command.
When set to 0, the function ignores the interrupt
acknowledge command. When set to 1, the
function responds to the interrupt acknowledge
command. The function treats the interrupt
acknowledge command as a regular target
memory read. The local side must implement the
necessary logic to respond to the interrupt
controller.

11 Reserved 0 Reserved.

12 INTERNAL_ARBITER_ENA (1) 0 This bit allows reqn and gntn to be used in
internal arbiter logic without requiring external
device pins. If the PCI MegaCore function and a
PCI bus arbiter are implemented in the same
device, the reqn signal should feed internal logic
and gntn should be driven by internal logic
without using actual device pins. If this bit is set to
1, the tri-state buffer on the reqn signal is
removed, allowing an arbiter to be implemented
without using device pins for the reqn and gntn
signals.

Table 2–2. Bit Definition of the ENABLE_BITS Parameter (Part 2 of 5)

Bit
Number Bit Name Default

Value Definition

Altera Corporation User Guide Version 11.1 2–13
October 2011

Parameter Settings

13 SELF_CFG_HB_ENA (1) 0 Host bridge enable. This bit controls the self-
configuration host bridge functionality. Setting this
bit to 1 causes the pci_mt64 and pci_mt32
MegaCore functions to power up with the master
enable bit in the command register hardwired to 1
and allows the master interface to initiate
configuration read and write transactions to the
internal configuration space. This feature does
not need to be enabled for the pci_mt64 or
pci_mt32 master to initiate configuration read
and write transactions to other agents on the PCI
bus. Finally, you will still need to connect IDSEL
to one of the high order bits of the AD bus as
indicated in the PCI Local Bus Specification,
version 3.0 to complete configuration
transactions.

14 LOC_HDAT_MUX_ENA 0 Add internal data steering logic for 32- and 64-bit
systems. This bit controls the data and byte
enable steering logic that was implemented in the
pci_mt64 and pci_t64 MegaCore functions
before version 2.0.0. When this bit is set to 0, only
the l_dato[31..0] and l_beno[3..0]
buses will contain valid data during a 32-bit
master read (when a 64-bit transaction was
requested) or a 32-bit target write. Setting this bit
to 1 will implement the steering logic, providing
100% backward compatible operation with
versions prior to 2.0.0. If starting a new design,
Altera recommends adding the data steering logic
in the local side application for lower logic
utilization and better overall performance.

Table 2–2. Bit Definition of the ENABLE_BITS Parameter (Part 3 of 5)

Bit
Number Bit Name Default

Value Definition

2–14 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Variation File Parameters

15 DISABLE_LAT_TMR (1) 1 Disable master latency timer. This bit controls
whether the latency timer circuitry will operate as
indicated in the PCI Local Bus Specification,
version 3.0. When this bit is set to 0, the latency
timer circuitry will operate normally and will force
the pci_mt64 or pci_mt32 master to
relinquish bus ownership as soon as possible
when the latency timer has expired and gntn is
not asserted. If this bit is set to 1, the latency timer
circuitry is disabled. In this case, the pci_mt64
or pci_mt32 master will relinquish bus
ownership normally when the local side signal
lm_lastn is asserted or when the target
terminates the PCI transaction with a retry,
disconnect, or abort.

16 PCI_64BIT_SYSTEM 0 64-bit only PCI devices. This bit allows enhanced
master capabilities when the pci_mt64 function
is used in systems where a 64-bit master request
will always be accepted by a 64-bit target device
(target device always responds with ack64n
asserted). When this bit is set to 1, the pci_mt64
master will:

Support 64-bit single-cycle master write
transactions
Assert irdyn one clock cycle after the assertion
of framen for read and write transactions.

This option should only be used in embedded
applications where the designer controls the
entire system configuration. This option does not
affect target transactions and does not affect
master 32-bit transactions including transactions
using the lm_req32n, configuration, and I/O
transactions.

Table 2–2. Bit Definition of the ENABLE_BITS Parameter (Part 4 of 5)

Bit
Number Bit Name Default

Value Definition

Altera Corporation User Guide Version 11.1 2–15
October 2011

Parameter Settings

17 MW_CBEN_ENA 0 In a standard master burst transaction the byte
enables accompanying the initial data word
provided by the local side are used throughout the
master burst transaction. Turning on Allow
Variable Byte Enables During Burst
Transactions allows byte enables to change for
successive data words during the transaction.
This option affects both burst memory read and
burst memory write master transactions.
However, use this option only for burst memory
write master transactions. Refer to “Burst Memory
Write Master Transaction with Variable Byte
Enables” on page 3–119 for more information.
For burst memory read master transactions, you
must keep the byte enables constant throughout
the transaction. Typically the byte enable values
are set to 0 for bust memory read master
transactions.

31..18 Reserved 0 Reserved.

Note to Table 2–2:
(1) These parameters affect master functionality and therefore only affect the pci_mt64 and pci_mt32 MegaCore

functions.

Table 2–2. Bit Definition of the ENABLE_BITS Parameter (Part 5 of 5)

Bit
Number Bit Name Default

Value Definition

2–16 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Variation File Parameters

Altera Corporation User Guide Version 11.1 3–1
October 2011

3. Functional Description

This chapter contains detailed information on the PCI Compiler and the
PCI MegaCore functions, including the following:

■ “Functional Overview”
■ “PCI Bus Signals”
■ “PCI Bus Signals”
■ “PCI Bus Commands”
■ “Configuration Registers”
■ “Target Mode Operation”
■ “Master Mode Operation”
■ “Host Bridge Operation”
■ “64-Bit Addressing, Dual Address Cycle (DAC)”

Functional
Overview

This section provides a general overview of pci_mt64, pci_mt32,
pci_t64, and pci_t32 functionality. It describes the operation and
assertion of master and target signals.

Figures 3–1 through 3–4 show the block diagrams for the pci_mt64,
pci_mt32, pci_t64, and pci_t32 functions, respectively. The
functions consist of several blocks:

■ PCI bus configuration register space—implements all configuration
registers required by the PCI Local Bus Specification, Revision 3.0

■ Parity checking and generation—responsible for parity checking and
generation, as well as assertion of parity error signals and required
status register bits

■ Target interface control logic—controls the operation of the
corresponding PCI MegaCore function on the PCI bus in target mode

■ Master interface control logic—controls the PCI bus operation of the
corresponding PCI MegaCore function in master mode (pci_mt64
and pci_mt32 MegaCore functions only)

■ Local target control—controls local-side interface operation in target
mode

■ Local master control—controls the local side interface operation in
master mode (pci_mt64 and pci_mt32 MegaCore functions only)

■ Local address/data/command/byte enables—multiplexes and registers all
address, data, command, and byte-enable signals to the local side
interface.

3–2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

Figure 3–1. pci_mt64 Functional Block Diagram

PCI Address/
Data Buffer

Parity Checker &
Generator

cache[7..0]

par

perrn
serrn

framen

irdyn
trdyn

devseln

stopn

gntn
reqn

intan

ad[63..0]
cben[7..0]

clk
rstn

idsel

pci_mt64

l_dato[63..0]
l_adro[63..0]
l_beno[7..0]
l_cmdo[3..0]

l_ldat_ackn

lt_rdyn
lt_discn
lt_abortn
lirqn
lt_framen
lt_ackn
lt_dxfrn
lt_tsr[11..0]

l_adi[63..0]
l_cbeni[7..0]

lm_req32n

lm_lastn
lm_rdyn

lm_adr_ackn

lm_tsr[9..0]

req64n

ack64n

par64

cmd_reg[6..0]
stat_reg[6..0]

lm_req64n

lm_dxfrn

l_hdat_ackn

Local Target
Control

Local Address/
Data/Command/

Byte Enable

Local Master
Control

PCI Target
Control

PCI Master
Control

Parameterized
Configuration

Registers

lm_ackn

Altera Corporation User Guide Version 11.1 3–3
October 2011

Functional Description

Figure 3–2. pci_mt32 Functional Block Diagram

PCI Address/
Data Buffer

Parity Checker &
Generator

cache[7..0]

par
perrn
serrn

framen

irdyn
trdyn

devseln

stopn

gntn
reqn

intan

ad[31..0]
cben[3..0]

clk
rstn

idsel

pci_mt32

l_dato[31..0]
l_adro[31..0]
l_beno[3..0]
l_cmdo[3..0]

lt_rdyn
lt_discn
lt_abortn
lirqn
lt_framen
lt_ackn
lt_dxfrn
lt_tsr[11..0]

l_adi[31..0]
l_cbeni[3..0]

lm_req32n

lm_lastn
lm_rdyn

lm_adr_ackn

lm_tsr[9..0]

cmd_reg[6..0]
stat_reg[6..0]

lm_dxfrn

Local Target
Control

Local Address/
Data/Command/

Byte Enable

Local Master
Control

PCI Target
Control

PCI Master
Control

Parameterized
Configuration

Registers

lm_ackn

3–4 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

Figure 3–3. pci_t64 Functional Block Diagram

req64n

ack64n

par64

cmd_reg[6..0]
stat_reg[6..0]

l_hdat_ackn

PCI Target
Control

PCI Address/
Data Buffer

Parity Checker &
Generator

par

perrn
serrn

framen

irdyn
trdyn

devseln

stopn

intan

ad[63..0]
cben[7..0]

clk
rstn

idsel

pci_t64

l_dato[63..0]
l_adro[63..0]
l_beno[7..0]
l_cmdo[3..0]

l_ldat_ackn

lt_rdyn
lt_discn
lt_abortn
lirqn
lt_framen
lt_ackn
lt_dxfrn
lt_tsr[11..0]

l_adi[63..0]

Parameterized
Configuration

Registers

Local Address/
Data/Command/

Byte Enable

Local Target
Control

Altera Corporation User Guide Version 11.1 3–5
October 2011

Functional Description

Figure 3–4. pci_t32 Functional Block Diagram

PCI Address/
Data Buffer

Parity Checker &
Generator

par

perrn
serrn

framen

irdyn
trdyn

devseln

stopn

intan

ad[31..0]
cben[3..0]

clk
rstn

idsel

pci_t32

l_dato[31..0]
l_adro[31..0]
l_beno[3..0]
l_cmdo[3..0]

lt_rdyn
lt_discn
lt_abortn
lirqn
lt_framen
lt_ackn
lt_dxfrn
lt_tsr[11..0]

l_adi[31..0]

cmd_reg[6..0]
stat_reg[6..0]

Local Target
Control

Local Address/
Data/Command/

Byte Enable

PCI Target
Control

Parameterized
Configuration

Registers

3–6 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

Target Device Signals & Signal Assertion

Figure 3–5 illustrates the signal directions for a PCI device connecting to
the PCI bus in target mode. These signals apply to the pci_mt64,
pci_t64, pci_mt32, and pci_t32 functions when they are operating
in target mode. The signals are grouped by functionality, and signal
directions are illustrated from the perspective of the PCI MegaCore
function operating as a target on the PCI bus. The 64-bit extension signals,
including req64n, ack64n, par64, ad[63..32], and cben[7..4],
are not implemented in the pci_mt32 and pci_t32 functions.

Figure 3–5. Target Device Signals

A 32-bit target sequence begins when the PCI master device asserts
framen and drives the address and the command on the PCI bus. If the
address matches one of the base address registers (BARs) in the PCI
MegaCore function, it asserts devseln to claim the transaction. The
master then asserts irdyn to indicate to the target device for a read
operation that the master device can complete a data transfer, and for a
write operation that valid data is on the ad[31..0] bus.

The PCI MegaCore function drives the control signals devseln, trdyn,
and stopn to indicate one of the following conditions to the PCI master:

■ The PCI MegaCore function has decoded a valid address for one of
its BARs and it accepts the transactions (assert devseln)

■ The PCI MegaCore function is ready for the data transfer (assert
trdyn)

Target Device

clk
rstn

idsel
req64n
framen

irdyn
trdyn
stopn

devseln
ack64n

par64
par

ad[63..0]
cben[7..0]

perrn
serrn

intan

System
Signals

Interface
Control
Signals

Address,
Data &

Command
Signals

Error
Reporting
Signals

Interrupt
Request
Signal

Altera Corporation User Guide Version 11.1 3–7
October 2011

Functional Description

■ When both trdyn and irdyn are active, a data word is clocked from
the sending to the receiving device

■ The master device should retry the current transaction
■ The master device should stop the current transaction
■ The master device should abort the current transaction

Table 3–1 shows the control signal combinations possible on the PCI bus
during a PCI transaction. The PCI MegaCore function processes the PCI
signal assertion from the local side. Therefore, the PCI MegaCore
function only drives the control signals per the PCI Local Bus Specification,
Revision 3.0. The local-side application can force retry, disconnect, abort,
successful data transfer, and target wait state cycles to appear on the PCI
bus by driving the lt_rdyn, lt_discn, and lt_abortn signals to
certain values. Refer to “Target Transaction Terminations” on page 3–77
for more details.

Table 3–1. Control Signal Combination Transfer

Type devseln trdyn stopn irdyn

Claim transaction Assert Don’t care Don’t care Don’t care

Retry (1) Assert De-Assert Assert Don’t care

Disconnect with data Assert Assert Assert Assert

Disconnect without data Assert De-assert Assert Don’t care

Abort (2) De-assert De-assert Assert Don’t care

Successful transfer Assert Assert De-assert Assert

Target wait state Assert De-assert De-assert Assert

Master wait state Assert Assert De-assert De-assert

Notes to Table 3–1:
(1) A retry occurs before the first data phase.
(2) A device must assert the devseln signal for at least one clock before it signals an abort.

3–8 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

The pci_mt64 and pci_t64 functions accept either 32-bit transactions
or 64-bit transactions on the PCI side. In both cases, the functions behave
as 64-bit agents on the local side. A 64-bit transaction differs from a 32-bit
transaction as follows:

■ In addition to asserting the framen signal, the PCI master asserts the
req64n signal during the address phase informing the target device
that it is requesting a 64-bit transaction.

■ When the target device accepts the 64-bit transaction, it asserts
ack64n in addition to devseln to inform the master device that it
is accepting the 64-bit transaction.

■ In a 64-bit transaction, the req64n signal behaves the same as the
framen signal, and the ack64n signal behaves the same as
devseln. During data phases, data is driven over the ad[63..0]
bus and byte enables are driven over the cben[7..0] bus.
Additionally, parity for ad[63..32] and cben[7..4] is presented
over the par64n signal.

The pci_mt64, pci_t64, pci_mt32, and pci_t32 functions support
unlimited burst access cycles. Therefore, they can achieve a throughput
of up to 132 Megabytes per second (MByte/s) for 32-bit, 33-MHz
transactions, and up to 528 MByte/s for 64-bit, 66-MHz transactions.
However, the PCI Local Bus Specification, Revision 3.0 does not recommend
bursting beyond 16 data cycles because of the latency of other devices that
share the bus. You should be aware of the trade-off between bandwidth
and increased latency.

Altera Corporation User Guide Version 11.1 3–9
October 2011

Functional Description

Master Device Signals & Signal Assertion

Figure 3–6 illustrates the PCI-compliant master device signals that
connect to the PCI bus. The signals are grouped by functionality, and
signal directions are illustrated from the perspective of a PCI MegaCore
function operating as a master on the PCI bus. Figure 3–6 shows all
master signals. The 64-bit extension signals, including req64n, ack64n,
par64, ad[63..32], and cben[7..4], are not implemented in the
pci_mt32 function.

Figure 3–6. Master Device Signals

A 32-bit master sequence begins when the local side asserts lm_reqn32n
to request mastership of the PCI bus. The PCI MegaCore function then
asserts reqn to request ownership of the PCI bus. After receiving gntn
from the PCI bus arbiter and after the bus idle state is detected, the
function initiates the address phase by asserting framen, driving the PCI
address on ad[31..0], and driving the bus command on cben[3..0]
for one clock cycle.

1 For 64-bit addressing, the master generates a dual-address cycle
(DAC). On the first address phase, the pci_mt64 function
drives the lower 32-bit PCI address on ad[31..0], the upper
32-bit PCI address on ad[63..32], the DAC command on
cben[3..0], and the transaction command on cben[7..4].
On the second address phase, the pci_mt64 function drives the
upper 32-bit PCI address on ad[31..0] and the transaction
command on cben[3..0].

 Master Device

clk
rstn

idsel
req64n
framen

irdyn
trdyn
stopn

devseln
ack64n

par64
par

ad[63..0]
cben[7..0]

perrn

intan

System
Signals

Interface
Control
Signals

Address,
Data &

Command
Signals

Interrupt
Request
Signal

gntn
reqn

Arbitration
Signals

Error
Reporting
Signal

3–10 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

When the pci_mt64 or pci_mt32 function is ready to present or accept
data on the bus, it asserts irdyn. At this point, the PCI master logic
monitors the control signals driven by the target device. The target device
decodes the address and command signals presented on the PCI bus
during the address phase of the transaction and drives the control signals
devseln, trdyn, and stopn to indicate one of the following conditions:

■ The data transaction has been decoded and accepted
■ The target device is ready for the data operation. When both trdyn

and irdyn are active, a data word is clocked from the sending to the
receiving device

■ The master device should retry the current transaction
■ The master device should stop the current transaction
■ The master device should abort the current transaction

Table 3–1 shows the possible control signal combinations on the PCI bus
during a transaction. The PCI function signals that it is ready to present
or accept data on the bus by asserting irdyn. At this point, the
pci_mt64 master logic monitors the control signals driven by the target
device and asserts its control signals appropriately. The local-side
application can use the lm_tsr[9..0] signals to monitor the progress
of the transaction. The master transaction can be terminated normally or
abnormally. The local side signals a normal transaction termination by
asserting the lm_lastn signal. The abnormal termination can be caused
by either a target abort, master abort, or latency timer expiration. Refer to
“Abnormal Master Transaction Termination” on page 3–125 for more
details.

In addition to single-cycle and burst 32-bit transactions, the local side
master can request 64-bit transactions by asserting the lm_req64n
signal. In 64-bit transactions, the pci_mt64 function behaves the same as
a 32-bit transaction except for asserting the req64n signal with the same
timing as the framen signal. Additionally, the pci_mt64 function treats
the local side as 64 bits when it requests 64-bit transactions and when the
target device accepts 64-bit transactions by asserting the ack64n signal.
Refer to “Master Mode Operation” on page 3–134 for more information
on 64-bit master transactions.

Altera Corporation User Guide Version 11.1 3–11
October 2011

Functional Description

PCI Bus Signals The following PCI signals are used by the pci_mt64, pci_mt32,
pci_t64, and pci_t32 functions:

■ Input—Standard input-only signal
■ Output—Standard output-only signal
■ Bidirectional—Tri-state input/output signal
■ Sustained tri-state (STS)—Signal that is driven by one agent at a time

(e.g., device or host operating on the PCI bus). An agent that drives
a sustained tri-state pin low must actively drive it high for one clock
cycle before tri-stating it. Another agent cannot drive a sustained
tri-state signal any sooner than one clock cycle after it is released by
the previous agent.

■ Open-drain—Signal that is shared by multiple devices as a wire-OR.
The signaling agent asserts the open-drain signal, and a weak pull-
up resistor deasserts the open-drain signal. The pull-up resistor may
require two or three PCI bus clock cycles to restore the open-drain
signal to its inactive state.

1 All of the PCI MegaCore function’s logic is clocked by the PCI
clock (clk). If you are interfacing to logic that has a different
clock, you must design appropriate clock domain crossing logic.

Table 3–2 summarizes the PCI bus signals that provide the interface
between the PCI MegaCore functions and the PCI bus.

Table 3–2. PCI Interface Signals (Part 1 of 4)

Name Type Polarity Description

clk Input – Clock. The clk input provides the reference signal for all other
PCI interface signals, except rstn and intan.

rstn Input Low Reset. The rstn input initializes the PCI interface circuitry and
can be asserted asynchronously to the PCI bus clk edge.
When active, the PCI output signals are tri-stated and the open-
drain signals, such as serrn, float.

gntn Input Low Grant. The gntn input indicates to the PCI bus master device
that it has control of the PCI bus. Every master device has a pair
of arbitration signals (gntn and reqn) that connect directly to
the arbiter.

l_dis_64_extn Input Low Disable 64-bit extension signals. When you assign an APEX
device in a 32-bit PCI bus and drive this signal low, it disables
the PCI 64-bit extension signals. The extension signals include
ad_63..32_, cben_7..4_, req64n, ack64n, and
par64.

reqn Output Low Request. The reqn output indicates to the arbiter that the PCI
bus master wants to gain control of the PCI bus to perform a
transaction.

3–12 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Bus Signals

ad[63..0] Tri-State – Address/data bus. The ad[63..0] bus is a time-multiplexed
address/data bus; each bus transaction consists of an address
phase followed by one or more data phases. The data phases
occur when irdyn and trdyn are both asserted. In the case
of a 32-bit data phase, only the ad[31..0] bus holds valid
data. For pci_mt32 and pci_t32, only ad[31..0] is
implemented.

cben[7..0] Tri-State – Command/byte enable. The cben[7..0] bus is a time-
multiplexed command/byte enable bus. During the address
phase, this bus indicates the command. During the data phase,
this bus indicates byte enables. For pci_mt32 and pci_t32,
only cben[3..0] is implemented.

par Tri-State – Parity. The par signal is even parity across the 32 least
significant address/data bits and four least significant
command/byte enable bits, i.e., the number of 1s on
ad[31..0], cben[3..0], and par equal an even number.
The par signal is valid one clock cycle after each address
phase. For data phases, par is valid one clock cycle after either
irdyn asserted on a write transaction or trdyn is asserted on
a read transaction. Once par is valid, it remains valid until one
clock cycle after the current data phase.

par64 Tri-State – Parity 64. The par64 signal is even parity across the 32 most
significant address/data bits and the four most significant
command/byte enable bits, i.e., the number of 1s on
ad[63..32], cben[7..4], and par64 equal an even
number. The par64 signal is valid one clock cycle after the
address phase where req64n is asserted. For data phases,
par64 is valid one clock cycle after either irdyn is asserted
on a write transaction or trdyn is asserted on a read
transaction. This signal is not implemented in the pci_mt32
and pci_t32 functions.

idsel Input High Initialization device select. The idsel input is a chip select for
configuration transactions.

framen (1) STS Low Frame. The framen signal is an output from the current bus
master that indicates the beginning and duration of a bus
operation. When framen is initially asserted, the address and
command signals are present on the ad[63..0] and
cben[7..0] buses (ad[31..0] and cben[3..0] only for
32-bit functions). The framen signal remains asserted during
the data operation and is deasserted to identify the end of a
transaction.

Table 3–2. PCI Interface Signals (Part 2 of 4)

Name Type Polarity Description

Altera Corporation User Guide Version 11.1 3–13
October 2011

Functional Description

req64n (1) STS Low Request 64-bit transfer. The req64n signal is an output from
the current bus master and indicates that the master is
requesting a 64-bit transaction. req64n has the same timing
as framen. This signal is not implemented in pci_mt32 and
pci_t32.

irdyn (1) STS Low Initiator ready. The irdyn signal is an output from a bus master
to its target and indicates that the bus master can complete the
current data transaction. In a write transaction, irdyn
indicates that the address bus has valid data. In a read
transaction, irdyn indicates that the master is ready to accept
data.

devseln (1) STS Low Device select. Target asserts devseln to indicate that the
target has decoded its own address and accepts the
transaction.

ack64n (1) STS Low Acknowledge 64-bit transfer. The target asserts ack64n to
indicate that the target can transfer data using 64 bits. The
ack64n has the same timing as devseln. This signal is not
implemented in pci_mt32 and pci_t32.

trdyn (1) STS Low Target ready. The trdyn signal is a target output, indicating
that the target can complete the current data transaction. In a
read operation, trdyn indicates that the target is providing
valid data on the address bus. In a write operation, trdyn
indicates that the target is ready to accept data.

stopn (1) STS Low Stop. The stopn signal is a target device request that indicates
to the bus master to terminate the current transaction. The
stopn signal is used in conjunction with trdyn and devseln
to indicate the type of termination initiated by the target.

perrn STS Low Parity error. The perrn signal indicates a data parity error. The
perrn signal is asserted one clock cycle following the par and
par64 signals or two clock cycles following a data phase with
a parity error. The PCI MegaCore functions assert the perrn
signal if a parity error is detected on the par or par64 signals
and the perrn_ena bit (bit 6) in the command register is set.
The par64 signal is only evaluated during 64-bit transactions
in pci_mt64 and pci_t64 functions. In pci_mt32 and
pci_t32, only par is evaluated.

serrn Open-Drain Low System error. The serrn signal indicates system error and
address parity error. The PCI MegaCore functions assert
serrn if a parity error is detected during an address phase and
the serrn_ena enable bit (bit 8) in the command register is
set.

Table 3–2. PCI Interface Signals (Part 3 of 4)

Name Type Polarity Description

3–14 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Bus Signals

intan Open-Drain Low Interrupt A. The intan signal is an active-low interrupt to the
host and must be used for any single-function device requiring
an interrupt capability. The PCI MegaCore functions assert
intan only when the local side asserts the lirqn signal and
the int_dis bit (bit 10 of the command register) is 0.

Note to Table 3–2:
(1) In the PCI MegaCore function symbols, the bidirectional control signals are separated into two components: input

and output. For example, framen has the input framen_in and the output framen_out. This separation of
signals allows the PCI MegaCore function to obtain better slack on set-up times.

Table 3–2. PCI Interface Signals (Part 4 of 4)

Name Type Polarity Description

Altera Corporation User Guide Version 11.1 3–15
October 2011

Functional Description

Parameterized Configuration Register Signals

Table 3–3 summarizes the PCI local interface signals for the
parameterized configuration register signals.

Table 3–4 shows definitions for the command register output bus bits.

Table 3–3. Parameterized Configuration Register Signals

Name Type Polarity Description

cache[7..0] Output – Cache line-size register output. The cache[7..0] bus is
the same as the configuration space cache line-size register.
The local-side logic uses this signal to provide support for
cache commands.

cmd_reg[6..0] Output – Command register output. The cmd_reg[6..0] bus drives
the important signals of the configuration space command
register to the local side. Refer to Table 3–4.

stat_reg[6..0] Output – Status register output. The stat_reg[6..0] bus drives
the important signals of the configuration space status
register to the local side. Refer to Table 3–5.

Table 3–4. PCI Command Register Output Bus (cmd_reg[6..0]) Bit Definition

Bit Number Bit Name Description

0 io_ena I/O accesses enable. Bit 0 of the command register.

1 mem_ema Memory access enable. Bit 1 of the command register.

2 mstr_ena Master enable. Bit 2 of the command register. This signal is
reserved for pci_t64 and pci_t32.

3 mwi_ena Memory write and invalidate enable. Bit 4 of the command register.

4 perr_ena Parity error response enable. Command register bit 6.

5 serr_ena System error response enable. Command register bit 8.

6 int_dis (1) Interrupt disable. Command register bit 10.

Note to Table 3–4:
(1) This signal is added for compliance with the PCI Local Bus Specification, Revision 3.0.

3–16 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Bus Signals

Table 3–5 shows definitions for the PCI status register bits.

Local Address, Data, Command, & Byte Enable Signals

Table 3–6 summarizes the PCI local interface signals for the address, data,
command, and byte enable signals.

Table 3–5. PCI Status Register Output Bus (stat_reg[6..0]) Bit Definition

Bit Number Bit Name Description

0 perr_rep Parity error reported. Status register bit 8.

1 tabort_sig Target abort signaled. Status register bit 11.

2 tabort_rcvd Target abort received. Status register bit 12.

3 mabort_rcvd Master abort received. Status register bit 13.

4 serr_sig Signaled system error. Status register bit 14.

5 perr_det Parity error detected. Status register bit 15.

6 int_stat (1) Interrupt status. Status register bit 3.

Note to Table 3–5:
(1) This signal is added for compliance with the PCI Local Bus Specification, Revision 3.0.

Altera Corporation User Guide Version 11.1 3–17
October 2011

Functional Description

Table 3–6. PCI Local Address, Data, Command & Byte Enable Signals (Part 1 of 3)

Name Type Polarity Description

l_adi[63..0] Input – Local address/data input. This bus is a local-side time multiplexed
address/data bus. This bus changes operation depending on the
function you are using and the type of transaction.

During master transactions, the local side must provide the address
on l_adi[63..0] when lm_adr_ackn is asserted. For 32-bit
addressing, only the l_adi[31..0] signals are valid during the
address phase.

The l_adi[63..0] bus is driven active by the local-side logic
during PCI bus-initiated target read transactions or local-side initiated
master write transactions. For pci_mt32 and pci_t32, only
l_adi[31..0] is used.

For the pci_mt64 and pci_t64 functions, the entire
l_adi[63..0] bus is used to transfer data from the local side
during 64-bit master write and 64-bit and 32-bit target read
transactions.

l_cbeni[7..0] Input – Local command/byte enable input. This bus is a local-side time
multiplexed command/byte enable bus. During master transactions,
the local side must provide the command on l_cbeni[3..0] when
lm_adr_ackn is asserted. For 64-bit addressing, the local side must
provide the DAC command (B"1101") on l_cbeni[3..0] and the
transaction command on l_cbeni[7..4] when lm_tsr[1] is
asserted. The local side must provide the command with the same
encoding as specified in the PCI Local Bus Specification,
Revision 3.0.

The local-master device drives byte enables on the
l_cbeni[7..0] bus during master transactions. The local master
device must provide the byte-enable value on l_cbeni[7..0]
during the next clock cycle after lm_adr_ackn is asserted. This is
the same clock cycle that immediately follows a local side address
phase.The PCI MegaCore functions drive the byte-enable value from
the local side to the PCI side. The PCI MegaCore function maintains
the same byte enables that were provided with the initial data word on
the local side throughout the burst transaction.

The PCI MegaCore function allows variable byte enable values from
the local side to the PCI side if Allow Variable Byte Enables During
Burst Transaction is turned on in the Parameterize - PCI Compiler
wizard. Refer to “Advanced PCI MegaCore Function Features” on
page 2–3 for more information.

In pci_mt32, only l_cbeni[3..0] is implemented. Additionally,
in pci_mt64, only l_cbeni[3..0] is used when a 32-bit master
transaction is initiated.

3–18 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Bus Signals

l_adro[63..0] Output – Local address output. The l_adro[63..0] bus is driven by the PCI
MegaCore functions during target transactions. The pci_mt32 and
pci_t32 functions only implement l_adro[31..0]. During dual address
transactions in the pci_mt64 and pci_t64 MegaCore functions, the
l_adro[63..32] bus is driven with a valid address. DAC is indicated by
the assertion of lt_tsr[11]. For more information on the local target
status signals, refer to Table 3–8.

The falling edge of lt_framen indicates a valid l_adro[63..0]. The PCI
address is held at the local side as long as possible and should be
assumed invalid at the end of the target transaction on the PCI bus.
The end of the target transaction is indicated by lt_tsr[8] (targ_access)
being deasserted.

l_dato[63..0] Output – Local data output. The l_dato[63..0] bus is driven active during
PCI bus-initiated target write transactions or local side-initiated master
read transactions. The functionality of this bus changes depending on
the function you are using and the transaction being considered. The
pci_mt32 and pci_t32 functions implement only
l_dato[31..0]. The operation in the pci_mt64 and pci_t64
MegaCore functions is dependent on the type of transaction being
considered. During 64-bit target write transactions and master read
transactions, the data is transferred on the entire l_dato[63..0]
bus. During 32-bit master read transactions, the data is only
transferred on l_dato[31..0]. During 32-bit target write
transactions, the data is also only transferred on l_dato[31..0];
however, depending on the transaction address, the pci_mt64 or
pci_t64 MegaCore function either asserts l_ldat_ackn or
l_hdat_ackn to indicate whether the address for the current data
word is a QWORD boundary (ad[2..0] = B"000") or not.

l_beno[7..0] Output – Local byte enable output. The l_beno[7..0] bus is driven by the
PCI function during target transactions. This bus holds the byte enable
value during data transfers. The functionality of this bus is different
depending on the function being used and the transaction being
considered. The pci_mt32 and pci_t32 functions implement only
l_beno[3..0]. The operation in the pci_mt64 and pci_t64
MegaCore functions is dependent on the type of transaction being
considered. During 64-bit target write transactions, the byte enables
are transferred on the entire l_beno[7..0] bus. During 32-bit
target write transactions, the byte enables are transferred on the
l_beno[3..0] bus and, depending on the transaction address, the
pci_mt64 or pci_t64 MegaCore function either asserts
l_ldat_ackn or l_hdat_ackn to indicate whether the address
for the current byte enables is at a QWORD boundary (ad[2..0] =
B"000") or not.

Table 3–6. PCI Local Address, Data, Command & Byte Enable Signals (Part 2 of 3)

Name Type Polarity Description

Altera Corporation User Guide Version 11.1 3–19
October 2011

Functional Description

l_cmdo[3..0] Output – Local command output. The l_cmdo[3..0] bus is driven by the PCI
MegaCore functions during target transactions. It has the bus
command and the same timing as the l_adro[31..0] bus. The
command is encoded as presented on the PCI bus.

l_ldat_ackn Output Low Local low data acknowledge. The l_ldat_ackn output is used
during target write and master read transactions. When asserted,
l_ldat_ackn indicates that the least significant DWORD is being
transferred on the l_dato[31..0] bus, i.e., when l_ldat_ackn
is asserted, the address of the transaction is on a QWORD boundary
(ad[2..0] = B"000"). The signals lm_ackn or lt_ackn must be
used to qualify valid data.

During target read transactions, l_ldat_ackn is used to indicate
the first DWORD transferred to the PCI side. If the address of the
transaction is a QWORD boundary, the l_ldat_ackn signal is
asserted.

This signal is not implemented in the pci_mt32 and pci_t32
functions.

l_hdat_ackn Output Low Local high data acknowledge. The l_hdat_ackn output is used
during target write and master read transactions. When asserted,
l_hdat_ackn indicates that the most significant DWORD is being
transferred on the l_dato[31..0] bus. In other words, when
l_hdat_ackn is asserted, the address of the transaction is not a
QWORD boundary (ad[2..0] = B"100"). The signals lm_ackn
or lt_ackn must be used to qualify valid data.

During target read transactions, l_hdat_ackn is used to indicate
the first DWORD transferred to the PCI side. If the address of the
transaction is not a QWORD boundary, l_ldat_ackn is deasserted
and l_hdat_ackn is asserted.

This signal is not implemented in the pci_mt32 and pci_t32
functions.

Table 3–6. PCI Local Address, Data, Command & Byte Enable Signals (Part 3 of 3)

Name Type Polarity Description

3–20 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Bus Signals

Target Local-Side Signals

Table 3–7 summarizes the target interface signals that provide the
interface between the PCI MegaCore function and the local-side
peripheral device(s) during target transactions.

1 When a local side transaction is not in progress, local side inputs
should be driven to the deasserted state.

Table 3–7. Target Signals Connecting to the Local Side (Part 1 of 3)

Name Type Polarity Description

lt_abortn Input Low Local target abort request. The local side should assert this
signal requesting the PCI MegaCore function to issue a target
abort to the PCI master. The local side should request an abort
when it has encountered a fatal error and cannot complete the
current transaction.

lt_discn Input Low Local target disconnect request. The lt_discn input
requests the PCI MegaCore function to issue a retry or a
disconnect. The PCI MegaCore function issues a retry or
disconnect depending on when the signal is asserted during a
transaction.

The PCI bus specification requires that a PCI target issues a
disconnect whenever the transaction exceeds its memory
space. When using PCI MegaCore functions, the local side is
responsible for asserting lt_discn if the transaction crosses
its memory space.

Altera Corporation User Guide Version 11.1 3–21
October 2011

Functional Description

lt_rdyn Input Low Local target ready. The local side asserts lt_rdyn to indicate
a valid data input during target read, or ready to accept data
input during a target write. During a target read, lt_rdyn
deassertion suspends the current transfer (i.e., a wait state is
inserted by the local side). During a target write, an inactive
lt_rdyn signal directs the PCI MegaCore function to insert
wait states on the PCI bus. The only time the function inserts
wait states during a burst is when lt_rdyn inserts wait states
on the local side.

lt_rdyn is sampled one clock cycle before actual data is
transferred on the local side. During target write transactions,
lt_rdyn has also special functionality. To allow the local side
ample time to issue a retry for the write cycle, the PCI
MegaCore function does not assert trdyn in the first data
phase unless the local side asserts lt_rdyn. In this case, the
local side asserts lt_rdyn to indicate that it intends to
complete at least one data phase and it is not going to issue a
retry.

Refer to the “Additional Design Guidelines for Target
Transactions” on page 3–88 section for additional information
about the lt_rdyn functionality.

lt_framen Output Low Local target frame request. The lt_framen output is
asserted while the PCI MegaCore function is requesting
access to the local side. It is asserted one clock cycle before
the function asserts devseln, and it is released after the last
data phase of the transaction is transferred to/from the local
side.

lt_ackn Output Low Local target acknowledge. The PCI function asserts lt_ackn
to indicate valid data output during a target write, or ready to
accept data during a target read. During a target read, an
inactive lt_ackn indicates that the function is not ready to
accept data and local logic should delay the bursting operation.
During a target write, lt_ackn de-assertion suspends the
current transfer (i.e., a wait state is inserted by the PCI master).
The lt_ackn signal is only inactive during a burst when the
PCI bus master inserts wait states.

lt_dxfrn Output Low Local target data transfer. The PCI MegaCore function asserts
the lt_dxfrn signal when a data transfer on the local side is
successful during a target transaction.

Table 3–7. Target Signals Connecting to the Local Side (Part 2 of 3)

Name Type Polarity Description

3–22 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Bus Signals

lt_tsr[11..0] Output – Local target transaction status register. The lt_tsr[11..0]
bus carries several signals which can be monitored for the
transaction status. Refer to Table 3–8.

lirqn Input Low Local interrupt request. The local-side peripheral device
asserts lirqn to signal a PCI bus interrupt. Asserting this
signal forces the PCI MegaCore function to assert the intan
signal for as long as the lirqn signal is asserted and the
int_dis bit (bit 10 of the command register) is 0.

Table 3–7. Target Signals Connecting to the Local Side (Part 3 of 3)

Name Type Polarity Description

Altera Corporation User Guide Version 11.1 3–23
October 2011

Functional Description

Table 3–8 shows definitions for the local target transaction status register
outputs.

Table 3–8. Local Target Transaction Status Register (lt_tsr[11..0]) Bit Definition

Bit Number Bit Name Description

5..0 bar_hit[5..0] Base address register hit. Asserting bar_hit[5..0] indicates
that the PCI address matches that of a base address register and
that the PCI MegaCore function has claimed the transaction. Each
bit in the bar_hit[5..0] bus is used for the corresponding base
address register (e.g., bar_hit[0] is used for BAR0).

When BAR0 and BAR1 are used to implement a 64-bit base
address register, bar_hit[0] and bar_hit[1] are asserted to
indicate that the pci_mt64 and pci_t64 MegaCore functions
have claimed the transaction.

When BAR1 and BAR2 are used to implement a 64-bit base
address register, bar_hit[1] and bar_hit[2] are asserted to
indicate that the pci_mt64 and pci_t64 MegaCore functions
have claimed the transaction.

6 exp_rom_hit Expansion ROM register hit. The PCI MegaCore function asserts
this signal when the transaction address matches the address in the
expansion ROM BAR.

7 trans64bit 64-bit target transaction. The pci_mt64 and pci_t64 assert this
signal when the current transaction is 64 bits. If a transaction is
active and this signal is low, the current transaction is 32 bits. This
bit is reserved for pci_mt32 and pci_t32.

8 targ_access Target access. The PCI MegaCore function asserts this signal when
a PCI target access is in progress.

9 burst_trans Burst transaction. When asserted, this signal indicates that the
current target transaction is a burst. This signal is asserted if the PCI
MegaCore function detects both framen and irdyn signals
asserted at the same time during the first data phase.

10 pci_xfr PCI transfer. This signal is asserted to indicate that there was a
successful data transfer on the PCI side during the previous clock
cycle.

11 dac_cyc Dual address cycle. When asserted, this signal indicates that the
current transaction is using a dual address cycle.

3–24 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Bus Signals

Master Local-Side Signals

Table 3–9 summarizes the pci_mt64 and pci_mt32 master interface
signals that provide the interface between the PCI MegaCore function
and the local-side peripheral device(s) during master transactions.

1 When a local side transaction is not in progress, local side inputs
should be deasserted.

Table 3–9. PCI Master Signals Interfacing to the Local Side (Part 1 of 2)

Name Type Polarity Description

lm_req32n Input Low Local master request 32-bit data transaction. The local side asserts
this signal to request ownership of the PCI bus for a 32-bit master
transaction. To request a master transaction, it is sufficient for the
local-side device to assert lm_req32n for one clock cycle. When
requesting a 32-bit transaction, only l_adi[31..0] for a master
write transaction or l_dato[31..0] for a master read
transaction is valid.

The local side cannot request the bus until the current master
transaction has completed. After being granted mastership of the
PCI bus, the lm_req32n signal should be asserted only after
lm_tsr[3] is deasserted.

lm_req64n Input Low Local master request 64-bit data transaction. The local side asserts
this signal to request ownership of the PCI bus for a 64-bit master
transaction. To request a master transaction, it is sufficient for the
local side device to assert lm_req64n for one clock cycle. When
requesting a 64-bit data transaction, pci_mt64 requests a 64-bit
PCI transaction. When the target does not assert its ack64n
signal, the transaction will be 32 bits. In a 64-bit master write
transaction where the target does not assert its ack64n signal,
pci_mt64 automatically accepts 64-bit data on the local side and
multiplexes the data appropriately to 32 bits on the PCI side. When
the local side requests 64-bit PCI transactions, it must ensure that
the address is at a QWORD boundary. This signal is not implemented
in pci_mt32.

The local side cannot request the bus until the current master
transaction has completed. After being granted mastership of the
PCI bus, the lm_req64n signal should be asserted only after
lm_tsr[3] is deasserted.

lm_lastn Input Low Local master last. This signal is driven by the local side to request
that the pci_mt64 or pci_mt32 master interface ends the
current transaction. When the local side asserts this signal, the PCI
MegaCore function master interface deasserts framen as soon as
possible and asserts irdyn to indicate that the last data phase has
begun. The local side must assert this signal for one clock cycle to
initiate the end of the current master transaction.

Altera Corporation User Guide Version 11.1 3–25
October 2011

Functional Description

lm_rdyn Input Low Local master ready. The local side asserts the lm_rdyn signal to
indicate a valid data input during a master write, or ready to accept
data during a master read. During a master write, the lm_rdyn
signal de-assertion suspends the current transfer (i.e., wait state is
inserted by the local side). During a master read, an inactive
lm_rdyn signal directs pci_mt64 or pci_mt32 to insert wait
states on the PCI bus. The only time pci_mt64 or pci_mt32
inserts wait states during a burst is when the lm_rdyn signal
inserts wait states on the local side.

The lm_rdyn signal is sampled one clock cycle before actual data
is transferred on the local side.

lm_adr_ackn Output Low Local master address acknowledge. pci_mt64 or pci_mt32
assert the lm_adr_ackn signal to the local side to acknowledge
the requested master transaction. During the same clock cycle
when lm_adr_ackn is asserted low, the local side must provide
the transaction address on the l_adi[31..0] bus and the
transaction command on the l_cmdi[3..0] bus.

lm_ackn Output Low Local master acknowledge. pci_mt64 and pci_mt32 assert the
lm_ackn signal to indicate valid data output during a master read,
or ready to accept data during a master write. During a master
write, an inactive lm_ackn signal indicates that pci_mt64 and
pci_mt32 is not ready to accept data, and local logic should hold
off the bursting operation. During a master read operation, the
lm_ackn signal de-assertion suspends the current transfer (i.e., a
wait state is inserted by the PCI target). During a burst when the
PCI bus target inserts wait states, the lm_ackn signal goes
inactive.

lm_dxfrn Output Low Local master data transfer. During a master transaction,
pci_mt64 and pci_mt32 assert this signal when a data transfer
on the local side is successful.

lm_tsr[9..0] Output – Local master transaction status register bus. These signals inform
the local interface of the transaction’s progress. Refer to Table 3–10
for a detailed description of the bits in this bus.

Table 3–9. PCI Master Signals Interfacing to the Local Side (Part 2 of 2)

Name Type Polarity Description

3–26 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Bus Signals

Table 3–10 shows definitions for the local master transaction status
register outputs.

Table 3–10. pci_mt64 & pci_mt32 Local Master Transaction Status Register (lm_tsr[9..0]) Bit
Definition (1)

Bit Number Bit Name Description

0 request Request. This signal indicates that the pci_mt64 or pci_mt32 function is
requesting mastership of the PCI bus (i.e., it is asserting its reqn signal). The
request bit is not asserted if the following is true: The PCI bus arbiter has
parked on the pci_mt64 or pci_mt32 function and the gntn signal is
already asserted when the function requests mastership of the bus.

1 (1) grant Grant. This signal is active after the pci_mt64 or pci_mt32 function has
detected that gntn is asserted.

2 (1) adr_phase Address phase. This signal is active during a PCI address phase where
pci_mt64 or pci_mt32 is the bus master.

3 dat_phase Data phase. This signal is active while the pci_mt64 or pci_mt32 function
is in data transfer mode. The signal is active after the address phase and
remains active until the turn-around state begins.

4 lat_exp Latency timer expired. This signal indicates that pci_mt64 or pci_mt32
terminated the master transaction because the latency timer counter expired.

5 retry Retry detected. This signal indicates that the pci_mt64 or pci_mt32
function terminated the master transaction because the target issued a retry.
Per the PCI specification, a transaction that ends in a retry must be retried at
a later time.

6 disc_wod Disconnect without data detected. This signal indicates that the pci_mt64 or
pci_mt32 signal terminated the master transaction because the target
issued a disconnect without data.

7 disc_wd Disconnect with data detected. This signal indicates that pci_mt64 or
pci_mt32 terminated the master transaction because the target issued a
disconnect with data.

8 dat_xfr Data transfer. This signal indicates that a successful data transfer occurred on
the PCI side in the preceding clock cycle. This signal can be used by the local
side to keep track of how much data was actually transferred on the PCI side.

9 trans64 64-bit transaction. This signal indicates that the target claiming the transaction
asserted its ack64n signal. Because pci_mt32 does not request 64-bit
transactions, this signal is reserved.

Note to Table 3–10:
(1) Some arbiters may initially assert gntn (in response to either the pci_mt64 or pci_mt32 function requesting

mastership of the PCI bus), but then deassert gntn (before the pci_mt64 or pci_mt32 have asserted framen) to
give mastership of the bus to a higher priority device. In systems where this situation may occur, the local side logic
should hold the address and command on the l_adi[63..0] and l_cbeni[7..0] buses until the adr_phase
bit is asserted (lm_tsr[2]) to ensure that the pci_mt64 or pci_mt32 function has assumed mastership of the
bus and that the current address and command bits have been transferred.

Altera Corporation User Guide Version 11.1 3–27
October 2011

Functional Description

PCI Bus
Commands

Table 3–11 shows the PCI bus commands that can be initiated or
responded to by the PCI MegaCore functions.

During the address phase of a transaction, the cben[3..0] bus is used
to indicate the transaction type (Table 3–11).

The PCI MegaCore functions respond to standard memory read/write,
cache-line memory read/write, I/O read/write, and configuration
read/write commands. The bus commands are discussed in greater detail
in “Target Mode Operation” on page 3–44 and “Master Mode Operation”
on page 3–88.

Table 3–11. PCI Bus Command Support Summary

cben[3..0] Value Bus Command Cycle Master Target

0000 Interrupt acknowledge No Yes (1)

0001 Special cycle No Ignored

0010 I/O read Yes Yes

0011 I/O write Yes Yes

0100 Reserved Ignored Ignored

0101 Reserved Ignored Ignored

0110 Memory read Yes Yes

0111 Memory write Yes Yes

1000 Reserved Ignored Ignored

1001 Reserved Ignored Ignored

1010 Configuration read Yes Yes

1011 Configuration write Yes Yes

1100 Memory read multiple (2) Yes Yes

1101 Dual address cycle (DAC) Yes (3) Yes (3)

1110 Memory read line (2) Yes Yes

1111 Memory write and invalidate (2) Yes Yes

Notes to Table 3–11:
(1) Interrupt acknowledge support can be enabled on the Advanced PCI MegaCore

Function Features page of the Parameterize - PCI Compiler wizard. When
support is enabled, the target accepts the interrupt acknowledge command and
aliases it as a memory read command.

(2) The memory read multiple and memory read line commands are treated as
memory reads. The memory write and invalidate command is treated as a
memory write. The local side sees the exact command on the l_cmdo[3..0] bus
with the encoding shown in Table 3–11.

(3) This command is not supported by the pci_mt32 and pci_t32 MegaCore
functions.

3–28 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Configuration Registers

In master mode, the pci_mt64 and pci_mt32 functions can initiate
transactions of standard memory read/write, cache memory read/write,
I/O read/write, and configuration read/write commands. Per the PCI
specification, the master must keep track of the number of words that are
transferred and can only end the transaction at cache line boundaries
during memory read line (MRL) and memory write-and-invalidate
(MWI) commands. It is the responsibility of the local-side interface to
ensure that this requirement is not violated. Additionally, it is the
responsibility of the local-side interface to ensure that proper address and
byte enable combinations are used during I/O read/write cycles.

Configuration
Registers

Each logical PCI bus device includes a block of 64 configuration DWORDs
reserved for the implementation of its configuration registers. The format
of the first 16 DWORDs is defined by the PCI Special Interest Group
(PCI SIG) PCI Local Bus Specification, Revision 3.0 and the Compliance
Checklist, Revision 3.0. These specifications define two header formats,
type one and type zero. Header type one is used for PCI-to-PCI bridges;
header type zero is used for all other devices, including the Altera PCI
MegaCore functions.

Altera Corporation User Guide Version 11.1 3–29
October 2011

Functional Description

Table 3–12 shows the defined 64-byte configuration space. The registers
within this range are used to identify the device, control PCI bus
functions, and provide PCI bus status. The shaded areas indicate registers
that are supported by the PCI MegaCore functions.

Table 3–13 summarizes the supported configuration registers address
map. Unused registers produce a zero when read, and they ignore a write
operation. Read/write refers to the status at run time, i.e., from the
perspective of other PCI bus agents. You can set some of the read-only
registers when creating a custom PCI design by using the IP Toolbench
Parameterize - PCI Compiler wizard. For example, you can change the

Table 3–12. PCI Bus Configuration Registers

Address
Byte

3 2 1 0

0x00 Device ID Vendor ID

0x04 Status Register Command Register

0x08 Class Code Revision ID

0x0C BIST Header Type Latency Timer Cache Line
Size

0x10 Base Address Register 0

0x14 Base Address Register 1

0x18 Base Address Register 2

0x1C Base Address Register 3

0x20 Base Address Register 4

0x24 Base Address Register 5

0x28 Card Bus CIS Pointer

0x2C Subsystem ID Subsystem Vendor ID

0x30 Expansion ROM Base Address Register

0x34 Reserved Capabilities
Pointer

0x38 Reserved

0x3C Maximum
Latency

Minimum Grant Interrupt Pin Interrupt Line

3–30 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Configuration Registers

device ID register value on the Read-Only PCI Configuration Registers
page. The specified default state is defined as the state of the register
when the PCI bus is reset.

Table 3–13. Supported Configuration Registers Address Map

Address Offset Range
Reserved

Bytes Used/
Reserved Read/Write Mnemonic Register Name

0x00 0x00-0x01 2/2 Read ven_id Vendor ID

0x02 0x02-0x03 2/2 Read dev_id Device ID

0x04 0x04-0x05 2/2 Read/write comd Command

0x06 0x06-0x07 2/2 Read/write status Status

0x08 0x08-0x08 1/1 Read rev_id Revision ID

0x09 0x09-0x0B 3/3 Read class Class code

0x0C 0x0C-0x0C 1/1 Read/write cache Cache line size (1)

0x0D 0x0D-0x0D 1/1 Read/write lat_tmr Latency timer (1)

0x0E 0x0E-0x0E 1/1 Read header Header type

0x10 0x10-0x13 4/4 Read/write bar0 Base address register
zero

0x14 0x14-0x17 4/4 Read/write bar1 Base address register one

0x18 0x18-0x1B 4/4 Read/write bar2 Base address register two

0x1C 0x1C-0x1F 4/4 Read/write bar3 Base address register
three

0x20 0x20-0x23 4/4 Read/write bar4 Base address register four

0x24 0x24-0x27 4/4 Read/write bar5 Base address register five

0x28 0x28-0x2B 4/4 Read cardbus_ptr CardBus CIS pointer

0x2C 0x2C-0x2D 2/2 Read sub_ven_id Subsystem vendor ID

0x2E 0x2E-0x2F 2/2 Read sub_id Subsystem ID

0x30 0x30-0x33 4/4 Read/write exp_rom_bar Expansion ROM BAR

0x34 0x34-0x35 1/1 Read cap_ptr Capabilities pointer

0x3C 0x3C-0x3C 1/1 Read/write int_ln Interrupt line

0x3D 0x3D-0x3D 1/1 Read int_pin Interrupt pin

0x3E 0x3E-0x3E 1/1 Read min_gnt Minimum grant (1)

0x3F 0x3F-0x3F 1/1 Read max_lat Maximum latency (1)

Note to Table 3–13:
(1) These registers are supported by the pci_mt64 and pci_mt32 MegaCore functions only.

Altera Corporation User Guide Version 11.1 3–31
October 2011

Functional Description

Vendor ID Register

Vendor ID is a 16-bit read-only register that identifies the manufacturer of
the device. The value of this register is assigned by the PCI SIG; the
default value of this register is the Altera vendor ID value, which is
0x1172. However, by setting the ven_id value through the wizard, you
can change the value of the vendor ID register to your PCI SIG-assigned
vendor ID value. Refer to Table 3–14.

Device ID Register

Device ID is a 16-bit read-only register that identifies the device type. The
value of this register is assigned by the manufacturer. The default value
of the device ID register is 0x0004. You can change the value of the device
ID register through the wizard. Refer to Table 3–15.

Table 3–14. Vendor ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 ven_id Read PCI vendor ID

Table 3–15. Device ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 dev_id Read Device ID

3–32 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Configuration Registers

Command Register

Command is a 16-bit read/write register that provides basic control over
the ability of the PCI function to respond to the PCI bus and/or access it.
Refer to Table 3–16.

Table 3–16. Command Register Format

Data
Bit Mnemonic Read/Write Definition

0 io_ena Read/write I/O access enable. When high, io_ena lets the function respond to
the PCI bus I/O accesses as a target.

1 mem_ena Read/write Memory access enable. When high, mem_ena lets the function
respond to the PCI bus memory accesses as a target.

2 mstr_ena Read/write Master enable. When high, mstr_ena allows the function to request
mastership of the PCI bus. Bit 2 is hardwired to 1 when PCI master
host bridge options are enabled through the wizard.

3 Unused – –

4 mwi_ena Read/write Memory write and invalidate enable. This bit controls whether the
master may generate a MWI command. Although the function
implements this bit, it is ignored. The local side must ensure that the
mwi_ena output is high before it requests a master transaction using
the MWI command.

5 Unused – –

6 perr_ena Read/write Parity error enable. When high, perr_ena enables the function to
report parity errors via the perrn output.

7 Unused – –

8 serr_ena Read/write System error enable. When high, serr_ena allows the function to
report address parity errors via the serrn output. However, to signal
a system error, the perr_ena bit must also be high.

9 Unused – –

10 int_dis Read/write Interrupt disable. A value of 1 disables the PCI MegaCore function
from asserting intan on the PCI bus. However, the interrupt is only
disabled after the preexisting interrupt has been serviced.

15..11 Unused – –

Altera Corporation User Guide Version 11.1 3–33
October 2011

Functional Description

Status Register

Status is a 16-bit register that provides the status of bus-related events.
Read transactions from the status register behave normally. However,
status register write transactions are different from typical write
transactions because bits in the status register can be cleared but not set.
A bit in the status register is cleared by writing a logic one to that bit. For
example, writing the value 0x4000 to the status register clears bit 14 and
leaves the rest of the bits unchanged. The default value of the status
register is 0x0400. Refer to Table 3–17.

Table 3–17. Status Register Format (Part 1 of 2)

Data
Bit Mnemonic Read/Write Definition

2..0 Unused – Reserved.

3 int_stat Read Interrupt status. This bit is read only and is set when the
int_dis bit (bit 10 of the command register) is 0 and
intan is asserted on the PCI bus. This signal is driven to
the local side on the stat_reg[6] output.

4 cap_list_ena Read Capabilities list enable. This bit is read only and is set by the
user when enabling the Capabilities List Pointer through
the wizard. When set, this bit enables the capabilities list
pointer register at offset 0x34. Refer to “Capabilities Pointer”
on page 3–42 for more details.

5 pci_66mhz_capable Read PCI 66-MHz capable. When set, pci_66mhz_capable
indicates that the PCI device is capable of running at 66
MHz. The PCI MegaCore functions can function at either 66
MHz or 33 MHz depending on the device used. You can set
this bit to 1 by turning on PCI 66MHz Capable on the initial
page of the IP Toolbench Parameterize - PCI Compiler
wizard.

7..6 Unused – Reserved.

8 dat_par_rep Read/write Reported data parity. When high, dat_par_rep indicates
that during a read transaction the function asserted the
perrn output as a master device, or that during a write
transaction the perrn output was asserted as a target
device. This bit is high only when the perr_ena bit (bit 6 of
the command register) is also high. This signal is driven to
the local side on the stat_reg[0] output.

10..9 devsel_tim Read Device select timing. The devsel_tim bits indicate target
access timing of the function via the devseln output. The
PCI MegaCore functions are designed to be slow target
devices (i.e., devsel_tim = B"10").

3–34 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Configuration Registers

Revision ID Register

Revision ID is an 8-bit read-only register that identifies the revision
number of the device. The value of this register is assigned by the
manufacturer (e.g., Altera for the PCI MegaCore functions.) For the
Altera PCI MegaCore functions, the default value of the revision ID
register is the revision number of the function. Refer to Table 3–18. You
can change the value of the revision ID register through the wizard.

11 tabort_sig Read/write Signaled target abort. This bit is set when a local peripheral
device terminates a transaction. The function automatically
sets this bit if it issued a target abort after the local side
asserted lt_abortn. This bit is driven to the local side on
the stat_reg[1] output.

12 tar_abrt_rec Read/write Target abort. When high, tar_abrt_rec indicates that the
function in master mode has detected a target abort from the
current target device. This bit is driven to the local side on the
stat_reg[2] output.

13 mstr_abrt Read/write Master abort. When high, mstr_abrt indicates that the
function in master mode has terminated the current
transaction with a master abort. This bit is driven to the local
side on the stat_reg[3] output.

14 serr_set Read/write Signaled system error. When high, serr_set indicates
that the function drove the serrn output active, i.e., an
address phase parity error has occurred. The function
signals a system error only if an address phase parity error
was detected and serr_ena was set. This signal is driven
to the local side on the stat_reg[4] output.

15 det_par_err Read/write Detected parity error. When high, det_par_err indicates
that the function detected either an address or data parity
error. Even if parity error reporting is disabled (via
perr_ena), the function sets the det_par_err bit. This
signal is driven to the local side on the stat_reg[5]
output.

Table 3–17. Status Register Format (Part 2 of 2)

Data
Bit Mnemonic Read/Write Definition

Table 3–18. Revision ID Register Format

Data Bit Mnemonic Read/Write Definition

7..0 rev_id Read PCI revision ID

Altera Corporation User Guide Version 11.1 3–35
October 2011

Functional Description

Class Code Register

Class code is a 24-bit read-only register divided into three sub-registers:
base class, sub-class, and programming interface. Refer to the PCI Local
Bus Specification, Revision 3.0 for detailed bit information. The default
value of the class code register is 0xFF0000. You can change the value of
the class_code register using the Parameterize - PCI Compiler wizard.
Refer to Table 3–19.

Cache Line Size Register

The cache line size register specifies the system cache line size in DWORDs.
This read/write register is written by system software at power-up. The
value in this register is driven to the local side on the cache[7..0] bus.
The local side must use this value when using the memory read line,
memory read multiple, and memory write and invalidate commands in
master mode. Refer to Table 3–20.

1 This register is implemented in the pci_mt64 and pci_mt32
functions only.

Table 3–19. Class Code Register Format

Data Bit Mnemonic Read/Write Definition

23..0 class_code Read Class code

Table 3–20. Cache Line Size Register Format

Data Bit Mnemonic Read/Write Definition

7..0 cache Read/write Cache line size

3–36 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Configuration Registers

Latency Timer Register

The latency timer register is an 8-bit register with bits 2, 1, and 0 tied to
ground. The register defines the maximum amount of time, in PCI bus
clock cycles, that the PCI function can retain ownership of the PCI bus.
After initiating a transaction, the function decrements its latency timer by
one on the rising edge of each clock cycle. The default value of the latency
timer register is 0x00. Refer to Table 3–21.

1 This register is implemented in the pci_mt64 and pci_mt32
functions only.

Header Type Register

Header type is an 8-bit read-only register that identifies the PCI function
as a single-function device. The default value of the header type register
is 0x00. Refer to Table 3–22.

Table 3–21. Latency Timer Register Format

Data Bit Mnemonic Read/Write Definition

2..0 lat_tmr Read Latency timer register

7..3 lat_tmr Read/write Latency timer register

Table 3–22. Header Type Register Format

Data Bit Mnemonic Read/Write Definition

7..0 header Read PCI header type

Altera Corporation User Guide Version 11.1 3–37
October 2011

Functional Description

Base Address Registers

The PCI function supports up to six BARs. Each BAR (BARn) has identical
attributes. Use the Parameterize - PCI Compiler wizard to instantiate
BARs in the function on an individual basis. BARs must be used in
sequence, starting with BAR0; one or more of the BARs in the function
must be instantiated. The logic for the unused BARs is automatically
reduced by the Quartus II software when the PCI function is compiled.

Each BAR has its own parameter BARn (where n is the BAR number). The
value for this parameter is a 32-bit hexadecimal number that can be
updated through the wizard to select a combination of the following BAR
options:

■ Type of address space reserved by the BAR
■ Location of the reserved memory
■ Marks the reserved memory as prefetchable or non-prefetchable
■ Size of memory or I/O address space reserved for the BAR

1 When compiling the PCI function, the Quartus II software
generates informational messages informing you of the number
and options of the BARs you have specified.

The BAR is formatted per the PCI Local Bus Specification, Revision 3.0. Bit 0
of each BAR is read only, and is used to indicate whether the reserved
address space is memory or I/O. BARs that map to memory space must
hardwire bit 0 to 0, and BARs that map to I/O space must hardwire bit
0 to 1. Depending on the value of bit 0, the format of the BAR changes.
You can set the type of BAR through the wizard.

In a memory BAR, bits 1 and 2 indicate the location of the address space
in the memory map. You can control the location of specific BAR
addresses (i.e., whether they are mapped in 32- or 64-bit address space)
through options in the wizard. The pci_mt64 and pci_t64 functions
allow you to implement a 64-bit BAR using BAR1 and BAR0, or by using
BAR2 and BAR1. The BARn parameters will be updated accordingly.

Bit 3 of a memory BAR controls whether the BAR is prefetchable. If you
choose the prefetchable memory option for an individual BAR in the
wizard, bit 3 of the corresponding BARn parameter will be updated.

3–38 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Configuration Registers

Table 3–23 shows the format of memory BARs.

In addition to the type of space reserved by the BAR, the wizard allows
you to define the size of address space reserved for each individual BAR
and sets the BARn parameter value accordingly. The value for parameter
BARn defines the number of read/write bits instantiated in the
corresponding BAR (Refer to Section 6.2.5 of the PCI Local Bus
Specification, Revision 3.0). The number of read/write bits instantiated in a
BAR is indicated by the number of 1s in the corresponding BARn value
starting from bit 31. The BARn parameter should contain 1s from bit 31
down to the required bit without any 0s in between (e.g., 0xFF000000 is
legal, but 0xFF700000 is not). The wizard does not offer options that set
the BARn parameters to illegal values.

For high-end systems that require more than 4 GBytes of memory space,
the pci_mt64 and pci_t64 functions support 64-bit addressing. These
functions offer the option to use either BARs 1 and 0 or BARs 2 and 1 to
implement a 64-bit BAR.

When implementing a 64-bit BAR, the least significant BAR contains the
lower 32-bit BAR and the most significant BAR contains the upper 32-bit
BAR. When implementing a 64-bit BAR, the wizard allows the option of
which BARs to use and sets the BARn parameters accordingly. On the
least significant BAR, bits [31..4] are read/write registers that are used
to indicate the size of the memory, along with the most significant BAR.
For the most significant BAR, the wizard allows you to choose the
maximum number of read/write registers to implement per the
application.

Table 3–23. Memory BAR Format

Data
Bit Mnemonic Read/Write Definition

0 mem_ind Read Memory indicator. The mem_ind bit indicates that the register maps into
memory address space. This bit must be set to 0 in the BARn parameter.

2..1 mem_type Read Memory type. The mem_type bits indicate the type of memory that can
be implemented in the function’s memory address space. Only the
following two possible values are valid for the PCI MegaCore functions:
locate memory space in the 32-bit address space and locate memory
space in the 64-bit address space.

3 pre_fetch Read Memory prefetchable. The pre_fetch bit indicates whether the blocks
of memory are prefetchable by the host bridge.

31..4 bar Read/write Base address registers.

Altera Corporation User Guide Version 11.1 3–39
October 2011

Functional Description

For example, if a 64-bit BAR on BARs 1 and 0 is implemented and the
designer indicates 8 as the maximum number of address bits to decode
on the upper BAR, the upper 24 bits [31..8] of BAR1 will be read-only
bits tied to ground. The eight least significant bits [7..0] of BAR1 are
read/write registers, and— along with bits [31..4] of BAR0—they
indicate the size of the memory. When a 64-bit memory BAR is
implemented, the remaining BARs can still be used for 32-bit memory or
I/O base address registers in conjunction with a 64-bit BAR setting. If
BARs 2 and 1 are used to implement a 64-bit BAR, BAR0 must be used as
a 32-bit memory or I/O base address register.

1 Reserved memory space can be calculated by the following
formula: 2(40 – 8) = 4 GBytes, where 40 = actual available registers
and 8 = user assigned read/write register.

Like a memory BAR, an I/O BAR can be instantiated on any of the six
BARs available for the PCI function. The wizard offers the option to
implement a 32-bit BAR as memory or I/O and sets the bits [1..0] of
the corresponding BARn parameter accordingly. The PCI Local Bus
Specification, Revision 3.0 prevents any single I/O BAR from reserving
more than 256 bytes of I/O space. Refer to Table 3–24.

In some applications, one or more BARs must be hardwired. The PCI
MegaCore functions allow you to set default base addresses that can be
used to claim transactions without requiring the configuration of the
corresponding BARs. The wizard allows you to implement this feature on
an individual BARn basis and sets the corresponding parameters
accordingly. When using the hardwire BAR feature, the corresponding
BARn attributes must indicate the appropriate BAR settings, such as size
and type of address space.

1 When implementing a hardwire BAR, the corresponding BARs
become read-only. A configuration write to the hardwired BAR
will proceed normally. However, a configuration read of
hardwired BARs will return the value set in the hardwire BARn
parameter.

Table 3–24. I/O Base Address Register Format

Data
Bit Mnemonic Read/Write Definition

0 io_ind Read I/O indicator. The io_ind bit indicates that the register maps into I/O
address space. This bit must be set to 1 in the BARn parameter.

1 Reserved – –

31..2 bar Read/write Base address registers.

3–40 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Configuration Registers

CardBus CIS Pointer Register

The card information structure (CIS) pointer register is a 32-bit read-only
register that points to the beginning of the CIS. This optional register is
used by devices that have the PCI and CardBus interfaces on the same
silicon. By default, the PCI MegaCore functions do not enable this
register. The CIS Pointer register can be enabled and the register’s value
can be set through the wizard. Table 3–25 shows this register’s format. For
more information on the CardBus CIS pointer register, refer to the PC
Card Standard Specification, Version 2.10.

Subsystem Vendor ID Register

Subsystem vendor ID is a 16-bit read-only register that identifies add-in
cards from different vendors that have the same functionality. The value
of this register is assigned by the PCI SIG. Refer to Table 3–26. The default
value of the subsystem vendor ID register is 0x0000. However, you can
change the value through the wizard.

Table 3–25. CIS Pointer Register Format

Data Bit Mnemonic Read/Write Definition

2..0 adr_space_ind Read Address space indicator. The value of these bits indicates
that the CIS pointer register is pointing to one of the
following spaces: configuration space, memory space, or
expansion ROM space.

The PCI MegaCore functions do not support the condition
where the CIS pointer register points to the configuration
space.

27..3 adr_offset Read Address space offset. This value gives the address
space’s offset indicated by the address space indicator.

31..28 rom_im Read ROM image. These bits are the uppermost bits of the
address space offset when the CIS pointer register is
pointing to an expansion ROM space.

Table 3–26. Subsystem Vendor ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 sub_ven_id Read PCI subsystem/vendor ID

Altera Corporation User Guide Version 11.1 3–41
October 2011

Functional Description

Subsystem ID Register

The subsystem ID register identifies the subsystem. The value of this
register is defined by the subsystem vendor, i.e., the designer. Refer to
Table 3–27. The default value of the subsystem ID register is 0x0000.
However, you can change the value through the wizard.

Expansion ROM Base Address Register

The expansion ROM base address register contains a 32-bit hexadecimal
number that defines the base address and size information of the
expansion ROM. Instantiate the expansion ROM BAR using the
Parameterize - PCI Compiler wizard. The expansion ROM BAR
functions exactly like a 32-bit BAR, except that the encoding of the bottom
bits is different. Bit 0 in the register is a read/write and is used to indicate
whether or not the device accepts accesses to its expansion ROM. You can
disable the expansion ROM address space by setting bit 0 to 0. You can
enable the address decoding of the expansion ROM by setting bit 0 to 1.
The upper 21 bits correspond to the upper 21 bits of the expansion ROM
base address. The amount of address space a device requests must not be
greater than 16 Megabytes (MBytes). The expansion ROM BAR is
formatted per the PCI Local Bus Specification, Revision 3.0. Refer to
Table 3–28.

Table 3–27. Subsystem ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 sub_id Read PCI subsystem ID

Table 3–28. Expansion ROM Base Address Register Format

Data
Bit Mnemonic Read/Write Definition

0 adr_ena Read/write Address decode enable. The adr_ena bit indicates whether or not the
device accepts accesses to its expansion ROM. You can disable the
expansion ROM address space by setting this bit to 0. You can enable the
address decoding of the expansion ROM by setting this bit to 1.

10..1 Reserved – –

31..11 bar Read/write Expansion ROM base address registers.

3–42 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Configuration Registers

The PCI MegaCore functions allow you to set a default expansion ROM
base address using the hardwire option in the Parameterize - PCI
Compiler wizard. Using a hardwire BAR allows the function to claim
transactions without requiring the configuration of the expansion ROM
BAR. When using the hardwire expansion ROM BAR feature, the
expansion ROM BAR attributes must indicate the appropriate BAR
settings.

1 When implementing a hardwire expansion ROM BAR, the
corresponding BARs become read only. However, bit 0 is
read/write, allowing you to disable the expansion ROM BAR
after power-up.

Capabilities Pointer

The capabilities pointer register is an 8-bit read-only register that can be
enabled through the wizard. The capabilities pointer value entered
through the wizard points to the first item in the list of capabilities. For a
list of the capability IDs, refer to Appendix H of the PCI Local Bus
Specification, Revision 3.0. The address value of this pointer must be 0x40
or greater, and each capability must be within DWORD boundaries. Refer
to Table 3–29.

Configuration transactions to addresses greater than or equal to 0x40 are
transferred to the local side of the PCI MegaCore functions and operate as
32-bit transactions. The local side must implement the necessary logic for
the capabilities registers.

Interrupt Line Register

The interrupt line register is an 8-bit register that defines to which system
interrupt request line (on the system interrupt controller) the intan
output is routed. The interrupt line register is written by the system
software upon power-up; the default value is 0x00. Table 3–30 shows the

Table 3–29. Capabilities Pointer Format

Data Bit Mnemonic Read/Write Definition

7..0 cap_ptr Read/write Capabilities pointer
register

Altera Corporation User Guide Version 11.1 3–43
October 2011

Functional Description

format of the Interrupt Line Register.

1 The interrupt pin can be enabled or disabled in the wizard. The
interrupt pin register will be set to 0x00 if the interrupt option is
disabled in the Parameterize - PCI Compiler wizard.

Interrupt Pin Register

The interrupt pin register is an 8-bit read-only register that defines the
PCI function PCI bus interrupt request line to be intan. The default
value of the interrupt pin register is 0x01. Refer to Table 3–31.

Minimum Grant Register

The minimum grant register is an 8-bit read-only register that defines the
length of time the function would like to retain mastership of the PCI bus.
The value set in this register indicates the required burst period length in
250-ns increments. You can set this register through the wizard. Refer to
Table 3–32.

Table 3–30. Interrupt Line Register Format

Data Bit Mnemonic Read/Write Definition

7..0 int_ln Read/write Interrupt line register

Table 3–31. Interrupt Pin Register Format

Data Bit Mnemonic Read/Write Definition

7..0 int_pin Read Interrupt pin register

Table 3–32. Minimum Grant Register Format

Data Bit Mnemonic Read/Write Definition

7..0 min_gnt Read Minimum grant register

3–44 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Maximum Latency Register

The maximum latency register is an 8-bit read-only register that defines
the frequency in which the function would like to gain access to the PCI
bus. Refer to Table 3–33. You can set this register through the wizard.

Target Mode
Operation

This section describes all supported target transactions for the PCI
MegaCore functions. Although this section includes waveform diagrams
showing typical PCI cycles in target mode for the pci_mt64 MegaCore
function, these waveforms are also applicable for the pci_mt32,
pci_t64, and pci_t32 MegaCore functions. The pci_mt64 and
pci_t64 MegaCore functions support both 32-bit and 64-bit
transactions. Table 3–34 lists the PCI and local side signals that apply for
each PCI function.

Table 3–33. Maximum Latency Register Format

Data Bit Mnemonic Read/Write Definition

7..0 max_lat Read Maximum latency register

Table 3–34. PCI MegaCore Function Signals (Part 1 of 3)

Signal Name pci_mt64 pci_t64 pci_mt32 pci_t32

PCI Signals

clk v v v v
rstn v v v v
gntn v v
reqn v v
ad[63..0] v v ad[31..0] ad[31..0]

cben[7..0] v v cben[3..0] cben[3..0]

par v v v v
par64 v v
idsel v v v v
framen v v v v
req64n v v
irdyn v v v v
devseln v v v v
ack64n v v

Altera Corporation User Guide Version 11.1 3–45
October 2011

Functional Description

trdyn v v v v
stopn v v v v
perrn v v v v
serrn v v v v
intan v v v v

Local-Side Datapath Signals

l_adi[63..0] v v l_adi[31..0] l_adi[31..0]

l_cbeni[7..0] v l_cbeni[3..0]

l_adro[63..0] v v l_adro[31..0] l_adro[31..0]

l_dato[63..0] v v l_dato[31..0] l_dato[31..0]

l_beno[7..0] v v l_beno[3..0] l_beno[3..0]

l_cmdo[3..0] v v v v
l_ldat_ackn v v
l_hdat_ackn v v

Target Local-Side Control Signals

lt_abortn v v v v
lt_discn v v v v
lt_rdyn v v v v
lt_framen v v v v
lt_ackn v v v v
lt_dxfrn v v v v
lt_tsr[11..0] v v v v
lirqn v v v v
cache[7..0] v v
cmd_reg[6..0] v v v v
stat_reg[6..0] v v v v

Master Local-Side Control Signals

lm_req32n v v
lm_req64n v
lm_lastn v v

Table 3–34. PCI MegaCore Function Signals (Part 2 of 3)

Signal Name pci_mt64 pci_t64 pci_mt32 pci_t32

3–46 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

The pci_mt64 and pci_t64 MegaCore functions support the following
64-bit target memory transactions:

■ 64-bit single-cycle memory read/write
■ 64-bit burst memory read/write

Each PCI function supports the following 32-bit transactions:

■ 32-bit single-cycle memory read/write
■ 32-bit burst memory read/write
■ I/O read/write
■ Configuration read/write

1 The pci_mt64 and pci_t64 functions assume that the local
side is 64 bits during memory transactions and 32 bits during
I/O transactions. For memory read transactions, these functions
automatically read 64-bit data on the local side and transfer the
data to the PCI master, one DWORD at a time, if the PCI bus is 32
bits wide.

A read or write transaction begins after a master device acquires
mastership of the PCI bus and asserts framen to indicate the beginning
of a bus transaction. If the transaction is a 64-bit transaction, the master
device asserts the req64n signal at the same time as it asserts the framen
signal. The clock cycle where the framen signal is asserted is called the
address phase. During the address phase, the master device drives the
transaction address and command on ad[31..0] and cben[3..0],
respectively. When framen is asserted, the PCI MegaCore function
latches the address and command signals on the first clock edge and
starts the address decode phase. If the transaction address matches the
target, the target asserts the devseln signal to claim the transaction. In
the case of 64-bit transactions, the pci_mt64 and pci_t64 assert the
ack64n signal at the same time as the devseln signal indicating that the
pci_mt64 and pci_t64 accepts the 64-bit transaction. All PCI
MegaCore functions implement slow decode (i.e., the devseln and

lm_rdyn v v
lm_adr_ackn v v
lm_ackn v v
lm_dxfrn v v
lm_tsr[9..0] v v

Table 3–34. PCI MegaCore Function Signals (Part 3 of 3)

Signal Name pci_mt64 pci_t64 pci_mt32 pci_t32

Altera Corporation User Guide Version 11.1 3–47
October 2011

Functional Description

ack64n signals in the pci_mt64 and pci_t64 functions are asserted
three clock cycles after a valid address is presented on the PCI bus). In all
operations except configuration read/write, one of the lt_tsr[5..0]
signals is driven high, indicating the BAR range address of the current
transaction.

Configuration transactions are always single-cycle 32-bit transactions.
The PCI MegaCore function has complete control over configuration
transactions and informs the local-side device of the progress and
command of the transaction. The PCI MegaCore function asserts all
control signals, provides data in the case of a read, and receives data in
the case of a write without interaction from the local-side device.

Memory transactions can be single-cycle or burst. In target mode, the PCI
MegaCore function supports an unlimited length of zero-wait state
memory burst read or write transactions. In a read transaction, data is
transferred from the local side to the PCI master. In a write transaction,
data is transferred from the PCI master to the local-side device. A
memory transaction can be terminated by either the PCI master or the
local-side device. The local-side device can terminate the memory
transaction using one of three types of terminations: retry, disconnect, or
target abort. “Target Transaction Terminations” on page 3–77 describes
how to initiate the different types of termination.

1 The PCI MegaCore function treats the memory read line and
memory read multiple commands as memory read. Similarly,
the function treats the memory write and invalidate command
as a memory write. The local-side application must implement
any special requirements for these commands.

I/O transactions are always single-cycle 32-bit transactions. Therefore,
the PCI MegaCore function handles them like single-cycle memory
commands. Any of the six BARs in the PCI MegaCore functions can be
configured to reserve I/O space. Refer to “Base Address Registers” on
page 3–37 for more information on how to configure a specific BAR to be
an I/O BAR. Like memory transactions, I/O transactions can be
terminated normally by the PCI master, or the local-side device can
instruct the PCI MegaCore function to terminate the transactions with a
retry or target abort. Because all I/O transactions are single-cycle,
terminating a transaction with a disconnect does not apply.

3–48 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Target Read Transactions

This section describes the behavior of the PCI MegaCore functions in the
following types of target read transactions:

■ Memory read
■ I/O read
■ Configuration read

Memory Read Transactions

The PCI MegaCore functions support the following types of matched bus
width and mismatched bus width memory read transactions in target
mode:

■ Single-cycle memory read
■ Burst memory read
■ Mismatched bus width memory read

1 Mismatched bus-width transactions are 32-bit PCI transactions
performed by the pci_mt64 and pci_t64 MegaCore
functions.

For all memory read transactions, the following sequence of events is the
same:

1. The address phase occurs when the PCI master asserts framen (and
req64n in the case of a 64-bit transaction) and drives the address on
ad[31..0] and the command on cben[3..0]. Asserting req64n
indicates to the target device that the master device is requesting a
64-bit data transaction.

2. Turn-around cycles on the ad bus occur during the clock cycle
immediately following the address phase. During turn-around
cycles the PCI side drives correct byte enables on the cben bus for
the first data phase but tri-states the ad bus. This process is
necessary because the PCI agent driving the ad bus changes during
read cycles.

3. If the address of the transaction matches the memory range
specified in a base address register, the PCI MegaCore function
turns on the drivers for the ad bus, devseln, trdyn, stopn, and
par (as well as par64 and ack64n for 64-bit transactions) in the
following clock cycle.

Altera Corporation User Guide Version 11.1 3–49
October 2011

Functional Description

4. The PCI MegaCore function drives and asserts devseln (and
ack64n for 64-bit transactions) to indicate to the master device that
it is accepting the transaction.

5. One or more data phases follow, depending on the type of read
transaction.

3–50 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Single-cycle Memory Read Target Transactions
Figure 3–7 shows the waveform for a 64-bit single-cycle memory read
target transaction. The 64-bit extension signals are not applicable to the
pci_mt32 and pci_t32 MegaCore functions.

Figure 3–7. Single-Cycle Memory Read Target Transaction

Note Figure 3–7:
(1) This signal is not applicable to the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

(1) l_adi[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

6

Adr-PAR

Z

Adr

6

Z

BE0_L

BE0_H

Z

000 181

D0_L

D0_H

D0-L-PAR

D0-H-PAR

000581

1 2 3 4 5 6 7 8 9 10

D0_L

D0_H

lt_rdyn

BE0_L

BE0_H

Altera Corporation User Guide Version 11.1 3–51
October 2011

Functional Description

Table 3–35 shows the sequence of events for a 64-bit single-cycle memory
read target transaction. The 64-bit extension signals are not applicable to
the pci_mt32 and pci_t32 MegaCore functions.

Table 3–35. Single-Cycle Memory Read Target Transaction (Part 1 of 2)

Clock Cycle Event

1 The PCI bus is idle.

2 The address phase occurs.

3 The PCI MegaCore function latches the address and command, and decodes the address to
check if it falls within the range of one of its BARs. During clock cycle 3, the master deasserts
the framen and req64n signals and asserts irdyn to indicate that only one data phase
remains in the transaction. For a single-cycle memory read, this phase is the only data phase
in the transaction. The PCI MegaCore function begins to decode the address during clock
cycle 3, and if the address falls in the range of one of its BARs, the transaction is claimed.

The PCI master tri-states the ad bus for the turn-around cycle.

4 If the PCI MegaCore function detects an address hit in clock cycle 3, several events occur
during clock cycle 4:

● The PCI MegaCore function informs the local-side device that it is claiming the read
transaction by asserting lt_framen and the bit on lt_tsr[5..0] that corresponds to
the BAR range hit. In Figure 3–7, lt_tsr[0] is asserted indicating that a base address
register zero hit.

● The MegaCore function drives the transaction command on l_cmdo[3..0] and
address on l_adro[31..0].

● The PCI MegaCore function turns on the drivers of devseln, ack64n, trdyn, and
stopn, getting ready to assert devseln and ack64n in clock cycle 5.

● lt_tsr[7] is asserted to indicate that the pending transaction is 64-bits.
● lt_tsr[8] is asserted to indicate that the PCI side of the PCI MegaCore function is

busy.

5 The PCI MegaCore function asserts devseln and ack64n to claim the transaction. The
function also drives lt_ackn to the local-side device to indicate that it is ready to accept data
on the l_adi bus. The PCI MegaCore function also enables the output drivers of the ad bus
to ensure that it is not tri-stated for a long time while waiting for valid data. Although the local
side asserts lt_rdyn during clock cycle 5, the data transfer does not occur until clock
cycle 6.

6 lt_rdyn is asserted in clock cycle 5, indicating that valid data is available on the l_adi bus
in clock cycle 6. The PCI MegaCore function registers the data into its internal pipeline on the
rising edge of clock cycle 7. The local side transfer is indicated by the lt_dxfrn signal. The
lt_dxfrn signal is low during the clock cycle where a data transfer on the local side occurs.
The local side data transfer occurs if lt_ackn is asserted on the current clock edge while
lt_rdyn is asserted on the previous clock edge. The lt_dxfrn signal is asserted to
indicate a successful data transfer.

7 The rising edge of clock cycle 7 registers the valid data from the l_adi bus and drives the
data on the ad bus. At the same time, the PCI MegaCore function asserts the trdyn signal
to indicate that there is valid data on the ad bus.

3–52 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

1 The local-side design must ensure that PCI latency rules are not
violated while the PCI MegaCore function waits for data. If the
local-side design is unable to meet the latency requirements, it
must assert lt_discn to request that the PCI MegaCore
function terminate the transaction. The PCI target latency rules
state that the time to complete the first data phase must not be
greater than 16 clock cycles, and the subsequent data phases
must not take more than 8 clock cycles to complete.

8 The PCI MegaCore function deasserts trdyn, devseln, and ack64n to end the
transaction. To satisfy the requirements for sustained tri-state buffers, the PCI MegaCore
function drives devseln, ack64n, trdyn, and stopn high during this clock cycle.
Additionally, the PCI MegaCore function tri-states the ad bus because the cycle is complete.
The rising edge of clock cycle 8 signals the end of the last data phase because framen is
deasserted and irdyn and trdyn are asserted. In clock cycle 8, the PCI MegaCore function
also informs the local side that no more data is required by deasserting lt_framen, and
lt_tsr[10] is asserted to indicate a successful data transfer on the PCI side during the
previous clock cycle.

9 The PCI MegaCore function informs the local-side device that the transaction is complete by
deasserting the lt_tsr[11..0] signals. Additionally, the PCI MegaCore function tri-states
devseln, ack64n, trdyn, and stopn to begin the turn-around cycle on the PCI bus.

Table 3–35. Single-Cycle Memory Read Target Transaction (Part 2 of 2)

Clock Cycle Event

Altera Corporation User Guide Version 11.1 3–53
October 2011

Functional Description

Burst Memory Read Target Transactions
The sequence of events for a burst memory read target transaction is the
same as that of a single-cycle memory read target transaction. However,
during a burst read transaction, more data is transferred and both the
local-side design and the PCI master can insert waits states at any point
during the transaction. Figure 3–8 illustrates a burst memory read target
transaction. The 64-bit extension signals are not applicable to the
pci_mt32 and pci_t32 MegaCore functions.

The transaction shown in Figure 3–8 is a 64-bit zero-wait state burst
transaction with four data phases. The local side transfers five quad
words (QWORDs) in clock cycles 6 through 10. The PCI MegaCore function
transfers data to the PCI side in clock cycles 7 through 10. Because of the
PCI MegaCore function’s zero-wait state requirement, the PCI side reads
ahead from the local side. Also, because the l_beno bus is not available
until after a local data phase has completed, the delay between data
transfers on the local side and PCI side requires the local target device to
supply valid data on all bytes. If the local side is not prefetchable (i.e.,
reading ahead will result in lost or corrupt data), it must not accept burst
read transactions, and it should disconnect after the first QWORD transfer
on the local side. Additionally, Figure 3–8 shows the lt_tsr[9] signal
asserted in clock cycle 4 because the master device has framen and
irdyn signals asserted, thus indicating a burst transaction.

A burst transaction is indicated by the PCI MegaCore function if it detects
both irdyn and framen are asserted on the PCI side after the address
phase. The PCI MegaCore function asserts lt_tsr[9] to indicate a burst
transaction. The function asserts lt_tsr[9] if both irdyn and framen
are asserted during a valid target transaction. If lt_tsr[9] is not
asserted during a transaction, it indicates that irdyn and framen have
not been detected or asserted during the transaction. Typically this
situation indicates that the current transaction is single-cycle. However,
this situation is not guaranteed because it is possible for the master to
delay the assertion of irdyn in the first data phase by up to 8 clock cycles.
In other words, if lt_tsr[9] is asserted during a valid target
transaction, it indicates that the impending transaction is a burst, but if
lt_tsr[9] is not asserted it may or may not indicate that the transaction
is single-cycle.

3–54 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–8. Zero-Wait State Burst Memory Read Target Transaction

Note to Figure 3–8:
(1) This signal is not applicable to the pci_mt32 or pci_t32 MegaCore functions.

lt_framen

lt_ackn

lt_dxfrn

lt_tsr[11..0] 000 381 781 000

lt_rdyn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

l_adro[31..0]

l_cmdo[3..0]

l_adi[31..0]

clk

(1) l_adi[63..32]

Adr

6

Adr-PAR

Z

Adr

6

Z

BE0_L

BE0_H

Z

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D4_L

D4_H

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

D3-L-PAR

D3-H-PAR

132 3 4 5 6 7 9 10 128 111

BE1_L BE2_L BE3_L

BE2_H BE3_HBE1_HBE0_H

Altera Corporation User Guide Version 11.1 3–55
October 2011

Functional Description

Figure 3–9 shows the same transaction as in Figure 3–8 with the PCI bus
master inserting a wait state. The PCI bus master inserts a wait state by
deasserting irdyn in clock cycle 8. The effect of this wait state on the local
side is shown in clock cycle 9 is that the PCI MegaCore function deasserts
lt_ackn, and as a result lt_dxfrn is also deasserted. This situation
prevents further data from being transferred on the local side because the
internal pipeline of the PCI MegaCore function is full.

The 64-bit extension signals shown in Figure 3–9 are not applicable to the
pci_mt32 and pci_t32 MegaCore functions.

Figure 3–9. Burst Memory Read Target Transaction with PCI Master Wait State

Note to Figure 3–9:
(1) This signal is not applicable to the pci_mt32 or pci_t32 MegaCore functions.

lt_framen

lt_rdyn

lt_ackn

lt_dxfrn

lt_tsr[11..0] 000 381 000781 381 781

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

l_adro[31..0]

l_cmdo[3..0]

l_adi[31..0]

clk

(1) l_adi[63..32]

Adr

6

Adr-PAR

Z

Adr

6

Z

BE0_L

BE0_H

Z

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

Z

Z

Z

Z

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1_L

D1_H

D2_L

D2_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

2 3 4 5 6 7 9 10 128 11 131

BE1_L BE2_L

BE1_H BE2_H

3–56 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–10 shows the same transaction as shown in Figure 3–8 with the
local side inserting a wait state. The local side deasserts lt_rdyn in clock
cycle 6. Deasserting lt_rdyn in clock cycle 6 suspends the local side data
transfer in clock cycle 7 by deasserting the lt_dxfrn signal. Because no
data is transferred in clock cycle 7 from the local side, the PCI MegaCore
function deasserts trdyn in clock cycle 8 thus inserting a PCI wait state.

Figure 3–10. Burst Memory Read Target Transaction with Local-Side Wait State

Note to Figure 3–10:
(1) This signal is not applicable to the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

l_adro[31..0]

l_cmdo[3..0]

l_adi[31..0]

clk

(1) l_adi[63..32]

Adr

6

Adr-PAR

Z

Adr

6

Z

BE0_L

BE0_H

Z

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

Z

Z

D2_L

D2_H

D3_L

D3_H

D1_L

D1_H

D2_L

D2_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

2 3 4 5 6 7 9 10 128 11 131

D1_L

D1_H

lt_framen

lt_rdyn

lt_ackn

lt_dxfrn

lt_tsr[11..0] 000 000381 781 381 781

BE1_L BE2_L

BE1_H BE2_HBE0_H

Altera Corporation User Guide Version 11.1 3–57
October 2011

Functional Description

Mismatched Bus Width Memory Read Target Transactions
The following description applies only to the pci_mt64 and pci_t64
MegaCore functions handling mismatched bus width memory read
target transactions.

When using the pci_mt64 or pci_t64 MegaCore functions to accept
32-bit memory read transactions, the local side data bus width is 64 bits
while the PCI data bus width is 32 bits. The pci_mt64 and pci_t64
functions handle this bus width mismatch and automatically perform
DWORD alignment.

The pci_mt64 and pci_t64 functions always assume a 64-bit local side
data bus width during memory read transactions. The functions read 64-
bit data (QWORD, or two DWORDs) and automatically transfer one DWORD at
a time to the PCI side. For the first PCI data phase, the pci_mt64 and
pci_t64 also perform automatic DWORD alignment, depending on the
PCI starting address of the transaction.

 If the address of the transaction is a QWORD boundary
(ad[2..0] == B"000"), the first DWORD transferred to the PCI side is
the low DWORD, and pci_mt64 or pci_t64 assert both l_ldat_ackn
and l_hdat_ackn to indicate that the PCI MegaCore function will
transfer both DWORDs that were transferred on the local side. However, if
the address of the transaction is not at a QWORD boundary (ad[2..0] ==
B"100"), the first DWORD transferred to the PCI side is the high DWORD.
The low DWORD is not transferred to the PCI side. The pci_mt64 and
pci_t64 functions deassert l_ldat_ackn and assert l_hdat_ackn
during the first data transfer on the local side to indicate that only the
high DWORD is transferred to the PCI side.

Figure 3–11 shows a 32-bit single-cycle mismatched bus width memory
read target transaction, which applies to the pci_mt64 and pci_t64
functions. Refer to Figure 3–7 for the description of a 32-bit single-cycle
memory read transaction using the pci_mt32 and pci_t32 functions.

The sequence of events in Figure 3–11 is exactly the same as in Figure 3–7,
except for the following cases:

■ During the address phase (clock cycle 3), the master does not assert
req64n because the transaction is 32 bits

■ The pci_mt64 or pci_t64 function does not assert ack64n when
it asserts devseln

■ The local side is informed that the pending transaction is 32 bits
because lt_tsr[7] is not asserted while lt_framen is asserted

3–58 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–11 shows that the local side transfers a full QWORD in clock cycle
6. In clock cycle 7, the pci_mt64 and pci_t64 functions drive the least
significant DWORD on ad[31..0]. The pci_mt64 and pci_t64
functions drive the correct parity value on the par signal in clock cycle 8.

1 The pci_mt64 and the pci_t64 functions always transfer
64-bit data on the local side. In a 32-bit single-cycle memory read
transaction, only one DWORD is transferred to the PCI master.

Figure 3–11. 32-Bit PCI and 64-Bit Local-Side Single-Cycle Memory Read Target Transaction

ad[31..0]

cben[3..0]

par

framen

req64n

irdyn

devseln

 ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

clk

l_adi[63..32]

l_beno[3..0]

l_beno[7..4]

Adr

6

Adr-PAR

Z

Adr

6

l_ldat_ackn

l_hdat_ackn

BE0_L

Z

D0_L

D0_H

D0-L-PAR

lt_dxfrn

lt_tsr[11..0] 000 101 000501

1 2 3 4 5 6 7 8 9 10

D0_L

lt_rdyn

BE0_H

BE0_LBE0_L

BE0_H

Altera Corporation User Guide Version 11.1 3–59
October 2011

Functional Description

Figure 3–12 shows a 32-bit PCI side and 64-bit local side burst memory
read target transaction. (This figure only applies to the pci_mt64 and
pci_t64 functions.)

The events in Figure 3–12 are the same as those shown in Figure 3–8,
except that a 64-bit transfer shown in Figure 3–12 takes one clock cycle on
the local side but requires two clock cycles on the PCI side. The function
automatically inserts local side wait states in clock cycles 7 and 9 to
temporarily suspend the local transfer allowing sufficient time for the
data to be transferred on the PCI side. In Figure 3–12, lt_tsr[7] is not
asserted and lt_tsr[9] is asserted indicating that the transaction is a
32-bit burst. If the local side cannot handle 32-bit burst transactions, it
must disconnect after the first local transfer.

Also, because the address of the transaction is not at a QWORD boundary
(ad[2..0] == B"100"), the first DWORD transferred to the PCI side is
the high DWORD. The first low DWORD is not transferred to the PCI side.
The pci_mt64 and pci_t64 functions deassert l_ldat_ackn and
assert l_hdat_ackn during the first data transfer on the local side to
indicate that only the high DWORD is transferred to the PCI side, as shown
in Figure 3–12 at clock cycle 7.

3–60 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–12. 32-Bit PCI and 64-Bit Local-Side Burst Memory Read Target Transaction

Note to Figure 3–12:
(1) The value on ad[31..0] is not a QWORD address boundary (ad[2..0] == B”100”).

ad[31..0]

cben[3..0]

par

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

 l_adi[31..0]

lt_dxfrn

clk

l_adi[63..32]

lt_tsr[11..0]

Adr (1)

6

Adr-PAR

Z

Adr

6

BE0_H

Z

000 301 701

D0_L

D0_H

000

D1_L

D1_H

D2_L

D2_H

132 3 4 5 6 7 9 10 128 111

lt_rdyn

D1-H-PARD1-L-PAR

BE1_L BE2_H

l_ldat_ackn

l_hdat_ackn

l_beno[3..0]

l_beno[7..4]

BE0_H BE1_HBE1_L

D0_H D1_H

D0-H-PAR

D1_L

BE0_H BE2_H

D1_H

Adr PAR

Altera Corporation User Guide Version 11.1 3–61
October 2011

Functional Description

I/O Read Transactions

I/O read transactions by definition are 32 bits wide. Figure 3–13 shows a
sample I/O read transaction. The sequence of events is the same as 32-bit
single-cycle memory read transactions. The main distinction between the
two transactions is the command on the lt_cmdo[3..0] bus. In
Figure 3–13, lt_tsr[11..0] indicates that the base address register
that detected the address hit is BAR1. Additionally, during an I/O
transaction l_ldat_ackn and l_hdat_ackn are not relevant.

1 The PCI MegaCore functions do not ensure that the combination
of the ad[1..0] and cben[3..0] signals is valid during the
address phase of an I/O transaction. Local side logic should
implement this functionality if performing I/O transactions.
Refer to the PCI Local Bus Specification, Revision 3.0 for more
information on handling invalid combinations of these signals.

Figure 3–13. I/O Read Transaction

ad[31..0]

cben[3..0]

par

framen

irdyn

devseln

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

l_beno[3..0]

lt_tsr[11..0]

Adr

2

Adr-PAR

Z

Adr

2

BE0_L

Z

000 102

D0_L

D0-L-PAR

BE0_L

000502

1 2 3 4 5 6 7 8 9 10

D0_L

lt_rdyn

3–62 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Configuration Read Transactions

Configuration read transactions are 32 bits. Configuration cycles are
automatically handled by the PCI MegaCore functions and do not require
local side actions. Figure 3–14 shows a typical configuration read
transaction. This figure applies to all PCI MegaCore functions. The
configuration read transaction is similar to 32-bit single-cycle
transactions, except for the following terms:

■ During the address phase, idsel must be asserted
■ Because the configuration read does not require data from the local

side, the PCI MegaCore functions assert trdyn independent from
the lt_rdyn signal

The second case above results in trdyn being asserted in clock cycle 6
instead of clock cycle 7 as shown in Figure 3–14. The configuration read
cycle ends in clock cycle 8.

1 The local side cannot retry, disconnect, or abort configuration
cycles.

Figure 3–14. Configuration Read Transaction

ad[31..0]

cben[3..0]

par

framen

irdyn

devseln

trdyn

stopn

clk

lt_tsr[11..0]

Adr

A

Adr-PAR

Z

BE0_L

Z

000 100

D0-L-PAR

000500

D0_L

idsel

1 2 3 4 5 6 7 8

Altera Corporation User Guide Version 11.1 3–63
October 2011

Functional Description

Target Write Transactions

This section describes the behavior of the PCI MegaCore functions in the
following types of target write transactions:

■ Memory write
■ I/O write
■ Configuration write

Memory Write Transactions

The PCI MegaCore functions support the following types of matched bus
width and mismatched bus width memory write transactions in target
mode:

■ Single-cycle memory write
■ Burst memory write
■ Mismatched bus width memory write

1 Mismatched bus-width transactions are 32-bit PCI transactions
performed by the pci_mt64 and pci_t64 MegaCore
functions.

For all memory write transactions, the following sequence of events is the
same:

1. The address phase occurs when the PCI master asserts framen (and
req64n in the case of a 64-bit transaction) and drives the address on
ad[31..0] and the command on cben[3..0]. Asserting req64n
indicates to the target device that the master device is requesting a
64-bit data transaction.

2. If the address of the transaction matches the memory range
specified in a base address register, the PCI MegaCore function
turns on the drivers for the ad bus, devseln, trdyn, stopn, and
par (as well as par64 and ack64n for 64-bit transactions) in the
following clock cycle.

3. The PCI MegaCore function drives and asserts devseln (and
ack64n for 64-bit transactions) to indicate to the master device that
it is accepting the transaction.

4. One or more data phases follow, depending on the type of write
transaction.

3–64 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Single-cycle Memory Write Target Transactions
Figure 3–15 shows the waveform for a 64-bit single-cycle memory write
target transaction. The 64-bit extension signals are not applicable to the
pci_mt32 and pci_t32 MegaCore functions.

Figure 3–15. Single-Cycle Memory Write Target Transaction

Note to Figure 3–15:
(1) This signal is not applicable to the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_L

BE0_H

000 181

D0_L

D0_H

D0_L

D0-L-PAR

BE0_L

BE0_H

000

D0_H

D0-H-PAR

1 2 3 4 5 6 7 8 9 10 11

581

Altera Corporation User Guide Version 11.1 3–65
October 2011

Functional Description

Table 3–36 shows the sequence of events for a 64-bit single-cycle memory
write target transaction. The 64-bit extension signals are not applicable to
the pci_mt32 and pci_t32 MegaCore functions.

Table 3–36. Single-Cycle Memory Write Target Transactions (Part 1 of 2)

Clock
Cycle Event

1 The PCI bus is idle.

2 The address phase occurs.

3 The PCI MegaCore function latches the address and command, and decodes the address to check
if it falls within the range of one of its BARs. During clock cycle 3, the master deasserts the framen
and req64n signals and asserts irdyn to indicate that only one data phase remains in the
transaction. For a single-cycle memory write target transaction, this phase is the only data phase in
the transaction. The MegaCore function uses clock cycle 3 to decode the address, and if the address
falls in the range of one of its BARs, the transaction is claimed.

4 If the PCI MegaCore function detects an address hit in clock cycle 3, several events occur during
clock cycle 4:

● The PCI MegaCore function informs the local-side device that it is going to claim the write
transaction by asserting lt_framen and the bit on lt_tsr[5..0] that corresponds to the
BAR range hit. In Figure 3–15, lt_tsr[0] is asserted indicating that a base address register
zero hit.

● The PCI MegaCore function drives the transaction command on l_cmdo[3..0] and address
on l_adro[31..0].

● The PCI MegaCore function turns on the drivers of devseln, ack64n, trdyn, and stopn
getting ready to assert devseln and ack64n in clock cycle 5.

● lt_tsr[7] is asserted to indicate that the pending transaction is 64 bits.
● lt_tsr[8] is asserted to indicate that the PCI side of the PCI MegaCore function is busy.

5 The PCI MegaCore function asserts devseln to claim the transaction. Figure 3–15 also shows the
local side asserting lt_rdyn, indicating that it is ready to receive data from the PCI MegaCore
function in clock cycle 6.

To allow the local side ample time to issue a retry for the write cycle, the PCI MegaCore function does
not assert trdyn in the first data phase unless the local side asserts lt_rdyn. If lt_rdyn is not
asserted in clock cycle 5 (Figure 3–15), the PCI MegaCore function delays the assertion of trdyn.

6 The PCI MegaCore function asserts trdyn to inform the PCI master that it is ready to accept data.
Because irdyn is already asserted, this clock cycle is the first and last data phase in this cycle.

3–66 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

7 The rising edge of clock cycle 7 registers the valid data from the ad bus and drives the data on the
l_dato bus, registers valid byte enables from the cben bus, and drives the byte enables on the
l_beno bus. At the same time, the PCI MegaCore function asserts the lt_ackn signal to indicate
that there is valid data on the l_dato bus and a valid byte enable on the l_beno bus. Because
lt_rdyn is asserted during clock cycle 6 and lt_ackn is asserted in clock cycle 7, data will be
transferred in clock cycle 7. lt_dxfrn is asserted in clock cycle 7 to signify a local-side transfer.
lt_tsr[10] is asserted to indicate a successful data transfer on the PCI side during the previous
clock cycle. The PCI MegaCore function also deasserts trdyn, devseln, and ack64n to end the
transaction. To satisfy the requirements for sustained tri-state buffers, the PCI MegaCore function
drives devseln, ack64n, trdyn, and stopn high during this clock cycle.

8 The PCI MegaCore function resets all lt_tsr[11..0] signals because the PCI side has
completed the transaction. The PCI MegaCore function also tri-states its control signals.

9 The PCI MegaCore function deasserts lt_framen indicating to the local side that no additional
data is in the internal pipeline.

Table 3–36. Single-Cycle Memory Write Target Transactions (Part 2 of 2)

Clock
Cycle Event

Altera Corporation User Guide Version 11.1 3–67
October 2011

Functional Description

Burst Memory Write Target Transactions
The sequence of events in a burst write transaction is the same as for a
single-cycle memory write target transaction. However, in a burst write
transaction, more data is transferred and both the local-side device and
the PCI master can insert wait states.

Figure 3–16 shows a 64-bit zero-wait state burst memory write target
transaction with five data phases. The 64-bit extension signals are not
applicable to the pci_mt32 and pci_t32 functions. The PCI master
writes five QWORDs to the PCI MegaCore function during clock cycles 6
through 10. The PCI MegaCore function transfers the same data to the
local side during clock cycles 7 through 11. Additionally, Figure 3–16
shows the lt_tsr[9] signal asserted in clock cycle 4 because the master
device has the framen and irdyn signals asserted, thus indicating a
burst transaction.

A burst transaction is indicated by the PCI MegaCore function if it detects
both irdyn and framen are asserted on the PCI side after the address
phase. The PCI MegaCore function asserts lt_tsr[9] to indicate a burst
transaction. If lt_tsr[9] is not asserted during a transaction, it
indicates that irdyn and framen have not been detected or asserted
during the transaction. Typically this event indicates that the current
transaction is single-cycle. However, this situation is not guaranteed
because it is possible for the master to delay the assertion of irdyn in the
first data phase by up to 8 clock cycles. In other words, if lt_tsr[9] is
asserted during a valid target transaction, it indicates that the impending
transaction is a burst, but if lt_tsr[9] is not asserted it may or may not
indicate that the transaction is single-cycle.

3–68 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–16. Zero-Wait State Burst Memory Write Target Transaction

Note to Figure 3–16:
(1) This signal is not applicable to the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_L

BE0_H

000 381 781

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE0_L

000

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

D3-L-PAR

D3-H-PAR

D0_H

D4_L

D4_H

D4-L-PAR

D4-H-PAR

2 3 4 5 6 7 9 10 128 111 13 14

D4_L

D4_H

BE1_L

BE1_H

BE2_L

BE2_H

BE3_L

BE3_H

BE4_L

BE4_H

BE1_L

BE1_H

BE2_L

BE2_H

BE3_L

BE3_H

BE4_L

BE4_HBE0_H

Altera Corporation User Guide Version 11.1 3–69
October 2011

Functional Description

Figure 3–17 shows the same transaction as in Figure 3–16 with the PCI
bus master inserting a wait state. The 64-bit extension signals are not
applicable to the pci_mt32 and pci_t32 functions. The PCI bus master
inserts a wait state by deasserting the irdyn signal in clock cycle 7. The
effect of this wait state on the local side is shown in clock cycle 8 as the
MegaCore function deasserts lt_ackn and as a result lt_dxfrn is also
deasserted. This prevents data from being transferred to the local side in
clock cycle 8 because the internal pipeline of the function does not have
valid data.

Figure 3–17. Burst Memory Write Target Transaction with PCI Master Wait State

Note to Figure 3–17:
(1) This signal is not applicable to the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_L

BE0_H

000 381

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE0_L

BE0_H

000781 381

D1_L D2_L D3_L

D1_L D2_L D3_L

D1_H D2_H D3_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

D3-L-PAR

D3-H-PAR

D0_H

2 3 4 5 6 7 9 10 128 111 13 14

D1_H D2_H D3_H

781

BE1_L BE2_L BE3_L

BE1_H BE2_H BE3_H

BE1_L BE2_L BE3_L

BE1_H BE2_H BE3_H

3–70 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–18 shows the same transaction as in Figure 3–16 with the local
side inserting a wait state. The 64-bit extension signals are not applicable
to the pci_mt32 and pci_t32 functions. The local side deasserts
lt_rdyn in clock cycle 7. The function shows that deasserting lt_rdyn
in clock cycle 7 suspends the local side data transfer in clock cycle 8 by
deasserting lt_dxfrn. Because the local side is unable to accept
additional data in clock cycle 8, the function deasserts trdyn in clock
cycle 8 as well, preventing PCI data from being transferred from the
master device.

Figure 3–18. Burst Memory Write Target Transaction with Local-Side Wait State

Note to Figure 3–18:
(1) This signal is not applicable to either the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_L

BE0_H

000 381

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE0_L

000781

D1_L D2_L D3_L

D1_H D2_H D3_H

D1_H D2_H

D1_L D2_L D3_L

D3_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

D3-L-PAR

D3-H-PAR

D0_H

2 3 4 5 6 7 9 10 128 111 13 14

781381

BE1_L BE2_L BE3_L

BE1_H BE2_H BE3_H

BE1_L BE2_L BE3_L

BE1_H BE2_H BE3_HBE0_H

Altera Corporation User Guide Version 11.1 3–71
October 2011

Functional Description

Mismatched Bus-Width Memory Write Target Transactions
The following description applies only to the pci_mt64 and pci_t64
functions handling mismatched bus width memory write target
transactions.

When using the pci_mt64 or pci_t64 MegaCore functions to accept
32-bit memory write transactions, the local side data bus width is 64 bits
while the PCI data bus width is 32 bits. The pci_mt64 and pci_t64
functions transfer 32-bit data from the PCI side and drive that data to the
l_dato[31..0] bus. The pci_mt64 and pci_t64 functions decode
whether the low or high DWORD is addressed by the master device, based
on the starting address of the transaction. If the address of the transaction
is a QWORD boundary (ad[2..0] == B"000"), the first DWORD
transferred is considered the low DWORD and pci_mt64 or pci_t64
asserts l_ldat_ackn accordingly; if the address of the transaction is not
at a QWORD boundary (ad[2..0] == B"100"), the first DWORD
transferred is considered to be the high DWORD and the pci_mt64 or
pci_t64 function asserts l_hdat_ackn accordingly.

Figure 3–19 shows a 32-bit single-cycle mismatched bus width memory
write transaction applying to the pci_mt64 and pci_t64 functions.
Refer to Figure 3–15 for a description of a 32-bit single cycle memory
write transaction using the pci_mt32 or pci_t32 function. The
sequence of events in Figure 3–19 is exactly the same as in Figure 3–15,
except for the following:

■ During the address phase (clock cycle 3) the master does not assert
req64n because the transaction is 32 bits

■ The MegaCore function does not assert ack64n when it asserts
devseln

■ The local side is informed that the pending transaction is 32 bits
because lt_tsr[7] is not asserted while lt_framen is asserted in
clock cycle 4

3–72 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

In Figure 3–19, the local-side transfer occurs in clock cycle 7 because
lt_dxfrn is asserted during that clock cycle. At the same time,
l_ldat_ackn is asserted to indicate that the low DWORD is valid. This
event occurs because the address used in the example is at QWORD
boundary.

Figure 3–19. 32-Bit PCI & 64-Bit Local-Side Single-Cycle Memory Write Target Transaction

Note to Figure 3–19:
(1) Ignore this signal for this transaction.

ad[31..0]

cben[3..0]

par

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

l_ldat_ackn

l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_L

000 101

D0_L

D0_L

D0-L-PAR

BE0_L

000

1 2 3 4 5 6 7 8 9 10 11

501

Adr

Altera Corporation User Guide Version 11.1 3–73
October 2011

Functional Description

Figure 3–20 shows a 32-bit burst memory write transaction; the events are
the same for Figure 3–17. The main difference between the two figures is
that in Figure 3–20 l_ldat_ackn and l_hdat_ackn toggle to indicate
which DWORD is valid on the local side. In Figure 3–20, the high DWORD is
transferred first because the address used is not a QWORD boundary. The
l_hdat_ackn signal is asserted during clock cycle 6 and continues to be
asserted until the first DWORD is transferred on the local side during clock
cycle 7. The local side is informed that the pending transaction is a 32-bit
burst because lt_tsr[7] is not asserted and lt_tsr[9] is asserted. If
the local side cannot handle 32-bit burst transactions, it can disconnect
after the first local transfer.

Figure 3–20 only applies to the pci_mt64 and pci_t64 functions. For
the pci_mt32 and pci_t32 functions, Figure 3–17 reflects the
waveforms for a 32-bit burst memory write transaction, excluding the
64-bit extension signals as noted.

3–74 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–20. 32-Bit PCI & 64-Bit Local-Side Burst Memory Write Target Transaction

Note to Figure 3–20:
(1) Ignore this signal for this transaction.

ad[31..0]

cben[3..0]

par

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

l_ldat_ackn

l_hdat_ackn

clk

(1) l_dato[63..32]

(1) l_beno[3..0]

l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

000 301 701

D0_L

D0_L

D0-L-PAR

000

D1_L

D1-L-PAR D4-L-PAR

2 3 4 5 6 7 9 10 128 111 13 14

D4_LD2_L D3_L

D3-L-PARD2-L-PAR

D3_L D4_LD1_L D2_L

BE0_L BE4_LBE2_L BE3_LBE1_L

BE3_L BE4_LBE1_L BE2_LBE0_L

Altera Corporation User Guide Version 11.1 3–75
October 2011

Functional Description

I/O Write Transactions

I/O write transactions by definition are 32 bits. Figure 3–21 shows a
sample I/O write transaction. The sequence of events is the same as 32-
bit single-cycle memory write transactions. The main distinction between
the two transactions is the command on the lt_cmdo[3..0] bus.

1 The PCI MegaCore functions do not ensure that the combination
of the ad[1..0] and cben[3..0] signals is valid during the
address phase of an I/O transaction. Local side logic should
implement this functionality if performing I/O transactions.
Refer to the PCI Local Bus Specification, Revision 3.0 for more
information on handling invalid combinations of these signals.

Figure 3–21. I/O Write Transaction

ad[31..0]

cben[3..0]

par

framen

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

clk

l_beno[3..0]

lt_tsr[11..0]

Adr

3

Adr-PAR

Adr

3

BE0_L

000 102

D0_L

D0_L

D0-L-PAR

BE0_L

000

1 2 3 4 5 6 7 8 9 10 11

502

3–76 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Configuration Write Transactions

Configuration write transactions are 32 bits. Configuration cycles are
automatically handled by the PCI MegaCore functions and do not require
local side actions. Figure 3–22 shows a typical configuration write
transaction. The configuration write transaction is similar to a 32-bit
single-cycle transaction, except for the following:

■ During the address phase, idsel must be asserted in a configuration
transaction

■ Because the configuration write does not require local side actions,
the PCI MegaCore function asserts trdyn independent from the
lt_rdyn signal

1 The local side cannot retry, disconnect, or abort configuration
cycles.

Figure 3–22. 32-Bit Configuration Write Transaction

ad[31..0]

cben[3..0]

par

framen

idsel

irdyn

devseln

trdyn

stopn

clk

lt_tsr[11..0]

Adr

B

Adr-PAR

BE0_L

D0_L

D0-L-PAR

1 2 3 4 5 6 7 8 9 10 11

000 100 000500

Altera Corporation User Guide Version 11.1 3–77
October 2011

Functional Description

Target Transaction Terminations

For all transactions except configuration transactions, the local-side
device can request a transaction to be terminated with one of several
termination schemes defined by the PCI Local Bus Specification, Revision
3.0. The local-side device can use the lt_discn signal to request a retry
or disconnect. These termination types are considered graceful
terminations and are normally used by a target device to indicate that it
is not ready to receive or supply the requested data. A retry termination
forces the PCI master that initiated the transaction to retry the same
transaction at a later time. A disconnect, on the other hand, does not force
the PCI master to retry the same transaction.

The local-side device can also request a target abort, which indicates that
a catastrophic error has occurred in the device. This termination is
requested by asserting lt_abortn during a target transaction other than
a configuration transaction.

f For more details on these termination types, refer to the PCI Local Bus
Specification, Revision 3.0.

Retry

The local-side device can request a retry if, for example, the device cannot
meet the initial latency requirement or because the local resource cannot
transfer data. A target device signals a retry by asserting devseln and
stopn, while deasserting trdyn before the first data phase. The local-
side device can request a retry as long as it did not supply or request at
least one data phase in a burst transaction. In a write transaction, the
local-side device may request a retry by asserting lt_discn as long as it
did not assert the lt_rdyn signal to indicate it is ready for a data transfer.
If lt_rdyn is asserted, it can result in the PCI MegaCore function
asserting the trdyn signal on the PCI bus. Therefore, asserting
lt_discn forces a disconnect instead of a retry. In a read transaction, the
local-side device can request a retry as long as data has not been
transferred to the PCI MegaCore function. Figure 3–23 applies to all PCI
MegaCore functions, excluding the 64-bit signals as noted for pci_mt32
and pci_t32.

3–78 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–23. Target Retry

Note to Figure 3–23:
(1) This signal is not applicable to either the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

 (1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

 (1) req64n

irdyn

devseln

 (1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_H

000 381

D0_L

D0-L-PAR

D0-H-PAR

BE0_H

000

D0_H

2 3 4 5 6 7 9 1081

D1-L

D1_H

lt_discn

BE1_L

BE1_H

D1-L-PAR

D1-H_PAR

BE0_L

BE0_L

Altera Corporation User Guide Version 11.1 3–79
October 2011

Functional Description

Disconnect

A PCI target can signal a disconnect by asserting stopn and devseln
after at least one data phase is complete. There are two types of
disconnects: disconnect with data and disconnect without data. In a
disconnect with data, trdyn is asserted while stopn is asserted.
Therefore, one more data phases is completed while the PCI bus master
finishes the transaction. A disconnect without data occurs when the
target device deasserts trdyn while stopn is asserted, thus ensuring that
no more data phases are completed in the transaction. Depending on the
sequence of the lt_rdyn and 1t_discn signals’ assertion on the local
side and the irdyn signal’s assertion on the PCI side, the PCI MegaCore
function issues either a disconnect with data or disconnect without data.
Since disconnect with data or disconnect without data transactions
depend upon the sate of the irdyn signal, you must design your logic to
disconnect after the specified number of DWORDs are transferred on the
PCI bus. You can use lt_ackn and lt_dxfrn to check the number of
DWORDs transferred on the local side and use lt_tsr[10] to check the
number of DWORDs transferred on the PCI bus.

1 The PCI Local Bus Specification, Revision 3.0 requires that a target
device issues a disconnect if a burst transaction goes beyond its
address range. In this case, the local-side device must request a
disconnect. The local-side device must keep track of the current
data transfer address; if the transfer exceeds its address range,
the local side should request a disconnect by asserting
lt_discn.

3–80 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–24 shows an example of a disconnect during a burst write
transaction that ensures only a single data phase is completed.
Figure 3–24 applies to all PCI MegaCore functions, excluding the 64-bit
extension signals as noted for pci_mt32 and pci_t32. In Figure 3–24
1t_rdyn is asserted in clock cycle 5 and 1t_discn is asserted in clock
cycle 6. This transaction informs the PCI MegaCore function that the local
side is ready to accept data but also wants to disconnect. As a result, the
PCI MegaCore function disconnects after one data phase.

Figure 3–24. Single Data Phase Disconnect in a Burst Write Transaction

Note to Figure 3–24:
(1) This signal is not applicable to either the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_H

000 381

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE0_L

000381781

D0_H

2 3 4 5 6 7 9 10 1181

D1-L

D1_H

lt_discn

BE1_L

BE1_H

D1-L-PAR

D1-H_PAR

BE0_L

BE0_H

Altera Corporation User Guide Version 11.1 3–81
October 2011

Functional Description

Figure 3–25 shows an example of a disconnect during a burst target write
transaction where multiple data phases are completed. Figure 3–25
applies to all PCI MegaCore functions, excluding the 64-bit extension
signals as noted for pci_mt32 and pci_t32. One additional data phase
will be completed on the local side following the assertion of lt_discn.

Figure 3–25. Disconnect in a Burst Write Transaction

Note to Figure 3–25:
(1) This signal is not applicable to either the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

l_dato[31..0]

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

Adr

7

Adr-PAR

Adr

7

BE0_L

BE0_H

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE0_L

D1_L

D1_H

D2_L

D2_H

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

D3-L-PAR

D3-H-PAR

D0_H

2 3 4 5 6 7 9 10 128 111 13 14

BE1_L

BE1_H

BE2_L

BE2_H

BE3_L

BE3_H

BE1_L

BE1_H

BE2_L

BE2_HBE0_H

lt_rdyn

lt_ackn

lt_dxfrn

lt_tsr[11..0] 000 381 781 000381

lt_discn

3–82 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–26 shows an example of a disconnect during a burst read
transaction that ensures only a single data phase is completed. In
Figure 3–26, lt_rdyn is asserted in clock cycle 5 and lt_discn is
asserted in clock cycle 6. This transaction informs the PCI MegaCore
function that the local side is ready with data but also wants to
disconnect. As a result the PCI MegaCore function disconnects after one
data phase. This figure applies to all PCI MegaCore functions, excluding
the 64-bit extension signals as noted for pci_mt32 and pci_t32.

Figure 3–26. Single Cycle Disconnect in a Burst Read Transaction

Note to Figure 3–26:
(1) This signal is not applicable to either the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

l_adro[31..0]

l_cmdo[3..0]

l_adi[31..0]

clk

(1) l_adi[63..32]

Adr

6

Adr-PAR

Z

Z

BE0_L

BE0_H

Z

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

2 3 4 5 6 7 9 108 111

Adr

6

lt_framen

lt_ackn

lt_dxfrn

lt_rdyn

lt_discn

lt_tsr[11..0] 000 381 000381781

Altera Corporation User Guide Version 11.1 3–83
October 2011

Functional Description

Figure 3–27 shows an example of a disconnect during a burst target read
transaction, and it applies to all PCI functions—excluding the 64-bit
extension signals as noted for pci_mt32 and pci_t32. During burst
target read transactions, lt_discn should be asserted with the last data
phase on the local side. The lt_rdyn signal is asserted during clock cycle
5 indicating that valid data will be available on the local side in clock cycle
6. Then, lt_discn is asserted in clock cycle 7 indicating the last data
phase to be completed on the local side.

Figure 3–27. Disconnect in a Burst Read Transaction

Note to Figure 3–27:
(1) This signal is not applicable to either the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

l_adro[31..0]

l_cmdo[3..0]

l_adi[31..0]

clk

(1) l_adi[63..32]

Adr

6

Adr-PAR

Z

Z

BE0_L

BE0_H

Z

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

D1_L

D1_H

D1_L

D1_H

D1-L-PAR

D1-H-PAR

132 3 4 5 6 7 9 10 128 111

Adr

6

lt_framen

lt_ackn

lt_dxfrn

lt_rdyn

lt_discn

lt_tsr[11..0] 000 381 000381781

BE1_L

BE1_H

3–84 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Figure 3–28 shows an example of a disconnect during a 32-bit read on
non-QWORD aligned addresses.

Figure 3–28. 32-bit PCI & 64-bit Local Side Disconnect on Non-QWORD Aligned Address

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

(1) l_adi[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr_L

6

Adr-PAR

Z

Adr

6

Z

BE0_L

BE0_H

Z

000 101

D0_L

D0_H

D0-L-PAR

D0-H-PAR

000501

1 2 3 4 5 6 7 8 9 10

D0_L

D0_H

lt_rdyn

BE0_L

BE0_H

lt_discn

Adr_H

Altera Corporation User Guide Version 11.1 3–85
October 2011

Functional Description

Figure 3–27 shows an example of a disconnect during a 32-bit read on
QWORD aligned addresses. The PCI MegaCore function completes and
does not disconnect even though lt_discn is asserted. This is an
expected behavior of the PCI MegaCore function.

Figure 3–29. 32-bit PCI & 64-bit Local Side Disconnect on QWORD Aligned Address

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

(1) l_adi[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

6

Adr-PAR

Z

Adr

6

Z

BE0_L

BE0_H

Z

000 101

D0_L

D0_H

D0-L-PAR

D0-H-PAR

000501

1 2 3 4 5 6 7 8 9 10

D0_L

D0_H

lt_rdyn

BE0_L

BE0_H

lt_discn

3–86 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Target Mode Operation

Target Abort

Target abort refers to an abnormal termination because either the local
logic detected a fatal error, or the target will never be able to complete the
request. An abnormal termination may cause a fatal error for the
application that originally requested the transaction. A target abort
allows the transaction to complete gracefully, thus preserving normal
operation for other agents.

A target device issues an abort by deasserting devseln and trdyn and
asserting stopn. A target device must set the tabort_sig bit in the PCI
status register whenever it issues a target abort. Refer to “Status Register”
on page 3–33 for more details. Figure 3–30 shows the PCI MegaCore
function issuing an abort during a burst write cycle. It applies to all PCI
MegaCore functions, excluding the 64-bit extension signals as noted for
pci_mt32 and pci_t32.

1 The PCI Local Bus Specification, Revision 3.0 requires that a target
device issues an abort if the target device shares bytes in the
same DWORD with another device, and the byte enable
combination received byte requests outside its address range.
This condition most commonly occurs during I/O transactions.
The local-side device must ensure that this requirement is met,
and if it receives this type of transaction, it must assert
lt_abortn to request a target abort termination.

Altera Corporation User Guide Version 11.1 3–87
October 2011

Functional Description

Figure 3–30. Target Abort

Note to Figure 3–30:
(1) This signal is not applicable to either the pci_mt32 or pci_t32 MegaCore functions.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

Adr

7

Adr-PAR

7

BE0_L

BE0_H

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE0_L

D0_H

2 3 4 5 6 7 9 10 128 111 13

D1-L

D1_H

lt_abortn

BE1_L

BE1_H

D1-L-PAR

D1-H_PAR

D2_L

D2_H

D3_L

D3_H

BE2_L

BE2_H

BE3_L

BE3_H

D2-L-PAR

D2-H_PAR

D3-L-PAR

D3-H_PAR

D1-L

D1_H

BE1_L

BE1_H

D2_L

D2_H

BE2_L

BE2_H

Adr

BE0_H

lt_tsr[11..0] 000 381 000381781

3–88 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Additional Design Guidelines for Target Transactions

Altera recommends that the local-side application deassert the lt_rdyn
signal after the target transaction completes to avoid false triggering of
internal state machines if the next target transaction begins immediately.
You can detect that the current target transaction has completed if
lt_ackn and lt_tsr[8] are both deasserted.

Asserting wait states on the last data phase of a PCI write transaction can
cause a data loss if another PCI transaction begins during the wait states.
This is because the PCI MegaCore function has only one register pipeline
phase that is used to register the PCI data. To prevent data loss, the local
side design should load the data into a holding register if a wait state is
needed on the last data phase.

The local-side design must ensure that PCI latency rules are not violated
while the PCI MegaCore function waits to transfer data. If the local-side
design is unable to meet the latency requirements, it must assert
lt_discn to request that the PCI MegaCore function terminate the
transaction. The PCI target latency rules state that the time to complete
the first data phase must not be greater than 16 clock cycles, and the
subsequent data phases must not take more than 8 clock cycles to
complete.

The PCI Local Bus Specification, Revision 3.0 requires that a target device
issues a disconnect if a burst transaction goes beyond its address range.
In this case, the local-side device must request a disconnect. The local-side
device must keep track of the current data transfer address; if the transfer
exceeds its address range, the local side should request a disconnect by
asserting lt_discn.

The PCI Local Bus Specification, Revision 3.0 requires that a target device
issues an abort if the target device shares bytes in the same DWORD with
another device, and the byte enable combination received byte requests
outside its address range. This condition most commonly occurs during
I/O transactions. The local-side device must ensure that this requirement
is met, and if it receives this type of transaction, it must assert lt_abortn
to request a target abort termination.

Master Mode
Operation

This section describes all supported master transactions for both the
pci_mt64 and pci_mt32 functions. Although this section includes
waveform diagrams showing typical PCI cycles in master mode for the
pci_mt64 function, the waveforms also apply to the pci_mt32
function. Table 3–37 lists the PCI and local side signals that apply for each

Altera Corporation User Guide Version 11.1 3–89
October 2011

Functional Description

PCI MegaCore function.

Table 3–37. PCI MegaCore Function Signals (Part 1 of 2)

Signal Name pci_mt64 pci_mt32

PCI Signals

clk v v
rstn v v
gntn v v
reqn v v
ad[63..0] v ad[31..0]

cben[7..0] v cben[3..0]

par v v
par64 v
idsel v v
framen v v
req64n v
irdyn v v
devseln v v
ack64n v
trdyn v v
stopn v v
perrn v v
serrn v v
intan v v

Local-side Data Path Signals

l_adi[63..0] v l_adi[31..0]

l_cbeni[7..0] v l_cbeni[3..0]

l_adro[63..0] v l_adro[31..0]

l_dato[63..0] v l_dato[31..0]

l_beno[7..0] v l_beno[3..0]

l_cmdo[3..0] v v
l_ldat_ackn v
l_hdat_ackn v

3–90 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

The PCI MegaCore functions support both 64-bit and 32-bit transactions.
The pci_mt64 function supports the following 64-bit PCI memory
transactions:

■ 64-bit burst memory read/write
■ 64-bit single-cycle memory read/write

1 64-bit single-cycle memory write transactions are only
supported if the Assume ack64n Response option is turned on
in the Parameterize - PCI Compiler wizard. For more
information on the Assume ack64n Response option, refer to
“Assume ack64n Response” on page 2–6.

Target Local-side Control Signals

lt_abortn v v
lt_discn v v
lt_rdyn v v
lt_framen v v
lt_ackn v v
lt_dxfrn v v
lt_tsr[11..0] v v
lirqn v v
cache[7..0] v v
cmd_reg[5..0] v v
stat_reg[5..0] v v

Master Local-side Control Signals

lm_req32n v v
lm_req64n v
lm_lastn v v
lm_rdyn v v
lm_adr_ackn v v
lm_ackn v v
lm_dxfrn v v
lm_tsr[9..0] v v

Table 3–37. PCI MegaCore Function Signals (Part 2 of 2)

Signal Name pci_mt64 pci_mt32

Altera Corporation User Guide Version 11.1 3–91
October 2011

Functional Description

The pci_mt64 and pci_mt32 functions support the following 32-bit
PCI transactions:

■ 32-bit burst memory read/write
■ 32-bit single-cycle memory read/write
■ Configuration read/write
■ I/O read/write

A master operation begins when the local-side master interface asserts
the lm_req64n signal to request a 64-bit transaction or the lm_req32n
signal to request a 32-bit transaction. The PCI function asserts the reqn
signal to the PCI bus arbiter to request bus ownership. When the PCI bus
arbiter grants the PCI function bus ownership by asserting the gntn
signal, the local side is alerted and must provide the address and
command.

Once the PCI MegaCore function has acquired mastership of the PCI bus,
the function asserts framen to indicate the beginning of a bus
transaction, which is referred to as the address phase. During the address
phase, the function drives the address and command signals on the
ad[31..0] and cben[3..0] buses. If the local side requests a 64-bit
transaction when using the pci_mt64 function, the function asserts the
req64n and framen signals at the same time. After the PCI MegaCore
function master device has completed the address phase, the master
waits for the target devices on the bus to decode the address and claim the
transaction by asserting devseln. With a 64-bit transaction, the target
device asserts ack64n and devseln at the same time if it can accept the
64-bit transaction. If the target device does not assert ack64n, the master
device completes a 32-bit transaction.

Both the pci_mt64 and pci_mt32 functions support single-cycle and
memory burst transactions. In a read transaction, data is transferred from
the PCI target device to the local-side device. In a write transaction, data
is transferred from the local side to the PCI target device. A memory
transaction can be terminated by the local side or by the PCI target device.
When the PCI target terminates the transaction, the local side is informed
of the conditions of the termination by specific bits in the lm_tsr[9..0]
bus. The function treats memory write and invalidate, memory read
multiple, and memory read line commands in a similar manner to the
corresponding memory write/read commands. Therefore, the local side
must implement any special handling required by these commands. The
function outputs the cache line size register value to the local side for this
purpose.

3–92 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

The pci_mt64 and pci_mt32 functions can generate transactions as
specified in Table 3–11. When the local side requests I/O or configuration
cycles, the function automatically issues a 32-bit single-cycle read/write
transaction.

1 The local-side design may require a long time to transfer data
to/from the function during a burst transaction. The local-side
design must ensure that PCI latency rules are not violated while
the function waits for data. Therefore, the local-side device must
not insert more than eight wait states before asserting lm_rdyn.

PCI Bus Parking

By asserting the gntn signal of a master device that has not requested bus
access, the PCI bus arbiter may park on any master device when the bus
is idle. In accordance with the PCI Local Bus Specification, Revision 3.0, if
the arbiter parks on pci_mt64 or pci_mt32, the function drives the
ad[31..0], cben[3..0] and par signals.

If the arbiter has parked the bus on pci_mt64 or pci_mt32 and the local
side requests a transaction, the request bit (i.e., lm_tsr[0]) will not be
asserted on the local side. The local state machine will immediately assert
the grant bit (i.e., lm_tsr[1]).

Design Consideration

The arbiter may remove the gntn signal after the local side has asserted
lm_req64n or lm_req32n to request the bus, but before the master
function has been able to assert the framen signal to claim the bus. In this
case, the lm_tsr signals will transition from the grant state (i.e.,
lm_tsr[1] asserted) back to the request state (i.e., lm_tsr[0] asserted)
until the arbiter grants the bus to the requesting function again. In
systems where this situation may occur, the local-side logic should hold
the address and command on the l_adi[31..0] and l_cbeni[3..0]
buses until the address phase bit (i.e., lm_tsr[2]) is asserted to ensure
that the pci_mt64 or pci_mt32 function has assumed mastership of the
bus and that the current address and command have been transferred.

Altera Corporation User Guide Version 11.1 3–93
October 2011

Functional Description

Master Read Transactions

This section describes the behavior of the PCI MegaCore functions in the
following types of master read transactions:

■ Memory read
■ I/O and configuration read

Memory Read Transactions

The PCI MegaCore functions support the following types of matched bus
width and mismatched bus width memory read transactions in master
mode:

■ Burst memory read
■ Single-cycle memory read
■ Mismatched bus width memory read

1 Mismatched bus-width transactions are 32-bit PCI transactions
performed by the pci_mt64 MegaCore function.

For each type of transaction, the following sequence of events is the same:

1. The local side asserts lm_req32n to request a 32-bit transaction (or
lm_req64n to request a 64-bit transaction.) Consequently, the PCI
side asserts reqn to request bus ownership from the PCI arbiter.

2. When the PCI arbiter grants bus ownership by asserting the gntn
signal, the PCI side asserts lm_adr_ackn on the local side to
acknowledge the transaction address and command. During the
same clock cycle when lm_adr_ackn is asserted, the local side
must provide the address on l_adi[31..0] and the command on
l_cbeni[3..0]. At the same time, the PCI side turns on the
drivers for framen (and req64n for 64-bit transactions.)

3. The PCI side begins the PCI address phase. During the PCI address
phase, the local side must provide the byte enables for the
transaction on the l_cbeni bus. At the same time, the PCI side
turns on the driver for irdyn.

1 The PCI MegaCore function uses the initial byte enable values
throughout the transaction, and ignores any changes to the
signals on the l_cbeni bus after this phase. If the Allow
Variable Byte Enables During Burst Transactions option is
turned on in the Parameterize - PCI Compiler wizard, you must
keep the byte enables constant throughout the transaction.
Typically the byte enable values are set to 0x00 for master read
transactions.

3–94 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

4. A turn-around cycle on the ad bus occurs during the clock cycle
immediately following the address phase. During the turn-around
cycle, the PCI side tri-states the ad bus, but drives the correct byte
enables on the cben bus for the first data phase. This process is
necessary because the pci_mt64 function must release the bus so
another PCI agent can drive it.

5. A PCI target asserts devseln to claim the transaction. One or more
data phases follow, depending on the type of read transaction.

The pci_mt64 and pci_mt32 functions treat memory read, memory
read multiple, and memory read line commands in the same way. Any
additional requirements for the memory read multiple and memory read
line commands must be implemented by the local-side application.

Altera Corporation User Guide Version 11.1 3–95
October 2011

Functional Description

Burst Memory Read Master Transactions
Figure 3–31 shows the waveform for a 64-bit zero-wait state burst
memory read master transaction. In this transaction, three data words are
transferred from the PCI side to the local side. The 64-bit extension signals
are not applicable to the pci_mt32 function.

Figure 3–31. Zero-Wait State Burst Memory Read Master Transaction

Notes to Figure 3–31:
(1) This signal is not applicable to the pci_mt32 MegaCore function.
(2) For pci_mt32, lm_req32n should be substituted for lm_req64n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L

D0_H

D0-H-PAR

Z0

0

0

0

Z

Z

BE_H

Z

D1_L D2_L

D1_H D2_H

13

Z

Z

Z

D1-H-PAR D2-H-PAR

D0-H-PAR D2-H-PARD1-H-PAR

l_adi[31..0] Adr

l_cbeni[3..0]

(1) l_cbeni[7..4]

6 BE_L

BE_H

l_dato[31..0] D0_L D1_L D2_L

(1) l_dato[63..32]
D0_H D1_H D2_H

(1), (2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 200 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

3–96 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Table 3–38 shows the sequence of events for a 64-bit zero-wait state burst
memory read master transaction. The 64-bit extension signals are not
applicable to the pci_mt32 function.

Table 3–38. Zero-Wait State Burst Memory Read Master Transaction (Part 1 of 3)

Clock
Cycle Event

1 The local side asserts lm_req64n to request a 64-bit transaction.

2 The function outputs reqn to the PCI bus arbiter to request bus ownership. At the same time, the
function asserts lm_tsr[0] to indicate to the local side that the master is requesting the PCI bus.

3 The PCI bus arbiter asserts gntn to grant the PCI bus to the function. Although Figure 3–31 shows
that the grant occurs immediately and the PCI bus is idle at the time gntn is asserted, this action
may not occur immediately in a real transaction. Before the function proceeds, it waits for gntn to be
asserted and the PCI bus to be idle. A PCI bus idle state occurs when both framen and irdyn are
deasserted.

5 The function turns on its output drivers, getting ready to begin the address phase.

The function also asserts lm_adr_ackn to indicate to the local side that it must provide the address
and command for the transaction. During the same clock cycle, the local side must provide the PCI
address on l_adi[31..0] and the PCI command on l_cbeni[3..0].

The function continues to assert its reqn signal until the end of the address phase. The function also
asserts lm_tsr[1] to indicate to the local side that the PCI bus has been granted.

6 The function begins the 64-bit memory read transaction with the address phase by asserting
framen and req64n.

At the same time, the local side must provide the byte enables for the transaction on the l_cbeni
bus. The PCI MegaCore function uses this byte enable value throughout the transaction, and ignores
any changes to the signals on the l_cbeni bus after this clock cycle. If the Allow Variable Byte
Enables During Burst Transactions option is turned on in the Parameterize - PCI Compiler
wizard, you must keep the byte enables constant throughout the rest of the transaction. Typically, the
byte enable values are set to 0x00 for master read transactions.

The local side also asserts lm_rdyn to indicate that it is ready to accept data.

The function asserts lm_tsr[2] to indicate to the local side that the PCI bus is in its address phase.
If the arbiter deasserts gntn in less than 3 clock cycles, the PCI MegaCore function does not assert
lm_tsr[2] in this clock cycle. For recommendations of how to accommodate scenarios where the
arbiter deasserts gntn in less than three clock cycles, refer to “Design Consideration” on page 3–92
for more information.

Altera Corporation User Guide Version 11.1 3–97
October 2011

Functional Description

7 The function asserts irdyn to inform the target that the function is ready to receive data. On the first
data phase the function asserts irdyn regardless of whether the lm_rdyn signal is asserted on
the local side to indicate that the local side is ready to accept data. For subsequent data phases, the
function does not assert irdyn unless the local side is ready to accept data.

The target claims the transaction by asserting devseln. In this case, the target performs a fast
address decode. The target also asserts ack64n to inform the function that it can transfer 64-bit
data.

During this clock cycle, the function also asserts lm_tsr[3] to inform the local side that it is in data
phase mode.

8 The target asserts trdyn to inform the function that it is ready to transfer data. Because the function
has already asserted irdyn, a data phase is completed on the rising edge of clock cycle 9.

At the same time, lm_tsr[9] is asserted to indicate to the local side that the target can transfer
64-bit data.

9 The function asserts lm_ackn to inform the local side that the function has registered data from the
PCI side on the previous cycle and is ready to send the data to the local side master interface.
Because lm_rdyn was asserted in the previous cycle and lm_ackn is asserted in the current
cycle, the function asserts lm_dxfrn. The assertion of the lm_dxfrn, l_ldat_ackn, and
l_hdat_ackn signals indicate to the local side that valid data is available on the l_dato bus.

Because irdyn and trdyn are asserted, another data phase is completed on the PCI side on the
rising edge of clock cycle 10.

On the local side, the lm_lastn signal is asserted. Because lm_lastn, irdyn, and trdyn are
asserted during this clock cycle, this action guarantees to the local side that, at most, two more data
phases will occur on the PCI side: one during this clock cycle and another on the following clock cycle
(clock cycle 10). The last data phase on the PCI side takes place during clock cycle 10.

The function also asserts lm_tsr[8] in the same clock cycle to inform the local side that a
successful data transfer has occurred on the PCI bus during the previous clock cycle.

Table 3–38. Zero-Wait State Burst Memory Read Master Transaction (Part 2 of 3)

Clock
Cycle Event

3–98 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

10 Because lm_lastn was asserted and a data phase was completed in the previous cycle, framen
and req64n are deasserted, while irdyn and trdyn are asserted. This action indicates that the
last data phase is completed on the PCI side on the rising edge of clock cycle 11.

On the local side, the function continues to assert lm_ackn, informing the local side that the function
has registered data from the PCI side on the previous cycle and is ready to send the data to the local
side master interface. Because lm_rdyn was asserted in the previous cycle and lm_ackn is
asserted in the current cycle, the function asserts lm_dxfrn. The assertion of the lm_dxfrn,
l_ldat_ackn, and l_hdat_ackn signals indicate to the local side that another valid data is
available on the l_dato bus. The local side has now received two valid 64-bit data.

The function continues to assert lm_tsr[8] informing the local side that a successful data transfer
has occurred on the PCI bus during the previous clock cycle.

11 On the PCI side, irdyn, devseln, ack64n, and trdyn are deasserted, indicating that the current
transaction on the PCI side is completed. There will be no more PCI data phases.

On the local side, the function continues to assert lm_ackn, informing the local side that the function
has registered data from the PCI side on the previous cycle and is ready to send the data to the local-
side master interface. Because lm_rdyn was asserted in the previous cycle and lm_ackn is
asserted in the current cycle, the function asserts lm_dxfrn. The assertion of the lm_dxfrn,
l_ldat_ackn, and l_hdat_ackn signals indicate to the local side that data on the l_dato bus
is valid. The local side has now received three 64-bit words of data.

Because the local side has received all the data that was registered from the PCI side, the local side
can now deassert lm_rdyn. Otherwise, if there is still some data that has not been transferred from
the PCI side to the local side, lm_rdyn must continue to be asserted.

The function continues to assert lm_tsr[8] informing the local side that a successful data transfer
has occurred on the PCI bus during the previous clock cycle.

12 The function deasserts lm_tsr[3], informing the local side that the data transfer mode is
completed. Therefore, lm_ackn and lm_dxfrn are also deasserted.

Table 3–38. Zero-Wait State Burst Memory Read Master Transaction (Part 3 of 3)

Clock
Cycle Event

Altera Corporation User Guide Version 11.1 3–99
October 2011

Functional Description

Figure 3–32 shows the same transaction as in Figure 3–31, but the local
side master interface requests a 32-bit transaction by asserting
lm_req32n. This figure applies to both pci_mt64 and pci_mt32,
excluding the 64-bit extension signals as noted for pci_mt32. The
pci_mt64 function does not assert req64n on the PCI side. Therefore,
the upper address ad[63..32] and the upper command/byte enables
cben[7..4] are invalid.

Figure 3–32. 32-Bit PCI & 32-Bit Local-Side Master Burst Memory Read Transaction

Note to Figure 3–32:
(1) This signal is not applicable to the pci_mt32 MegaCore function.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

 (1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) Êack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L Z0

0

Z D1_L D2_L

13

Z

D0-L-PAR D2-L-PARD1-L-PAR

l_dato[31..0] D0_L D1_L D2_L

(1) l_dato[63..32]

lm_req32n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 108008 000

l_ldat_ackn

l_hdat_ackn

lm_ackn

lm_dxfrn

l_adi[31..0]

l_cbeni[3..0]

(1) l_cbeni[7..4]

Adr

BE_L6

3–100 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Figure 3–33 shows the same transaction as in Figure 3–31 with the local
side inserting a wait state. This figure applies to both the pci_mt64 and
pci_mt32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci_mt32.

Figure 3–33. Burst Memory Read Master Transaction with Local-Side Wait State

Notes to Figure 3–33:
(1) This signal is not applicable to the pci_mt32 MegaCore function.
(2) For pci_mt32, lm_req32n should be substituted for lm_req64n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L

D0_H

D0-H-PAR

Z0

0

0

0

Z

Z

BE_H

Z

D1_L D2_L

D1_H D2_H

13

Z

Z

Z

D2-H-PARD1-H-PAR

D0-L-PAR D1-L-PAR D2-L-PAR

l_dato[31..0]

(1), (2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

208

D0_L D1_L D2_L

D0_H D1_H D2_H(1) l_dato[63..32]

200

14

l_adi[31..0] Adr

l_cbeni[3..0]

(1) l_cbeni[7..4]

6 BE_L

BE_H

Altera Corporation User Guide Version 11.1 3–101
October 2011

Functional Description

The local side deasserts lm_rdyn in clock cycle 9. Consequently, on the
following clock cycle (clock cycle 10), the pci_mt64 function suspends
data transfer on the local side by deasserting the lm_dxfrn signal and on
the PCI side by deasserting the irdyn signal.

Figures 3–34 shows the same transaction as in Figure 3–31 with the PCI
bus target inserting a wait state. This figure applies to both pci_mt64
and pci_mt32 MegaCore functions, excluding the 64-bit extension
signals as noted for pci_mt32. The PCI side inserts a wait state by
deasserting trdyn in clock cycle 9. Consequently, on the following clock
cycle (clock cycle 10), the function deasserts the lm_ackn and lm_dxfrn
signal on the local side. Data transfer is suspended on the PCI side in
clock cycle 9 and on the local side in clock cycle 10.

3–102 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Figure 3–34. Burst Memory Read Master Transaction with PCI-Side Wait State

Notes to Figure 3–34:
(1) This signal is not applicable to the pci_mt32 MegaCore function.
(2) For pci_mt32, lm_req32n should be substituted for lm_req64n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L

D0_H

D0-H-PAR

Z0

0

0

0

Z

Z

BE_H

Z

D2_LD1_L

D2_H D1_H

13

Z

Z

Z

D1-H-PAR D2-H-PAR

D0-L-PAR D2-L-PARD1-L-PAR

l_dato[31..0]

(2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

208

D0_L D1_L D2_L

D0_H D1_H D2_H(1) l_dato[63..32]

200

14

ad[31..0]

l_adi[31..0] Adr

l_cbeni[3..0]

(1) l_cbeni[7..4]

6 BE_L

BE_H

Altera Corporation User Guide Version 11.1 3–103
October 2011

Functional Description

Single-Cycle Memory Read Master Transaction
Figure 3–35 shows a 64-bit single-cycle memory read master transaction.
Figure 3–35 shows the same transaction as in Figure 3–31 with just one
data phase. This figure applies to both the pci_mt64 and pci_mt32
MegaCore functions, excluding the 64-bit extension signals as noted for
pci_mt32. In clock cycle 6, framen and req64n are asserted to begin
the address phase. At the same time, the local side should assert the
lm_lastn signal on the local side to indicate that it wants to transfer only
one 64-bit data word. In a real application, in order to indicate a single-
cycle 64-bit data transfer, the lm_lastn signal can be asserted on any
clock cycle between the assertion of lm_req64n and the address phase.

1 If your application is a system that has only 64-bit PCI devices
and the local side wants to transfer one 64-bit data word, Altera
recommends that you perform a 64-bit single-cycle memory
read master transaction. However, if your application is a
system that has 32-bit and 64-bit PCI devices and the local side
wants to transfer one 64-bit data word, Altera recommends that
you perform a 32-bit burst memory read transaction.

3–104 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Figure 3–35. 64-Bit Single-Cycle Memory Read Master Transaction

Notes to Figure 3–35:
(1) This signal is not applicable to the pci_mt32 MegaCore function.
(2) For pci_mt32, lm_req32n should be substituted for lm_req64n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 11

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

13

l_adi[31..0]

l_dato[31..0]

(1) l_dato[63..32]

l_cbeni[3..0]

(1) l_cbeni[7..4]

(1), (2) lm_req64n

lm_lastn

lm_rdyn

lm_tsr[9..0]

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

lm_adr_ackn

1

Adr

6

Adr-PAR

BE_L

Z

D0_L Z0

0

Z

D0-L-PAR

Adr

D0_L

BE_L

000 001 004 000

Z

D0_H Z0 Z

BE_H0 Z

Z D0-H-PAR

BE_H

D0_H

208008

6

308002 200

Altera Corporation User Guide Version 11.1 3–105
October 2011

Functional Description

Figure 3–36 shows a 32-bit single cycle memory read master transaction.
The transaction shown in Figure 3–36 is the same as shown in
Figure 3–35, except that in Figure 3–36 the local side master interface
requests a 32-bit transaction by asserting lm_req32n. This figure applies
to both the pci_mt64 and pci_mt32 MegaCore functions, excluding the
64-bit extension signals as noted for pci_mt32.

Figure 3–36. 32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Read Master Transaction

Note to Figure 3–36:
(1) This signal is not applicable to the pci_mt32 MegaCore function.

2 3 4 5 6 7 9 10

clk

reqn

81

gntn

ad[31..0]

cben[3..0]

par

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L Z0

0

Z

D0-L-PAR

l_adi[31..0] Adr

l_dato[31..0] D0_L

(1) l_dato[63..32]

lm_req32n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 008

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

Z

000 108

l_cbeni[3..0]

(1) l_cbeni[7..4]

BE_L6

3–106 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Mismatched Bus Width Burst Memory Read Master Transactions
The following description applies only to the pci_mt64 MegaCore
functions handling mismatched bus width memory read master
transactions.

Figure 3–37 shows a 32-bit PCI and 64-bit local side burst memory read
master transaction. The events shown in Figure 3–37 are the same as those
shown in Figure 3–31. In this transaction, the local-side master interface
requests a 64-bit transaction by asserting lm_req64n. The pci_mt64
function asserts req64n on the PCI side. However, the PCI target cannot
transfer 64-bit data, and therefore does not assert ack64n in clock cycle 7
and the upper address ad[63..32] and the upper command/byte
enables cben[7..4] are invalid.

Valid data is only presented on the l_dato[31..0] bus; however,
because the PCI side is 32 bits wide and the local side is 64 bits wide, the
l_ldat_ackn and l_hdat_ackn signals toggle to indicate whether the
the low or high DWORD is being transferred on the local side. Along with
these signals, valid data is qualified with lm_ackn asserted.

1 Because the local-side master interface is 64 bits and the PCI
target is only 32 bits, these transactions always begin on 64-bit
boundaries, which results in l_ldat_ackn always asserted
first.

Altera Corporation User Guide Version 11.1 3–107
October 2011

Functional Description

Figure 3–37. 32-Bit PCI & 64-Bit Local Side Burst Memory Read Master Transaction

I/O & Configuration Read Transactions

I/O and configuration read transactions by definition are 32 bits wide.
The sequence of events is the same as in a 32-bit single-cycle memory read
master transaction, as shown in Figure 3–36. This figure applies to both
the pci_mt64 and pci_mt32 MegaCore functions, excluding the 64-bit
extension signals as noted for pci_mt32.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

cben[3..0]

par

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L Z0

0

Z D1_L D2_L

13

D0-L-PAR D2-L-PARD1-L-PAR

l_dato[31..0] D0_L D1_L D2_L

l_dato[63..32]

lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 108008 000

l_ldat_ackn

l_hdat_ackn

lm_ackn

lm_dxfrn

D3_L

Z

D3-L-PAR

D3_L

l_adi[31..0]

l_cbeni[3..0]

l_cbeni[7..4]

Adr

BE_L

BE_H

6

3–108 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Master Write Transactions

This section describes the behavior of the PCI MegaCore functions in the
following types of master write transactions:

■ Memory write
■ I/O and configuration write

Memory Write Transactions

The PCI MegaCore functions support the following types of matched bus
width and mismatched bus width memory write transactions in master
mode:

■ Burst memory write
■ 32-bit single-cycle memory write
■ 64-bit single-cycle memory write
■ Mismatched bus width memory write

1 Mismatched bus-width transactions are 32-bit PCI transactions
performed by the pci_mt64 MegaCore function.

For each type of transaction, the following sequence of events is the same:

1. The local side asserts lm_req32n (and lm_req64n in the case of a
64-bit transaction) to request a transaction. Consequently, the PCI
side asserts reqn to request mastership of the bus from the PCI
arbiter.

2. When the PCI bus arbiter grants mastership by asserting the gntn
signal, the local side asserts lm_adr_ackn to acknowledge the
transaction’s address and command. During the same clock cycle
when lm_adr_ackn is asserted, the local side provides the address
on the l_adi bus and the command on l_cbeni[3..0]. At the
same time, the pci_mt64 or pci_mt32 function turns on the
drivers for framen (and req64n, in the case of a 64-bit transaction.)

Altera Corporation User Guide Version 11.1 3–109
October 2011

Functional Description

3. The PCI function begins the PCI address phase. During the PCI
address phase, the local side must provide the byte enables for the
transaction on the l_cbeni bus. For burst transactions, byte
enables are used throughout the transaction. At the same time, the
PCI side turns on the driver for irdyn.

1 You can change the byte enables for the successive data words
in burst transactions by turning on Allow Variable Byte Enable
During Burst Transactions option in the Advanced PCI
MegaCore Function Features page of the Parameterize - PCI
Compiler wizard. Refer to “Allow Variable Byte Enables During
Burst Transactions” on page 2–5 for more information about this
option.

4. If the address of the transaction matches the memory range
specified in the base address register (BAR) of a PCI target, the PCI
target asserts devseln to claim the transaction. One or more data
phases follow next, depending on the type of write transaction.

The pci_mt64 and pci_mt32 functions treat memory write and
memory write and invalidate in the same way. Any additional
requirements for the memory write and invalidate command must be
implemented by the local-side design.

3–110 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Burst Memory Write Master Transactions
Figure 3–38 shows the waveform for a 64-bit zero-wait state burst
memory write master transaction. This figure applies to both pci_mt64
and pci_mt32 MegaCore functions, excluding the 64-bit extension
signals as noted for pci_mt32. In this transaction, four 64-bit QWORDs are
transferred from the local side to the PCI side.

Figure 3–38. Zero-Wait State Burst Memory Write Master Transaction

Notes to Figure 3–38:
(1) This signal is not applicable to the pci_mt32 MegaCore function.
(2) For pci_mt32, lm_req32n should be substituted for lm_req64n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

BE_L

D0_L0

0

0

0

D2_L D3_L

13

l_adi[31..0] Adr

7

(1) l_adi[63..32] D0_H

D0_L

D3_H

D3_LD1_L

D1_H

l_cbeni[3..0] BE_L

(1) l_cbeni[7..4] BE_H

(1), (2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

D0_H ZD2_H D3_H

BE_H

D0-L-PAR D2-L-PAR D3-L-PAR

 D0-H-PAR D2-H-PAR D3-H-PAR

 Z

 Z

 Z

D1_L

D1_H

D1-L-PAR

D1-H-PAR

D2_L

D2_H

Altera Corporation User Guide Version 11.1 3–111
October 2011

Functional Description

Table 3–39 shows the sequence of events for a 64-bit zero-wait state burst
memory write master transaction. The 64-bit extension signals are not
applicable to the pci_mt32 function.

Table 3–39. Zero-Wait State Burst Memory Write Master Transaction (Part 1 of 3)

Clock
Cycle Event

1 The local side asserts lm_req64n to request a 64-bit transaction.

2 The function outputs reqn to the PCI bus arbiter to request bus ownership. At the same time, the
function asserts lm_tsr[0] to indicate to the local side that the master is requesting control of the
PCI bus.

3 The PCI bus arbiter asserts gntn to grant the PCI bus to the function. Although Figure 3–31 shows
that the grant occurs immediately and the PCI bus is idle at the time gntn is asserted, this action
may not occur immediately in a real transaction. Before the function proceeds, it waits for gntn to be
asserted and the PCI bus to be idle. A PCI bus idle state occurs when both framen and irdyn are
deasserted.

5 The function turns on its output drivers, getting ready to begin the address phase.

The function also outputs lm_adr_ackn to indicate to the local side that it has acknowledged its
request. During this same clock cycle, the local side should provide the PCI address on
l_adi[31..0] and the PCI command on l_cbeni[3..0].

The local side master interface asserts lm_rdyn to indicate that it is ready to send data to the PCI
side. The function does not assert irdyn regardless if the local side asserts lm_rdyn to indicate
that it is ready to send data, only for the first data phase on the local side. For subsequent data
phases, the PCI MegaCore function asserts irdyn if the local side is ready to send data.

The PCI MegaCore function continues to assert its reqn signal until the end of the address phase.
The function also asserts lm_tsr[1] to indicate to the local side that the PCI bus has been granted.

3–112 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

6 The PCI MegaCore function begins the 64-bit memory write transaction with the address phase by
asserting framen and req64n.

At the same time, the local side must provide the byte enables for the transaction on the l_cbeni
bus. You can change the byte enables for the successive data words in burst transactions by turning
on Allow Variable Byte Enable During Burst Transactions option in the Advanced PCI
MegaCore Function Features page of the Parameterize - PCI Compiler wizard. Refer to “Allow
Variable Byte Enables During Burst Transactions” on page 2–5 for more information about this
option.

The PCI MegaCore function asserts lm_ackn to indicate to the local side that it is ready to transfer
data. Because lm_rdyn was asserted in the previous cycle and lm_ackn is asserted in the current
cycle, the PCI MegaCore function asserts lm_dxfrn. The assertion of the lm_dxfrn and
l_hdat_ackn signals indicate to the local side that the PCI MegaCore function has transferred one
data word from the l_adi bus.

The function asserts lm_tsr[2] to indicate to the local side that the PCI bus is in its address phase.
If the arbiter deasserts gntn in less than 3 clock cycles, the PCI MegaCore function does not assert
lm_tsr[2] in this clock cycle. For recommendations of how to accommodate scenarios where the
arbiter deasserts gntn in less than three clock cycles, refer to “Design Consideration” on page 3–92
for more information.

7 The target claims the transaction by asserting devseln. In this case, the target performs a fast
address decode. The target also asserts ack64n to inform the function that it can transfer 64-bit
data. The target also asserts trdyn to inform the function that it is ready to receive data.

During this clock cycle, the function also asserts lm_tsr[3] to inform the local side that it is in data
phase mode. The function deasserts lm_ackn because its internal pipeline has valid data from the
local side data transfer during the previous clock cycle but no data was transferred on the PCI side.
To ensure that the proper data is transferred on the PCI bus, the function asserts irdyn during the
first data phase only after the PCI target asserts devseln.

8 The function asserts irdyn to inform the target that the function is ready to send data. Because the
irdyn and trdyn are asserted, the first 64-bit data is transferred to the PCI side on the rising edge
of clock cycle 9.

The PCI MegaCore function asserts lm_tsr[9] to indicate to the local side that the target can
transfer 64-bit data. The function also asserts lm_ackn to inform the local side that the PCI side is
ready to accept data. Because lm_rdyn was asserted in the previous cycle and lm_ackn is
asserted in the current cycle, the function asserts lm_dxfrn. The assertion of the lm_dxfrn,
l_ldat_ackn, and l_hdat_ackn signals indicates to the local side that it has transferred one
data word from the l_adi bus.

Table 3–39. Zero-Wait State Burst Memory Write Master Transaction (Part 2 of 3)

Clock
Cycle Event

Altera Corporation User Guide Version 11.1 3–113
October 2011

Functional Description

9 Because irdyn and trdyn are asserted, the second 64-bit data word is transferred to the PCI side
on the rising edge of clock cycle 10.

The function asserts lm_ackn to inform the local side that the PCI side is ready to accept data.
Because lm_rdyn was asserted in the previous cycle and lm_ackn is asserted in the current
cycle, the function asserts lm_dxfrn. The assertion of the lm_dxfrn, l_ldat_ackn, and
l_hdat_ackn signals indicates to the local side that it has transferred one data word from the
l_adi bus.

The function asserts lm_tsr[8] in the same clock cycle to inform the local side that a data phase
was completed successfully on the PCI bus during the previous clock cycle. The function also asserts
lm_tsr[9] to inform the local side that the PCI target has claimed the 64-bit transaction with
ack64n.

10 Because irdyn and trdyn are asserted, the third 64-bit data word is transferred to the PCI side on
the rising edge of clock 11.

The function asserts lm_ackn to inform the local side that the PCI side is ready to accept data.
Because lm_rdyn was asserted in the previous cycle and lm_ackn is asserted in the current
cycle, the function asserts lm_dxfrn. The assertion of the lm_dxfrn, l_ldat_ackn, and
l_hdat_ackn signals indicates to the local side that it has transferred one data word from the
l_adi bus. Also, the assertion of the lm_lastn signal indicates to the local side that valid data is
expected on the l_adi bus. Also, the assertion of the lm_lastn signal indicates that clock cycle
10 is the last data phase on the local side.

The function also asserts lm_tsr[8] in the same clock cycle to inform the local side that a
successful data transfer has occurred on the PCI bus during the previous clock cycle.

11 Because lm_lastn was asserted and a data phase was completed in the previous cycle, the
function deasserts framen and req64n and asserts irdyn to signal the last data phase. Because
trdyn is asserted, the last data phase is completed on the PCI side on the rising edge of clock cycle
12.

On the local side, the function deasserts lm_ackn and lm_dxfrn since the last data phase on the
local side was completed on the previous cycle.

The function continues to assert lm_tsr[8], informing the local side that a successful data transfer
has occurred on the PCI bus during the previous clock cycle.

12 The function deasserts irdyn and tri-states framen and req64n. The PCI target deasserts
devseln, ack64n, and trdyn. These actions indicate that the transaction has ended and there
will be no additional data phases.

The function continues to assert lm_tsr[8], informing the local side that a successful data transfer
has occurred on the PCI bus during the previous clock cycle.

13 The function deasserts lm_tsr[3], informing the local side that the data transfer mode is
completed.

Table 3–39. Zero-Wait State Burst Memory Write Master Transaction (Part 3 of 3)

Clock
Cycle Event

3–114 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Figure 3–39 shows the same transaction as in Figure 3–42, but the local
side master interface requests a 32-bit transaction by asserting
lm_req32n. This figure applies to both pci_mt64 and pci_mt32,
excluding the 64-bit extension signals as noted for pci_mt32. The
pci_mt64 function does not assert req64n on the PCI side. Therefore,
the upper address ad[63..32] and the upper command/byte enables
cben[7..4] are invalid.

Figure 3–39. 32-Bit PCI & 32-Bit Local-Side Burst Memory Write Master Transaction

Note to Figure 3–39:
(1) This signal is not applicable to the pci_mt32 MegaCore function.

2 3 4 5 6 7 9 10

clk

reqn

8 111

gntn

ad[31..0]

cben[3..0]

par

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

0

0

D1_L D2_L

lm_req32n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 108008 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

BE_L

D1-L-PAR D2-L-PAR

 Z

 Z

D0_L

D0-L-PAR

l_adi[31..0] Adr

7

(1) l_adi[63..32]

D0_L D1_L D2_L

l_cbeni[3..0] BE_L

(1) l_cbeni[7..4]

Altera Corporation User Guide Version 11.1 3–115
October 2011

Functional Description

Figure 3–40 shows the same transaction as in Figure 3–38 but with the
local side inserting a wait state. This figure applies to both the pci_mt64
and pci_mt32 functions, except the 64-bit extension signals as noted for
pci_mt32. The local side deasserts lm_rdyn in clock cycle 9.
Consequently, on the following clock cycle (clock cycle 10), the pci_mt64
and pci_mt32 functions suspend data transfer on the local side by
deasserting the lm_dxfrn signal. Because there is no data transfer on the
local side in clock cycle 10, the function suspends data transfer on the PCI
side by deasserting the irdyn signal in clock cycle 11.

Figure 3–40. Burst Memory Write Master Transaction with Local Wait State

Notes to Figure 3–40:
(1) This signal is not applicable to the pci_mt32 MegaCore function.
(2) For pci_mt32, lm_req32n should be substituted for lm_req64n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

BE_L

D0_L0

0

0

0

D2_L

13

(1), (2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

D0_H

D3_L

BE_H

D0-L-PAR D3-L-PARD2-L-PAR

 D0-H-PAR D3-H-PARD2-H-PAR

 Z

 Z

 Z

D2_HD1_H Z

14

208 308

l_adi[31..0] Adr

7

(1) l_adi[63..32] D0_H

D0_L

D2_H

D2_LD1_L

D1_H

l_cbeni[3..0] BE_L

BE_H(1) l_cbeni[7..4]

D1_L

D3_H

D1-L-PAR

D1-H-PAR

D3_L

D3_H

3–116 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Figure 3–41 shows the same transaction as in Figure 3–38 but with the PCI
bus target inserting a wait state. This figure applies to both the pci_mt64
and pci_mt32 MegaCore functions, excluding the 64-bit extension
signals as noted for pci_mt32. The PCI target inserts a wait state by
deasserting trdyn in clock cycle 9. Consequently, on the following clock
cycle (clock cycle 10), the pci_mt64 and pci_mt32 functions deassert
the lm_ackn and lm_dxfrn signals on the local side. Data transfer is
suspended on the PCI side in clock cycle 9 and on the local side in clock
cycle 10. Also, because lm_lastn is asserted and lm_rdyn is deasserted
in clock cycle 11, the lm_ackn and lm_dxfrn signals remain deasserted
after clock cycle 12.

Altera Corporation User Guide Version 11.1 3–117
October 2011

Functional Description

Figure 3–41. Burst Memory Write Master Transaction with PCI Wait State

Notes to Figure 3–41:
(1) This signal is not applicable to the pci_mt32 MegaCore function.
(2) For pci_mt32, lm_req32n should be substituted for lm_req64n for 32-bit master transactions.

Burst Memory Write Master Transactions with Variable Byte Enables
Figure 3–42 shows a burst memory write master transaction using
variable byte enables. To allow this type of transaction, turn on Allow
Variable Byte Enables During Burst Transactions on the Advanced PCI

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

BE_L

D0_L0

0

0

0

D1_L

13

(1), (2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

D0_H

D3_L

BE_H

D0-L-PAR D3-L-PAR

 D0-H-PAR D3-H-PAR

 Z

 Z

 Z

D1_H D3_H Z

14

208308

l_adi[31..0] Adr

7

(1) l_adi[63..32] D0_H

D0_L

D3_H

D3_LD1_L

D1_H

l_cbeni[3..0] BE_L

(1) l_cbeni[7..4] BE_H

D2_L

D2_H

D2-H-PAR

D2-L-PARD1-L-PAR

D1-H-PAR

D2_L

D2_H

3–118 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

MegaCore Function Features page of the Parameterize - PCI Compiler
wizard. This option allows changing byte enables for the successive data
words during a burst transaction.

For example, in Figure 3–38 the local side provides byte enables at the
rising edge of clock cycle 6. This value of byte enables is used throughout
the burst transaction. In Figure 3–42 the same transaction is shown with
Allow Variable Byte Enables During Burst Transactions turned on and
the local side is providing unique byte enables for every data transfer.

Altera Corporation User Guide Version 11.1 3–119
October 2011

Functional Description

Figure 3–42. Burst Memory Write Master Transaction with Variable Byte Enables

Notes to Figure 3–42:
(1) This signal is not applicable to the pci_mt32 MegaCore function.
(2) For pci_mt32, lm_req32n should be substituted for lm_req64n for 32-bit master transactions.

32-Bit Single-Cycle Memory Write Master Transactions
Figure 3–43 shows a 32-bit single-cycle memory write master transaction.
The transaction shown in Figure 3–43 is the same as that shown in
Figure 3–39, except that the local side master interface transfers only one
data word. This figure applies to both the pci_mt64 and pci_mt32
MegaCore functions, excluding the 64-bit extension signals as noted for
pci_mt32.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

D0_L0

0

0

0

D2_L D3_L

13

l_adi[31..0] Adr

7

(1) l_adi[63..32] D0_H

D0_L

D3_H

D3_LD1_L

D1_H

l_cbeni[3..0] BE0_L

(1) l_cbeni[7..4] BE0_H

(1), (2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

D0_H ZD2_H D3_H

D0-L-PAR D2-L-PAR D3-L-PAR

 D0-H-PAR D2-H-PAR D3-H-PAR

 Z

 Z

D1_L

D1_H

D1-L-PAR

D1-H-PAR

D2_L

D2_H

BE1_L

BE2_LBE0_L BE1_L BE3_L

BE0_H BE1_H BE3_HBE3_H

 Z

BE2_L BE3_L

BE1_H BE2_H BE3_H

3–120 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Figure 3–43. 32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Write Transaction

Note to Figure 3–43:
(1) This signal is not applicable to the pci_mt32 MegaCore function.

2 3 4 5 6 7 9

clk

reqn

81

gntn

ad[31..0]

cben[3..0]

par

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

0

0

lm_req32n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 008 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

BE_L

 Z

 Z

D0_L

D0-L-PAR

108

l_adi[31..0] Adr

7

(1) l_adi[63..32]

D0_L

l_cbeni[3..0] BE_L

(1) l_cbeni[7..4]

Altera Corporation User Guide Version 11.1 3–121
October 2011

Functional Description

64-Bit Single Cycle Memory Write Master Transactions
This section is only applicable to the pci_mt64 MegaCore function. The
pci_mt64 MegaCore function performs 64-bit single-cycle master write
transactions if the Assume ack64n Response option is turned on. (This
option is located on the Advanced PCI MegaCore Function Features
page of the Parameterize - PCI Compiler wizard.) This option can be
used if both of the following statements are true for your system:

■ The bit width of all devices is known, such as in an embedded system
■ All 64-bit master transactions are claimed by 64-bit targets that

respond with ack64n asserted

When you turn on the Assume ack64n Response option, the pci_mt64
master can do the following:

■ Perform 64-bit single-cycle master write transactions
■ Initiate 64-bit master write transactions with less initial irdyn

latency

During 64-bit master write transactions in standard operation mode, the
pci_mt64 function waits until the target asserts devseln before
asserting irdyn. This action allows the master to ensure that the correct
number of DWORDs are transferred if a 32-bit target claims the transaction.

Standard operation prevents the pci_mt64 MegaCore function from
supporting 64-bit single-cycle master memory write transactions. When
the pci_mt64 master initiates a single-cycle 64-bit write and the target is
a 32-bit device, the upper 32-bits of data are not transferred across the PCI
bus and are lost from the local side master application. If you turn on the
Assume ack64n Response option, the pci_mt64 MegaCore function can
support 64-bit single-cycle master write transactions because the target is
guaranteed to be a 64-bit device. Figure 3–44 shows an example of a 64-bit
single-cycle memory write master transaction where the pci_mt64
function is the master.

3–122 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Figure 3–44. PCI 64-Bit Single-Cycle Master Memory Write Operation

2 3 4 5 6 7 9 10

clk

reqn

81

gntn

ad[31..0]

ad[63..32]

cben[3..0]

cben[7..0]

par

par64

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

l_adi[31..0]

l_cbeni[3..0]

Adr

7

Adr-PAR

BE_L

Z

Z

BE_L

0

Adr

7

0

0

0

BE_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

Z

Z

lm_req64n

lm_lastn

lm_tsr[9..0] 000

lm_rdyn

lm_ackn

lm_dxfrn

lm_adr_ackn

001 004002 008 308 000

BE_H

D0_L

l_adi[63..32] D0_H

l_cbeni[7..4]

Altera Corporation User Guide Version 11.1 3–123
October 2011

Functional Description

Mismatched Bus Width Burst Memory Write Master Transactions
This section is only applicable to the pci_mt64 MegaCore function.
Figure 3–45 shows the same transaction as in Figure 3–38, but the PCI
target cannot transfer 64-bit transactions. In this transaction, the local-
side master interface requests a 64-bit transaction by asserting
lm_req64n. The pci_mt64 function asserts req64n on the PCI side.
However, the PCI target cannot transfer 64-bit data, and therefore does
not assert ack64n in clock cycle 7. Because this is the case, the upper
address ad[63..32] and the upper command/byte enables
cben[7..4] are invalid.

In this case, the PCI function transfers 64 bits of data from the local side
l_adi[63..0] bus and automatically transfers 32-bit data on the PCI
side. The function automatically inserts wait states on the local side by
deasserting the lm_ackn signal as necessary.

Also, because the PCI side is 32 bits wide and the local side is 64 bits wide,
the pci_mt64 function assumes that the transactions are within 64-bit
boundaries. Therefore, the pci_mt64 function registers l_adi[63..0]
on the local side and transfers the lower 32-bit data word on
l_adi[31..0] on the PCI side first, and the upper 32-bit data word on
l_adi[63..32] afterwards.

3–124 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Figure 3–45. 32-Bit PCI & 64-Bit Local-Side Master Burst Memory Write Transaction

I/O & Configuration Write Master Transactions

I/O and configuration write transactions by definition are 32 bits wide.
The sequence of events is the same as in a 32-bit single-cycle memory
write master transaction, as shown in Figure 3–43. This figure applies to
both the pci_mt64 and pci_mt32 MegaCore functions, excluding the
64-bit extension signals as noted for pci_mt32.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

cben[3..0]

par

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

Adr

7

Adr-PAR

BE_L

D0_L0

0

13

lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 108008 000

l_ldat_ackn

l_hdat_ackn

lm_ackn

lm_dxfrn

D0-L-PAR

 Z

 Z

14

D1_HD0_H D1_L

D1-H-PARD0-H-PAR D1-L-PAR

l_adi[31..0] Adr

7

l_adi[63..32] D0_H

D0_L D1_L

D1_H

l_cbeni[3..0] BE_L

l_cbeni[7..4] BE_H

Altera Corporation User Guide Version 11.1 3–125
October 2011

Functional Description

Abnormal Master Transaction Termination

An abnormal transaction termination is one in which the local side did
not explicitly request the termination of a transaction by asserting the
lm_lastn signal. A master transaction can be terminated abnormally for
several reasons. This section describes the behavior of the pci_mt64 and
pci_mt32 functions during the following abnormal termination
conditions:

■ Latency timer expires
■ Target retry
■ Target disconnect without data
■ Target disconnect with data
■ Target abort
■ Master abort

Latency Timer Expires

The PCI specification requires that the master device end the transaction
as soon as possible after the latency timer expires and the gntn signal is
deasserted. The pci_mt64 and pci_mt32 functions adhere to this rule,
and when they end the transaction because the latency timer expired,
they assert lm_tsr[4] (tsr_lat_exp) until the beginning of the next
master transaction.

1 The PCI MegaCore functions allow the option of disabling the
latency timer for embedded applications. Refer to “Disable
Master Latency Timer” on page 2–6 for more information.

Retry

The target issues a retry by asserting stopn and devseln during the first
data phase. When the pci_mt64 and pci_mt32 MegaCore functions
detect a retry condition (refer to “Retry” on page 3–77 for details), they
end the cycle and assert lm_tsr[5] until the beginning of the next
transaction. This process informs the local-side device that it has ended
the transaction because the target issued a retry.

1 The PCI specification requires that the master retry the same
transaction with the same address at a later time. It is the
responsibility of the local-side application to ensure that this
requirement is met.

3–126 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Master Mode Operation

Disconnect Without Data

The target device issues a disconnect without data if it is unable to
transfer additional data during the transaction. The signal pattern for this
termination is described in “Disconnect” on page 3–79. When the
pci_mt64 and pci_mt32 functions end a transaction because of a
disconnect without data, they assert lm_tsr[6] until the beginning of
the next master transaction.

Disconnect with Data

The target device issues a disconnect with data if it is unable to transfer
additional data in the transaction. The signal pattern for this termination
is described in “Disconnect” on page 3–79. When the pci_mt64 and
pci_mt32 functions end a transaction because of a disconnect with data,
they assert lm_tsr[7] until the beginning of the next master
transaction.

Target Abort

A target device issues this type of termination when a catastrophic failure
occurs in the target. The signal pattern for a target abort is shown in
“Target Abort” on page 3–86. When the pci_mt64 and pci_mt32
functions end a transaction because of a target abort, they assert the
tabort_rcvd signal, which is the same as the PCI status register bit 12.
Therefore, the signal remains asserted until it is reset by the host.

Master Abort

The pci_mt64 and pci_mt32 functions terminate the transaction with
a master abort when no target claims the transaction by asserting
devseln. Except for special cycles and configuration transactions, a
master abort is considered to be a catastrophic failure. When a cycle ends
in a master abort, the pci_mt64 and pci_mt32 functions inform the
local-side device by asserting the mabort_rcvd signal, which is the same
as the PCI status register bit 13. Therefore, the signal remains asserted
until it is reset by the host.

Altera Corporation User Guide Version 11.1 3–127
October 2011

Functional Description

Host Bridge
Operation

This section describes using the pci_mt64 and pci_mt32 MegaCore
functions as a host bridge application in a PCI system. The pci_mt64
and pci_mt32 functions support the following advanced master
features, which should be enabled when using the functions in a host
bridge application:

■ Use in host bridge application
■ Allow internal arbitration logic

The host bridge features can be enabled through the Advanced PCI
MegaCore Function Features page of the Parameterize - PCI Compiler
wizard.

Using the PCI MegaCore Function as a Host Bridge

Turning on Use in Host Bridge Application hardwires the master enable
bit of the command register (bit[2]) to a value of 1, which permanently
enables the master functionality of the pci_mt64 and pci_mt32
MegaCore functions. Additionally, the Use in Host Bridge Application
option also allows the pci_mt64 or pci_mt32 master device to generate
configuration read and write transactions to the internal configuration
space. With the Use in Host Bridge Application option, the same logic
and software routines used to access the configuration space of other PCI
devices on the bus can also configure the pci_mt64 or pci_mt32
configuration space.

1 To perform configuration transactions to internal configuration
space, the idsel signal must be connected following the PCI
specification requirements.

PCI Configuration Read Transaction from the pci_mt64 Local Master
Device to the Internal Configuration Space

Figure 3–46 shows the behavior of the pci_mt64 master device
performing a configuration read transaction from internal configuration
space. The local master requests a 32-bit transaction by asserting the
lm_req32n signal. When requesting a configuration read transaction,
the pci_mt64 function will automatically perform a single-cycle
transaction. The local master signals are asserted as if the pci_mt64
master is completing a single-cycle, 32-bit memory read transaction,
similar to Figure 3–44 in the Master Mode Operation section. The
pci_mt64 function’s internal configuration space will respond to the
transaction without affecting the local side signals. Figure 3–46 applies to
both the pci_mt64 and pci_mt32 MegaCore functions, excluding the
64-bit extension signals as noted for the pci_mt32 function.

3–128 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Host Bridge Operation

Figure 3–46. Configuration Read from Internal Configuration Space in Self-Configuration Mode

Note to Figure 3–46:
(1) This signal is not applicable to the pci_mt32 MegaCore function.

Z

A

idsel

Z

Z

10 11 121 2 3 4 5 6 7 8 9

clk

reqn

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

0 Adr D0_L

0 BE_L Z

Adr-PAR Z D0-L-PAR

000 100 500 000

108

A

lt_tsr[11..0]

D0_Ll_dato[31..0]

(1) l_dato[63..32]

irdyn

devseln

(1) ack64n

trdyn

stopn

lm_req32n

l_adi[31..0]

l_cbeni[3..0]

(1) l_cbeni[7..4]

lm_adr_ackn

lm_rdyn

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

lm_tsr[9..0]

Adr

BE_L

000 001 002 004 008 000

(1) l_adi[63..32]

Altera Corporation User Guide Version 11.1 3–129
October 2011

Functional Description

PCI Configuration Write Transaction from the pci_mt64 Local Master
Device to the Internal Configuration Space

Figure 3–47 shows the behavior of the pci_mt64 master performing a
configuration write transaction to internal configuration space. The local
master requests a 32-bit transaction by asserting the lm_req32n signal.
When requesting a configuration write transaction, the pci_mt64
function will automatically perform a single-cycle transaction. The local
master signals are asserted as if the pci_mt64 master is completing a
single-cycle 32-bit memory write transaction, similar to Figure 3–43 in the
Master Mode Operation section. The pci_mt64 function’s internal
configuration space will respond to the transaction without affecting the
local side signals. Figure 3–47 applies to both the pci_mt64 and
pci_mt32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci_mt32.

3–130 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Host Bridge Operation

Figure 3–47. Configuration Write to Internal Configuration Space in Self-Configuration Mode

Note to Figure 3–47:
(1) This signal is not applicable to pci_mt32 for 32-bit master write transactions.

idsel

Z

lt_tsr[11..0]

10 11 12

clk

reqn

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lm_req32n

l_adi[31..0]

(1) l_adi[63..32]

l_cbeni[3..0]

(1) l_cbeni[7..4]

lm_adr_ackn

lm_rdyn

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

lm_tsr[9..0]

1 2 3 4 5 6 7 8 9

ZD0-L-PARAdr-PAR

Z

D0_L

000

002 004001000 008

100

108

500 000

000

Adr D0_L

B BE_L

0 Adr

0 B BE_L

Altera Corporation User Guide Version 11.1 3–131
October 2011

Functional Description

64-Bit
Addressing,
Dual Address
Cycle (DAC)

This section describes and includes waveform diagrams for 64-bit
addressing transactions using a dual address cycle (DAC). All 32-bit
addressing transactions for master and target mode operation described
in the previous sections are supported by 64-bit addressing transactions.
This includes both 32-bit and 64-bit data transfers.

1 This section applies to the pci_mt64 and pci_t64 MegaCore
functions only.

Target Mode Operation

A read or write transaction begins after a master acquires mastership of
the PCI bus and asserts framen to indicate the beginning of a bus
transaction. If the transaction is a 64-bit transaction, the master device
asserts the req64n signal at the same time it asserts the framen signal.
The pci_mt64 and pci_t64 functions assert the framen signal in the
first clock cycle, which is called the first address phase. During the first
address phase, the master device drives the 64-bit transaction address on
ad[63..0], the DAC command on cben[3..0], and the transaction
command on cben[7..4]. On the following clock cycle, during the
second address phase, the master device drives the upper 32-bit
transaction address on both ad[63..32] and ad[31..0], and the
transaction command on both cben[7..4] and cben[3..0]. During
these two address phases, the PCI MegaCore function latches the
transaction address and command, and decodes the address. If the
transaction address matches the pci_mt64 and pci_t64 target, the
pci_mt64 and pci_t64 target asserts the devseln signal to claim the
transaction. In 64-bit transactions, pci_mt64 and pci_t64 also assert
the ack64n signal at the same time as the devseln signal indicating that
pci_mt64 and pci_t64 accept the 64-bit transaction. The pci_mt64
and pci_t64 functions implement slow decode, i.e., the devseln and
ack64n signals are asserted after the second address phase is presented
on the PCI bus. Also, both of the lt_tsr[1..0] signals are driven high
to indicate that the BAR0 and BAR1 address range matches the current
transaction address.

3–132 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

64-Bit Addressing, Dual Address Cycle (DAC)

64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction

Figure 3–48 shows the waveform for a 64-bit address, 64-bit data single-
cycle target read transaction. Figure 3–48 is exactly the same as
Figure 3–7, except that Figure 3–48 has two address phases (described in
the previous paragraph). Also, both lt_tsr[1..0] signals are asserted
to indicate that the BAR0 and BAR1 address range of pci_mt64 and
pci_t64 matches the current transaction address. In addition, the
current transaction upper 32-bit address is latched on l_adro[63..32],
and the lower 32-bit address is latched on l_adro[31..0].

1 All 32-bit addressing transactions described in “Target Mode
Operation” on page 3–131 are applicable for 64-bit addressing
transactions, except for the differences described in the previous
paragraph.

Altera Corporation User Guide Version 11.1 3–133
October 2011

Functional Description

Figure 3–48. 64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction

ad[31..0]

ad[63..32]

cben[3..0]

cben[7..4]

par

par64

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

l_adi[63..32]

l_beno[3..0]

l_beno[7..4]

lt_tsr[11..0]

Adr_L

D

Adr-PAR_L

Z

Adr_L

6

Z

BE0_L

BE0_H

Z

000 983

D0_L

D0_H

D0-L-PAR

BE0_L

BE0_H

000

1 2 3 4 5 6 7 8 9 10 11

D0_L

D0_H

lt_rdyn

D83

Adr_H

Adr_H

6

6

Adr-PAR_H

Z D0-H-PARAdr-PAR_H

l_adro[63..32] Adr_H

3–134 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

64-Bit Addressing, Dual Address Cycle (DAC)

Master Mode Operation

A master operation begins when the local-side master interface asserts
the lm_req64n signal to request a 64-bit transaction or the lm_req32n
signal to request a 32-bit transaction. The pci_mt64 function outputs the
reqn signal to the PCI bus arbiter to request bus ownership. The
pci_mt64 function also outputs the lm_adr_ackn signal to the local
side to acknowledge the request. When the lm_adr_ackn signal is
asserted, the local side provides the PCI address on the l_adi[63..0]
bus, the DAC command on l_cbeni[3..0], and the transaction
command on l_cbeni[7..4]. When the PCI bus arbiter grants the bus
to the pci_mt64 function by asserting gntn, pci_mt64 begins the
transaction with a dual address phase. The pci_mt64 function asserts
the framen signal in the first clock cycle, which is called the first address
phase. During the first address phase, the pci_mt64 function drives the
64-bit transaction address on ad[63..0], the dual address cycle
command on cben[3..0], and the transaction command on
cben[7..4]. On the following clock cycle, during the second address
phase, the pci_mt64 function drives the upper 32-bit transaction
address on both ad[63..32] and ad[31..0], and the transaction
command on both cben[7..4] and cben[3..0].

64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction

Figure 3–49 shows the waveform for a 64-bit address, 64-bit data master
burst memory read transaction. Figure 3–49 is exactly the same as
Figure 3–31, except that Figure 3–49 has two address phases (as described
in the previous paragraph).

1 All 32-bit addressing transactions described in “Master Mode
Operation” on page 3–134 are applicable for 64-bit addressing
transactions, except for the differences described in the previous
paragraph.

Altera Corporation User Guide Version 11.1 3–135
October 2011

Functional Description

Figure 3–49. 64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

ad[63..32]

cben[3..0]

cben[7..4]

par

par64

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

Adr_L

BE_L

Z

D0_L

D0_H

D0-H-PAR

Z0

0

0

0

Z

Z

BE_H

Z

D1_L D2_L

D1_H D2_H

13 14

Z

Z

Z

D1-H-PAR D2-H-PAR

D0-H-PAR D2-H-PARD1-H-PAR

l_adi[31..0] Adr_L

l_dato[31..0] D0_L D1_L D2_L

l_dato[63..32] D0_H D1_H D2_H

l_cbeni[3..0] BE_L

l_cbeni[7..4] BE_H

lm_req64n

lm_lastn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 200008 208 000

l_ldat_ackn

l_hdat_ackn

lm_ackn

lm_dxfrn

lm_adr_ackn

D

Adr_H

Adr_H

D

6

6

Adr-PAR_L

Adr-PAR_H

Adr-PAR_H

l_adi[63..32] Adr_H

6

308

3–136 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

64-Bit Addressing, Dual Address Cycle (DAC)

Altera Corporation User Guide Version 11.1 4–1
October 2011

4. Testbench

General
Description

The Altera PCI testbench facilitates the design and verification of systems
that implement the Altera pci_mt64, pci_mt32, pci_t64, and
pci_t32 MegaCore functions. You can build a PCI behavioral
simulation environment by using the components of the PCI testbench,
an IP functional simulation model of any Altera PCI MegaCore function,
and your VHDL or Verilog HDL application design. Figure 4–1 shows the
block diagram of the PCI testbench. The shaded blocks are provided with
the PCI testbench.

Figure 4–1. Altera PCI Testbench Block Diagram

To use the PCI testbench, you should have a basic understanding of PCI
bus architecture and operations.This document describes the features
and applications of the PCI testbench to help you successfully design and
verify your application design.

Bus
Monitor

Clock Generator

Arbiter

Pull Ups

Reference
Design

PCI Bus

Altera PCI Testbench

Master
Transactor

Target
Transactor

Testbench Modules

IP Functional
Simulation Model
of an Altera PCI

MegaCore
Function

Altera Device

4–2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Features

Features The PCI testbench includes the following features:

■ Easy to use simulation environment for any standard VHDL or
Verilog HDL simulator

■ Open source VHDL and Verilog HDL files
■ Flexible PCI bus functional model to verify your application that

uses any Altera PCI MegaCore function
■ Simulates all basic PCI transactions including memory read/write

operations, I/O read and write transactions, and configuration read
and write transactions

■ Simulates all abnormal PCI transaction terminations including target
retry, target disconnect, target abort, and master abort

■ Simulates PCI bus parking
■ Includes a simple reference design that performs basic memory and

I/O transactions

PCI Testbench
Files

The Altera PCI testbench is included and installed with the PCI Compiler.
Figure 4–2 shows the directory structure of PCI testbench subdirectory,
where <path> is the directory in which the PCI Compiler is installed.

Figure 4–2. PCI Testbench Directory Structure

testbench

<HDL language>

<PCI MegaCore Function>

example
Contains files and scripts allowing you to simulate PCI
transactions

local_bfm
Contains a simple reference design

pci_top
Contains an IP functional simulation model

tb_src
Contains testbench source files

pci_compiler

<path>

megawizard_flow

Altera Corporation User Guide Version 11.1 4–3
October 2011 PCI Compiler

Testbench

Table 4–1 gives a description of the PCI testbench source files provided in
the tb_src directory. For more information on these files, refer to
“Testbench Specifications” on page 4–6.

Table 4–1. Files Contained in the tb_src Directory

File(1) Description

mstr_tranx The master transactor defines the procedures
(VHDL) or tasks (Verilog HDL) needed to initiate PCI
transactions in the testbench.

mstr_pkg The master package consists descriptions of
procedures (VHDL) or tasks (Verilog HDL) of the
master transactor (mstr_tranx) commands.

trgt_tranx The target transactor simulates the target behavior in
the testbench. It serves to respond to PCI
transactions.

trgt_tranx_mem_init.dat This file is the memory initialization file for the target
transactor.

monitor This module monitors the PCI transactions on the
bus and reports the results.

clk_gen This module generates 33-or 66-MHz clock for the
PCI agents.

arbiter This module contains PCI bus arbiter.

pull_up This module is used to provide weak pull-up on the
tri-stated signals.

altera_tb This is a sample top-level file that instantiates the
testbench modules and the IP functional simulation
model of the PCI MegaCore function. You can use
this sample top-level file in your application design by
replacing the top_local instance from the
testbench file with the top level of your application
design. Refer to “Simulation Flow” on page 4–20 for
more information.

Note to Table 4–1:
(1) All files are provided in both VHDL and Verilog HDL.

4–4 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Testbench Files

Table 4–2 describes the reference design files provided in the local_bfm
directory, For more information on these files refer to “Local Reference
Design” on page 4–15.

The example directory (Table 4–3) contains the following subgroups of
files:

■ Testbench files modified to simulate the reference design provided
in local_bfm

■ A top-level design file
■ Simulation scripts

Table 4–2. Files Contained in the local_bfm Directory

File(1) Description

dma (2) This module serves as a direct memory access (DMA)
engine for the reference design

lm_last_gen (2) This module generates a lm_lastn signal for
local_master

local_master (2) This module initiates master transactions from the local side.
The DMA engine triggers the state machine inside
local_master.

local_target The module consists of a simple target state machine that
performs 32 or 64-bit memory read/write transactions with
the LPM memory and 32-bit single-cycle IO read/write
transactions with an I/O register defined in the local target

prefetch This module is used to prefetch the data from a memory
block during burst target read transactions and burst master
write transactions.

lpm_ram_32 This module is used to instantiate 1 KByte of RAM. This RAM
is accessible by both local_target and
local_master.

local_top This module instantiates all the local reference design
modules.

Notes to Table 4–2:
(1) All files are provided in both VHDL and Verilog HDL.
(2) Not applicable to the pci_t32 and pci_t64 MegaCore functions.

Altera Corporation User Guide Version 11.1 4–5
October 2011 PCI Compiler

Testbench

Refer to “Simulation Flow” on page 4–20 for more information on the
modified testbench files.

Table 4–3. Files Contained in the example Directory

File Description

Modified Testbench Files

mstr_tranx (1) This module contains the master transactor code. The INITIALIZATION
section has the parameters set to simulate the Local Reference Design.
The USER COMMANDS section has the PCI commands that will be
executed during simulation.

trgt_tranx (1) This module contains the target transactor code. The address_lines and
mem_hit_range settings are set to simulate the reference design.

trgt_tranx_mem_init.dat (1) This file is the memory initialization file for the target transactor.

Top-level Design File

altera_tb (1) This top-level file instantiates the testbench module files, the
IP functional simulation model of the pci_mt64 MegaCore function,
and the reference design file. The idsel signal of the Altera PCI
MegaCore function is connected to address bit 28 and the idsel signal
of the target transactor is connected to address bit 29.

Simulation Scripts

run_altera_modelsim.tcl This script can be used with the Altera-ModelSim simulator. This script
compiles all the files provided in <path>\pci_compiler
\megawizard_flow\testbench\<HDL language>
\<PCI MegaCore function>\example and simulates the reference
design for the transactions specified in the mstr_tranx file.

run_modelsim.tcl This script can be used with the ModelSim SE, PE or AE simulators.
This script compiles all the files provided in <path>\pci_compiler
\megawizard_flow\testbench\<HDL language>
\<PCI MegaCore function>\example and simulates the reference
design for the transactions specified in the mstr_tranx file.

run_vcs.sh This script is used with VCS simulator. This script compiles the files
provided in <path>\pci_compiler\megawizard_flow
\testbench\<HDL language>\<PCI MegaCore function>
\example\<function> and simulates the reference design for the
transactions specified in the mstr_tranx file.

run_ncverilog.sh This script must be used with NC-Verilog simulator. This script will
compile all the files provided in <path>\pci_compiler
\megawizard_flow\testbench\<HDL language>
\<PCI MegaCore function>\example and simulates the reference
design for the transactions specified in the mstr_tranx file.

Note to Table 4–3:
(1) This file is provided in both VHDL and Verilog HDL.

4–6 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

Testbench
Specifications

This section describes the modules used by the PCI testbench including
master commands, setting and controlling target termination responses,
bus parking, and PCI bus speed settings. Refer to Figure 4–1 for a block
diagram of the PCI testbench. The Altera PCI testbench has the following
modules:

■ Master transactor (mstr_tranx)
■ Target transactor (trgt_tranx)
■ Bus monitor (monitor)
■ Clock generator (clk_gen)
■ Arbiter (arbiter)
■ Pull ups (pull_ups)
■ A local reference design

The PCI testbench consists of VHDL and Verilog HDL. If your application
requires a feature that is not supported by the PCI testbench, you can
modify the source code to add the feature. You can also modify the
existing behavior to fit your application needs.

Table 4–4 shows the PCI bus transactions supported by the PCI testbench.

Table 4–4. PCI Testbench PCI Bus Transaction Support

Transactions Master Transactor Target Transactor Local Master Local Target

Interrupt acknowledge cycle

I/O read v v v v
I/O write v v v v
Memory read v v v v
Memory write v v v v
Configuration read v v
Configuration write v v
Memory read multiple v
Memory write multiple

Dual address cycle

Memory read line v
Memory write and invalidate v

Altera Corporation User Guide Version 11.1 4–7
October 2011 PCI Compiler

Testbench

Table 4–5 shows the testbench's target termination support. The master
transactor and the local master respond to the target terminations by
terminating the transaction gracefully and releasing the PCI bus.

Master Transactor (mstr_tranx)

The master transactor simulates the master behavior on the PCI bus. It
serves as an initiator of PCI transactions for Altera PCI testbench. The
master transactor has three main sections:

■ PROCEDURES (VHDL) or TASKS (Verilog HDL)
■ INITIALIZATION
■ USER COMMANDS

PROCEDURES and TASKS Sections

The PROCEDURES (VHDL) and TASKS (Verilog HDL) sections define
the events that are executed for the user commands supported by the
master transactor. The events written in the PROCEDURES and TASKS
sections follow the phases of a standard PCI transaction as defined by the
PCI Local Bus Specification, Revision 3.0, including:

■ Address phase
■ Turn-around phase (read transactions)
■ Data phases
■ Turn-around phase

The master transactor terminates the PCI transactions in the following
cases:

■ The PCI transaction has successfully transferred all the intended data
■ The PCI target terminates the transaction prematurely with a target

retry, disconnect, or abort as defined in the PCI Local Bus Specification,
Revision 3.0

■ A target does not claim the transaction resulting in a master abort

Table 4–5. PCI Testbench Target Termination Support

Features Master Transactor Target Transactor Local Master Local Target

Target abort v v
Target retry v v v v
Target disconnect v v v v

4–8 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

The bus monitor informs the master transactor of a successful data
transaction or if the target has terminated the transaction. Refer to the
source code to see how the master transactor uses these termination
signals from the bus monitor.

The PCI testbench master transactor's PROCEDURES and TASKS
sections implement basic PCI transaction functionality. If your
application requires different functionality, modify the events to change
the behavior of the master transactor. Additionally, you can create new
procedures or tasks in the master transactor using the existing events as
an example.

INITIALIZATION Section

This user-defined section defines the parameters and reset length of your
PCI bus on power-up. Specifically, the system should reset the bus and
write the configuration space of the PCI agents. You can modify the
master transactor INITIALIZATION section to match your system
requirements by changing the time the system reset is asserted and
modifying the data written in the configuration space of the PCI agents.

USER COMMANDS Section

The master transactor USER COMMANDS section contains the
commands that initiate the PCI transactions you want to run for your
tests. The list of events that are executed by these commands is defined in
the PROCEDURES and TASKS sections. Customize the USER
COMMANDS section to execute the sequence of commands as needed to
test your design.

Table 4–6 shows the commands the master transactor supports.

Table 4–6. Supported Master Transactor Commands

Command Name Action

cfg_rd Performs a configuration read

cfg_wr Performs a configuration write

mem_wr_32 Performs a 32-bit memory write

mem_rd_32 Performs a 32-bit memory read

mem_wr_64 Performs a 64-bit memory write

mem_rd_64 Performs a 64-bit memory read

io_rd Performs an I/O read

io_wr Performs an I/O write

Altera Corporation User Guide Version 11.1 4–9
October 2011 PCI Compiler

Testbench

cfg_rd
The cfg_rd command performs single-cycle PCI configuration read
transactions with the address provided in the command argument.

cfg_wr
The cfg_wr command performs single-cycle PCI configuration write
transactions with the address, data, and byte enable provided in the
command arguments.

mem_wr_32
The mem_wr_32 command performs a memory write with the address
and data provided in the command arguments. This command can
perform a single-cycle or burst 32-bit memory write depending on the
number of DWORDs provided in the command argument.

■ The mem_wr_32 command performs a single-cycle 32-bit memory
write if the DWORD value is 1.

Syntax: cfg_rd(address)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

Syntax: cfg_wr(address, data, byte_enable)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

data Transaction data. The data must be in
hexadecimal radix.

byte_enable Transaction byte enable. The byte enable
value must be in hexadecimal radix

4–10 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

■ The mem_wr_32 command performs a burst-cycle 32-bit memory
write if the DWORD value is greater than 1. In a burst transaction, the
first data phase uses the data value provided in the command. The
subsequent data phases use values incremented sequentially by 1
from the data provided in the command argument.

mem_rd_32
The mem_rd_32 command performs a memory read with the address
provided in the command argument. This command can perform
single-cycle or burst 32-bit memory read depending on the value of the
dword argument.

■ If the dword value is 1, the command performs a single-cycle
transaction.

■ If the dword value is greater than 1, the command performs a burst
transaction.

Syntax: mem_wr_32(address, data, dword)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

data Data used for the first data phase. Subsequent
data phases use a value incremented sequentially
by 1. This value must be in hexadecimal radix.

dword The number of DWORDs written during the
transaction. A value of 1 indicates a single-cycle
memory write transaction. A value greater than one
indicates a burst transaction. This value must be
an integer.

Syntax: mem_rd_32(address, dword)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

dword The number DWORDs read during the transaction.
A value of one indicates a single-cycle memory
read transaction. A value greater than one
indicates a burst transaction. This value must be
an integer.

Altera Corporation User Guide Version 11.1 4–11
October 2011 PCI Compiler

Testbench

mem_wr_64
The mem_wr_64 command performs a memory write of the data to the
address provided in the command. This command can perform
single-cycle or burst 64-bit memory write depending on the value of the
qword argument.

■ This command performs a single-cycle 64-bit memory write if the
qword value is one.

■ This command performs a burst-cycle 64-bit memory write if the
qword value is greater than one. In a burst transaction, the first data
phase uses the data value provided in the command. The
subsequent data phases use values incremented sequentially by one
from the data provided in the command argument.

mem_rd_64
The mem_rd_64 command performs memory read transactions with the
address provided in the command argument. This command can perform
single-cycle or burst 64-bit memory read depending on the value of the
qword argument.

■ If the qword value is one the command performs a single-cycle
transaction.

■ If the qword value is greater than one the command performs a burst
transaction.

Syntax: mem_wr_64(address, data, qword)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

data Data used for first data phase. Subsequent
data phases use a value sequentially
incremented by one from this data. This value
must be in hexadecimal radix.

qword The number QWORDs written in a transaction.
A value of one indicates a single-cycle
memory write transaction. A value greater
than one indicates a burst transaction. This
value must be an integer.

Syntax: mem_rd_32(address, qword)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

qword The number QWORDs read in the transaction. A
one indicates a single-cycle memory read
transaction. A value greater than one indicates a
burst transaction. This value must be an integer.

4–12 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

io_wr
The io_wr command performs a single-cycle memory write transaction
with the address and data provided in the command arguments.

io_rd
The io_rd command performs single-cycle I/O read transactions with
the address provided in the command argument.

Target Transactor (trgt_tranx)

The target transactor simulates the behavior of a target agent on the PCI
bus. The master transactions initiated by the Altera PCI MegaCore
function under test should be addressed to the target transactor. The
target transactor operates in 32- or 64-bit mode. The target transactor
implements two base address registers BAR0 and BAR1 as shown in
Table 4–7.

For definitions of the target transactor address space, refer to the base
address registers in Table 4–8, “Memory Map,” on page 16.

The memory range reserved by BAR0 is defined by the address_lines
and mem_hit_range settings in the target transactor source code.

The target transactor has a 32-bit register that stores data for I/O
transactions. This register is mapped to BAR1 of the configuration
address space. Because this is the only register that is mapped to BAR1,

Syntax: io_wr(address, data)

Arguments: address Transaction address. This value must be
in hexadecimal radix.

data Data written during the transaction. This
value must be in hexadecimal radix.

Syntax: io_rd(address)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

Table 4–7. Target Transactor Address Space Allocation

Configuration
Register

Address Space
Type Block Size Address Offset

BAR0 Memory Mapped 1 KByte 000-3FF

BAR1 I/O Mapped 16 Bytes 0-F

Altera Corporation User Guide Version 11.1 4–13
October 2011 PCI Compiler

Testbench

any address that is within the BAR1 range results in an io_hit action.
Refer to the target transactor source code to see how the address is
decoded for io_hit.

1 The target transactor ignores byte enables for all memory, I/O,
and configuration transactions.

The target transactor idsel signal should be connected to one of the PCI
address bits in the top-level file of the PCI testbench for configuration
transactions to occur on BAR0 and BAR1.

To model different target terminations, use the following three input
signals:

■ trgt_tranx_retry—The target transactor retries the memory
transaction if trgt_tranx_retry is set to one

■ trgt_tranx_discA—The target transactor terminates the memory
transaction with data if trgt_tranx_discA is set to one

■ trgt_tranx_discB—The target transactor terminates the memory
transaction with a disconnect without data if trgt_tranx_discB
is set to one

The target transactor has two main sections:

■ FILE IO
■ PROCEDURES (VHDL) and TASKS (Verilog HDL)

FILE IO section

Upon reset, this section initializes the target transactor memory array
with the contents of the trgt_tranx_mem_init.dat file, which must be in
the project's working directory. Each line in the trgt_tranx_mem_init.dat
file corresponds to a memory location, the first line corresponding to
offset "000". The number of lines defined by the address_lines
parameter in the target transactor source code should be equal to number
of lines in the trgt_tranx_mem_init.dat file. If the number of lines in
trgt_tranx_mem_init.dat file is less than the number of lines defined by
the address_lines parameter, the remaining lines in the memory array
are initialized to 0.

PROCEDURES and TASKS sections

The PROCEDURES section (VHDL) and the corresponding TASKS
section (Verilog HDL) define the events to be executed for the decoded
PCI transaction. These sections are fully documented in the source code.
You can modify the procedures or tasks to introduce different variations

4–14 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

in the PCI transactions as required by your application. You can also
create new procedures or tasks that are not currently implemented in the
target transactor by using the existing procedures or tasks as an example.

Bus Monitor (monitor)

The bus monitor displays PCI transactions and information messages to
the simulator's console window and in the log.txt file when an event
occurs on the PCI bus. The bus monitor also sends the PCI transaction
status to the master transactor. The bus monitor reports the following
messages:

■ Target retry
■ Target abort
■ Target terminated with disconnect-A (target terminated with data)
■ Target terminated with disconnect-B (target terminated without

data)
■ Master abort
■ Target not responding

The bus monitor reports the target termination messages depending on
the state of the trdyn, devseln, and stopn signals during a transaction.
The bus monitor reports a master abort if devseln is not asserted within
four clock cycles from the start of a PCI transaction. It reports that the
target is not responding if trdyn is not asserted within 16 clock cycles
from the start of the PCI transaction. You can modify the bus monitor to
include additional PCI protocol checks as needed by your application.

Clock Generator (clk_gen)

The clock generator, or clk_gen, module generates the PCI clock for the
Altera PCI testbench. This module generates a 66-Mhz clock if the
pciclk_66Mhz_enable parameter is set to true in the PCI testbench
top-level file, otherwise, it generates a 33-Mhz clock. The default value of
pciclk_66Mhz_enable is true.

Altera Corporation User Guide Version 11.1 4–15
October 2011 PCI Compiler

Testbench

Arbiter (arbiter)

This module simulates the PCI bus arbiter. The module is a two-port
arbiter in which the device connected to port 0 of the arbiter has a higher
priority than the device connected to port 1. For example, if device 0
requests the PCI bus while device 1 is performing a PCI transaction, the
arbiter removes the grant from device 1 and gives it to device 0. This
module allows you to simulate bus parking on devices connected to
port 0 by setting the Park parameter to true. You can change the value of
this parameter in the Altera PCI testbench top-level file.

Pull Up (pull_up)

This module simulates the pull up functionality on the PCI signals. The
ad, cben, framen, irdyn, trdyn, stopn, devseln, perrn, and serrn
signals of the PCI bus are pulled with a weak high value. This action is
necessary to ensure that these signals are never floating or unknown
during your simulation.

Local Reference
Design

The reference design can be used to quickly evaluate Altera PCI
MegaCore functions. This design performs memory read and write
transactions with an LPM_RAM library of parameterized modules (LPM)
function instantiated in the back end. It also performs I/O read and write
transactions with an I/O register that is instantiated locally in the local
master and target blocks. You can replace the reference design with your
application design to verify PCI transactions with other PCI agents.

Figure 4–3 shows the block diagram of the local reference design. The
shaded blocks are provided with the PCI testbench.

4–16 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Local Reference Design

Figure 4–3. Local Reference Design

Note to Figure 4–3:
(1) The DMA Engine, lm_lastn and local master blocks are not applicable for the pci_t32 and pci_t64 local reference

designs.

Table 4–8 shows the memory map of the Altera PCI MegaCore function
required to use the local reference design.

The reference design has the following elements:

■ Local target
■ DMA engine
■ Local master
■ lm_lastn generator
■ Prefetch
■ LPM RAM

Local
Target

Prefetch

LPM RAM

Altera PCI
MegaCore
Function

Testbench
Modules

Local Reference Design

PCI Bus

dma_sa

dma_bc_la

DMA Engine (1)lm_lastn (1)

Local
Master (1)

Table 4–8. Memory Map

Memory Region Mapping Block size Address Offset Description

BAR0 Memory Mapped 1 KByte 000-3FF Maps the LPM_RAM function.

BAR1 I/O Mapped 16 Bytes 0-F Maps the I/O register.

BAR2 Memory Mapped 1 KByte 000-3FF Maps the trg_termination register and
DMA engine registers. Only the lower 24
Bytes of the address space are used.

Altera Corporation User Guide Version 11.1 4–17
October 2011 PCI Compiler

Testbench

Local Target

The local target consists of a simple state machine that performs 32- or
64-bit memory read/write transactions with the LPM memory and 32-bit
single-cycle I/O read/write transactions with an I/O register defined in
the local target. The local target uses prefetch logic for burst read
transactions and ignores byte enables for all memory and I/O
transactions. Table 4–9 shows the BAR2 register mapping.

Depending on the value of the target termination register, the local target
performs the terminations in Table 4–10.

DMA Engine

The DMA engine has two 32-bit registers, which are mapped to BAR2 in
the PCI MegaCore function. Table 4–9 describes the mapping of DMA
registers on BAR2.

To initiate a master transaction from a PCI MegaCore function, use the
master transactor to perform memory writes to these locations with the
appropriate values.

The dma_sa register defines the system address used for the PCI
transaction. This address is driven during the address phase of the PCI
transaction. Normally, the address written here is the base address
register value of the PCI testbench target transactor.

Table 4–9. BAR2 Register Mapping

Address Space Range Reserved Mnemonic Register Name

BAR2 00h-03h targ_termination_reg Target termination register.

BAR2 04h-07h dma_sa[31:0] DMA system address register

BAR2 08h-0Bh dma_bc_la[31:0] DMA byte count and local address register

Table 4–10. Target Terminations

targ_termination_reg Setting Target Termination

xxxxxxx0 Normal Termination

xxxxxxx1 Target Retry

xxxxxxx2 Disconnect

4–18 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Local Reference Design

The dma_bc_la register location includes the following 3 fields:

■ Local address—starting address at which the transaction begins
reading or writing data during a PCI transaction.

■ Byte count—number of DWORDs transferred during a PCI transaction
■ Transaction control—type of transaction to be initiated

1 The byte count field is only used for memory transactions. For
I/O transactions this value is ignored. Because I/O transactions
are always 1 DWORD long, the data is transferred to the 32-bit I/O
register.

Figure 4–4 shows the mapping of the dma_bc_la fields.

Figure 4–4. dma_bc_la Fields

Table 4–11 shows definition of the transaction control field. Although 8
bits are reserved for the transaction control field, only 4 bits are used:

To initiate PCI transactions with Altera PCI MegaCore as a master, you
must perform a 32-bit single-cycle write transaction to the dma_sa
register followed by a 32-bit single-cycle write transaction to the
dma_bc_la register. The write to the dma_bc_la register triggers the
master control unit, which requests a master transaction and executes it
as indicated in the transaction control part of the dma_bc_la register.

Table 4–11. Transaction Control Field

Transaction Control (Binary) Initiated Transaction Type

0000 32-Bit Memory Read

0010 64-Bit Memory Read

0100 32-Bit I/O Read

0110 32-Bit I/O Write

1000 32-Bit Memory Write

1010 64-Bit Memory Write

Reserved

31...........28 27...........16 15............8 7...............0

Transaction
Control

Byte Count Local
Address

Bit

Altera Corporation User Guide Version 11.1 4–19
October 2011 PCI Compiler

Testbench

Local Master

The DMA engine triggers the local master. The local master can perform
32- and 64-bit memory read/write transactions with the LPM RAM block
and 32-bit single-cycle I/O read/write transactions with an I/O register
defined in the local master. The local master uses prefetch logic for burst
memory write transactions and uses the last_gen block to generate the
lm_lastn signal for the pci_mt64 and pci_mt32 MegaCore functions.
The local master ignores byte enables for all memory and I/O
transactions.

Refer to the master transactor (mstr_tranx) source code in the
<path>\pci_compiler\megawizard_flow\testbench\<HDL
language>\<PCI MegaCore function>\example directory for examples of
PCI transactions using the Altera PCI MegaCore function as a master.

lm_lastn Generator

This module generates the lm_lastn signal for the local master when the
reference design is in master mode. The lm_lastn signal is a local-side
master interface control signal that is used to request the end of the
current transaction.

Refer to “Master Local-Side Signals” on page 3–24 for more information
on the lm_lastn signal.

Prefetch

This module is used to prefetch the data from the LPM RAM block during
burst target read transactions and burst master write transactions.

LPM RAM

This module is used to instantiate 1 KByte of RAM for the reference
design. LPM RAM is accessible by both local target and local master. The
Local target and local master ignore byte enables for all memory
transactions.

4–20 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Simulation Flow

Simulation Flow This section describes the simulation flow using Altera PCI testbench.
Figure 4–5 shows the block diagram of a typical verification environment
using the PCI testbench.

Figure 4–5. Typical Verification Environment Using the PCI Testbench

The simulation flow using Altera PCI testbench comprises the following
steps.

1. Use IP Toolbench to specify the PCI MegaCore function
configuration space parameters and generate an
IP functional simulation model of your custom PCI MegaCore
function.

2. Set the initialization parameters, which are defined in the master
transactor model source code. These parameters control the address
space reserved by the target transactor model and other PCI agents
on the PCI bus.

3. The master transactor defines the procedures (VHDL) or tasks
(Verilog HDL) needed to initiate PCI transactions in your testbench.
Add the commands that correspond to the transactions you want to
implement in your tests to the master transactor model source code.
At a minimum, you must add configuration commands to set the
BAR for the target transactor model and write the configuration
space of the PCI MegaCore function. Additionally, you can add
commands to initiate memory or I/O transactions to the PCI
MegaCore function.

Refer to Table 4–6 on page 4–8 for more information about the user
commands.

Your
Application

Design

IP Functional
Simulation Model
of an Altera PCI

MegaCore
Function

Altera Device

PCI Bus
Altera PCI Testbench

Testbench
Modules

Altera Corporation User Guide Version 11.1 4–21
October 2011 PCI Compiler

Testbench

4. Modify the target transactor model memory range. The target
transactor reserves a 1-KByte memory array by default. On reset,
this memory array is initialized by the trgt_tranx_mem_init.dat file.
Refer to “FILE IO section” on page 4–13 for more information about
this file.

You can modify the memory instantiated by the target transactor
model by changing the address_lines value and the mem_hit_range
value to correspond to the value specified by address_lines. For
example, if address_lines is 1024, the target transactor instantiates a
1-KByte memory array that corresponds to a memory hit range of
000-3FF Hex. Refer to “Target Transactor (trgt_tranx)” on page 4–12
for more information.

5. Simulate the testbench for the desired time period.

4–22 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Simulation Flow

Altera Corporation Section II–1
October 2011

Section II. PCI Compiler
With SOPC Builder Flow

The PCI Compiler with SOPC Builder flow option allows you to build a
complete PCI system using an automatically-generated interconnect. The
SOPC Builder flow uses the on-chip system interconnect fabric as a
bridge between various resident and external peripherals, which
dramatically reduces design time.

This section includes the following chapters:

■ Chapter 5, Getting Started

■ Chapter 6, Parameter Settings

■ Chapter 7, Functional Description

■ Chapter 8, Testbench

Section II–2 User Guide 11.1 Altera Corporation
PCI Compiler October 2011

PCI Compiler With SOPC Builder Flow

Altera Corporation User Guide Version 11.1 5–1
October 2011

5. Getting Started

Design Flow To create a PCI system that uses the PCI Compiler with SOPC Builder,
and to evaluate it using the OpenCore Plus hardware evaluation feature,
include the following steps in your design flow:

1. Obtain and install the PCI Compiler.

2. Create a Quartus II project.

3. Use SOPC Builder and the Quartus II software to generate a system
that uses the PCI-Avalon bridge.

Use MegaWizard to configure the PCI-Avalon bridge.

4. Use IP functional models to verify your system operation. Although
this step is always recommended, it is more critical if you are using
your own custom-defined SOPC Builder peripheral.

5. Use an Altera-provided PCI constraint file to ensure your system
meets the timing requirements of the PCI specification.

f For more information on obtaining and using
Altera-provided PCI constraint files in your design, refer to
Appendix A, Using PCI Constraint File Tcl Scripts.

6. Use the Quartus II software to compile your design and perform
static timing analysis.

1 You can generate an OpenCore Plus time-limited
programming file, which you can use to verify the
operation of your design in hardware.

7. Purchase a license for the PCI MegaCore function.

5–2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Compiler with SOPC Builder Flow Design Walkthrough

After you have purchased a license for the PCI MegaCore function, the
design flow requires the following additional steps:

1. Set up licensing.

2. Generate a programming file for the Altera device(s) on your board.

3. Program the Altera device(s) with the completed design.

4. Complete system verification.

Altera MegaCore functions, including PCI Compiler, can be installed
from the MegaCore IP Library CD-ROM either during or after installing
the Quartus II software. Alternatively, PCI Compiler can be downloaded
individually from the Altera website and installed separately.

1 Altera recommends that you occasionally check the Altera
website at www.altera.com for updates to the PCI Compiler.

PCI Compiler
with SOPC
Builder Flow
Design
Walkthrough

This walkthrough explains how to use SOPC Builder and the Quartus II
software to generate a system containing the following components:

■ PCI Compiler MegaCore function
■ On-chip memory
■ DMA controller

Figure 5–1 on page 5–3 shows how SOPC Builder integrates these
components using the system interconnect fabric.

www.altera.com

Altera Corporation User Guide Version 11.1 5–3
October 2011 PCI Compiler

Getting Started

Figure 5–1. System Generated Using SOPC Builder

1 This walkthrough uses Verilog HDL to create a system. You can
substitute VHDL for Verilog HDL.

This walkthrough consists of these steps:

■ Create a New Quartus II Project
■ Set Up the PCI-Avalon Bridge
■ Add the Remaining Components to the SOPC Builder System
■ Complete the Connections in SOPC Builder
■ Generate the SOPC Builder System

Create a New Quartus II Project

You need to create a new Quartus II project with the New Project Wizard,
which specifies the working directory for the project, assigns the project
name, and designates the name of the top-level design entity. To create a
new project follow these steps:

1. To run the Quartus II software, select Programs > Altera > Quartus
II <version> from the Windows Start menu. You can also use the
Quartus II Web Edition software.

2. On the File menu, click New Project Wizard.

3. Click Next in the New Project Wizard: Introduction (the
introduction does not display if you turned it off previously).

5–4 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Compiler with SOPC Builder Flow Design Walkthrough

4. In the New Project Wizard: Directory, Name, Top-Level Entity
page, enter the following information:

a. Type c:\sopc_pci in the What is the working directory for
this project? box.

b. Type chip_top in the What is the name of the project? box.

1 The Quartus II software automatically specifies a top-level
design entity that has the same name as the project. Do not
change it.

5. Click Next to display the New Project Wizard: Add Files page.

1 When you specify a directory that does not already exist, a
message asks if the specified directory should be created.
Click Yes to create the directory.

6. If you installed the MegaCore IP library in a different directory from
where you installed the Quartus II software, add user libraries by
following these steps on the New Project Wizard: Add Files page:

a. Click User Libraries.

b. Type <path>\pci_compiler\lib\ into the Library name box,
where <path> is the directory in which you installed the PCI
Compiler.

c. Click Add to add the path to the Quartus II project.

d. Click OK to save the library path in the project.

7. Click Next to display the New Project Wizard: Family & Device
Settings page.

8. In the New Project Wizard: Family & Device Settings page, specify
the following target device family and options:

a. In the Family list, select Stratix II.

1 This walkthrough creates a design targeting the Stratix II
device family. You can also use these procedures for other
supported device families.

b. Under Target device, select Specific device selected in
‘Available devices’ list.

Altera Corporation User Guide Version 11.1 5–5
October 2011 PCI Compiler

Getting Started

c. Under Show in ‘Available device’ list, all fields should have
the default value of Any.

d. In the Available devices: list, select EP2S90F1020C3.

9. Click Next to display the New Project Wizard: EDA Tool Settings
page. You don’t need to turn on any settings on this page.

10. Click Next to display the New Project Wizard: Summary page.

11. Check the Summary page to ensure that you have entered all the
information correctly.

12. Click Finish to complete the Quartus II project.

Set Up the PCI-Avalon Bridge

To set up a PCI-Avalon bridge in the PCI Compiler, follow these steps:

1. To start SOPC Builder, select SOPC Builder from the Tools menu.

The Altera SOPC Builder window appears.

f For more information on using SOPC Builder, refer to
Quartus II Help.

2. In the Create New System dialog box, specify the following and
click OK to continue.

a. Type chip_top in the System Name box

b. Under Target HDL, ensure Verilog is selected.

1 In this example, you are choosing the SOPC Builder-
generated system file to be the same as the project’s top
level file. This is not required for your own design.

3. Build your system by adding components from the System
Contents tab.

Expand Interface Protocols, followed by PCI and select PCI
Compiler.

4. Click Add. The PCI Compiler Parameters Setting is displayed.

5. In the Systems Options - 1 tab, use the default values.

5–6 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Compiler with SOPC Builder Flow Design Walkthrough

6. Click Next to display the Systems Options - 2 tab.

7. In the System Options - 2 tab, specify the following :

a. Under PCI Clock/Reset Settings, select Independent PCI and
Avalon Clocks.

b. Use the default values for the rest.

8. Click Next to display the PCI Configuration tab.

9. In the PCI Configuration tab, do the following:

a. Specify the following for PCI Base Address Registers (BARs):

• BAR 0: Use the default values.

• BAR 1: In the BAR Type list, select 32-Bit Non-
Prefetchable Memory. The values for the rest are
automatically displayed.

b. Use the default values for all PCI Read-Only Registers.

10. Click Next to display the Avalon Configuration tab.

11. In the Avalon Configuration tab, specify the following:

a. Under Fixed Address Translation Table Contents, double-click
the value of PCI Base Address and type 0x30000000

1 Normally the PCI base address is configured according to
your system requirements. In this example, the value
chosen is the same as the one that is used to configure the
trgt_tranx module in the PCI testbench.

b. Under Avalon CRA Port, turn on Control Register Access
(CRA) Avalon Slave Port.

c. Use the default values for the rest.

12. Click Finish. The PCI Compiler is added to your SOPC Builder
system.

1 Your system is not yet complete, so you can ignore any error
messages generated by SOPC Builder at this stage.

Altera Corporation User Guide Version 11.1 5–7
October 2011 PCI Compiler

Getting Started

Add the Remaining Components to the SOPC Builder System

You will add the On-chip memory and DMA controller to your design.

1. Expand Memories and Memory Controllers, followed by On-Chip,
and select On-Chip Memory (RAM or ROM). This component
contains a slave port.

2. In the On-chip Memory dialog box, specify the following:

a. Under Memory Type, select MRAM from the Block type list.

b. Turn off Initialize memory content.

c. Under Size, specify the Total memory size as 128 Kbytes.

d. Use the default values for the rest.

3. Click Finish. The On-chip Memory is added to your SOPC Builder
system.

4. Expand Memories and Memory Controllers, followed by DMA ,
and select DMA Controller. This component contains read and
write master ports and a control port slave.

5. In the DMA Controller dialog box, specify the following in the
DMA Parameters tab.

a. Under Transfer size, type 10 in the Width of the DMA length
register (1-32) box.

b. Under Burst transactions, turn on Enable burst transfers.

c. Use the default values for the rest.

6. Click Finish. The DMA Controller module is added to your SOPC
Builder system.

5–8 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Compiler with SOPC Builder Flow Design Walkthrough

Complete the Connections in SOPC Builder

You need to connect the ports of the components in your SOPC system.

1. Move the pointer over the Connections column. Potential
connections are displayed.

2. Connect the following master-slave ports:

Figure 5–2 shows the complete connections.

Figure 5–2. Master-Slave Port Connections

3. Under Clock Settings, double-click the default speed (MHz) for
clk_0 and type 100.

Table 5–1. Master-Slave Port Connections

Master Port Slave Port

pci_compiler
 bar0_Prefetchable

onchip_mem
 s1

pci_compiler
 bar1_Prefetchable

pci_compiler
 Control_Register_Access

pci_compiler
 bar1_Prefetchable

dma
 control_port_slave

dma
 read_master

onchip_mem
 s1

dma
 read_master

pci_compiler
 PCI_Bus_Access

dma
 write_master

onchip_mem
 s1

dma
 write_master

pci_compiler
 PCI_Bus_Access

Altera Corporation User Guide Version 11.1 5–9
October 2011 PCI Compiler

Getting Started

4. From the System menu, select Auto-Assign Base Addresses.

SOPC Builder will generate informational messages indicating the PCI
MegaCore function you have instantiated and the actual PCI BAR setting.

Generate the SOPC Builder System

You will now generate your SOPC system.

1. In the SOPC Builder window, click Next to display the System
Generation tab.

1. In the System Generation tab, turn on Simulation. Create
simulator project files.

2. Click Generate. Messages about the PCI MegaCore function that
was instantiated and the progress of the system generation are
displayed in the SOPC Builder message window.

1 Among the files generated by SOPC Builder is the Quartus
II IP File (.qip). This file contains information about a
generated IP core or system. In most cases, the .qip file
contains all of the necessary assignments and information
required to process the MegaCore function or system in the
Quartus II compiler. Generally, a single .qip file is generated
for each SOPC Builder system. However, some more
complex SOPC Builder components generate a separate
.qip file. In that case, the system .qip file references the
component .qip file.

You can now simulate the system using any Altera-supported third party
simulator, compile the system in the Quartus II software, and configure
an Altera device.

5–10 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Compiler with SOPC Builder Flow Design Walkthrough

Files Generated by SOPC Builder

When SOPC Builder generates your system, it creates a number of new
folders and files in the project directory. Figure 5–3 describes some of
these files.

Figure 5–3. Files Generated By SOPC Builder

C:\sopc_pci

chip_top_sim
This folder contains the scripts used to simulate the design in the ModelSim
software.

pci_sim
This folder contains the PCI testbench files.

chip_top.v
This top-level file instantiates all of the modules specified in the SOPC
Builder system.

pci_compiler.vo
This file contains an IP functional simulation model that can be used to
perform functional simulation of the PCI-Avalon bridge variation.

pci_constraints_for_pci_compiler.tcl
This Tcl file needs to be used prior to Quartus II compilation. It contains the
Quartus II constraints that are used to meet the PCI timing requirements.

pci_compiler.log
This file contains information about 1) the fixed translation table that was
defined on the Avalon Configuration page in the PCI Compiler wizard, and
2) the PCI MegaCore function that was instantiated in the PCI-Avalon
bridge.

Other SOPC Builder generated files, including a Verilog HDL file (.v) for
each component in the system and Verilog HDL files for the system
interconnect fabric.

Altera Corporation User Guide Version 11.1 5–11
October 2011 PCI Compiler

Getting Started

Simulate the
Design

SOPC Builder automatically sets up the simulation environment for the
PCI Compiler.

SOPC Builder creates the pci_sim directory in your project directory and
copies the testbench files from
<path>/pci_compiler/testbench/sopc/<language>/<core> to the pci_sim
directory.

1 The testbench files must be edited to add the PCI transactions
that will be performed on the system. If you regenerate your
system, SOPC Builder will not overwrite the testbench files in
the pci_sim directory. If you want to use the default testbench
files, first delete the pci_sim directory and then regenerate your
system.

This section of the walkthrough uses the following components:

■ The system you created using SOPC Builder

■ Scripts created by SOPC Builder in the c:\sopc_pci\chip_top_sim
directory

■ The ModelSim software

1 You can also use any other supported third-party simulator.

■ The PCI testbench files located in the c:\sopc_pci\pci_sim directory

SOPC Builder creates IP functional simulation models for all the system
components. The IP functional simulation models are the .vo or .vho files
generated by SOPC Builder in your project directory.

f For more information on IP functional simulation models, refer to the
Simulating Altera IP in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Handbook.

The SOPC Builder-generated top-level file also integrates the simulation
modules of the system components and testbenches (if available),
including the PCI testbench. The Altera-provided PCI testbench can be
used to verify the basic functionality of your PCI compiler system. SOPC
Builder automatically configures the PCI testbench and copies the
necessary files to your project directory in the pci_sim directory. The
default configuration of the PCI testbench is predefined to run basic PCI
configuration transactions to the PCI device in your SOPC Builder
generated system. You can edit the PCI testbench mstr_tranx.v or
mstr_tranx.vhd file to add more interesting PCI transactions.

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf

5–12 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Compiler with SOPC Builder Flow Design Walkthrough

You can also copy the mstr_tranx.v file from the SOPC Builder example
directory located at <path>/pci_compiler/sopc_flow_examples/verilog/
pci_sim/verilog/mt32.

f For more information on the PCI testbench files refer to Chapter 8,
Testbench.

For this walkthrough, perform the following steps:

1. Start the ModelSim simulator.

2. In the simulator, change your working directory to
c:\sopc_pci\chip_top_sim.

3. To run the script, type the following command at the simulator
command prompt:

source setup_sim.do r

4. To compile all the files and load the design, type the following
command at the simulator prompt:

s r

5. To see all the signals in the wave-default window, type the
following command at the simulator prompt:

w r

1 Not all of the signals show up in the Wave - Default
window. You need to explicitly add other signals of interest
to the Wave - Default window.

6. To simulate the design, type the following command at the
simulator prompt:

run 10000ns r

View the following PCI transactions in the ModelSim Wave - Default
window:

■ Configuration write operations on the command registers BAR0 and
BAR1 of the Altera PCI MegaCore function, followed by
configuration write operations on BAR0 and BAR1 of the PCI
testbench target device (trgt_tranx).

Altera Corporation User Guide Version 11.1 5–13
October 2011 PCI Compiler

Getting Started

■ Configuration read operations on command registers BAR0 and
BAR1 of the Altera PCI MegaCore function, followed by
configuration read operations on BAR0 and BAR1 of the PCI
testbench trgt_tranx.

You can view the following PCI transactions in the ModelSim
Wave - Default window if you made the additions to the mstr_tranx
file.

■ A 32-bit burst memory write operation to the on-chip memory.
■ A 32-bit burst memory read operation to the on-chip memory.
■ Configure DMA to perform burst memory read transaction to move

data from the PCI testbench trgt_tranx to on-chip memory.
■ Configure DMA to perform burst memory write transaction to move

data from the on-chip memory to PCI testbench trgt_tranx.

Compile the
Design

Compile your design in the Quartus II software. Refer to Quartus II Help
for instructions on performing compilation.

Altera provides constraint files to ensure that the PCI MegaCore function
achieves PCI specification timing requirements in Altera devices. This
walkthrough incorporates a constraint file included with PCI Compiler.

f For more information on using Altera-provided constraint files in your
design, refer to Appendix A, Using PCI Constraint File Tcl Scripts.

For this walkthrough perform the following steps:

1. Open c:\sopc_pci\chip_top.qpf (the chip_top project) in the
Quartus II software.

1 This is the same project you created in “PCI Compiler with
SOPC Builder Flow Design Walkthrough” on page 5–2.

2. Choose Utility Windows > Tcl Console (View menu).

3. Source the generated constraint file by typing the following
commands at the Quartus II Tcl Console command prompt:

source pci_constraints_for_pci_compiler.tcl r

add_pci_constraints -pin_suffix _pci_compiler r

5–14 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Program a Device

1 You must use the -pin_suffix option for the PCI
constraints to be applied correctly. This option appends the
PCI Compiler instance name to the default PCI pin names.
You must specify the leading underscore character in front
of the instance name.

In this example, the PCI Compiler instance is named
pci_compiler.

4. Monitor the Quartus II Tcl Console to see the actions performed by
the script.

To verify the PCI timing assignments in your project, perform the
following steps:

1. Choose Start Compilation (Processing menu) in the Quartus II
software.

2. After compilation, expand the Timing Analyzer folder in the
Compilation Report by clicking the + symbol next to the folder
name. Note the values in the Clock Setup, tsu, th, and tco report
sections.

Program a
Device

After you have compiled the design, you must program the targeted
Altera device and verify the design in hardware.

With Altera’s free OpenCore Plus evaluation feature, you can evaluate the
PCI-Avalon bridge before you purchase a license. OpenCore Plus
evaluation allows you to generate an IP functional simulation model and
produce a time-limited programming file.

f For more information on IP functional simulation models, refer to the
Simulating Altera IP in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Handbook.

For more information on OpenCore Plus hardware evaluation using the
PCI MegaCore functions, refer to “Compliance Summary” on page 10.

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf

Altera Corporation User Guide Version 11.1 5–15
October 2011 PCI Compiler

Getting Started

Upgrading
Systems from a
Previous
Version

Follow the steps below to upgrade a system created in the previous
version of SOPC Builder.

1. Start SOPC Builder and open the existing system.

2. Follow the instructions on the screen to upgrade your system.

1 The connections for prefetchable and non-prefetchable
master BARs are lost when your system is upgraded.

3. On the Edit menu, click Remove Dangling Connections.

4. Re-connect the prefetchable and non-prefetchable master BARs.

5–16 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Program a Device

Altera Corporation User Guide Version 11.1 6–1
October 2011

6. Parameter Settings

This chapter describes the parameters available to configure PCI
Compiler, including:

■ “System Options-1”
■ “Value of Multiple Pending Reads”
■ “System Options-2”
■ “PCI Configuration”
■ “Avalon Configuration”

System
Options-1

The System Options - 1 tab in the PCI Compiler wizard allows you to
specify the PCI-Avalon bridge’s device mode and performance profile.

1 When you select a device mode and performance profile, a brief
description displays just to the right of the selection, which can
help you determine the appropriate option for your system.

PCI Device Mode

There are three available device type modes. The wizard uses your
selections to define the operation of the targeted Altera device. For
example, if you want the targeted Altera device to operate as a target-only
peripheral, select the PCI Target-Only Peripheral.

This section defines the following PCI device type modes:

■ PCI Master/Target Peripheral
■ PCI Target-Only Peripheral
■ PCI Host-Bridge Device

PCI Master/Target Peripheral
This mode allows Avalon-MM master devices to access PCI target devices
via the PCI bus master interface, and PCI bus master devices to access
Avalon-MM slave devices via the PCI bus target interface.

Select this option if you are constructing an SOPC Builder system with:

■ Avalon-MM peripherals initiating accesses to PCI devices
■ PCI devices accessing Avalon-MM peripherals
■ The system Host processor located on the PCI bus side

6–2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

System Options-1

Selecting the PCI Master/Target Peripheral mode results in the
PCI-Avalon bridge instantiating either the Altera pci_mt32 or
pci_mt64 MegaCore function. Your PCI Data Bus Width selections in
the System Options - 2 tab will make the final determination between
MegaCore functions.

PCI Target-Only Peripheral
This mode allows PCI bus mastering devices to access Avalon-MM slave
devices via the PCI bus target interface. Select this option if you are
constructing an SOPC Builder system that does not have Avalon-MM
master devices accessing PCI bus devices. Refer to Figure 7–2 on page 7–7
and Figure 7–3 on page 7–8.

Selecting the PCI Target-Only Peripheral mode results in the
PCI-Avalon bridge instantiating either the pci_t32 or pci_t64
MegaCore function. Your PCI Data Bus Width selections in the System
Options - 2 tab will make the final determination between MegaCore
functions.

PCI Host-Bridge Device
In addition to the same features provided by the PCI Master/Target
Peripheral mode, the PCI Host-Bridge Device mode provides host bridge
functionality including hardwiring the master enable bit to 1 in the PCI
command register and allowing self configuration. Hardwiring the
master enable bit to 1 allows the PCI master device to initiate master
transactions upon power up. Self configuration is needed to enable the
PCI-Avalon bridge’s PCI master device to access its own PCI
configuration header for the PCI bus enumeration.

Select PCI Host-Bridge Device mode when the Host processor is on the
Avalon-MM side of the PCI-Avalon bridge. Selecting this mode results in
the PCI-Avalon bridge instantiating either the pci_mt32 or pci_mt64
MegaCore function. Your PCI Data Bus Width selections in the System
Options - 2 tab will make the final determination between MegaCore
functions.

Altera Corporation User Guide Version 11.1 6–3
October 2011

Parameter Settings

PCI Target Performance

This field lists the three available PCI target performance profile options.
The wizard uses your selections to determine read and write operation
throughput generated by PCI bus mastering devices to Avalon-MM slave
peripherals.

Performance profile options allow you to balance trade-offs between
preserving device resources and managing overall performance. For
example, if you are constructing a target peripheral for a low-latency,
low-bandwidth application, selecting the Single-Cycle Transfers Only
performance profile suits the application’s requirements while
preserving resources for other system needs.

This section defines the following PCI target performance profile options:

■ Single-Cycle Transfers Only
■ Burst Transfers with Single Pending Read
■ Burst Transfers with Multiple Pending Reads
■ Maximum Target Read Burst Size

Single-Cycle Transfers Only
The option provides a low-latency and low-throughput option yielding
to the smallest resource utilization and using no internal RAM blocks for
PCI target accesses. When selecting this option, all PCI target transactions
are automatically broken into single data phase transactions and utilize
the Non-prefetchable Avalon-MM master port on the PCI-Avalon bridge.
Figure 7–2 on page 7–7 illustrates a system using this performance
profile.

With this option, all accesses from the PCI bus utilize the
non-prefetchable data path shown in Figure 7–2 on page 7–7.

Selecting the Single-Cycle Transfers Only option is generally
appropriate when you are constructing a system needing either no
memory access or minimum memory access performance from the PCI
bus to the Avalon-MM bus peripherals.

Burst Transfers with Single Pending Read
This option is typical for many PCI bus systems where PCI bus devices
access one or more Avalon-MM peripherals. This option allows for burst
and single cycle accesses from the PCI bus. Because accesses to
non-prefetchable BARs are serviced as Single-Cycle Transfers Only,
only accesses to prefetchable BARs benefit from the increase in
performance.

6–4 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

System Options-1

In fact, if the PCI-Avalon bridge has no prefetchable BARs, it defaults to
the Single-Cycle Transfers Only performance profile—even if you select
the Burst Transfers with Single Pending Read performance profile.

This option maximizes PCI write transaction performance, but only
allows one single pending read. A pending read is the same as an
in-progress delayed read in PCI bus terminology and is defined as a PCI
read transaction that was retried on the PCI bus while the PCI-Avalon
bridge retrieves the data from the appropriate Avalon-MM peripheral. In
this mode, only one pending read is processed at a time; all other read
transactions are retried without being processed.

Figure 7–3 on page 7–8 illustrates a system using this performance profile
and has both prefetchable and non-prefetchable BARs defined. Accesses
to non-prefetchable BARs utilize the non-prefetchable data path, while
accesses to prefetchable BARs utilize the prefetchable data path. If no
non-prefetchable BARs are used, the non-prefetchable data path logic
will be removed from the bridge.

Select this option for systems that require burst and single-cycle accesses
to Avalon-MM peripherals but do not require the highest performance
for memory reads.

Burst Transfers with Multiple Pending Reads
This option is similar to the Burst Transfers with Single Pending Read
option except that it allows up to four pending reads, which provides a
significantly higher throughput for PCI memory read operations.
Additionally, this option also provides the highest throughput for PCI
target accesses and is the most resource intensive of the three target
performance profile options.

For more information on the value of multiple pending reads, refer to
“Value of Multiple Pending Reads” on page 6–6.

Maximum Target Read Burst Size
This option allows you to configure the maximum read burst. The
maximum dword is prefetched from the Avalon-MM regardless of the
amount of data required on the PCI bus. If the application constantly
requests large burst read on the PCI bus, set this option to a larger burst
size .

Altera Corporation User Guide Version 11.1 6–5
October 2011

Parameter Settings

PCI Master Performance

This field lists the two available PCI master performance profile options.
The wizard uses your selections to determine read and write operation
throughput generated by Avalon-MM master devices to PCI target
devices.

This section defines the following PCI master performance profile
options:

■ Burst Transfers with Single Pending Read
■ Burst Transfers with Multiple Pending Reads

Burst Transfers with Single Pending Read
This option allows burst and single-cycle accesses from Avalon-MM
master devices, which includes memory, I/O, and configuration
transactions.

The PCI-Avalon bridge contains either a dynamic or fixed Avalon-to-PCI
address translation table. Depending on the address translation entry, the
corresponding PCI address and command is generated by the
PCI-Avalon bridge.

In this mode, only one pending read is serviced at a time. All subsequent
reads are stored in a temporary queue holding up to eight transactions
until the current pending read transaction is finished. If read transactions
can be stored in the temporary read queue, write transactions are allowed
to pass the read transactions.

Select the Burst Transfers with Single Pending Read performance
profile either for:

■ General purpose systems
■ Data-intensive systems that utilize write operations to move data

and use minimum read operations

Burst Transfers with Multiple Pending Reads
This option is similar to the Burst Transfers with Single Pending Read
option except that it allows up to four pending reads. In other words,
instead of issuing one read at a time, up to four simultaneous reads can
be issued on the PCI bus. This allows PCI target devices to return read
data while also reducing the read completion times.

6–6 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Value of Multiple Pending Reads

Although up to four pending reads can be issued on the PCI bus, read
data is returned in the order it is issued to the interconnect. This
performance profile provides a significant improvement in PCI read
operations for systems that rely on read operations to transfer data from
PCI devices to Avalon-MM devices.

Value of
Multiple
Pending Reads

This section explains the enhanced performance that is possible with
multiple pending read transactions. Figure 6–1 illustrates the following
burst transfer with multiple pending reads example:

1. PCI Agent 0 requests a read transaction (R0) to address 0x4. The
PCI-Avalon bridge issues a PCI retry, stores the necessary
information from the R0 transaction, and begins to retrieve the
requested data from the PCI-Avalon bridge.

2. Before the R0 transaction completes, PCI Agent 1 requests a read
transaction (R1) to address 0xC. The PCI-Avalon bridge issues
another PCI retry and stores the necessary information to retrieve
the data for R1. Meanwhile, the PCI-Avalon bridge continues to
retrieve the data for R0.

3. At some point the data for R0 is returned, and the PCI-Avalon
bridge immediately begins retrieving the data for R1.

4. PCI Agent 0 issues R0 again, and the PCI-Avalon bridge provides
the requested data and completes R0. Meanwhile, the data for R1 is
returned from the Avalon-MM peripheral.

5. PCI Agent 1 issues R1 again, and the PCI-Avalon bridge provides
the requested data and completes R1.

Altera Corporation User Guide Version 11.1 6–7
October 2011

Parameter Settings

Figure 6–1. PCI-Avalon Bridge Burst Transfer with Multiple Pending Reads

In contrast, the same two reads will complete in the following sequence if
multiple pending read transactions are not allowed:

1. PCI Agent 0 requests a read transaction (R0) to address 0x4. The
PCI-Avalon bridge issues a PCI retry, stores the necessary
information from the R0 transaction, and begins to retrieve the
requested data from the Avalon-MM peripheral.

2. Before the R0 transaction completes, PCI Agent 1 requests a read
transaction (R1) to address 0xC. Because the PCI-Avalon bridge is
currently servicing the R0 transaction, it simply issues a retry in
response to R1 and continues to retrieve the data for R0. In this case,
no information about R1 is stored in the PCI-Avalon bridge.

3. At some point the data for R0 is returned by the Avalon-MM
peripheral. Meanwhile, all read transactions are automatically
retried by the PCI-Avalon bridge.

4. PCI Agent 0 reissues the R0 transaction, and the PCI-Avalon bridge
provides the requested data and completes the R0 transaction.

5. At a later time, PCI Agent 1 attempts R1 again. The PCI-Avalon
bridge issues a PCI retry, stores the necessary information from the
R1 transaction, and begins to retrieve the requested data the from
Avalon-MM peripheral.

PCI-Avalon Bridge
Burst Transfers with Concurrent Transactions

PCI
Target

Controller

Pending Read Buffer

PCI
MegaCore
Function

Prefectable
Avalon
Master Avalon

Slave
Peripheral #2

PCI
Master/
Target

Agent 0

PCI
Bus

Arbiter

PCI
Bus

Agent 0
Read
Address 0x4

Agent 1
Read
Address 0xC

PCI
Master/
Target

Agent 1

Avalon
Slave

Peripheral #1

System
Interconnect

Fabric

Rd Addr 0x4

Rd Addr 0xC

Rd Data

Rd Data

Prefetchable
Bridge
Logic

PCI-Avalon Bridge

6–8 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Value of Multiple Pending Reads

6. At some point the data for R1 is returned by the Avalon-MM
peripheral. Meanwhile, all read transactions are automatically
retried by the PCI-Avalon bridge.

7. PCI Agent 1 issues R1 again, the PCI-Avalon bridge provides the
requested data and completes R1.

For more information on multiple pending read transactions, refer to
“Prefetchable Read Operations” on page 7–23 and “Avalon-to-PCI
Read Requests” on page 7–32.

Altera Corporation User Guide Version 11.1 6–9
October 2011

Parameter Settings

System
Options-2

The System Options - 2 tab in the PCI Compiler wizard defines the
complexity of the PCI-to-Avalon bridge. On this tab, you specify the
following PCI bus configurations:

■ PCI Bus Speed
■ PCI Global Reset Signal
■ PCI Data Bus Width
■ Clock Domains
■ PCI Bus Arbiter

PCI Bus Speed

PCI Bus Speed selections determine the system’s maximum clock rate.
If you select the 66-MHz clock rate, the capable bit
(pci_66mhz_capable)—which is bit 5 of the PCI status register—is set
to 1. Refer to Table 3–17 on page 3–33.

PCI Data Bus Width

PCI Data Bus Width selections determine the system’s PCI bus width.
Additionally, the PCI-Avalon bridge automatically configures the
Avalon-MM data width to be the same as the PCI data bus width.
Therefore, selecting a 64-bit PCI data bus instantiates either the
pci_mt64 or pci_t64 MegaCore function, depending on the PCI
Device Mode you specified in the System Options – 1 tab. Likewise,
selecting a 32-bit PCI data bus instantiates either the pci_mt32 or
pci_t32 MegaCore function, depending on the PCI Device Mode you
specified in the System Options – 1 tab.

PCI Clock/Reset Settings

Turning on the Enable Independent Avalon System Reset enables a
second reset signal named reset_n in the SOPC system. When
triggered, this signal resets the entire SOPC system except the PCI
Compiler, thus preserving its configuration.

The Independent PCI and Avalon Clocks option allows the PCI bus and
Avalon-MM interface to use independent clocks that can run at the same
or different speeds. Choosing this option provides maximum flexibility
but also requires more logic resources and adds latency. When you select
this option, the SOPC Builder generates a system with two clock pins
driving the PCI-Avalon bridge. One clock pin has the PCI-Avalon
bridge’s instance name and should be connected to the PCI clock source.
The other clock pin has the PCI-Avalon bridge’s instance name
appended to it and should be connected to the system’s clock source.

6–10 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

System Options-2

The Shared PCI and Avalon Clocks option allows the PCI bus and
Avalon-MM interface to use a single clock, resulting in a simpler system
that uses fewer logic resources. Additionally, the resulting system’s
latency is lower than is possible with separate clocks. When you select
this option, the SOPC Builder generates a system with only one clock pin
driving the PCI-Avalon bridge. The clock pin name will not have the
PCI-Avalon bridge instance name, and should be connected to the PCI
clock source.

PCI Bus Arbiter

The PCI Bus Arbiter options are disabled if you select PCI Target-Only
Peripheral mode. If you select either PCI Master/Target Peripheral or
PCI Host-Bridge Device mode, you can define how the reqn and gntn
signals are routed. The default is to route the signals to external pins.

The following defines the PCI Bus Arbiter selections:

■ Arbiter External to Device—this is the most common option and is
also the default setting. Because the PCI bus arbitration is done
outside of the FPGA device, the Arbiter External to Device option is
common for all PCI add-on applications. Selecting this option routes
the reqn and gntn signals to pins.

■ User-Defined Arbiter Internal to Device—Selecting this option
allows you to connect the reqn and gntn signals of the PCI-Avalon
bridge to internal logic and not drive them to pins. This option
disables the tri-state buffer on the reqn signal.

■ Altera-Provided Arbiter Internal to Device—This option enables the
arbiter shipped with the PCI-Avalon bridge. Similar to the
User-Defined Arbiter Internal to Device option, this option disables
the tri-state buffer on reqn signal. Additionally, this option wires the
reqn and gntn signals to the provided arbiter as device #0, i.e., the
reqn and gntn signals are internally connected to ArbReq_n_i[0]
and ArbgGnt_n_o[0] respectively.

If you select this option, you need to specify the number of PCI
devices supported by the MegaCore function. The provided arbiter
can support up to eight PCI devices. The number of devices
supported includes the PCI-Avalon bridge; therefore, if you select
two devices, there will be one PCI device in addition to the
PCI-Avalon bridge device on the PCI bus.

Altera Corporation User Guide Version 11.1 6–11
October 2011

Parameter Settings

1 To implement a Host bridge device with no other PCI
master-capable devices, select the User-Defined Arbiter
Internal to Device option and connect the PCI gntn input
port to a physical 0. The bus will always be granted to the
Host Bridge.

PCI
Configuration

The third tab of the PCI Compiler wizard sets up the PCI Base Address
Registers (BARs) and the PCI Read-Only Registers.

PCI Base Address Registers

In the PCI Base Address Register box you define the number and type of
BARs as well as the system’s BAR address range. Up to six 32-bit BARs
can be defined. If you select 64 Bit PCI Bus in the PCI Data Bus Width
field (System Options - 2 tab), you have the option of defining one 64-bit
BAR and up to four 32-bit BARs. Refer to “Setting the PCI Base Address
Register Values” on page 6–11.

You have the option to disable the I/O ordering between the
non-prefetchable master and prefetchable master BARs in Target Only
mode. If you turn on Disable IO Ordering between Non-Prefetchable
and Prefetchable BARs, the non-prefetchable master write/read is no
longer dependent on the prefetchable master write/read, resulting in low
latency non-prefetchable master write/read.

c Disabling the I/O ordering between the non-prefetchable
master and prefetchable master BARs violates the PCI ordering
rules for bridge specification. It should therefore be used only in
embedded applications where designers can control the
ordering via the applications.

PCI Read-Only Registers

The values in the PCI Read-Only Registers box can all be edited in place.
When you change a value, the validity of the new value is automatically
checked. If the new value is out of range, the previous legal value is
substituted. For example, if you enter an illegal value such as 0xFFFF for
the Vendor ID, the value will be returned to its previous value. In
addition, a message is displayed that explains why the edit was ignored.
This message must be dismissed before you can proceed with other edits.

Setting the PCI Base Address Register Values

For transactions initiated on the PCI bus with a destination on the
Avalon-MM bus, the PCI bus address must be translated into an
Avalon-MM address. The PCI-Avalon bridge claims the PCI transaction

6–12 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Configuration

if the address matches one of the BARs. The PCI-Avalon bridge then
translates the PCI address into an Avalon-MM address before it initiates
the equivalent transaction on the interconnect. The PCI BAR settings in
the PCI Compiler wizard are used to set the appropriate options for the
PCI BAR, so the transactions from PCI can accurately flow to the
interconnect.

For each BAR you must set the following options:

■ BAR Type
■ BAR Size
■ Avalon Base Address
■ Hardwired PCI Address

The following sections explain how to select the appropriate settings for
each option.

BAR Type—The PCI-Avalon bridge supports three BAR types:

■ 32-Bit Prefetchable Memory: This type of BAR is typical for most
systems. It is used for Avalon-MM I/O. Implementing at least one
32-bit prefetchable BAR enables a prefetchable master port for the
PCI-Avalon bridge—except if you select the Single-Cycle Transfers
Only performance profile. This enables both burst and single cycle
access to Avalon-MM peripherals for both read and write
transactions.

You can use this option for all types of Avalon-MM peripherals
except those that do not support prefetchable read transactions.
Peripherals that support prefetchable read transactions do not
modify the state of the data when a read operation is performed. A
RAM or ROM is a typical example of a prefetchable peripheral.
Peripherals where a read operation changes the state of the data,
such as a FIFO buffer or a clear-on read register, are called
non-prefetchable and should not be accessed by a prefetchable base
address register.

■ 64-Bit Prefetchable Memory: This BAR is similar to the 32-bit
prefetchable memory BAR except that it supports 64-bit PCI
addressing. This option is only available if you select 64 Bit PCI Bus
in the System Options - 2 tab. The requirement for your device to
support 64-bit addressing is usually apparent from your system
architecture and is driven by the amount of system memory. Because
the Avalon-MM address space can only support 32-bit addresses,
you are limited to the amount of address space that you can reserve

Altera Corporation User Guide Version 11.1 6–13
October 2011

Parameter Settings

in this BAR type to 2 GBytes. In other words, this BAR type allows
your device to reside anywhere in the 64-bit address space, but does
not allow you to reserve more than 2 GBytes.

Only one 64-bit prefetchable BAR is allowed in a system. All other
BARs you define are 32-bit BARs.

■ 32-Bit Non-Prefetchable Memory: Non-prefetchable memory
address is normally used for register or memory space where the
read operation can modify the state of the data you read.
Implementing one or more 32-bit non-prefetchable BARs enables a
non-prefetchable master port for the PCI-Avalon bridge. If the
transaction address matches a non-prefetchable memory BAR, only
single cycle transactions for both read and write operations are
performed.

■ I/O: Implementing at least one IO BAR enables a non-prefetchable
master port for the PCI-Avalon bridge. Only single-cycle reads and
writes are supported. All I/O reads and writes are non-posted, and
handled as delayed operations. The amount of address space a
device requests can range between 4 and 256 bytes, inclusively. I/O
address space decoding for legacy devices is supported, as described
in Appendix G of the PCI Specifications.

BAR Size—The BAR size must be set to encompass the addresses of all the
Avalon-MM peripherals that you wish to access with the BAR. The BAR
size must be greater than or equal to the range of Avalon-MM address
that it accesses.

You can configure the BAR size either manually or automatically. To
automatically set the BAR size, select Auto for BAR size. Auto will
automatically set the BAR size to encompass the entire address space for
the Avalon-MM peripherals that are addressed by the BAR.

Avalon Base Address—The Avalon-MM base address corresponds to the
PCI base address. Based on the BAR size setting, the PCI-Avalon bridge
replaces the PCI base address with the Avalon-MM base address. In other
words, the read/write bits of the PCI Base Address Register are replaced
with the equivalent Avalon-MM base address bits.

You can configure the Avalon-MM base address either manually or
automatically. To automatically set the Avalon-MM base address, select
Auto for the BAR size. Refer to “Manual Setting of the BAR Size & Avalon
Base Address” for information on setting the size of the BAR.

6–14 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Configuration

Hardwired PCI Address—The hardwired PCI address setting allows you
to hardwire the PCI BAR so the system software does not configure it at
run time. To use this option, select YES and enter a hardwired BAR value.

1 The Hardwired PCI Address option is generally useful for the
PCI Host-Bridge Device mode and embedded applications,
because system designers have complete control over system
configuration. This option is not recommended for other
applications.

Manual Setting of the BAR Size & Avalon Base Address

The number of high-order bits (starting from the most significant bit) in
the BAR that the PCI device implements as read/write bits determines
the size of address to which it will respond. A 32-bit BAR can be
implemented to support a contiguous memory size that is a power of 2
from 1 KByte to 2 GBytes. If you select a base address size of 1 MByte
(using a 32-bit BAR), the PCI-Avalon bridge will implement the 12 most
significant bits (bits 31-20) of the base address registers as read/write and
hardwire the remaining bits to 0 (except for the least significant 4 bits
because they have special use). Figure 6–2 shows a pictorial view of the
PCI BAR address range.

Figure 6–2. Pictorial View of the 32-Bit PCI BAR

Start =

End =

0xFE60_0000

0xFE6F_FFFF

[BASE] 0...0

[BASE] 1...1

PCI Memory Address Range

BAR Range

0xFFFF_FFFF

0x0000_0000

Altera Corporation User Guide Version 11.1 6–15
October 2011

Parameter Settings

The PCI-Avalon address translation circuit requires that you supply the
PCI-Avalon bridge with the Avalon-MM base address value that
corresponds to the PCI base address value. The PCI-Avalon address
translation circuit replaces the most significant bits of the PCI address
(the read/write bits of the PCI BAR) and replaces them with the
corresponding most significant bits of the Avalon-MM base address.
Figure 6–3 shows a pictorial view of the process, assuming a 1 MByte PCI
BAR size.

Figure 6–3. Pictorial View of the PCI-to-Avalon Address Translation Circuit

A simplified way to determine the size and Avalon-MM base address is
shown in the following procedure (Table 6–1):

1. Record the base and end addresses of each Avalon-MM peripheral
you want to address with one BAR. List the addresses vertically
with the lowest base address in the bottom and the highest end
address on the top.

2. Starting from the most significant bit (bit 31), count the number of
bits (W) that remain constant for all the addresses you wrote. If the
number of bits is W, the size of the BAR is 232-W.

3. The corresponding base value is the smallest base address for the
Avalon-MM peripherals.

Because you can only address a 32-bit space on the Avalon-MM side, the
size calculation is the same for both the 32-bit BAR and 64-bit BAR.

0xFE612345

PCI Base Address Register Avalon Base Address

0xFE6

PCI Base

0x12345

0 . . . 0

31 1920 3 0

 0 AV BASE X X X X X . . . X

31 1920 0

0x00A do not care

PCI-Avalon
 Address
Translation
 Circuit

 Avalon
Address

 PCI
Address

0x00A12345

0x0

4

6–16 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Avalon Configuration

In some cases, you should try to adjust the Base Address of some
peripherals to help reduce the amount of address space you reserve with
the PCI BAR. In Table 6–1 the only difference between Example B and
Example C is the location of the second peripheral. In Example B the BAR
size is 16 MBytes, while in Example C the size is 64 KBytes.

Avalon
Configuration

The Avalon Configuration tab of the PCI Compiler wizard is used to
configure the address mapping from Avalon-MM addresses to PCI
addresses. This map can be dynamically configured at run time or
hardwired. If you choose to hardwire the map, the controls on this page
are used to define the hardwired map.

1 If you select the PCI Target-Only Peripheral mode from the
System Options - 1 tab, all options on the Avalon
Configuration tab, except Avalon CRA Port, will be disabled.

Under Address Translation Table Configuration, selecting either
Dynamic Translation Table or Fixed Translation Table options
determines the maximum number of pages for the window from Avalon
to PCI. If you select Fixed Translation Table, the number of pages is
limited to 16. The maximum number of pages for a dynamically
configured address map is 512.

In the Address Translation Table Size field, you set the number and size
of address pages. The lower limit on the size of the pages is 4 KBytes and
the upper limit is 2 GBytes. The maximum number of pages is limited by
either the decision to hardwire the map or the size of the page. The
maximum number of pages is the smaller of:

Table 6–1. Determining the Size and Avalon Base Address of a BAR

Example Avalon Peripheral
Setting Calculations PCI BAR Setting

A End1 = 0x0001_FFFF
Base1 = 0x0001_0000

W = 16
Size = 2(32-16) = 216 = 64K
Base = 0x0001_0000

BAR size = 64 KBytes – 16 bits
Avalon Base Address = 0x0001_0000

B End2 = 0x0A80_0FFF
Base2 = 0x0A80_0000

End 1 = 0x0A00_7FFF
Base1 = 0x0A00_4000

W = 8
Size = 224 = 16 MBytes
Base = 0x0A00_4000

BAR Size = 16 MBytes – 24 bits
Avalon Base Address = 0x0A00_0000

C End2 = 0x0A00_8FFF
Base2 = 0x0A00_8000

End 1 = 0x0A00_7FFF
Base1 = 0x0A00_4000

W = 16
Size = 216 = 64 KBytes
Base = 0x0A00_4000

BAR Size = 64 KBytes – 16 bits
Avalon Base Address = 0x0A00_0000

Altera Corporation User Guide Version 11.1 6–17
October 2011

Parameter Settings

■ 16 if hardwired or 512 if dynamically configured
■ 2 GBytes divided by the size of each page

For example, if you select a page size of 512 MBytes, the maximum
number of pages is four for both hardwired and dynamically configured.

If you select a smaller page size that yields more than 16 pages and then
change to a hardwired address map, the number of pages is
automatically decreased to 16.

The Fixed Address Translation Table Contents field is disabled if you
select Dynamic Translation Table. If you select Fixed Translation Table,
the number of rows that appear in the Contents panel is the same as the
value you enter in the Number of Address Pages box. For each Avalon
Address Offset, you can set a PCI Base Address and Type value. The
choices for Type are 32-bit/64-bit memory, I/O, and configuration. Refer
to “Avalon-to-PCI Address Translation” on page 7–35.

Turning on Control Register Access Avalon Slave Port option under
Avalon CRA Port allows read/write accesses to the bridge’s registers.
Disabling this option means that no read/write accesses will be granted
to the bridge’s registers. There are two cases in which this option is
always enabled:

■ If Dynamic Translation Table is selected in the Translation Table
panel

■ If PCI Host-Bridge Device is chosen as the device type on the
System Options - 1 page

6–18 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Avalon Configuration

Altera Corporation User Guide Version 11.1 7–1
October 2011

7. Functional Description

This chapter provides specification details for the PCI Compiler with
SOPC Builder flow, including:

■ Functional Overview
■ Interface Signals
■ PCI Bus Commands
■ PCI Target Operation
■ PCI Master Operation
■ PCI Host-Bridge Operation
■ Altera-Provided PCI Bus Arbiter
■ Interrupts
■ Control & Status Registers

Functional
Overview

The PCI Compiler with SOPC Builder flow uses the PCI-Avalon™ bridge
to connect the PCI bus to the on-chip system interconnect fabric, allowing
you to easily create simple or complex PCI systems that include one or
more of the SOPC Builder components.

Because the PCI Compiler with SOPC Builder flow uses a predefined
interconnect, system development is completely driven by the SOPC
Builder graphical user interface (GUI). For example, you specify bridge
and component parameterization options, and the PCI Compiler wizard
sets up the bridge’s structure, component features, and system-wide
interconnect.

To make a complete PCI-Avalon bridge, the PCI Compiler instantiates
the Altera pci_t32, pci_t64, pci_mt32, or pci_mt64 MegaCore

function as needed per user specifications.

The interconnect—which contains logic to manage system-wide
connectivity—connects all components that make up the user-specified
SOPC Builder system. For example, when the targeted Altera device is
operating in the PCI Master/Target Peripheral mode, the PCI-Avalon
bridge (via the interconnect) is managing the connectivity of multiple
master and slave components.

7–2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

This section discusses:

■ PCI-Avalon bridge module blocks
■ PCI operational modes
■ Performance profiles
■ OpenCore Plus time-out behavior

PCI-Avalon Bridge Blocks

The PCI-Avalon bridge’s blocks provide a feature-rich foundation that
enables the bridge to manage the connectivity for all three PCI
operational modes:

■ PCI Target-Only Peripheral
■ PCI Master/Target Peripheral
■ PCI Host-Bridge Device

Depending on the operational mode, the PCI-Avalon bridge uses some or
all of the predefined Avalon-MM ports. Figure 7–1 shows a generic
PCI-Avalon bridge block diagram, which includes the following blocks:

■ Four predefined Avalon-MM ports
■ Control/status registers
■ PCI master controller (when applicable)
■ PCI target controller
■ PCI bus arbiter (for Master/Target and Host bridge mode)
■ Instantiated Altera PCI MegaCore function

Altera Corporation User Guide Version 11.1 7–3
October 2011

Functional Description

Figure 7–1. Generic PCI-Avalon Bridge Block Diagram

Avalon-MM Ports

The Avalon bridge is comprised of up to four (depending on device
operating mode) predefined ports to communicate with the interconnect.

This section discusses the four Avalon-MM ports:

■ Prefetchable Avalon-MM master
■ Non-Prefetchable Avalon-MM master
■ PCI bus access slave
■ Control register access Avalon-MM slave

Prefetchable Avalon-MM Master
The prefetchable Avalon-MM master port provides a high bandwidth
PCI memory request access to Avalon-MM slave peripherals. This master
port is capable of generating Avalon-MM burst requests for PCI requests
that hit a prefetchable base address register (BAR). You should only
connect prefetchable Avalon-MM slaves to this port, typically RAM or
ROM memory devices.

PCI-Avalon Bridge

PCI
MegaCore
Function

PCI
Target

Controller

System
Interconnect

Fabric

Control
 Register

Access Avalon
 Slave

Control
Status

Registers

PCI
Prefetchable

Bridge
Logic

PCI
Non-

Prefetchable
 Bridge Logic

PCI
Bus

PCI
Master

Controller

Master
Bridge
Logic

PCI Bus
Access
Slave

PCI Bus
Arbiter

Prefetchable
Avalon
Master

Non-
Prefetchable

Avalon
Master

7–4 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

This port is optimized for high bandwidth transfers as a PCI target and is
optional for PCI master/target peripherals that do not need to support
burst transactions as a PCI target.

This port is enabled when you perform both of the following:

■ Select one of the following target performance settings:
● Burst Transfers with Single Pending Read
● Burst Transfers with Single or Multiple Pending Reads

■ Implement at least one prefetchable BAR

Non-Prefetchable Avalon-MM Master
The Non-Prefetchable Avalon-MM Master port provides a low latency
PCI memory request access to Avalon-MM slave peripherals. Burst
operations are not supported on this master port. Only the exact amount
of data needed to service the initial data phase will be read from the
interconnect. Therefore, the PCI byte enables (for the first data phase of
the PCI read transaction) are passed directly to the interconnect.

This Avalon-MM master port is also optimized for low latency access
from PCI-to-Avalon-MM slaves. This is optimal for providing PCI target
access to simple Avalon-MM peripherals. This port is optional for
implementations that do not need non-prefetchable access to peripherals.

If you select Single-Cycle Transfers Only target performance profile, this
port will be the only Avalon-MM master port instantiated.

PCI Bus Access Slave
This Avalon-MM slave port is used to propagate the following
transactions from the interconnect to the PCI bus:

■ Single cycle memory read and write requests
■ Burst memory read and write requests
■ I/O read and write requests
■ Configuration read and write requests

Burst requests from the interconnect are the only way to create burst
transactions on the PCI bus.

This slave port is not implemented in the PCI Target-Only Peripheral
mode.

Control Register Access Avalon-MM Slave
This Avalon-MM slave port is available to all three PCI device modes and
is used to access various control and status registers in the PCI-Avalon
bridge. To provide external PCI master access to these registers, one of the

Altera Corporation User Guide Version 11.1 7–5
October 2011

Functional Description

bridge’s master ports must be connected to this port. There is no internal
access inside the bridge from the PCI bus to these registers. You can only
read-from and write-to these registers from the interconnect.

Control/Status Register Module

The PCI-Avalon bridge provides a rich set of control and status registers
including mailbox registers. To access these registers, you must enable
the Control Register Access Avalon Slave port.

Mailbox Registers
The PCI-Avalon bridge provides two sets of mailbox registers. These
registers enable PCI and Avalon-MM masters to pass one DWORD of data
and assert an interrupt. To use the mailbox registers, you must enable the
Control Register Access Avalon Slave port.

One set of mailbox registers is used by external PCI masters. When a PCI
master writes a 32-bit value to a mailbox register, an Avalon-MM
interrupt is asserted. The number of available mailbox registers is
determined by the PCI-to-Avalon performance profile.

The second set of mailbox registers is used by Avalon-MM masters. When
an Avalon-MM master writes a 32-bit value to an Avalon-PCI mailbox
register, a PCI interrupt is generated. The number of Avalon-PCI mailbox
registers depends on the target performance profile. Refer to Table 7–1.

PCI MegaCore Function

The PCI-Avalon bridge instantiates the appropriate PCI MegaCore
function per user specifications. For example, if you select 64 Bit PCI Bus
from the PCI Data Bus Width field (System Options - 2 tab), your system
will use a 64-bit MegaCore function. Refer to “Value of Multiple Pending
Reads” on page 6–6.

1 To use the PCI-Avalon bridge you must license one of the Altera
PCI MegaCore functions.

Table 7–1. Target Performance Profiles & Mailbox Registers Used

Target Performance Profile Number of PCI-Avalon
Mailbox Registers

Number of Avalon-PCI
Mailbox Registers

Single-Cycle Transfers Only 1 1

Burst Transfers with Single Pending Read or Burst
Transfers with Multiple Pending Reads

8 8

7–6 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

PCI Bus Arbiter

The PCI-Avalon bridge has an optional, integrated PCI bus arbiter that
can be used in both the PCI Master/Target Peripheral and the PCI
Host-Bridge Device operating modes. When using the PCI bus arbiter,
the PCI-Avalon bridge will be automatically connected to requests and
grants for device zero.

Other PCI-Avalon Bridge Modules

The remaining PCI-Avalon bridge modules contain embedded memory
blocks, PCI MegaCore control modules, and bridge logic. These modules
provide the circuitry to enable the bridge’s functionality, i.e., transaction
translation, clock domain crossing, and transaction ordering.

PCI Operational Modes

The targeted Altera device can operate in any one of the following modes:

■ PCI Target-Only Peripheral
■ PCI Master/Target Peripheral
■ PCI Host-Bridge Device

1 MAX II devices only support the PCI Target-Only Peripheral
mode and only Single-Cycle Transfers Only performance
profile.

PCI Target-Only Peripheral Mode Operation

Figure 7–2 shows the block diagram of the PCI-Avalon bridge managing
the connectivity of the PCI Target-Only Peripheral mode with the
Single-Cycle Transfers Only performance profile. The configuration uses
the Non-Prefetchable Master port and has a Host processor and bus
arbiter on the PCI bus side. In the Single-Cycle Transfers Only
performance profile, all PCI transactions are transferred via the
Non-prefetchable Avalon-MM master port including access to
prefetchable BARs.

Altera Corporation User Guide Version 11.1 7–7
October 2011

Functional Description

Figure 7–2. PCI-Avalon Bridge Managing the PCI Target-Only Peripheral Mode, Single-Cycle Transfers Only

Figure 7–3 shows the block diagram of the PCI-Avalon bridge managing
the connectivity of the PCI Target-Only Peripheral mode with either the
Burst Transfers with Single-Pending Read profile or the Burst Transfers
With Multiple Pending Reads performance profile. The configuration
uses two of the four Avalon-MM ports and has a Host processor and bus
arbiter on the PCI side.

1 Because both the Prefetchable and Non-Prefetchable
Avalon-MM master ports are instantiated, the Avalon bridge
must have at least two memory BARs; one prefetchable memory
BAR and one non-prefetchable memory BAR.

PCI-Avalon Bridge
Target-Only Peripheral Mode

With Single-Cycle Transfers Only

PCI
Target

Controller

PCI
Non-

Prefetchable
 Bridge Logic

PCI
MegaCore
Function

System
Interconnect

Fabric

Avalon
Slave

Peripheral

Host
Processor

PCI
Master/
Target
Device

PCI
Bus

Arbiter

PCI
Bus

Non-
Prefetchable

Avalon
 Master

7–8 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

Figure 7–3. PCI-Avalon Bridge Managing the PCI Target-Only Peripheral Mode, Burst Transfers

You can customize the Target-Only mode by specifying one of the
performance profiles. Refer to “Performance Profiles” on page 7–11.

PCI Master/Target Peripheral Mode Operation

Figure 7–4 shows the block diagram of the PCI-Avalon bridge managing
the connectivity of the PCI Master/Target Peripheral mode. The PCI
Master/Target Peripheral mode uses at least one Avalon-MM master
port, the PCI Bus Access Slave port, and has a Host processor and bus
arbiter on the PCI bus side. Figure 7–4 shows an example when both
Avalon-MM master ports are used.

PCI- A v alon B r idg e
T arget-Only P e r iphe r al Mode

 With Either Burst T r ans f ers with Single P ending Read ,
or Burst T r ans f ers with Multiple P ending Read s

PCI
T arge t

Controller

M
as

te
r

 P
 o r

 t

PCI
MegaCore
 Function

Non-
Pre f etcha b l e

A v alo n
 Master

Host
Processor

PCI
Master/
T arge t
D e vic e

PCI
Bus

Arbiter

Pre f etcha b le
A v alo n
 Master

PCI
Pre f etcha b l e

B r idg e
Logic

PCI
Non-

Pre f etcha b l e
 B r idge Logi c

PCI Clo c k A v alon Clo c k

PCI
Bus

Avalon
Slave

Peripheral

Avalon
Slave

Peripheral

System
Interconnect

Fabric

Altera Corporation User Guide Version 11.1 7–9
October 2011

Functional Description

Figure 7–4. PCI-Avalon Bridge Block Diagram Managing the PCI Master/Target Peripheral Mode

You can customize the Master/Target mode by specifying one of the
performance profiles. Refer to “Performance Profiles” on page 7–11.

Control Register Access Avalon Slave
The PCI-Avalon bridge provides a rich set of user-accessible
control/status registers. Implementing the registers is optional except
when using the:

■ PCI Host-Bridge Device mode
■ Dynamic Avalon-to-PCI address translation option

The Avalon Configuration tab of the PCI Compiler wizard allows you to
enable the control/status registers and specify access to them via the
interconnect. Refer to “Avalon Configuration” on page 6–16.

The control/status registers can be accessed from any Avalon-MM
master device including PCI-Avalon bridge master ports. If you want to
access the control/status registers from a PCI bus master device, you
must use the SOPC Builder GUI to connect the Avalon-MM ports to the
Control Register Access Avalon Slave port. Refer to Figure 7–5.

PCI-Avalon Bridge
Master/Target Peripheral Mode

PCI
MegaCore
Function

PCI
Target

Controller

Non-
Prefetchable

Avalon
 Master

Host
Processor

PCI
Master/
Target
Device

PCI
Bus

Arbiter

Prefetchable
Avalon
 Master

PCI
Prefetchable

Bridge
Logic

PCI
Non-

Prefetchable
 Bridge Logic

PCI
Bus

PCI
Master

Controller

Master
Bridge
Logic

PCI Bus
Access

Avalon Slave

Master
Peripheral

Master
Peripheral

Slave
Peripheral

Slave
Peripheral

System
Interconnect

Fabric

7–10 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

Figure 7–5. PCI-Avalon Bridge Managing the PCI Master/Target Mode with Control Register Access Option
Enabled

PCI Host-Bridge Device Mode Operation

Figure 7–6 shows the block diagram of the PCI-Avalon bridge managing
the connectivity of the PCI Host-Bridge Device mode.

PCI-Avalon Bridge
Master/Target Peripheral Mode with Control Register Access Option Enabled

PCI
MegaCore
Function

PCI
Target

Controller

Non-
Prefetchable

Avalon
 Master

Host
Processor

PCI
Master/
Target
Device

Bus
Arbiter

Prefetchable
Avalon
 Master

Control
Register Access

Avalon Slave

Control
Status

Registers

PCI
Prefetchable

Bridge
Logic

PCI
Non-

Prefetchable
 Bridge Logic

PCI
Bus

PCI
Master

Controller

Master
Bridge
Logic

PCI Bus
Acess

Avalon Slave

Master
Peripheral

Master
Peripheral

Slave
Peripheral

Slave
Peripheral

System
Interconnect

Fabric

Altera Corporation User Guide Version 11.1 7–11
October 2011

Functional Description

Figure 7–6. PCI-Avalon Bridge Block Diagram Managing the PCI Host-Bridge Device Mode

You can customize the PCI Host-Bridge Device mode by specifying a
performance profile. The PCI Host-Bridge Device mode performance
profiles are the same as the PCI Master/Target Peripheral mode.

Performance Profiles

The performance profiles are designed to provide trade-offs between
performance and resource usage, which also provides a deeper level of
system control. Therefore, you are able to customize system features to
suit application requirements. For example, if you need a target-only PCI
system component for a low bandwidth and low latency application,
specify that the targeted Altera device operate in the PCI Target-Only
Peripheral mode and use the Single-Cycle Transfers Only performance
profile.

The PCI-Avalon bridge provides the ability to modify the PCI master and
target performances independently. The PCI target performance setting
applies to all PCI device operating modes, while the PCI master
performance setting applies only to the PCI Master/Target Peripheral
and PCI Host-Bridge Device operating modes.

PCI-Avalon Bridge
PCI Host Bridge Mode

PCI
MegaCore
Function

PCI
Target

Controller

Non-
Prefetchable

Avalon
 Master

Prefetchable
Avalon
 Master

Control
Register Access

Avalon Slave

Control
Status

Registers

PCI
Prefetchable

Bridge
Logic

PCI
Non-

Prefetchable
 Bridge Logic

PCI
Bus

PCI
Master

Controller

Master
Bridge
Logic

PCI Bus
Access

Avalon Slave

Master
Peripheral

Slave
Peripheral

Slave
Peripheral

PCI
Master/
Target
Device

PCI
Bus

Arbiter

PCI
Master/
Target
Device

PCI
Master/
Target
Device

Host
Processor

System
Interconnect

Fabric

7–12 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Functional Overview

Within each of the PCI operating modes, the targeted Altera device can
use any of the performance profiles; the performance profiles are slightly
different per device operating mode.

Target Performance

The PCI-Avalon bridge provides the following three target performance
options:

■ Single-Cycle Transfers Only
■ Burst Transfers with Single Pending Read
■ Burst Transfers with Multiple Pending Reads

Single-Cycle Transfers Only
This profile uses the least amount of resources and does not require
embedded RAM blocks. This profile provides low latency and low
bandwidth connectivity for Avalon-MM slave peripherals. Only the
Non-Prefetchable Avalon-MM master port is enabled.

Burst Transfers With Single Pending Read
This profile allows high throughput read/write operations to
Avalon-MM slave peripherals. Read/write accesses to prefetchable base
address registers (BARs) use dual-port buffers to enable burst
transactions on both the PCI and Avalon-MM sides. This profile also
allows access to non-prefetchable PCI BARs to use the Non-prefetchable
Avalon-MM master port to initiate single-cycle transfers to Avalon-MM
slave peripherals. All PCI read transactions are completed as delayed
reads. However, only one delayed read is accepted and processed at a
time.

Burst Transfers With Multiple Pending Reads
This profile is exactly the same as the target Burst Transfers with Single
Pending Read performance profile except that it allows up to four
pending reads to be simultaneously processed.

Master Performance

The PCI-Avalon bridge provides the following two master performance
options:

■ Burst Transfers with Single Pending Read
■ Burst Transfers with Multiple Pending Reads

Altera Corporation User Guide Version 11.1 7–13
October 2011

Functional Description

Burst Transfers With Single Pending Read
This profile provides high throughput for transactions initiated by
Avalon-MM master devices to PCI target devices via the PCI bus master
interface. This profile uses embedded RAM blocks to enable clock
domain crossing and efficient processing of single-cycle and burst
transfers. Avalon-MM read transactions are implemented as latent read
transfers. The PCI master devices issue only one read transaction at a
time.

Burst Transfers With Multiple Pending Reads
This profile is exactly the same as the Burst Transfers with Single Pending
Read for both the PCI Master/Target Peripheral and PCI Host-Bridge
Device operational modes except that it can simultaneously process up to
four pending reads. This allows higher throughput for read operations,
but also requires more device resources.

For more information on multiple pending read transactions, refer to
“Value of Multiple Pending Reads” on page 6–6 and page 7–23.

Interface
Signals

The PCI-Avalon bridge has PCI and Avalon-MM interface signals. The
SOPC Builder automatically connects the Avalon-MM interface signals.

f For information about Avalon-MM interface signals and their
functionality, refer to the System Interconnect Fabric for Memory-Mapped
interfaces chapter in volume 4 of the Quartus II Handbook.

The SOPC Builder appends the instance name of the PCI Compiler
component to all of the corresponding PCI-Avalon bridge component’s
signal names. For example, if the instance name of the PCI Compiler
component is pci_compiler, all of PCI-Avalon bridge component’s
signal names will be <signal name>_pci_compiler, where <signal
name> is the default signal name.

The SOPC Builder system containing the PCI-Avalon bridge has one
asynchronous reset signal named rstn_<pci_compiler_instance_name>.
This signal is used for the entire SOPC Builder system, including the
PCI-Avalon bridge. A second reset signal, reset_n, can be enabled by
selecting Independent Avalon Reset Signal when setting up the
PCI-Avalon bridge. This signal is used for the entire SOPC Builder system
except the PCI-Avalon bridge.

The connection of the reset signal, rstn_<pci_compiler_instance_name>, is
generally a system-specific requirement and is outside the scope of this
document. However, for most PCI applications, this reset signal should
be connected to the PCI reset signal and must meet all PCI reset

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf

7–14 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Interface Signals

requirements. If you use the PCI constraint files as recommended, the
SOPC Builder reset signal will be assigned to the PCI reset signal and all
PCI settings will automatically be made in your Quartus II project file.

Depending on the selected clock option, you may have one or more clock
signals in your SOPC Builder system. There are two clock options (refer
to “Value of Multiple Pending Reads” on page 6–6):

■ If you select Shared PCI and Avalon Clocks, the resulting SOPC
Builder system will have only one clock signal, clk. This pin must be
connected to your device’s PCI clock signal and must have all of the
appropriate PCI assignments in your Quartus II project. The PCI
constraint files do not make the appropriate assignments.

■ If you select Independent PCI and Avalon Clocks, the resulting
SOPC Builder system will have at least two clock signals, clk and
clk_<pci_compiler_instance_name>. The latter of these signals must
be connected to your device’s PCI clock signal on your device and
must have the appropriate PCI assignments in your Quartus II
project. You can use the PCI constraint files to make all of the
appropriate PCI assignments.

f For more information on using PCI constraint files, refer to Appendix A,
Using PCI Constraint File Tcl Scripts.

PCI Bus Arbiter Signals

Table 7–2 lists the PCI arbiter interface signals. These signals are only
present when the Altera-Provided Arbiter Internal to Device option is
selected in the PCI bus arbiter field (refer to “Value of Multiple Pending
Reads” on page 6–6).

Table 7–2. PCI Arbiter Ports

Name Type Description

ArbReq_n_i[N-1] Input Bus request inputs. These signals are asserted when the
connected agent wants to master the PCI bus. Where N is the
number of PCI devices supported by the arbiter.

ArbGnt_n_o[N-1] Output Bus grant outputs. These signals are asserted when the bus is
granted to one of the attached devices. Where N is the number
of PCI devices supported by the arbiter.

Altera Corporation User Guide Version 11.1 7–15
October 2011

Functional Description

PCI Bus
Commands

Table 7–3 shows the PCI bus commands support for PCI-Avalon bridge.
The bus commands are discussed in greater detail in “PCI Target
Operation” on page 7–15 and “PCI Master Operation” on page 7–27.

PCI Target
Operation

Because it is used with all device types, the PCI target mode is the most
basic operational mode for the PCI-Avalon bridge. In PCI target mode,
the PCI-Avalon bridge supports the following PCI bus transactions:

■ Memory read/write
■ Configuration read/write
■ IO read/write

Table 7–3. PCI Bus Command Support Summary

Command Value Bus Command Cycle PCI Master (1) PCI Target (2)

0b0000 Interrupt acknowledge No Ignored

0b0001 Special cycle No Ignored

0b0010 I/O read Yes Yes

0b0011 I/O write Yes Yes

0b0100 Reserved Ignored Ignored

0b0101 Reserved Ignored Ignored

0b0110 Memory read Yes Yes

0b0111 Memory write Yes Yes

0b1000 Reserved Ignored Ignored

0b1001 Reserved Ignored Ignored

0b1010 Configuration read Yes Yes

0b1011 Configuration write Yes Yes

0b1100 Memory read multiple Yes Yes

0b1101 Dual address cycle (DAC) Yes (3) Yes (3)

0b1110 Memory read line Yes Yes

0b1111 Memory write and invalidate No Yes

Notes to Table 7–3:
(1) Refers to the ability of the PCI-Avalon bridge to initiate a PCI transaction with the indicated command.
(2) Refers to the ability of the PCI-Avalon bridge to accept a PCI transaction with the indicated command.
(3) This command is not supported in 32-bit PCI bus width applications.

7–16 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Target Operation

PCI configuration read and write operations are automatically handled
by the PCI MegaCore function block of the PCI-Avalon bridge. The
functions provide access to all PCI configuration registers and behave
exactly as described in the PCI Compiler with MegaWizard flow section.
Refer to “Configuration Read Transactions” on page 3–62 and
“Configuration Write Transactions” on page 3–76.

1 When discussing PCI-Avalon bridge functionality, all PCI
memory write transactions are referred to as write and all PCI
memory read transactions are referred to as read. The specific
PCI command will be indicated only when the behavior of the
bridge is dependent on the actual PCI bus command.

Additionally, request and completion are used to describe
operations handled by the PCI-Avalon bridge. Request is used to
indicate that the command is being issued for the first time, and
completion is used to indicate that actual data is being
transferred. In a write operation, request and completion occur
within the same PCI transaction. However, in a read operation,
request and completion are usually two different transactions
separated by a significant amount of time.

The PCI-Avalon bridge has two distinct data paths: prefetchable and
non-prefetchable. Depending on the performance profile and type of
BARs used, a transaction is routed to one of the two data paths. If a
transaction hits a non-prefetchable BAR it will be handled by the
non-prefetchable data path. Additionally, if you select Single-Cycle
Transfers Only target performance profile, all PCI memory transactions
are routed to the non-prefetchable data path and the prefetchable data
path will be removed.

Transactions handled by a non-prefetchable data path have the following
key characteristics:

■ Are always handled as single data phase transactions
■ Read requests will be initially retried and completed as delayed read

operations
■ The requests will be directed to the Non-prefetchable Avalon-MM

master port. This path consists of single address and data registers,
and therefore, will have minimal latency. However, the path will not
support burst behavior.

Transactions that hit a prefetchable BAR will be routed to the
prefetchable data path and have the following characteristics:

■ Burst transactions are supported.

Altera Corporation User Guide Version 11.1 7–17
October 2011

Functional Description

■ Read requests will always be initially retried and completed as
delayed read operations.

■ The requests will be directed to the prefetchable Avalon-MM master
port. The data path between the PCI bus and this Avalon-MM port
will be optimized to support higher bandwidth that results in higher
latency to transition through the required RAM buffers.

Figure 7–7 shows the bridge logic between the PCI target controller and
Avalon-MM master ports.

Figure 7–7. PCI Target-to-Avalon-MM Master Block Diagram

Non-Prefetchable Operations

Non-prefetchable operations are defined as either transactions that hit:

■ A non-prefetchable BAR
■ A prefetchable BAR if the Single-Cycle Transfers Only target

performance profile is used

As previously noted, PCI write operations involve only one PCI
transaction where the address/command and data is transferred. The
read operation involves at least two PCI transactions. In the first PCI
transaction (request), the address and data are transferred to the
PCI-Avalon bridge, and in the second transaction (completion), the
PCI-Avalon bridge transfers the data.

PCI
MegaCore
Function

Prefetchable
Addr/Data

Write Data

Address

Write Data

Read Data

Read Data

Prefetchable
Avalon Master Port

Non-Prefetchable
Avalon Master Port

 Prefetchable
Command/Write

Data Buffer

 Prefetchable Read
Response Data Buffer

Address Non-Prefetchable
Command Register

 Non-Prefetchable
Write Data Register

PCI
Target

Controller

 Non-Prefetchable
Read Response Register

Non-Prefetchable
Write Data

Non-Prefetchable
Address

7–18 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Target Operation

To ensure the lowest possible latency, the PCI-Avalon bridge can handle
just one PCI-to-Avalon, non-prefetchable request at a time. A single
command register holds the command, address, and byte enables for
either the current read or the current write operation. If the register is still
busy with the previous operation, no additional read or write requests are
accepted and a retry is signaled on the PCI interface.

Non-Prefetchable Write Operations

The non-prefetchable bridge data path handles both the memory write
command and the memory write and invalidate command if they hit
either:

■ A non-prefetchable BAR.
■ A prefetchable BAR when the Single-Cycle Transfers Only target

performance profile is selected.
■ An I/O BAR.

When PCI write requests are claimed from the PCI bus, they are passed
to Avalon-MM as write requests. Both PCI memory write and PCI
memory write and invalidate PCI bus commands are treated identically
inside the non-prefetchable PCI-Avalon bridge logic. The first data phase
worth of data is accepted from the PCI bus and written to the
PCI-to-Avalon write data register. A target disconnect is signaled as the
first data phase is accepted from the PCI bus.

The PCI-to-Avalon address translation circuit is used to compute the
appropriate Avalon-MM address. The non-prefetchable Avalon-MM
master port will then issue a single-cycle Avalon-MM write transaction to
transfer data.

Table 7–4 shows all of the possible termination conditions for
non-prefetchable PCI target write operations.

Table 7–4. Non-Prefetchable Write Operation

Termination Condition Resulting Action

PCI-to-Avalon non-prefetchable command already in
progress

The target controller retries the operation on the PCI
bus. Nothing is remembered about the retried PCI write
operation. When the PCI write operation is
subsequently re-issued, it is treated as a new
operation.

Normal master initiated termination of single data
phase transaction

Data is accepted and written to the PCI-to-Avalon
non-prefetchable data register and then written to
Avalon.

Altera Corporation User Guide Version 11.1 7–19
October 2011

Functional Description

I/O Write Operations

The non-prefetchable bridge data path handles the I/O write command
that hits an I/O BAR.

PCI I/O writes are handled as delayed write operations. When PCI I/O
write requests are claimed from the PCI bus, they are passed to
Avalon-MM as write requests. The first data phase worth of data is
accepted from the PCI bus and written to the PCI-to-Avalon write data
register. A target disconnect is signaled as the first data phase is accepted
from the PCI bus.

The PCI-to-Avalon address translation circuit is used to compute the
appropriate Avalon-MM address. The non-prefetchable Avalon-MM
master port will then issue a single-cycle Avalon-MM write transaction to
transfer data.

Non-Prefetchable Read Operations

The non-prefetchable data path handles PCI read transactions that hit
either:

■ A non-prefetchable BAR.
■ A prefetchable BAR with the Single-Cycle Transfers Only target

performance profile selected.
■ An I/O BAR.

Non-prefetchable read operations are handled as delayed read
operations. PCI memory read, memory read line, memory read multiple
commands and I/O read are treated identically in the non-prefetchable
PCI-Avalon bridge logic.

Target disconnect if initiator attempts to burst beyond
the first data phase

The target controller issues a target disconnect on the
PCI bus if the PCI initiator attempts to burst beyond the
first data phase. The data is accepted and written to the
PCI-to-Avalon non-prefetchable data register and then
written to the interconnect.

Target abort Not applicable when a non-prefetchable master BAR is
hit. The target controller will not terminate a PCI write
operation with a target abort.

When an I/O BAR is hit, target abort is signalled
according to the I/O space address decoding.

Table 7–4. Non-Prefetchable Write Operation

Termination Condition Resulting Action

7–20 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Target Operation

A PCI read operation handled by the non-prefetchable bridge data path
has the following sequence of events:

1. In the request phase, the PCI bus issues a read transactions that
matches one of the BARs. The PCI-Avalon bridge claims the
transaction, stores its address, command and byte enables, and
issues a retry. The PCI-Avalon bridge claims transactions only if
there are no other transactions pending in the non-prefetchable data
path.

2. The PCI-Avalon bridge translates the PCI address to Avalon-MM
and passes the transaction to the non-prefetchable Avalon-MM
master port, which issues the transaction to the interconnect.

3. The data retrieved from Avalon is stored in a read response register
inside the PCI-Avalon bridge. The PCI-Avalon bridge will then wait
for the PCI bus to issue the same read transaction.

4. Finally, during the completion phase, the PCI bus issues the same
read transaction with exactly the same address, command and byte
enables, and then the PCI-Avalon bridge transfers the data, which
signals the end of the non-prefetchable read operation.

While the PCI-Avalon is processing the non-prefetchable read, all
transactions are retried and not remembered.

Due to the required ordering rules, if there is a pending write transaction
in the opposite direction (Avalon-to-PCI), the non-prefetchable read
operation’s completion phase will be delayed. In other words, if a write
operation (flowing in the opposite direction of the current read operation)
is in the Avalon bridge first, the PCI-Avalon bridge will not complete the
read operation until the write operation completes.

If the non-prefetchable read latency timer expires before the read
transaction is complete, the non-prefetchable read transaction’s data is
discarded. The non-prefetchable read latency counter is set to 32,768
clocks.

Altera Corporation User Guide Version 11.1 7–21
October 2011

Functional Description

Table 7–5 shows all of the termination conditions that are possible for
non-prefetchable PCI target read operations.

Prefetchable Operations

If you select either of the burst performance profiles (Burst Transfers with
Single Pending Read or Burst Transfers with Multiple Pending Reads),
requests that hit prefetchable BARs are handled by the prefetchable data
path. At the same time, request that hit non-prefetchable BARs are
handled by the non-prefetchable data path as previously described.

The prefetchable data path supports both single-cycle and burst
operations and allows multiple writes to be internally pipelined.
Additionally, if you select Burst Transfers with Multiple Pending Reads
target performance profile, the prefetchable data path will support up to
four pending read operations. The Burst Transfers with Single Pending
Read target performance profile allows only one pending read at a time.

Table 7–5. Non-Prefetchable Read Operation

Request/Termination Condition Resulting Action

PCI-to-Avalon non-prefetchable command register is
full. Current command, address and byte enables do
not match this register.

The target controller retries the operation on the PCI
bus. Nothing is remembered about the retried PCI read
operation. When the PCI read operation is
subsequently re-issued, it is treated as a new
operation.

PCI-to-Avalon non-prefetchable command register is
full. Current command, address and byte enables
match this register. However, response data from the
interconnect is not available.

The target controller retries the operation on the PCI
bus.

PCI-to-Avalon non-prefetchable command register is
full. Current command, address and byte enables
match this register. Response data from the
interconnect is valid.

The data is returned to the PCI bus and a disconnect is
signaled. The PCI-to-Avalon non-prefetchable
command register is made available.

PCI-to-Avalon non-prefetchable command register is
available.

Address, command, and byte enables are captured in
the PCI-to-Avalon non-prefetchable command register.
The read request is forwarded to the interconnect. A
retry is signaled on the PCI bus.

PCI-to-Avalon non-prefetchable command register is
available. Avalon-to-PCI write operation is already
pending.

Address, command, and byte enables are captured in
the PCI-to-Avalon non-prefetchable command register.
The read request is forwarded to the interconnect. A
retry is signaled on the PCI bus. The returned read data
is not made available until the previously pending
Avalon-to-PCI write operations are complete.

Target abort Not applicable. The target controller will not terminate
a PCI read operation with a target abort.

7–22 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Target Operation

These features result in higher bandwidth, but introduce higher latency
and require more resources.

Prefetchable Write Operations

When PCI write requests that hit prefetchable BARs are claimed from the
PCI bus, they are passed to the interconnect as write requests. Both PCI
memory write and PCI memory write and invalidate commands are
treated identically inside the prefetchable PCI-Avalon bridge logic.

When a PCI memory write is claimed from the PCI interface, the BAR hit
information, BAR offset address, and initial data are written to the
PCI-to-Avalon command/write data buffer. Memory write transfers are
broken into 32-byte boundaries before they are issued on the
interconnect. The memory write command is committed to the buffer
when either the PCI write command ends on the PCI interface or the burst
data reaches a 32-byte boundary. Once the command is committed to the
buffer, it becomes visible to the Avalon-MM side of the buffer and the
Avalon-MM write operation can begin. Therefore, long PCI memory
burst write transactions are broken into 32-byte Avalon-MM transfers.
However, depending on the PCI address, the first and/or last resulting
Avalon-MM write transaction can be less than 32-bytes. The PCI-Avalon
bridge calculates the appropriate Avalon-MM address for all transfers.

If the incoming PCI write specifies the "cacheline wrap dode" burst order,
the request is target disconnected on the first data phase. The single data
phase worth of write data is committed to the PCI-to-Avalon
command/write data buffer.

For all data phases of PCI-to-Avalon write requests, the PCI byte enables
are passed through to the Avalon-MM byte enables unchanged.

PCI write bursts can be terminated for a number of reasons. The reasons
and resulting actions by the PCI target controller are enumerated in
Table 7–6.

Table 7–6. Termination of PCI Writes That Hit a Prefetchable BAR as a PCI Target (Part 1 of 2)

Termination Condition Resulting Action

Normal master-initiated termination The current transaction is committed to the
PCI-to-Avalon command/write data buffer at its current
length.

Some bytes are disabled in the current data phase The transaction will continue and the byte enables will
be passed along to Avalon-MM unchanged.

Altera Corporation User Guide Version 11.1 7–23
October 2011

Functional Description

Prefetchable Read Operations

All prefetchable PCI read requests that are claimed are initially retried.
The number of retried reads that can be remembered and passed on to the
Avalon-MM interface as read requests depends on the performance
profile selected in the PCI Compiler wizard. For burst transfers with
Single-Cycle Transfers Only performance profile, only one pending read
is handled at a time.

For Burst Transfers with Multiple Pending Reads, up to four delayed read
transactions can be in progress at the same time. The PCI-Avalon bridge
accepts up to four reads and forwards them to the interconnect. The reads
are completed in the order requested on the PCI bus.

If additional reads arrive after the maximum number of pending reads
are stored in the queue, the additional reads are retried and no
information is stored. After one of the pending reads is completed (or
discarded due to expiration of a timer), an additional read can be stored
in the queue and passed to the interconnect.

For every possible PCI-to-Avalon pending read request, there is a set of
registers that store the PCI memory address, command, and byte enables.
Therefore, the command can be matched on a subsequent retry. In
addition, there is dedicated PCI-to-Avalon read response buffer space
and buffer management logic for every possible pending read request.

PCI-to-Avalon command/write data buffer full, no data
transferred yet

The target controller retries the operation on the PCI
bus. Nothing is remembered about the retried PCI write
operation. When the PCI write operation is
subsequently re-issued, it is treated as a new
operation.

PCI-to-Avalon command/write data buffer full, some
data transferred

The target controller issues a disconnect on the PCI
bus. The current transaction is committed to the
PCI-to-Avalon command/write data buffer at its current
length. If and when the PCI write operation is
subsequently resumed, it is treated as a new operation.

Prefetchable target burst write with cacheline wrap
mode

One data phase worth of data is transferred and the
request is disconnected.

Target abort Not applicable. The target controller will not terminate
a PCI write operation with a target abort.

Table 7–6. Termination of PCI Writes That Hit a Prefetchable BAR as a PCI Target (Part 2 of 2)

Termination Condition Resulting Action

7–24 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Target Operation

The read requests are passed through the PCI-to-Avalon
command/write data buffer, so that they maintain their ordering with
respect to the previous write requests.

Memory read requests that match a prefetchable BAR are forwarded to
the interconnect as burst read requests. The size of the burst depends on
the PCI command used:

■ The cacheline wrap mode reads are treated as Single-Cycle Transfers
Only and are always set to a burst length of one. Therefore, one
DWORD is transferred in 32-bit mode, and two DWORDs are transferred
64-bit mode.

■ The PCI memory read and memory read line commands set the burst
count to transfer data up to the next 32-byte address boundary.
Therefore, the burst count is set from 1-8 in 32-bit mode and 1-4 in
64-bit mode. For example, if the least significant byte of the PCI
address is 0x08, the burst count used for 32-bit mode will be 6 and
64-bit mode will be 3.

■ The PCI memory read multiple command sets the burst count to
transfer data up to the second 32-byte boundary. Thus, the burst
count is set from 9-16 in 32-bit mode and 5-8 in 64-bit mode. So, the
maximum number of bytes transferred in the PCI memory read
multiple command is 64-bytes where the end address must be
32-byte aligned. For example, if the least significant byte of the PCI
address is 0x08, the burst count used for 32-bit is 14 and burst count
used for 64-bit is 7. Refer to Table 7–7.

Table 7–7. Burst Size for PCI Target Prefetchable Read Requests

PCI Command Transfers

32-Bit 64-Bit

Burst
Count

Transfer
Size

Burst
Count

Transfer
Size

Any read that specifies
cacheline wrap mode

1 1 1 DWORD 1 2 DWORDs

Memory read and memory
read line

As many to reach address that is
aligned to 32-bytes.

1-8 1-8
DWORDs

1-4 2-8
DWORDs

Memory read multiple Transfers up to 64-bytes so that
the address reaches the second
32-byte boundary.

9-16 9-16
DWORDs

5-8 10-16
DWORDs

Altera Corporation User Guide Version 11.1 7–25
October 2011

Functional Description

■ The PCI memory read command initiates burst transaction to the
Avalon bus with the burst value based on the maximum target read
burst size (refer to “Maximum Target Read Burst Size” on page 6–4).
For example, the read transaction will return maximum number of
32 DWORDs when the maximum target read burst value is 32.

To optimize overall performance, PCI memory read line and memory
read multiple requests (that use linear burst order) always have their
burst lengths rounded to a burst boundary. This is done so that
subsequent reads will be naturally aligned to burst boundaries.

When a previously remembered PCI read request is claimed again, it is
retried until there is at least one data phase worth of data in the response
buffer. When there is at least one data phase worth of data in the response
buffer, the burst data transfer will begin.

Every attempt is made to keep the read burst transfer going for as long as
possible. If additional data has been requested from Avalon-MM, but is
not yet available in the response buffer, wait states are inserted on the PCI
bus up to the PCI specified maximum target subsequent latency of eight
cycles. As soon as the response data is available, it is transferred to the
PCI bus. If the data is not available within the eight clock cycles, a target
disconnect is issued.

Any time the PCI read operation ends (via either the master or the target
device), any prefetched data remaining in the response buffer—or still
expected from the interconnect—is discarded. This is done to be consistent
with the PCI-SIG specifications.

For memory read requests that hit a prefetchable BAR, all bytes are
enabled in the Avalon-MM requests regardless of the actual byte enables
signaled by the PCI master.

Associated with each pending read response buffer is a timer that
determines if and when to discard the data read from the interconnect
and free the pending read response buffer. When the initial data for a
prefetchable read request is returned from the interconnect, the timer is
initialized to 2047 and the timer begins counting down. If the timer
reaches 0 before the matching PCI read request is repeated, the data is
discarded and the pending read request buffer is freed. Discarding
prefetchable read data is not considered an error and no status bit is set
to indicate that this has happened.

7–26 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Target Operation

Table 7–8 lists the reasons for which a burst transfer can be terminated
and the resulting actions.

PCI-to-Avalon Address Translation

Figure 7–8 shows the PCI-to-Avalon address translation. The bits in the
PCI address that are used in the BAR matching process are replaced by an
Avalon-MM base address that is specific to that BAR. The Avalon-MM
base addresses are hardwired from the CB_P2A_AVALON_ADDR_B[0:5]
parameters for each BAR.

Table 7–8. Termination of Prefetchable Target Burst Reads

Termination Condition Resulting Action

Response buffer is empty and no more
data is expected from the interconnect

The target controller issues a disconnect and the response buffer is
available for re-use.

Response buffer is empty, more data is
expected from the interconnect, and less
than eight cycles have elapsed since the
last data phase.

Wait states are inserted on the PCI bus in an attempt to extend the
burst transaction.

Response buffer is empty, more data is
expected from the interconnect, and
eight cycles have elapsed since the last
data phase

The target controller issues a target disconnect. The data is
discarded when returned from the interconnect, and the response
buffer is available for re-use after all expected data from the
interconnect is discarded.

Normal master completion ● Data in the response buffer is discarded.
● Data already requested from the interconnect is discarded when

returned.
● After all expected data from the interconnect is discarded, the

response buffer is available for re-use.

Prefetchable target burst read crosses
the BAR boundary

One data phase worth of data is read and returned and the request is
disconnected. This happens when the burst count exceeds the PCI
BAR boundary (Table 7–7 on page 7–24).

Prefetchable target burst read with
cacheline wrap mode

One data phase worth of data is transferred and the request is
disconnected.

Target abort Not applicable. The target controller will not terminate a PCI write
operation with a target abort.

Altera Corporation User Guide Version 11.1 7–27
October 2011

Functional Description

Figure 7–8. PCI-to-Avalon Address Translation

PCI Master
Operation

This section describes the PCI master mode operation. Because the PCI
Target-Only Peripheral mode is a subset of the PCI Master/Target
Peripheral mode, the information in the previous section also applies to
the target side of the PCI Master/Target Peripheral mode.

The PCI master mode operation applies to Avalon-to-PCI transactions.
The PCI-Avalon bridge automatically accepts Avalon-MM read and
write operations targeting the PCI Bus Access Slave port interface and
translates them into PCI master transactions. Transaction progress and
error conditions are stored in the control/status registers that can be
accessed via the control access port.

The Avalon-to-PCI address translation module (refer to “Avalon-to-PCI
Address Translation” on page 7–35) controls whether Avalon-MM read
and write requests are issued on PCI as memory, I/O, or configuration
space transactions. Except for the command used, accesses to the
different spaces operate identically. Burst transactions may even be
attempted to configuration space, but this is unusual behavior and target
devices may not operate correctly.

You have the option to make the Avalon-to-PCI address translation
module either fixed at compile time or dynamically-configured at run
time. A fixed Avalon-to-PCI address translation module is very useful for
embedded systems with very few PCI devices. If the dynamic address
translation table is used, you need to write to it using the Control
Register Access Avalon Slave port.

Avalon_Addr_B0

Avalon AddressPCI Address

High Low

Hardcoded BAR Specific
Avalon Addresses

Matched BAR
Selects Avalon

Addresses

Inside PCI MegaCore Function

BAR Specific Number
of High Avalon Bits

N = Number of Pass Through Bits (BAR Specific)
M = Number of Avalon Address Bits
P = Number of PCI Address Bits (64/32)

Low Address Bits Unchanged
(BAR Specific Number of Bits)

Avalon_Addr_B1

Avalon_Addr_B2

Avalon_Addr_B3

Avalon_Addr_B4

Avalon_Addr_B5

0N-1M-1 N

High Low

0P-1 N N-1

BAR0 (or 0:1)

BAR1

BAR2

BAR3

BAR4

BAR5

7–28 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Master Operation

The PCI-Avalon bridge uses the burst count to select the best PCI
command that provides the best performance on the PCI bus. For
example, if the burst count is greater than 1, but the request spans more
than one cacheline size (as define by the PCI cacheline size register) the
PCI-Avalon bridge issues a PCI memory read multiple command.

Because the interconnect does not support non-posted write operations,
the PCI-Avalon bridge cannot report the status of I/O or configuration
write operations back to Avalon-MM. So, if you want to emulate a
non-posted write behavior, you can either:

■ Issue a write immediately followed by a read transaction. When the
read returns, you will know that the write transaction is finished.

■ Use the current PCI status register bit, A2P_WRITE_IN_PROGRESS,
to determine if the write transaction is still pending in the bridge.

There are two performance options available in the master mode
operation:

■ Burst Transfers with Single Pending Read. This performance
profile initiates both PCI single-cycle and burst transactions,
depending on the Avalon-MM burst count. Each PCI delayed read
transaction must complete before a new one is initiated. This
selection maximizes data throughput, but does not minimize PCI
read latencies.

■ Burst Transfers with Multiple Pending Reads. This performance
profile initiates both PCI single-cycle and burst transactions,
depending on the Avalon-MM burst count. A maximum of four
pending PCI delayed read transactions are allowed. This selection
maximizes data throughput and minimizes PCI read latencies.

Avalon-To-PCI Read & Write Operation

The PCI Bus Access Slave port is a burst capable slave that attempts to
create PCI bursts that match the bursts requested from the interconnect.

The PCI-Avalon bridge is capable of handling bursts up to 512 bytes with
a 32-bit PCI bus and 1024 bytes with a 64-bit PCI. In other words, the
maximum supported Avalon-MM burst count is 128.

Bursts from Avalon-MM can be received on any boundary. However,
when internal PCI-Avalon bridge bursts cross the Avalon-to-PCI address
page boundary, they are broken into two pieces. This is because the
address translation can change at that boundary, resulting in a different
PCI address needing to be used for the second portion of the burst with a
burst count greater than 1.

Altera Corporation User Guide Version 11.1 7–29
October 2011

Functional Description

1 Avalon-MM burst read requests are treated as if they are going
to prefetchable PCI space. Therefore, if the PCI target space is
non-prefetchable, you should not use read bursts.

There are several factors that control how Avalon-MM transactions
(bursts or single cycle) are translated to PCI transactions. These cases are
discussed in Table 7–9. Remember that some optimizations are put in
place for situations where 32-bit Avalon-MM masters (for example, the
Nios® II processor) talk to 32-bit PCI targets through a 64-bit PCI-Avalon
bridge.

Table 7–9. Translation of Avalon Requests to PCI Requests (Part 1 of 2)

Data
Path

Width

Avalon
Burst
Count

Type of
Operation Avalon Byte Enables Resulting PCI Operation and Byte Enables

32 1 Read or
write

Any value Single data phase read or write, PCI byte enables
identical to Avalon byte enables

32 >1 Read Any value Attempt to burst on PCI. All data phases will have
all PCI bytes enabled.

32 >1 Write Any value Attempt to burst on PCI. All data phases will have
PCI byte enables identical to the Avalon byte
enables.

64 1 Read and
write

Upper 4 bytes
disabled; lower 4
bytes any value

Only a single 32-bit data phase (req64n not
asserted) with the lower 4 byte enables sent to
PCI, and lower 32 bits of data if a write.

64 1 Read and
write

Upper 4 bytes any
value; lower 4 bytes
disabled

Only a single 32-bit data phase (req64n not
asserted) to the odd DWORD with the upper 4 byte
enables sent to PCI (and upper 32 bits of data if a
write).

64 1 Read Bytes enabled in both
the upper and lower
DWORD

A single 64-bit data phase is attempted (req64n
asserted) with the Avalon byte enables sent to PCI.
If the target does not assert ack64n and
disconnects after a single data phase, the
transaction is resumed as a single cycle 32-bit
request (req64n not asserted). The PCI byte
enables will be the upper 4 byte enables from the
original Avalon request.

64 1 Write Bytes enabled in both
the upper and lower
DWORD

A 32-bit two data phase burst is attempted
(req64n not asserted) with the lower and upper
byte enables from Avalon sent in consecutive PCI
data phases.
If the target disconnects after the first data phase,
the request will be resumed as a 32-bit single data
phase transfer.

7–30 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Master Operation

Figure 7–9 shows the basic data paths and control structures in the
Avalon-to-PCI direction. There is an Avalon-MM slave port that provides
access to the PCI bus.

64 >1 Read Any value Attempt to do a 64 bit burst on PCI (req64n
asserted). All data phases will have all PCI byte
enables asserted.
Note: If the target address space is only 32-bit
(ack64n not asserted) and the device disconnects
on an odd DWORD boundary, the transaction is
resumed as a 32-bit burst (req64n not asserted).

64 >1 Write Any value Attempt to do a 64-bit burst on PCI (req64n
asserted). All data phases will have PCI byte
enables identical to the Avalon byte enables.
Note: If the target address space is only 32-bit
(ack64n not asserted) and the device disconnects
on an odd DWORD boundary (req64n not
asserted), a single cycle 32-bit write operation will
be issued to get back on an even DWORD
boundary. This is followed by an attempt at a 64-bit
burst that is converted to a 32-bit burst if the device
doesn’t acknowledge 64-bit bursts.

Table 7–9. Translation of Avalon Requests to PCI Requests (Part 2 of 2)

Data
Path

Width

Avalon
Burst
Count

Type of
Operation Avalon Byte Enables Resulting PCI Operation and Byte Enables

Altera Corporation User Guide Version 11.1 7–31
October 2011

Functional Description

Figure 7–9. Avalon-to-PCI Block Diagram

Avalon-to-PCI Write Requests

For write requests from the interconnect, the write request is pushed on
to the PCI bus as a configuration write, I/O write, or memory write.
When the Avalon-to-PCI command/write data buffer either has enough
data to complete the full burst or 8 data phases (32 bytes on a 32-bit PCI
bus or 64 bytes on a 64-bit bus) are exceeded, the PCI master controller
will issue the PCI write transaction.

The PCI write is issued to configuration, I/O, or memory space based on
the address translation table. Refer to “Avalon-to-PCI Address
Translation” on page 7–35.

For all PCI memory write commands, a linear incrementing burst order
is used.

Pending Read

Pending Read N
Control/Address

Pending Read 0
Control/Address

Current Write
Control/Address

PCI
Master

Command
Arbiter/

ControllerPCI
MegaCore
Function

Resp Buffer

Resp Buffer
Read Control

Command/
Data Buffer

Resp Buffer N

Avalon
Interface
Control
Logic

Addr
Translation

Control

Read
Data

Data

Read/Write

Write
Data

AddrI/O and Cfg Requests

PCI Clock Domain Avalon Clock Domain

PCI Bus Access
Avalon Slave

Control

Resp Buffer 0

Data

Wr
Addr

Rd

Wr

Wr
Addr

Read
Addr

Bypassable
Read Cmd Buffer

7–32 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Master Operation

The PCI-Avalon bridge will not combine multiple Avalon-MM writes to
consecutive locations into a single PCI write transaction. No attempt is
made to byte merge separate Avalon-MM writes that write to separate
bytes in the same DWORD or QWORD into a single PCI write operation.

The PCI interface will attempt to burst as long as it can. A PCI write burst
can be terminated for various reasons. Table 7–10 describes the resulting
action for the PCI master write request termination condition.

Avalon-to-PCI Read Requests

For read requests from the interconnect, the request is pushed on the PCI
bus by a configuration read, I/O read, memory read, memory read line,
or memory read multiple command. The PCI read is issued to
configuration, I/O, or memory space based on the address translation
table entry. Refer to “Avalon-to-PCI Address Translation” on page 7–35.

If a memory space read request can be completed in a single data phase,
it is issued as a memory read command. If the memory space read request
spans more than one data phase but does not cross a cacheline boundary
(as defined by the cacheline size register), it is issued as a memory read
line command. If the memory space read request crosses a cache line
boundary, it is issued as a memory read multiple command.

Table 7–10. PCI Master Write Request Termination Conditions

Termination condition Resulting Action

Burst count satisfied Normal master-initiated termination on PCI bus,
command completes, and the master controller
proceeds to the next command.

Latency timer expiring during configuration, I/O, or
memory write command

Normal master-initiated termination on PCI bus, the
continuation of the PCI write is requested from the
master controller arbiter.

Avalon-to-PCI command/write data buffer running out
of data

Normal master-initiated termination on the PCI bus.
Master controller waits for the buffer to reach 8
DWORDs on a 32-bit PCI or 16 DWORDs on a 64-bit PCI,
or there is enough data to complete the remaining burst
count. Once enough data is available, the continuation
of the PCI write is requested from the master controller
arbiter.

PCI target disconnect The continuation of the PCI write is requested from the
master controller arbiter.PCI target retry

PCI target-abort The PCI interrupt status register bit,
ERR_PCI_WRITE_FAILURE (bit 0), is set to 1. The rest
of the write data is read from the buffer and discarded.

PCI master-abort

Altera Corporation User Guide Version 11.1 7–33
October 2011

Functional Description

Single-cycle, 64-bit Avalon-to-PCI read requests that have only the upper
or lower 32 bits enabled, need to be issued as single-cycle, 32-bit read
requests on the PCI bus.

Avalon-MM requires that read response data be returned in the order
requested. Typically, read requests on PCI are initially retried. Usually, a
PCI master will issue additional PCI reads after one has been retried—this
routine is done so that the PCI targets can start the internal actions for
servicing the reads in parallel. However, this leaves the PCI master with
little control over the order in which the reads complete. In bridging to
Avalon-MM, this can be a particular problem when a PCI read is issued
and gets retried, while a second read is issued and data is immediately
provided. The bridge needs to hold on to that data until data for the first
read is returned.

To solve this problem with the best possible performance, the PCI-Avalon
bridge has four Avalon-to-PCI read response buffers for holding pending
reads. The multiple response buffers are used when the Burst Transfers
with Multiple Pending Reads performance profile is chosen.

There is also a buffer for holding additional Avalon-to-PCI read
commands before they are allocated to a pending read buffer and issued
on the PCI bus. This buffer allows writes to pass reads before they are
allocated an Avalon-to-PCI read response buffer.

When a PCI read request is read from the Avalon-to-PCI bypassable read
buffer, it is assigned to the first available Avalon-to-PCI read response
buffer. If an Avalon-to-PCI read response buffer is not available, the PCI
read request is held in the Avalon-to-PCI bypassable read buffer.

To return the read data to Avalon-MM in the correct order, the
Avalon-MM side of the Avalon-to-PCI read response buffers is always
read from the buffers in a first-in, first-out order.

No attempt is made to combine multiple Avalon-MM reads to
consecutive locations into a single PCI Read burst.

Table 7–11 shows PCI master read request termination conditions.

Table 7–11. PCI Master Read Request Termination Conditions (Part 1 of 2)

Termination Condition Resulting Action

Burst count satisfied Normal master initiated termination on the PCI bus. Master controller proceeds to the
next command.

Latency timer expired Normal master initiated termination on PCI bus. The continuation of the PCI read is
made pending as a request the master controller arbiter.

7–34 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Master Operation

Arbitration Among Pending PCI Master Requests

The transaction arbiter is responsible for managing all pending PCI
master requests. To manage the continuos cycle of requests, the
transaction arbiter uses priority guidelines to determine which master
request to service first. This section discusses how a master request is
issued as well as the transaction arbiter’s priority guidelines.

A PCI master request can be issued via any of the following:

■ Continuation of a previously interrupted command
■ A new read from the Avalon-to-PCI bypassable read buffer
■ A new write command from the Avalon-to-PCI command/write

data buffer

Figure 7–8 on page 7–27 shows that a command can be serviced either
from the pending read queue (i.e., for read requests), or directly from the
command/data buffer (i.e., for write requests). The transaction arbiter
selects one of the "eligible" commands to service. In the Avalon-to-PCI
command/data buffer, only the head-of-line command can be eligible.

PCI write and read command eligibility are defined below:

■ PCI write commands are "eligible" if either:
● There are eight data phases of data
● There is enough data in the Avalon-to-PCI command/write

data buffer to satisfy the remaining burst count
■ PCI read commands are "eligible" if:

● They have already been assigned to an Avalon-to-PCI read
response buffer

● They have not been assigned and there is an Avalon-to-PCI read
response buffer available

PCI target disconnect The continuation of the PCI read is requested from the master controller arbiter.

PCI target retry

PCI target-abort PCI interrupt status register ERR_PCI_READ_FAILURE (bit 1) is set to 1. Dummy data
is returned to complete the Avalon-MM read request. The next operation is then
attempted in a normal fashion.

PCI master-abort

Table 7–11. PCI Master Read Request Termination Conditions (Part 2 of 2)

Termination Condition Resulting Action

Altera Corporation User Guide Version 11.1 7–35
October 2011

Functional Description

1 The head-of-line read command in the pending read queue
is the one that is issued first and its read data must be
returned before the data for all other reads is returned.
Because the interconnect is waiting for the head-of-line
command data to be returned first, it is given a special
priority level.

The transaction arbiter issues eligible commands in the following order:

1. Head-of-line previously retried or disconnected read request that
was not the last command issued.

2. Previously disconnected or never issued eligible write request.

3. Not head-of-line previously retried or never issued read request. If
there are multiple not head-of-line retried or never issued reads, this
priority slot is given to each of them one at a time in a rotating
order, so that the head-of-line read request is issued at least once
every other command.

4. Head-of-line previously retried read request that was the last
command issued.

Avalon-to-PCI Address Translation

Avalon-to-PCI address translation is done through a translation table.
Low order Avalon-MM address bits are passed to PCI unchanged; higher
order Avalon-MM address bits are used to index into the address
translation table. The value found in the table entry is used as the higher
order PCI address bits. Figure 7–10 depicts this process.

7–36 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Master Operation

Figure 7–10. Avalon-to-PCI Address Translation

Address Translation Table Size (refer to “Avalon Configuration” on
page 6–16) selections determine both the number of entries in the
Avalon-to-PCI address translation table, and the number of bits that are
passed through the transaction table unchanged.

Each entry in the address translation table also has two address space
indication bits, which specify the type of address space being mapped. If
the type of address space being mapped is memory, the bits also indicate

Avalon Address PCI Address

High Low

N = Number of Pass Through Bits
M = Number of Avalon Address Bits
P = Number of PCI Address Bits
Q = Number of Translation Table Entries
Sp = Space Indication for Each Entry

Low Address Bits Unchanged

Avalon to PCI Address
Translation Table

(Q Entries by P-N Bits wide)

PCI Address from Table Entry
Used as High PCI Address Bits

Space IndicationTable Updates via
Control Register Port

High Avalon Address
Bits Index Table

PCI Address 0 Sp0

PCI Address 1 Sp1

PCI Address Q-1 SpQ-1

0N-1M-1 N

High Low

0P-1 N N-1

Altera Corporation User Guide Version 11.1 7–37
October 2011

Functional Description

whether the resulting PCI address is a 32- or 64-bit address. Table 7–12
shows the address space field’s format of the address translation table
entries.

If the space indication bits specify configuration or I/O space, subsequent
modifications to the PCI address are performed. Refer to Table 7–13.

Table 7–12. Address Space Bit Encodings

Address
Space Indicator

(Bits 1:0)
Description

00 Memory space, 32-bit PCI address.
Address bits 63:32 of the translation table entries are ignored.

01 Memory space, 64-bit PCI address, dual address cycle (DAC) command will be issued on the
PCI bus. Due to PCI Compiler restrictions, this setting is only possible when a 64-bit PCI data
path is in use. When a 32-bit PCI data path is in use, the hardware will not let this value be set.

10 I/O space. The address from the translation table process is modified as described in
Table 7–13.

11 Configuration space. The address from the translation table process is treated as a type 1
configuration address and is modified as described in Table 7–13.

Table 7–13. Configuration & I/O Space Address Modifications

 Address Space Modifications Performed

I/O ● PCI address bits 2:0 are set to point to the first enabled byte according to the
Avalon byte enables. (Bit 2 only needs to be modified when a 64-bit data path is
in use.)

● PCI address bits 31:3 are handled normally.

Configuration
address bits
23:16 == 0,
(Type 0 transaction)

● PCI address bits 1:0 are set to "00" to indicate a type 0 configuration request.
● Address bits 10:2 are passed through as normal.
● PCI address bits 31:11 are set to be a one-hot encoding of the device number field

of the address bits 15:11.
For example, if the device number shows 0x00, PCI address bit 11 is set to 1 and
bits 31:12 are set to 0. If the device number shows 0x01, PCI address bit 12 is set
to 1 and bits 31:13, 11 are set to 0.

● Address bits 31:24 are ignored.

Configuration
address bits
23:16 > 0
(Type 1 transaction)

● PCI address bits 1:0 are set to "01" to indicate a type 1 configuration request.
● Address bits 31:2 are passed through unchanged.

7–38 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Master Operation

The Avalon-to-PCI address translation table has two configurations (refer
to “Avalon Configuration” on page 6–16):

■ Dynamic
■ Fixed

If Dynamic Translation Table is specified, translation table entries can be
modified, as needed, by the software at run time. If Fixed Translation
Table is specified, the translation table entries are fixed at compile time.

The dynamic Avalon-to-PCI address translation table has the following
properties:

■ The table can be written to via the control register access port
■ Entries must be set up before read or write requests are issued to the

corresponding Avalon-MM addresses
■ The table cannot be preinitialized upon reset

Some applications can use a fixed Avalon-to-PCI address map. Because
Host Bridge applications program the BAR registers on the attached PCI
devices, they can control which PCI address ranges are used. If a large
enough range of the Avalon-MM address space can be set aside to map
all of the BARs in a system, then a single fixed Avalon-to-PCI map can be
used. Even in PCI Target-Only Peripheral mode or PCI Master/Target
Peripheral mode, many embedded applications will know enough about
the required PCI addressing to get by with a small number of fixed
Avalon-to-PCI translations.

Fixed address translations operate identically to the modifiable scheme
described above, except that the translation table effectively becomes a
read only memory (ROM). The same parameters control the size of the
now fixed translation table.

Ordering of Requests

The PCI-Avalon bridge handles the following types of requests:

■ PMW—Posted memory write
■ DRR—Delayed read request
■ DWR—Delayed write request. DWRs are I/O or configuration write

operation requests. The PCI-Avalon bridge does not handle DWRs
as delayed writes. As a:
● PCI master, I/O or configuration writes are generated from

posted Avalon-MM writes. If required to verify completion, you
must issue a subsequent read request to the same target.

Altera Corporation User Guide Version 11.1 7–39
October 2011

Functional Description

● PCI target, configuration writes are the only requests accepted,
which are never delayed. These requests are handled directly by
the PCI core.

■ DRC—Delayed read completion
■ DWC—Delayed write completion. These are never passed through to

the core in either direction. Incoming configuration writes are never
delayed. Delayed write completion status is not passed back at all.

The following sections describe the special ordering logic and adherence
to the PCI-SIG specifications for each direction through the PCI-Avalon
bridge.

Ordering of Avalon-to-PCI Operations

Read and write requests in the Avalon-to-PCI direction are handled in a
first-in, first-out order through the Avalon-to-PCI command/write data
buffer. As read commands are read out of the Avalon-to-PCI
command/write data buffer they can be placed in the Avalon-to-PCI
bypassable read buffer, which allows them to be passed by writes.

To preserve the producer/consumer ordering model, delayed read
completions (for reads handled as a PCI target) cannot pass writes in the
PCI-to-Avalon direction. To preserve this ordering relationship, the valid
flag for data returned from the interconnect is passed through the
Avalon-to-PCI command/write data buffer. Because the buffer is
handled in a first-in, first-out order, the read response data valid flag will
not be indicated on the PCI side until all previous Avalon-to-PCI write
commands are finished.

Figure 7–11 shows the ordering logic used in the Avalon-to-PCI direction.

7–40 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Master Operation

Figure 7–11. Ordering Logic for Avalon-to-PCI Direction

A2P Command/Write
Data Buffer

(FIFO)

Read/Write Commands and
Write Data from Avalon

Valid from Read
Ctrl State Machine

Valid from Read
Ctrl State Machine

Read Data from
Avalon NonP Port

Read Data from
Avalon Pref Port

Read/Write Commands
and Write Data in PCI

P2A Pref Pending
Read Data 0

P2A Pref Pending
Read Data 1

P2A Pref Pending
Read Data N

P2A NonP Read
Data Reg

Data
Valid 0

Data
Valid 1

Data
Valid N

NP Data
Valid

Data
Valid 0

Data
Valid 1

Data
Valid N

Data to PCI

To PCI Target Ctrl

Data to PCI

To PCI Target Ctrl

Data to PCI

To PCI Target Ctrl

Data to PCI

To PCI Target Ctrl

NP Data
Valid

A2P = Avalon-to-PCI
P2A = PCI-to-Avalon

Altera Corporation User Guide Version 11.1 7–41
October 2011

Functional Description

Table 7–14 specifies the ordering rules and behavior of the PCI-Avalon
bridge for the Avalon-to-PCI direction. The entries in this table describe
whether a type in a row may pass a type in a column. The table uses the
following terminology: "No" means a type may not pass another type,
"Yes/No" means a type may pass the other type, but does not have to, and
"Yes" means that a type must pass another type to avoid deadlocks.

Table 7–14. Summary of Ordering in the Avalon-to-PCI Direction

PMW DRR DWR DRC DWC

Spec(1) Impl(2) Spec Impl Spec Impl Spec Impl Spec Impl

PMW No No(3) Yes Yes(6) Yes No(8) Yes Yes(10) Yes N/A(5)

DRR No No(3) Yes/ No No(7) Yes/ No No(3) Yes/ No Yes(10) Yes/ No N/A(5)

DWR No No(3) Yes/ No Yes(6) Yes/ No No(3) Yes/ No Yes(10) Yes/ No N/A(5)

DRC No No(4) Yes Yes(6) Yes No(9) Yes/ No Yes/
No(11)

Yes/ No N/A(5)

DWC Yes/ No N/A(5) Yes N/A(5) Yes N/A(5) Yes/ No N/A(5) Yes/ No N/A(5)

Notes to Table 7–14:
(1) Spec refers to the PCI Local Bus Specification, Revision 3.0, published by PCI-SIG.
(2) Impl refers to the implementation of this passing rule in the PCI-Avalon bridge.
(3) PMWs, DRRs, and DWRs will not pass other PMWs or DWRs since a request at the head of the Avalon-to-PCI

Command/Write Data buffer will be handled first before any subsequent requests.
(4) Ordering logic will make sure that PCI-to-Avalon Read Completion data is not indicated as available on the PCI

side until a previous PMW or DWR is issued.
(5) DWCs are never passed through the PCI-Avalon bridge. The PCI-Avalon bridge can only be the target of a

Configuration Write and these are never delayed.
(6) DRRs can be held pending in the pending read logic or the Avalon-to-PCI Bypassable Read Buffer, allowing them

to be passed by PMWs, DWRs, or DRCs.
(7) Avalon-MM requires that all read data be returned in the order requested. It is possible they can complete on PCI

in a different order if there are multiple Avalon-to-PCI Read Response buffers.
(8) PMWs cannot pass I/O Writes or Configuration Writes (DWRs). However, since the PCI-Avalon bridge does treat

I/O Writes or Configuration Writes in a non-posted fashion, the deadlock avoidance required by the PCI
specification is not required.

(9) DRCs cannot pass I/O Writes or Configuration Writes (DWRs). However, since the PCI-Avalon bridge does treat
I/O Writes or Configuration Writes in a non-posted fashion, the deadlock avoidance required by the PCI
specification is not required.

(10) DRCs can be held in the PCI-to-Avalon Read Response buffers, allowing them to be passed by PMWs, DRRs or
DWRs.

(11) If multiple PCI-to-Avalon Read Response buffers are implemented, then one DRC can pass another. Otherwise,
only one delayed read can be in progress at a time.

7–42 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Master Operation

Ordering PCI-to-Avalon Operations

For requests that hit a prefetchable BAR, ordering is maintained among
the requests by the PCI-to-Avalon command/write data buffer. Both read
and write requests pass through this buffer and are handled in a first-in,
first-out order.

For requests that hit a non-prefetchable BAR, only one of these requests
can be in progress at a time. This request is ordered against any
prefetchable requests by passing the non-prefetchable request valid
indication through the prefetchable PCI-to-Avalon command/write data
buffer.

When a non-prefetchable write request is made valid on the Avalon-MM
side, it must interlock prefetchable write and read requests from being
passed to the Avalon-MM side until the non-prefetchable request has
been accepted by the interconnect. This preserves the ordering of the
non-prefetchable write with respect to prefetchable requests that come
later.

Read response data for Avalon-to-PCI reads must not be allowed to pass
either prefetchable or non-prefetchable writes. To enforce this
requirement, the read response data valid indications are passed from the
PCI bus to the interconnect through both the prefetchable PCI-to-Avalon
command/write data buffer (as sideband data) and the non-prefetchable
command processing logic. The read response data is not made valid
until the prior commands have been passed to the interconnect.

Figure 7–12 shows the ordering logic used in the PCI-to-Avalon direction.
If the prefetchable port is not implemented, the valid indications are
propagated through clock synchronization logic (if needed) instead of the
prefetchable PCI-to-Avalon command/write data buffer (FIFO).

Altera Corporation User Guide Version 11.1 7–43
October 2011

Functional Description

Figure 7–12. Ordering Logic for PCI-to-Avalon Direction

P2A Prefetchable
Command/ Write
Data Buffer (FIFO)

Read/Write Commands
and Write Data to Avalon
Prefetchable Port

To PBA Port

To Avalon
Non-Prefetchable
Port

Command to Avalon
Non-Prefetchable Port

Read Data to
PBA Port

Prefetchable
Read/Write Commands
and Write Data from PCI

A2P Pending
Read Data 0

A2P Pending
Read Data 1

A2P Pending
Read Data N

A2P Non-
Prefetchable

Command Reg

Data
Valid 0

Data
Valid 1

Data
Valid N

Non-
Prefetchable

Cmd
Valid

Data
Valid 0

Data
Valid 1

Data
Valid N

Non-
Prefetchable

Cmd
Valid

From PCI Master
Ctrl

(Non-Prefetchable Cmd Valid for a Write
also prevents Prefetchable commands from
being issued to Avalon or Read Data being
sent to the PBA)

Data from PCI

Non-Prefetchable
Read/Write
Commands from PCI

PBA = PCI Bus Access Avalon Slave Port
A2P = Avalon-to-PCI
P2A = PCI-to-Avalon

7–44 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

PCI Master Operation

Table 7–15 specifies the ordering rules and behavior for the
PCI-to-Avalon direction. The entries in this table describe whether a type
in a row may pass a type in a column. The table uses the following
terminology: "No" means a type may not pass another type, "Yes/No"
means a type may pass the other type, but does not have to, and "Yes"
means that a type must pass another type to avoid deadlocks.

Table 7–15. Summary of Ordering in the PCI-to-Avalon Direction

PMW DRR DWR DRC DWC

Spec(1) Impl(2) Spec Impl Spec Impl Spec Impl Spec Impl

PMW No No(3) Yes No(5) Yes N/A Yes Yes(6) Yes Yes

DRR No No(3) Yes/ No No(5) Yes/ No N/A Yes/ No Yes(6) Yes/ No Yes

DWR No No(3) Yes/ No No(5) Yes/ No No(5) Yes/ No Yes(6) Yes/ No No

DRC No No(4) Yes No(5) Yes N/A Yes/ No No(7) Yes/ No No

DWC Yes/ No No(4) Yes No(5) Yes No Yes/ No No Yes/ No No

Notes to Table 7–15:
(1) Spec refers to the PCI Local Bus Specification, Revision 3.0, published by PCI-SIG.
(2) Impl refers to the implementation of this passing rule in the PCI-Avalon bridge.
(3) PMWs and DRRs cannot pass other PMWs in the PCI-to-Avalon Command/Write Data buffer. Ordering logic will

prevent PMWs that hit prefetchable BARs and PMWs that hit non-prefetchable BARs from passing each other.
(4) The ordering logic prevents DRCs from passing PMWs
(5) Avalon-MM does not provide any mechanism to stop accepting reads separately from writes, so there is no way

to make PMWs, DRCs (or other DRRs) pass DRRs. However, since Avalon-MM provides completely separate
paths for master and slave transactions, the PCI requirements for this passing do not apply.

(6) PMWs and DRRs in the PCI-to-Avalon Buffers are allowed to pass DRCs in the Read Response buffers.
(7) Avalon-MM requires the DRCs (Read Responses) be returned in the order the requests were made. Note, however,

that DRCs may actually be returned in a different order than they completed on the PCI bus.

Altera Corporation User Guide Version 11.1 7–45
October 2011

Functional Description

PCI Host-Bridge
Operation

You can use the PCI Host-Bridge Device operating mode when the host
processor resides on the Avalon-MM side. The PCI Host processor is
responsible for configuring all of the PCI devices. In PCI Host-Bridge
Device mode, the PCI-to-Avalon bridge operates the same as the PCI
Master mode except for the following situations:

■ The Control Register Access Avalon Slave port is no
longer optional.

■ The PCI command register’s bus master enable bit is hardwired to 1
to enable PCI master operations at power up.

■ You must connect the PCI-Avalon bridge’s idsel signal to one of the
address bus signals to enable self configuration.

Typically, you will need to implement the PCI bus arbitration logic.
However, you can still use any of the provided options for the PCI bus
arbitration. Refer to “PCI Bus Arbiter” on page 7–6.

Connecting the idsel signal to one of the ad(31:11) bus lines is an
operation that is not automatically performed when using the
PCI-Avalon bridge. This can be done in your top level Quartus II design
or you can use a resistive coupling on the board. Generating PCI
configuration transactions that access the PCI-Avalon bridge’s
configuration space is accomplished in the same way that all
configuration transactions are initiated.

Altera-Provided
PCI Bus Arbiter

The Altera-provided arbiter can be enabled from the PCI Compiler
wizard. In addition, you can choose to support from two up to eight PCI
devices.

The number of external ports for the Altera-provided arbiter is dependent
on the number of supported PCI devices. The arbiter’s external ports are:
ArbReq_n_i[(N-1):1] and ArbGnt_n_o[(N-1):1], where N is the
number of devices specified. The ArbReq_n_i[0] and
ArbGnt_n_o[0] will automatically be connected to the PCI-Avalon
bridge’s reqn and gntn signals respectively.

1 If you choose to support two devices, the PCI test bench will be
automatically configured. If you choose to support more than
two devices, additional manual configuration is necessary.

The arbiter is a fair, single level arbiter. Once an ArbGnt_n_o signal is
asserted in response to the corresponding ArbReq_n_i, the grant is
maintained at least until one of the following occurs:

■ framen transitions from deasserted to asserted
■ 16 cycles elapse with framen deasserted
■ The corresponding ArbReq_n_i is deasserted

7–46 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Interrupts

When no ArbReq_n_i lines are asserted, ArbGnt_n_o[0] will be
asserted, parking the bus on the internal PCI-Avalon bridge master.

Interrupts This section discusses the generation and reception of PCI and
Avalon-MM interrupts.

Generation of PCI Interrupts

There are several events that can cause a PCI interrupt. However, for each
event there is a specific bit that enables the interrupt. The following
events can cause a PCI interrupt:

■ Avalon asserts the IRQ signal
■ Avalon writes to one of the mailbox registers
■ An error condition is detected

In any SOPC Builder constructed PCI-Avalon system, either the
prefetchable or the non-prefetchable master port has an Avalon-MM
interrupt (IRQ) input. The non-prefetchable master port always has the
IRQ interrupt input. However, if the non-prefetchable master is not
implemented in a system, the prefetchable port will have the IRQ
interrupt input.

The Avalon-MM IRQ input causes a bit to be set in the PCI interrupt
status register. When you need to assert a PCI interrupt, this bit can be
enabled.

PCI interrupts can also be generated by writing to the Avalon-to-PCI
mailbox registers and having the appropriate enable bit set.

PCI interrupts can also be signaled under a variety of error conditions.
Refer to the PCI interrupt status register (Table 7–18 on page 7–50) and
the PCI interrupt enable register (Table 7–19 on page 7–52) for a complete
list of possible interrupt conditions.

Reception of PCI Interrupts

If it is enabled, the PCI-Avalon bridge can signal an interrupt on the
interconnect—in response to the assertion or deassertion of the PCI
interrupt signal. The PCI-Avalon bridge provides register bits that can
signal either a falling- or a rising-edge of the PCI interrupt signal inta.
You can specify to signal an Avalon-MM interrupt in response to either of
the two events or both events.

Altera Corporation User Guide Version 11.1 7–47
October 2011

Functional Description

The Avalon-MM interrupt status register contains two bits that indicate
whether a rising- or falling-edge is detected on intan. Similarly, the
Avalon-MM interrupt enable register has two bits that enable the
signaling of an Avalon-MM interrupt on either a rising- or falling-edge of
the Avalon-MM interrupt enable register. For a complete description of
the Avalon-MM interrupt status register and Avalon-MM interrupt
enable register, refer to Table 7–26 on page 7–57 and Table 7–28 on
page 7–60.

MSI interrupts can be received by using the PCI-to-Avalon mailbox
registers - read/write as the target of the PCI MSI messages. MSI
interrupts can also be received by another Avalon-MM slave specifically
designed to process them.

Generation of Avalon-MM Interrupts

Avalon-MM interrupts (the CraIrq_o signal) can be generated by a
variety of error conditions, mailbox writes, or PCI interrupt signals. For a
complete list of Avalon-MM interrupts, refer to the Avalon-MM interrupt
status register (Table 7–26 on page 7–57) and the Avalon-MM interrupt
enable register (Table 7–28 on page 7–60).

Control & Status
Registers

These registers are accessible from the Control Register Access
Avalon Slave port. If you do not enable the Control Register
Access Avalon Slave port (refer to “Avalon Configuration” on
page 6–16), none of the control and status registers will be implemented.

The control and status register space is spread over a 16-KByte region,
with each 4-KByte sub-region containing a specific set of functions that
may be specific to accesses from either:

■ PCI processors only
■ Avalon processors only
■ From both types of processors

7–48 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Control & Status Registers

Because all accesses come from Avalon-MM (requests from the PCI bus
are routed through Avalon-MM), there is no hardware controlling which
processors access which regions. However, enforcement via processor
software is designed to be straightforward. Table 7–16 describes the four
sub-regions.

The data returned to a read issued to any undefined address in this range
is unpredictable.

Table 7–16. Control and Status Register Address Spaces

Address Range Address Space Usage

0x0000-0x0FFF Registers typically intended for access by PCI processors only. This includes PCI interrupt
enable controls, write access to the PCI-to-Avalon mailbox registers, and read access to
Avalon-to-PCI mailbox registers.

0x1000-0x1FFF Avalon-to-PCI address translation tables. Depending on the system design, these may be
accessed by PCI processors, Avalon processors, or both.

0x2000-0x2FFF Read only registers that reflect various configuration parameters of the implementation.
Depending on the system design these may be accessed by PCI processors, Avalon
processors, or both.

0x3000-0x3FFF Registers typically intended for access by Avalon processors only. This includes Avalon-MM
interrupt enable controls, I/O and configuration request control registers, write access to the
Avalon-to-PCI mailbox registers, and read access to PCI-to-Avalon mailbox registers.

Altera Corporation User Guide Version 11.1 7–49
October 2011

Functional Description

Table 7–17 shows the complete map of registers.

The following sections describe the control and status registers in detail.
In describing the register’s bits, the following nomenclature is used:

■ RO: Read only bit. The value of RO bits cannot be modified, but can
be read.

■ RW: Read and write. The value of RW bits can be read and written.
■ RW1C: Read and write "1" to clear. The RW1C bits can be read, but

can only be cleared by writing a 1 to the bit location.

PCI Interrupt Status Register

The PCI interrupt status register contains the status of various events in
the PCI-Avalon bridge logic and allows PCI interrupts to be signaled if
the indicated status bit is set while the corresponding bit in the PCI
interrupt enable register is also set. This register is intended to be accessed
only by other PCI masters; however, there is nothing in the hardware that
prevents other Avalon-MM masters from accessing it.

Table 7–17. PCI-Avalon Bridge Register Map

Address Range Register

0x0040 PCI interrupt status register

0x0050 PCI interrupt enable register

0x0800-0x081F PCI-to-Avalon mailbox registers – read/write

0x0900-0x091F Avalon-to-PCI mailbox registers – read only

0x1000-0x1FFF Avalon-to-PCI address translation table

0x2C00 General configuration parameters – read only

0x2C04 Performance parameters – read only

0x2C08 Avalon-to-PCI address translation parameters – read only

0x3060 Avalon interrupt status register

0x306C Current PCI status register – read only

0x3070 Avalon interrupt enable register

0x3A00–0x3A1F Avalon-to-PCI mailbox registers – read/write

0x3B00–0x3B1F PCI-to-Avalon mailbox registers – read only

7–50 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Control & Status Registers

Table 7–18 describes the PCI interrupt status register, which shows the
status of all conditions that can cause the assertion of a PCI interrupt.

Table 7–18. PCI Interrupt Status Register – Address: 0x0040 (Part 1 of 2)

Bit Name Access
Mode Description

0 ERR_PCI_WRITE_FAILURE RW1C When set to 1 indicates a write to PCI failure (abort or
retry threshold exceeded). This bit can also be cleared
by writing a '1' to the same bit in the Avalon-MM
interrupt status register.
This bit will only be implemented if the bridge is either
operating in the PCI Master/Target Peripheral or PCI
Host-Bridge Device mode.

1 ERR_PCI_READ_FAILURE RW1C When set to 1 indicates a read from PCI failure (abort
or retry threshold exceeded). This bit can also be
cleared by writing a '1' to the same bit in the
Avalon-MM interrupt status register.
This bit will only be implemented if the bridge is either
operating in the PCI Master/Target Peripheral or PCI
Host-Bridge Device mode.

2 ERR_NONP_DATA_DISCARD RW1C When set to 1 indicates non-prefetchable data read
from Avalon-MM was discarded because the PCI read
request was not retried before the discard timer
expired. Note that this bit can also be cleared by a write
of a '1' to the same bit in the Avalon-MM interrupt status
register.
This bit will only be implemented when the
non-prefetchable Avalon-MM master port is
implemented.

6:3 Reserved N/A

7 AV_IRQ_ASSERTED RO Current value of the Avalon-MM interrupt (IRQ) input
port to the non-prefetchable Avalon-MM master port
(or prefetchable Avalon-MM master port if the
non-prefetchable port is not used).
0 – Avalon IRQ is not being signaled.
1 – Avalon IRQ is being signaled.

8 PCI_PERR_REP RO Reflects the current value of PCI status register bit 8,
PERR reported. This bit can only be cleared through a
direct access to the PCI configuration status register.

9 PCI_TABORT_SIG RO Reflects the current value of PCI status register bit 11,
target abort signaled. This bit can only be cleared
through a direct access to the PCI configuration status
register. Because the PCI-Avalon bridge does not
signal target abort, this bit is never set.

Altera Corporation User Guide Version 11.1 7–51
October 2011

Functional Description

PCI Interrupt Enable Register

By setting the corresponding bits in the PCI interrupt enable register, a
PCI interrupt can be signaled for any of the conditions registered in the
PCI interrupt status register (Table 7–19). The PCI interrupt enable
register has one-to-one mapping to the PCI interrupt status register.

10 PCI_TABORT_RCVD RO Reflects the current value of PCI status register bit 12,
target abort received. This bit can only be cleared
through a direct access to the PCI configuration status
register.

11 PCI_MABORT_RCVD RO Reflects the current value of PCI configuration status
register bit 13, master abort received. This bit can only
be cleared through a direct access to the PCI
configuration status register.

12 PCI_SERR_SIG RO Reflects the current value of PCI configuration status
register bit 14, system error signaled. This bit can only
be cleared through a direct access to the PCI
configuration status register.

13 PCI_PERR_DET RO Reflects the current value of PCI configuration status
register bit 15, PERR detected.

15:14 Reserved N/A

16 A2P_MAILBOX_INT0 RW1C Set to 1 when the A2P_MAILBOX0 is written to.

17 A2P_MAILBOX_INT1 RW1C Set to 1 when the A2P_MAILBOX1 is written to.

18 A2P_MAILBOX_INT2 RW1C Set to 1 when the A2P_MAILBOX2 is written to.

19 A2P_MAILBOX_INT3 RW1C Set to 1 when the A2P_MAILBOX3 is written to.

20 A2P_MAILBOX_INT4 RW1C Set to 1 when the A2P_MAILBOX4 is written to.

21 A2P_MAILBOX_INT5 RW1C Set to 1 when the A2P_MAILBOX5 is written to.

22 A2P_MAILBOX_INT6 RW1C Set to 1 when the A2P_MAILBOX6 is written to.

23 A2P_MAILBOX_INT7 RW1C Set to 1 when the A2P_MAILBOX7 is written to.

31:24 Reserved N/A

Table 7–18. PCI Interrupt Status Register – Address: 0x0040 (Part 2 of 2)

Bit Name Access
Mode Description

7–52 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Control & Status Registers

Avalon-MM interrupts can also be enabled for all of the conditions in bits
31:0. However, only one of the Avalon-MM or PCI interrupts (not both)
should be enabled for any given bit. There is typically a single process in
either the PCI or Avalon-MM domain that is responsible for handling the
condition reported by the interrupt.

PCI Mailbox Register Access

The PCI bus typically needs write access to a set of PCI-to-Avalon mailbox
registers and read-only access to a set of Avalon-to-PCI mailbox registers.
Table 7–1 on page 7–5 lists the specific number (1 or 8) of available
mailbox registers.

The PCI-to-Avalon mailbox registers are writable at the addresses shown
in Table 7–20. Writing to one of these registers causes the corresponding
bit in the Avalon-MM interrupt status register to be set to 1.

Table 7–19. PCI Interrupt Enable Register – Address: 0x0050

Bit Name Access
Mode Description

31:0 One-to-one enable
mapping to the PCI
interrupt status register
bits

RW When set to 1, indicates that the associated bit in the PCI
interrupt status register will cause the PCI interrupt line
(intan) to be asserted if not disabled by the PCI command
register.
Only bits implemented in the PCI interrupt status register are
implemented in the enable register. Unimplemented bits cannot
be set to 1.

Table 7–20. PCI-to-Avalon Mailbox Registers – Address Range:
0x0800-0x081F

Address Name Access Description

0x0800 P2A_MAILBOX0 RW PCI-to-Avalon mailbox 0.

0x0804 P2A_MAILBOX1 RW PCI-to-Avalon mailbox 1.

0x0808 P2A_MAILBOX2 RW PCI-to-Avalon mailbox 2.

0x080C P2A_MAILBOX3 RW PCI-to-Avalon mailbox 3.

0x0810 P2A_MAILBOX4 RW PCI-to-Avalon mailbox 4.

0x0814 P2A_MAILBOX5 RW PCI-to-Avalon mailbox 5.

0x0818 P2A_MAILBOX6 RW PCI-to-Avalon mailbox 6.

0x081C P2A_MAILBOX7 RW PCI-to-Avalon mailbox 7.

Altera Corporation User Guide Version 11.1 7–53
October 2011

Functional Description

The Avalon-to-PCI mailbox registers are readable at the addresses shown
in Table 7–21. PCI Hosts use these addresses to read the mailbox
information after being signaled by the corresponding bits in the PCI
interrupt status register.

Avalon-to-PCI Address Translation Table

Unless fixed mapping is used, the Avalon-to-PCI address translation
table is writable via the Control Register Access Avalon Slave
port. In effect, the translation table is writable if the Dynamic Translation
Table is selected (refer to “Avalon Configuration” on page 6–16). The
translation table is always readable at the same addresses. (Table 7–22.)

Each entry in the PCI address translation table is always 64 bits (8 bytes)
wide, regardless of whether the system supports 64-bit PCI addressing.
64-bit addressing is supported only when the PCI bus width is 64 bits.
This ensures that the table address always has the same register
addressing regardless of PCI addressing width.

Table 7–21. Avalon-to-PCI Mailbox Registers – Address Range:
0x0900-0x091F

Address Name Access Description

0x0900 A2P_MAILBOX0 RO Avalon-to-PCI mailbox 0.

0x0904 A2P_MAILBOX1 RO Avalon-to-PCI mailbox 1.

0x0908 A2P_MAILBOX2 RO Avalon-to-PCI mailbox 2.

0x090C A2P_MAILBOX3 RO Avalon-to-PCI mailbox 3.

0x0910 A2P_MAILBOX4 RO Avalon-to-PCI mailbox 4.

0x0914 A2P_MAILBOX5 RO Avalon-to-PCI mailbox 5.

0x0918 A2P_MAILBOX6 RO Avalon-to-PCI mailbox 6.

0x091C A2P_MAILBOX7 RO Avalon-to-PCI mailbox 7.

7–54 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Control & Status Registers

The lower order address bits that are treated as a pass through between
Avalon-MM and PCI, and the number of pass-through bits, are defined
by the size of page in the address translation table and are always forced
to 0 in the hardware table. For example, if the page size is 4 KBytes, the
number of pass-through bits is log2 (page size) = log2 (4 KBytes) = 12.

Read-Only Configuration Registers

These registers reflect some of the configuration parameters that enable
the software to understand the configuration of the PCI-Avalon bridge.
Providing this information in these registers allows the software to adapt
to the bridge configuration at run time without specifying the same
parameter settings to the software at compilation time.

Table 7–22. Avalon-to-PCI Address Translation Table – Address Range: 0x1000-0x1FFF Note (1)

Address Bit Name Access
Mode Description

0x1000 1:0 A2P_ADDR_SPACE0 RW Address space indication for entry 0. Refer to
Table 7–12 on page 7–37 for the definition of these bits.

31:2 A2P_ADDR_MAP_LO0 RW Lower bits of Avalon-to-PCI address map entry 0. The
pass through bits are not writable and are forced to 0.

0x1004 31:0 A2P_ADDR_MAP_HI0 RW Upper bits of Avalon-to-PCI address map entry 0.
When the PCI bus width is 32 bits, these bits are not
writable and are forced to 0.

0x1008 1:0 A2P_ADDR_SPACE1 RW Address Space indication for entry 1. Refer to
Table 7–12 on page 7–37 for the definition of these bits.

31:2 A2P_ADDR_MAP_LO1 RW Lower bits of Avalon-to-PCI address map entry 1. Pass
through bits are not writable and are forced to 0.
This entry is only implemented if the number of pages
in the address translation table is greater than 1.

0x100C 31:0 A2P_ADDR_MAP_HI1 RW Upper bits of Avalon-to-PCI address map entry 1.
When the PCI bus width is 32 bits, these bits are not
writable and are forced to 0.
This entry is only implemented if the number of pages
in the address translation table is greater than 1.

Note to Table 7–22:
(1) The above table entries are repeated for the number of pages you selected in the Avalon configuration tab.

If the Number of Address Pages field is set to the maximum of 512, then 0x1FF8 will contain
A2P_ADDR_MAP_LO511 and 0x1FFC will contain A2P_ADDR_MAP_HI511. Refer to “Avalon
Configuration” on page 6–16.

Altera Corporation User Guide Version 11.1 7–55
October 2011

Functional Description

Table 7–23 lists some basic configuration parameters of the bridge.

Table 7–23. General Configuration Parameters – Address 0x2C00

Bit Name Access
Mode Description

6:0 PCI_ADDRESS_WIDTH RO Indicates whether 32- or 64-bits of PCI addressing are kept
on the Avalon-to-PCI path. Unimplemented upper bits are
always forced to 0 in the address phase of a PCI bus
transaction.

7 Reserved RO Reserved

8 TARGET_ONLY RO Indicates that you have selected the PCI Target-Only
Peripheral mode (refer to “System Options-1” on page 6–1).

9 HOST_BRIDGE_MODE RO Indicates that you have selected the PCI Host-Bridge Device
mode (refer to “System Options-1” on page 6–1).

10 PCI_BUS_64 RO Indicates that you have selected the 64-Bit PCI Bus option
(refer to “Value of Multiple Pending Reads” on page 6–6).

11 COMMON_CLOCK_MODE RO Indicates that you have selected the Shared PCI and Avalon
Clocks option (refer to “Value of Multiple Pending Reads” on
page 6–6).

12 IMPL_PREF_PORT RO Indicates that the prefetchable Avalon-MM master port is
implemented.

13 IMPL_NONP_PORT RO Indicates that the non-prefetchable Avalon-MM master port
is implemented.

15:14 Reserved RO Reserved

19:16 NUM_A2P_MAILBOX RO Reflects the number of implemented Avalon-to-PCI mailbox
registers.

23:20 NUM_P2A_MAILBOX RO Reflects the number of PCI-to-Avalon mailbox registers.

31:24 Reserved RO Reserved

7–56 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Control & Status Registers

Table 7–24 lists some key performance sizing information of the core.

Table 7–25 lists the configuration of the Avalon-to-PCI address
translation table.

Avalon-MM Interrupt Status Register

The Avalon-MM interrupt status register contains the status of various
signals in the PCI-Avalon bridge logic, and it allows Avalon-MM
interrupts to be signaled when enabled via the Avalon-MM interrupt
enable register. These registers are not intended to be accessed by the
PCI-Avalon bridge master ports. However, there is nothing in the
hardware that prevents this.

Table 7–24. Performance Parameters – Address 0x2C04

Bit Name Access
Mode Description

15:0 A2P_WRITE_CD_DEPTH RO Reflects the depth of the Avalon-to-PCI command and data
buffer. The software may not want to issue burst writes (via
Avalon DMA or similar) to the bridge that exceed half this
value in length. While larger bursts are supported, if the PCI
bus is slow or very busy, larger bursts may take a very long
time to complete on Avalon, preventing smaller requests
from other Avalon-MM masters from being recognized.
Backing up those other requests could slow overall
performance.

31:16 Reserved RO Reserved

Table 7–25. Avalon-to-PCI Address Translation Parameters – Address 0x2C08

Bit Name Access
Mode Description

0 A2P_ADDR_MAP_IS_FIXED RO Indicates that the Fixed Translation Table (refer to
“Avalon Configuration” on page 6–16) is selected.

1 A2P_ADDR_MAP_IS_READABLE RO Indicates if the Avalon-to-PCI translation table is
readable. This bit is always set to 1.

7:2 Reserved RO Reserved

13:8 A2P_ADDR_MAP_PASS_THRU_BIT
S

RO Indicates the number of pass-through bits (binary
encoded).

15:14 Reserved RO Reserved

31:16 A2P_ADDR_MAP_NUM_ENTRIES RO Indicates the number of pages in the Address
Translation Table Size field.

Altera Corporation User Guide Version 11.1 7–57
October 2011

Functional Description

Table 7–26 describes the Avalon-MM interrupt status register bits.

Table 7–26. Avalon Interrupt Status Register – Address 0x3060 (Part 1 of 2)

Bit Name Access
Mode Description

0 ERR_PCI_WRITE_FAILURE RW1C When set to 1 indicates a write to PCI failure either due to
a master or target abort, or because the retry threshold has
been exceeded. This bit can also be cleared by writing '1'
to the same bit in the PCI interrupt status register.
This bit will only be implemented when the bridge is
operating in the PCI Master/Target Peripheral modes or
the PCI Host-Bridge Device mode.

1 ERR_PCI_READ_FAILURE RW1C When set to 1 indicates a read from PCI failure either due
to a master or target abort, or because the retry threshold
has been exceeded. This bit can also be cleared by writing
'1' to the same bit in the PCI interrupt status register.
This bit will only be implemented when the bridge is
operating in the PCI Master/Target Peripheral modes or
the PCI Host-Bridge Device mode.

2 ERR_NONP_DATA_DISCARD RW1C When set to 1 indicates that non-prefetchable data read
from the interconnect is discarded because the PCI read
request was not retried before the parameterized discard
timer expired. This bit can also be cleared by writing '1' to
the same bit in the PCI interrupt status register.
This bit will only be implemented when the
non-prefetchable Avalon-MM master port is implemented.

3 MASTER_ENABLE_FALL RW1C This bit is set to 1 when the PCI command register master
enable bit (command register bit 2) falls from 1 to 0. This
bit is set to 0 when '1' is written to it and master enable does
not transition in the same cycle as the write.
This bit is only implemented when the bridge is operating
in the PCI Master/Target Peripheral modes or the PCI
Host-Bridge Device mode.

4 MASTER_ENABLE_RISE RW1C This bit is set to 1 when the PCI command register master
enable bit (command register bit 2) rises from 0 to 1. This
bit is set to 0 when '1' is written to it and master enable does
not transition in the same cycle as the write.
This bit is only implemented when the bridge is operating
in the PCI Master/Target Peripheral modes or the PCI
Host-Bridge Device mode.

5 Reserved N/A

6 INTAN_FALL RW1C This bit is set to 1 when the PCI intan signal changes
from 1 to 0. This bit is set to 0 when '1' is written to it and
intan does not transition in the same cycle as the write.
This bit is only implemented when the bridge is operating
in the PCI Host-Bridge Device mode.

7–58 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Control & Status Registers

7 INTAN_RISE RW1C This bit is set to 1 when the PCI intan signal changes
from 0 to 1. This bit is set to 0 when a '1' is written to it and
intan does not transition in the same cycle as the write.
This bit is only implemented when the bridge is operating
in the PCI Host-Bridge Device mode.

8 PCI_PERR_REP RO Reflects the current value of PCI status register bit 8, PERR
reported. This bit can only be cleared through a direct
access to the PCI configuration status register.

9 PCI_TABORT_SIG RO Reflects the current value of PCI configuration status
register bit 11, target abort signaled. This bit can only be
cleared through a direct access to the PCI configuration
status register.

10 PCI_TABORT_RCVD RO Reflects the current value of PCI configuration status
register bit 12, target abort received. This bit can only be
cleared through a direct access to the PCI configuration
status register.

11 PCI_MABORT_RCVD RO Reflects the current value of the PCI configuration status
register bit 13, master abort received. This bit can only be
cleared through a direct access to the PCI configuration
status register.

12 PCI_SERR_SIG RO Reflects the current value of PCI configuration status
register bit 14, system error signaled. This bit can only be
cleared through a direct access to the PCI configuration
status register

13 PCI_PERR_DET RO Reflects the current value of PCI configuration status
register bit 15, PERR detected.

14:15 Reserved N/A

16 P2A_MAILBOX_INT0 RW1C Set to 1 when the P2A_MAILBOX0 register is written to.

17 P2A_MAILBOX_INT1 RW1C Set to 1 when the P2A_MAILBOX1 register is written to.

18 P2A_MAILBOX_INT2 RW1C Set to 1 when the P2A_MAILBOX2 register is written to.

19 P2A_MAILBOX_INT3 RW1C Set to 1 when the P2A_MAILBOX3 register is written to.

20 P2A_MAILBOX_INT4 RW1C Set to 1 when the P2A_MAILBOX4 register is written to.

21 P2A_MAILBOX_INT5 RW1C Set to 1 when the P2A_MAILBOX5 register is written to.

22 P2A_MAILBOX_INT6 RW1C Set to 1 when the P2A_MAILBOX6 register is written to.

23 P2A_MAILBOX_INT7 RW1C Set to 1 when the P2A_MAILBOX7 register is written to.

31:24 Reserved N/A

Table 7–26. Avalon Interrupt Status Register – Address 0x3060 (Part 2 of 2)

Bit Name Access
Mode Description

Altera Corporation User Guide Version 11.1 7–59
October 2011

Functional Description

Table 7–27 describes the current PCI status register. This register shows
the current status of the PCI rstn and int[a:d]n lines.

Table 7–27. Current PCI Status Register – Address 0x306C

Bit Name Access
Mode Description

2:0 Reserved N/A

3 MASTER_ENABLE_CURRENT_VALUE RO Current value of the PCI command register
master enable bit (command register bit 2).
0 – Not enabled to master transactions on the PCI
bus.
1 – Enabled to master transactions on the PCI
bus.
This bit will always be set to 0 when the bridge is
operating in the PCI target mode.

4 Reserved N/A

5 A2P_WRITE_IN_PROGRESS RO 0 – There are no Avalon-to-PCI writes pending in
the PCI-Avalon bridge module
1 – There is at least one Avalon-to-PCI write
pending in the PCI-Avalon bridge module
Due to clock synchronization delays, there will be
a slight delay between an Avalon-to-PCI write
entering the bridge module and this bit being set.
The delay could be up to five of the slowest clock
cycles.
If an application is concerned about the
completion of configuration writes on the target
bus, the configuration write can be issued by itself
and then this bit can be read to confirm when the
write is no longer pending. The
ERR_PCI_WRITE_FAILURE bit should be
checked to determine if there was an error on the
write.

6 INTAN_CURRENT_VALUE RO Current value of the PCI intan signal.
0 – PCI int A is being signaled.
1 – PCI int A is not being signaled.
This bit is only implemented when the bridge is
operating in the PCI Host-Bridge Device mode.

31:7 Reserved N/A

7–60 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Control & Status Registers

Avalon-MM Interrupt Enable Register

An Avalon-MM interrupt can be signaled for any of the conditions noted
in the Avalon Interrupt Status Register by setting the corresponding bits
in the Avalon Interrupt Enable Register (Table 7–28).

PCI interrupts can also be enabled for all of the error conditions in bits
13:8 and 2:0. However, only one of the Avalon-MM or PCI interrupts (not
both) should be enabled for any given bit. There is typically a single
process in either the PCI or Avalon-MM domain that is responsible for
handling the condition reported by the interrupt.

Avalon Mailbox Register Access

A processor local to the interconnect (or any processor not on the PCI bus
attached to the bridge) typically needs write access to a set of
Avalon-to-PCI mailbox registers and read-only access to a set of
PCI-to-Avalon mailbox registers. The specific number (1 or 8) of each of
these types of mailbox registers available is shown in Table 7–1 on
page 7–5.

Table 7–28. Avalon Interrupt Enable Register

Avalon Interrupt Enable Register Address 0x3070

Bit Name Access
Mode Description

31:0 One-to-one enable mapping for the
bits in the Avalon-MM interrupt status
register

RW When set to 1 indicates the setting of the
associated bit in the Avalon-MM interrupt status
register will cause the Avalon-MM interrupt line
(CraIrq_o) to be asserted.
Only bits implemented in the Avalon-MM
interrupt status register are implemented in the
enable register. Unimplemented bits cannot be
set to 1.

Altera Corporation User Guide Version 11.1 7–61
October 2011

Functional Description

The Avalon-to-PCI mailbox registers are writable at the addresses shown
in Table 7–29. When the Avalon processor writes to one of these registers,
the corresponding bit in the PCI interrupt status register is set to 1.

The PCI-to-Avalon mailbox registers are read only at the addresses
shown in Table 7–30. The Avalon processor reads these registers when the
corresponding bit in the Avalon-MM interrupt status register is set to 1.

Table 7–29. Avalon-to-PCI Mailbox Registers – Address Range
0x3A00–0x3A1F

Address Name Access Description

0x3A00 A2P_MAILBOX0 RW Avalon-to-PCI mailbox 0.

0x3A04 A2P_MAILBOX1 RW Avalon-to-PCI mailbox 1.

0x3A08 A2P_MAILBOX2 RW Avalon-to-PCI mailbox 2.

0x3A0C A2P_MAILBOX3 RW Avalon-to-PCI mailbox 3.

0x3A10 A2P_MAILBOX4 RW Avalon-to-PCI mailbox 4.

0x3A14 A2P_MAILBOX5 RW Avalon-to-PCI mailbox 5.

0x3A18 A2P_MAILBOX6 RW Avalon-to-PCI mailbox 6.

0x3A1C A2P_MAILBOX7 RW Avalon-to-PCI mailbox 7.

Table 7–30. PCI-to-Avalon Mailbox Registers – Address Range
0x3B00–0x3B1F

Address Name Access Description

0x3B00 P2A_MAILBOX0 RO PCI-to-Avalon mailbox 0.

0x3B04 P2A_MAILBOX1 RO PCI-to-Avalon mailbox 1.

0x3B08 P2A_MAILBOX2 RO PCI-to-Avalon mailbox 2.

0x3B0C P2A_MAILBOX3 RO PCI-to-Avalon mailbox 3.

0x3B10 P2A_MAILBOX4 RO PCI-to-Avalon mailbox 4.

0x3B14 P2A_MAILBOX5 RO PCI-to-Avalon mailbox 5.

0x3B18 P2A_MAILBOX6 RO PCI-to-Avalon mailbox 6.

0x3B1C P2A_MAILBOX7 RO PCI-to-Avalon mailbox 7.

7–62 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Control & Status Registers

Altera Corporation User Guide Version 11.1 8–1
October 2011

8. Testbench

General
Description

The Altera PCI testbench facilitates the design and verification of systems
that implement the Altera PCI-Avalon bridge. The testbench is provided
in both VHDL and Verilog HDL. When you build your system with the
PCI-Avalon bridge, SOPC Builder automatically integrates the PCI
testbench with your system testbench files.

SOPC Builder creates the pci_sim directory in your project directory and
copies all the PCI testbench files from <path>/pci_compiler/
sopc_flow/testbench/<language>/<core> into
<project directory>/pci_sim.

1 The testbench files must be edited to add the PCI transactions
that will be performed on the system. If you regenerate your
system, SOPC Builder will not overwrite the testbench files in
the pci_sim directory. If you want the default testbench files,
first delete the pci_sim directory and then regenerate your
system.

Figure 8–1 shows the block diagram of the PCI testbench. The shaded
blocks are provided with the PCI testbench.

8–2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Features

Figure 8–1. Altera PCI Testbench Block Diagram

To use the PCI testbench, be sure you have a basic understanding of PCI
bus architecture and operations.This document describes the features
and applications of the PCI testbench to help you successfully design and
verify your design.

Features The PCI testbench includes the following features:

■ Easy to use simulation environment for any standard VHDL or
Verilog HDL simulator

■ Open source VHDL and Verilog HDL files
■ Flexible PCI bus functional model to verify your application that

uses any Altera PCI MegaCore function
■ Simulates all basic PCI transactions including memory read/write

operations, I/O read/write transactions, and configuration
read/write transactions

■ Simulates all abnormal PCI transaction terminations including target
retry, target disconnect, target abort, and master abort

■ Simulates PCI bus parking

Bus
Monitor

Arbiter

Pull Ups

PCI Bus

Altera PCI Testbench

Master
Transactor

Target
Transactor

Testbench Modules

Altera
PCI

Compiler

System Generated
Using SOPC Builder

Altera Device

On-chip
Memory

DMA
Engine

System
Interconnect

Fabric

Altera Corporation User Guide Version 11.1 8–3
October 2011 PCI Compiler

Testbench

PCI Testbench
Files

The Altera PCI testbench is included and installed with the PCI Compiler.
Figure 8–2 shows the directory structure of the PCI testbench
subdirectory in the project directory.

1 You will probably modify the PCI testbench directory to
simulate your design, so SOPC Builder will not overwrite the
<core> directory when you regenerate the SOPC Builder system.
To revert back to the default PCI testbench settings at
regeneration time, just delete the pci_sim directory.

Figure 8–2. PCI Testbench Directory Structure

Table 8–1 gives a description of the PCI testbench files provided in the
pci_sim/<HDL language>/<core> directory. For more information on
these files, refer to “Testbench Specifications” on page 8–4.

Table 8–1. Files Contained in the pci_sim/<HDL language>/<core>
Directory (Part 1 of 2)

File(1) Description

mstr_tranx The master transactor defines the procedures
(VHDL) or tasks (Verilog HDL) that initiate PCI
transactions in the testbench.

mstr_pkg The master package consists of descriptions of
procedures (VHDL) or tasks (Verilog HDL) for master
transactor (mstr_tranx) commands.

trgt_tranx The target transactor simulates the target behavior in
the testbench and responds to PCI transactions.

trgt_tranx_mem_init.dat This file is the memory initialization file for the target
transactor.

monitor This module monitors the PCI transactions on the
bus and reports the results.

arbiter This module contains the PCI bus arbiter.

pull_up This module provides weak pull-up on the tri-stated
signals.

pci_sim

<HDL language>

<core>
Contains PCI testbench files

<project directory>

8–4 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

Refer to “Simulation Flow” on page 8–15 for more information on the
modified testbench files.

Testbench
Specifications

This section describes the modules used by the PCI testbench including
master commands, setting and controlling target termination responses,
bus parking, and PCI bus speed settings. Refer to Figure 8–1 for a block
diagram of the PCI testbench. The Altera PCI testbench has the following
modules:

■ Master transactor (mstr_tranx)
■ Target transactor (trgt_tranx)
■ Bus monitor (monitor)
■ Clock generator (clk_gen)
■ Arbiter (arbiter)
■ Pull ups (pull_ups)
■ A local reference design

The PCI testbench consists of VHDL and Verilog HDL. If your application
requires a feature that is not supported by the PCI testbench, you can
modify the source code to add the feature. You can also modify the
existing behavior to fit your application needs.

Table 8–2 shows the PCI bus transactions supported by the PCI testbench.

pci_tb This top-level file instantiates all the testbench
modules.

Note to Table 8–1:
(1) All files are provided in both VHDL and Verilog HDL.

Table 8–1. Files Contained in the pci_sim/<HDL language>/<core>
Directory (Part 2 of 2)

File(1) Description

Table 8–2. PCI Testbench PCI Bus Transaction Support (Part 1 of 2)

Transactions Master Transactor Target Transactor Local Master Local Target

Interrupt acknowledge cycle

I/O read v v v v
I/O write v v v v
Memory read v v v v
Memory write v v v v
Configuration read v v

Altera Corporation User Guide Version 11.1 8–5
October 2011 PCI Compiler

Testbench

Table 8–3 shows the testbench's target termination support. The master
transactor and the local master respond to the target terminations by
terminating the transaction gracefully and releasing the PCI bus.

Master Transactor (mstr_tranx)

The master transactor simulates the master behavior on the PCI bus. It
serves as an initiator of PCI transactions for Altera PCI testbench. The
master transactor has three main sections:

■ PROCEDURES (VHDL) or TASKS (Verilog HDL)
■ INITIALIZATION
■ USER COMMANDS

PROCEDURES and TASKS Sections

The PROCEDURES (VHDL) and TASKS (Verilog HDL) sections define
the events that are executed for the user commands supported by the
master transactor. The events written in the PROCEDURES and TASKS
sections follow the phases of a standard PCI transaction as defined by the
PCI Local Bus Specification, Revision 3.0, including:

■ Address phase
■ Turn-around phase (read transactions)
■ Data phases
■ Turn-around phase

Configuration write v v
Memory read multiple v
Dual address cycle

Memory read line v
Memory write and invalidate v

Table 8–2. PCI Testbench PCI Bus Transaction Support (Part 2 of 2)

Transactions Master Transactor Target Transactor Local Master Local Target

Table 8–3. PCI Testbench Target Termination Support

Features Master Transactor Target Transactor

Target abort v
Target retry v v
Target disconnect v v

8–6 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

The master transactor terminates the PCI transactions in the following
cases:

■ The PCI transaction has successfully transferred all the intended
data.

■ The PCI target terminates the transaction prematurely with a target
retry, disconnect, or abort as defined in the PCI Local Bus Specification,
Revision 3.0.

■ A target does not claim the transaction resulting in a master abort.

The bus monitor informs the master transactor of a successful data
transaction or a target termination. Refer to the source code, which shows
you how the master transactor uses these termination signals from the
bus monitor.

The PCI testbench master transactor PROCEDURES and TASKS sections
implement basic PCI transaction functionality. If your application
requires different functionality, modify the events to change the behavior
of the master transactor. Additionally, you can create new procedures or
tasks in the master transactor by using the existing events as an example.

INITIALIZATION Section

This user-defined section defines the parameters and reset length of your
PCI bus on power-up. Specifically, the system should reset the bus and
write the configuration space of the PCI agents. You can modify the
master transactor INITIALIZATION section to match your system
requirements by changing the time that the system reset is asserted and
by modifying the data written in the configuration space of the PCI
agents.

Altera Corporation User Guide Version 11.1 8–7
October 2011 PCI Compiler

Testbench

USER COMMANDS Section

The master transactor USER COMMANDS section contains the
commands that initiate the PCI transactions you want to run for your
tests. The list of events that are executed by these commands is defined in
the PROCEDURES and TASKS sections. Customize the USER
COMMANDS section to execute the sequence of commands needed to
test your design.

Table 8–4 shows the commands that the master transactor supports.

cfg_rd

The cfg_rd command performs single-cycle PCI configuration read
transactions with the address provided in the command argument.

Table 8–4. Supported Master Transactor Commands

Command Name Action

cfg_rd Performs a configuration read

cfg_wr Performs a configuration write

mem_wr_32 Performs a 32-bit memory write

mem_rd_32 Performs a 32-bit memory read

mem_wr_64 Performs a 64-bit memory write

mem_rd_64 Performs a 64-bit memory read

io_rd Performs an I/O read

io_wr Performs an I/O write

Syntax: cfg_rd(address)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

8–8 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

cfg_wr

The cfg_wr command performs single-cycle PCI configuration write
transactions with the address, data, and byte enable provided in the
command arguments.

mem_wr_32

The mem_wr_32 command performs a memory write with the address
and data provided in the command arguments. This command can
perform a single-cycle or burst 32-bit memory write depending on the
number of DWORDs provided in the command argument.

■ The mem_wr_32 command performs a single-cycle 32-bit memory
write if the DWORD value is 1.

■ The mem_wr_32 command performs a burst-cycle 32-bit memory
write if the DWORD value is greater than 1. In a burst transaction, the
first data phase uses the data value provided in the command. The
subsequent data phases use values incremented sequentially by 1
from the data provided in the command argument.

Syntax: cfg_wr(address, data, byte_enable)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

data Transaction data. The data must be in
hexadecimal radix.

byte_enable Transaction byte enable. The byte enable
value must be in hexadecimal radix

Syntax: mem_wr_32(address, data, dword)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

data Data used for the first data phase. Subsequent
data phases use a value incremented sequentially
by 1. This value must be in hexadecimal radix.

dword The number of DWORDs written during the
transaction. A value of 1 indicates a single-cycle
memory write transaction. A value greater than one
indicates a burst transaction. This value must be an
integer.

Altera Corporation User Guide Version 11.1 8–9
October 2011 PCI Compiler

Testbench

mem_rd_32

The mem_rd_32 command performs a memory read with the address
provided in the command argument. This command can perform single-
cycle or burst 32-bit memory read depending on the value of the dword
argument.

■ If the dword value is 1, the command performs a single-cycle
transaction.

■ If the dword value is greater than 1, the command performs a burst
transaction.

Syntax: mem_rd_32(address, dword)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

dword The number of DWORDs read during the
transaction. A value of one indicates a
single-cycle memory read transaction. A value
greater than one indicates a burst transaction.
This value must be an integer.

8–10 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

mem_wr_64

The mem_wr_64 command performs a memory write of the data to the
address provided in the command. This command can perform
single-cycle or burst 64-bit memory write depending on the value of the
qword argument.

■ This command performs a single-cycle 64-bit memory write if the
qword value is one.

■ This command performs a burst-cycle 64-bit memory write if the
qword value is greater than one. In a burst transaction, the first data
phase uses the data value provided in the command. The
subsequent data phases use values incremented sequentially by one
from the data provided in the command argument.

Syntax: mem_wr_64(address, data, qword)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

data Data used for first data phase. Subsequent
data phases use a value sequentially
incremented by one from this data. This value
must be in hexadecimal radix.

qword The number QWORDs written in a transaction.
A value of one indicates a single-cycle
memory write transaction. A value greater
than one indicates a burst transaction. This
value must be an integer.

Altera Corporation User Guide Version 11.1 8–11
October 2011 PCI Compiler

Testbench

mem_rd_64

The mem_rd_64 command performs memory read transactions with the
address provided in the command argument. This command can perform
single-cycle or burst 64-bit memory read depending on the value of the
qword argument.

■ If the qword value is one, the command performs a single-cycle
transaction.

■ If the qword value is greater than one, the command performs a
burst transaction.

io_wr

The io_wr command performs a single-cycle memory write transaction
with the address and data provided in the command arguments.

io_rd

The io_rd command performs single-cycle I/O read transactions with
the address provided in the command argument.

Syntax: mem_rd_32(address, qword)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

qword The number QWORDs read in the transaction. A
one indicates a single-cycle memory read
transaction. A value greater than one indicates a
burst transaction. This value must be an integer.

Syntax: io_wr(address, data)

Arguments: address Transaction address. This value must be
in hexadecimal radix.

data Data written during the transaction. This
value must be in hexadecimal radix.

Syntax: io_rd(address)

Arguments: address Transaction address. This value must be in
hexadecimal radix.

8–12 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

Target Transactor (trgt_tranx)

The testbench target transactor simulates the behavior of a target agent on
the PCI bus. The master transactions initiated by the Altera PCI
MegaCore function under test should be addressed to the target
transactor. The target transactor operates in 32- or 64-bit mode. The target
transactor implements two base address registers BAR0 and BAR1. Refer
to Table 8–5.

The base address registers define the target transactor address space.
Refer to Table 8–6.

The memory range reserved by BAR0 is defined by the address_lines
and mem_hit_range settings in the target transactor source code.

The target transactor has a 32-bit register that stores data for I/O
transactions. This register is mapped to BAR1 of the configuration
address space. Because this is the only register that is mapped to BAR1,
any address that is within the BAR1 range results in an io_hit action.
Refer to the target transactor source code to see how the address is
decoded for io_hit.

1 The target transactor ignores byte enables for all memory, I/O,
and configuration transactions.

The target transactor idsel signal should be connected to one of the PCI
address bits in the top-level file of the PCI testbench for configuration
transactions to occur on BAR0 and BAR1.

Table 8–5. Target Transactor Configuration Address Space

Configuration Register Configuration Address Offset

BAR0 x10

BAR1 x14

Table 8–6. Target Transactor Address Space Allocation

Configuration
Register

Address Space
Type Block Size Address Offset

BAR0 Memory Mapped 1 KByte 000-3FF

BAR1 I/O Mapped 16 Bytes 0-F

Altera Corporation User Guide Version 11.1 8–13
October 2011 PCI Compiler

Testbench

To model different target terminations, use the following three input
signals:

■ trgt_tranx_retry—The target transactor retries the memory
transaction if trgt_tranx_retry is set to one

■ trgt_tranx_discA—The target transactor terminates the memory
transaction with data if trgt_tranx_discA is set to one

■ trgt_tranx_discB—The target transactor terminates the memory
transaction with a disconnect without data if trgt_tranx_discB
is set to one

The target transactor has two main sections:

■ FILE IO
■ PROCEDURES (VHDL) and TASKS (Verilog HDL)

FILE IO section

Upon reset, this section initializes the target transactor memory array
with the contents of the trgt_tranx_mem_init.dat file, which must be in
the project's working directory. Each line in the trgt_tranx_mem_init.dat
file corresponds to a memory location, the first line corresponding to
offset "000". The number of lines defined by the address_lines
parameter in the target transactor source code should be equal to number
of lines in the trgt_tranx_mem_init.dat file. If the number of lines in
trgt_tranx_mem_init.dat file is less than the number of lines defined by
the address_lines parameter, the remaining lines in the memory array
are initialized to 0.

PROCEDURES and TASKS sections

The PROCEDURES section (VHDL) and the corresponding TASKS
section (Verilog HDL) define the events to be executed for the decoded
PCI transaction. These sections are fully documented in the source code.
You can modify the procedures or tasks to introduce different variations
in the PCI transactions as required by your application. You can also
create new procedures or tasks that are not currently implemented in the
target transactor by using the existing procedures or tasks as an example.

Bus Monitor (monitor)

The bus monitor displays PCI transactions and information messages to
the simulator's console window and in the log.txt file when an event
occurs on the PCI bus. The bus monitor also sends the PCI transaction
status to the master transactor. The bus monitor reports the following
messages:

8–14 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Testbench Specifications

■ Target retry
■ Target abort
■ Target terminated with disconnect-A (target terminated with data)
■ Target terminated with disconnect-B (target terminated without

data)
■ Master abort
■ Target not responding

The bus monitor reports the target termination messages depending on
the state of the trdyn, devseln, and stopn signals during a transaction.
The bus monitor reports a master abort if devseln is not asserted within
four clock cycles from the start of a PCI transaction. It reports that the
target is not responding if trdyn is not asserted within 16 clock cycles
from the start of the PCI transaction. You can modify the bus monitor to
include additional PCI protocol checks as needed by your application.

Arbiter (arbiter)

This module simulates the PCI bus arbiter. The module is a two-port
arbiter in which the device connected to port 0 of the arbiter has a higher
priority than the device connected to port 1. For example, if device 0
requests the PCI bus while device 1 is performing a PCI transaction, the
arbiter removes the grant from device 1 and gives it to device 0. This
module allows you to simulate bus parking on devices connected to
port 0 by setting the Park parameter to true. You change the value of this
parameter in the Altera PCI testbench top-level file.

Pull Up (pull_up)

This module simulates the pull up functionality on the PCI signals. The
ad, cben, framen, irdyn, trdyn, stopn, devseln, perrn, and serrn
signals of the PCI bus are pulled with a weak high value. This action is
necessary to ensure that these signals are never floating or unknown
during simulation.

Altera Corporation User Guide Version 11.1 8–15
October 2011 PCI Compiler

Testbench

Simulation Flow This section describes the simulation flow using Altera PCI testbench.
Figure 8–3 shows the block diagram of a typical verification environment
using the PCI testbench.

Figure 8–3. Typical Verification Environment Using the PCI Testbench

The simulation flow using Altera PCI testbench comprises the following
steps.

1. Use SOPC Builder to create your system.

f For more information on creating your system using SOPC
Builder, refer to Chapter 5, Getting Started.

SOPC Builder creates the pci_sim directory in your project directory
and copies all the PCI testbench files from
<path>/pci_compiler/testbench/sopc/<language>/<core> into
<project directory>/pci_sim.

1 The testbench files must be edited to add the PCI transactions
that will be performed on the system. If you regenerate your
system, SOPC Builder will not overwrite the testbench files in
the pci_sim directory. If you want the default testbench files,
first delete the pci_sim directory and then regenerate your
system.

2. Set the initialization parameters, which are defined in the master
transactor model source code. These parameters control the address
space reserved by the target transactor model and other PCI agents
on the PCI bus.

Altera Device

PCI Bus
Altera PCI Testbench

PCI
Testbench System Generated

Using SOPC Builder

8–16 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Simulation Flow

Refer to Figure 8–1 for a block diagram of the Master Transactor
model instantiated in the PCI testbench.

3. The master transactor defines the procedures (VHDL) or tasks
(Verilog HDL) needed to initiate PCI transactions in your testbench.
Add the commands that correspond to the transactions you want to
implement in your tests to the master transactor model source code.
At a minimum, you must add configuration commands to set the
BAR for the target transactor model and write the configuration
space of the PCI MegaCore function. Additionally, you can add
commands to initiate memory or I/O transactions to the PCI
MegaCore function.

Refer to Table 8–4 on page 8–7 for more information about the user
commands.

4. Compile the files in your simulator, including the testbench
modules and the files created by SOPC Builder.

5. Simulate the testbench for the desired time period.

Altera Corporation User Guide Version 11.1 A–1
October 2011

Appendix A. Using PCI
Constraint File Tcl Scripts

Introduction Altera provides constraint files, in the form of Tool Command Language
(Tcl) scripts, to meet PCI timing requirements in the Quartus II software.
The PCI Compiler v11.1 generates a constraint file for your target device
family.

f For a list of supported device families and the level of support offered
for each family, refer to “About PCI Compiler”.

PCI Constraint
Files

PCI constraint files make the following assignments in your Quartus II
project:

■ PCI pin location assignments
■ PCI I/O voltage assignments
■ PCI clamp diode assignments
■ PCI timing assignments
■ Logic option assignments for clk, rstn, irdyn, and trdyn pins
■ Logic option assignments for the PCI MegaCore function variation
■ LogicLock assignments in designs targeting Cyclone devices
■ Programmable ground assignments in designs targeting MAX II

devices (For more information, refer to “Simultaneous Switching
Noise (SSN) Considerations” on page A–2)

When run, the constraint file automatically extracts the PCI MegaCore
function, PCI MegaCore function hierarchy, device family, density and
package type used in your Quartus II project, and makes PCI assignments
for your project based on this information.

To use a PCI constraint file, perform the following steps:

1. Open your project in the Quartus II software.

2. Ensure that you have specified a device family, density and package
in your Quartus II project.

3. In the Quartus II software, choose Tcl Console (View > Utility
Windows menu).

A–2 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Simultaneous Switching Noise (SSN) Considerations

4. Source the constraint file by typing the following in the Quartus II
Tcl Console window:

source pci_constraints_for_<variation name>.tcl r

5. Add the PCI constraints to your project by typing the following
command in the Quartus II Tcl Console window:

add_pci_constraints r

Refer to “Additional Options” on page A–3 for the options that can
be used with add_pci_constraints command.

When you add the PCI constraints file in Step 5 above, the Quartus II
software generates a Synopsys Design Constraints (.sdc) file with the
file name format, <variation name>.sdc file. The Quartus II
TimeQuest timing analyzer uses the constraints specified in this file.

f For more information on .sdc file or TimeQuest timing
analyzer, refer to Quartus II Help.

If you are upgrading from a previous version of PCI compiler, refer to
“Upgrading Assignments from a Previous Version of PCI Compiler” on
page A–8 for more information.

Simultaneous
Switching Noise
(SSN)
Considerations

PCI MegaCore functions implement a multiplexed high-width address
and data (ad) bus. Simultaneous switching noise (SSN) can occur if the
bus changes state from 0xFFFF_FFFF to 0x0000_0000, causing ground
bounce.

c SSN can cause instability to your system. You can avoid
instability by assigning the pins for the address and data (ad)
bus farther away from the analog power supply pins (VCCA and
VCCA_PLL).

To reduce ground bounce, the PCI constraint files for MAX II devices
assign several programmable ground pins near the pins used for the PCI
ad bus. These pins must be physically connected to ground plane on your
board.

These programmable grounds are assigned in the QSF as follows:

set_location_assignment <pin location> -to <reserve pin name>
set_instance_assignment -name RESERVE_PIN "AS OUTPUT
DRIVING GROUND" -to <reserve pin name>

Altera Corporation User Guide Version 11.1 A–3
October 2011 PCI Compiler

f For more recommendations on reducing SSN in your design, refer to
AN 315: Guideslines for Designing High-Speed FPGA PCBs and AN 224:
High-Speed Board Layout Guidelines.

Additional
Options

The command syntax description for the add_pci_constraints
command is the following:

add_pci_constraints [-speed "66" | "33"] [-no_compile]
[-no_pinouts][-pin_prefix <instance name_>]
[-pin_suffix <_instance name>] -help r

These options for the add_pci_constraints command are described
in the following sections.

-speed

The default value for this option is the maximum speed supported by the
targeted device family.

Table A–1 shows the device speed grades required for 33-MHz or
66-MHz operation, and the default speed selected by the PCI constraint
file for each supported device family.

Table A–1. Default -speed Value for Supported Device Families

Device Family Speed Grade Required for
66 MHz operation

Speed Grade Required for
33 MHz Operation

Default PCI Bus
Speed

Arria GX -6 -6 66 MHz

Arria II GX: (1)

EP2AGX125DF25
EP2AGX125EF29
EP2AGX125EF35

-3, -4, -5, -6 -3, -4, -5, -6 66 MHz

EP2AGX190EF29
EP2AGX190FF35

-3, -4, -5, -6 -3, -4, -5, -6 66 MHz

EP2AGX260EF29
EP2AGX260FF35

-3, -4, -5, -6 -3, -4, -5, -6 66 MHz

EP2AGX45DF25
EP2AGX45DF29

-3, -4, -5, -6 -3, -4, -5, -6 66 MHz

EP2AGX65DF25
EP2AGX65DF29

-3, -4, -5, -6 -3, -4, -5, -6 66 MHz

EP2AGX95DF25
EP2AGX95EF29
EP2AGX95EF35

-3, -4, -5, -6 -3, -4, -5, -6 66 MHz

Arria II GZ:

http://www.altera.com/literature/an/an315.pdf
http://www.altera.com/literature/an/an224.pdf
http://www.altera.com/literature/an/an224.pdf

A–4 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Additional Options

EP2AGZ225 — -3, -4 66 MHz

EP2AGZ300 -3 -3, -4 66 MHz

EP2AGZ350FF35
EP2AGZ350FH29
EP2AGZ350HF40

-3 -3, -4 66 MHz

Cyclone -6, -7 -6, -7, -8 66 MHz

Cyclone II -7 -7, -8 66 MHz

Cyclone III -6, -7 -6, -7, -8 66 MHz

Cyclone IV:

EP4CE6E22
EP4CE6F17
EP4CE6U14

-6, -7, -8 -6, -7, -8, -9 66 MHz

EP4CE10E22
EP4CE10F17
EP4CE10U14

-6, -7, -8 -6, -7, -8, -9 66 MHz

EP4CE15E22
EP4CE15F17
EP4CE15F23
EP4CE15M8
EP4CE15U14

-6, -7 -6, -7, -8, -9 66 MHz

EP4CE22E22
EP4CE22F17
EP4CE22U14

-6, -7 -6, -7, -8, -9 66 MHz

EP4CE30F23
EP4CE30F29

-6, -7 -6, -7, -8, -9 66 MHz

EP4CE40F23
EP4CE40F29
EP4CE40U19

-6, -7 -6, -7, -8, -9 66 MHz

EP4CE55F23
EP4CE55F29
EP4CE55U19

-6, -7 -6, -7, -8, -9 66 MHz

EP4CE75F23
EP4CE75F29
EP4CE75U19

-6, -7 -6, -7, -8, -9 66 MHz

EP4CE115F23
EP4CE115F29

— -7, -8, -9 66 MHz

EP4CGX15BF14
EP4CGX15BN11

-6, -7 -6, -7, -8 66 MHz

EP4CGX22BF14
EP4CGX22CF19

-6 -6, -7, -8 66 MHz

Table A–1. Default -speed Value for Supported Device Families

Device Family Speed Grade Required for
66 MHz operation

Speed Grade Required for
33 MHz Operation

Default PCI Bus
Speed

Altera Corporation User Guide Version 11.1 A–5
October 2011 PCI Compiler

EP4CGX30BF14
EP4CGX30CF19
EP4CGX30CF23

-6 -6, -7, -8 66 MHz

EP4CGX50CF23
EP4CGX50DF27

— -6, -7, -8 66 MHz

EP4CGX75CF23
EP4CGX75DF27

— -6, -7, -8 66 MHz

EP4CGX110CF23
EP4CGX110DF27
EP4CGX110DF31

— -7, -8 66 MHz

EP4CGX150CF23
EP4CGX150DF27
EP4CGX150DF31

— -7, -8 66 MHz

MAX II -3 -3, -4, -5 66 MHz

Stratix -5, -6 -5, -6, -7, -8 66 MHz

Stratix GX -5, -6 -5, -6, -7 66 MHz

Stratix II -3, -4, -5 -3, -4, -5 66 MHz

Stratix II GX -3, -4, -5 -3, -4, -5 66 MHz

Stratix III (1) -2, -3 -2, -3, -4 66 MHz

Stratix IV: (1)

EP4SE230 -2, -3 -2, -3, -4 66 MHz

EP4SE360F35
EP4SE360H29

-2, -3 -2, -3, -4
66 MHz

EP4SE530 -2 -2, -3, -4 66 MHz

EP4SE820 — -3, -4 66 MHz

EP4SGX70DF29 -2x, -3 -2x, -3, -4 66 MHz

EP4SGX70HF35 -2, -3 -2, -3, -4 66 MHz

EP4SGX110DF29
EP4SGX110FF35

-2x, -3 -2x, -3, -4
66 MHz

EP4SGX110HF35 -2, -3 -2, -3, -4

EP4SGX180DF29
EP4SGX180FF35

-2x, -3 -2x, -3, -4
66 MHz

EP4SGX180HF35 -2, -3 -2, -3, -4 66 MHz

EP4SGX180KF40 -2 -2, -3, -4 66 MHz

EP4SGX230DF29
EP4SGX230FF35

-2x, -3 -2x, -3, -4
66 MHz

Table A–1. Default -speed Value for Supported Device Families

Device Family Speed Grade Required for
66 MHz operation

Speed Grade Required for
33 MHz Operation

Default PCI Bus
Speed

A–6 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Additional Options

For constraint files that have a default value of 66 MHz, you can override
the default value and change it to 33 MHz by typing the following
command:

add_pci_constraints -speed "33" r
You cannot override a default speed value of 33 MHz.

EP4SGX230HF35
EP4SGX230KF40

-2, -3 -2, -3, -4
66 MHz

EP4SGX290FF35
EP4SGX290FH29

-2x, -3 -2x, -3, -4
66 MHz

EP4SGX290HF35
EP4SGX290KF40
EP4SGX290KF43

-2, -3 -2, -3, -4
66 MHz

EP4SGX290KF45
EP4SGX290NF45

-2 -2, -3, -4
66 MHz

EP4SGX360FF35
EP4SGX360FH29

-2x, -3 -2x, -3, -4
66 MHz

EP4SGX360HF35
EP4SGX360KF40
EP4SGX360KF43

-2, -3 -2, -3, -4
66 MHz

EP4SGX360NF45 -2 -2, -3, -4 66 MHz

EP4SGX530HH35
EP4SGX530KH40
EP4SGX530NF45
EP4SGX530KF43

-2 -2, -3, -4

66 MHz

EP4S100G2
EP4S100G3
EP4S100G4
EP4S100G5
EP4S40G2
EP4S40G5

-1, -2 -1, -2, -3

66 MHz

Note for Table A–1:
(1) Pinouts are not provided for this device via the PCI constraint files. As no pinouts are available, the Pin Planner

(.ppf) files are not generated. The pinouts are provided during full compilation.

Table A–1. Default -speed Value for Supported Device Families

Device Family Speed Grade Required for
66 MHz operation

Speed Grade Required for
33 MHz Operation

Default PCI Bus
Speed

Altera Corporation User Guide Version 11.1 A–7
October 2011 PCI Compiler

-no_compile

By default, the add_pci_constraints command performs analysis
and synthesis in the Quartus II software and parses the report file to find
the hierarchy of the PCI MegaCore function in your design. Use the
-no_compile option to override analysis and synthesis. This option
should only be used if you have performed analysis and synthesis or fully
compiled your project prior to using this script.

-no_pinouts

By default, the add_pci_constraints command makes
Altera-recommended PCI pin location assignments. Use the
-no_pinouts option if you do not intend to use the recommended PCI
pin locations. This option is not recommended and should be used with
caution.

1 The Remote Update core’s default pins assignment is not
compatible with the pins assigned by PCI Compiler. If you are
using a PCI Compiler design with Remote Update in Active
Serial Mode, use this option to avoid pins incompatibility.

c Remember to assign the pins for address and data (ad) bus
farther away from the analog power supply pins (VCCA and
VCCA_PLL) to avoid any probable instability caused by SSN.

-pin_prefix

When you specify this option with an instance name, this option appends
a prefix consisting of the PCI MegaCore instance name and the leading
underscore (_) character to the default names of all pins in the MegaCore.
You can use this option in your design to uniquely identify and
differentiate pins that belong to different MegaCore functions that have
common pin names. This option cannot be used with the -pin_suffix
option. The syntax for this option is as follows:

add_pci_constraints -pin_prefix <instance name_>

The <instance name_> is the prefix that will be attached to all default pins.

-pin_suffix

Appends a suffix consisting of the PCI MegaCore instance name and the
leading underscore character (_) that you specify to the default names of
all pins in the MegaCore. You can use this option in your design to
uniquely identify and differentiate pins that belong to different

A–8 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Upgrading Assignments from a Previous Version of PCI Compiler

MegaCore functions that have common pin names. This option cannot be
used with the -pin_prefix option. The syntax for this option is as
follows:

add_pci_constraints -pin_suffix <_instance name>

The <_instance name> is the suffix that will be attached to all default pins.

-help

Use the -help option for information on the options used with the
add_pci_constraints command.

Upgrading
Assignments
from a Previous
Version of PCI
Compiler

If your design contains PCI assignments from a previous version of PCI
Compiler, attempt to compile your project using your existing PCI
assignments. After compilation, check to see if timing requirements are
met. If PCI timing requirements are not met, source the constraint file to
make new PCI assignments. Refer to “PCI Constraint Files” on page A–1
for more information on using the PCI constraint files.

When the PCI Constraint file is used to upgrade from previous PCI
assignments, it performs the following steps:

1. Checks for the default PCI signal names in your QSF.

The PCI Constraint file gives errors if your project uses nondefault
PCI pin names. Refer to “Upgrading PCI Assignments Containing
Nondefault PCI Pin Names” on page A–8 for more information.

2. Archives the Quartus II project, before making any changes, in
PCI_Archive_<date>_<time>.qar, where <date> is the year, month,
and day the script was run; and <time> is the hour, minute, and
second that the script was run.

3. Removes the previous PCI assignments from your project’s QSF file

4. Makes new PCI assignments for your project.

Upgrading PCI Assignments Containing Nondefault PCI Pin
Names

The PCI constraint file uses the default PCI pin names to make PCI
assignments. When removing the existing PCI assignments the PCI
constraint file checks the PCI pin names against the default PCI pin
names. If there is a mismatch between your PCI pin names and the
default PCI pin names, do one of the following:

Altera Corporation User Guide Version 11.1 A–9
October 2011 PCI Compiler

■ Manually delete all the existing PCI assignments from your QSF,
then use the PCI constraint file as shown in “PCI Constraint Files” on
page A–1.

■ Update the pin list in the PCI constraint file. The PCI constraint file
has a mapping of default PCI pin names to user PCI pin names. Edit
the get_user_pin name procedure in the PCI constraint file to
match the default PCI pin names to your PCI pin names, then use the
PCI constraint file as shown in “PCI Constraint Files” on page A–1.

In both of the above methods the PCI constraint files use the default PCI
pin names to make new PCI pin assignments in your project. You must
manually edit your QSF to change the default PCI pin names to your
project-specific pin names.

To edit the PCI constraint file, follow these steps:

1. Open the PCI constraint file in a text editor of your choice. Make
sure that any automatic line-wrapping functionality is disabled.

2. Go to the get_user_pin_name procedure. This procedure maps
the default PCI pin names to user PCI pin names. The first few lines
of the procedure are shown below.

proc get_user_pin_name { internal_pin_name } {

#---------------- Do NOT change ------------------------------- ---- Change -----
array set map_user_pin_name_to_internal_pin_name { ad ad }

3. Edit the pin names under the "Change" header in the file to match
the PCI pin names used in your Quartus II project. In the example
line below, the name ad is changed to pci_ad:

#---------------- Do NOT change ------------------------------- ---- Change -----
array set map_user_pin_name_to_internal_pin_name { ad pci_ad }

A–10 User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Upgrading Assignments from a Previous Version of PCI Compiler

Altera Corporation User Guide Version 11.1 Info–i
October 2011

Additional Information

Revision History The following table displays the revision history for chapters in this User
Guide.

Date Version Changes Made

October 2011 11.1 ● Updated the User Guide for version 11.1 of PCI Compiler.
● Added final support for Cyclone IV E device family.
● Updated support level for Cyclone III LS, Cyclone IV GX, HardCopy III

and HardCopy IV (E, GX) device family.
● Updated speed grade information for Arria II GX, Arria II GZ, Cyclone IV,

and Stratix IV device family.

January 2011 10.1 Added speed grade information for Stratix IV device family.

July 2010 10.0 Updated the User Guide for version 10.0 of PCI Compiler.

November 2009 9.1 ● Updated the User Guide for version 9.1 of PCI Compiler.
● Added support for Cyclone III LS, Cyclone IV GX, HardCopy III and

HardCopy IV (E, GX) device family.
March 2009 9.0 Updated the User Guide for version 9.0 of PCI Compiler.

November 2008 8.1 Updated the User Guide for version 8.1 of PCI Compiler.

May 2008 8.0 Updated the User Guide for version 8.0 of PCI Compiler.

October 2007 4.5 ● Added information for I/O BAR (SOPC Builder Flow).
● Updated the PCI bus command support summary.

May 2007 4.4 Updated the User Guide for version 7.1 of PCI Compiler.

December 2006 4.3 Added preliminary support for Cyclone III device family.

December 2006 4.2 Updated the User Guide for version 6.1 of PCI Compiler.

April 2006 4.1.1 ● Updated the User Guide for version 4.1.1 of PCI Compiler.

● Updated timing diagrams.

● Documented -pin_prefix and -pin_suffix
add_pci_constraints command options.

October 2005 4.1.0 Updated the User Guide for version 4.1.0 of the MegaCore functions and PCI
compiler.

April 2005 4.0.0 Updated the User Guide for version 4.0.0 of the PCI Compiler. Divided the
User Guide into two sections. The first section contains the previous version
of the User Guide, which describes the PCI Compiler with the MegaWizard
flow. The second section describes the PCI Compiler with the SOPC Builder
flow, which is a new feature added in v4.0.0 of the PCI Compiler.

June 2004 3.2.0 Updated the User Guide for version 3.2.0 of the MegaCore functions and PCI
compiler.

Info–ii User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

How to Contact Altera

How to Contact
Altera

For the most up-to-date information about Altera products, see the
following table.

April 2004 3.1.0 Updated the User Guide for version 3.1.0 of the MegaCore functions and PCI
compiler.

February 2004 3.0.0 Updated the user guide for version 3.0.0 of the PCI MegaCore functions and
the PCI Compiler. Retitled the user guide PCI Compiler User Guide, and
included content from the PCI Compiler Data Sheet and the PCI Testbench
User Guide, which are now obsolete.

September 2003 2.4.0 Updated the user guide for version 2.4.0 of the cores and compiler.

February 2003 2.3.0 Updated the user guide for version 2.3.0 of the cores and compiler.

September 2002 2.2.0 Updated the user guide for version 2.2.0 of the cores and compiler.

August 2001 2.0.0 Updated the user guide for version 2.0.0 of the cores and compiler.

February 2001 1.3.0 Updated documentation for version 1.3 of the cores. As of this version, the
cores were distributed as part of the PCI compiler.

December 1999 1.0.0 First release of user guide, which described the individual PCI MegaCore
functions, including the pci_mt64, pci_mt32, pci_t64, and pci_t32
functions.

Date Version Changes Made

Contact (1) Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-documentation-index.html
mailto:nacomp@altera.com
mailto:authorization@altera.com

Altera Corporation User Guide Version 11.1 Info–iii
October 2011

Typographic
Conventions

The following table shows the typographic conventions that this
document uses.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory,
d: drive, and chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name>
and <project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key, and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example,
data1, tdi, and input. Active-low signals are denoted by suffix n. For
example, resetn.

Indicates command line commands and anything that must be typed exactly as
it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also, indicates sections of an actual file, such as a Report File, references to
parts of files (for example, the AHDL keyword SUBDESIGN), and logic function
names (for example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press Enter.

f The feet direct you to more information about a particular topic.

Info–iv User Guide Version 11.1 Altera Corporation
PCI Compiler October 2011

Typographic Conventions

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Altera:

 IP-PCI/MT32 IP-PCI/MT64 IP-PCI/T32 IP-PCI/T64

https://www.mouser.com/
https://www.mouser.com/access/?pn=IP-PCI/MT32
https://www.mouser.com/access/?pn=IP-PCI/MT64
https://www.mouser.com/access/?pn=IP-PCI/T32
https://www.mouser.com/access/?pn=IP-PCI/T64

	PCI Compiler User Guide
	Contents
	About PCI Compiler
	Introduction
	Release Information
	Device Family Support
	Features
	Common Features
	PCI Compiler with MegaWizard Plug-in Manager Flow
	PCI Compiler with SOPC Builder Flow

	General Description
	PCI MegaCore Functions
	PCI Testbench
	PCI Compiler with MegaWizard Plug-in Manager Flow
	PCI Compiler With SOPC Builder Flow

	Selecting the Appropriate Flow for Your Design
	PCI Compiler With SOPC Builder Flow
	Advantages
	Disadvantages

	PCI Compiler With MegaWizard Plug-in Manager Flow
	Advantages
	Disadvantages

	Compliance Summary
	Performance and Resource Utilization
	PCI Compiler with MegaWizard Plug-in Manager Flow
	PCI Compiler with SOPC Builder Flow

	Installation and Licensing
	OpenCore Plus Evaluation
	OpenCore Plus Time-Out Behavior

	Section I. PCI Compiler With MegaWizard Plug-In Manager Flow
	1. Getting Started
	Design Flow
	PCI MegaCore Function Design Walkthrough
	Create a New Quartus II Project
	Launch IP Toolbench
	Step 1: Parameterize
	Step 2: Set Up Simulation
	Step 3: Generate

	Simulate the Design
	Simulation in the Quartus II Software

	The Quartus II Simulation Files
	Master Simulation Files
	Target Simulation Files

	Compile the Design
	Program a Device
	PCI Timing Support
	Using the Reference Designs
	pci_mt32 MegaCore Function Reference Design
	Synthesis & Compilation Instructions

	pci_mt64 MegaCore Function Reference Design
	synthesis & Compilation Instructions

	2. Parameter Settings
	Parameterize PCI Compiler
	PCI MegaCore Function Settings
	Read-Only PCI Configuration Registers
	PCI Base Address Registers (BARs)
	Advanced PCI MegaCore Function Features
	Optional Registers
	Optional Interrupt Capabilities
	Master Features
	Allow Variable Byte Enables During Burst Transactions
	Use in Host Bridge Application
	Allow Internal Arbitration Logic
	Disable Master Latency Timer
	Assume ack64n Response

	Variation File Parameters

	3. Functional Description
	Functional Overview
	Target Device Signals & Signal Assertion
	Master Device Signals & Signal Assertion

	PCI Bus Signals
	Parameterized Configuration Register Signals
	Local Address, Data, Command, & Byte Enable Signals
	Target Local-Side Signals
	Master Local-Side Signals

	PCI Bus Commands
	Configuration Registers
	Vendor ID Register
	Device ID Register
	Command Register
	Status Register
	Revision ID Register
	Class Code Register
	Cache Line Size Register
	Latency Timer Register
	Header Type Register
	Base Address Registers
	CardBus CIS Pointer Register
	Subsystem Vendor ID Register
	Subsystem ID Register
	Expansion ROM Base Address Register
	Capabilities Pointer
	Interrupt Line Register
	Interrupt Pin Register
	Minimum Grant Register
	Maximum Latency Register

	Target Mode Operation
	Target Read Transactions
	Memory Read Transactions
	Single-cycle Memory Read Target Transactions
	Burst Memory Read Target Transactions
	Mismatched Bus Width Memory Read Target Transactions

	I/O Read Transactions
	Configuration Read Transactions

	Target Write Transactions
	Memory Write Transactions
	Single-cycle Memory Write Target Transactions
	Burst Memory Write Target Transactions
	Mismatched Bus-Width Memory Write Target Transactions

	I/O Write Transactions
	Configuration Write Transactions

	Target Transaction Terminations
	Retry
	Disconnect
	Target Abort

	Additional Design Guidelines for Target Transactions

	Master Mode Operation
	PCI Bus Parking
	Design Consideration

	Master Read Transactions
	Memory Read Transactions
	Burst Memory Read Master Transactions
	Single-Cycle Memory Read Master Transaction
	Mismatched Bus Width Burst Memory Read Master Transactions

	I/O & Configuration Read Transactions

	Master Write Transactions
	Memory Write Transactions
	Burst Memory Write Master Transactions
	Burst Memory Write Master Transactions with Variable Byte Enables
	32-Bit Single-Cycle Memory Write Master Transactions
	64-Bit Single Cycle Memory Write Master Transactions
	Mismatched Bus Width Burst Memory Write Master Transactions

	I/O & Configuration Write Master Transactions

	Abnormal Master Transaction Termination
	Latency Timer Expires
	Retry
	Disconnect Without Data
	Disconnect with Data
	Target Abort
	Master Abort

	Host Bridge Operation
	Using the PCI MegaCore Function as a Host Bridge
	PCI Configuration Read Transaction from the pci_mt64 Local Master Device to the Internal Configuration Space
	PCI Configuration Write Transaction from the pci_mt64 Local Master Device to the Internal Configuration Space

	64-Bit Addressing, Dual Address Cycle (DAC)
	Target Mode Operation
	64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction

	Master Mode Operation
	64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction

	4. Testbench
	General Description
	Features
	PCI Testbench Files
	Testbench Specifications
	Master Transactor (mstr_tranx)
	PROCEDURES and TASKS Sections
	INITIALIZATION Section
	USER COMMANDS Section
	cfg_rd
	cfg_wr
	mem_wr_32
	mem_rd_32
	mem_wr_64
	mem_rd_64
	io_wr
	io_rd

	Target Transactor (trgt_tranx)
	FILE IO section
	PROCEDURES and TASKS sections

	Bus Monitor (monitor)
	Clock Generator (clk_gen)
	Arbiter (arbiter)
	Pull Up (pull_up)

	Local Reference Design
	Local Target
	DMA Engine
	Local Master
	lm_lastn Generator
	Prefetch
	LPM RAM

	Simulation Flow

	Section II. PCI Compiler With SOPC Builder Flow
	5. Getting Started
	Design Flow
	PCI Compiler with SOPC Builder Flow Design Walkthrough
	Create a New Quartus II Project
	Set Up the PCI-Avalon Bridge
	Add the Remaining Components to the SOPC Builder System
	Complete the Connections in SOPC Builder
	Generate the SOPC Builder System
	Files Generated by SOPC Builder

	Simulate the Design
	Compile the Design
	Program a Device
	Upgrading Systems from a Previous Version

	6. Parameter Settings
	System Options-1
	PCI Device Mode
	PCI Master/Target Peripheral
	PCI Target-Only Peripheral
	PCI Host-Bridge Device

	PCI Target Performance
	Single-Cycle Transfers Only
	Burst Transfers with Single Pending Read
	Burst Transfers with Multiple Pending Reads
	Maximum Target Read Burst Size

	PCI Master Performance
	Burst Transfers with Single Pending Read
	Burst Transfers with Multiple Pending Reads

	Value of Multiple Pending Reads
	System Options-2
	PCI Bus Speed
	PCI Data Bus Width
	PCI Clock/Reset Settings
	PCI Bus Arbiter

	PCI Configuration
	PCI Base Address Registers
	PCI Read-Only Registers
	Setting the PCI Base Address Register Values
	Manual Setting of the BAR Size & Avalon Base Address

	Avalon Configuration

	7. Functional Description
	Functional Overview
	PCI-Avalon Bridge Blocks
	Avalon-MM Ports
	Prefetchable Avalon-MM Master
	Non-Prefetchable Avalon-MM Master
	PCI Bus Access Slave
	Control Register Access Avalon-MM Slave

	Control/Status Register Module
	Mailbox Registers

	PCI MegaCore Function
	PCI Bus Arbiter
	Other PCI-Avalon Bridge Modules

	PCI Operational Modes
	PCI Target-Only Peripheral Mode Operation
	PCI Master/Target Peripheral Mode Operation
	Control Register Access Avalon Slave

	PCI Host-Bridge Device Mode Operation

	Performance Profiles
	Target Performance
	Single-Cycle Transfers Only
	Burst Transfers With Single Pending Read
	Burst Transfers With Multiple Pending Reads

	Master Performance
	Burst Transfers With Single Pending Read
	Burst Transfers With Multiple Pending Reads

	Interface Signals
	PCI Bus Arbiter Signals

	PCI Bus Commands
	PCI Target Operation
	Non-Prefetchable Operations
	Non-Prefetchable Write Operations
	I/O Write Operations
	Non-Prefetchable Read Operations

	Prefetchable Operations
	Prefetchable Write Operations
	Prefetchable Read Operations

	PCI-to-Avalon Address Translation

	PCI Master Operation
	Avalon-To-PCI Read & Write Operation
	Avalon-to-PCI Write Requests
	Avalon-to-PCI Read Requests
	Arbitration Among Pending PCI Master Requests

	Avalon-to-PCI Address Translation
	Ordering of Requests
	Ordering of Avalon-to-PCI Operations
	Ordering PCI-to-Avalon Operations

	PCI Host-Bridge Operation
	Altera-Provided PCI Bus Arbiter
	Interrupts
	Generation of PCI Interrupts
	Reception of PCI Interrupts
	Generation of Avalon-MM Interrupts

	Control & Status Registers
	PCI Interrupt Status Register
	PCI Interrupt Enable Register
	PCI Mailbox Register Access
	Avalon-to-PCI Address Translation Table
	Read-Only Configuration Registers
	Avalon-MM Interrupt Status Register
	Avalon-MM Interrupt Enable Register
	Avalon Mailbox Register Access

	8. Testbench
	General Description
	Features
	PCI Testbench Files
	Testbench Specifications
	Master Transactor (mstr_tranx)
	PROCEDURES and TASKS Sections
	INITIALIZATION Section
	USER COMMANDS Section
	cfg_rd
	cfg_wr
	mem_wr_32
	mem_rd_32
	mem_wr_64
	mem_rd_64
	io_wr
	io_rd

	Target Transactor (trgt_tranx)
	FILE IO section
	PROCEDURES and TASKS sections

	Bus Monitor (monitor)
	Arbiter (arbiter)
	Pull Up (pull_up)

	Simulation Flow

	Appendix A. Using PCI Constraint File Tcl Scripts
	Introduction
	PCI Constraint Files
	Simultaneous Switching Noise (SSN) Considerations
	Additional Options
	-speed
	-no_compile
	-no_pinouts
	-pin_prefix
	-pin_suffix
	-help

	Upgrading Assignments from a Previous Version of PCI Compiler
	Upgrading PCI Assignments Containing Nondefault PCI Pin Names

	Additional Information
	How to Contact Altera
	Typographic Conventions

